1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89 * called from softirq context, which will save the task's FPSIMD context back
90 * to task_struct. To prevent this from racing with the manipulation of the
91 * task's FPSIMD state from task context and thereby corrupting the state, it
92 * is necessary to protect any manipulation of a task's fpsimd_state or
93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94 * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 static u8 *efi_sve_state;
184
185 #else /* ! CONFIG_ARM64_SVE */
186
187 /* Dummy declaration for code that will be optimised out: */
188 extern u8 *efi_sve_state;
189
190 #endif /* ! CONFIG_ARM64_SVE */
191
192 #ifdef CONFIG_ARM64_SME
193
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 return get_default_vl(ARM64_VEC_SME);
197 }
198
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 set_default_vl(ARM64_VEC_SME, val);
202 }
203
204 static void sme_free(struct task_struct *);
205
206 #else
207
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209
210 #endif
211
212 static void fpsimd_bind_task_to_cpu(void);
213
214 /*
215 * Claim ownership of the CPU FPSIMD context for use by the calling context.
216 *
217 * The caller may freely manipulate the FPSIMD context metadata until
218 * put_cpu_fpsimd_context() is called.
219 *
220 * On RT kernels local_bh_disable() is not sufficient because it only
221 * serializes soft interrupt related sections via a local lock, but stays
222 * preemptible. Disabling preemption is the right choice here as bottom
223 * half processing is always in thread context on RT kernels so it
224 * implicitly prevents bottom half processing as well.
225 */
get_cpu_fpsimd_context(void)226 static void get_cpu_fpsimd_context(void)
227 {
228 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
229 local_bh_disable();
230 else
231 preempt_disable();
232 }
233
234 /*
235 * Release the CPU FPSIMD context.
236 *
237 * Must be called from a context in which get_cpu_fpsimd_context() was
238 * previously called, with no call to put_cpu_fpsimd_context() in the
239 * meantime.
240 */
put_cpu_fpsimd_context(void)241 static void put_cpu_fpsimd_context(void)
242 {
243 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 local_bh_enable();
245 else
246 preempt_enable();
247 }
248
task_get_vl(const struct task_struct * task,enum vec_type type)249 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
250 {
251 return task->thread.vl[type];
252 }
253
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)254 void task_set_vl(struct task_struct *task, enum vec_type type,
255 unsigned long vl)
256 {
257 task->thread.vl[type] = vl;
258 }
259
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)260 unsigned int task_get_vl_onexec(const struct task_struct *task,
261 enum vec_type type)
262 {
263 return task->thread.vl_onexec[type];
264 }
265
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)266 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
267 unsigned long vl)
268 {
269 task->thread.vl_onexec[type] = vl;
270 }
271
272 /*
273 * TIF_SME controls whether a task can use SME without trapping while
274 * in userspace, when TIF_SME is set then we must have storage
275 * allocated in sve_state and sme_state to store the contents of both ZA
276 * and the SVE registers for both streaming and non-streaming modes.
277 *
278 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
279 * may disable TIF_SME and reenable traps.
280 */
281
282
283 /*
284 * TIF_SVE controls whether a task can use SVE without trapping while
285 * in userspace, and also (together with TIF_SME) the way a task's
286 * FPSIMD/SVE state is stored in thread_struct.
287 *
288 * The kernel uses this flag to track whether a user task is actively
289 * using SVE, and therefore whether full SVE register state needs to
290 * be tracked. If not, the cheaper FPSIMD context handling code can
291 * be used instead of the more costly SVE equivalents.
292 *
293 * * TIF_SVE or SVCR.SM set:
294 *
295 * The task can execute SVE instructions while in userspace without
296 * trapping to the kernel.
297 *
298 * During any syscall, the kernel may optionally clear TIF_SVE and
299 * discard the vector state except for the FPSIMD subset.
300 *
301 * * TIF_SVE clear:
302 *
303 * An attempt by the user task to execute an SVE instruction causes
304 * do_sve_acc() to be called, which does some preparation and then
305 * sets TIF_SVE.
306 *
307 * During any syscall, the kernel may optionally clear TIF_SVE and
308 * discard the vector state except for the FPSIMD subset.
309 *
310 * The data will be stored in one of two formats:
311 *
312 * * FPSIMD only - FP_STATE_FPSIMD:
313 *
314 * When the FPSIMD only state stored task->thread.fp_type is set to
315 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
316 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
317 * logically zero but not stored anywhere; P0-P15 and FFR are not
318 * stored and have unspecified values from userspace's point of
319 * view. For hygiene purposes, the kernel zeroes them on next use,
320 * but userspace is discouraged from relying on this.
321 *
322 * task->thread.sve_state does not need to be non-NULL, valid or any
323 * particular size: it must not be dereferenced and any data stored
324 * there should be considered stale and not referenced.
325 *
326 * * SVE state - FP_STATE_SVE:
327 *
328 * When the full SVE state is stored task->thread.fp_type is set to
329 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
330 * corresponding Zn), P0-P15 and FFR are encoded in in
331 * task->thread.sve_state, formatted appropriately for vector
332 * length task->thread.sve_vl or, if SVCR.SM is set,
333 * task->thread.sme_vl. The storage for the vector registers in
334 * task->thread.uw.fpsimd_state should be ignored.
335 *
336 * task->thread.sve_state must point to a valid buffer at least
337 * sve_state_size(task) bytes in size. The data stored in
338 * task->thread.uw.fpsimd_state.vregs should be considered stale
339 * and not referenced.
340 *
341 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
342 * irrespective of whether TIF_SVE is clear or set, since these are
343 * not vector length dependent.
344 */
345
346 /*
347 * Update current's FPSIMD/SVE registers from thread_struct.
348 *
349 * This function should be called only when the FPSIMD/SVE state in
350 * thread_struct is known to be up to date, when preparing to enter
351 * userspace.
352 */
task_fpsimd_load(void)353 static void task_fpsimd_load(void)
354 {
355 bool restore_sve_regs = false;
356 bool restore_ffr;
357
358 WARN_ON(!system_supports_fpsimd());
359 WARN_ON(preemptible());
360 WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
361
362 if (system_supports_sve() || system_supports_sme()) {
363 switch (current->thread.fp_type) {
364 case FP_STATE_FPSIMD:
365 /* Stop tracking SVE for this task until next use. */
366 clear_thread_flag(TIF_SVE);
367 break;
368 case FP_STATE_SVE:
369 if (!thread_sm_enabled(¤t->thread))
370 WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
371
372 if (test_thread_flag(TIF_SVE))
373 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
374
375 restore_sve_regs = true;
376 restore_ffr = true;
377 break;
378 default:
379 /*
380 * This indicates either a bug in
381 * fpsimd_save_user_state() or memory corruption, we
382 * should always record an explicit format
383 * when we save. We always at least have the
384 * memory allocated for FPSIMD registers so
385 * try that and hope for the best.
