xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 36b606ae6aa4b24061096ba18582e0a08ccd5dba)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/IR/ProfDataUtils.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include <optional>
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "ppctti"
28 
29 static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost",
30 cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden);
31 
32 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
33 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
34 
35 static cl::opt<bool>
36 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
37                 cl::desc("Enable using coldcc calling conv for cold "
38                          "internal functions"));
39 
40 static cl::opt<bool>
41 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
42                cl::desc("Do not add instruction count to lsr cost model"));
43 
44 // The latency of mtctr is only justified if there are more than 4
45 // comparisons that will be removed as a result.
46 static cl::opt<unsigned>
47 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
48                       cl::desc("Loops with a constant trip count smaller than "
49                                "this value will not use the count register."));
50 
51 //===----------------------------------------------------------------------===//
52 //
53 // PPC cost model.
54 //
55 //===----------------------------------------------------------------------===//
56 
57 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)58 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
59   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
60   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
61     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
62              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
63   return TTI::PSK_Software;
64 }
65 
66 std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const67 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
68   Intrinsic::ID IID = II.getIntrinsicID();
69   switch (IID) {
70   default:
71     break;
72   case Intrinsic::ppc_altivec_lvx:
73   case Intrinsic::ppc_altivec_lvxl:
74     // Turn PPC lvx -> load if the pointer is known aligned.
75     if (getOrEnforceKnownAlignment(
76             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
77             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
78       Value *Ptr = II.getArgOperand(0);
79       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
80     }
81     break;
82   case Intrinsic::ppc_vsx_lxvw4x:
83   case Intrinsic::ppc_vsx_lxvd2x: {
84     // Turn PPC VSX loads into normal loads.
85     Value *Ptr = II.getArgOperand(0);
86     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
87   }
88   case Intrinsic::ppc_altivec_stvx:
89   case Intrinsic::ppc_altivec_stvxl:
90     // Turn stvx -> store if the pointer is known aligned.
91     if (getOrEnforceKnownAlignment(
92             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
93             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
94       Value *Ptr = II.getArgOperand(1);
95       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
96     }
97     break;
98   case Intrinsic::ppc_vsx_stxvw4x:
99   case Intrinsic::ppc_vsx_stxvd2x: {
100     // Turn PPC VSX stores into normal stores.
101     Value *Ptr = II.getArgOperand(1);
102     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
103   }
104   case Intrinsic::ppc_altivec_vperm:
105     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
106     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
107     // a vectorshuffle for little endian, we must undo the transformation
108     // performed on vec_perm in altivec.h.  That is, we must complement
109     // the permutation mask with respect to 31 and reverse the order of
110     // V1 and V2.
111     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
112       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
113              "Bad type for intrinsic!");
114 
115       // Check that all of the elements are integer constants or undefs.
116       bool AllEltsOk = true;
117       for (unsigned i = 0; i != 16; ++i) {
118         Constant *Elt = Mask->getAggregateElement(i);
119         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
120           AllEltsOk = false;
121           break;
122         }
123       }
124 
125       if (AllEltsOk) {
126         // Cast the input vectors to byte vectors.
127         Value *Op0 =
128             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
129         Value *Op1 =
130             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
131         Value *Result = UndefValue::get(Op0->getType());
132 
133         // Only extract each element once.
134         Value *ExtractedElts[32];
135         memset(ExtractedElts, 0, sizeof(ExtractedElts));
136 
137         for (unsigned i = 0; i != 16; ++i) {
138           if (isa<UndefValue>(Mask->getAggregateElement(i)))
139             continue;
140           unsigned Idx =
141               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
142           Idx &= 31; // Match the hardware behavior.
143           if (DL.isLittleEndian())
144             Idx = 31 - Idx;
145 
146           if (!ExtractedElts[Idx]) {
147             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
148             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
149             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
150                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
151           }
152 
153           // Insert this value into the result vector.
154           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
155                                                   IC.Builder.getInt32(i));
156         }
157         return CastInst::Create(Instruction::BitCast, Result, II.getType());
158       }
159     }
160     break;
161   }
162   return std::nullopt;
163 }
164 
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)165 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
166                                           TTI::TargetCostKind CostKind) {
167   if (DisablePPCConstHoist)
168     return BaseT::getIntImmCost(Imm, Ty, CostKind);
169 
170   assert(Ty->isIntegerTy());
171 
172   unsigned BitSize = Ty->getPrimitiveSizeInBits();
173   if (BitSize == 0)
174     return ~0U;
175 
176   if (Imm == 0)
177     return TTI::TCC_Free;
178 
179   if (Imm.getBitWidth() <= 64) {
180     if (isInt<16>(Imm.getSExtValue()))
181       return TTI::TCC_Basic;
182 
183     if (isInt<32>(Imm.getSExtValue())) {
184       // A constant that can be materialized using lis.
