1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/IR/ProfDataUtils.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include <optional>
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "ppctti"
28
29 static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost",
30 cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden);
31
32 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
33 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
34
35 static cl::opt<bool>
36 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
37 cl::desc("Enable using coldcc calling conv for cold "
38 "internal functions"));
39
40 static cl::opt<bool>
41 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
42 cl::desc("Do not add instruction count to lsr cost model"));
43
44 // The latency of mtctr is only justified if there are more than 4
45 // comparisons that will be removed as a result.
46 static cl::opt<unsigned>
47 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
48 cl::desc("Loops with a constant trip count smaller than "
49 "this value will not use the count register."));
50
51 //===----------------------------------------------------------------------===//
52 //
53 // PPC cost model.
54 //
55 //===----------------------------------------------------------------------===//
56
57 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)58 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
59 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
60 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
61 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
62 TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
63 return TTI::PSK_Software;
64 }
65
66 std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const67 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
68 Intrinsic::ID IID = II.getIntrinsicID();
69 switch (IID) {
70 default:
71 break;
72 case Intrinsic::ppc_altivec_lvx:
73 case Intrinsic::ppc_altivec_lvxl:
74 // Turn PPC lvx -> load if the pointer is known aligned.
75 if (getOrEnforceKnownAlignment(
76 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
77 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
78 Value *Ptr = II.getArgOperand(0);
79 return new LoadInst(II.getType(), Ptr, "", false, Align(16));
80 }
81 break;
82 case Intrinsic::ppc_vsx_lxvw4x:
83 case Intrinsic::ppc_vsx_lxvd2x: {
84 // Turn PPC VSX loads into normal loads.
85 Value *Ptr = II.getArgOperand(0);
86 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
87 }
88 case Intrinsic::ppc_altivec_stvx:
89 case Intrinsic::ppc_altivec_stvxl:
90 // Turn stvx -> store if the pointer is known aligned.
91 if (getOrEnforceKnownAlignment(
92 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
93 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
94 Value *Ptr = II.getArgOperand(1);
95 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
96 }
97 break;
98 case Intrinsic::ppc_vsx_stxvw4x:
99 case Intrinsic::ppc_vsx_stxvd2x: {
100 // Turn PPC VSX stores into normal stores.
101 Value *Ptr = II.getArgOperand(1);
102 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
103 }
104 case Intrinsic::ppc_altivec_vperm:
105 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
106 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
107 // a vectorshuffle for little endian, we must undo the transformation
108 // performed on vec_perm in altivec.h. That is, we must complement
109 // the permutation mask with respect to 31 and reverse the order of
110 // V1 and V2.
111 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
112 assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
113 "Bad type for intrinsic!");
114
115 // Check that all of the elements are integer constants or undefs.
116 bool AllEltsOk = true;
117 for (unsigned i = 0; i != 16; ++i) {
118 Constant *Elt = Mask->getAggregateElement(i);
119 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
120 AllEltsOk = false;
121 break;
122 }
123 }
124
125 if (AllEltsOk) {
126 // Cast the input vectors to byte vectors.
127 Value *Op0 =
128 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
129 Value *Op1 =
130 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
131 Value *Result = UndefValue::get(Op0->getType());
132
133 // Only extract each element once.
134 Value *ExtractedElts[32];
135 memset(ExtractedElts, 0, sizeof(ExtractedElts));
136
137 for (unsigned i = 0; i != 16; ++i) {
138 if (isa<UndefValue>(Mask->getAggregateElement(i)))
139 continue;
140 unsigned Idx =
141 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
142 Idx &= 31; // Match the hardware behavior.
143 if (DL.isLittleEndian())
144 Idx = 31 - Idx;
145
146 if (!ExtractedElts[Idx]) {
147 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
148 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
149 ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
150 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
151 }
152
153 // Insert this value into the result vector.
154 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
155 IC.Builder.getInt32(i));
156 }
157 return CastInst::Create(Instruction::BitCast, Result, II.getType());
158 }
159 }
160 break;
161 }
162 return std::nullopt;
163 }
164
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)165 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
166 TTI::TargetCostKind CostKind) {
167 if (DisablePPCConstHoist)
168 return BaseT::getIntImmCost(Imm, Ty, CostKind);
169
170 assert(Ty->isIntegerTy());
171
172 unsigned BitSize = Ty->getPrimitiveSizeInBits();
173 if (BitSize == 0)
174 return ~0U;
175
176 if (Imm == 0)
177 return TTI::TCC_Free;
178
179 if (Imm.getBitWidth() <= 64) {
180 if (isInt<16>(Imm.getSExtValue()))
181 return TTI::TCC_Basic;
182
183 if (isInt<32>(Imm.getSExtValue())) {
184 // A constant that can be materialized using lis.
