1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48
49 /*
50 * Virtual device management.
51 */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54 &vdev_root_ops,
55 &vdev_raidz_ops,
56 &vdev_mirror_ops,
57 &vdev_replacing_ops,
58 &vdev_spare_ops,
59 &vdev_disk_ops,
60 &vdev_file_ops,
61 &vdev_missing_ops,
62 &vdev_hole_ops,
63 NULL
64 };
65
66 /* maximum scrub/resilver I/O queue per leaf vdev */
67 int zfs_scrub_limit = 10;
68
69 /*
70 * When a vdev is added, it will be divided into approximately (but no
71 * more than) this number of metaslabs.
72 */
73 int metaslabs_per_vdev = 200;
74
75 /*
76 * Given a vdev type, return the appropriate ops vector.
77 */
78 static vdev_ops_t *
vdev_getops(const char * type)79 vdev_getops(const char *type)
80 {
81 vdev_ops_t *ops, **opspp;
82
83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84 if (strcmp(ops->vdev_op_type, type) == 0)
85 break;
86
87 return (ops);
88 }
89
90 /*
91 * Default asize function: return the MAX of psize with the asize of
92 * all children. This is what's used by anything other than RAID-Z.
93 */
94 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize)95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98 uint64_t csize;
99
100 for (int c = 0; c < vd->vdev_children; c++) {
101 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102 asize = MAX(asize, csize);
103 }
104
105 return (asize);
106 }
107
108 /*
109 * Get the minimum allocatable size. We define the allocatable size as
110 * the vdev's asize rounded to the nearest metaslab. This allows us to
111 * replace or attach devices which don't have the same physical size but
112 * can still satisfy the same number of allocations.
113 */
114 uint64_t
vdev_get_min_asize(vdev_t * vd)115 vdev_get_min_asize(vdev_t *vd)
116 {
117 vdev_t *pvd = vd->vdev_parent;
118
119 /*
120 * If our parent is NULL (inactive spare or cache) or is the root,
121 * just return our own asize.
122 */
123 if (pvd == NULL)
124 return (vd->vdev_asize);
125
126 /*
127 * The top-level vdev just returns the allocatable size rounded
128 * to the nearest metaslab.
129 */
130 if (vd == vd->vdev_top)
131 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
132
133 /*
134 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
135 * so each child must provide at least 1/Nth of its asize.
136 */
137 if (pvd->vdev_ops == &vdev_raidz_ops)
138 return (pvd->vdev_min_asize / pvd->vdev_children);
139
140 return (pvd->vdev_min_asize);
141 }
142
143 void
vdev_set_min_asize(vdev_t * vd)144 vdev_set_min_asize(vdev_t *vd)
145 {
146 vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148 for (int c = 0; c < vd->vdev_children; c++)
149 vdev_set_min_asize(vd->vdev_child[c]);
150 }
151
152 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155 vdev_t *rvd = spa->spa_root_vdev;
156
157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159 if (vdev < rvd->vdev_children) {
160 ASSERT(rvd->vdev_child[vdev] != NULL);
161 return (rvd->vdev_child[vdev]);
162 }
163
164 return (NULL);
165 }
166
167 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170 vdev_t *mvd;
171
172 if (vd->vdev_guid == guid)
173 return (vd);
174
175 for (int c = 0; c < vd->vdev_children; c++)
176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177 NULL)
178 return (mvd);
179
180 return (NULL);
181 }
182
183 static int
vdev_count_leaves_impl(vdev_t * vd)184 vdev_count_leaves_impl(vdev_t *vd)
185 {
186 int n = 0;
187
188 if (vd->vdev_ops->vdev_op_leaf)
189 return (1);
190
191 for (int c = 0; c < vd->vdev_children; c++)
192 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194 return (n);
195 }
196
197 int
vdev_count_leaves(spa_t * spa)198 vdev_count_leaves(spa_t *spa)
199 {
200 return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 size_t oldsize, newsize;
207 uint64_t id = cvd->vdev_id;
208 vdev_t **newchild;
209 spa_t *spa = cvd->vdev_spa;
210
211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 ASSERT(cvd->vdev_parent == NULL);
213
214 cvd->vdev_parent = pvd;
215
216 if (pvd == NULL)
217 return;
218
219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220
221 oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 newsize = pvd->vdev_children * sizeof (vdev_t *);
224
225 newchild = kmem_zalloc(newsize, KM_SLEEP);
226 if (pvd->vdev_child != NULL) {
227 bcopy(pvd->vdev_child, newchild, oldsize);
228 kmem_free(pvd->vdev_child, oldsize);
229 }
230
231 pvd->vdev_child = newchild;
232 pvd->vdev_child[id] = cvd;
233
234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236
237 /*
238 * Walk up all ancestors to update guid sum.
239 */
240 for (; pvd != NULL; pvd = pvd->vdev_parent)
241 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243
244 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 int c;
248 uint_t id = cvd->vdev_id;
249
250 ASSERT(cvd->vdev_parent == pvd);
251
252 if (pvd == NULL)
253 return;
254
255 ASSERT(id < pvd->vdev_children);
256 ASSERT(pvd->vdev_child[id] == cvd);
257
258 pvd->vdev_child[id] = NULL;
259 cvd->vdev_parent = NULL;
260
261 for (c = 0; c < pvd->vdev_children; c++)
262 if (pvd->vdev_child[c])
263 break;
264
265 if (c == pvd->vdev_children) {
266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 pvd->vdev_child = NULL;
268 pvd->vdev_children = 0;
269 }
270
271 /*
272 * Walk up all ancestors to update guid sum.
273 */
274 for (; pvd != NULL; pvd = pvd->vdev_parent)
275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277
278 /*
279 * Remove any holes in the child array.
280 */
281 void
vdev_compact_children(vdev_t * pvd)282 vdev_compact_children(vdev_t *pvd)
283 {
284 vdev_t **newchild, *cvd;
285 int oldc = pvd->vdev_children;
286 int newc;
287
288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289
290 for (int c = newc = 0; c < oldc; c++)
291 if (pvd->vdev_child[c])
292 newc++;
293
294 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
295
296 for (int c = newc = 0; c < oldc; c++) {
297 if ((cvd = pvd->vdev_child[c]) != NULL) {
298 newchild[newc] = cvd;
299 cvd->vdev_id = newc++;
300 }
301 }
302
303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304 pvd->vdev_child = newchild;
305 pvd->vdev_children = newc;
306 }
307
308 /*
309 * Allocate and minimally initialize a vdev_t.
310 */
311 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314 vdev_t *vd;
315
316 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
317
318 if (spa->spa_root_vdev == NULL) {
319 ASSERT(ops == &vdev_root_ops);
320 spa->spa_root_vdev = vd;
321 spa->spa_load_guid = spa_generate_guid(NULL);
322 }
323
324 if (guid == 0 && ops != &vdev_hole_ops) {
325 if (spa->spa_root_vdev == vd) {
326 /*
327 * The root vdev's guid will also be the pool guid,
328 * which must be unique among all pools.
329 */
330 guid = spa_generate_guid(NULL);
331 } else {
332 /*
333 * Any other vdev's guid must be unique within the pool.
334 */
335 guid = spa_generate_guid(spa);
336 }
337 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
338 }
339
340 vd->vdev_spa = spa;
341 vd->vdev_id = id;
342 vd->vdev_guid = guid;
343 vd->vdev_guid_sum = guid;
344 vd->vdev_ops = ops;
345 vd->vdev_state = VDEV_STATE_CLOSED;
346 vd->vdev_ishole = (ops == &vdev_hole_ops);
347
348 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
349 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
350 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
351 for (int t = 0; t < DTL_TYPES; t++) {
352 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
353 &vd->vdev_dtl_lock);
354 }
355 txg_list_create(&vd->vdev_ms_list,
356 offsetof(struct metaslab, ms_txg_node));
357 txg_list_create(&vd->vdev_dtl_list,
358 offsetof(struct vdev, vdev_dtl_node));
359 vd->vdev_stat.vs_timestamp = gethrtime();
360 vdev_queue_init(vd);
361 vdev_cache_init(vd);
362
363 return (vd);
364 }
365
366 /*
367 * Allocate a new vdev. The 'alloctype' is used to control whether we are
368 * creating a new vdev or loading an existing one - the behavior is slightly
369 * different for each case.
370 */
371 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)372 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
373 int alloctype)
374 {
375 vdev_ops_t *ops;
376 char *type;
377 uint64_t guid = 0, islog, nparity;
378 vdev_t *vd;
379
380 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
381
382 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
383 return (SET_ERROR(EINVAL));
384
385 if ((ops = vdev_getops(type)) == NULL)
386 return (SET_ERROR(EINVAL));
387
388 /*
389 * If this is a load, get the vdev guid from the nvlist.
390 * Otherwise, vdev_alloc_common() will generate one for us.
391 */
392 if (alloctype == VDEV_ALLOC_LOAD) {
393 uint64_t label_id;
394
395 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
396 label_id != id)
397 return (SET_ERROR(EINVAL));
398
399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
400 return (SET_ERROR(EINVAL));
401 } else if (alloctype == VDEV_ALLOC_SPARE) {
402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 return (SET_ERROR(EINVAL));
404 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 return (SET_ERROR(EINVAL));
407 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 return (SET_ERROR(EINVAL));
410 }
411
412 /*
413 * The first allocated vdev must be of type 'root'.
414 */
415 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
416 return (SET_ERROR(EINVAL));
417
418 /*
419 * Determine whether we're a log vdev.
420 */
421 islog = 0;
422 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
423 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
424 return (SET_ERROR(ENOTSUP));
425
426 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
427 return (SET_ERROR(ENOTSUP));
428
429 /*
430 * Set the nparity property for RAID-Z vdevs.
431 */
432 nparity = -1ULL;
433 if (ops == &vdev_raidz_ops) {
434 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
435 &nparity) == 0) {
436 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
437 return (SET_ERROR(EINVAL));
438 /*
439 * Previous versions could only support 1 or 2 parity
440 * device.
441 */
442 if (nparity > 1 &&
443 spa_version(spa) < SPA_VERSION_RAIDZ2)
444 return (SET_ERROR(ENOTSUP));
445 if (nparity > 2 &&
446 spa_version(spa) < SPA_VERSION_RAIDZ3)
447 return (SET_ERROR(ENOTSUP));
448 } else {
449 /*
450 * We require the parity to be specified for SPAs that
451 * support multiple parity levels.
452 */
453 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
454 return (SET_ERROR(EINVAL));
455 /*
456 * Otherwise, we default to 1 parity device for RAID-Z.
457 */
458 nparity = 1;
459 }
460 } else {
461 nparity = 0;
462 }
463 ASSERT(nparity != -1ULL);
464
465 vd = vdev_alloc_common(spa, id, guid, ops);
466
467 vd->vdev_islog = islog;
468 vd->vdev_nparity = nparity;
469
470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
471 vd->vdev_path = spa_strdup(vd->vdev_path);
472 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
473 vd->vdev_devid = spa_strdup(vd->vdev_devid);
474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
475 &vd->vdev_physpath) == 0)
476 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
478 vd->vdev_fru = spa_strdup(vd->vdev_fru);
479
480 /*
481 * Set the whole_disk property. If it's not specified, leave the value
482 * as -1.
483 */
484 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
485 &vd->vdev_wholedisk) != 0)
486 vd->vdev_wholedisk = -1ULL;
487
488 /*
489 * Look for the 'not present' flag. This will only be set if the device
490 * was not present at the time of import.
491 */
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
493 &vd->vdev_not_present);
494
495 /*
496 * Get the alignment requirement.
497 */
498 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
499
500 /*
501 * Retrieve the vdev creation time.
502 */
503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
504 &vd->vdev_crtxg);
505
506 /*
507 * If we're a top-level vdev, try to load the allocation parameters.
508 */
509 if (parent && !parent->vdev_parent &&
510 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
512 &vd->vdev_ms_array);
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
514 &vd->vdev_ms_shift);
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
516 &vd->vdev_asize);
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
518 &vd->vdev_removing);
519 }
520
521 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
522 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
523 alloctype == VDEV_ALLOC_ADD ||
524 alloctype == VDEV_ALLOC_SPLIT ||
525 alloctype == VDEV_ALLOC_ROOTPOOL);
526 vd->vdev_mg = metaslab_group_create(islog ?
527 spa_log_class(spa) : spa_normal_class(spa), vd);
528 }
529
530 /*
531 * If we're a leaf vdev, try to load the DTL object and other state.