386 */
387 WARN_ON_ONCE(1);
388 clear_thread_flag(TIF_SVE);
389 break;
390 }
391 }
392
393 /* Restore SME, override SVE register configuration if needed */
394 if (system_supports_sme()) {
395 unsigned long sme_vl = task_get_sme_vl(current);
396
397 /* Ensure VL is set up for restoring data */
398 if (test_thread_flag(TIF_SME))
399 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
400
401 write_sysreg_s(current->thread.svcr, SYS_SVCR);
402
403 if (thread_za_enabled(¤t->thread))
404 sme_load_state(current->thread.sme_state,
405 system_supports_sme2());
406
407 if (thread_sm_enabled(¤t->thread))
408 restore_ffr = system_supports_fa64();
409 }
410
411 if (system_supports_fpmr())
412 write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
413
414 if (restore_sve_regs) {
415 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
416 sve_load_state(sve_pffr(¤t->thread),
417 ¤t->thread.uw.fpsimd_state.fpsr,
418 restore_ffr);
419 } else {
420 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
421 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
422 }
423 }
424
425 /*
426 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
427 * date with respect to the CPU registers. Note carefully that the
428 * current context is the context last bound to the CPU stored in
429 * last, if KVM is involved this may be the guest VM context rather
430 * than the host thread for the VM pointed to by current. This means
431 * that we must always reference the state storage via last rather
432 * than via current, if we are saving KVM state then it will have
433 * ensured that the type of registers to save is set in last->to_save.
434 */
fpsimd_save_user_state(void)435 static void fpsimd_save_user_state(void)
436 {
437 struct cpu_fp_state const *last =
438 this_cpu_ptr(&fpsimd_last_state);
439 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
440 bool save_sve_regs = false;
441 bool save_ffr;
442 unsigned int vl;
443
444 WARN_ON(!system_supports_fpsimd());
445 WARN_ON(preemptible());
446
447 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
448 return;
449
450 if (system_supports_fpmr())
451 *(last->fpmr) = read_sysreg_s(SYS_FPMR);
452
453 /*
454 * Save SVE state if it is live.
455 *
456 * The syscall ABI discards live SVE state at syscall entry. When
457 * entering a syscall, fpsimd_syscall_enter() sets to_save to
458 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
459 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
460 * called prior to a return to userspace.
461 */
462 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
463 last->to_save == FP_STATE_SVE) {
464 save_sve_regs = true;
465 save_ffr = true;
466 vl = last->sve_vl;
467 }
468
469 if (system_supports_sme()) {
470 u64 *svcr = last->svcr;
471
472 *svcr = read_sysreg_s(SYS_SVCR);
473
474 if (*svcr & SVCR_ZA_MASK)
475 sme_save_state(last->sme_state,
476 system_supports_sme2());
477
478 /* If we are in streaming mode override regular SVE. */
479 if (*svcr & SVCR_SM_MASK) {
480 save_sve_regs = true;
481 save_ffr = system_supports_fa64();
482 vl = last->sme_vl;
483 }
484 }
485
486 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
487 /* Get the configured VL from RDVL, will account for SM */
488 if (WARN_ON(sve_get_vl() != vl)) {
489 /*
490 * Can't save the user regs, so current would
491 * re-enter user with corrupt state.
492 * There's no way to recover, so kill it:
493 */
494 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
495 return;
496 }
497
498 sve_save_state((char *)last->sve_state +
499 sve_ffr_offset(vl),
500 &last->st->fpsr, save_ffr);
501 *last->fp_type = FP_STATE_SVE;
502 } else {
503 fpsimd_save_state(last->st);
504 *last->fp_type = FP_STATE_FPSIMD;
505 }
506 }
507
508 /*
509 * All vector length selection from userspace comes through here.
510 * We're on a slow path, so some sanity-checks are included.
511 * If things go wrong there's a bug somewhere, but try to fall back to a
512 * safe choice.
513 */
find_supported_vector_length(enum vec_type type,unsigned int vl)514 static unsigned int find_supported_vector_length(enum vec_type type,
515 unsigned int vl)
516 {
517 struct vl_info *info = &vl_info[type];
518 int bit;
519 int max_vl = info->max_vl;
520
521 if (WARN_ON(!sve_vl_valid(vl)))
522 vl = info->min_vl;
523
524 if (WARN_ON(!sve_vl_valid(max_vl)))
525 max_vl = info->min_vl;
526
527 if (vl > max_vl)
528 vl = max_vl;
529 if (vl < info->min_vl)
530 vl = info->min_vl;
531
532 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
533 __vq_to_bit(sve_vq_from_vl(vl)));
534 return sve_vl_from_vq(__bit_to_vq(bit));
535 }
536
537 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
538
vec_proc_do_default_vl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)539 static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
540 void *buffer, size_t *lenp, loff_t *ppos)
541 {
542 struct vl_info *info = table->extra1;
543 enum vec_type type = info->type;
544 int ret;
545 int vl = get_default_vl(type);
546 struct ctl_table tmp_table = {
547 .data = &vl,
548 .maxlen = sizeof(vl),
549 };
550
551 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
552 if (ret || !write)
553 return ret;
554
555 /* Writing -1 has the special meaning "set to max": */
556 if (vl == -1)
557 vl = info->max_vl;
558
559 if (!sve_vl_valid(vl))
560 return -EINVAL;
561
562 set_default_vl(type, find_supported_vector_length(type, vl));
563 return 0;
564 }
565
566 static const struct ctl_table sve_default_vl_table[] = {
567 {
568 .procname = "sve_default_vector_length",
569 .mode = 0644,
570 .proc_handler = vec_proc_do_default_vl,
571 .extra1 = &vl_info[ARM64_VEC_SVE],
572 },
573 };
574
sve_sysctl_init(void)575 static int __init sve_sysctl_init(void)
576 {
577 if (system_supports_sve())
578 if (!register_sysctl("abi", sve_default_vl_table))
579 return -EINVAL;
580
581 return 0;
582 }
583
584 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)585 static int __init sve_sysctl_init(void) { return 0; }
586 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
587
588 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
589 static const struct ctl_table sme_default_vl_table[] = {
590 {
591 .procname = "sme_default_vector_length",
592 .mode = 0644,
593 .proc_handler = vec_proc_do_default_vl,
594 .extra1 = &vl_info[ARM64_VEC_SME],
595 },
596 };
597
sme_sysctl_init(void)598 static int __init sme_sysctl_init(void)
599 {
600 if (system_supports_sme())
601 if (!register_sysctl("abi", sme_default_vl_table))
602 return -EINVAL;
603
604 return 0;
605 }
606
607 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)608 static int __init sme_sysctl_init(void) { return 0; }
609 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
610
611 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
612 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
613
614 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)615 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
616 {
617 u64 a = swab64(x);
618 u64 b = swab64(x >> 64);
619
620 return ((__uint128_t)a << 64) | b;
621 }
622 #else
arm64_cpu_to_le128(__uint128_t x)623 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
624 {
625 return x;
626 }
627 #endif
628
629 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
630
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)631 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
632 unsigned int vq)
633 {
634 unsigned int i;
635 __uint128_t *p;
636
637 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
638 p = (__uint128_t *)ZREG(sst, vq, i);
639 *p = arm64_cpu_to_le128(fst->vregs[i]);
640 }
641 }
642
643 /*
644 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
645 * task->thread.sve_state.
646 *
647 * Task can be a non-runnable task, or current. In the latter case,
648 * the caller must have ownership of the cpu FPSIMD context before calling
649 * this function.
650 * task->thread.sve_state must point to at least sve_state_size(task)
651 * bytes of allocated kernel memory.
652 * task->thread.uw.fpsimd_state must be up to date before calling this
653 * function.
654 */
fpsimd_to_sve(struct task_struct * task)655 static inline void fpsimd_to_sve(struct task_struct *task)
656 {
657 unsigned int vq;
658 void *sst = task->thread.sve_state;
659 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
660
661 if (!system_supports_sve() && !system_supports_sme())
662 return;
663
664 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
665 __fpsimd_to_sve(sst, fst, vq);
666 }
667
668 /*
669 * Transfer the SVE state in task->thread.sve_state to
670 * task->thread.uw.fpsimd_state.
