xref: /freebsd/stand/libsa/zfs/zfsimpl.c (revision 4d6801a6b5bdd4d055a00484a743cb4ada659669)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  *	Stand-alone ZFS file reader.
29  */
30 
31 #include <stdbool.h>
32 #include <sys/endian.h>
33 #include <sys/stat.h>
34 #include <sys/stdint.h>
35 #include <sys/list.h>
36 #include <sys/zfs_bootenv.h>
37 #include <machine/_inttypes.h>
38 
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41 
42 #ifdef HAS_ZSTD_ZFS
43 extern int zstd_init(void);
44 #endif
45 
46 struct zfsmount {
47 	char			*path;
48 	const spa_t		*spa;
49 	objset_phys_t		objset;
50 	uint64_t		rootobj;
51 	STAILQ_ENTRY(zfsmount)	next;
52 };
53 
54 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
55 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
56 
57 /*
58  * The indirect_child_t represents the vdev that we will read from, when we
59  * need to read all copies of the data (e.g. for scrub or reconstruction).
60  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
61  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
62  * ic_vdev is a child of the mirror.
63  */
64 typedef struct indirect_child {
65 	void *ic_data;
66 	vdev_t *ic_vdev;
67 } indirect_child_t;
68 
69 /*
70  * The indirect_split_t represents one mapped segment of an i/o to the
71  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
72  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
73  * For split blocks, there will be several of these.
74  */
75 typedef struct indirect_split {
76 	list_node_t is_node; /* link on iv_splits */
77 
78 	/*
79 	 * is_split_offset is the offset into the i/o.
80 	 * This is the sum of the previous splits' is_size's.
81 	 */
82 	uint64_t is_split_offset;
83 
84 	vdev_t *is_vdev; /* top-level vdev */
85 	uint64_t is_target_offset; /* offset on is_vdev */
86 	uint64_t is_size;
87 	int is_children; /* number of entries in is_child[] */
88 
89 	/*
90 	 * is_good_child is the child that we are currently using to
91 	 * attempt reconstruction.
92 	 */
93 	int is_good_child;
94 
95 	indirect_child_t is_child[1]; /* variable-length */
96 } indirect_split_t;
97 
98 /*
99  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
100  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
101  */
102 typedef struct indirect_vsd {
103 	boolean_t iv_split_block;
104 	boolean_t iv_reconstruct;
105 
106 	list_t iv_splits; /* list of indirect_split_t's */
107 } indirect_vsd_t;
108 
109 /*
110  * List of supported read-incompatible ZFS features.  Do not add here features
111  * marked as ZFEATURE_FLAG_READONLY_COMPAT, they are irrelevant for read-only!
112  */
113 static const char *features_for_read[] = {
114 	"com.datto:bookmark_v2",
115 	"com.datto:encryption",
116 	"com.delphix:bookmark_written",
117 	"com.delphix:device_removal",
118 	"com.delphix:embedded_data",
119 	"com.delphix:extensible_dataset",
120 	"com.delphix:head_errlog",
121 	"com.delphix:hole_birth",
122 	"com.joyent:multi_vdev_crash_dump",
123 	"com.klarasystems:vdev_zaps_v2",
124 	"org.freebsd:zstd_compress",
125 	"org.illumos:lz4_compress",
126 	"org.illumos:sha512",
127 	"org.illumos:skein",
128 	"org.open-zfs:large_blocks",
129 	"org.openzfs:blake3",
130 	"org.zfsonlinux:large_dnode",
131 	"com.klarasystems:dynamic_gang_header",
132 	NULL
133 };
134 
135 /*
136  * List of all pools, chained through spa_link.
