1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47
48 /*
49 * Virtual device management.
50 */
51
52 static vdev_ops_t *vdev_ops_table[] = {
53 &vdev_root_ops,
54 &vdev_raidz_ops,
55 &vdev_mirror_ops,
56 &vdev_replacing_ops,
57 &vdev_spare_ops,
58 &vdev_disk_ops,
59 &vdev_file_ops,
60 &vdev_missing_ops,
61 &vdev_hole_ops,
62 NULL
63 };
64
65 /* maximum scrub/resilver I/O queue per leaf vdev */
66 int zfs_scrub_limit = 10;
67
68 /*
69 * When a vdev is added, it will be divided into approximately (but no
70 * more than) this number of metaslabs.
71 */
72 int metaslabs_per_vdev = 200;
73
74 /*
75 * Given a vdev type, return the appropriate ops vector.
76 */
77 static vdev_ops_t *
vdev_getops(const char * type)78 vdev_getops(const char *type)
79 {
80 vdev_ops_t *ops, **opspp;
81
82 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
83 if (strcmp(ops->vdev_op_type, type) == 0)
84 break;
85
86 return (ops);
87 }
88
89 /*
90 * Default asize function: return the MAX of psize with the asize of
91 * all children. This is what's used by anything other than RAID-Z.
92 */
93 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize)94 vdev_default_asize(vdev_t *vd, uint64_t psize)
95 {
96 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
97 uint64_t csize;
98
99 for (int c = 0; c < vd->vdev_children; c++) {
100 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101 asize = MAX(asize, csize);
102 }
103
104 return (asize);
105 }
106
107 /*
108 * Get the minimum allocatable size. We define the allocatable size as
109 * the vdev's asize rounded to the nearest metaslab. This allows us to
110 * replace or attach devices which don't have the same physical size but
111 * can still satisfy the same number of allocations.
112 */
113 uint64_t
vdev_get_min_asize(vdev_t * vd)114 vdev_get_min_asize(vdev_t *vd)
115 {
116 vdev_t *pvd = vd->vdev_parent;
117
118 /*
119 * If our parent is NULL (inactive spare or cache) or is the root,
120 * just return our own asize.
121 */
122 if (pvd == NULL)
123 return (vd->vdev_asize);
124
125 /*
126 * The top-level vdev just returns the allocatable size rounded
127 * to the nearest metaslab.
128 */
129 if (vd == vd->vdev_top)
130 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131
132 /*
133 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134 * so each child must provide at least 1/Nth of its asize.
135 */
136 if (pvd->vdev_ops == &vdev_raidz_ops)
137 return (pvd->vdev_min_asize / pvd->vdev_children);
138
139 return (pvd->vdev_min_asize);
140 }
141
142 void
vdev_set_min_asize(vdev_t * vd)143 vdev_set_min_asize(vdev_t *vd)
144 {
145 vd->vdev_min_asize = vdev_get_min_asize(vd);
146
147 for (int c = 0; c < vd->vdev_children; c++)
148 vdev_set_min_asize(vd->vdev_child[c]);
149 }
150
151 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)152 vdev_lookup_top(spa_t *spa, uint64_t vdev)
153 {
154 vdev_t *rvd = spa->spa_root_vdev;
155
156 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
157
158 if (vdev < rvd->vdev_children) {
159 ASSERT(rvd->vdev_child[vdev] != NULL);
160 return (rvd->vdev_child[vdev]);
161 }
162
163 return (NULL);
164 }
165
166 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
168 {
169 vdev_t *mvd;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (int c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 static int
vdev_count_leaves_impl(vdev_t * vd)183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 int n = 0;
186
187 if (vd->vdev_ops->vdev_op_leaf)
188 return (1);
189
190 for (int c = 0; c < vd->vdev_children; c++)
191 n += vdev_count_leaves_impl(vd->vdev_child[c]);
192
193 return (n);
194 }
195
196 int
vdev_count_leaves(spa_t * spa)197 vdev_count_leaves(spa_t *spa)
198 {
199 return (vdev_count_leaves_impl(spa->spa_root_vdev));
200 }
201
202 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)203 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
204 {
205 size_t oldsize, newsize;
206 uint64_t id = cvd->vdev_id;
207 vdev_t **newchild;
208 spa_t *spa = cvd->vdev_spa;
209
210 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211 ASSERT(cvd->vdev_parent == NULL);
212
213 cvd->vdev_parent = pvd;
214
215 if (pvd == NULL)
216 return;
217
218 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219
220 oldsize = pvd->vdev_children * sizeof (vdev_t *);
221 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222 newsize = pvd->vdev_children * sizeof (vdev_t *);
223
224 newchild = kmem_zalloc(newsize, KM_SLEEP);
225 if (pvd->vdev_child != NULL) {
226 bcopy(pvd->vdev_child, newchild, oldsize);
227 kmem_free(pvd->vdev_child, oldsize);
228 }
229
230 pvd->vdev_child = newchild;
231 pvd->vdev_child[id] = cvd;
232
233 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235
236 /*
237 * Walk up all ancestors to update guid sum.
238 */
239 for (; pvd != NULL; pvd = pvd->vdev_parent)
240 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242
243 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246 int c;
247 uint_t id = cvd->vdev_id;
248
249 ASSERT(cvd->vdev_parent == pvd);
250
251 if (pvd == NULL)
252 return;
253
254 ASSERT(id < pvd->vdev_children);
255 ASSERT(pvd->vdev_child[id] == cvd);
256
257 pvd->vdev_child[id] = NULL;
258 cvd->vdev_parent = NULL;
259
260 for (c = 0; c < pvd->vdev_children; c++)
261 if (pvd->vdev_child[c])
262 break;
263
264 if (c == pvd->vdev_children) {
265 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266 pvd->vdev_child = NULL;
267 pvd->vdev_children = 0;
268 }
269
270 /*
271 * Walk up all ancestors to update guid sum.
272 */
273 for (; pvd != NULL; pvd = pvd->vdev_parent)
274 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276
277 /*
278 * Remove any holes in the child array.
279 */
280 void
vdev_compact_children(vdev_t * pvd)281 vdev_compact_children(vdev_t *pvd)
282 {
283 vdev_t **newchild, *cvd;
284 int oldc = pvd->vdev_children;
285 int newc;
286
287 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
288
289 for (int c = newc = 0; c < oldc; c++)
290 if (pvd->vdev_child[c])
291 newc++;
292
293 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
294
295 for (int c = newc = 0; c < oldc; c++) {
296 if ((cvd = pvd->vdev_child[c]) != NULL) {
297 newchild[newc] = cvd;
298 cvd->vdev_id = newc++;
299 }
300 }
301
302 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
303 pvd->vdev_child = newchild;
304 pvd->vdev_children = newc;
305 }
306
307 /*
308 * Allocate and minimally initialize a vdev_t.
309 */
310 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)311 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
312 {
313 vdev_t *vd;
314
315 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
316
317 if (spa->spa_root_vdev == NULL) {
318 ASSERT(ops == &vdev_root_ops);
319 spa->spa_root_vdev = vd;
320 spa->spa_load_guid = spa_generate_guid(NULL);
321 }
322
323 if (guid == 0 && ops != &vdev_hole_ops) {
324 if (spa->spa_root_vdev == vd) {
325 /*
326 * The root vdev's guid will also be the pool guid,
327 * which must be unique among all pools.
328 */
329 guid = spa_generate_guid(NULL);
330 } else {
331 /*
332 * Any other vdev's guid must be unique within the pool.
333 */
334 guid = spa_generate_guid(spa);
335 }
336 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
337 }
338
339 vd->vdev_spa = spa;
340 vd->vdev_id = id;
341 vd->vdev_guid = guid;
342 vd->vdev_guid_sum = guid;
343 vd->vdev_ops = ops;
344 vd->vdev_state = VDEV_STATE_CLOSED;
345 vd->vdev_ishole = (ops == &vdev_hole_ops);
346
347 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
348 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
349 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
350 for (int t = 0; t < DTL_TYPES; t++) {
351 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
352 &vd->vdev_dtl_lock);
353 }
354 txg_list_create(&vd->vdev_ms_list,
355 offsetof(struct metaslab, ms_txg_node));
356 txg_list_create(&vd->vdev_dtl_list,
357 offsetof(struct vdev, vdev_dtl_node));
358 vd->vdev_stat.vs_timestamp = gethrtime();
359 vdev_queue_init(vd);
360 vdev_cache_init(vd);
361
362 return (vd);
363 }
364
365 /*
366 * Allocate a new vdev. The 'alloctype' is used to control whether we are
367 * creating a new vdev or loading an existing one - the behavior is slightly
368 * different for each case.
369 */
370 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)371 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
372 int alloctype)
373 {
374 vdev_ops_t *ops;
375 char *type;
376 uint64_t guid = 0, islog, nparity;
377 vdev_t *vd;
378
379 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
380
381 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
382 return (SET_ERROR(EINVAL));
383
384 if ((ops = vdev_getops(type)) == NULL)
385 return (SET_ERROR(EINVAL));
386
387 /*
388 * If this is a load, get the vdev guid from the nvlist.
389 * Otherwise, vdev_alloc_common() will generate one for us.
390 */
391 if (alloctype == VDEV_ALLOC_LOAD) {
392 uint64_t label_id;
393
394 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
395 label_id != id)
396 return (SET_ERROR(EINVAL));
397
398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
399 return (SET_ERROR(EINVAL));
400 } else if (alloctype == VDEV_ALLOC_SPARE) {
401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
402 return (SET_ERROR(EINVAL));
403 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
405 return (SET_ERROR(EINVAL));
406 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
407 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
408 return (SET_ERROR(EINVAL));
409 }
410
411 /*
412 * The first allocated vdev must be of type 'root'.
413 */
414 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
415 return (SET_ERROR(EINVAL));
416
417 /*
418 * Determine whether we're a log vdev.
419 */
420 islog = 0;
421 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
422 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
423 return (SET_ERROR(ENOTSUP));
424
425 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
426 return (SET_ERROR(ENOTSUP));
427
428 /*
429 * Set the nparity property for RAID-Z vdevs.
430 */
431 nparity = -1ULL;
432 if (ops == &vdev_raidz_ops) {
433 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
434 &nparity) == 0) {
435 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
436 return (SET_ERROR(EINVAL));
437 /*
438 * Previous versions could only support 1 or 2 parity
439 * device.
440 */
441 if (nparity > 1 &&
442 spa_version(spa) < SPA_VERSION_RAIDZ2)
443 return (SET_ERROR(ENOTSUP));
444 if (nparity > 2 &&
445 spa_version(spa) < SPA_VERSION_RAIDZ3)
446 return (SET_ERROR(ENOTSUP));
447 } else {
448 /*
449 * We require the parity to be specified for SPAs that
450 * support multiple parity levels.
451 */
452 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
453 return (SET_ERROR(EINVAL));
454 /*
455 * Otherwise, we default to 1 parity device for RAID-Z.
456 */
457 nparity = 1;
458 }
459 } else {
460 nparity = 0;
461 }
462 ASSERT(nparity != -1ULL);
463
464 vd = vdev_alloc_common(spa, id, guid, ops);
465
466 vd->vdev_islog = islog;
467 vd->vdev_nparity = nparity;
468
469 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
470 vd->vdev_path = spa_strdup(vd->vdev_path);
471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
472 vd->vdev_devid = spa_strdup(vd->vdev_devid);
473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
474 &vd->vdev_physpath) == 0)
475 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
477 vd->vdev_fru = spa_strdup(vd->vdev_fru);
478
479 /*
480 * Set the whole_disk property. If it's not specified, leave the value
481 * as -1.
482 */
483 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
484 &vd->vdev_wholedisk) != 0)
485 vd->vdev_wholedisk = -1ULL;
486
487 /*
488 * Look for the 'not present' flag. This will only be set if the device
489 * was not present at the time of import.
490 */
491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
492 &vd->vdev_not_present);
493
494 /*
495 * Get the alignment requirement.
496 */
497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
498
499 /*
500 * Retrieve the vdev creation time.
501 */
502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
503 &vd->vdev_crtxg);
504
505 /*
506 * If we're a top-level vdev, try to load the allocation parameters.
507 */
508 if (parent && !parent->vdev_parent &&
509 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
511 &vd->vdev_ms_array);
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
513 &vd->vdev_ms_shift);
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
515 &vd->vdev_asize);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
517 &vd->vdev_removing);
518 }
519
520 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
521 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
522 alloctype == VDEV_ALLOC_ADD ||
523 alloctype == VDEV_ALLOC_SPLIT ||
524 alloctype == VDEV_ALLOC_ROOTPOOL);
525 vd->vdev_mg = metaslab_group_create(islog ?