671 *
672 * Task can be a non-runnable task, or current. In the latter case,
673 * the caller must have ownership of the cpu FPSIMD context before calling
674 * this function.
675 * task->thread.sve_state must point to at least sve_state_size(task)
676 * bytes of allocated kernel memory.
677 * task->thread.sve_state must be up to date before calling this function.
678 */
sve_to_fpsimd(struct task_struct * task)679 static inline void sve_to_fpsimd(struct task_struct *task)
680 {
681 unsigned int vq, vl;
682 void const *sst = task->thread.sve_state;
683 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
684 unsigned int i;
685 __uint128_t const *p;
686
687 if (!system_supports_sve() && !system_supports_sme())
688 return;
689
690 vl = thread_get_cur_vl(&task->thread);
691 vq = sve_vq_from_vl(vl);
692 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
693 p = (__uint128_t const *)ZREG(sst, vq, i);
694 fst->vregs[i] = arm64_le128_to_cpu(*p);
695 }
696 }
697
__fpsimd_zero_vregs(struct user_fpsimd_state * fpsimd)698 static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
699 {
700 memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
701 }
702
703 /*
704 * Simulate the effects of an SMSTOP SM instruction.
705 */
task_smstop_sm(struct task_struct * task)706 void task_smstop_sm(struct task_struct *task)
707 {
708 if (!thread_sm_enabled(&task->thread))
709 return;
710
711 __fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
712 task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
713 if (system_supports_fpmr())
714 task->thread.uw.fpmr = 0;
715
716 task->thread.svcr &= ~SVCR_SM_MASK;
717 task->thread.fp_type = FP_STATE_FPSIMD;
718 }
719
cpu_enable_fpmr(const struct arm64_cpu_capabilities * __always_unused p)720 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
721 {
722 write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
723 SYS_SCTLR_EL1);
724 }
725
726 #ifdef CONFIG_ARM64_SVE
sve_free(struct task_struct * task)727 static void sve_free(struct task_struct *task)
728 {
729 kfree(task->thread.sve_state);
730 task->thread.sve_state = NULL;
731 }
732
733 /*
734 * Ensure that task->thread.sve_state is allocated and sufficiently large.
735 *
736 * This function should be used only in preparation for replacing
737 * task->thread.sve_state with new data. The memory is always zeroed
738 * here to prevent stale data from showing through: this is done in
739 * the interest of testability and predictability: except in the
740 * do_sve_acc() case, there is no ABI requirement to hide stale data
741 * written previously be task.
742 */
sve_alloc(struct task_struct * task,bool flush)743 void sve_alloc(struct task_struct *task, bool flush)
744 {
745 if (task->thread.sve_state) {
746 if (flush)
747 memset(task->thread.sve_state, 0,
748 sve_state_size(task));
749 return;
750 }
751
752 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
753 task->thread.sve_state =
754 kzalloc(sve_state_size(task), GFP_KERNEL);
755 }
756
757 /*
758 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
759 * task's currently effective FPSIMD/SVE state.
760 *
761 * The task's FPSIMD/SVE/SME state must not be subject to concurrent
762 * manipulation.
763 */
fpsimd_sync_from_effective_state(struct task_struct * task)764 void fpsimd_sync_from_effective_state(struct task_struct *task)
765 {
766 if (task->thread.fp_type == FP_STATE_SVE)
767 sve_to_fpsimd(task);
768 }
769
770 /*
771 * Ensure that the task's currently effective FPSIMD/SVE state is up to date
772 * with respect to task->thread.uw.fpsimd_state, zeroing any effective
773 * non-FPSIMD (S)SVE state.
774 *
775 * The task's FPSIMD/SVE/SME state must not be subject to concurrent
776 * manipulation.
777 */
fpsimd_sync_to_effective_state_zeropad(struct task_struct * task)778 void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
779 {
780 unsigned int vq;
781 void *sst = task->thread.sve_state;
782 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
783
784 if (task->thread.fp_type != FP_STATE_SVE)
785 return;
786
787 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
788
789 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
790 __fpsimd_to_sve(sst, fst, vq);
791 }
792
change_live_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl)793 static int change_live_vector_length(struct task_struct *task,
794 enum vec_type type,
795 unsigned long vl)
796 {
797 unsigned int sve_vl = task_get_sve_vl(task);
798 unsigned int sme_vl = task_get_sme_vl(task);
799 void *sve_state = NULL, *sme_state = NULL;
800
801 if (type == ARM64_VEC_SME)
802 sme_vl = vl;
803 else
804 sve_vl = vl;
805
806 /*
807 * Allocate the new sve_state and sme_state before freeing the old
808 * copies so that allocation failure can be handled without needing to
809 * mutate the task's state in any way.
810 *
811 * Changes to the SVE vector length must not discard live ZA state or
812 * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
813 * ZA lazy saving scheme may attempt to change the SVE vector length
814 * while unsaved/dormant ZA state exists.
815 */
816 sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
817 if (!sve_state)
818 goto out_mem;
819
820 if (type == ARM64_VEC_SME) {
821 sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
822 if (!sme_state)
823 goto out_mem;
824 }
825
826 if (task == current)
827 fpsimd_save_and_flush_current_state();
828 else
829 fpsimd_flush_task_state(task);
830
831 /*
832 * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
833 * other SVE state.
834 */
835 fpsimd_sync_from_effective_state(task);
836 task_set_vl(task, type, vl);
837 kfree(task->thread.sve_state);
838 task->thread.sve_state = sve_state;
839 fpsimd_sync_to_effective_state_zeropad(task);
840
841 if (type == ARM64_VEC_SME) {
842 task->thread.svcr &= ~SVCR_ZA_MASK;
843 kfree(task->thread.sme_state);
844 task->thread.sme_state = sme_state;
845 }
846
847 return 0;
848
849 out_mem:
850 kfree(sve_state);
851 kfree(sme_state);
852 return -ENOMEM;
853 }
854
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)855 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
856 unsigned long vl, unsigned long flags)
857 {
858 bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
859 bool inherit = flags & PR_SVE_VL_INHERIT;
860
861 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
862 PR_SVE_SET_VL_ONEXEC))
863 return -EINVAL;
864
865 if (!sve_vl_valid(vl))
866 return -EINVAL;
867
868 /*
869 * Clamp to the maximum vector length that VL-agnostic code
870 * can work with. A flag may be assigned in the future to
871 * allow setting of larger vector lengths without confusing
872 * older software.
873 */
874 if (vl > VL_ARCH_MAX)
875 vl = VL_ARCH_MAX;
876
877 vl = find_supported_vector_length(type, vl);
878
879 if (!onexec && vl != task_get_vl(task, type)) {
880 if (change_live_vector_length(task, type, vl))
881 return -ENOMEM;
882 }
883
884 if (onexec || inherit)
885 task_set_vl_onexec(task, type, vl);
886 else
887 /* Reset VL to system default on next exec: */
888 task_set_vl_onexec(task, type, 0);
889
890 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
891 flags & PR_SVE_VL_INHERIT);
892
893 return 0;
894 }
895
896 /*
897 * Encode the current vector length and flags for return.
898 * This is only required for prctl(): ptrace has separate fields.
899 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
900 *
901 * flags are as for vec_set_vector_length().