185       if ((Imm.getZExtValue() & 0xFFFF) == 0)
186         return TTI::TCC_Basic;
187 
188       return 2 * TTI::TCC_Basic;
189     }
190   }
191 
192   return 4 * TTI::TCC_Basic;
193 }
194 
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)195 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
196                                                 const APInt &Imm, Type *Ty,
197                                                 TTI::TargetCostKind CostKind) {
198   if (DisablePPCConstHoist)
199     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
200 
201   assert(Ty->isIntegerTy());
202 
203   unsigned BitSize = Ty->getPrimitiveSizeInBits();
204   if (BitSize == 0)
205     return ~0U;
206 
207   switch (IID) {
208   default:
209     return TTI::TCC_Free;
210   case Intrinsic::sadd_with_overflow:
211   case Intrinsic::uadd_with_overflow:
212   case Intrinsic::ssub_with_overflow:
213   case Intrinsic::usub_with_overflow:
214     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
215       return TTI::TCC_Free;
216     break;
217   case Intrinsic::experimental_stackmap:
218     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
219       return TTI::TCC_Free;
220     break;
221   case Intrinsic::experimental_patchpoint_void:
222   case Intrinsic::experimental_patchpoint:
223     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224       return TTI::TCC_Free;
225     break;
226   }
227   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
228 }
229 
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst)230 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
231                                               const APInt &Imm, Type *Ty,
232                                               TTI::TargetCostKind CostKind,
233                                               Instruction *Inst) {
234   if (DisablePPCConstHoist)
235     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
236 
237   assert(Ty->isIntegerTy());
238 
239   unsigned BitSize = Ty->getPrimitiveSizeInBits();
240   if (BitSize == 0)
241     return ~0U;
242 
243   unsigned ImmIdx = ~0U;
244   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
245        ZeroFree = false;
246   switch (Opcode) {
247   default:
248     return TTI::TCC_Free;
249   case Instruction::GetElementPtr:
250     // Always hoist the base address of a GetElementPtr. This prevents the
251     // creation of new constants for every base constant that gets constant
252     // folded with the offset.
253     if (Idx == 0)
254       return 2 * TTI::TCC_Basic;
255     return TTI::TCC_Free;
256   case Instruction::And:
257     RunFree = true; // (for the rotate-and-mask instructions)
258     [[fallthrough]];
259   case Instruction::Add:
260   case Instruction::Or:
261   case Instruction::Xor:
262     ShiftedFree = true;
263     [[fallthrough]];
264   case Instruction::Sub:
265   case Instruction::Mul:
266   case Instruction::Shl:
267   case Instruction::LShr:
268   case Instruction::AShr:
269     ImmIdx = 1;
270     break;
271   case Instruction::ICmp:
272     UnsignedFree = true;
273     ImmIdx = 1;
274     // Zero comparisons can use record-form instructions.
275     [[fallthrough]];
276   case Instruction::Select:
277     ZeroFree = true;
278     break;
279   case Instruction::PHI:
280   case Instruction::Call:
281   case Instruction::Ret:
282   case Instruction::Load:
283   case Instruction::Store:
284     break;
285   }
286 
287   if (ZeroFree && Imm == 0)
288     return TTI::TCC_Free;
289 
290   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
291     if (isInt<16>(Imm.getSExtValue()))
292       return TTI::TCC_Free;
293 
294     if (RunFree) {
295       if (Imm.getBitWidth() <= 32 &&
296           (isShiftedMask_32(Imm.getZExtValue()) ||
297            isShiftedMask_32(~Imm.getZExtValue())))
298         return TTI::TCC_Free;
299 
300       if (ST->isPPC64() &&
301           (isShiftedMask_64(Imm.getZExtValue()) ||
302            isShiftedMask_64(~Imm.getZExtValue())))
303         return TTI::TCC_Free;
304     }
305 
306     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
307       return TTI::TCC_Free;
308 
309     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
310       return TTI::TCC_Free;
311   }
312 
313   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
314 }
315 
316 // Check if the current Type is an MMA vector type. Valid MMA types are
317 // v256i1 and v512i1 respectively.
isMMAType(Type * Ty)318 static bool isMMAType(Type *Ty) {
319   return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
320          (Ty->getPrimitiveSizeInBits() > 128);
321 }
322 
getInstructionCost(const User * U,ArrayRef<const Value * > Operands,TTI::TargetCostKind CostKind)323 InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
324                                                ArrayRef<const Value *> Operands,
325                                                TTI::TargetCostKind CostKind) {
326   // We already implement getCastInstrCost and getMemoryOpCost where we perform
327   // the vector adjustment there.