137  */
138 static spa_list_t zfs_pools;
139 
140 static const dnode_phys_t *dnode_cache_obj;
141 static uint64_t dnode_cache_bn;
142 static char *dnode_cache_buf;
143 
144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
145 static int zio_read_impl(const spa_t *spa, const blkptr_t *bp, void *buf,
146     bool print);
147 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
148 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
149 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
150     const char *name, uint64_t integer_size, uint64_t num_integers,
151     void *value);
152 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
153     dnode_phys_t *);
154 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
155     size_t);
156 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
157     size_t);
158 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
159 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
160     uint64_t);
161 vdev_indirect_mapping_entry_phys_t *
162     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
163     uint64_t, uint64_t *);
164 
165 static void
zfs_init(void)166 zfs_init(void)
167 {
168 	STAILQ_INIT(&zfs_pools);
169 
170 	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
171 
172 	zfs_init_crc();
173 #ifdef HAS_ZSTD_ZFS
174 	zstd_init();
175 #endif
176 }
177 
178 static int
nvlist_check_features_for_read(nvlist_t * nvl)179 nvlist_check_features_for_read(nvlist_t *nvl)
180 {
181 	nvlist_t *features = NULL;
182 	nvs_data_t *data;
183 	nvp_header_t *nvp;
184 	nv_string_t *nvp_name;
185 	int rc;
186 
187 	rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
188 	    DATA_TYPE_NVLIST, NULL, &features, NULL);
189 	switch (rc) {
190 	case 0:
191 		break;		/* Continue with checks */
192 
193 	case ENOENT:
194 		return (0);	/* All features are disabled */
195 
196 	default:
197 		return (rc);	/* Error while reading nvlist */
198 	}
199 
200 	data = (nvs_data_t *)features->nv_data;
201 	nvp = &data->nvl_pair;	/* first pair in nvlist */
202 
203 	while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
204 		int i, found;
205 
206 		nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
207 		found = 0;
208 
209 		for (i = 0; features_for_read[i] != NULL; i++) {
210 			if (memcmp(nvp_name->nv_data, features_for_read[i],
211 			    nvp_name->nv_size) == 0) {
212 				found = 1;
213 				break;
214 			}
215 		}
216 
217 		if (!found) {
218 			printf("ZFS: unsupported feature: %.*s\n",
219 			    nvp_name->nv_size, nvp_name->nv_data);
220 			rc = EIO;
221 		}
222 		nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
223 	}
224 	nvlist_destroy(features);
225 
226 	return (rc);
227 }
228 
229 static int
vdev_read_phys(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t size)230 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
231     off_t offset, size_t size)
232 {
233 	size_t psize;
234 	int rc;
235 
236 	if (vdev->v_phys_read == NULL)
237 		return (ENOTSUP);
238 
239 	if (bp) {
240 		psize = BP_GET_PSIZE(bp);
241 	} else {
242 		psize = size;
243 	}
244 
245 	rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
246 	if (rc == 0) {
247 		if (bp != NULL)
248 			rc = zio_checksum_verify(vdev->v_spa, bp, buf);
249 	}
250 
251 	return (rc);
252 }
253 
254 static int
vdev_write_phys(vdev_t * vdev,void * buf,off_t offset,size_t size)255 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
256 {
257 	if (vdev->v_phys_write == NULL)
258 		return (ENOTSUP);
259 
260 	return (vdev->v_phys_write(vdev, offset, buf, size));
261 }
262 
263 typedef struct remap_segment {
264 	vdev_t *rs_vd;
265 	uint64_t rs_offset;
266 	uint64_t rs_asize;
267 	uint64_t rs_split_offset;
268 	list_node_t rs_node;
269 } remap_segment_t;
270 
271 static remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)272 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
273 {
274 	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
275 
276 	if (rs != NULL) {
277 		rs->rs_vd = vd;
278 		rs->rs_offset = offset;
279 		rs->rs_asize = asize;
280 		rs->rs_split_offset = split_offset;
281 	}
282 
283 	return (rs);
284 }
285 
286 vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t * spa,objset_phys_t * os,uint64_t mapping_object)287 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
288     uint64_t mapping_object)
289 {
290 	vdev_indirect_mapping_t *vim;
291 	vdev_indirect_mapping_phys_t *vim_phys;
292 	int rc;
293 
294 	vim = calloc(1, sizeof (*vim));
295 	if (vim == NULL)
296 		return (NULL);
297 
298 	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
299 	if (vim->vim_dn == NULL) {
300 		free(vim);
301 		return (NULL);
302 	}
303 
304 	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
305 	if (rc != 0) {
306 		free(vim->vim_dn);
307 		free(vim);
308 		return (NULL);
309 	}
310 
311 	vim->vim_spa = spa;
312 	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
313 	if (vim->vim_phys == NULL) {
314 		free(vim->vim_dn);
315 		free(vim);
316 		return (NULL);
317 	}
318 
319 	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
320 	*vim->vim_phys = *vim_phys;
321 
322 	vim->vim_objset = os;
323 	vim->vim_object = mapping_object;
324 	vim->vim_entries = NULL;
325 
326 	vim->vim_havecounts =
327 	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
328 
329 	return (vim);
330 }
331 
332 /*
333  * Compare an offset with an indirect mapping entry; there are three
334  * possible scenarios:
335  *
336  *     1. The offset is "less than" the mapping entry; meaning the
337  *        offset is less than the source offset of the mapping entry. In
338  *        this case, there is no overlap between the offset and the
339  *        mapping entry and -1 will be returned.