902 */
vec_prctl_status(enum vec_type type,unsigned long flags)903 static int vec_prctl_status(enum vec_type type, unsigned long flags)
904 {
905 int ret;
906
907 if (flags & PR_SVE_SET_VL_ONEXEC)
908 ret = task_get_vl_onexec(current, type);
909 else
910 ret = task_get_vl(current, type);
911
912 if (test_thread_flag(vec_vl_inherit_flag(type)))
913 ret |= PR_SVE_VL_INHERIT;
914
915 return ret;
916 }
917
918 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)919 int sve_set_current_vl(unsigned long arg)
920 {
921 unsigned long vl, flags;
922 int ret;
923
924 vl = arg & PR_SVE_VL_LEN_MASK;
925 flags = arg & ~vl;
926
927 if (!system_supports_sve() || is_compat_task())
928 return -EINVAL;
929
930 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
931 if (ret)
932 return ret;
933
934 return vec_prctl_status(ARM64_VEC_SVE, flags);
935 }
936
937 /* PR_SVE_GET_VL */
sve_get_current_vl(void)938 int sve_get_current_vl(void)
939 {
940 if (!system_supports_sve() || is_compat_task())
941 return -EINVAL;
942
943 return vec_prctl_status(ARM64_VEC_SVE, 0);
944 }
945
946 #ifdef CONFIG_ARM64_SME
947 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)948 int sme_set_current_vl(unsigned long arg)
949 {
950 unsigned long vl, flags;
951 int ret;
952
953 vl = arg & PR_SME_VL_LEN_MASK;
954 flags = arg & ~vl;
955
956 if (!system_supports_sme() || is_compat_task())
957 return -EINVAL;
958
959 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
960 if (ret)
961 return ret;
962
963 return vec_prctl_status(ARM64_VEC_SME, flags);
964 }
965
966 /* PR_SME_GET_VL */
sme_get_current_vl(void)967 int sme_get_current_vl(void)
968 {
969 if (!system_supports_sme() || is_compat_task())
970 return -EINVAL;
971
972 return vec_prctl_status(ARM64_VEC_SME, 0);
973 }
974 #endif /* CONFIG_ARM64_SME */
975
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))976 static void vec_probe_vqs(struct vl_info *info,
977 DECLARE_BITMAP(map, SVE_VQ_MAX))
978 {
979 unsigned int vq, vl;
980
981 bitmap_zero(map, SVE_VQ_MAX);
982
983 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
984 write_vl(info->type, vq - 1); /* self-syncing */
985
986 switch (info->type) {
987 case ARM64_VEC_SVE:
988 vl = sve_get_vl();
989 break;
990 case ARM64_VEC_SME:
991 vl = sme_get_vl();
992 break;
993 default:
994 vl = 0;
995 break;
996 }
997
998 /* Minimum VL identified? */
999 if (sve_vq_from_vl(vl) > vq)
1000 break;
1001
1002 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1003 set_bit(__vq_to_bit(vq), map);
1004 }
1005 }
1006
1007 /*
1008 * Initialise the set of known supported VQs for the boot CPU.
1009 * This is called during kernel boot, before secondary CPUs are brought up.
1010 */
vec_init_vq_map(enum vec_type type)1011 void __init vec_init_vq_map(enum vec_type type)
1012 {
1013 struct vl_info *info = &vl_info[type];
1014 vec_probe_vqs(info, info->vq_map);
1015 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1016 }
1017
1018 /*
1019 * If we haven't committed to the set of supported VQs yet, filter out
1020 * those not supported by the current CPU.
1021 * This function is called during the bring-up of early secondary CPUs only.
1022 */
vec_update_vq_map(enum vec_type type)1023 void vec_update_vq_map(enum vec_type type)
1024 {
1025 struct vl_info *info = &vl_info[type];
1026 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1027
1028 vec_probe_vqs(info, tmp_map);
1029 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1030 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1031 SVE_VQ_MAX);
1032 }
1033
1034 /*
1035 * Check whether the current CPU supports all VQs in the committed set.
1036 * This function is called during the bring-up of late secondary CPUs only.
1037 */
vec_verify_vq_map(enum vec_type type)1038 int vec_verify_vq_map(enum vec_type type)
1039 {
1040 struct vl_info *info = &vl_info[type];
1041 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1042 unsigned long b;
1043
1044 vec_probe_vqs(info, tmp_map);
1045
1046 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1047 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1048 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1049 info->name, smp_processor_id());
1050 return -EINVAL;
1051 }
1052
1053 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1054 return 0;
1055
1056 /*
1057 * For KVM, it is necessary to ensure that this CPU doesn't
1058 * support any vector length that guests may have probed as
1059 * unsupported.
1060 */
1061
1062 /* Recover the set of supported VQs: */
1063 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1064 /* Find VQs supported that are not globally supported: */
1065 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1066
1067 /* Find the lowest such VQ, if any: */
1068 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1069 if (b >= SVE_VQ_MAX)
1070 return 0; /* no mismatches */
1071
1072 /*
1073 * Mismatches above sve_max_virtualisable_vl are fine, since
1074 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1075 */
1076 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1077 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1078 info->name, smp_processor_id());
1079 return -EINVAL;
1080 }
1081
1082 return 0;
1083 }
1084
sve_efi_setup(void)1085 static void __init sve_efi_setup(void)
1086 {
1087 int max_vl = 0;
1088 int i;
1089
1090 if (!IS_ENABLED(CONFIG_EFI))
1091 return;
1092
1093 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1094 max_vl = max(vl_info[i].max_vl, max_vl);
1095
1096 /*
1097 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1098 * This is evidence of a crippled system and we are returning void,
1099 * so no attempt is made to handle this situation here.
1100 */
1101 if (!sve_vl_valid(max_vl))
1102 goto fail;
1103
1104 efi_sve_state = kmalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)),
1105 GFP_KERNEL);
1106 if (!efi_sve_state)
1107 goto fail;
1108
1109 return;
1110
1111 fail:
1112 panic("Cannot allocate memory for EFI SVE save/restore");
1113 }
1114
cpu_enable_sve(const struct arm64_cpu_capabilities * __always_unused p)1115 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1116 {
1117 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1118 isb();
1119
1120 write_sysreg_s(0, SYS_ZCR_EL1);
1121 }
1122
sve_setup(void)1123 void __init sve_setup(void)
1124 {
1125 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1126 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1127 unsigned long b;
1128 int max_bit;
1129
1130 if (!system_supports_sve())
1131 return;
1132
1133 /*
1134 * The SVE architecture mandates support for 128-bit vectors,
1135 * so sve_vq_map must have at least SVE_VQ_MIN set.
1136 * If something went wrong, at least try to patch it up:
1137 */
1138 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1139 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1140
1141 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1142 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1143
1144 /*
1145 * For the default VL, pick the maximum supported value <= 64.
1146 * VL == 64 is guaranteed not to grow the signal frame.
1147 */
1148 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1149
1150 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1151 SVE_VQ_MAX);
1152
1153 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1154 if (b >= SVE_VQ_MAX)
1155 /* No non-virtualisable VLs found */
1156 info->max_virtualisable_vl = SVE_VQ_MAX;
1157 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1158 /* No virtualisable VLs? This is architecturally forbidden. */
1159 info->max_virtualisable_vl = SVE_VQ_MIN;
1160 else /* b + 1 < SVE_VQ_MAX */
1161 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1162
1163 if (info->max_virtualisable_vl > info->max_vl)
1164 info->max_virtualisable_vl = info->max_vl;
1165
1166 pr_info("%s: maximum available vector length %u bytes per vector\n",
1167 info->name, info->max_vl);
1168 pr_info("%s: default vector length %u bytes per vector\n",
1169 info->name, get_sve_default_vl());
1170
1171 /* KVM decides whether to support mismatched systems. Just warn here: */
1172 if (sve_max_virtualisable_vl() < sve_max_vl())
1173 pr_warn("%s: unvirtualisable vector lengths present\n",
1174 info->name);
1175
1176 sve_efi_setup();
1177 }
1178
1179 /*
1180 * Called from the put_task_struct() path, which cannot get here
1181 * unless dead_task is really dead and not schedulable.