328   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
329     return BaseT::getInstructionCost(U, Operands, CostKind);
330 
331   if (U->getType()->isVectorTy()) {
332     // Instructions that need to be split should cost more.
333     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
334     return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
335   }
336 
337   return BaseT::getInstructionCost(U, Operands, CostKind);
338 }
339 
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)340 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
341                                           AssumptionCache &AC,
342                                           TargetLibraryInfo *LibInfo,
343                                           HardwareLoopInfo &HWLoopInfo) {
344   const PPCTargetMachine &TM = ST->getTargetMachine();
345   TargetSchedModel SchedModel;
346   SchedModel.init(ST);
347 
348   // Do not convert small short loops to CTR loop.
349   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
350   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
351     SmallPtrSet<const Value *, 32> EphValues;
352     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
353     CodeMetrics Metrics;
354     for (BasicBlock *BB : L->blocks())
355       Metrics.analyzeBasicBlock(BB, *this, EphValues);
356     // 6 is an approximate latency for the mtctr instruction.
357     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
358       return false;
359   }
360 
361   // Check that there is no hardware loop related intrinsics in the loop.
362   for (auto *BB : L->getBlocks())
363     for (auto &I : *BB)
364       if (auto *Call = dyn_cast<IntrinsicInst>(&I))
365         if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
366             Call->getIntrinsicID() == Intrinsic::loop_decrement)
367           return false;
368 
369   SmallVector<BasicBlock*, 4> ExitingBlocks;
370   L->getExitingBlocks(ExitingBlocks);
371 
372   // If there is an exit edge known to be frequently taken,
373   // we should not transform this loop.
374   for (auto &BB : ExitingBlocks) {
375     Instruction *TI = BB->getTerminator();
376     if (!TI) continue;
377 
378     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
379       uint64_t TrueWeight = 0, FalseWeight = 0;
380       if (!BI->isConditional() ||
381           !extractBranchWeights(*BI, TrueWeight, FalseWeight))
382         continue;
383 
384       // If the exit path is more frequent than the loop path,
385       // we return here without further analysis for this loop.
386       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
387       if (( TrueIsExit && FalseWeight < TrueWeight) ||
388           (!TrueIsExit && FalseWeight > TrueWeight))
389         return false;
390     }
391   }
392 
393   LLVMContext &C = L->getHeader()->getContext();
394   HWLoopInfo.CountType = TM.isPPC64() ?
395     Type::getInt64Ty(C) : Type::getInt32Ty(C);
396   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
397   return true;
398 }
399 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)400 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
401                                          TTI::UnrollingPreferences &UP,
402                                          OptimizationRemarkEmitter *ORE) {
403   if (ST->getCPUDirective() == PPC::DIR_A2) {
404     // The A2 is in-order with a deep pipeline, and concatenation unrolling
405     // helps expose latency-hiding opportunities to the instruction scheduler.
406     UP.Partial = UP.Runtime = true;
407 
408     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
409     // often outweigh the cost of a division to compute the trip count.
410     UP.AllowExpensiveTripCount = true;
411   }
412 
413   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
414 }
415 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)416 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
417                                        TTI::PeelingPreferences &PP) {
418   BaseT::getPeelingPreferences(L, SE, PP);
419 }
420 // This function returns true to allow using coldcc calling convention.
421 // Returning true results in coldcc being used for functions which are cold at
422 // all call sites when the callers of the functions are not calling any other
423 // non coldcc functions.
useColdCCForColdCall(Function & F)424 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
425   return EnablePPCColdCC;
426 }
427 
enableAggressiveInterleaving(bool LoopHasReductions)428 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
429   // On the A2, always unroll aggressively.