532 */
533 if (vd->vdev_ops->vdev_op_leaf &&
534 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
535 alloctype == VDEV_ALLOC_ROOTPOOL)) {
536 if (alloctype == VDEV_ALLOC_LOAD) {
537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
538 &vd->vdev_dtl_object);
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
540 &vd->vdev_unspare);
541 }
542
543 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
544 uint64_t spare = 0;
545
546 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
547 &spare) == 0 && spare)
548 spa_spare_add(vd);
549 }
550
551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
552 &vd->vdev_offline);
553
554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
555 &vd->vdev_resilver_txg);
556
557 /*
558 * When importing a pool, we want to ignore the persistent fault
559 * state, as the diagnosis made on another system may not be
560 * valid in the current context. Local vdevs will
561 * remain in the faulted state.
562 */
563 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
565 &vd->vdev_faulted);
566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
567 &vd->vdev_degraded);
568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
569 &vd->vdev_removed);
570
571 if (vd->vdev_faulted || vd->vdev_degraded) {
572 char *aux;
573
574 vd->vdev_label_aux =
575 VDEV_AUX_ERR_EXCEEDED;
576 if (nvlist_lookup_string(nv,
577 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
578 strcmp(aux, "external") == 0)
579 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
580 }
581 }
582 }
583
584 /*
585 * Add ourselves to the parent's list of children.
586 */
587 vdev_add_child(parent, vd);
588
589 *vdp = vd;
590
591 return (0);
592 }
593
594 void
vdev_free(vdev_t * vd)595 vdev_free(vdev_t *vd)
596 {
597 spa_t *spa = vd->vdev_spa;
598
599 /*
600 * vdev_free() implies closing the vdev first. This is simpler than
601 * trying to ensure complicated semantics for all callers.
602 */
603 vdev_close(vd);
604
605 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
606 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
607
608 /*
609 * Free all children.
610 */
611 for (int c = 0; c < vd->vdev_children; c++)
612 vdev_free(vd->vdev_child[c]);
613
614 ASSERT(vd->vdev_child == NULL);
615 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
616
617 /*
618 * Discard allocation state.
619 */
620 if (vd->vdev_mg != NULL) {
621 vdev_metaslab_fini(vd);
622 metaslab_group_destroy(vd->vdev_mg);
623 }
624
625 ASSERT0(vd->vdev_stat.vs_space);
626 ASSERT0(vd->vdev_stat.vs_dspace);
627 ASSERT0(vd->vdev_stat.vs_alloc);
628
629 /*
630 * Remove this vdev from its parent's child list.
631 */
632 vdev_remove_child(vd->vdev_parent, vd);
633
634 ASSERT(vd->vdev_parent == NULL);
635
636 /*
637 * Clean up vdev structure.
638 */
639 vdev_queue_fini(vd);
640 vdev_cache_fini(vd);
641
642 if (vd->vdev_path)
643 spa_strfree(vd->vdev_path);
644 if (vd->vdev_devid)
645 spa_strfree(vd->vdev_devid);
646 if (vd->vdev_physpath)
647 spa_strfree(vd->vdev_physpath);
648 if (vd->vdev_fru)
649 spa_strfree(vd->vdev_fru);
650
651 if (vd->vdev_isspare)
652 spa_spare_remove(vd);
653 if (vd->vdev_isl2cache)
654 spa_l2cache_remove(vd);
655
656 txg_list_destroy(&vd->vdev_ms_list);
657 txg_list_destroy(&vd->vdev_dtl_list);
658
659 mutex_enter(&vd->vdev_dtl_lock);
660 space_map_close(vd->vdev_dtl_sm);
661 for (int t = 0; t < DTL_TYPES; t++) {
662 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
663 range_tree_destroy(vd->vdev_dtl[t]);
664 }
665 mutex_exit(&vd->vdev_dtl_lock);
666
667 mutex_destroy(&vd->vdev_dtl_lock);
668 mutex_destroy(&vd->vdev_stat_lock);
669 mutex_destroy(&vd->vdev_probe_lock);
670
671 if (vd == spa->spa_root_vdev)
672 spa->spa_root_vdev = NULL;
673
674 kmem_free(vd, sizeof (vdev_t));
675 }
676
677 /*
678 * Transfer top-level vdev state from svd to tvd.
679 */
680 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)681 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
682 {
683 spa_t *spa = svd->vdev_spa;
684 metaslab_t *msp;
685 vdev_t *vd;
686 int t;
687
688 ASSERT(tvd == tvd->vdev_top);
689
690 tvd->vdev_ms_array = svd->vdev_ms_array;
691 tvd->vdev_ms_shift = svd->vdev_ms_shift;
692 tvd->vdev_ms_count = svd->vdev_ms_count;
693
694 svd->vdev_ms_array = 0;
695 svd->vdev_ms_shift = 0;
696 svd->vdev_ms_count = 0;
697
698 if (tvd->vdev_mg)
699 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
700 tvd->vdev_mg = svd->vdev_mg;
701 tvd->vdev_ms = svd->vdev_ms;
702
703 svd->vdev_mg = NULL;
704 svd->vdev_ms = NULL;
705
706 if (tvd->vdev_mg != NULL)
707 tvd->vdev_mg->mg_vd = tvd;
708
709 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
710 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
711 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
712
713 svd->vdev_stat.vs_alloc = 0;
714 svd->vdev_stat.vs_space = 0;
715 svd->vdev_stat.vs_dspace = 0;
716
717 for (t = 0; t < TXG_SIZE; t++) {
718 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
719 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
720 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
721 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
722 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
723 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
724 }
725
726 if (list_link_active(&svd->vdev_config_dirty_node)) {
727 vdev_config_clean(svd);
728 vdev_config_dirty(tvd);
729 }
730
731 if (list_link_active(&svd->vdev_state_dirty_node)) {
732 vdev_state_clean(svd);
733 vdev_state_dirty(tvd);
734 }
735
736 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
737 svd->vdev_deflate_ratio = 0;
738
739 tvd->vdev_islog = svd->vdev_islog;
740 svd->vdev_islog = 0;
741 }
742
743 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)744 vdev_top_update(vdev_t *tvd, vdev_t *vd)
745 {
746 if (vd == NULL)
747 return;
748
749 vd->vdev_top = tvd;
750
751 for (int c = 0; c < vd->vdev_children; c++)
752 vdev_top_update(tvd, vd->vdev_child[c]);
753 }
754
755 /*
756 * Add a mirror/replacing vdev above an existing vdev.
757 */
758 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)759 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
760 {
761 spa_t *spa = cvd->vdev_spa;
762 vdev_t *pvd = cvd->vdev_parent;
763 vdev_t *mvd;
764
765 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
766
767 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
768
769 mvd->vdev_asize = cvd->vdev_asize;
770 mvd->vdev_min_asize = cvd->vdev_min_asize;
771 mvd->vdev_max_asize = cvd->vdev_max_asize;
772 mvd->vdev_ashift = cvd->vdev_ashift;
773 mvd->vdev_state = cvd->vdev_state;
774 mvd->vdev_crtxg = cvd->vdev_crtxg;
775
776 vdev_remove_child(pvd, cvd);
777 vdev_add_child(pvd, mvd);
778 cvd->vdev_id = mvd->vdev_children;
779 vdev_add_child(mvd, cvd);
780 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
781
782 if (mvd == mvd->vdev_top)
783 vdev_top_transfer(cvd, mvd);
784
785 return (mvd);
786 }
787
788 /*
789 * Remove a 1-way mirror/replacing vdev from the tree.
790 */
791 void
vdev_remove_parent(vdev_t * cvd)792 vdev_remove_parent(vdev_t *cvd)
793 {
794 vdev_t *mvd = cvd->vdev_parent;
795 vdev_t *pvd = mvd->vdev_parent;
796
797 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
798
799 ASSERT(mvd->vdev_children == 1);
800 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
801 mvd->vdev_ops == &vdev_replacing_ops ||
802 mvd->vdev_ops == &vdev_spare_ops);
803 cvd->vdev_ashift = mvd->vdev_ashift;
804
805 vdev_remove_child(mvd, cvd);
806 vdev_remove_child(pvd, mvd);
807
808 /*
809 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
810 * Otherwise, we could have detached an offline device, and when we
811 * go to import the pool we'll think we have two top-level vdevs,
812 * instead of a different version of the same top-level vdev.
813 */
814 if (mvd->vdev_top == mvd) {
815 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
816 cvd->vdev_orig_guid = cvd->vdev_guid;
817 cvd->vdev_guid += guid_delta;
818 cvd->vdev_guid_sum += guid_delta;
819 }
820 cvd->vdev_id = mvd->vdev_id;
821 vdev_add_child(pvd, cvd);
822 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
823
824 if (cvd == cvd->vdev_top)
825 vdev_top_transfer(mvd, cvd);
826
827 ASSERT(mvd->vdev_children == 0);
828 vdev_free(mvd);
829 }
830
831 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)832 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
833 {
834 spa_t *spa = vd->vdev_spa;
835 objset_t *mos = spa->spa_meta_objset;
836 uint64_t m;
837 uint64_t oldc = vd->vdev_ms_count;
838 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
839 metaslab_t **mspp;
840 int error;
841
842 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
843
844 /*
845 * This vdev is not being allocated from yet or is a hole.
846 */
847 if (vd->vdev_ms_shift == 0)
848 return (0);
849
850 ASSERT(!vd->vdev_ishole);
851
852 /*
853 * Compute the raidz-deflation ratio. Note, we hard-code
854 * in 128k (1 << 17) because it is the "typical" blocksize.
855 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
856 * otherwise it would inconsistently account for existing bp's.
857 */
858 vd->vdev_deflate_ratio = (1 << 17) /
859 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
860
861 ASSERT(oldc <= newc);
862
863 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
864
865 if (oldc != 0) {
866 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
867 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
868 }
869
870 vd->vdev_ms = mspp;
871 vd->vdev_ms_count = newc;
872
873 for (m = oldc; m < newc; m++) {
874 uint64_t object = 0;
875
876 if (txg == 0) {
877 error = dmu_read(mos, vd->vdev_ms_array,
878 m * sizeof (uint64_t), sizeof (uint64_t), &object,
879 DMU_READ_PREFETCH);
880 if (error)
881 return (error);
882 }
883
884 error = metaslab_init(vd->vdev_mg, m, object, txg,
885 &(vd->vdev_ms[m]));
886 if (error)
887 return (error);
888 }
889
890 if (txg == 0)
891 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
892
893 /*
894 * If the vdev is being removed we don't activate
895 * the metaslabs since we want to ensure that no new
896 * allocations are performed on this device.
897 */
898 if (oldc == 0 && !vd->vdev_removing)
899 metaslab_group_activate(vd->vdev_mg);
900
901 if (txg == 0)
902 spa_config_exit(spa, SCL_ALLOC, FTAG);
903
904 return (0);
905 }
906
907 void
vdev_metaslab_fini(vdev_t * vd)908 vdev_metaslab_fini(vdev_t *vd)
909 {
910 uint64_t m;
911 uint64_t count = vd->vdev_ms_count;
912
913 if (vd->vdev_ms != NULL) {
914 metaslab_group_passivate(vd->vdev_mg);
915 for (m = 0; m < count; m++) {
916 metaslab_t *msp = vd->vdev_ms[m];
917
918 if (msp != NULL)
919 metaslab_fini(msp);
920 }
921 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
922 vd->vdev_ms = NULL;
923 }
924 }
925
926 typedef struct vdev_probe_stats {
927 boolean_t vps_readable;
928 boolean_t vps_writeable;
929 int vps_flags;
930 } vdev_probe_stats_t;
931
932 static void
vdev_probe_done(zio_t * zio)933 vdev_probe_done(zio_t *zio)
934 {
935 spa_t *spa = zio->io_spa;
936 vdev_t *vd = zio->io_vd;
937 vdev_probe_stats_t *vps = zio->io_private;
938
939 ASSERT(vd->vdev_probe_zio != NULL);
940
941 if (zio->io_type == ZIO_TYPE_READ) {
942 if (zio->io_error == 0)
943 vps->vps_readable = 1;
944 if (zio->io_error == 0 && spa_writeable(spa)) {
945 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
946 zio->io_offset, zio->io_size, zio->io_data,
947 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
948 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
949 } else {
950 zio_buf_free(zio->io_data, zio->io_size);
951 }
952 } else if (zio->io_type == ZIO_TYPE_WRITE) {
953 if (zio->io_error == 0)
954 vps->vps_writeable = 1;
955 zio_buf_free(zio->io_data, zio->io_size);
956 } else if (zio->io_type == ZIO_TYPE_NULL) {
957 zio_t *pio;
958
959 vd->vdev_cant_read |= !vps->vps_readable;
960 vd->vdev_cant_write |= !vps->vps_writeable;
961
962 if (vdev_readable(vd) &&
963 (vdev_writeable(vd) || !spa_writeable(spa))) {
964 zio->io_error = 0;
965 } else {
966 ASSERT(zio->io_error != 0);
967 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
968 spa, vd, NULL, 0, 0);
969 zio->io_error = SET_ERROR(ENXIO);
970 }
971
972 mutex_enter(&vd->vdev_probe_lock);
973 ASSERT(vd->vdev_probe_zio == zio);
974 vd->vdev_probe_zio = NULL;
975 mutex_exit(&vd->vdev_probe_lock);
976
977 while ((pio = zio_walk_parents(zio)) != NULL)
978 if (!vdev_accessible(vd, pio))
979 pio->io_error = SET_ERROR(ENXIO);
980
981 kmem_free(vps, sizeof (*vps));
982 }
983 }
984
985 /*
986 * Determine whether this device is accessible.