1182 */
fpsimd_release_task(struct task_struct * dead_task)1183 void fpsimd_release_task(struct task_struct *dead_task)
1184 {
1185 sve_free(dead_task);
1186 sme_free(dead_task);
1187 }
1188
1189 #endif /* CONFIG_ARM64_SVE */
1190
1191 #ifdef CONFIG_ARM64_SME
1192
1193 /*
1194 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1195 *
1196 * This function should be used only in preparation for replacing
1197 * task->thread.sme_state with new data. The memory is always zeroed
1198 * here to prevent stale data from showing through: this is done in
1199 * the interest of testability and predictability, the architecture
1200 * guarantees that when ZA is enabled it will be zeroed.
1201 */
sme_alloc(struct task_struct * task,bool flush)1202 void sme_alloc(struct task_struct *task, bool flush)
1203 {
1204 if (task->thread.sme_state) {
1205 if (flush)
1206 memset(task->thread.sme_state, 0,
1207 sme_state_size(task));
1208 return;
1209 }
1210
1211 /* This could potentially be up to 64K. */
1212 task->thread.sme_state =
1213 kzalloc(sme_state_size(task), GFP_KERNEL);
1214 }
1215
sme_free(struct task_struct * task)1216 static void sme_free(struct task_struct *task)
1217 {
1218 kfree(task->thread.sme_state);
1219 task->thread.sme_state = NULL;
1220 }
1221
cpu_enable_sme(const struct arm64_cpu_capabilities * __always_unused p)1222 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1223 {
1224 /* Set priority for all PEs to architecturally defined minimum */
1225 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1226 SYS_SMPRI_EL1);
1227
1228 /* Allow SME in kernel */
1229 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1230 isb();
1231
1232 /* Ensure all bits in SMCR are set to known values */
1233 write_sysreg_s(0, SYS_SMCR_EL1);
1234
1235 /* Allow EL0 to access TPIDR2 */
1236 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1237 isb();
1238 }
1239
cpu_enable_sme2(const struct arm64_cpu_capabilities * __always_unused p)1240 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1241 {
1242 /* This must be enabled after SME */
1243 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1244
1245 /* Allow use of ZT0 */
1246 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1247 SYS_SMCR_EL1);
1248 }
1249
cpu_enable_fa64(const struct arm64_cpu_capabilities * __always_unused p)1250 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1251 {
1252 /* This must be enabled after SME */
1253 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1254
1255 /* Allow use of FA64 */
1256 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1257 SYS_SMCR_EL1);
1258 }
1259
sme_setup(void)1260 void __init sme_setup(void)
1261 {
1262 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1263 int min_bit, max_bit;
1264
1265 if (!system_supports_sme())
1266 return;
1267
1268 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1269
1270 /*
1271 * SME doesn't require any particular vector length be
1272 * supported but it does require at least one. We should have
1273 * disabled the feature entirely while bringing up CPUs but
1274 * let's double check here. The bitmap is SVE_VQ_MAP sized for
1275 * sharing with SVE.
1276 */
1277 WARN_ON(min_bit >= SVE_VQ_MAX);
1278
1279 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1280
1281 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1282 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1283
1284 WARN_ON(info->min_vl > info->max_vl);
1285
1286 /*
1287 * For the default VL, pick the maximum supported value <= 32
1288 * (256 bits) if there is one since this is guaranteed not to
1289 * grow the signal frame when in streaming mode, otherwise the
1290 * minimum available VL will be used.
1291 */
1292 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1293
1294 pr_info("SME: minimum available vector length %u bytes per vector\n",
1295 info->min_vl);
1296 pr_info("SME: maximum available vector length %u bytes per vector\n",
1297 info->max_vl);
1298 pr_info("SME: default vector length %u bytes per vector\n",
1299 get_sme_default_vl());
1300 }
1301
sme_suspend_exit(void)1302 void sme_suspend_exit(void)
1303 {
1304 u64 smcr = 0;
1305
1306 if (!system_supports_sme())
1307 return;
1308
1309 if (system_supports_fa64())
1310 smcr |= SMCR_ELx_FA64;
1311 if (system_supports_sme2())
1312 smcr |= SMCR_ELx_EZT0;
1313
1314 write_sysreg_s(smcr, SYS_SMCR_EL1);
1315 write_sysreg_s(0, SYS_SMPRI_EL1);
1316 }
1317
1318 #endif /* CONFIG_ARM64_SME */
1319
sve_init_regs(void)1320 static void sve_init_regs(void)
1321 {
1322 /*
1323 * Convert the FPSIMD state to SVE, zeroing all the state that
1324 * is not shared with FPSIMD. If (as is likely) the current
1325 * state is live in the registers then do this there and
1326 * update our metadata for the current task including
1327 * disabling the trap, otherwise update our in-memory copy.
1328 * We are guaranteed to not be in streaming mode, we can only
1329 * take a SVE trap when not in streaming mode and we can't be
1330 * in streaming mode when taking a SME trap.
1331 */
1332 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1333 unsigned long vq_minus_one =
1334 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1335 sve_set_vq(vq_minus_one);
1336 sve_flush_live(true, vq_minus_one);
1337 fpsimd_bind_task_to_cpu();
1338 } else {
1339 fpsimd_to_sve(current);
1340 current->thread.fp_type = FP_STATE_SVE;
1341 fpsimd_flush_task_state(current);
1342 }
1343 }
1344
1345 /*
1346 * Trapped SVE access
1347 *
1348 * Storage is allocated for the full SVE state, the current FPSIMD
1349 * register contents are migrated across, and the access trap is
1350 * disabled.
1351 *
1352 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1353 * would have disabled the SVE access trap for userspace during
1354 * ret_to_user, making an SVE access trap impossible in that case.
1355 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1356 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1357 {
1358 /* Even if we chose not to use SVE, the hardware could still trap: */
1359 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1360 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1361 return;
1362 }
1363
1364 sve_alloc(current, true);
1365 if (!current->thread.sve_state) {
1366 force_sig(SIGKILL);
1367 return;
1368 }
1369
1370 get_cpu_fpsimd_context();
1371
1372 if (test_and_set_thread_flag(TIF_SVE))
1373 WARN_ON(1); /* SVE access shouldn't have trapped */
1374
1375 /*
1376 * Even if the task can have used streaming mode we can only
1377 * generate SVE access traps in normal SVE mode and
1378 * transitioning out of streaming mode may discard any
1379 * streaming mode state. Always clear the high bits to avoid
1380 * any potential errors tracking what is properly initialised.
1381 */
1382 sve_init_regs();
1383
1384 put_cpu_fpsimd_context();
1385 }
1386
1387 /*
1388 * Trapped SME access
1389 *
1390 * Storage is allocated for the full SVE and SME state, the current
1391 * FPSIMD register contents are migrated to SVE if SVE is not already
1392 * active, and the access trap is disabled.