430   if (ST->getCPUDirective() == PPC::DIR_A2)
431     return true;
432 
433   return LoopHasReductions;
434 }
435 
436 PPCTTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const437 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
438   TTI::MemCmpExpansionOptions Options;
439   Options.LoadSizes = {8, 4, 2, 1};
440   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
441   return Options;
442 }
443 
enableInterleavedAccessVectorization()444 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
445   return true;
446 }
447 
getNumberOfRegisters(unsigned ClassID) const448 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
449   assert(ClassID == GPRRC || ClassID == FPRRC ||
450          ClassID == VRRC || ClassID == VSXRC);
451   if (ST->hasVSX()) {
452     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
453     return ClassID == VSXRC ? 64 : 32;
454   }
455   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
456   return 32;
457 }
458 
getRegisterClassForType(bool Vector,Type * Ty) const459 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
460   if (Vector)
461     return ST->hasVSX() ? VSXRC : VRRC;
462   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
463                   Ty->getScalarType()->isDoubleTy()))
464     return ST->hasVSX() ? VSXRC : FPRRC;
465   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
466                   Ty->getScalarType()->isPPC_FP128Ty()))
467     return VRRC;
468   else if (Ty && Ty->getScalarType()->isHalfTy())
469     return VSXRC;
470   else
471     return GPRRC;
472 }
473 
getRegisterClassName(unsigned ClassID) const474 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
475 
476   switch (ClassID) {
477     default:
478       llvm_unreachable("unknown register class");
479       return "PPC::unknown register class";
480     case GPRRC:       return "PPC::GPRRC";
481     case FPRRC:       return "PPC::FPRRC";
482     case VRRC:        return "PPC::VRRC";
483     case VSXRC:       return "PPC::VSXRC";
484   }
485 }
486 
487 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const488 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
489   switch (K) {
490   case TargetTransformInfo::RGK_Scalar:
491     return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
492   case TargetTransformInfo::RGK_FixedWidthVector:
493     return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
494   case TargetTransformInfo::RGK_ScalableVector:
495     return TypeSize::getScalable(0);
496   }
497 
498   llvm_unreachable("Unsupported register kind");
499 }
500 
getCacheLineSize() const501 unsigned PPCTTIImpl::getCacheLineSize() const {
502   // Starting with P7 we have a cache line size of 128.
503   unsigned Directive = ST->getCPUDirective();
504   // Assume that Future CPU has the same cache line size as the others.
505   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
506       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
507       Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE)
508     return 128;
509 
510   // On other processors return a default of 64 bytes.
511   return 64;
512 }
513 
getPrefetchDistance() const514 unsigned PPCTTIImpl::getPrefetchDistance() const {
515   return 300;
516 }
517 
getMaxInterleaveFactor(ElementCount VF)518 unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
519   unsigned Directive = ST->getCPUDirective();
520   // The 440 has no SIMD support, but floating-point instructions
521   // have a 5-cycle latency, so unroll by 5x for latency hiding.
522   if (Directive == PPC::DIR_440)
523     return 5;
524 
525   // The A2 has no SIMD support, but floating-point instructions
526   // have a 6-cycle latency, so unroll by 6x for latency hiding.
527   if (Directive == PPC::DIR_A2)
528     return 6;
529 
530   // FIXME: For lack of any better information, do no harm...
531   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
532     return 1;
533 
534   // For P7 and P8, floating-point instructions have a 6-cycle latency and
535   // there are two execution units, so unroll by 12x for latency hiding.
536   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
537   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
538   // Assume that future is the same as the others.
539   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
540       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
541       Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE)
542     return 12;
543 
544   // For most things, modern systems have two execution units (and
545   // out-of-order execution).
546   return 2;
547 }
548 
549 // Returns a cost adjustment factor to adjust the cost of vector instructions
550 // on targets which there is overlap between the vector and scalar units,
551 // thereby reducing the overall throughput of vector code wrt. scalar code.
552 // An invalid instruction cost is returned if the type is an MMA vector type.
vectorCostAdjustmentFactor(unsigned Opcode,Type * Ty1,Type * Ty2)553 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
554                                                        Type *Ty1, Type *Ty2) {
555   // If the vector type is of an MMA type (v256i1, v512i1), an invalid
556   // instruction cost is returned. This is to signify to other cost computing
557   // functions to return the maximum instruction cost in order to prevent any
558   // opportunities for the optimizer to produce MMA types within the IR.
559   if (isMMAType(Ty1))
560     return InstructionCost::getInvalid();
561 
562   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
563     return InstructionCost(1);
564 
565   std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
566   // If type legalization involves splitting the vector, we don't want to
567   // double the cost at every step - only the last step.