987 *
988 * Read and write to several known locations: the pad regions of each
989 * vdev label but the first, which we leave alone in case it contains
990 * a VTOC.
991 */
992 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)993 vdev_probe(vdev_t *vd, zio_t *zio)
994 {
995 spa_t *spa = vd->vdev_spa;
996 vdev_probe_stats_t *vps = NULL;
997 zio_t *pio;
998
999 ASSERT(vd->vdev_ops->vdev_op_leaf);
1000
1001 /*
1002 * Don't probe the probe.
1003 */
1004 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1005 return (NULL);
1006
1007 /*
1008 * To prevent 'probe storms' when a device fails, we create
1009 * just one probe i/o at a time. All zios that want to probe
1010 * this vdev will become parents of the probe io.
1011 */
1012 mutex_enter(&vd->vdev_probe_lock);
1013
1014 if ((pio = vd->vdev_probe_zio) == NULL) {
1015 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1016
1017 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1018 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1019 ZIO_FLAG_TRYHARD;
1020
1021 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1022 /*
1023 * vdev_cant_read and vdev_cant_write can only
1024 * transition from TRUE to FALSE when we have the
1025 * SCL_ZIO lock as writer; otherwise they can only
1026 * transition from FALSE to TRUE. This ensures that
1027 * any zio looking at these values can assume that
1028 * failures persist for the life of the I/O. That's
1029 * important because when a device has intermittent
1030 * connectivity problems, we want to ensure that
1031 * they're ascribed to the device (ENXIO) and not
1032 * the zio (EIO).
1033 *
1034 * Since we hold SCL_ZIO as writer here, clear both
1035 * values so the probe can reevaluate from first
1036 * principles.
1037 */
1038 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1039 vd->vdev_cant_read = B_FALSE;
1040 vd->vdev_cant_write = B_FALSE;
1041 }
1042
1043 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1044 vdev_probe_done, vps,
1045 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1046
1047 /*
1048 * We can't change the vdev state in this context, so we
1049 * kick off an async task to do it on our behalf.
1050 */
1051 if (zio != NULL) {
1052 vd->vdev_probe_wanted = B_TRUE;
1053 spa_async_request(spa, SPA_ASYNC_PROBE);
1054 }
1055 }
1056
1057 if (zio != NULL)
1058 zio_add_child(zio, pio);
1059
1060 mutex_exit(&vd->vdev_probe_lock);
1061
1062 if (vps == NULL) {
1063 ASSERT(zio != NULL);
1064 return (NULL);
1065 }
1066
1067 for (int l = 1; l < VDEV_LABELS; l++) {
1068 zio_nowait(zio_read_phys(pio, vd,
1069 vdev_label_offset(vd->vdev_psize, l,
1070 offsetof(vdev_label_t, vl_pad2)),
1071 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1072 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1073 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1074 }
1075
1076 if (zio == NULL)
1077 return (pio);
1078
1079 zio_nowait(pio);
1080 return (NULL);
1081 }
1082
1083 static void
vdev_open_child(void * arg)1084 vdev_open_child(void *arg)
1085 {
1086 vdev_t *vd = arg;
1087
1088 vd->vdev_open_thread = curthread;
1089 vd->vdev_open_error = vdev_open(vd);
1090 vd->vdev_open_thread = NULL;
1091 }
1092
1093 boolean_t
vdev_uses_zvols(vdev_t * vd)1094 vdev_uses_zvols(vdev_t *vd)
1095 {
1096 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1097 strlen(ZVOL_DIR)) == 0)
1098 return (B_TRUE);
1099 for (int c = 0; c < vd->vdev_children; c++)
1100 if (vdev_uses_zvols(vd->vdev_child[c]))
1101 return (B_TRUE);
1102 return (B_FALSE);
1103 }
1104
1105 void
vdev_open_children(vdev_t * vd)1106 vdev_open_children(vdev_t *vd)
1107 {
1108 taskq_t *tq;
1109 int children = vd->vdev_children;
1110
1111 /*
1112 * in order to handle pools on top of zvols, do the opens
1113 * in a single thread so that the same thread holds the
1114 * spa_namespace_lock
1115 */
1116 if (vdev_uses_zvols(vd)) {
1117 for (int c = 0; c < children; c++)
1118 vd->vdev_child[c]->vdev_open_error =
1119 vdev_open(vd->vdev_child[c]);
1120 return;
1121 }
1122 tq = taskq_create("vdev_open", children, minclsyspri,
1123 children, children, TASKQ_PREPOPULATE);
1124
1125 for (int c = 0; c < children; c++)
1126 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1127 TQ_SLEEP) != NULL);
1128
1129 taskq_destroy(tq);
1130 }
1131
1132 /*
1133 * Prepare a virtual device for access.
1134 */
1135 int
vdev_open(vdev_t * vd)1136 vdev_open(vdev_t *vd)
1137 {
1138 spa_t *spa = vd->vdev_spa;
1139 int error;
1140 uint64_t osize = 0;
1141 uint64_t max_osize = 0;
1142 uint64_t asize, max_asize, psize;
1143 uint64_t ashift = 0;
1144
1145 ASSERT(vd->vdev_open_thread == curthread ||
1146 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1147 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1148 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1149 vd->vdev_state == VDEV_STATE_OFFLINE);
1150
1151 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1152 vd->vdev_cant_read = B_FALSE;
1153 vd->vdev_cant_write = B_FALSE;
1154 vd->vdev_min_asize = vdev_get_min_asize(vd);
1155
1156 /*
1157 * If this vdev is not removed, check its fault status. If it's
1158 * faulted, bail out of the open.
1159 */
1160 if (!vd->vdev_removed && vd->vdev_faulted) {
1161 ASSERT(vd->vdev_children == 0);
1162 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1163 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1164 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1165 vd->vdev_label_aux);
1166 return (SET_ERROR(ENXIO));
1167 } else if (vd->vdev_offline) {
1168 ASSERT(vd->vdev_children == 0);
1169 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1170 return (SET_ERROR(ENXIO));
1171 }
1172
1173 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1174
1175 /*
1176 * Reset the vdev_reopening flag so that we actually close
1177 * the vdev on error.
1178 */
1179 vd->vdev_reopening = B_FALSE;
1180 if (zio_injection_enabled && error == 0)
1181 error = zio_handle_device_injection(vd, NULL, ENXIO);
1182
1183 if (error) {
1184 if (vd->vdev_removed &&
1185 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1186 vd->vdev_removed = B_FALSE;
1187
1188 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1189 vd->vdev_stat.vs_aux);
1190 return (error);
1191 }
1192
1193 vd->vdev_removed = B_FALSE;
1194
1195 /*
1196 * Recheck the faulted flag now that we have confirmed that
1197 * the vdev is accessible. If we're faulted, bail.
1198 */
1199 if (vd->vdev_faulted) {
1200 ASSERT(vd->vdev_children == 0);
1201 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1202 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1203 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1204 vd->vdev_label_aux);
1205 return (SET_ERROR(ENXIO));
1206 }
1207
1208 if (vd->vdev_degraded) {
1209 ASSERT(vd->vdev_children == 0);
1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1211 VDEV_AUX_ERR_EXCEEDED);
1212 } else {
1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1214 }
1215
1216 /*
1217 * For hole or missing vdevs we just return success.
1218 */
1219 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1220 return (0);
1221
1222 for (int c = 0; c < vd->vdev_children; c++) {
1223 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1225 VDEV_AUX_NONE);
1226 break;
1227 }
1228 }
1229
1230 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1231 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1232
1233 if (vd->vdev_children == 0) {
1234 if (osize < SPA_MINDEVSIZE) {
1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236 VDEV_AUX_TOO_SMALL);
1237 return (SET_ERROR(EOVERFLOW));
1238 }
1239 psize = osize;
1240 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1241 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1242 VDEV_LABEL_END_SIZE);
1243 } else {
1244 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1245 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1246 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247 VDEV_AUX_TOO_SMALL);
1248 return (SET_ERROR(EOVERFLOW));
1249 }
1250 psize = 0;
1251 asize = osize;
1252 max_asize = max_osize;
1253 }
1254
1255 vd->vdev_psize = psize;
1256
1257 /*
1258 * Make sure the allocatable size hasn't shrunk.
1259 */
1260 if (asize < vd->vdev_min_asize) {
1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1262 VDEV_AUX_BAD_LABEL);
1263 return (SET_ERROR(EINVAL));
1264 }
1265
1266 if (vd->vdev_asize == 0) {
1267 /*
1268 * This is the first-ever open, so use the computed values.
1269 * For testing purposes, a higher ashift can be requested.
1270 */
1271 vd->vdev_asize = asize;
1272 vd->vdev_max_asize = max_asize;
1273 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1274 } else {
1275 /*
1276 * Detect if the alignment requirement has increased.
1277 * We don't want to make the pool unavailable, just
1278 * issue a warning instead.
1279 */
1280 if (ashift > vd->vdev_top->vdev_ashift &&
1281 vd->vdev_ops->vdev_op_leaf) {
1282 cmn_err(CE_WARN,
1283 "Disk, '%s', has a block alignment that is "
1284 "larger than the pool's alignment\n",
1285 vd->vdev_path);
1286 }
1287 vd->vdev_max_asize = max_asize;
1288 }
1289
1290 /*
1291 * If all children are healthy and the asize has increased,
1292 * then we've experienced dynamic LUN growth. If automatic
1293 * expansion is enabled then use the additional space.
1294 */
1295 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1296 (vd->vdev_expanding || spa->spa_autoexpand))
1297 vd->vdev_asize = asize;
1298
1299 vdev_set_min_asize(vd);
1300
1301 /*
1302 * Ensure we can issue some IO before declaring the
1303 * vdev open for business.
1304 */
1305 if (vd->vdev_ops->vdev_op_leaf &&
1306 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1307 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1308 VDEV_AUX_ERR_EXCEEDED);
1309 return (error);
1310 }
1311
1312 /*
1313 * Track the min and max ashift values for normal data devices.
1314 */
1315 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1316 !vd->vdev_islog && vd->vdev_aux == NULL) {
1317 if (vd->vdev_ashift > spa->spa_max_ashift)
1318 spa->spa_max_ashift = vd->vdev_ashift;
1319 if (vd->vdev_ashift < spa->spa_min_ashift)
1320 spa->spa_min_ashift = vd->vdev_ashift;
1321 }
1322
1323 /*
1324 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1325 * resilver. But don't do this if we are doing a reopen for a scrub,
1326 * since this would just restart the scrub we are already doing.
1327 */
1328 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1329 vdev_resilver_needed(vd, NULL, NULL))
1330 spa_async_request(spa, SPA_ASYNC_RESILVER);
1331
1332 return (0);
1333 }
1334
1335 /*
1336 * Called once the vdevs are all opened, this routine validates the label
1337 * contents. This needs to be done before vdev_load() so that we don't
1338 * inadvertently do repair I/Os to the wrong device.
1339 *
1340 * If 'strict' is false ignore the spa guid check. This is necessary because
1341 * if the machine crashed during a re-guid the new guid might have been written
1342 * to all of the vdev labels, but not the cached config. The strict check
1343 * will be performed when the pool is opened again using the mos config.
1344 *
1345 * This function will only return failure if one of the vdevs indicates that it
1346 * has since been destroyed or exported. This is only possible if
1347 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1348 * will be updated but the function will return 0.
1349 */
1350 int
vdev_validate(vdev_t * vd,boolean_t strict)1351 vdev_validate(vdev_t *vd, boolean_t strict)
1352 {
1353 spa_t *spa = vd->vdev_spa;
1354 nvlist_t *label;
1355 uint64_t guid = 0, top_guid;
1356 uint64_t state;
1357
1358 for (int c = 0; c < vd->vdev_children; c++)
1359 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1360 return (SET_ERROR(EBADF));
1361
1362 /*
1363 * If the device has already failed, or was marked offline, don't do
1364 * any further validation. Otherwise, label I/O will fail and we will
1365 * overwrite the previous state.