1393 *
1394 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1395 * would have disabled the SME access trap for userspace during
1396 * ret_to_user, making an SME access trap impossible in that case.
1397 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1398 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1399 {
1400 /* Even if we chose not to use SME, the hardware could still trap: */
1401 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1402 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1403 return;
1404 }
1405
1406 /*
1407 * If this not a trap due to SME being disabled then something
1408 * is being used in the wrong mode, report as SIGILL.
1409 */
1410 if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1411 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1412 return;
1413 }
1414
1415 sve_alloc(current, false);
1416 sme_alloc(current, true);
1417 if (!current->thread.sve_state || !current->thread.sme_state) {
1418 force_sig(SIGKILL);
1419 return;
1420 }
1421
1422 get_cpu_fpsimd_context();
1423
1424 /* With TIF_SME userspace shouldn't generate any traps */
1425 if (test_and_set_thread_flag(TIF_SME))
1426 WARN_ON(1);
1427
1428 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1429 unsigned long vq_minus_one =
1430 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1431 sme_set_vq(vq_minus_one);
1432
1433 fpsimd_bind_task_to_cpu();
1434 } else {
1435 fpsimd_flush_task_state(current);
1436 }
1437
1438 put_cpu_fpsimd_context();
1439 }
1440
1441 /*
1442 * Trapped FP/ASIMD access.
1443 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1444 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1445 {
1446 /* Even if we chose not to use FPSIMD, the hardware could still trap: */
1447 if (!system_supports_fpsimd()) {
1448 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1449 return;
1450 }
1451
1452 /*
1453 * When FPSIMD is enabled, we should never take a trap unless something
1454 * has gone very wrong.
1455 */
1456 BUG();
1457 }
1458
1459 /*
1460 * Raise a SIGFPE for the current process.
1461 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1462 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1463 {
1464 unsigned int si_code = FPE_FLTUNK;
1465
1466 if (esr & ESR_ELx_FP_EXC_TFV) {
1467 if (esr & FPEXC_IOF)
1468 si_code = FPE_FLTINV;
1469 else if (esr & FPEXC_DZF)
1470 si_code = FPE_FLTDIV;
1471 else if (esr & FPEXC_OFF)
1472 si_code = FPE_FLTOVF;
1473 else if (esr & FPEXC_UFF)
1474 si_code = FPE_FLTUND;
1475 else if (esr & FPEXC_IXF)
1476 si_code = FPE_FLTRES;
1477 }
1478
1479 send_sig_fault(SIGFPE, si_code,
1480 (void __user *)instruction_pointer(regs),
1481 current);
1482 }
1483
fpsimd_load_kernel_state(struct task_struct * task)1484 static void fpsimd_load_kernel_state(struct task_struct *task)
1485 {
1486 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1487
1488 /*
1489 * Elide the load if this CPU holds the most recent kernel mode
1490 * FPSIMD context of the current task.
1491 */
1492 if (last->st == &task->thread.kernel_fpsimd_state &&
1493 task->thread.kernel_fpsimd_cpu == smp_processor_id())
1494 return;
1495
1496 fpsimd_load_state(&task->thread.kernel_fpsimd_state);
1497 }
1498
fpsimd_save_kernel_state(struct task_struct * task)1499 static void fpsimd_save_kernel_state(struct task_struct *task)
1500 {
1501 struct cpu_fp_state cpu_fp_state = {
1502 .st = &task->thread.kernel_fpsimd_state,
1503 .to_save = FP_STATE_FPSIMD,
1504 };
1505
1506 fpsimd_save_state(&task->thread.kernel_fpsimd_state);
1507 fpsimd_bind_state_to_cpu(&cpu_fp_state);
1508
1509 task->thread.kernel_fpsimd_cpu = smp_processor_id();
1510 }
1511
1512 /*
1513 * Invalidate any task's FPSIMD state that is present on this cpu.
1514 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1515 * before calling this function.
1516 */
fpsimd_flush_cpu_state(void)1517 static void fpsimd_flush_cpu_state(void)
1518 {
1519 WARN_ON(!system_supports_fpsimd());
1520 __this_cpu_write(fpsimd_last_state.st, NULL);
1521
1522 /*
1523 * Leaving streaming mode enabled will cause issues for any kernel
1524 * NEON and leaving streaming mode or ZA enabled may increase power
1525 * consumption.
1526 */
1527 if (system_supports_sme())
1528 sme_smstop();
1529
1530 set_thread_flag(TIF_FOREIGN_FPSTATE);
1531 }
1532
fpsimd_thread_switch(struct task_struct * next)1533 void fpsimd_thread_switch(struct task_struct *next)
1534 {
1535 bool wrong_task, wrong_cpu;
1536
1537 if (!system_supports_fpsimd())
1538 return;
1539
1540 WARN_ON_ONCE(!irqs_disabled());
1541
1542 /* Save unsaved fpsimd state, if any: */
1543 if (test_thread_flag(TIF_KERNEL_FPSTATE))
1544 fpsimd_save_kernel_state(current);
1545 else
1546 fpsimd_save_user_state();
1547
1548 if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1549 fpsimd_flush_cpu_state();
1550 fpsimd_load_kernel_state(next);
1551 } else {
1552 /*
1553 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1554 * state. For kernel threads, FPSIMD registers are never
1555 * loaded with user mode FPSIMD state and so wrong_task and
1556 * wrong_cpu will always be true.
1557 */
1558 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1559 &next->thread.uw.fpsimd_state;
1560 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1561
1562 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1563 wrong_task || wrong_cpu);
1564 }
1565 }
1566
fpsimd_flush_thread_vl(enum vec_type type)1567 static void fpsimd_flush_thread_vl(enum vec_type type)
1568 {
1569 int vl, supported_vl;
1570
1571 /*
1572 * Reset the task vector length as required. This is where we
1573 * ensure that all user tasks have a valid vector length
1574 * configured: no kernel task can become a user task without
1575 * an exec and hence a call to this function. By the time the
1576 * first call to this function is made, all early hardware
1577 * probing is complete, so __sve_default_vl should be valid.
1578 * If a bug causes this to go wrong, we make some noise and
1579 * try to fudge thread.sve_vl to a safe value here.