568   if (LT1.first != 1 || !LT1.second.isVector())
569     return InstructionCost(1);
570 
571   int ISD = TLI->InstructionOpcodeToISD(Opcode);
572   if (TLI->isOperationExpand(ISD, LT1.second))
573     return InstructionCost(1);
574 
575   if (Ty2) {
576     std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
577     if (LT2.first != 1 || !LT2.second.isVector())
578       return InstructionCost(1);
579   }
580 
581   return InstructionCost(2);
582 }
583 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueInfo Op1Info,TTI::OperandValueInfo Op2Info,ArrayRef<const Value * > Args,const Instruction * CxtI)584 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
585     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
586     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
587     ArrayRef<const Value *> Args,
588     const Instruction *CxtI) {
589   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
590 
591   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
592   if (!CostFactor.isValid())
593     return InstructionCost::getMax();
594 
595   // TODO: Handle more cost kinds.
596   if (CostKind != TTI::TCK_RecipThroughput)
597     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
598                                          Op2Info, Args, CxtI);
599 
600   // Fallback to the default implementation.
601   InstructionCost Cost = BaseT::getArithmeticInstrCost(
602       Opcode, Ty, CostKind, Op1Info, Op2Info);
603   return Cost * CostFactor;
604 }
605 
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,ArrayRef<int> Mask,TTI::TargetCostKind CostKind,int Index,Type * SubTp,ArrayRef<const Value * > Args,const Instruction * CxtI)606 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
607                                            ArrayRef<int> Mask,
608                                            TTI::TargetCostKind CostKind,
609                                            int Index, Type *SubTp,
610                                            ArrayRef<const Value *> Args,
611                                            const Instruction *CxtI) {
612 
613   InstructionCost CostFactor =
614       vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
615   if (!CostFactor.isValid())
616     return InstructionCost::getMax();
617 
618   // Legalize the type.
619   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
620 
621   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
622   // (at least in the sense that there need only be one non-loop-invariant
623   // instruction). We need one such shuffle instruction for each actual
624   // register (this is not true for arbitrary shuffles, but is true for the
625   // structured types of shuffles covered by TTI::ShuffleKind).
626   return LT.first * CostFactor;
627 }
628 
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)629 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
630                                            TTI::TargetCostKind CostKind,
631                                            const Instruction *I) {
632   if (CostKind != TTI::TCK_RecipThroughput)
633     return Opcode == Instruction::PHI ? 0 : 1;
634   // Branches are assumed to be predicted.
635   return 0;
636 }
637 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)638 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
639                                              Type *Src,
640                                              TTI::CastContextHint CCH,
641                                              TTI::TargetCostKind CostKind,
642                                              const Instruction *I) {
643   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
644 
645   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
646   if (!CostFactor.isValid())
647     return InstructionCost::getMax();
648 
649   InstructionCost Cost =
650       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
651   Cost *= CostFactor;
652   // TODO: Allow non-throughput costs that aren't binary.
653   if (CostKind != TTI::TCK_RecipThroughput)
654     return Cost == 0 ? 0 : 1;
655   return Cost;
656 }
657 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)658 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
659                                                Type *CondTy,
660                                                CmpInst::Predicate VecPred,
661                                                TTI::TargetCostKind CostKind,
662                                                const Instruction *I) {
663   InstructionCost CostFactor =
664       vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
665   if (!CostFactor.isValid())
666     return InstructionCost::getMax();
667 
668   InstructionCost Cost =
669       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
670   // TODO: Handle other cost kinds.
671   if (CostKind != TTI::TCK_RecipThroughput)
672     return Cost;
673   return Cost * CostFactor;
674 }
675 
getVectorInstrCost(unsigned Opcode,Type * Val,TTI::TargetCostKind CostKind,unsigned Index,Value * Op0,Value * Op1)676 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
677                                                TTI::TargetCostKind CostKind,
678                                                unsigned Index, Value *Op0,
679                                                Value *Op1) {
680   assert(Val->isVectorTy() && "This must be a vector type");
681 
682   int ISD = TLI->InstructionOpcodeToISD(Opcode);
683   assert(ISD && "Invalid opcode");
684 
685   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
686   if (!CostFactor.isValid())
687     return InstructionCost::getMax();
688 
689   InstructionCost Cost =
690       BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
691   Cost *= CostFactor;
692 
693   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
694     // Double-precision scalars are already located in index #0 (or #1 if LE).
695     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
696         Index == (ST->isLittleEndian() ? 1 : 0))
697       return 0;
698 
699     return Cost;
700 
701   } else if (Val->getScalarType()->isIntegerTy()) {
702     unsigned EltSize = Val->getScalarSizeInBits();
703     // Computing on 1 bit values requires extra mask or compare operations.
704     unsigned MaskCostForOneBitSize = (VecMaskCost && EltSize == 1) ? 1 : 0;
705     // Computing on non const index requires extra mask or compare operations.