340  *
341  *     2. The offset is "greater than" the mapping entry; meaning the
342  *        offset is greater than the mapping entry's source offset plus
343  *        the entry's size. In this case, there is no overlap between
344  *        the offset and the mapping entry and 1 will be returned.
345  *
346  *        NOTE: If the offset is actually equal to the entry's offset
347  *        plus size, this is considered to be "greater" than the entry,
348  *        and this case applies (i.e. 1 will be returned). Thus, the
349  *        entry's "range" can be considered to be inclusive at its
350  *        start, but exclusive at its end: e.g. [src, src + size).
351  *
352  *     3. The last case to consider is if the offset actually falls
353  *        within the mapping entry's range. If this is the case, the
354  *        offset is considered to be "equal to" the mapping entry and
355  *        0 will be returned.
356  *
357  *        NOTE: If the offset is equal to the entry's source offset,
358  *        this case applies and 0 will be returned. If the offset is
359  *        equal to the entry's source plus its size, this case does
360  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
361  *        returned.
362  */
363 static int
dva_mapping_overlap_compare(const void * v_key,const void * v_array_elem)364 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
365 {
366 	const uint64_t *key = v_key;
367 	const vdev_indirect_mapping_entry_phys_t *array_elem =
368 	    v_array_elem;
369 	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
370 
371 	if (*key < src_offset) {
372 		return (-1);
373 	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
374 		return (0);
375 	} else {
376 		return (1);
377 	}
378 }
379 
380 /*
381  * Return array entry.
382  */
383 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t * vim,uint64_t index)384 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
385 {
386 	uint64_t size;
387 	off_t offset = 0;
388 	int rc;
389 
390 	if (vim->vim_phys->vimp_num_entries == 0)
391 		return (NULL);
392 
393 	if (vim->vim_entries == NULL) {
394 		uint64_t bsize;
395 
396 		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
397 		size = vim->vim_phys->vimp_num_entries *
398 		    sizeof (*vim->vim_entries);
399 		if (size > bsize) {
400 			size = bsize / sizeof (*vim->vim_entries);
401 			size *= sizeof (*vim->vim_entries);
402 		}
403 		vim->vim_entries = malloc(size);
404 		if (vim->vim_entries == NULL)
405 			return (NULL);
406 		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
407 		offset = index * sizeof (*vim->vim_entries);
408 	}
409 
410 	/* We have data in vim_entries */
411 	if (offset == 0) {
412 		if (index >= vim->vim_entry_offset &&
413 		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
414 			index -= vim->vim_entry_offset;
415 			return (&vim->vim_entries[index]);
416 		}
417 		offset = index * sizeof (*vim->vim_entries);
418 	}
419 
420 	vim->vim_entry_offset = index;
421 	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
422 	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
423 	    size);
424 	if (rc != 0) {
425 		/* Read error, invalidate vim_entries. */
426 		free(vim->vim_entries);
427 		vim->vim_entries = NULL;
428 		return (NULL);
429 	}
430 	index -= vim->vim_entry_offset;
431 	return (&vim->vim_entries[index]);
432 }
433 
434 /*
435  * Returns the mapping entry for the given offset.
436  *
437  * It's possible that the given offset will not be in the mapping table
438  * (i.e. no mapping entries contain this offset), in which case, the
439  * return value depends on the "next_if_missing" parameter.
440  *
441  * If the offset is not found in the table and "next_if_missing" is
442  * B_FALSE, then NULL will always be returned. The behavior is intended
443  * to allow consumers to get the entry corresponding to the offset
444  * parameter, iff the offset overlaps with an entry in the table.
445  *
446  * If the offset is not found in the table and "next_if_missing" is
447  * B_TRUE, then the entry nearest to the given offset will be returned,
448  * such that the entry's source offset is greater than the offset
449  * passed in (i.e. the "next" mapping entry in the table is returned, if
450  * the offset is missing from the table). If there are no entries whose
451  * source offset is greater than the passed in offset, NULL is returned.
452  */
453 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t * vim,uint64_t offset)454 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
455     uint64_t offset)
456 {
457 	ASSERT(vim->vim_phys->vimp_num_entries > 0);
458 
459 	vdev_indirect_mapping_entry_phys_t *entry;
460 
461 	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
462 	uint64_t base = 0;
463 
464 	/*
465 	 * We don't define these inside of the while loop because we use
466 	 * their value in the case that offset isn't in the mapping.