526 spa_log_class(spa) : spa_normal_class(spa), vd);
527 }
528
529 /*
530 * If we're a leaf vdev, try to load the DTL object and other state.
531 */
532 if (vd->vdev_ops->vdev_op_leaf &&
533 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
534 alloctype == VDEV_ALLOC_ROOTPOOL)) {
535 if (alloctype == VDEV_ALLOC_LOAD) {
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
537 &vd->vdev_dtl_object);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
539 &vd->vdev_unspare);
540 }
541
542 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
543 uint64_t spare = 0;
544
545 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
546 &spare) == 0 && spare)
547 spa_spare_add(vd);
548 }
549
550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
551 &vd->vdev_offline);
552
553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
554 &vd->vdev_resilver_txg);
555
556 /*
557 * When importing a pool, we want to ignore the persistent fault
558 * state, as the diagnosis made on another system may not be
559 * valid in the current context. Local vdevs will
560 * remain in the faulted state.
561 */
562 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
563 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
564 &vd->vdev_faulted);
565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
566 &vd->vdev_degraded);
567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
568 &vd->vdev_removed);
569
570 if (vd->vdev_faulted || vd->vdev_degraded) {
571 char *aux;
572
573 vd->vdev_label_aux =
574 VDEV_AUX_ERR_EXCEEDED;
575 if (nvlist_lookup_string(nv,
576 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
577 strcmp(aux, "external") == 0)
578 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
579 }
580 }
581 }
582
583 /*
584 * Add ourselves to the parent's list of children.
585 */
586 vdev_add_child(parent, vd);
587
588 *vdp = vd;
589
590 return (0);
591 }
592
593 void
vdev_free(vdev_t * vd)594 vdev_free(vdev_t *vd)
595 {
596 spa_t *spa = vd->vdev_spa;
597
598 /*
599 * vdev_free() implies closing the vdev first. This is simpler than
600 * trying to ensure complicated semantics for all callers.
601 */
602 vdev_close(vd);
603
604 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
605 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
606
607 /*
608 * Free all children.
609 */
610 for (int c = 0; c < vd->vdev_children; c++)
611 vdev_free(vd->vdev_child[c]);
612
613 ASSERT(vd->vdev_child == NULL);
614 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
615
616 /*
617 * Discard allocation state.
618 */
619 if (vd->vdev_mg != NULL) {
620 vdev_metaslab_fini(vd);
621 metaslab_group_destroy(vd->vdev_mg);
622 }
623
624 ASSERT0(vd->vdev_stat.vs_space);
625 ASSERT0(vd->vdev_stat.vs_dspace);
626 ASSERT0(vd->vdev_stat.vs_alloc);
627
628 /*
629 * Remove this vdev from its parent's child list.
630 */
631 vdev_remove_child(vd->vdev_parent, vd);
632
633 ASSERT(vd->vdev_parent == NULL);
634
635 /*
636 * Clean up vdev structure.
637 */
638 vdev_queue_fini(vd);
639 vdev_cache_fini(vd);
640
641 if (vd->vdev_path)
642 spa_strfree(vd->vdev_path);
643 if (vd->vdev_devid)
644 spa_strfree(vd->vdev_devid);
645 if (vd->vdev_physpath)
646 spa_strfree(vd->vdev_physpath);
647 if (vd->vdev_fru)
648 spa_strfree(vd->vdev_fru);
649
650 if (vd->vdev_isspare)
651 spa_spare_remove(vd);
652 if (vd->vdev_isl2cache)
653 spa_l2cache_remove(vd);
654
655 txg_list_destroy(&vd->vdev_ms_list);
656 txg_list_destroy(&vd->vdev_dtl_list);
657
658 mutex_enter(&vd->vdev_dtl_lock);
659 space_map_close(vd->vdev_dtl_sm);
660 for (int t = 0; t < DTL_TYPES; t++) {
661 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
662 range_tree_destroy(vd->vdev_dtl[t]);
663 }
664 mutex_exit(&vd->vdev_dtl_lock);
665
666 mutex_destroy(&vd->vdev_dtl_lock);
667 mutex_destroy(&vd->vdev_stat_lock);
668 mutex_destroy(&vd->vdev_probe_lock);
669
670 if (vd == spa->spa_root_vdev)
671 spa->spa_root_vdev = NULL;
672
673 kmem_free(vd, sizeof (vdev_t));
674 }
675
676 /*
677 * Transfer top-level vdev state from svd to tvd.
678 */
679 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)680 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
681 {
682 spa_t *spa = svd->vdev_spa;
683 metaslab_t *msp;
684 vdev_t *vd;
685 int t;
686
687 ASSERT(tvd == tvd->vdev_top);
688
689 tvd->vdev_ms_array = svd->vdev_ms_array;
690 tvd->vdev_ms_shift = svd->vdev_ms_shift;
691 tvd->vdev_ms_count = svd->vdev_ms_count;
692
693 svd->vdev_ms_array = 0;
694 svd->vdev_ms_shift = 0;
695 svd->vdev_ms_count = 0;
696
697 if (tvd->vdev_mg)
698 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
699 tvd->vdev_mg = svd->vdev_mg;
700 tvd->vdev_ms = svd->vdev_ms;
701
702 svd->vdev_mg = NULL;
703 svd->vdev_ms = NULL;
704
705 if (tvd->vdev_mg != NULL)
706 tvd->vdev_mg->mg_vd = tvd;
707
708 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
709 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
710 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
711
712 svd->vdev_stat.vs_alloc = 0;
713 svd->vdev_stat.vs_space = 0;
714 svd->vdev_stat.vs_dspace = 0;
715
716 for (t = 0; t < TXG_SIZE; t++) {
717 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
718 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
719 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
720 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
721 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
722 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
723 }
724
725 if (list_link_active(&svd->vdev_config_dirty_node)) {
726 vdev_config_clean(svd);
727 vdev_config_dirty(tvd);
728 }
729
730 if (list_link_active(&svd->vdev_state_dirty_node)) {
731 vdev_state_clean(svd);
732 vdev_state_dirty(tvd);
733 }
734
735 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
736 svd->vdev_deflate_ratio = 0;
737
738 tvd->vdev_islog = svd->vdev_islog;
739 svd->vdev_islog = 0;
740 }
741
742 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)743 vdev_top_update(vdev_t *tvd, vdev_t *vd)
744 {
745 if (vd == NULL)
746 return;
747
748 vd->vdev_top = tvd;
749
750 for (int c = 0; c < vd->vdev_children; c++)
751 vdev_top_update(tvd, vd->vdev_child[c]);
752 }
753
754 /*
755 * Add a mirror/replacing vdev above an existing vdev.
756 */
757 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)758 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
759 {
760 spa_t *spa = cvd->vdev_spa;
761 vdev_t *pvd = cvd->vdev_parent;
762 vdev_t *mvd;
763
764 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
765
766 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
767
768 mvd->vdev_asize = cvd->vdev_asize;
769 mvd->vdev_min_asize = cvd->vdev_min_asize;
770 mvd->vdev_max_asize = cvd->vdev_max_asize;
771 mvd->vdev_ashift = cvd->vdev_ashift;
772 mvd->vdev_state = cvd->vdev_state;
773 mvd->vdev_crtxg = cvd->vdev_crtxg;
774
775 vdev_remove_child(pvd, cvd);
776 vdev_add_child(pvd, mvd);
777 cvd->vdev_id = mvd->vdev_children;
778 vdev_add_child(mvd, cvd);
779 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
780
781 if (mvd == mvd->vdev_top)
782 vdev_top_transfer(cvd, mvd);
783
784 return (mvd);
785 }
786
787 /*
788 * Remove a 1-way mirror/replacing vdev from the tree.
789 */
790 void
vdev_remove_parent(vdev_t * cvd)791 vdev_remove_parent(vdev_t *cvd)
792 {
793 vdev_t *mvd = cvd->vdev_parent;
794 vdev_t *pvd = mvd->vdev_parent;
795
796 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
797
798 ASSERT(mvd->vdev_children == 1);
799 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
800 mvd->vdev_ops == &vdev_replacing_ops ||
801 mvd->vdev_ops == &vdev_spare_ops);
802 cvd->vdev_ashift = mvd->vdev_ashift;
803
804 vdev_remove_child(mvd, cvd);
805 vdev_remove_child(pvd, mvd);
806
807 /*
808 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
809 * Otherwise, we could have detached an offline device, and when we
810 * go to import the pool we'll think we have two top-level vdevs,
811 * instead of a different version of the same top-level vdev.
812 */
813 if (mvd->vdev_top == mvd) {
814 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
815 cvd->vdev_orig_guid = cvd->vdev_guid;
816 cvd->vdev_guid += guid_delta;
817 cvd->vdev_guid_sum += guid_delta;
818 }
819 cvd->vdev_id = mvd->vdev_id;
820 vdev_add_child(pvd, cvd);
821 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
822
823 if (cvd == cvd->vdev_top)
824 vdev_top_transfer(mvd, cvd);
825
826 ASSERT(mvd->vdev_children == 0);
827 vdev_free(mvd);
828 }
829
830 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)831 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
832 {
833 spa_t *spa = vd->vdev_spa;
834 objset_t *mos = spa->spa_meta_objset;
835 uint64_t m;
836 uint64_t oldc = vd->vdev_ms_count;
837 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
838 metaslab_t **mspp;
839 int error;
840
841 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
842
843 /*
844 * This vdev is not being allocated from yet or is a hole.
845 */
846 if (vd->vdev_ms_shift == 0)
847 return (0);
848
849 ASSERT(!vd->vdev_ishole);
850
851 /*
852 * Compute the raidz-deflation ratio. Note, we hard-code
853 * in 128k (1 << 17) because it is the "typical" blocksize.
854 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
855 * otherwise it would inconsistently account for existing bp's.
856 */
857 vd->vdev_deflate_ratio = (1 << 17) /
858 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
859
860 ASSERT(oldc <= newc);
861
862 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
863
864 if (oldc != 0) {
865 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
866 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
867 }
868
869 vd->vdev_ms = mspp;
870 vd->vdev_ms_count = newc;
871
872 for (m = oldc; m < newc; m++) {
873 uint64_t object = 0;
874
875 if (txg == 0) {
876 error = dmu_read(mos, vd->vdev_ms_array,
877 m * sizeof (uint64_t), sizeof (uint64_t), &object,
878 DMU_READ_PREFETCH);
879 if (error)
880 return (error);
881 }
882
883 error = metaslab_init(vd->vdev_mg, m, object, txg,
884 &(vd->vdev_ms[m]));
885 if (error)
886 return (error);
887 }
888
889 if (txg == 0)
890 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
891
892 /*
893 * If the vdev is being removed we don't activate
894 * the metaslabs since we want to ensure that no new
895 * allocations are performed on this device.
896 */
897 if (oldc == 0 && !vd->vdev_removing)
898 metaslab_group_activate(vd->vdev_mg);
899
900 if (txg == 0)
901 spa_config_exit(spa, SCL_ALLOC, FTAG);
902
903 return (0);
904 }
905
906 void
vdev_metaslab_fini(vdev_t * vd)907 vdev_metaslab_fini(vdev_t *vd)
908 {
909 uint64_t m;
910 uint64_t count = vd->vdev_ms_count;
911
912 if (vd->vdev_ms != NULL) {
913 metaslab_group_passivate(vd->vdev_mg);
914 for (m = 0; m < count; m++) {
915 metaslab_t *msp = vd->vdev_ms[m];
916
917 if (msp != NULL)
918 metaslab_fini(msp);
919 }
920 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
921 vd->vdev_ms = NULL;
922 }
923 }
924
925 typedef struct vdev_probe_stats {
926 boolean_t vps_readable;
927 boolean_t vps_writeable;
928 int vps_flags;
929 } vdev_probe_stats_t;
930
931 static void
vdev_probe_done(zio_t * zio)932 vdev_probe_done(zio_t *zio)
933 {
934 spa_t *spa = zio->io_spa;
935 vdev_t *vd = zio->io_vd;
936 vdev_probe_stats_t *vps = zio->io_private;
937
938 ASSERT(vd->vdev_probe_zio != NULL);
939
940 if (zio->io_type == ZIO_TYPE_READ) {
941 if (zio->io_error == 0)
942 vps->vps_readable = 1;
943 if (zio->io_error == 0 && spa_writeable(spa)) {
944 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
945 zio->io_offset, zio->io_size, zio->io_data,
946 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
947 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
948 } else {
949 zio_buf_free(zio->io_data, zio->io_size);
950 }
951 } else if (zio->io_type == ZIO_TYPE_WRITE) {
952 if (zio->io_error == 0)
953 vps->vps_writeable = 1;
954 zio_buf_free(zio->io_data, zio->io_size);
955 } else if (zio->io_type == ZIO_TYPE_NULL) {
956 zio_t *pio;
957
958 vd->vdev_cant_read |= !vps->vps_readable;
959 vd->vdev_cant_write |= !vps->vps_writeable;
960
961 if (vdev_readable(vd) &&
962 (vdev_writeable(vd) || !spa_writeable(spa))) {
963 zio->io_error = 0;
964 } else {
965 ASSERT(zio->io_error != 0);
966 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
967 spa, vd, NULL, 0, 0);
968 zio->io_error = SET_ERROR(ENXIO);
969 }
970
971 mutex_enter(&vd->vdev_probe_lock);
972 ASSERT(vd->vdev_probe_zio == zio);
973 vd->vdev_probe_zio = NULL;
974 mutex_exit(&vd->vdev_probe_lock);
975
976 while ((pio = zio_walk_parents(zio)) != NULL)
977 if (!vdev_accessible(vd, pio))
978 pio->io_error = SET_ERROR(ENXIO);
979
980 kmem_free(vps, sizeof (*vps));
981 }
982 }
983
984 /*
985 * Determine whether this device is accessible.