1366 */
1367 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1368 uint64_t aux_guid = 0;
1369 nvlist_t *nvl;
1370 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1371 spa_last_synced_txg(spa) : -1ULL;
1372
1373 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1374 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375 VDEV_AUX_BAD_LABEL);
1376 return (0);
1377 }
1378
1379 /*
1380 * Determine if this vdev has been split off into another
1381 * pool. If so, then refuse to open it.
1382 */
1383 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1384 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386 VDEV_AUX_SPLIT_POOL);
1387 nvlist_free(label);
1388 return (0);
1389 }
1390
1391 if (strict && (nvlist_lookup_uint64(label,
1392 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1393 guid != spa_guid(spa))) {
1394 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1395 VDEV_AUX_CORRUPT_DATA);
1396 nvlist_free(label);
1397 return (0);
1398 }
1399
1400 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1401 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1402 &aux_guid) != 0)
1403 aux_guid = 0;
1404
1405 /*
1406 * If this vdev just became a top-level vdev because its
1407 * sibling was detached, it will have adopted the parent's
1408 * vdev guid -- but the label may or may not be on disk yet.
1409 * Fortunately, either version of the label will have the
1410 * same top guid, so if we're a top-level vdev, we can
1411 * safely compare to that instead.
1412 *
1413 * If we split this vdev off instead, then we also check the
1414 * original pool's guid. We don't want to consider the vdev
1415 * corrupt if it is partway through a split operation.
1416 */
1417 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1418 &guid) != 0 ||
1419 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1420 &top_guid) != 0 ||
1421 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1422 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1424 VDEV_AUX_CORRUPT_DATA);
1425 nvlist_free(label);
1426 return (0);
1427 }
1428
1429 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1430 &state) != 0) {
1431 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1432 VDEV_AUX_CORRUPT_DATA);
1433 nvlist_free(label);
1434 return (0);
1435 }
1436
1437 nvlist_free(label);
1438
1439 /*
1440 * If this is a verbatim import, no need to check the
1441 * state of the pool.
1442 */
1443 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1444 spa_load_state(spa) == SPA_LOAD_OPEN &&
1445 state != POOL_STATE_ACTIVE)
1446 return (SET_ERROR(EBADF));
1447
1448 /*
1449 * If we were able to open and validate a vdev that was
1450 * previously marked permanently unavailable, clear that state
1451 * now.
1452 */
1453 if (vd->vdev_not_present)
1454 vd->vdev_not_present = 0;
1455 }
1456
1457 return (0);
1458 }
1459
1460 /*
1461 * Close a virtual device.
1462 */
1463 void
vdev_close(vdev_t * vd)1464 vdev_close(vdev_t *vd)
1465 {
1466 spa_t *spa = vd->vdev_spa;
1467 vdev_t *pvd = vd->vdev_parent;
1468
1469 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1470
1471 /*
1472 * If our parent is reopening, then we are as well, unless we are
1473 * going offline.
1474 */
1475 if (pvd != NULL && pvd->vdev_reopening)
1476 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1477
1478 vd->vdev_ops->vdev_op_close(vd);
1479
1480 vdev_cache_purge(vd);
1481
1482 /*
1483 * We record the previous state before we close it, so that if we are
1484 * doing a reopen(), we don't generate FMA ereports if we notice that
1485 * it's still faulted.
1486 */
1487 vd->vdev_prevstate = vd->vdev_state;
1488
1489 if (vd->vdev_offline)
1490 vd->vdev_state = VDEV_STATE_OFFLINE;
1491 else
1492 vd->vdev_state = VDEV_STATE_CLOSED;
1493 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1494 }
1495
1496 void
vdev_hold(vdev_t * vd)1497 vdev_hold(vdev_t *vd)
1498 {
1499 spa_t *spa = vd->vdev_spa;
1500
1501 ASSERT(spa_is_root(spa));
1502 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1503 return;
1504
1505 for (int c = 0; c < vd->vdev_children; c++)
1506 vdev_hold(vd->vdev_child[c]);
1507
1508 if (vd->vdev_ops->vdev_op_leaf)
1509 vd->vdev_ops->vdev_op_hold(vd);
1510 }
1511
1512 void
vdev_rele(vdev_t * vd)1513 vdev_rele(vdev_t *vd)
1514 {
1515 spa_t *spa = vd->vdev_spa;
1516
1517 ASSERT(spa_is_root(spa));
1518 for (int c = 0; c < vd->vdev_children; c++)
1519 vdev_rele(vd->vdev_child[c]);
1520
1521 if (vd->vdev_ops->vdev_op_leaf)
1522 vd->vdev_ops->vdev_op_rele(vd);
1523 }
1524
1525 /*
1526 * Reopen all interior vdevs and any unopened leaves. We don't actually
1527 * reopen leaf vdevs which had previously been opened as they might deadlock
1528 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1529 * If the leaf has never been opened then open it, as usual.
1530 */
1531 void
vdev_reopen(vdev_t * vd)1532 vdev_reopen(vdev_t *vd)
1533 {
1534 spa_t *spa = vd->vdev_spa;
1535
1536 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1537
1538 /* set the reopening flag unless we're taking the vdev offline */
1539 vd->vdev_reopening = !vd->vdev_offline;
1540 vdev_close(vd);
1541 (void) vdev_open(vd);
1542
1543 /*
1544 * Call vdev_validate() here to make sure we have the same device.
1545 * Otherwise, a device with an invalid label could be successfully
1546 * opened in response to vdev_reopen().
1547 */
1548 if (vd->vdev_aux) {
1549 (void) vdev_validate_aux(vd);
1550 if (vdev_readable(vd) && vdev_writeable(vd) &&
1551 vd->vdev_aux == &spa->spa_l2cache &&
1552 !l2arc_vdev_present(vd))
1553 l2arc_add_vdev(spa, vd);
1554 } else {
1555 (void) vdev_validate(vd, B_TRUE);
1556 }
1557
1558 /*
1559 * Reassess parent vdev's health.
1560 */
1561 vdev_propagate_state(vd);
1562 }
1563
1564 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)1565 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1566 {
1567 int error;
1568
1569 /*
1570 * Normally, partial opens (e.g. of a mirror) are allowed.
1571 * For a create, however, we want to fail the request if
1572 * there are any components we can't open.
1573 */
1574 error = vdev_open(vd);
1575
1576 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1577 vdev_close(vd);
1578 return (error ? error : ENXIO);
1579 }
1580
1581 /*
1582 * Recursively load DTLs and initialize all labels.
1583 */
1584 if ((error = vdev_dtl_load(vd)) != 0 ||
1585 (error = vdev_label_init(vd, txg, isreplacing ?
1586 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1587 vdev_close(vd);
1588 return (error);
1589 }
1590
1591 return (0);
1592 }
1593
1594 void
vdev_metaslab_set_size(vdev_t * vd)1595 vdev_metaslab_set_size(vdev_t *vd)
1596 {
1597 /*
1598 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1599 */
1600 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1601 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1602 }
1603
1604 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)1605 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1606 {
1607 ASSERT(vd == vd->vdev_top);
1608 ASSERT(!vd->vdev_ishole);
1609 ASSERT(ISP2(flags));
1610 ASSERT(spa_writeable(vd->vdev_spa));
1611
1612 if (flags & VDD_METASLAB)
1613 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1614
1615 if (flags & VDD_DTL)
1616 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1617
1618 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1619 }
1620
1621 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)1622 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1623 {
1624 for (int c = 0; c < vd->vdev_children; c++)
1625 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1626
1627 if (vd->vdev_ops->vdev_op_leaf)
1628 vdev_dirty(vd->vdev_top, flags, vd, txg);
1629 }
1630
1631 /*
1632 * DTLs.
1633 *
1634 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1635 * the vdev has less than perfect replication. There are four kinds of DTL:
1636 *
1637 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1638 *
1639 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1640 *
1641 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1642 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1643 * txgs that was scrubbed.
1644 *
1645 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1646 * persistent errors or just some device being offline.
1647 * Unlike the other three, the DTL_OUTAGE map is not generally
1648 * maintained; it's only computed when needed, typically to
1649 * determine whether a device can be detached.
1650 *
1651 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1652 * either has the data or it doesn't.
1653 *
1654 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1655 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1656 * if any child is less than fully replicated, then so is its parent.
1657 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1658 * comprising only those txgs which appear in 'maxfaults' or more children;
1659 * those are the txgs we don't have enough replication to read. For example,
1660 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1661 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1662 * two child DTL_MISSING maps.
1663 *
1664 * It should be clear from the above that to compute the DTLs and outage maps
1665 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1666 * Therefore, that is all we keep on disk. When loading the pool, or after
1667 * a configuration change, we generate all other DTLs from first principles.
1668 */
1669 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1670 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1671 {
1672 range_tree_t *rt = vd->vdev_dtl[t];
1673
1674 ASSERT(t < DTL_TYPES);
1675 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1676 ASSERT(spa_writeable(vd->vdev_spa));
1677
1678 mutex_enter(rt->rt_lock);
1679 if (!range_tree_contains(rt, txg, size))
1680 range_tree_add(rt, txg, size);
1681 mutex_exit(rt->rt_lock);
1682 }
1683
1684 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1685 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1686 {
1687 range_tree_t *rt = vd->vdev_dtl[t];
1688 boolean_t dirty = B_FALSE;
1689
1690 ASSERT(t < DTL_TYPES);
1691 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1692
1693 mutex_enter(rt->rt_lock);
1694 if (range_tree_space(rt) != 0)
1695 dirty = range_tree_contains(rt, txg, size);
1696 mutex_exit(rt->rt_lock);
1697
1698 return (dirty);
1699 }
1700
1701 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)1702 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1703 {
1704 range_tree_t *rt = vd->vdev_dtl[t];
1705 boolean_t empty;
1706
1707 mutex_enter(rt->rt_lock);
1708 empty = (range_tree_space(rt) == 0);
1709 mutex_exit(rt->rt_lock);
1710
1711 return (empty);
1712 }
1713
1714 /*
1715 * Returns the lowest txg in the DTL range.
1716 */
1717 static uint64_t
vdev_dtl_min(vdev_t * vd)1718 vdev_dtl_min(vdev_t *vd)
1719 {
1720 range_seg_t *rs;
1721
1722 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1723 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1724 ASSERT0(vd->vdev_children);
1725
1726 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1727 return (rs->rs_start - 1);
1728 }
1729
1730 /*
1731 * Returns the highest txg in the DTL.
1732 */
1733 static uint64_t
vdev_dtl_max(vdev_t * vd)1734 vdev_dtl_max(vdev_t *vd)
1735 {
1736 range_seg_t *rs;
1737
1738 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1739 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1740 ASSERT0(vd->vdev_children);
1741
1742 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1743 return (rs->rs_end);
1744 }
1745
1746 /*
1747 * Determine if a resilvering vdev should remove any DTL entries from
1748 * its range. If the vdev was resilvering for the entire duration of the
1749 * scan then it should excise that range from its DTLs. Otherwise, this
1750 * vdev is considered partially resilvered and should leave its DTL
1751 * entries intact. The comment in vdev_dtl_reassess() describes how we
1752 * excise the DTLs.
1753 */
1754 static boolean_t
vdev_dtl_should_excise(vdev_t * vd)1755 vdev_dtl_should_excise(vdev_t *vd)
1756 {
1757 spa_t *spa = vd->vdev_spa;
1758 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1759
1760 ASSERT0(scn->scn_phys.scn_errors);
1761 ASSERT0(vd->vdev_children);
1762
1763 if (vd->vdev_resilver_txg == 0 ||
1764 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1765 return (B_TRUE);
1766
1767 /*
1768 * When a resilver is initiated the scan will assign the scn_max_txg
1769 * value to the highest txg value that exists in all DTLs. If this
1770 * device's max DTL is not part of this scan (i.e. it is not in
1771 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1772 * for excision.
1773 */
1774 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1775 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1776 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1777 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1778 return (B_TRUE);
1779 }
1780 return (B_FALSE);
1781 }
1782
1783 /*
1784 * Reassess DTLs after a config change or scrub completion.