706     unsigned MaskCostForIdx = (Index != -1U) ? 0 : 1;
707     if (ST->hasP9Altivec()) {
708       // P10 has vxform insert which can handle non const index. The
709       // MaskCostForIdx is for masking the index.
710       // P9 has insert for const index. A move-to VSR and a permute/insert.
711       // Assume vector operation cost for both (cost will be 2x on P9).
712       if (ISD == ISD::INSERT_VECTOR_ELT) {
713         if (ST->hasP10Vector())
714           return CostFactor + MaskCostForIdx;
715         else if (Index != -1U)
716           return 2 * CostFactor;
717       } else if (ISD == ISD::EXTRACT_VECTOR_ELT) {
718         // It's an extract.  Maybe we can do a cheap move-from VSR.
719         unsigned EltSize = Val->getScalarSizeInBits();
720         // P9 has both mfvsrd and mfvsrld for 64 bit integer.
721         if (EltSize == 64 && Index != -1U)
722           return 1;
723         else if (EltSize == 32) {
724           unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
725           if (Index == MfvsrwzIndex)
726             return 1;
727 
728           // For other indexs like non const, P9 has vxform extract. The
729           // MaskCostForIdx is for masking the index.
730           return CostFactor + MaskCostForIdx;
731         }
732 
733         // We need a vector extract (or mfvsrld).  Assume vector operation cost.
734         // The cost of the load constant for a vector extract is disregarded
735         // (invariant, easily schedulable).
736         return CostFactor + MaskCostForOneBitSize + MaskCostForIdx;
737       }
738     } else if (ST->hasDirectMove() && Index != -1U) {
739       // Assume permute has standard cost.
740       // Assume move-to/move-from VSR have 2x standard cost.
741       if (ISD == ISD::INSERT_VECTOR_ELT)
742         return 3;
743       return 3 + MaskCostForOneBitSize;
744     }
745   }
746 
747   // Estimated cost of a load-hit-store delay.  This was obtained
748   // experimentally as a minimum needed to prevent unprofitable
749   // vectorization for the paq8p benchmark.  It may need to be
750   // raised further if other unprofitable cases remain.
751   unsigned LHSPenalty = 2;
752   if (ISD == ISD::INSERT_VECTOR_ELT)
753     LHSPenalty += 7;
754 
755   // Vector element insert/extract with Altivec is very expensive,
756   // because they require store and reload with the attendant
757   // processor stall for load-hit-store.  Until VSX is available,
758   // these need to be estimated as very costly.
759   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
760       ISD == ISD::INSERT_VECTOR_ELT)
761     return LHSPenalty + Cost;
762 
763   return Cost;
764 }
765 
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,TTI::OperandValueInfo OpInfo,const Instruction * I)766 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
767                                             MaybeAlign Alignment,
768                                             unsigned AddressSpace,
769                                             TTI::TargetCostKind CostKind,
770                                             TTI::OperandValueInfo OpInfo,
771                                             const Instruction *I) {
772 
773   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
774   if (!CostFactor.isValid())
775     return InstructionCost::getMax();
776 
777   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
778     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
779                                   CostKind);
780   // Legalize the type.
781   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
782   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
783          "Invalid Opcode");
784 
785   InstructionCost Cost =
786       BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
787   // TODO: Handle other cost kinds.
788   if (CostKind != TTI::TCK_RecipThroughput)
789     return Cost;
790 
791   Cost *= CostFactor;
792 
793   bool IsAltivecType = ST->hasAltivec() &&
794                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
795                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
796   bool IsVSXType = ST->hasVSX() &&
797                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
798 
799   // VSX has 32b/64b load instructions. Legalization can handle loading of
800   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
801   // PPCTargetLowering can't compute the cost appropriately. So here we
802   // explicitly check this case. There are also corresponding store
803   // instructions.
804   unsigned MemBytes = Src->getPrimitiveSizeInBits();
805   if (ST->hasVSX() && IsAltivecType &&
806       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
807     return 1;
808 
809   // Aligned loads and stores are easy.
810   unsigned SrcBytes = LT.second.getStoreSize();
811   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
812     return Cost;
813 
814   // If we can use the permutation-based load sequence, then this is also
815   // relatively cheap (not counting loop-invariant instructions): one load plus
816   // one permute (the last load in a series has extra cost, but we're
817   // neglecting that here). Note that on the P7, we could do unaligned loads
818   // for Altivec types using the VSX instructions, but that's more expensive
819   // than using the permutation-based load sequence. On the P8, that's no
820   // longer true.