986 *
987 * Read and write to several known locations: the pad regions of each
988 * vdev label but the first, which we leave alone in case it contains
989 * a VTOC.
990 */
991 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)992 vdev_probe(vdev_t *vd, zio_t *zio)
993 {
994 spa_t *spa = vd->vdev_spa;
995 vdev_probe_stats_t *vps = NULL;
996 zio_t *pio;
997
998 ASSERT(vd->vdev_ops->vdev_op_leaf);
999
1000 /*
1001 * Don't probe the probe.
1002 */
1003 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1004 return (NULL);
1005
1006 /*
1007 * To prevent 'probe storms' when a device fails, we create
1008 * just one probe i/o at a time. All zios that want to probe
1009 * this vdev will become parents of the probe io.
1010 */
1011 mutex_enter(&vd->vdev_probe_lock);
1012
1013 if ((pio = vd->vdev_probe_zio) == NULL) {
1014 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1015
1016 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1017 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1018 ZIO_FLAG_TRYHARD;
1019
1020 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1021 /*
1022 * vdev_cant_read and vdev_cant_write can only
1023 * transition from TRUE to FALSE when we have the
1024 * SCL_ZIO lock as writer; otherwise they can only
1025 * transition from FALSE to TRUE. This ensures that
1026 * any zio looking at these values can assume that
1027 * failures persist for the life of the I/O. That's
1028 * important because when a device has intermittent
1029 * connectivity problems, we want to ensure that
1030 * they're ascribed to the device (ENXIO) and not
1031 * the zio (EIO).
1032 *
1033 * Since we hold SCL_ZIO as writer here, clear both
1034 * values so the probe can reevaluate from first
1035 * principles.
1036 */
1037 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1038 vd->vdev_cant_read = B_FALSE;
1039 vd->vdev_cant_write = B_FALSE;
1040 }
1041
1042 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1043 vdev_probe_done, vps,
1044 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1045
1046 /*
1047 * We can't change the vdev state in this context, so we
1048 * kick off an async task to do it on our behalf.
1049 */
1050 if (zio != NULL) {
1051 vd->vdev_probe_wanted = B_TRUE;
1052 spa_async_request(spa, SPA_ASYNC_PROBE);
1053 }
1054 }
1055
1056 if (zio != NULL)
1057 zio_add_child(zio, pio);
1058
1059 mutex_exit(&vd->vdev_probe_lock);
1060
1061 if (vps == NULL) {
1062 ASSERT(zio != NULL);
1063 return (NULL);
1064 }
1065
1066 for (int l = 1; l < VDEV_LABELS; l++) {
1067 zio_nowait(zio_read_phys(pio, vd,
1068 vdev_label_offset(vd->vdev_psize, l,
1069 offsetof(vdev_label_t, vl_pad2)),
1070 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1071 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1072 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1073 }
1074
1075 if (zio == NULL)
1076 return (pio);
1077
1078 zio_nowait(pio);
1079 return (NULL);
1080 }
1081
1082 static void
vdev_open_child(void * arg)1083 vdev_open_child(void *arg)
1084 {
1085 vdev_t *vd = arg;
1086
1087 vd->vdev_open_thread = curthread;
1088 vd->vdev_open_error = vdev_open(vd);
1089 vd->vdev_open_thread = NULL;
1090 }
1091
1092 boolean_t
vdev_uses_zvols(vdev_t * vd)1093 vdev_uses_zvols(vdev_t *vd)
1094 {
1095 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1096 strlen(ZVOL_DIR)) == 0)
1097 return (B_TRUE);
1098 for (int c = 0; c < vd->vdev_children; c++)
1099 if (vdev_uses_zvols(vd->vdev_child[c]))
1100 return (B_TRUE);
1101 return (B_FALSE);
1102 }
1103
1104 void
vdev_open_children(vdev_t * vd)1105 vdev_open_children(vdev_t *vd)
1106 {
1107 taskq_t *tq;
1108 int children = vd->vdev_children;
1109
1110 /*
1111 * in order to handle pools on top of zvols, do the opens
1112 * in a single thread so that the same thread holds the
1113 * spa_namespace_lock
1114 */
1115 if (vdev_uses_zvols(vd)) {
1116 for (int c = 0; c < children; c++)
1117 vd->vdev_child[c]->vdev_open_error =
1118 vdev_open(vd->vdev_child[c]);
1119 return;
1120 }
1121 tq = taskq_create("vdev_open", children, minclsyspri,
1122 children, children, TASKQ_PREPOPULATE);
1123
1124 for (int c = 0; c < children; c++)
1125 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1126 TQ_SLEEP) != NULL);
1127
1128 taskq_destroy(tq);
1129 }
1130
1131 /*
1132 * Prepare a virtual device for access.
1133 */
1134 int
vdev_open(vdev_t * vd)1135 vdev_open(vdev_t *vd)
1136 {
1137 spa_t *spa = vd->vdev_spa;
1138 int error;
1139 uint64_t osize = 0;
1140 uint64_t max_osize = 0;
1141 uint64_t asize, max_asize, psize;
1142 uint64_t ashift = 0;
1143
1144 ASSERT(vd->vdev_open_thread == curthread ||
1145 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1146 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1147 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1148 vd->vdev_state == VDEV_STATE_OFFLINE);
1149
1150 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1151 vd->vdev_cant_read = B_FALSE;
1152 vd->vdev_cant_write = B_FALSE;
1153 vd->vdev_min_asize = vdev_get_min_asize(vd);
1154
1155 /*
1156 * If this vdev is not removed, check its fault status. If it's
1157 * faulted, bail out of the open.
1158 */
1159 if (!vd->vdev_removed && vd->vdev_faulted) {
1160 ASSERT(vd->vdev_children == 0);
1161 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1162 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1163 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1164 vd->vdev_label_aux);
1165 return (SET_ERROR(ENXIO));
1166 } else if (vd->vdev_offline) {
1167 ASSERT(vd->vdev_children == 0);
1168 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1169 return (SET_ERROR(ENXIO));
1170 }
1171
1172 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1173
1174 /*
1175 * Reset the vdev_reopening flag so that we actually close
1176 * the vdev on error.
1177 */
1178 vd->vdev_reopening = B_FALSE;
1179 if (zio_injection_enabled && error == 0)
1180 error = zio_handle_device_injection(vd, NULL, ENXIO);
1181
1182 if (error) {
1183 if (vd->vdev_removed &&
1184 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1185 vd->vdev_removed = B_FALSE;
1186
1187 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1188 vd->vdev_stat.vs_aux);
1189 return (error);
1190 }
1191
1192 vd->vdev_removed = B_FALSE;
1193
1194 /*
1195 * Recheck the faulted flag now that we have confirmed that
1196 * the vdev is accessible. If we're faulted, bail.
1197 */
1198 if (vd->vdev_faulted) {
1199 ASSERT(vd->vdev_children == 0);
1200 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1201 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1203 vd->vdev_label_aux);
1204 return (SET_ERROR(ENXIO));
1205 }
1206
1207 if (vd->vdev_degraded) {
1208 ASSERT(vd->vdev_children == 0);
1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1210 VDEV_AUX_ERR_EXCEEDED);
1211 } else {
1212 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1213 }
1214
1215 /*
1216 * For hole or missing vdevs we just return success.
1217 */
1218 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1219 return (0);
1220
1221 for (int c = 0; c < vd->vdev_children; c++) {
1222 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1224 VDEV_AUX_NONE);
1225 break;
1226 }
1227 }
1228
1229 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1230 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1231
1232 if (vd->vdev_children == 0) {
1233 if (osize < SPA_MINDEVSIZE) {
1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 VDEV_AUX_TOO_SMALL);
1236 return (SET_ERROR(EOVERFLOW));
1237 }
1238 psize = osize;
1239 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1240 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1241 VDEV_LABEL_END_SIZE);
1242 } else {
1243 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1244 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1245 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1246 VDEV_AUX_TOO_SMALL);
1247 return (SET_ERROR(EOVERFLOW));
1248 }
1249 psize = 0;
1250 asize = osize;
1251 max_asize = max_osize;
1252 }
1253
1254 vd->vdev_psize = psize;
1255
1256 /*
1257 * Make sure the allocatable size hasn't shrunk.
1258 */
1259 if (asize < vd->vdev_min_asize) {
1260 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1261 VDEV_AUX_BAD_LABEL);
1262 return (SET_ERROR(EINVAL));
1263 }
1264
1265 if (vd->vdev_asize == 0) {
1266 /*
1267 * This is the first-ever open, so use the computed values.
1268 * For testing purposes, a higher ashift can be requested.
1269 */
1270 vd->vdev_asize = asize;
1271 vd->vdev_max_asize = max_asize;
1272 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1273 } else {
1274 /*
1275 * Detect if the alignment requirement has increased.
1276 * We don't want to make the pool unavailable, just
1277 * issue a warning instead.
1278 */
1279 if (ashift > vd->vdev_top->vdev_ashift &&
1280 vd->vdev_ops->vdev_op_leaf) {
1281 cmn_err(CE_WARN,
1282 "Disk, '%s', has a block alignment that is "
1283 "larger than the pool's alignment\n",
1284 vd->vdev_path);
1285 }
1286 vd->vdev_max_asize = max_asize;
1287 }
1288
1289 /*
1290 * If all children are healthy and the asize has increased,
1291 * then we've experienced dynamic LUN growth. If automatic
1292 * expansion is enabled then use the additional space.
1293 */
1294 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1295 (vd->vdev_expanding || spa->spa_autoexpand))
1296 vd->vdev_asize = asize;
1297
1298 vdev_set_min_asize(vd);
1299
1300 /*
1301 * Ensure we can issue some IO before declaring the
1302 * vdev open for business.
1303 */
1304 if (vd->vdev_ops->vdev_op_leaf &&
1305 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1306 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1307 VDEV_AUX_ERR_EXCEEDED);
1308 return (error);
1309 }
1310
1311 /*
1312 * Track the min and max ashift values for normal data devices.
1313 */
1314 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1315 !vd->vdev_islog && vd->vdev_aux == NULL) {
1316 if (vd->vdev_ashift > spa->spa_max_ashift)
1317 spa->spa_max_ashift = vd->vdev_ashift;
1318 if (vd->vdev_ashift < spa->spa_min_ashift)
1319 spa->spa_min_ashift = vd->vdev_ashift;
1320 }
1321
1322 /*
1323 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1324 * resilver. But don't do this if we are doing a reopen for a scrub,
1325 * since this would just restart the scrub we are already doing.
1326 */
1327 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1328 vdev_resilver_needed(vd, NULL, NULL))
1329 spa_async_request(spa, SPA_ASYNC_RESILVER);
1330
1331 return (0);
1332 }
1333
1334 /*
1335 * Called once the vdevs are all opened, this routine validates the label
1336 * contents. This needs to be done before vdev_load() so that we don't
1337 * inadvertently do repair I/Os to the wrong device.
1338 *
1339 * If 'strict' is false ignore the spa guid check. This is necessary because
1340 * if the machine crashed during a re-guid the new guid might have been written
1341 * to all of the vdev labels, but not the cached config. The strict check
1342 * will be performed when the pool is opened again using the mos config.
1343 *
1344 * This function will only return failure if one of the vdevs indicates that it
1345 * has since been destroyed or exported. This is only possible if
1346 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1347 * will be updated but the function will return 0.