1580 */
1581 vl = task_get_vl_onexec(current, type);
1582 if (!vl)
1583 vl = get_default_vl(type);
1584
1585 if (WARN_ON(!sve_vl_valid(vl)))
1586 vl = vl_info[type].min_vl;
1587
1588 supported_vl = find_supported_vector_length(type, vl);
1589 if (WARN_ON(supported_vl != vl))
1590 vl = supported_vl;
1591
1592 task_set_vl(current, type, vl);
1593
1594 /*
1595 * If the task is not set to inherit, ensure that the vector
1596 * length will be reset by a subsequent exec:
1597 */
1598 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1599 task_set_vl_onexec(current, type, 0);
1600 }
1601
fpsimd_flush_thread(void)1602 void fpsimd_flush_thread(void)
1603 {
1604 void *sve_state = NULL;
1605 void *sme_state = NULL;
1606
1607 if (!system_supports_fpsimd())
1608 return;
1609
1610 get_cpu_fpsimd_context();
1611
1612 fpsimd_flush_task_state(current);
1613 memset(¤t->thread.uw.fpsimd_state, 0,
1614 sizeof(current->thread.uw.fpsimd_state));
1615
1616 if (system_supports_sve()) {
1617 clear_thread_flag(TIF_SVE);
1618
1619 /* Defer kfree() while in atomic context */
1620 sve_state = current->thread.sve_state;
1621 current->thread.sve_state = NULL;
1622
1623 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1624 }
1625
1626 if (system_supports_sme()) {
1627 clear_thread_flag(TIF_SME);
1628
1629 /* Defer kfree() while in atomic context */
1630 sme_state = current->thread.sme_state;
1631 current->thread.sme_state = NULL;
1632
1633 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1634 current->thread.svcr = 0;
1635 }
1636
1637 if (system_supports_fpmr())
1638 current->thread.uw.fpmr = 0;
1639
1640 current->thread.fp_type = FP_STATE_FPSIMD;
1641
1642 put_cpu_fpsimd_context();
1643 kfree(sve_state);
1644 kfree(sme_state);
1645 }
1646
1647 /*
1648 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1649 * currently held in the registers does in fact belong to 'current'
1650 */
fpsimd_preserve_current_state(void)1651 void fpsimd_preserve_current_state(void)
1652 {
1653 if (!system_supports_fpsimd())
1654 return;
1655
1656 get_cpu_fpsimd_context();
1657 fpsimd_save_user_state();
1658 put_cpu_fpsimd_context();
1659 }
1660
1661 /*
1662 * Associate current's FPSIMD context with this cpu
1663 * The caller must have ownership of the cpu FPSIMD context before calling
1664 * this function.
1665 */
fpsimd_bind_task_to_cpu(void)1666 static void fpsimd_bind_task_to_cpu(void)
1667 {
1668 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1669
1670 WARN_ON(!system_supports_fpsimd());
1671 last->st = ¤t->thread.uw.fpsimd_state;
1672 last->sve_state = current->thread.sve_state;
1673 last->sme_state = current->thread.sme_state;
1674 last->sve_vl = task_get_sve_vl(current);
1675 last->sme_vl = task_get_sme_vl(current);
1676 last->svcr = ¤t->thread.svcr;
1677 last->fpmr = ¤t->thread.uw.fpmr;
1678 last->fp_type = ¤t->thread.fp_type;
1679 last->to_save = FP_STATE_CURRENT;
1680 current->thread.fpsimd_cpu = smp_processor_id();
1681
1682 /*
1683 * Toggle SVE and SME trapping for userspace if needed, these
1684 * are serialsied by ret_to_user().
1685 */
1686 if (system_supports_sme()) {
1687 if (test_thread_flag(TIF_SME))
1688 sme_user_enable();
1689 else
1690 sme_user_disable();
1691 }
1692
1693 if (system_supports_sve()) {
1694 if (test_thread_flag(TIF_SVE))
1695 sve_user_enable();
1696 else
1697 sve_user_disable();
1698 }
1699 }
1700
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1701 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1702 {
1703 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1704
1705 WARN_ON(!system_supports_fpsimd());
1706 WARN_ON(!in_softirq() && !irqs_disabled());
1707
1708 *last = *state;
1709 }
1710
1711 /*
1712 * Load the userland FPSIMD state of 'current' from memory, but only if the
1713 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1714 * state of 'current'. This is called when we are preparing to return to
1715 * userspace to ensure that userspace sees a good register state.
1716 */
fpsimd_restore_current_state(void)1717 void fpsimd_restore_current_state(void)
1718 {
1719 /*
1720 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1721 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1722 * Thus user threads can have this set even when FP/SIMD hasn't been
1723 * detected.
1724 *
1725 * When FP/SIMD is detected, begin_new_exec() will set
1726 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1727 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1728 * switching tasks. We detect FP/SIMD before we exec the first user
1729 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1730 * do_notify_resume() will call fpsimd_restore_current_state() to
1731 * install the user FP/SIMD context.
1732 *
1733 * When FP/SIMD is not detected, nothing else will clear or set
1734 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1735 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1736 * looping forever calling fpsimd_restore_current_state().
1737 */
1738 if (!system_supports_fpsimd()) {
1739 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1740 return;
1741 }
1742
1743 get_cpu_fpsimd_context();
1744
1745 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1746 task_fpsimd_load();
1747 fpsimd_bind_task_to_cpu();
1748 }
1749
1750 put_cpu_fpsimd_context();
1751 }
1752
fpsimd_update_current_state(struct user_fpsimd_state const * state)1753 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1754 {
1755 if (WARN_ON(!system_supports_fpsimd()))
1756 return;
1757
1758 current->thread.uw.fpsimd_state = *state;
1759 if (current->thread.fp_type == FP_STATE_SVE)
1760 fpsimd_to_sve(current);
1761 }
1762
1763 /*
1764 * Invalidate live CPU copies of task t's FPSIMD state
1765 *
1766 * This function may be called with preemption enabled. The barrier()
1767 * ensures that the assignment to fpsimd_cpu is visible to any
1768 * preemption/softirq that could race with set_tsk_thread_flag(), so
1769 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1770 *
1771 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1772 * subsequent code.
1773 */
fpsimd_flush_task_state(struct task_struct * t)1774 void fpsimd_flush_task_state(struct task_struct *t)
1775 {
1776 t->thread.fpsimd_cpu = NR_CPUS;
1777 /*
1778 * If we don't support fpsimd, bail out after we have
1779 * reset the fpsimd_cpu for this task and clear the
1780 * FPSTATE.
1781 */
1782 if (!system_supports_fpsimd())
1783 return;
1784 barrier();
1785 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1786
1787 barrier();
1788 }
1789
fpsimd_save_and_flush_current_state(void)1790 void fpsimd_save_and_flush_current_state(void)
1791 {
1792 if (!system_supports_fpsimd())
1793 return;
1794
1795 get_cpu_fpsimd_context();
1796 fpsimd_save_user_state();
1797 fpsimd_flush_task_state(current);
1798 put_cpu_fpsimd_context();
1799 }
1800
1801 /*
1802 * Save the FPSIMD state to memory and invalidate cpu view.
1803 * This function must be called with preemption disabled.
1804 */
fpsimd_save_and_flush_cpu_state(void)1805 void fpsimd_save_and_flush_cpu_state(void)
1806 {
1807 unsigned long flags;
1808
1809 if (!system_supports_fpsimd())
1810 return;
1811 WARN_ON(preemptible());
1812 local_irq_save(flags);
1813 fpsimd_save_user_state();
1814 fpsimd_flush_cpu_state();
1815 local_irq_restore(flags);
1816 }
1817
1818 #ifdef CONFIG_KERNEL_MODE_NEON
1819
1820 /*
1821 * Kernel-side NEON support functions
1822 */
1823
1824 /*
1825 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1826 * context
1827 *
1828 * Must not be called unless may_use_simd() returns true.
1829 * Task context in the FPSIMD registers is saved back to memory as necessary.
1830 *
1831 * A matching call to kernel_neon_end() must be made before returning from the
1832 * calling context.
1833 *
1834 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1835 * called.
1836 */
kernel_neon_begin(void)1837 void kernel_neon_begin(void)
1838 {
1839 if (WARN_ON(!system_supports_fpsimd()))
1840 return;
1841
1842 BUG_ON(!may_use_simd());
1843
1844 get_cpu_fpsimd_context();
1845
1846 /* Save unsaved fpsimd state, if any: */
1847 if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1848 BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1849 fpsimd_save_kernel_state(current);
1850 } else {
1851 fpsimd_save_user_state();
1852
1853 /*
1854 * Set the thread flag so that the kernel mode FPSIMD state
1855 * will be context switched along with the rest of the task
1856 * state.