185 if ((Imm.getZExtValue() & 0xFFFF) == 0)
186 return TTI::TCC_Basic;
187
188 return 2 * TTI::TCC_Basic;
189 }
190 }
191
192 return 4 * TTI::TCC_Basic;
193 }
194
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)195 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
196 const APInt &Imm, Type *Ty,
197 TTI::TargetCostKind CostKind) {
198 if (DisablePPCConstHoist)
199 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
200
201 assert(Ty->isIntegerTy());
202
203 unsigned BitSize = Ty->getPrimitiveSizeInBits();
204 if (BitSize == 0)
205 return ~0U;
206
207 switch (IID) {
208 default:
209 return TTI::TCC_Free;
210 case Intrinsic::sadd_with_overflow:
211 case Intrinsic::uadd_with_overflow:
212 case Intrinsic::ssub_with_overflow:
213 case Intrinsic::usub_with_overflow:
214 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
215 return TTI::TCC_Free;
216 break;
217 case Intrinsic::experimental_stackmap:
218 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
219 return TTI::TCC_Free;
220 break;
221 case Intrinsic::experimental_patchpoint_void:
222 case Intrinsic::experimental_patchpoint:
223 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224 return TTI::TCC_Free;
225 break;
226 }
227 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
228 }
229
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst)230 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
231 const APInt &Imm, Type *Ty,
232 TTI::TargetCostKind CostKind,
233 Instruction *Inst) {
234 if (DisablePPCConstHoist)
235 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
236
237 assert(Ty->isIntegerTy());
238
239 unsigned BitSize = Ty->getPrimitiveSizeInBits();
240 if (BitSize == 0)
241 return ~0U;
242
243 unsigned ImmIdx = ~0U;
244 bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
245 ZeroFree = false;
246 switch (Opcode) {
247 default:
248 return TTI::TCC_Free;
249 case Instruction::GetElementPtr:
250 // Always hoist the base address of a GetElementPtr. This prevents the
251 // creation of new constants for every base constant that gets constant
252 // folded with the offset.
253 if (Idx == 0)
254 return 2 * TTI::TCC_Basic;
255 return TTI::TCC_Free;
256 case Instruction::And:
257 RunFree = true; // (for the rotate-and-mask instructions)
258 [[fallthrough]];
259 case Instruction::Add:
260 case Instruction::Or:
261 case Instruction::Xor:
262 ShiftedFree = true;
263 [[fallthrough]];
264 case Instruction::Sub:
265 case Instruction::Mul:
266 case Instruction::Shl:
267 case Instruction::LShr:
268 case Instruction::AShr:
269 ImmIdx = 1;
270 break;
271 case Instruction::ICmp:
272 UnsignedFree = true;
273 ImmIdx = 1;
274 // Zero comparisons can use record-form instructions.
275 [[fallthrough]];
276 case Instruction::Select:
277 ZeroFree = true;
278 break;
279 case Instruction::PHI:
280 case Instruction::Call:
281 case Instruction::Ret:
282 case Instruction::Load:
283 case Instruction::Store:
284 break;
285 }
286
287 if (ZeroFree && Imm == 0)
288 return TTI::TCC_Free;
289
290 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
291 if (isInt<16>(Imm.getSExtValue()))
292 return TTI::TCC_Free;
293
294 if (RunFree) {
295 if (Imm.getBitWidth() <= 32 &&
296 (isShiftedMask_32(Imm.getZExtValue()) ||
297 isShiftedMask_32(~Imm.getZExtValue())))
298 return TTI::TCC_Free;
299
300 if (ST->isPPC64() &&
301 (isShiftedMask_64(Imm.getZExtValue()) ||
302 isShiftedMask_64(~Imm.getZExtValue())))
303 return TTI::TCC_Free;
304 }
305
306 if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
307 return TTI::TCC_Free;
308
309 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
310 return TTI::TCC_Free;
311 }
312
313 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
314 }
315
316 // Check if the current Type is an MMA vector type. Valid MMA types are
317 // v256i1 and v512i1 respectively.
isMMAType(Type * Ty)318 static bool isMMAType(Type *Ty) {
319 return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
320 (Ty->getPrimitiveSizeInBits() > 128);
321 }
322
getInstructionCost(const User * U,ArrayRef<const Value * > Operands,TTI::TargetCostKind CostKind)323 InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
324 ArrayRef<const Value *> Operands,
325 TTI::TargetCostKind CostKind) {
326 // We already implement getCastInstrCost and getMemoryOpCost where we perform
327 // the vector adjustment there.