467 	 */
468 	uint64_t mid;
469 	int result;
470 
471 	while (last >= base) {
472 		mid = base + ((last - base) >> 1);
473 
474 		entry = vdev_indirect_mapping_entry(vim, mid);
475 		if (entry == NULL)
476 			break;
477 		result = dva_mapping_overlap_compare(&offset, entry);
478 
479 		if (result == 0) {
480 			break;
481 		} else if (result < 0) {
482 			last = mid - 1;
483 		} else {
484 			base = mid + 1;
485 		}
486 	}
487 	return (entry);
488 }
489 
490 /*
491  * Given an indirect vdev and an extent on that vdev, it duplicates the
492  * physical entries of the indirect mapping that correspond to the extent
493  * to a new array and returns a pointer to it. In addition, copied_entries
494  * is populated with the number of mapping entries that were duplicated.
495  *
496  * Finally, since we are doing an allocation, it is up to the caller to
497  * free the array allocated in this function.
498  */
499 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)500 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
501     uint64_t asize, uint64_t *copied_entries)
502 {
503 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
504 	vdev_indirect_mapping_t *vim = vd->v_mapping;
505 	uint64_t entries = 0;
506 
507 	vdev_indirect_mapping_entry_phys_t *first_mapping =
508 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
509 	ASSERT3P(first_mapping, !=, NULL);
510 
511 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
512 	while (asize > 0) {
513 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
514 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
515 		uint64_t inner_size = MIN(asize, size - inner_offset);
516 
517 		offset += inner_size;
518 		asize -= inner_size;
519 		entries++;
520 		m++;
521 	}
522 
523 	size_t copy_length = entries * sizeof (*first_mapping);
524 	duplicate_mappings = malloc(copy_length);
525 	if (duplicate_mappings != NULL)
526 		bcopy(first_mapping, duplicate_mappings, copy_length);
527 	else
528 		entries = 0;
529 
530 	*copied_entries = entries;
531 
532 	return (duplicate_mappings);
533 }
534 
535 static vdev_t *
vdev_lookup_top(const spa_t * spa,uint64_t vdev)536 vdev_lookup_top(const spa_t *spa, uint64_t vdev)
537 {
538 	vdev_t *rvd;
539 	vdev_list_t *vlist;
540 
541 	vlist = &spa->spa_root_vdev->v_children;
542 	STAILQ_FOREACH(rvd, vlist, v_childlink)
543 		if (rvd->v_id == vdev)
544 			break;
545 
546 	return (rvd);
547 }
548 
549 /*
550  * This is a callback for vdev_indirect_remap() which allocates an
551  * indirect_split_t for each split segment and adds it to iv_splits.
552  */
553 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)554 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
555     uint64_t size, void *arg)
556 {
557 	int n = 1;
558 	zio_t *zio = arg;
559 	indirect_vsd_t *iv = zio->io_vsd;
560 
561 	if (vd->v_read == vdev_indirect_read)
562 		return;
563 
564 	if (vd->v_read == vdev_mirror_read)
565 		n = vd->v_nchildren;
566 
567 	indirect_split_t *is =
568 	    malloc(offsetof(indirect_split_t, is_child[n]));
569 	if (is == NULL) {
570 		zio->io_error = ENOMEM;
571 		return;
572 	}
573 	bzero(is, offsetof(indirect_split_t, is_child[n]));
574 
575 	is->is_children = n;
576 	is->is_size = size;
577 	is->is_split_offset = split_offset;
578 	is->is_target_offset = offset;
579 	is->is_vdev = vd;
580 
581 	/*
582 	 * Note that we only consider multiple copies of the data for
583 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
584 	 * though they use the same ops as mirror, because there's only one
585 	 * "good" copy under the replacing/spare.