1348 */
1349 int
vdev_validate(vdev_t * vd,boolean_t strict)1350 vdev_validate(vdev_t *vd, boolean_t strict)
1351 {
1352 spa_t *spa = vd->vdev_spa;
1353 nvlist_t *label;
1354 uint64_t guid = 0, top_guid;
1355 uint64_t state;
1356
1357 for (int c = 0; c < vd->vdev_children; c++)
1358 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1359 return (SET_ERROR(EBADF));
1360
1361 /*
1362 * If the device has already failed, or was marked offline, don't do
1363 * any further validation. Otherwise, label I/O will fail and we will
1364 * overwrite the previous state.
1365 */
1366 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1367 uint64_t aux_guid = 0;
1368 nvlist_t *nvl;
1369 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1370 spa_last_synced_txg(spa) : -1ULL;
1371
1372 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1373 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1374 VDEV_AUX_BAD_LABEL);
1375 return (0);
1376 }
1377
1378 /*
1379 * Determine if this vdev has been split off into another
1380 * pool. If so, then refuse to open it.
1381 */
1382 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1383 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1384 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1385 VDEV_AUX_SPLIT_POOL);
1386 nvlist_free(label);
1387 return (0);
1388 }
1389
1390 if (strict && (nvlist_lookup_uint64(label,
1391 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1392 guid != spa_guid(spa))) {
1393 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394 VDEV_AUX_CORRUPT_DATA);
1395 nvlist_free(label);
1396 return (0);
1397 }
1398
1399 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1400 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1401 &aux_guid) != 0)
1402 aux_guid = 0;
1403
1404 /*
1405 * If this vdev just became a top-level vdev because its
1406 * sibling was detached, it will have adopted the parent's
1407 * vdev guid -- but the label may or may not be on disk yet.
1408 * Fortunately, either version of the label will have the
1409 * same top guid, so if we're a top-level vdev, we can
1410 * safely compare to that instead.
1411 *
1412 * If we split this vdev off instead, then we also check the
1413 * original pool's guid. We don't want to consider the vdev
1414 * corrupt if it is partway through a split operation.
1415 */
1416 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1417 &guid) != 0 ||
1418 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1419 &top_guid) != 0 ||
1420 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1421 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1423 VDEV_AUX_CORRUPT_DATA);
1424 nvlist_free(label);
1425 return (0);
1426 }
1427
1428 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1429 &state) != 0) {
1430 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1431 VDEV_AUX_CORRUPT_DATA);
1432 nvlist_free(label);
1433 return (0);
1434 }
1435
1436 nvlist_free(label);
1437
1438 /*
1439 * If this is a verbatim import, no need to check the
1440 * state of the pool.
1441 */
1442 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1443 spa_load_state(spa) == SPA_LOAD_OPEN &&
1444 state != POOL_STATE_ACTIVE)
1445 return (SET_ERROR(EBADF));
1446
1447 /*
1448 * If we were able to open and validate a vdev that was
1449 * previously marked permanently unavailable, clear that state
1450 * now.
1451 */
1452 if (vd->vdev_not_present)
1453 vd->vdev_not_present = 0;
1454 }
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * Close a virtual device.
1461 */
1462 void
vdev_close(vdev_t * vd)1463 vdev_close(vdev_t *vd)
1464 {
1465 spa_t *spa = vd->vdev_spa;
1466 vdev_t *pvd = vd->vdev_parent;
1467
1468 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1469
1470 /*
1471 * If our parent is reopening, then we are as well, unless we are
1472 * going offline.
1473 */
1474 if (pvd != NULL && pvd->vdev_reopening)
1475 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1476
1477 vd->vdev_ops->vdev_op_close(vd);
1478
1479 vdev_cache_purge(vd);
1480
1481 /*
1482 * We record the previous state before we close it, so that if we are
1483 * doing a reopen(), we don't generate FMA ereports if we notice that
1484 * it's still faulted.
1485 */
1486 vd->vdev_prevstate = vd->vdev_state;
1487
1488 if (vd->vdev_offline)
1489 vd->vdev_state = VDEV_STATE_OFFLINE;
1490 else
1491 vd->vdev_state = VDEV_STATE_CLOSED;
1492 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1493 }
1494
1495 void
vdev_hold(vdev_t * vd)1496 vdev_hold(vdev_t *vd)
1497 {
1498 spa_t *spa = vd->vdev_spa;
1499
1500 ASSERT(spa_is_root(spa));
1501 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1502 return;
1503
1504 for (int c = 0; c < vd->vdev_children; c++)
1505 vdev_hold(vd->vdev_child[c]);
1506
1507 if (vd->vdev_ops->vdev_op_leaf)
1508 vd->vdev_ops->vdev_op_hold(vd);
1509 }
1510
1511 void
vdev_rele(vdev_t * vd)1512 vdev_rele(vdev_t *vd)
1513 {
1514 spa_t *spa = vd->vdev_spa;
1515
1516 ASSERT(spa_is_root(spa));
1517 for (int c = 0; c < vd->vdev_children; c++)
1518 vdev_rele(vd->vdev_child[c]);
1519
1520 if (vd->vdev_ops->vdev_op_leaf)
1521 vd->vdev_ops->vdev_op_rele(vd);
1522 }
1523
1524 /*
1525 * Reopen all interior vdevs and any unopened leaves. We don't actually
1526 * reopen leaf vdevs which had previously been opened as they might deadlock
1527 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1528 * If the leaf has never been opened then open it, as usual.
1529 */
1530 void
vdev_reopen(vdev_t * vd)1531 vdev_reopen(vdev_t *vd)
1532 {
1533 spa_t *spa = vd->vdev_spa;
1534
1535 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1536
1537 /* set the reopening flag unless we're taking the vdev offline */
1538 vd->vdev_reopening = !vd->vdev_offline;
1539 vdev_close(vd);
1540 (void) vdev_open(vd);
1541
1542 /*
1543 * Call vdev_validate() here to make sure we have the same device.
1544 * Otherwise, a device with an invalid label could be successfully
1545 * opened in response to vdev_reopen().
1546 */
1547 if (vd->vdev_aux) {
1548 (void) vdev_validate_aux(vd);
1549 if (vdev_readable(vd) && vdev_writeable(vd) &&
1550 vd->vdev_aux == &spa->spa_l2cache &&
1551 !l2arc_vdev_present(vd)) {
1552 /*
1553 * When reopening we can assume persistent L2ARC is
1554 * supported, since we've already opened the device
1555 * in the past and prepended an L2ARC uberblock.
1556 */
1557 l2arc_add_vdev(spa, vd, B_TRUE);
1558 }
1559 } else {
1560 (void) vdev_validate(vd, B_TRUE);
1561 }
1562
1563 /*
1564 * Reassess parent vdev's health.
1565 */
1566 vdev_propagate_state(vd);
1567 }
1568
1569 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)1570 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1571 {
1572 int error;
1573
1574 /*
1575 * Normally, partial opens (e.g. of a mirror) are allowed.
1576 * For a create, however, we want to fail the request if
1577 * there are any components we can't open.
1578 */
1579 error = vdev_open(vd);
1580
1581 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1582 vdev_close(vd);
1583 return (error ? error : ENXIO);
1584 }
1585
1586 /*
1587 * Recursively load DTLs and initialize all labels.
1588 */
1589 if ((error = vdev_dtl_load(vd)) != 0 ||
1590 (error = vdev_label_init(vd, txg, isreplacing ?
1591 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1592 vdev_close(vd);
1593 return (error);
1594 }
1595
1596 return (0);
1597 }
1598
1599 void
vdev_metaslab_set_size(vdev_t * vd)1600 vdev_metaslab_set_size(vdev_t *vd)
1601 {
1602 /*
1603 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1604 */
1605 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1606 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1607 }
1608
1609 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)1610 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1611 {
1612 ASSERT(vd == vd->vdev_top);
1613 ASSERT(!vd->vdev_ishole);
1614 ASSERT(ISP2(flags));
1615 ASSERT(spa_writeable(vd->vdev_spa));
1616
1617 if (flags & VDD_METASLAB)
1618 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1619
1620 if (flags & VDD_DTL)
1621 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1622
1623 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1624 }
1625
1626 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)1627 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1628 {
1629 for (int c = 0; c < vd->vdev_children; c++)
1630 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1631
1632 if (vd->vdev_ops->vdev_op_leaf)
1633 vdev_dirty(vd->vdev_top, flags, vd, txg);
1634 }
1635
1636 /*
1637 * DTLs.
1638 *
1639 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1640 * the vdev has less than perfect replication. There are four kinds of DTL:
1641 *
1642 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1643 *
1644 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1645 *
1646 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1647 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1648 * txgs that was scrubbed.
1649 *
1650 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1651 * persistent errors or just some device being offline.
1652 * Unlike the other three, the DTL_OUTAGE map is not generally
1653 * maintained; it's only computed when needed, typically to
1654 * determine whether a device can be detached.
1655 *
1656 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1657 * either has the data or it doesn't.
1658 *
1659 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1660 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1661 * if any child is less than fully replicated, then so is its parent.
1662 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1663 * comprising only those txgs which appear in 'maxfaults' or more children;
1664 * those are the txgs we don't have enough replication to read. For example,
1665 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1666 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1667 * two child DTL_MISSING maps.
1668 *
1669 * It should be clear from the above that to compute the DTLs and outage maps
1670 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1671 * Therefore, that is all we keep on disk. When loading the pool, or after
1672 * a configuration change, we generate all other DTLs from first principles.
1673 */
1674 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1675 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1676 {
1677 range_tree_t *rt = vd->vdev_dtl[t];
1678
1679 ASSERT(t < DTL_TYPES);
1680 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1681 ASSERT(spa_writeable(vd->vdev_spa));
1682
1683 mutex_enter(rt->rt_lock);
1684 if (!range_tree_contains(rt, txg, size))
1685 range_tree_add(rt, txg, size);
1686 mutex_exit(rt->rt_lock);
1687 }
1688
1689 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1690 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1691 {
1692 range_tree_t *rt = vd->vdev_dtl[t];
1693 boolean_t dirty = B_FALSE;
1694
1695 ASSERT(t < DTL_TYPES);
1696 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1697
1698 mutex_enter(rt->rt_lock);
1699 if (range_tree_space(rt) != 0)
1700 dirty = range_tree_contains(rt, txg, size);
1701 mutex_exit(rt->rt_lock);
1702
1703 return (dirty);
1704 }
1705
1706 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)1707 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1708 {
1709 range_tree_t *rt = vd->vdev_dtl[t];
1710 boolean_t empty;
1711
1712 mutex_enter(rt->rt_lock);
1713 empty = (range_tree_space(rt) == 0);
1714 mutex_exit(rt->rt_lock);
1715
1716 return (empty);
1717 }
1718
1719 /*
1720 * Returns the lowest txg in the DTL range.
1721 */
1722 static uint64_t
vdev_dtl_min(vdev_t * vd)1723 vdev_dtl_min(vdev_t *vd)
1724 {
1725 range_seg_t *rs;
1726
1727 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1728 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1729 ASSERT0(vd->vdev_children);
1730
1731 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1732 return (rs->rs_start - 1);
1733 }
1734
1735 /*
1736 * Returns the highest txg in the DTL.
1737 */
1738 static uint64_t
vdev_dtl_max(vdev_t * vd)1739 vdev_dtl_max(vdev_t *vd)
1740 {
1741 range_seg_t *rs;
1742
1743 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1744 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1745 ASSERT0(vd->vdev_children);
1746
1747 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1748 return (rs->rs_end);
1749 }
1750
1751 /*
1752 * Determine if a resilvering vdev should remove any DTL entries from
1753 * its range. If the vdev was resilvering for the entire duration of the
1754 * scan then it should excise that range from its DTLs. Otherwise, this
1755 * vdev is considered partially resilvered and should leave its DTL
1756 * entries intact. The comment in vdev_dtl_reassess() describes how we
1757 * excise the DTLs.
1758 */
1759 static boolean_t
vdev_dtl_should_excise(vdev_t * vd)1760 vdev_dtl_should_excise(vdev_t *vd)
1761 {
1762 spa_t *spa = vd->vdev_spa;
1763 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1764
1765 ASSERT0(scn->scn_phys.scn_errors);
1766 ASSERT0(vd->vdev_children);
1767
1768 if (vd->vdev_resilver_txg == 0 ||
1769 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1770 return (B_TRUE);
1771
1772 /*
1773 * When a resilver is initiated the scan will assign the scn_max_txg
1774 * value to the highest txg value that exists in all DTLs. If this
1775 * device's max DTL is not part of this scan (i.e. it is not in
1776 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1777 * for excision.
1778 */
1779 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1780 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1781 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1782 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1783 return (B_TRUE);
1784 }
1785 return (B_FALSE);
1786 }
1787
1788 /*
1789 * Reassess DTLs after a config change or scrub completion.