328 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
329 return BaseT::getInstructionCost(U, Operands, CostKind);
330
331 if (U->getType()->isVectorTy()) {
332 // Instructions that need to be split should cost more.
333 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
334 return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
335 }
336
337 return BaseT::getInstructionCost(U, Operands, CostKind);
338 }
339
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)340 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
341 AssumptionCache &AC,
342 TargetLibraryInfo *LibInfo,
343 HardwareLoopInfo &HWLoopInfo) {
344 const PPCTargetMachine &TM = ST->getTargetMachine();
345 TargetSchedModel SchedModel;
346 SchedModel.init(ST);
347
348 // Do not convert small short loops to CTR loop.
349 unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
350 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
351 SmallPtrSet<const Value *, 32> EphValues;
352 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
353 CodeMetrics Metrics;
354 for (BasicBlock *BB : L->blocks())
355 Metrics.analyzeBasicBlock(BB, *this, EphValues);
356 // 6 is an approximate latency for the mtctr instruction.
357 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
358 return false;
359 }
360
361 // Check that there is no hardware loop related intrinsics in the loop.
362 for (auto *BB : L->getBlocks())
363 for (auto &I : *BB)
364 if (auto *Call = dyn_cast<IntrinsicInst>(&I))
365 if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
366 Call->getIntrinsicID() == Intrinsic::loop_decrement)
367 return false;
368
369 SmallVector<BasicBlock*, 4> ExitingBlocks;
370 L->getExitingBlocks(ExitingBlocks);
371
372 // If there is an exit edge known to be frequently taken,
373 // we should not transform this loop.
374 for (auto &BB : ExitingBlocks) {
375 Instruction *TI = BB->getTerminator();
376 if (!TI) continue;
377
378 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
379 uint64_t TrueWeight = 0, FalseWeight = 0;
380 if (!BI->isConditional() ||
381 !extractBranchWeights(*BI, TrueWeight, FalseWeight))
382 continue;
383
384 // If the exit path is more frequent than the loop path,
385 // we return here without further analysis for this loop.
386 bool TrueIsExit = !L->contains(BI->getSuccessor(0));
387 if (( TrueIsExit && FalseWeight < TrueWeight) ||
388 (!TrueIsExit && FalseWeight > TrueWeight))
389 return false;
390 }
391 }
392
393 LLVMContext &C = L->getHeader()->getContext();
394 HWLoopInfo.CountType = TM.isPPC64() ?
395 Type::getInt64Ty(C) : Type::getInt32Ty(C);
396 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
397 return true;
398 }
399
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)400 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
401 TTI::UnrollingPreferences &UP,
402 OptimizationRemarkEmitter *ORE) {
403 if (ST->getCPUDirective() == PPC::DIR_A2) {
404 // The A2 is in-order with a deep pipeline, and concatenation unrolling
405 // helps expose latency-hiding opportunities to the instruction scheduler.
406 UP.Partial = UP.Runtime = true;
407
408 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
409 // often outweigh the cost of a division to compute the trip count.
410 UP.AllowExpensiveTripCount = true;
411 }
412
413 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
414 }
415
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)416 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
417 TTI::PeelingPreferences &PP) {
418 BaseT::getPeelingPreferences(L, SE, PP);
419 }
420 // This function returns true to allow using coldcc calling convention.
421 // Returning true results in coldcc being used for functions which are cold at
422 // all call sites when the callers of the functions are not calling any other
423 // non coldcc functions.
useColdCCForColdCall(Function & F)424 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
425 return EnablePPCColdCC;
426 }
427
enableAggressiveInterleaving(bool LoopHasReductions)428 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
429 // On the A2, always unroll aggressively.