1785 */
1786 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,int scrub_done)1787 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1788 {
1789 spa_t *spa = vd->vdev_spa;
1790 avl_tree_t reftree;
1791 int minref;
1792
1793 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1794
1795 for (int c = 0; c < vd->vdev_children; c++)
1796 vdev_dtl_reassess(vd->vdev_child[c], txg,
1797 scrub_txg, scrub_done);
1798
1799 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1800 return;
1801
1802 if (vd->vdev_ops->vdev_op_leaf) {
1803 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1804
1805 mutex_enter(&vd->vdev_dtl_lock);
1806
1807 /*
1808 * If we've completed a scan cleanly then determine
1809 * if this vdev should remove any DTLs. We only want to
1810 * excise regions on vdevs that were available during
1811 * the entire duration of this scan.
1812 */
1813 if (scrub_txg != 0 &&
1814 (spa->spa_scrub_started ||
1815 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1816 vdev_dtl_should_excise(vd)) {
1817 /*
1818 * We completed a scrub up to scrub_txg. If we
1819 * did it without rebooting, then the scrub dtl
1820 * will be valid, so excise the old region and
1821 * fold in the scrub dtl. Otherwise, leave the
1822 * dtl as-is if there was an error.
1823 *
1824 * There's little trick here: to excise the beginning
1825 * of the DTL_MISSING map, we put it into a reference
1826 * tree and then add a segment with refcnt -1 that
1827 * covers the range [0, scrub_txg). This means
1828 * that each txg in that range has refcnt -1 or 0.
1829 * We then add DTL_SCRUB with a refcnt of 2, so that
1830 * entries in the range [0, scrub_txg) will have a
1831 * positive refcnt -- either 1 or 2. We then convert
1832 * the reference tree into the new DTL_MISSING map.
1833 */
1834 space_reftree_create(&reftree);
1835 space_reftree_add_map(&reftree,
1836 vd->vdev_dtl[DTL_MISSING], 1);
1837 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1838 space_reftree_add_map(&reftree,
1839 vd->vdev_dtl[DTL_SCRUB], 2);
1840 space_reftree_generate_map(&reftree,
1841 vd->vdev_dtl[DTL_MISSING], 1);
1842 space_reftree_destroy(&reftree);
1843 }
1844 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1845 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1846 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1847 if (scrub_done)
1848 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1849 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1850 if (!vdev_readable(vd))
1851 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1852 else
1853 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1854 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1855
1856 /*
1857 * If the vdev was resilvering and no longer has any
1858 * DTLs then reset its resilvering flag.
1859 */
1860 if (vd->vdev_resilver_txg != 0 &&
1861 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1862 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1863 vd->vdev_resilver_txg = 0;
1864
1865 mutex_exit(&vd->vdev_dtl_lock);
1866
1867 if (txg != 0)
1868 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1869 return;
1870 }
1871
1872 mutex_enter(&vd->vdev_dtl_lock);
1873 for (int t = 0; t < DTL_TYPES; t++) {
1874 /* account for child's outage in parent's missing map */
1875 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1876 if (t == DTL_SCRUB)
1877 continue; /* leaf vdevs only */
1878 if (t == DTL_PARTIAL)
1879 minref = 1; /* i.e. non-zero */
1880 else if (vd->vdev_nparity != 0)
1881 minref = vd->vdev_nparity + 1; /* RAID-Z */
1882 else
1883 minref = vd->vdev_children; /* any kind of mirror */
1884 space_reftree_create(&reftree);
1885 for (int c = 0; c < vd->vdev_children; c++) {
1886 vdev_t *cvd = vd->vdev_child[c];
1887 mutex_enter(&cvd->vdev_dtl_lock);
1888 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1889 mutex_exit(&cvd->vdev_dtl_lock);
1890 }
1891 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1892 space_reftree_destroy(&reftree);
1893 }
1894 mutex_exit(&vd->vdev_dtl_lock);
1895 }
1896
1897 int
vdev_dtl_load(vdev_t * vd)1898 vdev_dtl_load(vdev_t *vd)
1899 {
1900 spa_t *spa = vd->vdev_spa;
1901 objset_t *mos = spa->spa_meta_objset;
1902 int error = 0;
1903
1904 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1905 ASSERT(!vd->vdev_ishole);
1906
1907 error = space_map_open(&vd->vdev_dtl_sm, mos,
1908 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1909 if (error)
1910 return (error);
1911 ASSERT(vd->vdev_dtl_sm != NULL);
1912
1913 mutex_enter(&vd->vdev_dtl_lock);
1914
1915 /*
1916 * Now that we've opened the space_map we need to update
1917 * the in-core DTL.
1918 */
1919 space_map_update(vd->vdev_dtl_sm);
1920
1921 error = space_map_load(vd->vdev_dtl_sm,
1922 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1923 mutex_exit(&vd->vdev_dtl_lock);
1924
1925 return (error);
1926 }
1927
1928 for (int c = 0; c < vd->vdev_children; c++) {
1929 error = vdev_dtl_load(vd->vdev_child[c]);
1930 if (error != 0)
1931 break;
1932 }
1933
1934 return (error);
1935 }
1936
1937 void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)1938 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1939 {
1940 spa_t *spa = vd->vdev_spa;
1941 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1942 objset_t *mos = spa->spa_meta_objset;
1943 range_tree_t *rtsync;
1944 kmutex_t rtlock;
1945 dmu_tx_t *tx;
1946 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1947
1948 ASSERT(!vd->vdev_ishole);
1949 ASSERT(vd->vdev_ops->vdev_op_leaf);
1950
1951 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1952
1953 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1954 mutex_enter(&vd->vdev_dtl_lock);
1955 space_map_free(vd->vdev_dtl_sm, tx);
1956 space_map_close(vd->vdev_dtl_sm);
1957 vd->vdev_dtl_sm = NULL;
1958 mutex_exit(&vd->vdev_dtl_lock);
1959 dmu_tx_commit(tx);
1960 return;
1961 }
1962
1963 if (vd->vdev_dtl_sm == NULL) {
1964 uint64_t new_object;
1965
1966 new_object = space_map_alloc(mos, tx);
1967 VERIFY3U(new_object, !=, 0);
1968
1969 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1970 0, -1ULL, 0, &vd->vdev_dtl_lock));
1971 ASSERT(vd->vdev_dtl_sm != NULL);
1972 }
1973
1974 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1975
1976 rtsync = range_tree_create(NULL, NULL, &rtlock);
1977
1978 mutex_enter(&rtlock);
1979
1980 mutex_enter(&vd->vdev_dtl_lock);
1981 range_tree_walk(rt, range_tree_add, rtsync);
1982 mutex_exit(&vd->vdev_dtl_lock);
1983
1984 space_map_truncate(vd->vdev_dtl_sm, tx);
1985 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1986 range_tree_vacate(rtsync, NULL, NULL);
1987
1988 range_tree_destroy(rtsync);
1989
1990 mutex_exit(&rtlock);
1991 mutex_destroy(&rtlock);
1992
1993 /*
1994 * If the object for the space map has changed then dirty
1995 * the top level so that we update the config.
1996 */
1997 if (object != space_map_object(vd->vdev_dtl_sm)) {
1998 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1999 "new object %llu", txg, spa_name(spa), object,
2000 space_map_object(vd->vdev_dtl_sm));
2001 vdev_config_dirty(vd->vdev_top);
2002 }
2003
2004 dmu_tx_commit(tx);
2005
2006 mutex_enter(&vd->vdev_dtl_lock);
2007 space_map_update(vd->vdev_dtl_sm);
2008 mutex_exit(&vd->vdev_dtl_lock);
2009 }
2010
2011 /*
2012 * Determine whether the specified vdev can be offlined/detached/removed
2013 * without losing data.
2014 */
2015 boolean_t
vdev_dtl_required(vdev_t * vd)2016 vdev_dtl_required(vdev_t *vd)
2017 {
2018 spa_t *spa = vd->vdev_spa;
2019 vdev_t *tvd = vd->vdev_top;
2020 uint8_t cant_read = vd->vdev_cant_read;
2021 boolean_t required;
2022
2023 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2024
2025 if (vd == spa->spa_root_vdev || vd == tvd)
2026 return (B_TRUE);
2027
2028 /*
2029 * Temporarily mark the device as unreadable, and then determine
2030 * whether this results in any DTL outages in the top-level vdev.
2031 * If not, we can safely offline/detach/remove the device.
2032 */
2033 vd->vdev_cant_read = B_TRUE;
2034 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2035 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2036 vd->vdev_cant_read = cant_read;
2037 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2038
2039 if (!required && zio_injection_enabled)
2040 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2041
2042 return (required);
2043 }
2044
2045 /*
2046 * Determine if resilver is needed, and if so the txg range.
2047 */
2048 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)2049 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2050 {
2051 boolean_t needed = B_FALSE;
2052 uint64_t thismin = UINT64_MAX;
2053 uint64_t thismax = 0;
2054
2055 if (vd->vdev_children == 0) {
2056 mutex_enter(&vd->vdev_dtl_lock);
2057 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2058 vdev_writeable(vd)) {
2059
2060 thismin = vdev_dtl_min(vd);
2061 thismax = vdev_dtl_max(vd);
2062 needed = B_TRUE;
2063 }
2064 mutex_exit(&vd->vdev_dtl_lock);
2065 } else {
2066 for (int c = 0; c < vd->vdev_children; c++) {
2067 vdev_t *cvd = vd->vdev_child[c];
2068 uint64_t cmin, cmax;
2069
2070 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2071 thismin = MIN(thismin, cmin);
2072 thismax = MAX(thismax, cmax);
2073 needed = B_TRUE;
2074 }
2075 }
2076 }
2077
2078 if (needed && minp) {
2079 *minp = thismin;
2080 *maxp = thismax;
2081 }
2082 return (needed);
2083 }
2084
2085 void
vdev_load(vdev_t * vd)2086 vdev_load(vdev_t *vd)
2087 {
2088 /*
2089 * Recursively load all children.
2090 */
2091 for (int c = 0; c < vd->vdev_children; c++)
2092 vdev_load(vd->vdev_child[c]);
2093
2094 /*
2095 * If this is a top-level vdev, initialize its metaslabs.
2096 */
2097 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2098 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2099 vdev_metaslab_init(vd, 0) != 0))
2100 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2101 VDEV_AUX_CORRUPT_DATA);
2102
2103 /*
2104 * If this is a leaf vdev, load its DTL.
2105 */
2106 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2107 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2108 VDEV_AUX_CORRUPT_DATA);
2109 }
2110
2111 /*
2112 * The special vdev case is used for hot spares and l2cache devices. Its
2113 * sole purpose it to set the vdev state for the associated vdev. To do this,
2114 * we make sure that we can open the underlying device, then try to read the
2115 * label, and make sure that the label is sane and that it hasn't been
2116 * repurposed to another pool.
2117 */
2118 int
vdev_validate_aux(vdev_t * vd)2119 vdev_validate_aux(vdev_t *vd)
2120 {
2121 nvlist_t *label;
2122 uint64_t guid, version;
2123 uint64_t state;
2124
2125 if (!vdev_readable(vd))
2126 return (0);
2127
2128 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2129 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2130 VDEV_AUX_CORRUPT_DATA);
2131 return (-1);
2132 }
2133
2134 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2135 !SPA_VERSION_IS_SUPPORTED(version) ||
2136 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2137 guid != vd->vdev_guid ||
2138 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2139 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2140 VDEV_AUX_CORRUPT_DATA);
2141 nvlist_free(label);
2142 return (-1);
2143 }
2144
2145 /*
2146 * We don't actually check the pool state here. If it's in fact in
2147 * use by another pool, we update this fact on the fly when requested.
2148 */
2149 nvlist_free(label);
2150 return (0);
2151 }
2152
2153 void
vdev_remove(vdev_t * vd,uint64_t txg)2154 vdev_remove(vdev_t *vd, uint64_t txg)
2155 {
2156 spa_t *spa = vd->vdev_spa;
2157 objset_t *mos = spa->spa_meta_objset;
2158 dmu_tx_t *tx;
2159
2160 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2161
2162 if (vd->vdev_ms != NULL) {
2163 metaslab_group_t *mg = vd->vdev_mg;
2164
2165 metaslab_group_histogram_verify(mg);
2166 metaslab_class_histogram_verify(mg->mg_class);
2167
2168 for (int m = 0; m < vd->vdev_ms_count; m++) {
2169 metaslab_t *msp = vd->vdev_ms[m];
2170
2171 if (msp == NULL || msp->ms_sm == NULL)
2172 continue;
2173
2174 mutex_enter(&msp->ms_lock);
2175 /*
2176 * If the metaslab was not loaded when the vdev
2177 * was removed then the histogram accounting may
2178 * not be accurate. Update the histogram information
2179 * here so that we ensure that the metaslab group
2180 * and metaslab class are up-to-date.