1790 */
1791 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,int scrub_done)1792 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1793 {
1794 spa_t *spa = vd->vdev_spa;
1795 avl_tree_t reftree;
1796 int minref;
1797
1798 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1799
1800 for (int c = 0; c < vd->vdev_children; c++)
1801 vdev_dtl_reassess(vd->vdev_child[c], txg,
1802 scrub_txg, scrub_done);
1803
1804 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1805 return;
1806
1807 if (vd->vdev_ops->vdev_op_leaf) {
1808 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1809
1810 mutex_enter(&vd->vdev_dtl_lock);
1811
1812 /*
1813 * If we've completed a scan cleanly then determine
1814 * if this vdev should remove any DTLs. We only want to
1815 * excise regions on vdevs that were available during
1816 * the entire duration of this scan.
1817 */
1818 if (scrub_txg != 0 &&
1819 (spa->spa_scrub_started ||
1820 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1821 vdev_dtl_should_excise(vd)) {
1822 /*
1823 * We completed a scrub up to scrub_txg. If we
1824 * did it without rebooting, then the scrub dtl
1825 * will be valid, so excise the old region and
1826 * fold in the scrub dtl. Otherwise, leave the
1827 * dtl as-is if there was an error.
1828 *
1829 * There's little trick here: to excise the beginning
1830 * of the DTL_MISSING map, we put it into a reference
1831 * tree and then add a segment with refcnt -1 that
1832 * covers the range [0, scrub_txg). This means
1833 * that each txg in that range has refcnt -1 or 0.
1834 * We then add DTL_SCRUB with a refcnt of 2, so that
1835 * entries in the range [0, scrub_txg) will have a
1836 * positive refcnt -- either 1 or 2. We then convert
1837 * the reference tree into the new DTL_MISSING map.
1838 */
1839 space_reftree_create(&reftree);
1840 space_reftree_add_map(&reftree,
1841 vd->vdev_dtl[DTL_MISSING], 1);
1842 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1843 space_reftree_add_map(&reftree,
1844 vd->vdev_dtl[DTL_SCRUB], 2);
1845 space_reftree_generate_map(&reftree,
1846 vd->vdev_dtl[DTL_MISSING], 1);
1847 space_reftree_destroy(&reftree);
1848 }
1849 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1850 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1851 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1852 if (scrub_done)
1853 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1854 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1855 if (!vdev_readable(vd))
1856 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1857 else
1858 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1859 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1860
1861 /*
1862 * If the vdev was resilvering and no longer has any
1863 * DTLs then reset its resilvering flag.
1864 */
1865 if (vd->vdev_resilver_txg != 0 &&
1866 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1867 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1868 vd->vdev_resilver_txg = 0;
1869
1870 mutex_exit(&vd->vdev_dtl_lock);
1871
1872 if (txg != 0)
1873 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1874 return;
1875 }
1876
1877 mutex_enter(&vd->vdev_dtl_lock);
1878 for (int t = 0; t < DTL_TYPES; t++) {
1879 /* account for child's outage in parent's missing map */
1880 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1881 if (t == DTL_SCRUB)
1882 continue; /* leaf vdevs only */
1883 if (t == DTL_PARTIAL)
1884 minref = 1; /* i.e. non-zero */
1885 else if (vd->vdev_nparity != 0)
1886 minref = vd->vdev_nparity + 1; /* RAID-Z */
1887 else
1888 minref = vd->vdev_children; /* any kind of mirror */
1889 space_reftree_create(&reftree);
1890 for (int c = 0; c < vd->vdev_children; c++) {
1891 vdev_t *cvd = vd->vdev_child[c];
1892 mutex_enter(&cvd->vdev_dtl_lock);
1893 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1894 mutex_exit(&cvd->vdev_dtl_lock);
1895 }
1896 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1897 space_reftree_destroy(&reftree);
1898 }
1899 mutex_exit(&vd->vdev_dtl_lock);
1900 }
1901
1902 int
vdev_dtl_load(vdev_t * vd)1903 vdev_dtl_load(vdev_t *vd)
1904 {
1905 spa_t *spa = vd->vdev_spa;
1906 objset_t *mos = spa->spa_meta_objset;
1907 int error = 0;
1908
1909 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1910 ASSERT(!vd->vdev_ishole);
1911
1912 error = space_map_open(&vd->vdev_dtl_sm, mos,
1913 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1914 if (error)
1915 return (error);
1916 ASSERT(vd->vdev_dtl_sm != NULL);
1917
1918 mutex_enter(&vd->vdev_dtl_lock);
1919
1920 /*
1921 * Now that we've opened the space_map we need to update
1922 * the in-core DTL.
1923 */
1924 space_map_update(vd->vdev_dtl_sm);
1925
1926 error = space_map_load(vd->vdev_dtl_sm,
1927 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1928 mutex_exit(&vd->vdev_dtl_lock);
1929
1930 return (error);
1931 }
1932
1933 for (int c = 0; c < vd->vdev_children; c++) {
1934 error = vdev_dtl_load(vd->vdev_child[c]);
1935 if (error != 0)
1936 break;
1937 }
1938
1939 return (error);
1940 }
1941
1942 void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)1943 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1944 {
1945 spa_t *spa = vd->vdev_spa;
1946 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1947 objset_t *mos = spa->spa_meta_objset;
1948 range_tree_t *rtsync;
1949 kmutex_t rtlock;
1950 dmu_tx_t *tx;
1951 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1952
1953 ASSERT(!vd->vdev_ishole);
1954 ASSERT(vd->vdev_ops->vdev_op_leaf);
1955
1956 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1957
1958 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1959 mutex_enter(&vd->vdev_dtl_lock);
1960 space_map_free(vd->vdev_dtl_sm, tx);
1961 space_map_close(vd->vdev_dtl_sm);
1962 vd->vdev_dtl_sm = NULL;
1963 mutex_exit(&vd->vdev_dtl_lock);
1964 dmu_tx_commit(tx);
1965 return;
1966 }
1967
1968 if (vd->vdev_dtl_sm == NULL) {
1969 uint64_t new_object;
1970
1971 new_object = space_map_alloc(mos, tx);
1972 VERIFY3U(new_object, !=, 0);
1973
1974 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1975 0, -1ULL, 0, &vd->vdev_dtl_lock));
1976 ASSERT(vd->vdev_dtl_sm != NULL);
1977 }
1978
1979 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1980
1981 rtsync = range_tree_create(NULL, NULL, &rtlock);
1982
1983 mutex_enter(&rtlock);
1984
1985 mutex_enter(&vd->vdev_dtl_lock);
1986 range_tree_walk(rt, range_tree_add, rtsync);
1987 mutex_exit(&vd->vdev_dtl_lock);
1988
1989 space_map_truncate(vd->vdev_dtl_sm, tx);
1990 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1991 range_tree_vacate(rtsync, NULL, NULL);
1992
1993 range_tree_destroy(rtsync);
1994
1995 mutex_exit(&rtlock);
1996 mutex_destroy(&rtlock);
1997
1998 /*
1999 * If the object for the space map has changed then dirty
2000 * the top level so that we update the config.
2001 */
2002 if (object != space_map_object(vd->vdev_dtl_sm)) {
2003 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2004 "new object %llu", txg, spa_name(spa), object,
2005 space_map_object(vd->vdev_dtl_sm));
2006 vdev_config_dirty(vd->vdev_top);
2007 }
2008
2009 dmu_tx_commit(tx);
2010
2011 mutex_enter(&vd->vdev_dtl_lock);
2012 space_map_update(vd->vdev_dtl_sm);
2013 mutex_exit(&vd->vdev_dtl_lock);
2014 }
2015
2016 /*
2017 * Determine whether the specified vdev can be offlined/detached/removed
2018 * without losing data.
2019 */
2020 boolean_t
vdev_dtl_required(vdev_t * vd)2021 vdev_dtl_required(vdev_t *vd)
2022 {
2023 spa_t *spa = vd->vdev_spa;
2024 vdev_t *tvd = vd->vdev_top;
2025 uint8_t cant_read = vd->vdev_cant_read;
2026 boolean_t required;
2027
2028 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2029
2030 if (vd == spa->spa_root_vdev || vd == tvd)
2031 return (B_TRUE);
2032
2033 /*
2034 * Temporarily mark the device as unreadable, and then determine
2035 * whether this results in any DTL outages in the top-level vdev.
2036 * If not, we can safely offline/detach/remove the device.
2037 */
2038 vd->vdev_cant_read = B_TRUE;
2039 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2040 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2041 vd->vdev_cant_read = cant_read;
2042 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2043
2044 if (!required && zio_injection_enabled)
2045 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2046
2047 return (required);
2048 }
2049
2050 /*
2051 * Determine if resilver is needed, and if so the txg range.
2052 */
2053 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)2054 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2055 {
2056 boolean_t needed = B_FALSE;
2057 uint64_t thismin = UINT64_MAX;
2058 uint64_t thismax = 0;
2059
2060 if (vd->vdev_children == 0) {
2061 mutex_enter(&vd->vdev_dtl_lock);
2062 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2063 vdev_writeable(vd)) {
2064
2065 thismin = vdev_dtl_min(vd);
2066 thismax = vdev_dtl_max(vd);
2067 needed = B_TRUE;
2068 }
2069 mutex_exit(&vd->vdev_dtl_lock);
2070 } else {
2071 for (int c = 0; c < vd->vdev_children; c++) {
2072 vdev_t *cvd = vd->vdev_child[c];
2073 uint64_t cmin, cmax;
2074
2075 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2076 thismin = MIN(thismin, cmin);
2077 thismax = MAX(thismax, cmax);
2078 needed = B_TRUE;
2079 }
2080 }
2081 }
2082
2083 if (needed && minp) {
2084 *minp = thismin;
2085 *maxp = thismax;
2086 }
2087 return (needed);
2088 }
2089
2090 void
vdev_load(vdev_t * vd)2091 vdev_load(vdev_t *vd)
2092 {
2093 /*
2094 * Recursively load all children.
2095 */
2096 for (int c = 0; c < vd->vdev_children; c++)
2097 vdev_load(vd->vdev_child[c]);
2098
2099 /*
2100 * If this is a top-level vdev, initialize its metaslabs.
2101 */
2102 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2103 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2104 vdev_metaslab_init(vd, 0) != 0))
2105 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2106 VDEV_AUX_CORRUPT_DATA);
2107
2108 /*
2109 * If this is a leaf vdev, load its DTL.
2110 */
2111 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2112 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2113 VDEV_AUX_CORRUPT_DATA);
2114 }
2115
2116 /*
2117 * The special vdev case is used for hot spares and l2cache devices. Its
2118 * sole purpose it to set the vdev state for the associated vdev. To do this,
2119 * we make sure that we can open the underlying device, then try to read the
2120 * label, and make sure that the label is sane and that it hasn't been
2121 * repurposed to another pool.
2122 */
2123 int
vdev_validate_aux(vdev_t * vd)2124 vdev_validate_aux(vdev_t *vd)
2125 {
2126 nvlist_t *label;
2127 uint64_t guid, version;
2128 uint64_t state;
2129
2130 if (!vdev_readable(vd))
2131 return (0);
2132
2133 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2134 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2135 VDEV_AUX_CORRUPT_DATA);
2136 return (-1);
2137 }
2138
2139 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2140 !SPA_VERSION_IS_SUPPORTED(version) ||
2141 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2142 guid != vd->vdev_guid ||
2143 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2144 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2145 VDEV_AUX_CORRUPT_DATA);
2146 nvlist_free(label);
2147 return (-1);
2148 }
2149
2150 /*
2151 * We don't actually check the pool state here. If it's in fact in
2152 * use by another pool, we update this fact on the fly when requested.
2153 */
2154 nvlist_free(label);
2155 return (0);
2156 }
2157
2158 void
vdev_remove(vdev_t * vd,uint64_t txg)2159 vdev_remove(vdev_t *vd, uint64_t txg)
2160 {
2161 spa_t *spa = vd->vdev_spa;
2162 objset_t *mos = spa->spa_meta_objset;
2163 dmu_tx_t *tx;
2164
2165 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2166
2167 if (vd->vdev_ms != NULL) {
2168 metaslab_group_t *mg = vd->vdev_mg;
2169
2170 metaslab_group_histogram_verify(mg);
2171 metaslab_class_histogram_verify(mg->mg_class);
2172
2173 for (int m = 0; m < vd->vdev_ms_count; m++) {
2174 metaslab_t *msp = vd->vdev_ms[m];
2175
2176 if (msp == NULL || msp->ms_sm == NULL)
2177 continue;
2178
2179 mutex_enter(&msp->ms_lock);
2180 /*
2181 * If the metaslab was not loaded when the vdev
2182 * was removed then the histogram accounting may
2183 * not be accurate. Update the histogram information
2184 * here so that we ensure that the metaslab group
2185 * and metaslab class are up-to-date.