430 if (ST->getCPUDirective() == PPC::DIR_A2)
431 return true;
432
433 return LoopHasReductions;
434 }
435
436 PPCTTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const437 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
438 TTI::MemCmpExpansionOptions Options;
439 Options.LoadSizes = {8, 4, 2, 1};
440 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
441 return Options;
442 }
443
enableInterleavedAccessVectorization()444 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
445 return true;
446 }
447
getNumberOfRegisters(unsigned ClassID) const448 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
449 assert(ClassID == GPRRC || ClassID == FPRRC ||
450 ClassID == VRRC || ClassID == VSXRC);
451 if (ST->hasVSX()) {
452 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
453 return ClassID == VSXRC ? 64 : 32;
454 }
455 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
456 return 32;
457 }
458
getRegisterClassForType(bool Vector,Type * Ty) const459 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
460 if (Vector)
461 return ST->hasVSX() ? VSXRC : VRRC;
462 else if (Ty && (Ty->getScalarType()->isFloatTy() ||
463 Ty->getScalarType()->isDoubleTy()))
464 return ST->hasVSX() ? VSXRC : FPRRC;
465 else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
466 Ty->getScalarType()->isPPC_FP128Ty()))
467 return VRRC;
468 else if (Ty && Ty->getScalarType()->isHalfTy())
469 return VSXRC;
470 else
471 return GPRRC;
472 }
473
getRegisterClassName(unsigned ClassID) const474 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
475
476 switch (ClassID) {
477 default:
478 llvm_unreachable("unknown register class");
479 return "PPC::unknown register class";
480 case GPRRC: return "PPC::GPRRC";
481 case FPRRC: return "PPC::FPRRC";
482 case VRRC: return "PPC::VRRC";
483 case VSXRC: return "PPC::VSXRC";
484 }
485 }
486
487 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const488 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
489 switch (K) {
490 case TargetTransformInfo::RGK_Scalar:
491 return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
492 case TargetTransformInfo::RGK_FixedWidthVector:
493 return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
494 case TargetTransformInfo::RGK_ScalableVector:
495 return TypeSize::getScalable(0);
496 }
497
498 llvm_unreachable("Unsupported register kind");
499 }
500
getCacheLineSize() const501 unsigned PPCTTIImpl::getCacheLineSize() const {
502 // Starting with P7 we have a cache line size of 128.
503 unsigned Directive = ST->getCPUDirective();
504 // Assume that Future CPU has the same cache line size as the others.
505 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
506 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
507 Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE)
508 return 128;
509
510 // On other processors return a default of 64 bytes.
511 return 64;
512 }
513
getPrefetchDistance() const514 unsigned PPCTTIImpl::getPrefetchDistance() const {
515 return 300;
516 }
517
getMaxInterleaveFactor(ElementCount VF)518 unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
519 unsigned Directive = ST->getCPUDirective();
520 // The 440 has no SIMD support, but floating-point instructions
521 // have a 5-cycle latency, so unroll by 5x for latency hiding.
522 if (Directive == PPC::DIR_440)
523 return 5;
524
525 // The A2 has no SIMD support, but floating-point instructions
526 // have a 6-cycle latency, so unroll by 6x for latency hiding.
527 if (Directive == PPC::DIR_A2)
528 return 6;
529
530 // FIXME: For lack of any better information, do no harm...
531 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
532 return 1;
533
534 // For P7 and P8, floating-point instructions have a 6-cycle latency and
535 // there are two execution units, so unroll by 12x for latency hiding.
536 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
537 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
538 // Assume that future is the same as the others.
539 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
540 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
541 Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE)
542 return 12;
543
544 // For most things, modern systems have two execution units (and
545 // out-of-order execution).
546 return 2;
547 }
548
549 // Returns a cost adjustment factor to adjust the cost of vector instructions
550 // on targets which there is overlap between the vector and scalar units,
551 // thereby reducing the overall throughput of vector code wrt. scalar code.
552 // An invalid instruction cost is returned if the type is an MMA vector type.
vectorCostAdjustmentFactor(unsigned Opcode,Type * Ty1,Type * Ty2)553 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
554 Type *Ty1, Type *Ty2) {
555 // If the vector type is of an MMA type (v256i1, v512i1), an invalid
556 // instruction cost is returned. This is to signify to other cost computing
557 // functions to return the maximum instruction cost in order to prevent any
558 // opportunities for the optimizer to produce MMA types within the IR.
559 if (isMMAType(Ty1))
560 return InstructionCost::getInvalid();
561
562 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
563 return InstructionCost(1);
564
565 std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
566 // If type legalization involves splitting the vector, we don't want to
567 // double the cost at every step - only the last step.
568 if (LT1.first != 1 || !LT1.second.isVector())
569 return InstructionCost(1);
570
571 int ISD = TLI->InstructionOpcodeToISD(Opcode);
572 if (TLI->isOperationExpand(ISD, LT1.second))
573 return InstructionCost(1);
574
575 if (Ty2) {
576 std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
577 if (LT2.first != 1 || !LT2.second.isVector())
578 return InstructionCost(1);
579 }
580
581 return InstructionCost(2);
582 }
583
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueInfo Op1Info,TTI::OperandValueInfo Op2Info,ArrayRef<const Value * > Args,const Instruction * CxtI)584 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
585 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
586 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
587 ArrayRef<const Value *> Args,
588 const Instruction *CxtI) {
589 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
590
591 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
592 if (!CostFactor.isValid())
593 return InstructionCost::getMax();
594
595 // TODO: Handle more cost kinds.