821   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
822       *Alignment >= LT.second.getScalarType().getStoreSize())
823     return Cost + LT.first; // Add the cost of the permutations.
824 
825   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
826   // P7, unaligned vector loads are more expensive than the permutation-based
827   // load sequence, so that might be used instead, but regardless, the net cost
828   // is about the same (not counting loop-invariant instructions).
829   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
830     return Cost;
831 
832   // Newer PPC supports unaligned memory access.
833   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
834     return Cost;
835 
836   // PPC in general does not support unaligned loads and stores. They'll need
837   // to be decomposed based on the alignment factor.
838 
839   // Add the cost of each scalar load or store.
840   assert(Alignment);
841   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
842 
843   // For a vector type, there is also scalarization overhead (only for
844   // stores, loads are expanded using the vector-load + permutation sequence,
845   // which is much less expensive).
846   if (Src->isVectorTy() && Opcode == Instruction::Store)
847     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
848          ++i)
849       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
850                                  nullptr, nullptr);
851 
852   return Cost;
853 }
854 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)855 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
856     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
857     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
858     bool UseMaskForCond, bool UseMaskForGaps) {
859   InstructionCost CostFactor =
860       vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
861   if (!CostFactor.isValid())
862     return InstructionCost::getMax();
863 
864   if (UseMaskForCond || UseMaskForGaps)
865     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
866                                              Alignment, AddressSpace, CostKind,
867                                              UseMaskForCond, UseMaskForGaps);
868 
869   assert(isa<VectorType>(VecTy) &&
870          "Expect a vector type for interleaved memory op");
871 
872   // Legalize the type.
873   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
874 
875   // Firstly, the cost of load/store operation.
876   InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
877                                          AddressSpace, CostKind);
878 
879   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
880   // (at least in the sense that there need only be one non-loop-invariant
881   // instruction). For each result vector, we need one shuffle per incoming
882   // vector (except that the first shuffle can take two incoming vectors
883   // because it does not need to take itself).
884   Cost += Factor*(LT.first-1);
885 
886   return Cost;
887 }
888 
889 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)890 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
891                                   TTI::TargetCostKind CostKind) {
892   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
893 }
894 
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types) const895 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
896                                        const Function *Callee,
897                                        const ArrayRef<Type *> &Types) const {
898 
899   // We need to ensure that argument promotion does not
900   // attempt to promote pointers to MMA types (__vector_pair
901   // and __vector_quad) since these types explicitly cannot be
902   // passed as arguments. Both of these types are larger than
903   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
904   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
905     return false;
906 
907   return llvm::none_of(Types, [](Type *Ty) {
908     if (Ty->isSized())
909       return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
910     return false;
911   });
912 }
913 
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)914 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
915                             LoopInfo *LI, DominatorTree *DT,
916                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
917   // Process nested loops first.
918   for (Loop *I : *L)
919     if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
920       return false; // Stop search.
921 
922   HardwareLoopInfo HWLoopInfo(L);
923 
924   if (!HWLoopInfo.canAnalyze(*LI))
925     return false;
926 
927   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
928     return false;
929 
930   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
931     return false;
932 
933   *BI = HWLoopInfo.ExitBranch;
934   return true;
935 }
936 
isLSRCostLess(const TargetTransformInfo::LSRCost & C1,const TargetTransformInfo::LSRCost & C2)937 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
938                                const TargetTransformInfo::LSRCost &C2) {
939   // PowerPC default behaviour here is "instruction number 1st priority".
940   // If LsrNoInsnsCost is set, call default implementation.