2186 */
2187 metaslab_group_histogram_remove(mg, msp);
2188
2189 VERIFY0(space_map_allocated(msp->ms_sm));
2190 space_map_free(msp->ms_sm, tx);
2191 space_map_close(msp->ms_sm);
2192 msp->ms_sm = NULL;
2193 mutex_exit(&msp->ms_lock);
2194 }
2195
2196 metaslab_group_histogram_verify(mg);
2197 metaslab_class_histogram_verify(mg->mg_class);
2198 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2199 ASSERT0(mg->mg_histogram[i]);
2200
2201 }
2202
2203 if (vd->vdev_ms_array) {
2204 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2205 vd->vdev_ms_array = 0;
2206 }
2207 dmu_tx_commit(tx);
2208 }
2209
2210 void
vdev_sync_done(vdev_t * vd,uint64_t txg)2211 vdev_sync_done(vdev_t *vd, uint64_t txg)
2212 {
2213 metaslab_t *msp;
2214 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2215
2216 ASSERT(!vd->vdev_ishole);
2217
2218 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2219 metaslab_sync_done(msp, txg);
2220
2221 if (reassess)
2222 metaslab_sync_reassess(vd->vdev_mg);
2223 }
2224
2225 void
vdev_sync(vdev_t * vd,uint64_t txg)2226 vdev_sync(vdev_t *vd, uint64_t txg)
2227 {
2228 spa_t *spa = vd->vdev_spa;
2229 vdev_t *lvd;
2230 metaslab_t *msp;
2231 dmu_tx_t *tx;
2232
2233 ASSERT(!vd->vdev_ishole);
2234
2235 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2236 ASSERT(vd == vd->vdev_top);
2237 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2238 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2239 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2240 ASSERT(vd->vdev_ms_array != 0);
2241 vdev_config_dirty(vd);
2242 dmu_tx_commit(tx);
2243 }
2244
2245 /*
2246 * Remove the metadata associated with this vdev once it's empty.
2247 */
2248 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2249 vdev_remove(vd, txg);
2250
2251 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2252 metaslab_sync(msp, txg);
2253 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2254 }
2255
2256 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2257 vdev_dtl_sync(lvd, txg);
2258
2259 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2260 }
2261
2262 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)2263 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2264 {
2265 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2266 }
2267
2268 /*
2269 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2270 * not be opened, and no I/O is attempted.
2271 */
2272 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)2273 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2274 {
2275 vdev_t *vd, *tvd;
2276
2277 spa_vdev_state_enter(spa, SCL_NONE);
2278
2279 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2280 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2281
2282 if (!vd->vdev_ops->vdev_op_leaf)
2283 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2284
2285 tvd = vd->vdev_top;
2286
2287 /*
2288 * We don't directly use the aux state here, but if we do a
2289 * vdev_reopen(), we need this value to be present to remember why we
2290 * were faulted.
2291 */
2292 vd->vdev_label_aux = aux;
2293
2294 /*
2295 * Faulted state takes precedence over degraded.
2296 */
2297 vd->vdev_delayed_close = B_FALSE;
2298 vd->vdev_faulted = 1ULL;
2299 vd->vdev_degraded = 0ULL;
2300 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2301
2302 /*
2303 * If this device has the only valid copy of the data, then
2304 * back off and simply mark the vdev as degraded instead.
2305 */
2306 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2307 vd->vdev_degraded = 1ULL;
2308 vd->vdev_faulted = 0ULL;
2309
2310 /*
2311 * If we reopen the device and it's not dead, only then do we
2312 * mark it degraded.
2313 */
2314 vdev_reopen(tvd);
2315
2316 if (vdev_readable(vd))
2317 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2318 }
2319
2320 return (spa_vdev_state_exit(spa, vd, 0));
2321 }
2322
2323 /*
2324 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2325 * user that something is wrong. The vdev continues to operate as normal as far
2326 * as I/O is concerned.
2327 */
2328 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)2329 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2330 {
2331 vdev_t *vd;
2332
2333 spa_vdev_state_enter(spa, SCL_NONE);
2334
2335 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2336 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2337
2338 if (!vd->vdev_ops->vdev_op_leaf)
2339 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2340
2341 /*
2342 * If the vdev is already faulted, then don't do anything.
2343 */
2344 if (vd->vdev_faulted || vd->vdev_degraded)
2345 return (spa_vdev_state_exit(spa, NULL, 0));
2346
2347 vd->vdev_degraded = 1ULL;
2348 if (!vdev_is_dead(vd))
2349 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2350 aux);
2351
2352 return (spa_vdev_state_exit(spa, vd, 0));
2353 }
2354
2355 /*
2356 * Online the given vdev.
2357 *
2358 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2359 * spare device should be detached when the device finishes resilvering.
2360 * Second, the online should be treated like a 'test' online case, so no FMA
2361 * events are generated if the device fails to open.
2362 */
2363 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)2364 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2365 {
2366 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2367 boolean_t postevent = B_FALSE;
2368
2369 spa_vdev_state_enter(spa, SCL_NONE);
2370
2371 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2372 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2373
2374 if (!vd->vdev_ops->vdev_op_leaf)
2375 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2376
2377 postevent =
2378 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2379 B_TRUE : B_FALSE;
2380
2381 tvd = vd->vdev_top;
2382 vd->vdev_offline = B_FALSE;
2383 vd->vdev_tmpoffline = B_FALSE;
2384 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2385 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2386
2387 /* XXX - L2ARC 1.0 does not support expansion */
2388 if (!vd->vdev_aux) {
2389 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2390 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2391 }
2392
2393 vdev_reopen(tvd);
2394 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2395
2396 if (!vd->vdev_aux) {
2397 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2398 pvd->vdev_expanding = B_FALSE;
2399 }
2400
2401 if (newstate)
2402 *newstate = vd->vdev_state;
2403 if ((flags & ZFS_ONLINE_UNSPARE) &&
2404 !vdev_is_dead(vd) && vd->vdev_parent &&
2405 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2406 vd->vdev_parent->vdev_child[0] == vd)
2407 vd->vdev_unspare = B_TRUE;
2408
2409 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2410
2411 /* XXX - L2ARC 1.0 does not support expansion */
2412 if (vd->vdev_aux)
2413 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2414 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2415 }
2416
2417 if (postevent)
2418 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2419
2420 return (spa_vdev_state_exit(spa, vd, 0));
2421 }
2422
2423 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)2424 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2425 {
2426 vdev_t *vd, *tvd;
2427 int error = 0;
2428 uint64_t generation;
2429 metaslab_group_t *mg;
2430
2431 top:
2432 spa_vdev_state_enter(spa, SCL_ALLOC);
2433
2434 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2435 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2436
2437 if (!vd->vdev_ops->vdev_op_leaf)
2438 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2439
2440 tvd = vd->vdev_top;
2441 mg = tvd->vdev_mg;
2442 generation = spa->spa_config_generation + 1;
2443
2444 /*
2445 * If the device isn't already offline, try to offline it.
2446 */
2447 if (!vd->vdev_offline) {
2448 /*
2449 * If this device has the only valid copy of some data,
2450 * don't allow it to be offlined. Log devices are always
2451 * expendable.
2452 */
2453 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2454 vdev_dtl_required(vd))
2455 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2456
2457 /*
2458 * If the top-level is a slog and it has had allocations
2459 * then proceed. We check that the vdev's metaslab group
2460 * is not NULL since it's possible that we may have just
2461 * added this vdev but not yet initialized its metaslabs.
2462 */
2463 if (tvd->vdev_islog && mg != NULL) {
2464 /*
2465 * Prevent any future allocations.
2466 */
2467 metaslab_group_passivate(mg);
2468 (void) spa_vdev_state_exit(spa, vd, 0);
2469
2470 error = spa_offline_log(spa);
2471
2472 spa_vdev_state_enter(spa, SCL_ALLOC);
2473
2474 /*
2475 * Check to see if the config has changed.
2476 */
2477 if (error || generation != spa->spa_config_generation) {
2478 metaslab_group_activate(mg);
2479 if (error)
2480 return (spa_vdev_state_exit(spa,
2481 vd, error));
2482 (void) spa_vdev_state_exit(spa, vd, 0);
2483 goto top;
2484 }
2485 ASSERT0(tvd->vdev_stat.vs_alloc);
2486 }
2487
2488 /*
2489 * Offline this device and reopen its top-level vdev.
2490 * If the top-level vdev is a log device then just offline
2491 * it. Otherwise, if this action results in the top-level
2492 * vdev becoming unusable, undo it and fail the request.
2493 */
2494 vd->vdev_offline = B_TRUE;
2495 vdev_reopen(tvd);
2496
2497 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2498 vdev_is_dead(tvd)) {
2499 vd->vdev_offline = B_FALSE;
2500 vdev_reopen(tvd);
2501 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2502 }
2503
2504 /*
2505 * Add the device back into the metaslab rotor so that
2506 * once we online the device it's open for business.
2507 */
2508 if (tvd->vdev_islog && mg != NULL)
2509 metaslab_group_activate(mg);
2510 }
2511
2512 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2513
2514 return (spa_vdev_state_exit(spa, vd, 0));
2515 }
2516
2517 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)2518 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2519 {
2520 int error;
2521
2522 mutex_enter(&spa->spa_vdev_top_lock);
2523 error = vdev_offline_locked(spa, guid, flags);
2524 mutex_exit(&spa->spa_vdev_top_lock);
2525
2526 return (error);
2527 }
2528
2529 /*
2530 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2531 * vdev_offline(), we assume the spa config is locked. We also clear all
2532 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2533 */
2534 void
vdev_clear(spa_t * spa,vdev_t * vd)2535 vdev_clear(spa_t *spa, vdev_t *vd)
2536 {
2537 vdev_t *rvd = spa->spa_root_vdev;
2538
2539 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2540
2541 if (vd == NULL)
2542 vd = rvd;
2543
2544 vd->vdev_stat.vs_read_errors = 0;
2545 vd->vdev_stat.vs_write_errors = 0;
2546 vd->vdev_stat.vs_checksum_errors = 0;
2547
2548 for (int c = 0; c < vd->vdev_children; c++)
2549 vdev_clear(spa, vd->vdev_child[c]);
2550
2551 /*
2552 * If we're in the FAULTED state or have experienced failed I/O, then
2553 * clear the persistent state and attempt to reopen the device. We
2554 * also mark the vdev config dirty, so that the new faulted state is
2555 * written out to disk.
2556 */
2557 if (vd->vdev_faulted || vd->vdev_degraded ||
2558 !vdev_readable(vd) || !vdev_writeable(vd)) {
2559
2560 /*
2561 * When reopening in reponse to a clear event, it may be due to
2562 * a fmadm repair request. In this case, if the device is
2563 * still broken, we want to still post the ereport again.
2564 */
2565 vd->vdev_forcefault = B_TRUE;
2566
2567 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2568 vd->vdev_cant_read = B_FALSE;
2569 vd->vdev_cant_write = B_FALSE;
2570
2571 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2572
2573 vd->vdev_forcefault = B_FALSE;
2574
2575 if (vd != rvd && vdev_writeable(vd->vdev_top))
2576 vdev_state_dirty(vd->vdev_top);
2577
2578 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2579 spa_async_request(spa, SPA_ASYNC_RESILVER);
2580
2581 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2582 }
2583
2584 /*
2585 * When clearing a FMA-diagnosed fault, we always want to
2586 * unspare the device, as we assume that the original spare was
2587 * done in response to the FMA fault.
2588 */
2589 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2590 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2591 vd->vdev_parent->vdev_child[0] == vd)
2592 vd->vdev_unspare = B_TRUE;
2593 }
2594
2595 boolean_t
vdev_is_dead(vdev_t * vd)2596 vdev_is_dead(vdev_t *vd)
2597 {
2598 /*
2599 * Holes and missing devices are always considered "dead".
2600 * This simplifies the code since we don't have to check for
2601 * these types of devices in the various code paths.
2602 * Instead we rely on the fact that we skip over dead devices
2603 * before issuing I/O to them.
2604 */
2605 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2606 vd->vdev_ops == &vdev_missing_ops);
2607 }
2608
2609 boolean_t
vdev_readable(vdev_t * vd)2610 vdev_readable(vdev_t *vd)
2611 {
2612 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2613 }
2614
2615 boolean_t
vdev_writeable(vdev_t * vd)2616 vdev_writeable(vdev_t *vd)
2617 {
2618 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2619 }
2620
2621 boolean_t
vdev_allocatable(vdev_t * vd)2622 vdev_allocatable(vdev_t *vd)
2623 {
2624 uint64_t state = vd->vdev_state;
2625
2626 /*
2627 * We currently allow allocations from vdevs which may be in the
2628 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2629 * fails to reopen then we'll catch it later when we're holding
2630 * the proper locks. Note that we have to get the vdev state
2631 * in a local variable because although it changes atomically,
2632 * we're asking two separate questions about it.