2181 */
2182 metaslab_group_histogram_remove(mg, msp);
2183
2184 VERIFY0(space_map_allocated(msp->ms_sm));
2185 space_map_free(msp->ms_sm, tx);
2186 space_map_close(msp->ms_sm);
2187 msp->ms_sm = NULL;
2188 mutex_exit(&msp->ms_lock);
2189 }
2190
2191 metaslab_group_histogram_verify(mg);
2192 metaslab_class_histogram_verify(mg->mg_class);
2193 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2194 ASSERT0(mg->mg_histogram[i]);
2195
2196 }
2197
2198 if (vd->vdev_ms_array) {
2199 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2200 vd->vdev_ms_array = 0;
2201 }
2202 dmu_tx_commit(tx);
2203 }
2204
2205 void
vdev_sync_done(vdev_t * vd,uint64_t txg)2206 vdev_sync_done(vdev_t *vd, uint64_t txg)
2207 {
2208 metaslab_t *msp;
2209 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2210
2211 ASSERT(!vd->vdev_ishole);
2212
2213 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2214 metaslab_sync_done(msp, txg);
2215
2216 if (reassess)
2217 metaslab_sync_reassess(vd->vdev_mg);
2218 }
2219
2220 void
vdev_sync(vdev_t * vd,uint64_t txg)2221 vdev_sync(vdev_t *vd, uint64_t txg)
2222 {
2223 spa_t *spa = vd->vdev_spa;
2224 vdev_t *lvd;
2225 metaslab_t *msp;
2226 dmu_tx_t *tx;
2227
2228 ASSERT(!vd->vdev_ishole);
2229
2230 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2231 ASSERT(vd == vd->vdev_top);
2232 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2233 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2234 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2235 ASSERT(vd->vdev_ms_array != 0);
2236 vdev_config_dirty(vd);
2237 dmu_tx_commit(tx);
2238 }
2239
2240 /*
2241 * Remove the metadata associated with this vdev once it's empty.
2242 */
2243 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2244 vdev_remove(vd, txg);
2245
2246 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2247 metaslab_sync(msp, txg);
2248 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2249 }
2250
2251 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2252 vdev_dtl_sync(lvd, txg);
2253
2254 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2255 }
2256
2257 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)2258 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2259 {
2260 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2261 }
2262
2263 /*
2264 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2265 * not be opened, and no I/O is attempted.
2266 */
2267 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)2268 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2269 {
2270 vdev_t *vd, *tvd;
2271
2272 spa_vdev_state_enter(spa, SCL_NONE);
2273
2274 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2275 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2276
2277 if (!vd->vdev_ops->vdev_op_leaf)
2278 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2279
2280 tvd = vd->vdev_top;
2281
2282 /*
2283 * We don't directly use the aux state here, but if we do a
2284 * vdev_reopen(), we need this value to be present to remember why we
2285 * were faulted.
2286 */
2287 vd->vdev_label_aux = aux;
2288
2289 /*
2290 * Faulted state takes precedence over degraded.
2291 */
2292 vd->vdev_delayed_close = B_FALSE;
2293 vd->vdev_faulted = 1ULL;
2294 vd->vdev_degraded = 0ULL;
2295 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2296
2297 /*
2298 * If this device has the only valid copy of the data, then
2299 * back off and simply mark the vdev as degraded instead.
2300 */
2301 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2302 vd->vdev_degraded = 1ULL;
2303 vd->vdev_faulted = 0ULL;
2304
2305 /*
2306 * If we reopen the device and it's not dead, only then do we
2307 * mark it degraded.
2308 */
2309 vdev_reopen(tvd);
2310
2311 if (vdev_readable(vd))
2312 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2313 }
2314
2315 return (spa_vdev_state_exit(spa, vd, 0));
2316 }
2317
2318 /*
2319 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2320 * user that something is wrong. The vdev continues to operate as normal as far
2321 * as I/O is concerned.
2322 */
2323 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)2324 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2325 {
2326 vdev_t *vd;
2327
2328 spa_vdev_state_enter(spa, SCL_NONE);
2329
2330 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2331 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2332
2333 if (!vd->vdev_ops->vdev_op_leaf)
2334 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2335
2336 /*
2337 * If the vdev is already faulted, then don't do anything.
2338 */
2339 if (vd->vdev_faulted || vd->vdev_degraded)
2340 return (spa_vdev_state_exit(spa, NULL, 0));
2341
2342 vd->vdev_degraded = 1ULL;
2343 if (!vdev_is_dead(vd))
2344 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2345 aux);
2346
2347 return (spa_vdev_state_exit(spa, vd, 0));
2348 }
2349
2350 /*
2351 * Online the given vdev.
2352 *
2353 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2354 * spare device should be detached when the device finishes resilvering.
2355 * Second, the online should be treated like a 'test' online case, so no FMA
2356 * events are generated if the device fails to open.
2357 */
2358 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)2359 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2360 {
2361 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2362 boolean_t postevent = B_FALSE;
2363
2364 spa_vdev_state_enter(spa, SCL_NONE);
2365
2366 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2367 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2368
2369 if (!vd->vdev_ops->vdev_op_leaf)
2370 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2371
2372 postevent =
2373 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2374 B_TRUE : B_FALSE;
2375
2376 tvd = vd->vdev_top;
2377 vd->vdev_offline = B_FALSE;
2378 vd->vdev_tmpoffline = B_FALSE;
2379 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2380 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2381
2382 /* XXX - L2ARC 1.0 does not support expansion */
2383 if (!vd->vdev_aux) {
2384 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2385 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2386 }
2387
2388 vdev_reopen(tvd);
2389 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2390
2391 if (!vd->vdev_aux) {
2392 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2393 pvd->vdev_expanding = B_FALSE;
2394 }
2395
2396 if (newstate)
2397 *newstate = vd->vdev_state;
2398 if ((flags & ZFS_ONLINE_UNSPARE) &&
2399 !vdev_is_dead(vd) && vd->vdev_parent &&
2400 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2401 vd->vdev_parent->vdev_child[0] == vd)
2402 vd->vdev_unspare = B_TRUE;
2403
2404 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2405
2406 /* XXX - L2ARC 1.0 does not support expansion */
2407 if (vd->vdev_aux)
2408 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2409 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2410 }
2411
2412 if (postevent)
2413 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2414
2415 return (spa_vdev_state_exit(spa, vd, 0));
2416 }
2417
2418 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)2419 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2420 {
2421 vdev_t *vd, *tvd;
2422 int error = 0;
2423 uint64_t generation;
2424 metaslab_group_t *mg;
2425
2426 top:
2427 spa_vdev_state_enter(spa, SCL_ALLOC);
2428
2429 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2430 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2431
2432 if (!vd->vdev_ops->vdev_op_leaf)
2433 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2434
2435 tvd = vd->vdev_top;
2436 mg = tvd->vdev_mg;
2437 generation = spa->spa_config_generation + 1;
2438
2439 /*
2440 * If the device isn't already offline, try to offline it.
2441 */
2442 if (!vd->vdev_offline) {
2443 /*
2444 * If this device has the only valid copy of some data,
2445 * don't allow it to be offlined. Log devices are always
2446 * expendable.
2447 */
2448 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2449 vdev_dtl_required(vd))
2450 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2451
2452 /*
2453 * If the top-level is a slog and it has had allocations
2454 * then proceed. We check that the vdev's metaslab group
2455 * is not NULL since it's possible that we may have just
2456 * added this vdev but not yet initialized its metaslabs.
2457 */
2458 if (tvd->vdev_islog && mg != NULL) {
2459 /*
2460 * Prevent any future allocations.
2461 */
2462 metaslab_group_passivate(mg);
2463 (void) spa_vdev_state_exit(spa, vd, 0);
2464
2465 error = spa_offline_log(spa);
2466
2467 spa_vdev_state_enter(spa, SCL_ALLOC);
2468
2469 /*
2470 * Check to see if the config has changed.
2471 */
2472 if (error || generation != spa->spa_config_generation) {
2473 metaslab_group_activate(mg);
2474 if (error)
2475 return (spa_vdev_state_exit(spa,
2476 vd, error));
2477 (void) spa_vdev_state_exit(spa, vd, 0);
2478 goto top;
2479 }
2480 ASSERT0(tvd->vdev_stat.vs_alloc);
2481 }
2482
2483 /*
2484 * Offline this device and reopen its top-level vdev.
2485 * If the top-level vdev is a log device then just offline
2486 * it. Otherwise, if this action results in the top-level
2487 * vdev becoming unusable, undo it and fail the request.
2488 */
2489 vd->vdev_offline = B_TRUE;
2490 vdev_reopen(tvd);
2491
2492 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2493 vdev_is_dead(tvd)) {
2494 vd->vdev_offline = B_FALSE;
2495 vdev_reopen(tvd);
2496 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2497 }
2498
2499 /*
2500 * Add the device back into the metaslab rotor so that
2501 * once we online the device it's open for business.
2502 */
2503 if (tvd->vdev_islog && mg != NULL)
2504 metaslab_group_activate(mg);
2505 }
2506
2507 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2508
2509 return (spa_vdev_state_exit(spa, vd, 0));
2510 }
2511
2512 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)2513 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2514 {
2515 int error;
2516
2517 mutex_enter(&spa->spa_vdev_top_lock);
2518 error = vdev_offline_locked(spa, guid, flags);
2519 mutex_exit(&spa->spa_vdev_top_lock);
2520
2521 return (error);
2522 }
2523
2524 /*
2525 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2526 * vdev_offline(), we assume the spa config is locked. We also clear all
2527 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2528 */
2529 void
vdev_clear(spa_t * spa,vdev_t * vd)2530 vdev_clear(spa_t *spa, vdev_t *vd)
2531 {
2532 vdev_t *rvd = spa->spa_root_vdev;
2533
2534 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2535
2536 if (vd == NULL)
2537 vd = rvd;
2538
2539 vd->vdev_stat.vs_read_errors = 0;
2540 vd->vdev_stat.vs_write_errors = 0;
2541 vd->vdev_stat.vs_checksum_errors = 0;
2542
2543 for (int c = 0; c < vd->vdev_children; c++)
2544 vdev_clear(spa, vd->vdev_child[c]);
2545
2546 /*
2547 * If we're in the FAULTED state or have experienced failed I/O, then
2548 * clear the persistent state and attempt to reopen the device. We
2549 * also mark the vdev config dirty, so that the new faulted state is
2550 * written out to disk.
2551 */
2552 if (vd->vdev_faulted || vd->vdev_degraded ||
2553 !vdev_readable(vd) || !vdev_writeable(vd)) {
2554
2555 /*
2556 * When reopening in reponse to a clear event, it may be due to
2557 * a fmadm repair request. In this case, if the device is
2558 * still broken, we want to still post the ereport again.
2559 */
2560 vd->vdev_forcefault = B_TRUE;
2561
2562 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2563 vd->vdev_cant_read = B_FALSE;
2564 vd->vdev_cant_write = B_FALSE;
2565
2566 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2567
2568 vd->vdev_forcefault = B_FALSE;
2569
2570 if (vd != rvd && vdev_writeable(vd->vdev_top))
2571 vdev_state_dirty(vd->vdev_top);
2572
2573 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2574 spa_async_request(spa, SPA_ASYNC_RESILVER);
2575
2576 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2577 }
2578
2579 /*
2580 * When clearing a FMA-diagnosed fault, we always want to
2581 * unspare the device, as we assume that the original spare was
2582 * done in response to the FMA fault.
2583 */
2584 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2585 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2586 vd->vdev_parent->vdev_child[0] == vd)
2587 vd->vdev_unspare = B_TRUE;
2588 }
2589
2590 boolean_t
vdev_is_dead(vdev_t * vd)2591 vdev_is_dead(vdev_t *vd)
2592 {
2593 /*
2594 * Holes and missing devices are always considered "dead".
2595 * This simplifies the code since we don't have to check for
2596 * these types of devices in the various code paths.
2597 * Instead we rely on the fact that we skip over dead devices
2598 * before issuing I/O to them.
2599 */
2600 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2601 vd->vdev_ops == &vdev_missing_ops);
2602 }
2603
2604 boolean_t
vdev_readable(vdev_t * vd)2605 vdev_readable(vdev_t *vd)
2606 {
2607 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2608 }
2609
2610 boolean_t
vdev_writeable(vdev_t * vd)2611 vdev_writeable(vdev_t *vd)
2612 {
2613 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2614 }
2615
2616 boolean_t
vdev_allocatable(vdev_t * vd)2617 vdev_allocatable(vdev_t *vd)
2618 {
2619 uint64_t state = vd->vdev_state;
2620
2621 /*
2622 * We currently allow allocations from vdevs which may be in the
2623 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2624 * fails to reopen then we'll catch it later when we're holding
2625 * the proper locks. Note that we have to get the vdev state
2626 * in a local variable because although it changes atomically,
2627 * we're asking two separate questions about it.