941   if (!LsrNoInsnsCost)
942     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
943                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
944            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
945                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
946   else
947     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
948 }
949 
isNumRegsMajorCostOfLSR()950 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
951   return false;
952 }
953 
shouldBuildRelLookupTables() const954 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
955   const PPCTargetMachine &TM = ST->getTargetMachine();
956   // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
957   if (!TM.isELFv2ABI())
958     return false;
959   return BaseT::shouldBuildRelLookupTables();
960 }
961 
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)962 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
963                                     MemIntrinsicInfo &Info) {
964   switch (Inst->getIntrinsicID()) {
965   case Intrinsic::ppc_altivec_lvx:
966   case Intrinsic::ppc_altivec_lvxl:
967   case Intrinsic::ppc_altivec_lvebx:
968   case Intrinsic::ppc_altivec_lvehx:
969   case Intrinsic::ppc_altivec_lvewx:
970   case Intrinsic::ppc_vsx_lxvd2x:
971   case Intrinsic::ppc_vsx_lxvw4x:
972   case Intrinsic::ppc_vsx_lxvd2x_be:
973   case Intrinsic::ppc_vsx_lxvw4x_be:
974   case Intrinsic::ppc_vsx_lxvl:
975   case Intrinsic::ppc_vsx_lxvll:
976   case Intrinsic::ppc_vsx_lxvp: {
977     Info.PtrVal = Inst->getArgOperand(0);
978     Info.ReadMem = true;
979     Info.WriteMem = false;
980     return true;
981   }
982   case Intrinsic::ppc_altivec_stvx:
983   case Intrinsic::ppc_altivec_stvxl:
984   case Intrinsic::ppc_altivec_stvebx:
985   case Intrinsic::ppc_altivec_stvehx:
986   case Intrinsic::ppc_altivec_stvewx:
987   case Intrinsic::ppc_vsx_stxvd2x:
988   case Intrinsic::ppc_vsx_stxvw4x:
989   case Intrinsic::ppc_vsx_stxvd2x_be:
990   case Intrinsic::ppc_vsx_stxvw4x_be:
991   case Intrinsic::ppc_vsx_stxvl:
992   case Intrinsic::ppc_vsx_stxvll:
993   case Intrinsic::ppc_vsx_stxvp: {
994     Info.PtrVal = Inst->getArgOperand(1);
995     Info.ReadMem = false;
996     Info.WriteMem = true;
997     return true;
998   }
999   case Intrinsic::ppc_stbcx:
1000   case Intrinsic::ppc_sthcx:
1001   case Intrinsic::ppc_stdcx:
1002   case Intrinsic::ppc_stwcx: {
1003     Info.PtrVal = Inst->getArgOperand(0);
1004     Info.ReadMem = false;
1005     Info.WriteMem = true;
1006     return true;
1007   }
1008   default:
1009     break;
1010   }
1011 
1012   return false;
1013 }
1014 
hasActiveVectorLength(unsigned Opcode,Type * DataType,Align Alignment) const1015 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1016                                        Align Alignment) const {
1017   // Only load and stores instructions can have variable vector length on Power.
1018   if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1019     return false;
1020   // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1021   // therefore cannot be used in 32-bit mode.
1022   if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1023     return false;
1024   if (isa<FixedVectorType>(DataType)) {
1025     unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1026     return VecWidth == 128;
1027   }
1028   Type *ScalarTy = DataType->getScalarType();
1029 
1030   if (ScalarTy->isPointerTy())
1031     return true;
1032 
1033   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1034     return true;
1035 
1036   if (!ScalarTy->isIntegerTy())
1037     return false;
1038 
1039   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1040   return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1041 }
1042 
getVPMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)1043 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1044                                               Align Alignment,
1045                                               unsigned AddressSpace,
1046                                               TTI::TargetCostKind CostKind,
1047                                               const Instruction *I) {
1048   InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1049                                                   AddressSpace, CostKind, I);
1050   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1051     return Cost;
1052   // TODO: Handle other cost kinds.
1053   if (CostKind != TTI::TCK_RecipThroughput)
1054     return Cost;
1055 
1056   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1057          "Invalid Opcode");
1058 
1059   auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1060   assert(SrcVTy && "Expected a vector type for VP memory operations");
1061 
1062   if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1063     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
1064 
1065     InstructionCost CostFactor =
1066         vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1067     if (!CostFactor.isValid())
1068       return InstructionCost::getMax();
1069 
1070     InstructionCost Cost = LT.first * CostFactor;
1071     assert(Cost.isValid() && "Expected valid cost");
1072 
1073     // On P9 but not on P10, if the op is misaligned then it will cause a
1074     // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1075     // ones.
1076     const Align DesiredAlignment(16);
1077     if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1078       return Cost;
1079 
1080     // Since alignment may be under estimated, we try to compute the probability
1081     // that the actual address is aligned to the desired boundary. For example
1082     // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1083     // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1084     // aligned.
1085     float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1086     float MisalignmentProb = 1.0 - AlignmentProb;
1087     return (MisalignmentProb * P9PipelineFlushEstimate) +
1088            (AlignmentProb * *Cost.getValue());
1089   }
1090 
1091   // Usually we should not get to this point, but the following is an attempt to
1092   // model the cost of legalization. Currently we can only lower intrinsics with
1093   // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1094   return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1095 }
1096 
supportsTailCallFor(const CallBase * CB) const1097 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
1098   return TLI->supportsTailCallFor(CB);
1099 }
1100