2633 */
2634 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2635 !vd->vdev_cant_write && !vd->vdev_ishole);
2636 }
2637
2638 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)2639 vdev_accessible(vdev_t *vd, zio_t *zio)
2640 {
2641 ASSERT(zio->io_vd == vd);
2642
2643 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2644 return (B_FALSE);
2645
2646 if (zio->io_type == ZIO_TYPE_READ)
2647 return (!vd->vdev_cant_read);
2648
2649 if (zio->io_type == ZIO_TYPE_WRITE)
2650 return (!vd->vdev_cant_write);
2651
2652 return (B_TRUE);
2653 }
2654
2655 /*
2656 * Get statistics for the given vdev.
2657 */
2658 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)2659 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2660 {
2661 spa_t *spa = vd->vdev_spa;
2662 vdev_t *rvd = spa->spa_root_vdev;
2663
2664 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2665
2666 mutex_enter(&vd->vdev_stat_lock);
2667 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2668 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2669 vs->vs_state = vd->vdev_state;
2670 vs->vs_rsize = vdev_get_min_asize(vd);
2671 if (vd->vdev_ops->vdev_op_leaf)
2672 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2673 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2674 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2675 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2676 }
2677
2678 /*
2679 * If we're getting stats on the root vdev, aggregate the I/O counts
2680 * over all top-level vdevs (i.e. the direct children of the root).
2681 */
2682 if (vd == rvd) {
2683 for (int c = 0; c < rvd->vdev_children; c++) {
2684 vdev_t *cvd = rvd->vdev_child[c];
2685 vdev_stat_t *cvs = &cvd->vdev_stat;
2686
2687 for (int t = 0; t < ZIO_TYPES; t++) {
2688 vs->vs_ops[t] += cvs->vs_ops[t];
2689 vs->vs_bytes[t] += cvs->vs_bytes[t];
2690 }
2691 cvs->vs_scan_removing = cvd->vdev_removing;
2692 }
2693 }
2694 mutex_exit(&vd->vdev_stat_lock);
2695 }
2696
2697 void
vdev_clear_stats(vdev_t * vd)2698 vdev_clear_stats(vdev_t *vd)
2699 {
2700 mutex_enter(&vd->vdev_stat_lock);
2701 vd->vdev_stat.vs_space = 0;
2702 vd->vdev_stat.vs_dspace = 0;
2703 vd->vdev_stat.vs_alloc = 0;
2704 mutex_exit(&vd->vdev_stat_lock);
2705 }
2706
2707 void
vdev_scan_stat_init(vdev_t * vd)2708 vdev_scan_stat_init(vdev_t *vd)
2709 {
2710 vdev_stat_t *vs = &vd->vdev_stat;
2711
2712 for (int c = 0; c < vd->vdev_children; c++)
2713 vdev_scan_stat_init(vd->vdev_child[c]);
2714
2715 mutex_enter(&vd->vdev_stat_lock);
2716 vs->vs_scan_processed = 0;
2717 mutex_exit(&vd->vdev_stat_lock);
2718 }
2719
2720 void
vdev_stat_update(zio_t * zio,uint64_t psize)2721 vdev_stat_update(zio_t *zio, uint64_t psize)
2722 {
2723 spa_t *spa = zio->io_spa;
2724 vdev_t *rvd = spa->spa_root_vdev;
2725 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2726 vdev_t *pvd;
2727 uint64_t txg = zio->io_txg;
2728 vdev_stat_t *vs = &vd->vdev_stat;
2729 zio_type_t type = zio->io_type;
2730 int flags = zio->io_flags;
2731
2732 /*
2733 * If this i/o is a gang leader, it didn't do any actual work.
2734 */
2735 if (zio->io_gang_tree)
2736 return;
2737
2738 if (zio->io_error == 0) {
2739 /*
2740 * If this is a root i/o, don't count it -- we've already
2741 * counted the top-level vdevs, and vdev_get_stats() will
2742 * aggregate them when asked. This reduces contention on
2743 * the root vdev_stat_lock and implicitly handles blocks
2744 * that compress away to holes, for which there is no i/o.
2745 * (Holes never create vdev children, so all the counters
2746 * remain zero, which is what we want.)
2747 *
2748 * Note: this only applies to successful i/o (io_error == 0)
2749 * because unlike i/o counts, errors are not additive.
2750 * When reading a ditto block, for example, failure of
2751 * one top-level vdev does not imply a root-level error.
2752 */
2753 if (vd == rvd)
2754 return;
2755
2756 ASSERT(vd == zio->io_vd);
2757
2758 if (flags & ZIO_FLAG_IO_BYPASS)
2759 return;
2760
2761 mutex_enter(&vd->vdev_stat_lock);
2762
2763 if (flags & ZIO_FLAG_IO_REPAIR) {
2764 if (flags & ZIO_FLAG_SCAN_THREAD) {
2765 dsl_scan_phys_t *scn_phys =
2766 &spa->spa_dsl_pool->dp_scan->scn_phys;
2767 uint64_t *processed = &scn_phys->scn_processed;
2768
2769 /* XXX cleanup? */
2770 if (vd->vdev_ops->vdev_op_leaf)
2771 atomic_add_64(processed, psize);
2772 vs->vs_scan_processed += psize;
2773 }
2774
2775 if (flags & ZIO_FLAG_SELF_HEAL)
2776 vs->vs_self_healed += psize;
2777 }
2778
2779 vs->vs_ops[type]++;
2780 vs->vs_bytes[type] += psize;
2781
2782 mutex_exit(&vd->vdev_stat_lock);
2783 return;
2784 }
2785
2786 if (flags & ZIO_FLAG_SPECULATIVE)
2787 return;
2788
2789 /*
2790 * If this is an I/O error that is going to be retried, then ignore the
2791 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2792 * hard errors, when in reality they can happen for any number of
2793 * innocuous reasons (bus resets, MPxIO link failure, etc).
2794 */
2795 if (zio->io_error == EIO &&
2796 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2797 return;
2798
2799 /*
2800 * Intent logs writes won't propagate their error to the root
2801 * I/O so don't mark these types of failures as pool-level
2802 * errors.
2803 */
2804 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2805 return;
2806
2807 mutex_enter(&vd->vdev_stat_lock);
2808 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2809 if (zio->io_error == ECKSUM)
2810 vs->vs_checksum_errors++;
2811 else
2812 vs->vs_read_errors++;
2813 }
2814 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2815 vs->vs_write_errors++;
2816 mutex_exit(&vd->vdev_stat_lock);
2817
2818 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2819 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2820 (flags & ZIO_FLAG_SCAN_THREAD) ||
2821 spa->spa_claiming)) {
2822 /*
2823 * This is either a normal write (not a repair), or it's
2824 * a repair induced by the scrub thread, or it's a repair
2825 * made by zil_claim() during spa_load() in the first txg.
2826 * In the normal case, we commit the DTL change in the same
2827 * txg as the block was born. In the scrub-induced repair
2828 * case, we know that scrubs run in first-pass syncing context,
2829 * so we commit the DTL change in spa_syncing_txg(spa).
2830 * In the zil_claim() case, we commit in spa_first_txg(spa).
2831 *
2832 * We currently do not make DTL entries for failed spontaneous
2833 * self-healing writes triggered by normal (non-scrubbing)
2834 * reads, because we have no transactional context in which to
2835 * do so -- and it's not clear that it'd be desirable anyway.
2836 */
2837 if (vd->vdev_ops->vdev_op_leaf) {
2838 uint64_t commit_txg = txg;
2839 if (flags & ZIO_FLAG_SCAN_THREAD) {
2840 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2841 ASSERT(spa_sync_pass(spa) == 1);
2842 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2843 commit_txg = spa_syncing_txg(spa);
2844 } else if (spa->spa_claiming) {
2845 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2846 commit_txg = spa_first_txg(spa);
2847 }
2848 ASSERT(commit_txg >= spa_syncing_txg(spa));
2849 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2850 return;
2851 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2852 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2853 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2854 }
2855 if (vd != rvd)
2856 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2857 }
2858 }
2859
2860 /*
2861 * Update the in-core space usage stats for this vdev, its metaslab class,
2862 * and the root vdev.
2863 */
2864 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2865 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2866 int64_t space_delta)
2867 {
2868 int64_t dspace_delta = space_delta;
2869 spa_t *spa = vd->vdev_spa;
2870 vdev_t *rvd = spa->spa_root_vdev;
2871 metaslab_group_t *mg = vd->vdev_mg;
2872 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2873
2874 ASSERT(vd == vd->vdev_top);
2875
2876 /*
2877 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2878 * factor. We must calculate this here and not at the root vdev
2879 * because the root vdev's psize-to-asize is simply the max of its
2880 * childrens', thus not accurate enough for us.
2881 */
2882 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2883 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2884 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2885 vd->vdev_deflate_ratio;
2886
2887 mutex_enter(&vd->vdev_stat_lock);
2888 vd->vdev_stat.vs_alloc += alloc_delta;
2889 vd->vdev_stat.vs_space += space_delta;
2890 vd->vdev_stat.vs_dspace += dspace_delta;
2891 mutex_exit(&vd->vdev_stat_lock);
2892
2893 if (mc == spa_normal_class(spa)) {
2894 mutex_enter(&rvd->vdev_stat_lock);
2895 rvd->vdev_stat.vs_alloc += alloc_delta;
2896 rvd->vdev_stat.vs_space += space_delta;
2897 rvd->vdev_stat.vs_dspace += dspace_delta;
2898 mutex_exit(&rvd->vdev_stat_lock);
2899 }
2900
2901 if (mc != NULL) {
2902 ASSERT(rvd == vd->vdev_parent);
2903 ASSERT(vd->vdev_ms_count != 0);
2904
2905 metaslab_class_space_update(mc,
2906 alloc_delta, defer_delta, space_delta, dspace_delta);
2907 }
2908 }
2909
2910 /*
2911 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2912 * so that it will be written out next time the vdev configuration is synced.
2913 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2914 */
2915 void
vdev_config_dirty(vdev_t * vd)2916 vdev_config_dirty(vdev_t *vd)
2917 {
2918 spa_t *spa = vd->vdev_spa;
2919 vdev_t *rvd = spa->spa_root_vdev;
2920 int c;
2921
2922 ASSERT(spa_writeable(spa));
2923
2924 /*
2925 * If this is an aux vdev (as with l2cache and spare devices), then we
2926 * update the vdev config manually and set the sync flag.
2927 */
2928 if (vd->vdev_aux != NULL) {
2929 spa_aux_vdev_t *sav = vd->vdev_aux;
2930 nvlist_t **aux;
2931 uint_t naux;
2932
2933 for (c = 0; c < sav->sav_count; c++) {
2934 if (sav->sav_vdevs[c] == vd)
2935 break;
2936 }
2937
2938 if (c == sav->sav_count) {
2939 /*
2940 * We're being removed. There's nothing more to do.
2941 */
2942 ASSERT(sav->sav_sync == B_TRUE);
2943 return;
2944 }
2945
2946 sav->sav_sync = B_TRUE;
2947
2948 if (nvlist_lookup_nvlist_array(sav->sav_config,
2949 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2950 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2951 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2952 }
2953
2954 ASSERT(c < naux);
2955
2956 /*
2957 * Setting the nvlist in the middle if the array is a little
2958 * sketchy, but it will work.
2959 */
2960 nvlist_free(aux[c]);
2961 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2962
2963 return;
2964 }
2965
2966 /*
2967 * The dirty list is protected by the SCL_CONFIG lock. The caller
2968 * must either hold SCL_CONFIG as writer, or must be the sync thread
2969 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2970 * so this is sufficient to ensure mutual exclusion.
2971 */
2972 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2973 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2974 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2975
2976 if (vd == rvd) {
2977 for (c = 0; c < rvd->vdev_children; c++)
2978 vdev_config_dirty(rvd->vdev_child[c]);
2979 } else {
2980 ASSERT(vd == vd->vdev_top);
2981
2982 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2983 !vd->vdev_ishole)
2984 list_insert_head(&spa->spa_config_dirty_list, vd);
2985 }
2986 }
2987
2988 void
vdev_config_clean(vdev_t * vd)2989 vdev_config_clean(vdev_t *vd)
2990 {
2991 spa_t *spa = vd->vdev_spa;
2992
2993 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2994 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2995 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2996
2997 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2998 list_remove(&spa->spa_config_dirty_list, vd);
2999 }
3000
3001 /*
3002 * Mark a top-level vdev's state as dirty, so that the next pass of
3003 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3004 * the state changes from larger config changes because they require
3005 * much less locking, and are often needed for administrative actions.