596 if (CostKind != TTI::TCK_RecipThroughput)
597 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
598 Op2Info, Args, CxtI);
599
600 // Fallback to the default implementation.
601 InstructionCost Cost = BaseT::getArithmeticInstrCost(
602 Opcode, Ty, CostKind, Op1Info, Op2Info);
603 return Cost * CostFactor;
604 }
605
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,ArrayRef<int> Mask,TTI::TargetCostKind CostKind,int Index,Type * SubTp,ArrayRef<const Value * > Args,const Instruction * CxtI)606 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
607 ArrayRef<int> Mask,
608 TTI::TargetCostKind CostKind,
609 int Index, Type *SubTp,
610 ArrayRef<const Value *> Args,
611 const Instruction *CxtI) {
612
613 InstructionCost CostFactor =
614 vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
615 if (!CostFactor.isValid())
616 return InstructionCost::getMax();
617
618 // Legalize the type.
619 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
620
621 // PPC, for both Altivec/VSX, support cheap arbitrary permutations
622 // (at least in the sense that there need only be one non-loop-invariant
623 // instruction). We need one such shuffle instruction for each actual
624 // register (this is not true for arbitrary shuffles, but is true for the
625 // structured types of shuffles covered by TTI::ShuffleKind).
626 return LT.first * CostFactor;
627 }
628
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)629 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
630 TTI::TargetCostKind CostKind,
631 const Instruction *I) {
632 if (CostKind != TTI::TCK_RecipThroughput)
633 return Opcode == Instruction::PHI ? 0 : 1;
634 // Branches are assumed to be predicted.
635 return 0;
636 }
637
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)638 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
639 Type *Src,
640 TTI::CastContextHint CCH,
641 TTI::TargetCostKind CostKind,
642 const Instruction *I) {
643 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
644
645 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
646 if (!CostFactor.isValid())
647 return InstructionCost::getMax();
648
649 InstructionCost Cost =
650 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
651 Cost *= CostFactor;
652 // TODO: Allow non-throughput costs that aren't binary.
653 if (CostKind != TTI::TCK_RecipThroughput)
654 return Cost == 0 ? 0 : 1;
655 return Cost;
656 }
657
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)658 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
659 Type *CondTy,
660 CmpInst::Predicate VecPred,
661 TTI::TargetCostKind CostKind,
662 const Instruction *I) {
663 InstructionCost CostFactor =
664 vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
665 if (!CostFactor.isValid())
666 return InstructionCost::getMax();
667
668 InstructionCost Cost =
669 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
670 // TODO: Handle other cost kinds.
671 if (CostKind != TTI::TCK_RecipThroughput)
672 return Cost;
673 return Cost * CostFactor;
674 }
675
getVectorInstrCost(unsigned Opcode,Type * Val,TTI::TargetCostKind CostKind,unsigned Index,Value * Op0,Value * Op1)676 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
677 TTI::TargetCostKind CostKind,
678 unsigned Index, Value *Op0,
679 Value *Op1) {
680 assert(Val->isVectorTy() && "This must be a vector type");
681
682 int ISD = TLI->InstructionOpcodeToISD(Opcode);
683 assert(ISD && "Invalid opcode");
684
685 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
686 if (!CostFactor.isValid())
687 return InstructionCost::getMax();
688
689 InstructionCost Cost =
690 BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
691 Cost *= CostFactor;
692
693 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
694 // Double-precision scalars are already located in index #0 (or #1 if LE).
695 if (ISD == ISD::EXTRACT_VECTOR_ELT &&
696 Index == (ST->isLittleEndian() ? 1 : 0))
697 return 0;
698
699 return Cost;
700
701 } else if (Val->getScalarType()->isIntegerTy()) {
702 unsigned EltSize = Val->getScalarSizeInBits();
703 // Computing on 1 bit values requires extra mask or compare operations.
704 unsigned MaskCostForOneBitSize = (VecMaskCost && EltSize == 1) ? 1 : 0;
705 // Computing on non const index requires extra mask or compare operations.