1857 *
1858 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1859 * mode FPSIMD, but the task will not be preemptible so setting
1860 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1861 * would mark the task context FPSIMD state as requiring a
1862 * context switch) and unnecessary.
1863 *
1864 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1865 * which is scheduled as usual, and this guarantees that these
1866 * softirqs are not interrupting use of the FPSIMD in kernel
1867 * mode in task context. So in this case, setting the flag here
1868 * is always appropriate.
1869 */
1870 if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq())
1871 set_thread_flag(TIF_KERNEL_FPSTATE);
1872 }
1873
1874 /* Invalidate any task state remaining in the fpsimd regs: */
1875 fpsimd_flush_cpu_state();
1876
1877 put_cpu_fpsimd_context();
1878 }
1879 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1880
1881 /*
1882 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1883 *
1884 * Must be called from a context in which kernel_neon_begin() was previously
1885 * called, with no call to kernel_neon_end() in the meantime.
1886 *
1887 * The caller must not use the FPSIMD registers after this function is called,
1888 * unless kernel_neon_begin() is called again in the meantime.
1889 */
kernel_neon_end(void)1890 void kernel_neon_end(void)
1891 {
1892 if (!system_supports_fpsimd())
1893 return;
1894
1895 /*
1896 * If we are returning from a nested use of kernel mode FPSIMD, restore
1897 * the task context kernel mode FPSIMD state. This can only happen when
1898 * running in softirq context on non-PREEMPT_RT.
1899 */
1900 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() &&
1901 test_thread_flag(TIF_KERNEL_FPSTATE))
1902 fpsimd_load_kernel_state(current);
1903 else
1904 clear_thread_flag(TIF_KERNEL_FPSTATE);
1905 }
1906 EXPORT_SYMBOL_GPL(kernel_neon_end);
1907
1908 #ifdef CONFIG_EFI
1909
1910 static struct user_fpsimd_state efi_fpsimd_state;
1911 static bool efi_fpsimd_state_used;
1912 static bool efi_sve_state_used;
1913 static bool efi_sm_state;
1914
1915 /*
1916 * EFI runtime services support functions
1917 *
1918 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1919 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1920 * is always used rather than being an optional accelerator.
1921 *
1922 * These functions provide the necessary support for ensuring FPSIMD
1923 * save/restore in the contexts from which EFI is used.
1924 *
1925 * Do not use them for any other purpose -- if tempted to do so, you are
1926 * either doing something wrong or you need to propose some refactoring.
1927 */
1928
1929 /*
1930 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1931 */
__efi_fpsimd_begin(void)1932 void __efi_fpsimd_begin(void)
1933 {
1934 if (!system_supports_fpsimd())
1935 return;
1936
1937 WARN_ON(preemptible());
1938
1939 if (may_use_simd()) {
1940 kernel_neon_begin();
1941 } else {
1942 /*
1943 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1944 * preserving:
1945 */
1946 if (system_supports_sve() && efi_sve_state != NULL) {
1947 bool ffr = true;
1948 u64 svcr;
1949
1950 efi_sve_state_used = true;
1951
1952 if (system_supports_sme()) {
1953 svcr = read_sysreg_s(SYS_SVCR);
1954
1955 efi_sm_state = svcr & SVCR_SM_MASK;
1956
1957 /*
1958 * Unless we have FA64 FFR does not
1959 * exist in streaming mode.
1960 */
1961 if (!system_supports_fa64())
1962 ffr = !(svcr & SVCR_SM_MASK);
1963 }
1964
1965 sve_save_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
1966 &efi_fpsimd_state.fpsr, ffr);
1967
1968 if (system_supports_sme())
1969 sysreg_clear_set_s(SYS_SVCR,
1970 SVCR_SM_MASK, 0);
1971
1972 } else {
1973 fpsimd_save_state(&efi_fpsimd_state);
1974 }
1975
1976 efi_fpsimd_state_used = true;
1977 }
1978 }
1979
1980 /*
1981 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1982 */
__efi_fpsimd_end(void)1983 void __efi_fpsimd_end(void)
1984 {
1985 if (!system_supports_fpsimd())
1986 return;
1987
1988 if (!efi_fpsimd_state_used) {
1989 kernel_neon_end();
1990 } else {
1991 if (system_supports_sve() && efi_sve_state_used) {
1992 bool ffr = true;
1993
1994 /*
1995 * Restore streaming mode; EFI calls are
1996 * normal function calls so should not return in
1997 * streaming mode.
1998 */
1999 if (system_supports_sme()) {
2000 if (efi_sm_state) {
2001 sysreg_clear_set_s(SYS_SVCR,
2002 0,
2003 SVCR_SM_MASK);
2004
2005 /*
2006 * Unless we have FA64 FFR does not
2007 * exist in streaming mode.
2008 */
2009 if (!system_supports_fa64())
2010 ffr = false;
2011 }
2012 }
2013
2014 sve_load_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
2015 &efi_fpsimd_state.fpsr, ffr);
2016
2017 efi_sve_state_used = false;
2018 } else {
2019 fpsimd_load_state(&efi_fpsimd_state);
2020 }
2021
2022 efi_fpsimd_state_used = false;
2023 }
2024 }
2025
2026 #endif /* CONFIG_EFI */
2027
2028 #endif /* CONFIG_KERNEL_MODE_NEON */
2029
2030 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2031 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2032 unsigned long cmd, void *v)
2033 {
2034 switch (cmd) {
2035 case CPU_PM_ENTER:
2036 fpsimd_save_and_flush_cpu_state();
2037 break;
2038 case CPU_PM_EXIT:
2039 break;
2040 case CPU_PM_ENTER_FAILED:
2041 default:
2042 return NOTIFY_DONE;
2043 }
2044 return NOTIFY_OK;
2045 }
2046
2047 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2048 .notifier_call = fpsimd_cpu_pm_notifier,
2049 };
2050
fpsimd_pm_init(void)2051 static void __init fpsimd_pm_init(void)
2052 {
2053 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2054 }
2055
2056 #else
fpsimd_pm_init(void)2057 static inline void fpsimd_pm_init(void) { }
2058 #endif /* CONFIG_CPU_PM */
2059
2060 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2061 static int fpsimd_cpu_dead(unsigned int cpu)
2062 {
2063 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2064 return 0;
2065 }
2066
fpsimd_hotplug_init(void)2067 static inline void fpsimd_hotplug_init(void)
2068 {
2069 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2070 NULL, fpsimd_cpu_dead);
2071 }
2072
2073 #else
fpsimd_hotplug_init(void)2074 static inline void fpsimd_hotplug_init(void) { }
2075 #endif
2076
cpu_enable_fpsimd(const struct arm64_cpu_capabilities * __always_unused p)2077 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2078 {
2079 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2080 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2081 isb();
2082 }
2083
2084 /*
2085 * FP/SIMD support code initialisation.
2086 */
fpsimd_init(void)2087 static int __init fpsimd_init(void)
2088 {
2089 if (cpu_have_named_feature(FP)) {
2090 fpsimd_pm_init();
2091 fpsimd_hotplug_init();
2092 } else {
2093 pr_notice("Floating-point is not implemented\n");
2094 }
2095
2096 if (!cpu_have_named_feature(ASIMD))
2097 pr_notice("Advanced SIMD is not implemented\n");
2098
2099
2100 sve_sysctl_init();
2101 sme_sysctl_init();
2102
2103 return 0;
2104 }
2105 core_initcall(fpsimd_init);
2106