2628 */
2629 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2630 !vd->vdev_cant_write && !vd->vdev_ishole);
2631 }
2632
2633 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)2634 vdev_accessible(vdev_t *vd, zio_t *zio)
2635 {
2636 ASSERT(zio->io_vd == vd);
2637
2638 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2639 return (B_FALSE);
2640
2641 if (zio->io_type == ZIO_TYPE_READ)
2642 return (!vd->vdev_cant_read);
2643
2644 if (zio->io_type == ZIO_TYPE_WRITE)
2645 return (!vd->vdev_cant_write);
2646
2647 return (B_TRUE);
2648 }
2649
2650 /*
2651 * Get statistics for the given vdev.
2652 */
2653 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)2654 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2655 {
2656 spa_t *spa = vd->vdev_spa;
2657 vdev_t *rvd = spa->spa_root_vdev;
2658
2659 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2660
2661 mutex_enter(&vd->vdev_stat_lock);
2662 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2663 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2664 vs->vs_state = vd->vdev_state;
2665 vs->vs_rsize = vdev_get_min_asize(vd);
2666 if (vd->vdev_ops->vdev_op_leaf)
2667 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2668 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2669 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2670 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2671 }
2672
2673 /*
2674 * If we're getting stats on the root vdev, aggregate the I/O counts
2675 * over all top-level vdevs (i.e. the direct children of the root).
2676 */
2677 if (vd == rvd) {
2678 for (int c = 0; c < rvd->vdev_children; c++) {
2679 vdev_t *cvd = rvd->vdev_child[c];
2680 vdev_stat_t *cvs = &cvd->vdev_stat;
2681
2682 for (int t = 0; t < ZIO_TYPES; t++) {
2683 vs->vs_ops[t] += cvs->vs_ops[t];
2684 vs->vs_bytes[t] += cvs->vs_bytes[t];
2685 }
2686 cvs->vs_scan_removing = cvd->vdev_removing;
2687 }
2688 }
2689 mutex_exit(&vd->vdev_stat_lock);
2690 }
2691
2692 void
vdev_clear_stats(vdev_t * vd)2693 vdev_clear_stats(vdev_t *vd)
2694 {
2695 mutex_enter(&vd->vdev_stat_lock);
2696 vd->vdev_stat.vs_space = 0;
2697 vd->vdev_stat.vs_dspace = 0;
2698 vd->vdev_stat.vs_alloc = 0;
2699 mutex_exit(&vd->vdev_stat_lock);
2700 }
2701
2702 void
vdev_scan_stat_init(vdev_t * vd)2703 vdev_scan_stat_init(vdev_t *vd)
2704 {
2705 vdev_stat_t *vs = &vd->vdev_stat;
2706
2707 for (int c = 0; c < vd->vdev_children; c++)
2708 vdev_scan_stat_init(vd->vdev_child[c]);
2709
2710 mutex_enter(&vd->vdev_stat_lock);
2711 vs->vs_scan_processed = 0;
2712 mutex_exit(&vd->vdev_stat_lock);
2713 }
2714
2715 void
vdev_stat_update(zio_t * zio,uint64_t psize)2716 vdev_stat_update(zio_t *zio, uint64_t psize)
2717 {
2718 spa_t *spa = zio->io_spa;
2719 vdev_t *rvd = spa->spa_root_vdev;
2720 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2721 vdev_t *pvd;
2722 uint64_t txg = zio->io_txg;
2723 vdev_stat_t *vs = &vd->vdev_stat;
2724 zio_type_t type = zio->io_type;
2725 int flags = zio->io_flags;
2726
2727 /*
2728 * If this i/o is a gang leader, it didn't do any actual work.
2729 */
2730 if (zio->io_gang_tree)
2731 return;
2732
2733 if (zio->io_error == 0) {
2734 /*
2735 * If this is a root i/o, don't count it -- we've already
2736 * counted the top-level vdevs, and vdev_get_stats() will
2737 * aggregate them when asked. This reduces contention on
2738 * the root vdev_stat_lock and implicitly handles blocks
2739 * that compress away to holes, for which there is no i/o.
2740 * (Holes never create vdev children, so all the counters
2741 * remain zero, which is what we want.)
2742 *
2743 * Note: this only applies to successful i/o (io_error == 0)
2744 * because unlike i/o counts, errors are not additive.
2745 * When reading a ditto block, for example, failure of
2746 * one top-level vdev does not imply a root-level error.
2747 */
2748 if (vd == rvd)
2749 return;
2750
2751 ASSERT(vd == zio->io_vd);
2752
2753 if (flags & ZIO_FLAG_IO_BYPASS)
2754 return;
2755
2756 mutex_enter(&vd->vdev_stat_lock);
2757
2758 if (flags & ZIO_FLAG_IO_REPAIR) {
2759 if (flags & ZIO_FLAG_SCAN_THREAD) {
2760 dsl_scan_phys_t *scn_phys =
2761 &spa->spa_dsl_pool->dp_scan->scn_phys;
2762 uint64_t *processed = &scn_phys->scn_processed;
2763
2764 /* XXX cleanup? */
2765 if (vd->vdev_ops->vdev_op_leaf)
2766 atomic_add_64(processed, psize);
2767 vs->vs_scan_processed += psize;
2768 }
2769
2770 if (flags & ZIO_FLAG_SELF_HEAL)
2771 vs->vs_self_healed += psize;
2772 }
2773
2774 vs->vs_ops[type]++;
2775 vs->vs_bytes[type] += psize;
2776
2777 mutex_exit(&vd->vdev_stat_lock);
2778 return;
2779 }
2780
2781 if (flags & ZIO_FLAG_SPECULATIVE)
2782 return;
2783
2784 /*
2785 * If this is an I/O error that is going to be retried, then ignore the
2786 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2787 * hard errors, when in reality they can happen for any number of
2788 * innocuous reasons (bus resets, MPxIO link failure, etc).
2789 */
2790 if (zio->io_error == EIO &&
2791 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2792 return;
2793
2794 /*
2795 * Intent logs writes won't propagate their error to the root
2796 * I/O so don't mark these types of failures as pool-level
2797 * errors.
2798 */
2799 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2800 return;
2801
2802 mutex_enter(&vd->vdev_stat_lock);
2803 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2804 if (zio->io_error == ECKSUM)
2805 vs->vs_checksum_errors++;
2806 else
2807 vs->vs_read_errors++;
2808 }
2809 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2810 vs->vs_write_errors++;
2811 mutex_exit(&vd->vdev_stat_lock);
2812
2813 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2814 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2815 (flags & ZIO_FLAG_SCAN_THREAD) ||
2816 spa->spa_claiming)) {
2817 /*
2818 * This is either a normal write (not a repair), or it's
2819 * a repair induced by the scrub thread, or it's a repair
2820 * made by zil_claim() during spa_load() in the first txg.
2821 * In the normal case, we commit the DTL change in the same
2822 * txg as the block was born. In the scrub-induced repair
2823 * case, we know that scrubs run in first-pass syncing context,
2824 * so we commit the DTL change in spa_syncing_txg(spa).
2825 * In the zil_claim() case, we commit in spa_first_txg(spa).
2826 *
2827 * We currently do not make DTL entries for failed spontaneous
2828 * self-healing writes triggered by normal (non-scrubbing)
2829 * reads, because we have no transactional context in which to
2830 * do so -- and it's not clear that it'd be desirable anyway.
2831 */
2832 if (vd->vdev_ops->vdev_op_leaf) {
2833 uint64_t commit_txg = txg;
2834 if (flags & ZIO_FLAG_SCAN_THREAD) {
2835 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2836 ASSERT(spa_sync_pass(spa) == 1);
2837 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2838 commit_txg = spa_syncing_txg(spa);
2839 } else if (spa->spa_claiming) {
2840 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2841 commit_txg = spa_first_txg(spa);
2842 }
2843 ASSERT(commit_txg >= spa_syncing_txg(spa));
2844 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2845 return;
2846 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2847 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2848 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2849 }
2850 if (vd != rvd)
2851 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2852 }
2853 }
2854
2855 /*
2856 * Update the in-core space usage stats for this vdev, its metaslab class,
2857 * and the root vdev.
2858 */
2859 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2860 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2861 int64_t space_delta)
2862 {
2863 int64_t dspace_delta = space_delta;
2864 spa_t *spa = vd->vdev_spa;
2865 vdev_t *rvd = spa->spa_root_vdev;
2866 metaslab_group_t *mg = vd->vdev_mg;
2867 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2868
2869 ASSERT(vd == vd->vdev_top);
2870
2871 /*
2872 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2873 * factor. We must calculate this here and not at the root vdev
2874 * because the root vdev's psize-to-asize is simply the max of its
2875 * childrens', thus not accurate enough for us.
2876 */
2877 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2878 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2879 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2880 vd->vdev_deflate_ratio;
2881
2882 mutex_enter(&vd->vdev_stat_lock);
2883 vd->vdev_stat.vs_alloc += alloc_delta;
2884 vd->vdev_stat.vs_space += space_delta;
2885 vd->vdev_stat.vs_dspace += dspace_delta;
2886 mutex_exit(&vd->vdev_stat_lock);
2887
2888 if (mc == spa_normal_class(spa)) {
2889 mutex_enter(&rvd->vdev_stat_lock);
2890 rvd->vdev_stat.vs_alloc += alloc_delta;
2891 rvd->vdev_stat.vs_space += space_delta;
2892 rvd->vdev_stat.vs_dspace += dspace_delta;
2893 mutex_exit(&rvd->vdev_stat_lock);
2894 }
2895
2896 if (mc != NULL) {
2897 ASSERT(rvd == vd->vdev_parent);
2898 ASSERT(vd->vdev_ms_count != 0);
2899
2900 metaslab_class_space_update(mc,
2901 alloc_delta, defer_delta, space_delta, dspace_delta);
2902 }
2903 }
2904
2905 /*
2906 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2907 * so that it will be written out next time the vdev configuration is synced.
2908 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2909 */
2910 void
vdev_config_dirty(vdev_t * vd)2911 vdev_config_dirty(vdev_t *vd)
2912 {
2913 spa_t *spa = vd->vdev_spa;
2914 vdev_t *rvd = spa->spa_root_vdev;
2915 int c;
2916
2917 ASSERT(spa_writeable(spa));
2918
2919 /*
2920 * If this is an aux vdev (as with l2cache and spare devices), then we
2921 * update the vdev config manually and set the sync flag.
2922 */
2923 if (vd->vdev_aux != NULL) {
2924 spa_aux_vdev_t *sav = vd->vdev_aux;
2925 nvlist_t **aux;
2926 uint_t naux;
2927
2928 for (c = 0; c < sav->sav_count; c++) {
2929 if (sav->sav_vdevs[c] == vd)
2930 break;
2931 }
2932
2933 if (c == sav->sav_count) {
2934 /*
2935 * We're being removed. There's nothing more to do.
2936 */
2937 ASSERT(sav->sav_sync == B_TRUE);
2938 return;
2939 }
2940
2941 sav->sav_sync = B_TRUE;
2942
2943 if (nvlist_lookup_nvlist_array(sav->sav_config,
2944 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2945 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2946 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2947 }
2948
2949 ASSERT(c < naux);
2950
2951 /*
2952 * Setting the nvlist in the middle if the array is a little
2953 * sketchy, but it will work.
2954 */
2955 nvlist_free(aux[c]);
2956 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2957
2958 return;
2959 }
2960
2961 /*
2962 * The dirty list is protected by the SCL_CONFIG lock. The caller
2963 * must either hold SCL_CONFIG as writer, or must be the sync thread
2964 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2965 * so this is sufficient to ensure mutual exclusion.
2966 */
2967 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2968 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2969 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2970
2971 if (vd == rvd) {
2972 for (c = 0; c < rvd->vdev_children; c++)
2973 vdev_config_dirty(rvd->vdev_child[c]);
2974 } else {
2975 ASSERT(vd == vd->vdev_top);
2976
2977 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2978 !vd->vdev_ishole)
2979 list_insert_head(&spa->spa_config_dirty_list, vd);
2980 }
2981 }
2982
2983 void
vdev_config_clean(vdev_t * vd)2984 vdev_config_clean(vdev_t *vd)
2985 {
2986 spa_t *spa = vd->vdev_spa;
2987
2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2989 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2990 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2991
2992 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2993 list_remove(&spa->spa_config_dirty_list, vd);
2994 }
2995
2996 /*
2997 * Mark a top-level vdev's state as dirty, so that the next pass of
2998 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2999 * the state changes from larger config changes because they require
3000 * much less locking, and are often needed for administrative actions.