706 unsigned MaskCostForIdx = (Index != -1U) ? 0 : 1;
707 if (ST->hasP9Altivec()) {
708 // P10 has vxform insert which can handle non const index. The
709 // MaskCostForIdx is for masking the index.
710 // P9 has insert for const index. A move-to VSR and a permute/insert.
711 // Assume vector operation cost for both (cost will be 2x on P9).
712 if (ISD == ISD::INSERT_VECTOR_ELT) {
713 if (ST->hasP10Vector())
714 return CostFactor + MaskCostForIdx;
715 else if (Index != -1U)
716 return 2 * CostFactor;
717 } else if (ISD == ISD::EXTRACT_VECTOR_ELT) {
718 // It's an extract. Maybe we can do a cheap move-from VSR.
719 unsigned EltSize = Val->getScalarSizeInBits();
720 // P9 has both mfvsrd and mfvsrld for 64 bit integer.
721 if (EltSize == 64 && Index != -1U)
722 return 1;
723 else if (EltSize == 32) {
724 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
725 if (Index == MfvsrwzIndex)
726 return 1;
727
728 // For other indexs like non const, P9 has vxform extract. The
729 // MaskCostForIdx is for masking the index.
730 return CostFactor + MaskCostForIdx;
731 }
732
733 // We need a vector extract (or mfvsrld). Assume vector operation cost.
734 // The cost of the load constant for a vector extract is disregarded
735 // (invariant, easily schedulable).
736 return CostFactor + MaskCostForOneBitSize + MaskCostForIdx;
737 }
738 } else if (ST->hasDirectMove() && Index != -1U) {
739 // Assume permute has standard cost.
740 // Assume move-to/move-from VSR have 2x standard cost.
741 if (ISD == ISD::INSERT_VECTOR_ELT)
742 return 3;
743 return 3 + MaskCostForOneBitSize;
744 }
745 }
746
747 // Estimated cost of a load-hit-store delay. This was obtained
748 // experimentally as a minimum needed to prevent unprofitable
749 // vectorization for the paq8p benchmark. It may need to be
750 // raised further if other unprofitable cases remain.
751 unsigned LHSPenalty = 2;
752 if (ISD == ISD::INSERT_VECTOR_ELT)
753 LHSPenalty += 7;
754
755 // Vector element insert/extract with Altivec is very expensive,
756 // because they require store and reload with the attendant
757 // processor stall for load-hit-store. Until VSX is available,
758 // these need to be estimated as very costly.
759 if (ISD == ISD::EXTRACT_VECTOR_ELT ||
760 ISD == ISD::INSERT_VECTOR_ELT)
761 return LHSPenalty + Cost;
762
763 return Cost;
764 }
765
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,TTI::OperandValueInfo OpInfo,const Instruction * I)766 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
767 MaybeAlign Alignment,
768 unsigned AddressSpace,
769 TTI::TargetCostKind CostKind,
770 TTI::OperandValueInfo OpInfo,
771 const Instruction *I) {
772
773 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
774 if (!CostFactor.isValid())
775 return InstructionCost::getMax();
776
777 if (TLI->getValueType(DL, Src, true) == MVT::Other)
778 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
779 CostKind);
780 // Legalize the type.
781 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
782 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
783 "Invalid Opcode");
784
785 InstructionCost Cost =
786 BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
787 // TODO: Handle other cost kinds.
788 if (CostKind != TTI::TCK_RecipThroughput)
789 return Cost;
790
791 Cost *= CostFactor;
792
793 bool IsAltivecType = ST->hasAltivec() &&
794 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
795 LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
796 bool IsVSXType = ST->hasVSX() &&
797 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
798
799 // VSX has 32b/64b load instructions. Legalization can handle loading of
800 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
801 // PPCTargetLowering can't compute the cost appropriately. So here we
802 // explicitly check this case. There are also corresponding store
803 // instructions.
804 unsigned MemBytes = Src->getPrimitiveSizeInBits();
805 if (ST->hasVSX() && IsAltivecType &&
806 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
807 return 1;
808
809 // Aligned loads and stores are easy.
810 unsigned SrcBytes = LT.second.getStoreSize();
811 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
812 return Cost;
813
814 // If we can use the permutation-based load sequence, then this is also
815 // relatively cheap (not counting loop-invariant instructions): one load plus
816 // one permute (the last load in a series has extra cost, but we're
817 // neglecting that here). Note that on the P7, we could do unaligned loads
818 // for Altivec types using the VSX instructions, but that's more expensive
819 // than using the permutation-based load sequence. On the P8, that's no
820 // longer true.