3006 */
3007 void
vdev_state_dirty(vdev_t * vd)3008 vdev_state_dirty(vdev_t *vd)
3009 {
3010 spa_t *spa = vd->vdev_spa;
3011
3012 ASSERT(spa_writeable(spa));
3013 ASSERT(vd == vd->vdev_top);
3014
3015 /*
3016 * The state list is protected by the SCL_STATE lock. The caller
3017 * must either hold SCL_STATE as writer, or must be the sync thread
3018 * (which holds SCL_STATE as reader). There's only one sync thread,
3019 * so this is sufficient to ensure mutual exclusion.
3020 */
3021 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3022 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3023 spa_config_held(spa, SCL_STATE, RW_READER)));
3024
3025 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3026 list_insert_head(&spa->spa_state_dirty_list, vd);
3027 }
3028
3029 void
vdev_state_clean(vdev_t * vd)3030 vdev_state_clean(vdev_t *vd)
3031 {
3032 spa_t *spa = vd->vdev_spa;
3033
3034 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3035 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3036 spa_config_held(spa, SCL_STATE, RW_READER)));
3037
3038 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3039 list_remove(&spa->spa_state_dirty_list, vd);
3040 }
3041
3042 /*
3043 * Propagate vdev state up from children to parent.
3044 */
3045 void
vdev_propagate_state(vdev_t * vd)3046 vdev_propagate_state(vdev_t *vd)
3047 {
3048 spa_t *spa = vd->vdev_spa;
3049 vdev_t *rvd = spa->spa_root_vdev;
3050 int degraded = 0, faulted = 0;
3051 int corrupted = 0;
3052 vdev_t *child;
3053
3054 if (vd->vdev_children > 0) {
3055 for (int c = 0; c < vd->vdev_children; c++) {
3056 child = vd->vdev_child[c];
3057
3058 /*
3059 * Don't factor holes into the decision.
3060 */
3061 if (child->vdev_ishole)
3062 continue;
3063
3064 if (!vdev_readable(child) ||
3065 (!vdev_writeable(child) && spa_writeable(spa))) {
3066 /*
3067 * Root special: if there is a top-level log
3068 * device, treat the root vdev as if it were
3069 * degraded.
3070 */
3071 if (child->vdev_islog && vd == rvd)
3072 degraded++;
3073 else
3074 faulted++;
3075 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3076 degraded++;
3077 }
3078
3079 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3080 corrupted++;
3081 }
3082
3083 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3084
3085 /*
3086 * Root special: if there is a top-level vdev that cannot be
3087 * opened due to corrupted metadata, then propagate the root
3088 * vdev's aux state as 'corrupt' rather than 'insufficient
3089 * replicas'.
3090 */
3091 if (corrupted && vd == rvd &&
3092 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3093 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3094 VDEV_AUX_CORRUPT_DATA);
3095 }
3096
3097 if (vd->vdev_parent)
3098 vdev_propagate_state(vd->vdev_parent);
3099 }
3100
3101 /*
3102 * Set a vdev's state. If this is during an open, we don't update the parent
3103 * state, because we're in the process of opening children depth-first.
3104 * Otherwise, we propagate the change to the parent.
3105 *
3106 * If this routine places a device in a faulted state, an appropriate ereport is
3107 * generated.
3108 */
3109 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)3110 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3111 {
3112 uint64_t save_state;
3113 spa_t *spa = vd->vdev_spa;
3114
3115 if (state == vd->vdev_state) {
3116 vd->vdev_stat.vs_aux = aux;
3117 return;
3118 }
3119
3120 save_state = vd->vdev_state;
3121
3122 vd->vdev_state = state;
3123 vd->vdev_stat.vs_aux = aux;
3124
3125 /*
3126 * If we are setting the vdev state to anything but an open state, then
3127 * always close the underlying device unless the device has requested
3128 * a delayed close (i.e. we're about to remove or fault the device).
3129 * Otherwise, we keep accessible but invalid devices open forever.
3130 * We don't call vdev_close() itself, because that implies some extra
3131 * checks (offline, etc) that we don't want here. This is limited to
3132 * leaf devices, because otherwise closing the device will affect other
3133 * children.
3134 */
3135 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3136 vd->vdev_ops->vdev_op_leaf)
3137 vd->vdev_ops->vdev_op_close(vd);
3138
3139 /*
3140 * If we have brought this vdev back into service, we need
3141 * to notify fmd so that it can gracefully repair any outstanding
3142 * cases due to a missing device. We do this in all cases, even those
3143 * that probably don't correlate to a repaired fault. This is sure to
3144 * catch all cases, and we let the zfs-retire agent sort it out. If
3145 * this is a transient state it's OK, as the retire agent will
3146 * double-check the state of the vdev before repairing it.
3147 */
3148 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3149 vd->vdev_prevstate != state)
3150 zfs_post_state_change(spa, vd);
3151
3152 if (vd->vdev_removed &&
3153 state == VDEV_STATE_CANT_OPEN &&
3154 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3155 /*
3156 * If the previous state is set to VDEV_STATE_REMOVED, then this
3157 * device was previously marked removed and someone attempted to
3158 * reopen it. If this failed due to a nonexistent device, then
3159 * keep the device in the REMOVED state. We also let this be if
3160 * it is one of our special test online cases, which is only
3161 * attempting to online the device and shouldn't generate an FMA
3162 * fault.
3163 */
3164 vd->vdev_state = VDEV_STATE_REMOVED;
3165 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3166 } else if (state == VDEV_STATE_REMOVED) {
3167 vd->vdev_removed = B_TRUE;
3168 } else if (state == VDEV_STATE_CANT_OPEN) {
3169 /*
3170 * If we fail to open a vdev during an import or recovery, we
3171 * mark it as "not available", which signifies that it was
3172 * never there to begin with. Failure to open such a device
3173 * is not considered an error.
3174 */
3175 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3176 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3177 vd->vdev_ops->vdev_op_leaf)
3178 vd->vdev_not_present = 1;
3179
3180 /*
3181 * Post the appropriate ereport. If the 'prevstate' field is
3182 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3183 * that this is part of a vdev_reopen(). In this case, we don't
3184 * want to post the ereport if the device was already in the
3185 * CANT_OPEN state beforehand.
3186 *
3187 * If the 'checkremove' flag is set, then this is an attempt to
3188 * online the device in response to an insertion event. If we
3189 * hit this case, then we have detected an insertion event for a
3190 * faulted or offline device that wasn't in the removed state.
3191 * In this scenario, we don't post an ereport because we are
3192 * about to replace the device, or attempt an online with
3193 * vdev_forcefault, which will generate the fault for us.
3194 */
3195 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3196 !vd->vdev_not_present && !vd->vdev_checkremove &&
3197 vd != spa->spa_root_vdev) {
3198 const char *class;
3199
3200 switch (aux) {
3201 case VDEV_AUX_OPEN_FAILED:
3202 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3203 break;
3204 case VDEV_AUX_CORRUPT_DATA:
3205 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3206 break;
3207 case VDEV_AUX_NO_REPLICAS:
3208 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3209 break;
3210 case VDEV_AUX_BAD_GUID_SUM:
3211 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3212 break;
3213 case VDEV_AUX_TOO_SMALL:
3214 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3215 break;
3216 case VDEV_AUX_BAD_LABEL:
3217 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3218 break;
3219 default:
3220 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3221 }
3222
3223 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3224 }
3225
3226 /* Erase any notion of persistent removed state */
3227 vd->vdev_removed = B_FALSE;
3228 } else {
3229 vd->vdev_removed = B_FALSE;
3230 }
3231
3232 if (!isopen && vd->vdev_parent)
3233 vdev_propagate_state(vd->vdev_parent);
3234 }
3235
3236 /*
3237 * Check the vdev configuration to ensure that it's capable of supporting
3238 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3239 * In addition, only a single top-level vdev is allowed and none of the leaves
3240 * can be wholedisks.
3241 */
3242 boolean_t
vdev_is_bootable(vdev_t * vd)3243 vdev_is_bootable(vdev_t *vd)
3244 {
3245 if (!vd->vdev_ops->vdev_op_leaf) {
3246 char *vdev_type = vd->vdev_ops->vdev_op_type;
3247
3248 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3249 vd->vdev_children > 1) {
3250 return (B_FALSE);
3251 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3252 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3253 return (B_FALSE);
3254 }
3255 }
3256
3257 for (int c = 0; c < vd->vdev_children; c++) {
3258 if (!vdev_is_bootable(vd->vdev_child[c]))
3259 return (B_FALSE);
3260 }
3261 return (B_TRUE);
3262 }
3263
3264 /*
3265 * Load the state from the original vdev tree (ovd) which
3266 * we've retrieved from the MOS config object. If the original
3267 * vdev was offline or faulted then we transfer that state to the
3268 * device in the current vdev tree (nvd).
3269 */
3270 void
vdev_load_log_state(vdev_t * nvd,vdev_t * ovd)3271 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3272 {
3273 spa_t *spa = nvd->vdev_spa;
3274
3275 ASSERT(nvd->vdev_top->vdev_islog);
3276 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3277 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3278
3279 for (int c = 0; c < nvd->vdev_children; c++)
3280 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3281
3282 if (nvd->vdev_ops->vdev_op_leaf) {
3283 /*
3284 * Restore the persistent vdev state
3285 */
3286 nvd->vdev_offline = ovd->vdev_offline;
3287 nvd->vdev_faulted = ovd->vdev_faulted;
3288 nvd->vdev_degraded = ovd->vdev_degraded;
3289 nvd->vdev_removed = ovd->vdev_removed;
3290 }
3291 }
3292
3293 /*
3294 * Determine if a log device has valid content. If the vdev was
3295 * removed or faulted in the MOS config then we know that
3296 * the content on the log device has already been written to the pool.
3297 */
3298 boolean_t
vdev_log_state_valid(vdev_t * vd)3299 vdev_log_state_valid(vdev_t *vd)
3300 {
3301 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3302 !vd->vdev_removed)
3303 return (B_TRUE);
3304
3305 for (int c = 0; c < vd->vdev_children; c++)
3306 if (vdev_log_state_valid(vd->vdev_child[c]))
3307 return (B_TRUE);
3308
3309 return (B_FALSE);
3310 }
3311
3312 /*
3313 * Expand a vdev if possible.
3314 */
3315 void
vdev_expand(vdev_t * vd,uint64_t txg)3316 vdev_expand(vdev_t *vd, uint64_t txg)
3317 {
3318 ASSERT(vd->vdev_top == vd);
3319 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3320
3321 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3322 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3323 vdev_config_dirty(vd);
3324 }
3325 }
3326
3327 /*
3328 * Split a vdev.
3329 */
3330 void
vdev_split(vdev_t * vd)3331 vdev_split(vdev_t *vd)
3332 {
3333 vdev_t *cvd, *pvd = vd->vdev_parent;
3334
3335 vdev_remove_child(pvd, vd);
3336 vdev_compact_children(pvd);
3337
3338 cvd = pvd->vdev_child[0];
3339 if (pvd->vdev_children == 1) {
3340 vdev_remove_parent(cvd);
3341 cvd->vdev_splitting = B_TRUE;
3342 }
3343 vdev_propagate_state(cvd);
3344 }
3345
3346 void
vdev_deadman(vdev_t * vd)3347 vdev_deadman(vdev_t *vd)
3348 {
3349 for (int c = 0; c < vd->vdev_children; c++) {
3350 vdev_t *cvd = vd->vdev_child[c];
3351
3352 vdev_deadman(cvd);
3353 }
3354
3355 if (vd->vdev_ops->vdev_op_leaf) {
3356 vdev_queue_t *vq = &vd->vdev_queue;
3357
3358 mutex_enter(&vq->vq_lock);
3359 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3360 spa_t *spa = vd->vdev_spa;
3361 zio_t *fio;
3362 uint64_t delta;
3363
3364 /*
3365 * Look at the head of all the pending queues,
3366 * if any I/O has been outstanding for longer than
3367 * the spa_deadman_synctime we panic the system.
3368 */
3369 fio = avl_first(&vq->vq_active_tree);
3370 delta = gethrtime() - fio->io_timestamp;
3371 if (delta > spa_deadman_synctime(spa)) {
3372 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3373 "delta %lluns, last io %lluns",
3374 fio->io_timestamp, delta,
3375 vq->vq_io_complete_ts);
3376 fm_panic("I/O to pool '%s' appears to be "
3377 "hung.", spa_name(spa));
3378 }
3379 }
3380 mutex_exit(&vq->vq_lock);
3381 }
3382 }
3383