3001 */
3002 void
vdev_state_dirty(vdev_t * vd)3003 vdev_state_dirty(vdev_t *vd)
3004 {
3005 spa_t *spa = vd->vdev_spa;
3006
3007 ASSERT(spa_writeable(spa));
3008 ASSERT(vd == vd->vdev_top);
3009
3010 /*
3011 * The state list is protected by the SCL_STATE lock. The caller
3012 * must either hold SCL_STATE as writer, or must be the sync thread
3013 * (which holds SCL_STATE as reader). There's only one sync thread,
3014 * so this is sufficient to ensure mutual exclusion.
3015 */
3016 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3017 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3018 spa_config_held(spa, SCL_STATE, RW_READER)));
3019
3020 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3021 list_insert_head(&spa->spa_state_dirty_list, vd);
3022 }
3023
3024 void
vdev_state_clean(vdev_t * vd)3025 vdev_state_clean(vdev_t *vd)
3026 {
3027 spa_t *spa = vd->vdev_spa;
3028
3029 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3030 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3031 spa_config_held(spa, SCL_STATE, RW_READER)));
3032
3033 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3034 list_remove(&spa->spa_state_dirty_list, vd);
3035 }
3036
3037 /*
3038 * Propagate vdev state up from children to parent.
3039 */
3040 void
vdev_propagate_state(vdev_t * vd)3041 vdev_propagate_state(vdev_t *vd)
3042 {
3043 spa_t *spa = vd->vdev_spa;
3044 vdev_t *rvd = spa->spa_root_vdev;
3045 int degraded = 0, faulted = 0;
3046 int corrupted = 0;
3047 vdev_t *child;
3048
3049 if (vd->vdev_children > 0) {
3050 for (int c = 0; c < vd->vdev_children; c++) {
3051 child = vd->vdev_child[c];
3052
3053 /*
3054 * Don't factor holes into the decision.
3055 */
3056 if (child->vdev_ishole)
3057 continue;
3058
3059 if (!vdev_readable(child) ||
3060 (!vdev_writeable(child) && spa_writeable(spa))) {
3061 /*
3062 * Root special: if there is a top-level log
3063 * device, treat the root vdev as if it were
3064 * degraded.
3065 */
3066 if (child->vdev_islog && vd == rvd)
3067 degraded++;
3068 else
3069 faulted++;
3070 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3071 degraded++;
3072 }
3073
3074 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3075 corrupted++;
3076 }
3077
3078 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3079
3080 /*
3081 * Root special: if there is a top-level vdev that cannot be
3082 * opened due to corrupted metadata, then propagate the root
3083 * vdev's aux state as 'corrupt' rather than 'insufficient
3084 * replicas'.
3085 */
3086 if (corrupted && vd == rvd &&
3087 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3088 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3089 VDEV_AUX_CORRUPT_DATA);
3090 }
3091
3092 if (vd->vdev_parent)
3093 vdev_propagate_state(vd->vdev_parent);
3094 }
3095
3096 /*
3097 * Set a vdev's state. If this is during an open, we don't update the parent
3098 * state, because we're in the process of opening children depth-first.
3099 * Otherwise, we propagate the change to the parent.
3100 *
3101 * If this routine places a device in a faulted state, an appropriate ereport is
3102 * generated.
3103 */
3104 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)3105 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3106 {
3107 uint64_t save_state;
3108 spa_t *spa = vd->vdev_spa;
3109
3110 if (state == vd->vdev_state) {
3111 vd->vdev_stat.vs_aux = aux;
3112 return;
3113 }
3114
3115 save_state = vd->vdev_state;
3116
3117 vd->vdev_state = state;
3118 vd->vdev_stat.vs_aux = aux;
3119
3120 /*
3121 * If we are setting the vdev state to anything but an open state, then
3122 * always close the underlying device unless the device has requested
3123 * a delayed close (i.e. we're about to remove or fault the device).
3124 * Otherwise, we keep accessible but invalid devices open forever.
3125 * We don't call vdev_close() itself, because that implies some extra
3126 * checks (offline, etc) that we don't want here. This is limited to
3127 * leaf devices, because otherwise closing the device will affect other
3128 * children.
3129 */
3130 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3131 vd->vdev_ops->vdev_op_leaf)
3132 vd->vdev_ops->vdev_op_close(vd);
3133
3134 /*
3135 * If we have brought this vdev back into service, we need
3136 * to notify fmd so that it can gracefully repair any outstanding
3137 * cases due to a missing device. We do this in all cases, even those
3138 * that probably don't correlate to a repaired fault. This is sure to
3139 * catch all cases, and we let the zfs-retire agent sort it out. If
3140 * this is a transient state it's OK, as the retire agent will
3141 * double-check the state of the vdev before repairing it.
3142 */
3143 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3144 vd->vdev_prevstate != state)
3145 zfs_post_state_change(spa, vd);
3146
3147 if (vd->vdev_removed &&
3148 state == VDEV_STATE_CANT_OPEN &&
3149 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3150 /*
3151 * If the previous state is set to VDEV_STATE_REMOVED, then this
3152 * device was previously marked removed and someone attempted to
3153 * reopen it. If this failed due to a nonexistent device, then
3154 * keep the device in the REMOVED state. We also let this be if
3155 * it is one of our special test online cases, which is only
3156 * attempting to online the device and shouldn't generate an FMA
3157 * fault.
3158 */
3159 vd->vdev_state = VDEV_STATE_REMOVED;
3160 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3161 } else if (state == VDEV_STATE_REMOVED) {
3162 vd->vdev_removed = B_TRUE;
3163 } else if (state == VDEV_STATE_CANT_OPEN) {
3164 /*
3165 * If we fail to open a vdev during an import or recovery, we
3166 * mark it as "not available", which signifies that it was
3167 * never there to begin with. Failure to open such a device
3168 * is not considered an error.
3169 */
3170 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3171 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3172 vd->vdev_ops->vdev_op_leaf)
3173 vd->vdev_not_present = 1;
3174
3175 /*
3176 * Post the appropriate ereport. If the 'prevstate' field is
3177 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3178 * that this is part of a vdev_reopen(). In this case, we don't
3179 * want to post the ereport if the device was already in the
3180 * CANT_OPEN state beforehand.
3181 *
3182 * If the 'checkremove' flag is set, then this is an attempt to
3183 * online the device in response to an insertion event. If we
3184 * hit this case, then we have detected an insertion event for a
3185 * faulted or offline device that wasn't in the removed state.
3186 * In this scenario, we don't post an ereport because we are
3187 * about to replace the device, or attempt an online with
3188 * vdev_forcefault, which will generate the fault for us.
3189 */
3190 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3191 !vd->vdev_not_present && !vd->vdev_checkremove &&
3192 vd != spa->spa_root_vdev) {
3193 const char *class;
3194
3195 switch (aux) {
3196 case VDEV_AUX_OPEN_FAILED:
3197 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3198 break;
3199 case VDEV_AUX_CORRUPT_DATA:
3200 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3201 break;
3202 case VDEV_AUX_NO_REPLICAS:
3203 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3204 break;
3205 case VDEV_AUX_BAD_GUID_SUM:
3206 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3207 break;
3208 case VDEV_AUX_TOO_SMALL:
3209 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3210 break;
3211 case VDEV_AUX_BAD_LABEL:
3212 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3213 break;
3214 default:
3215 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3216 }
3217
3218 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3219 }
3220
3221 /* Erase any notion of persistent removed state */
3222 vd->vdev_removed = B_FALSE;
3223 } else {
3224 vd->vdev_removed = B_FALSE;
3225 }
3226
3227 if (!isopen && vd->vdev_parent)
3228 vdev_propagate_state(vd->vdev_parent);
3229 }
3230
3231 /*
3232 * Check the vdev configuration to ensure that it's capable of supporting
3233 * a root pool. We do not support partial configuration.
3234 * In addition, only a single top-level vdev is allowed.
3235 */
3236 boolean_t
vdev_is_bootable(vdev_t * vd)3237 vdev_is_bootable(vdev_t *vd)
3238 {
3239 if (!vd->vdev_ops->vdev_op_leaf) {
3240 char *vdev_type = vd->vdev_ops->vdev_op_type;
3241
3242 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3243 vd->vdev_children > 1) {
3244 return (B_FALSE);
3245 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3246 return (B_FALSE);
3247 }
3248 }
3249
3250 for (int c = 0; c < vd->vdev_children; c++) {
3251 if (!vdev_is_bootable(vd->vdev_child[c]))
3252 return (B_FALSE);
3253 }
3254 return (B_TRUE);
3255 }
3256
3257 /*
3258 * Load the state from the original vdev tree (ovd) which
3259 * we've retrieved from the MOS config object. If the original
3260 * vdev was offline or faulted then we transfer that state to the
3261 * device in the current vdev tree (nvd).
3262 */
3263 void
vdev_load_log_state(vdev_t * nvd,vdev_t * ovd)3264 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3265 {
3266 spa_t *spa = nvd->vdev_spa;
3267
3268 ASSERT(nvd->vdev_top->vdev_islog);
3269 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3270 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3271
3272 for (int c = 0; c < nvd->vdev_children; c++)
3273 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3274
3275 if (nvd->vdev_ops->vdev_op_leaf) {
3276 /*
3277 * Restore the persistent vdev state
3278 */
3279 nvd->vdev_offline = ovd->vdev_offline;
3280 nvd->vdev_faulted = ovd->vdev_faulted;
3281 nvd->vdev_degraded = ovd->vdev_degraded;
3282 nvd->vdev_removed = ovd->vdev_removed;
3283 }
3284 }
3285
3286 /*
3287 * Determine if a log device has valid content. If the vdev was
3288 * removed or faulted in the MOS config then we know that
3289 * the content on the log device has already been written to the pool.
3290 */
3291 boolean_t
vdev_log_state_valid(vdev_t * vd)3292 vdev_log_state_valid(vdev_t *vd)
3293 {
3294 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3295 !vd->vdev_removed)
3296 return (B_TRUE);
3297
3298 for (int c = 0; c < vd->vdev_children; c++)
3299 if (vdev_log_state_valid(vd->vdev_child[c]))
3300 return (B_TRUE);
3301
3302 return (B_FALSE);
3303 }
3304
3305 /*
3306 * Expand a vdev if possible.
3307 */
3308 void
vdev_expand(vdev_t * vd,uint64_t txg)3309 vdev_expand(vdev_t *vd, uint64_t txg)
3310 {
3311 ASSERT(vd->vdev_top == vd);
3312 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3313
3314 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3315 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3316 vdev_config_dirty(vd);
3317 }
3318 }
3319
3320 /*
3321 * Split a vdev.
3322 */
3323 void
vdev_split(vdev_t * vd)3324 vdev_split(vdev_t *vd)
3325 {
3326 vdev_t *cvd, *pvd = vd->vdev_parent;
3327
3328 vdev_remove_child(pvd, vd);
3329 vdev_compact_children(pvd);
3330
3331 cvd = pvd->vdev_child[0];
3332 if (pvd->vdev_children == 1) {
3333 vdev_remove_parent(cvd);
3334 cvd->vdev_splitting = B_TRUE;
3335 }
3336 vdev_propagate_state(cvd);
3337 }
3338
3339 void
vdev_deadman(vdev_t * vd)3340 vdev_deadman(vdev_t *vd)
3341 {
3342 for (int c = 0; c < vd->vdev_children; c++) {
3343 vdev_t *cvd = vd->vdev_child[c];
3344
3345 vdev_deadman(cvd);
3346 }
3347
3348 if (vd->vdev_ops->vdev_op_leaf) {
3349 vdev_queue_t *vq = &vd->vdev_queue;
3350
3351 mutex_enter(&vq->vq_lock);
3352 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3353 spa_t *spa = vd->vdev_spa;
3354 zio_t *fio;
3355 uint64_t delta;
3356
3357 /*
3358 * Look at the head of all the pending queues,
3359 * if any I/O has been outstanding for longer than
3360 * the spa_deadman_synctime we panic the system.
3361 */
3362 fio = avl_first(&vq->vq_active_tree);
3363 delta = gethrtime() - fio->io_timestamp;
3364 if (delta > spa_deadman_synctime(spa)) {
3365 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3366 "delta %lluns, last io %lluns",
3367 fio->io_timestamp, delta,
3368 vq->vq_io_complete_ts);
3369 fm_panic("I/O to pool '%s' appears to be "
3370 "hung.", spa_name(spa));
3371 }
3372 }
3373 mutex_exit(&vq->vq_lock);
3374 }
3375 }
3376