821 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
822 *Alignment >= LT.second.getScalarType().getStoreSize())
823 return Cost + LT.first; // Add the cost of the permutations.
824
825 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
826 // P7, unaligned vector loads are more expensive than the permutation-based
827 // load sequence, so that might be used instead, but regardless, the net cost
828 // is about the same (not counting loop-invariant instructions).
829 if (IsVSXType || (ST->hasVSX() && IsAltivecType))
830 return Cost;
831
832 // Newer PPC supports unaligned memory access.
833 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
834 return Cost;
835
836 // PPC in general does not support unaligned loads and stores. They'll need
837 // to be decomposed based on the alignment factor.
838
839 // Add the cost of each scalar load or store.
840 assert(Alignment);
841 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
842
843 // For a vector type, there is also scalarization overhead (only for
844 // stores, loads are expanded using the vector-load + permutation sequence,
845 // which is much less expensive).
846 if (Src->isVectorTy() && Opcode == Instruction::Store)
847 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
848 ++i)
849 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
850 nullptr, nullptr);
851
852 return Cost;
853 }
854
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)855 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
856 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
857 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
858 bool UseMaskForCond, bool UseMaskForGaps) {
859 InstructionCost CostFactor =
860 vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
861 if (!CostFactor.isValid())
862 return InstructionCost::getMax();
863
864 if (UseMaskForCond || UseMaskForGaps)
865 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
866 Alignment, AddressSpace, CostKind,
867 UseMaskForCond, UseMaskForGaps);
868
869 assert(isa<VectorType>(VecTy) &&
870 "Expect a vector type for interleaved memory op");
871
872 // Legalize the type.
873 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
874
875 // Firstly, the cost of load/store operation.
876 InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
877 AddressSpace, CostKind);
878
879 // PPC, for both Altivec/VSX, support cheap arbitrary permutations
880 // (at least in the sense that there need only be one non-loop-invariant
881 // instruction). For each result vector, we need one shuffle per incoming
882 // vector (except that the first shuffle can take two incoming vectors
883 // because it does not need to take itself).
884 Cost += Factor*(LT.first-1);
885
886 return Cost;
887 }
888
889 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)890 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
891 TTI::TargetCostKind CostKind) {
892 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
893 }
894
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types) const895 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
896 const Function *Callee,
897 const ArrayRef<Type *> &Types) const {
898
899 // We need to ensure that argument promotion does not
900 // attempt to promote pointers to MMA types (__vector_pair
901 // and __vector_quad) since these types explicitly cannot be
902 // passed as arguments. Both of these types are larger than
903 // the 128-bit Altivec vectors and have a scalar size of 1 bit.
904 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
905 return false;
906
907 return llvm::none_of(Types, [](Type *Ty) {
908 if (Ty->isSized())
909 return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
910 return false;
911 });
912 }
913
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)914 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
915 LoopInfo *LI, DominatorTree *DT,
916 AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
917 // Process nested loops first.
918 for (Loop *I : *L)
919 if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
920 return false; // Stop search.
921
922 HardwareLoopInfo HWLoopInfo(L);
923
924 if (!HWLoopInfo.canAnalyze(*LI))
925 return false;
926
927 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
928 return false;
929
930 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
931 return false;
932
933 *BI = HWLoopInfo.ExitBranch;
934 return true;
935 }
936
isLSRCostLess(const TargetTransformInfo::LSRCost & C1,const TargetTransformInfo::LSRCost & C2)937 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
938 const TargetTransformInfo::LSRCost &C2) {
939 // PowerPC default behaviour here is "instruction number 1st priority".
940 // If LsrNoInsnsCost is set, call default implementation.
941 if (!LsrNoInsnsCost)
942 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
943 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
944 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
945 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
946 else
947 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
948 }
949
isNumRegsMajorCostOfLSR()950 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
951 return false;
952 }
953
shouldBuildRelLookupTables() const954 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
955 const PPCTargetMachine &TM = ST->getTargetMachine();
956 // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
957 if (!TM.isELFv2ABI())
958 return false;
959 return BaseT::shouldBuildRelLookupTables();
960 }
961
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)962 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
963 MemIntrinsicInfo &Info) {
964 switch (Inst->getIntrinsicID()) {
965 case Intrinsic::ppc_altivec_lvx:
966 case Intrinsic::ppc_altivec_lvxl:
967 case Intrinsic::ppc_altivec_lvebx:
968 case Intrinsic::ppc_altivec_lvehx:
969 case Intrinsic::ppc_altivec_lvewx:
970 case Intrinsic::ppc_vsx_lxvd2x:
971 case Intrinsic::ppc_vsx_lxvw4x:
972 case Intrinsic::ppc_vsx_lxvd2x_be:
973 case Intrinsic::ppc_vsx_lxvw4x_be:
974 case Intrinsic::ppc_vsx_lxvl:
975 case Intrinsic::ppc_vsx_lxvll:
976 case Intrinsic::ppc_vsx_lxvp: {
977 Info.PtrVal = Inst->getArgOperand(0);
978 Info.ReadMem = true;
979 Info.WriteMem = false;
980 return true;
981 }
982 case Intrinsic::ppc_altivec_stvx:
983 case Intrinsic::ppc_altivec_stvxl:
984 case Intrinsic::ppc_altivec_stvebx:
985 case Intrinsic::ppc_altivec_stvehx:
986 case Intrinsic::ppc_altivec_stvewx:
987 case Intrinsic::ppc_vsx_stxvd2x:
988 case Intrinsic::ppc_vsx_stxvw4x:
989 case Intrinsic::ppc_vsx_stxvd2x_be:
990 case Intrinsic::ppc_vsx_stxvw4x_be:
991 case Intrinsic::ppc_vsx_stxvl:
992 case Intrinsic::ppc_vsx_stxvll:
993 case Intrinsic::ppc_vsx_stxvp: {
994 Info.PtrVal = Inst->getArgOperand(1);
995 Info.ReadMem = false;
996 Info.WriteMem = true;
997 return true;
998 }
999 case Intrinsic::ppc_stbcx:
1000 case Intrinsic::ppc_sthcx:
1001 case Intrinsic::ppc_stdcx:
1002 case Intrinsic::ppc_stwcx: {
1003 Info.PtrVal = Inst->getArgOperand(0);
1004 Info.ReadMem = false;
1005 Info.WriteMem = true;
1006 return true;
1007 }
1008 default:
1009 break;
1010 }
1011
1012 return false;
1013 }
1014
hasActiveVectorLength(unsigned Opcode,Type * DataType,Align Alignment) const1015 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1016 Align Alignment) const {
1017 // Only load and stores instructions can have variable vector length on Power.
1018 if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1019 return false;
1020 // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1021 // therefore cannot be used in 32-bit mode.
1022 if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1023 return false;
1024 if (isa<FixedVectorType>(DataType)) {
1025 unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1026 return VecWidth == 128;
1027 }
1028 Type *ScalarTy = DataType->getScalarType();
1029
1030 if (ScalarTy->isPointerTy())
1031 return true;
1032
1033 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1034 return true;
1035
1036 if (!ScalarTy->isIntegerTy())
1037 return false;
1038
1039 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1040 return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1041 }
1042
getVPMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)1043 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1044 Align Alignment,
1045 unsigned AddressSpace,
1046 TTI::TargetCostKind CostKind,
1047 const Instruction *I) {
1048 InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1049 AddressSpace, CostKind, I);
1050 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1051 return Cost;
1052 // TODO: Handle other cost kinds.
1053 if (CostKind != TTI::TCK_RecipThroughput)
1054 return Cost;
1055
1056 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1057 "Invalid Opcode");
1058
1059 auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1060 assert(SrcVTy && "Expected a vector type for VP memory operations");
1061
1062 if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1063 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
1064
1065 InstructionCost CostFactor =
1066 vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1067 if (!CostFactor.isValid())
1068 return InstructionCost::getMax();
1069
1070 InstructionCost Cost = LT.first * CostFactor;
1071 assert(Cost.isValid() && "Expected valid cost");
1072
1073 // On P9 but not on P10, if the op is misaligned then it will cause a
1074 // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1075 // ones.
1076 const Align DesiredAlignment(16);
1077 if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1078 return Cost;
1079
1080 // Since alignment may be under estimated, we try to compute the probability
1081 // that the actual address is aligned to the desired boundary. For example
1082 // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1083 // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1084 // aligned.
1085 float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1086 float MisalignmentProb = 1.0 - AlignmentProb;
1087 return (MisalignmentProb * P9PipelineFlushEstimate) +
1088 (AlignmentProb * *Cost.getValue());
1089 }
1090
1091 // Usually we should not get to this point, but the following is an attempt to
1092 // model the cost of legalization. Currently we can only lower intrinsics with
1093 // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1094 return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1095 }
1096
supportsTailCallFor(const CallBase * CB) const1097 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
1098 return TLI->supportsTailCallFor(CB);
1099 }
1100