586 	 */
587 	if (vd->v_read == vdev_mirror_read) {
588 		int i = 0;
589 		vdev_t *kid;
590 
591 		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
592 			is->is_child[i++].ic_vdev = kid;
593 		}
594 	} else {
595 		is->is_child[0].ic_vdev = vd;
596 	}
597 
598 	list_insert_tail(&iv->iv_splits, is);
599 }
600 
601 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void * arg)602 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
603 {
604 	list_t stack;
605 	spa_t *spa = vd->v_spa;
606 	zio_t *zio = arg;
607 	remap_segment_t *rs;
608 
609 	list_create(&stack, sizeof (remap_segment_t),
610 	    offsetof(remap_segment_t, rs_node));
611 
612 	rs = rs_alloc(vd, offset, asize, 0);
613 	if (rs == NULL) {
614 		printf("vdev_indirect_remap: out of memory.\n");
615 		zio->io_error = ENOMEM;
616 	}
617 	for (; rs != NULL; rs = list_remove_head(&stack)) {
618 		vdev_t *v = rs->rs_vd;
619 		uint64_t num_entries = 0;
620 		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
621 		vdev_indirect_mapping_entry_phys_t *mapping =
622 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
623 		    rs->rs_offset, rs->rs_asize, &num_entries);
624 
625 		if (num_entries == 0)
626 			zio->io_error = ENOMEM;
627 
628 		for (uint64_t i = 0; i < num_entries; i++) {
629 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
630 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
631 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
632 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
633 			uint64_t inner_offset = rs->rs_offset -
634 			    DVA_MAPPING_GET_SRC_OFFSET(m);
635 			uint64_t inner_size =
636 			    MIN(rs->rs_asize, size - inner_offset);
637 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
638 
639 			if (dst_v->v_read == vdev_indirect_read) {
640 				remap_segment_t *o;
641 
642 				o = rs_alloc(dst_v, dst_offset + inner_offset,
643 				    inner_size, rs->rs_split_offset);
644 				if (o == NULL) {
645 					printf("vdev_indirect_remap: "
646 					    "out of memory.\n");
647 					zio->io_error = ENOMEM;
648 					break;
649 				}
650 
651 				list_insert_head(&stack, o);
652 			}
653 			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
654 			    dst_offset + inner_offset,
655 			    inner_size, arg);
656 
657 			/*
658 			 * vdev_indirect_gather_splits can have memory
659 			 * allocation error, we can not recover from it.
660 			 */
661 			if (zio->io_error != 0)
662 				break;
663 			rs->rs_offset += inner_size;
664 			rs->rs_asize -= inner_size;
665 			rs->rs_split_offset += inner_size;
666 		}
667 
668 		free(mapping);
669 		free(rs);
670 		if (zio->io_error != 0)
671 			break;
672 	}
673 
674 	list_destroy(&stack);
675 }
676 
677 static void
vdev_indirect_map_free(zio_t * zio)678 vdev_indirect_map_free(zio_t *zio)
679 {
680 	indirect_vsd_t *iv = zio->io_vsd;
681 	indirect_split_t *is;
682 
683 	while ((is = list_head(&iv->iv_splits)) != NULL) {
684 		for (int c = 0; c < is->is_children; c++) {
685 			indirect_child_t *ic = &is->is_child[c];
686 			free(ic->ic_data);
687 		}
688 		list_remove(&iv->iv_splits, is);
689 		free(is);
690 	}
691 	free(iv);
692 }
693 
694 static int
vdev_indirect_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)695 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
696     off_t offset, size_t bytes)
697 {
698 	zio_t zio;
699 	spa_t *spa = vdev->v_spa;
700 	indirect_vsd_t *iv;
701 	indirect_split_t *first;
702 	int rc = EIO;
703 
704 	iv = calloc(1, sizeof(*iv));
705 	if (iv == NULL)
706 		return (ENOMEM);
707 
708 	list_create(&iv->iv_splits,
709 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
710 
711 	bzero(&zio, sizeof(zio));
712 	zio.io_spa = spa;
713 	zio.io_bp = (blkptr_t *)bp;
714 	zio.io_data = buf;
715 	zio.io_size = bytes;
716 	zio.io_offset = offset;
717 	zio.io_vd = vdev;
718 	zio.io_vsd = iv;
719 
720 	if (vdev->v_mapping == NULL) {
721 		vdev_indirect_config_t *vic;
722 
723 		vic = &vdev->vdev_indirect_config;
724 		vdev->v_mapping = vdev_indirect_mapping_open(spa,
725 		    spa->spa_mos, vic->vic_mapping_object);
726 	}
727 
728 	vdev_indirect_remap(vdev, offset, bytes, &zio);
729 	if (zio.io_error != 0)
730 		return (zio.io_error);
731 
732 	first = list_head(&iv->iv_splits);
733 	if (first->is_size == zio.io_size) {
734 		/*
735 		 * This is not a split block; we are pointing to the entire
736 		 * data, which will checksum the same as the original data.
737 		 * Pass the BP down so that the child i/o can verify the
738 		 * checksum, and try a different location if available
739 		 * (e.g. on a mirror).
740 		 *
741 		 * While this special case could be handled the same as the
742 		 * general (split block) case, doing it this way ensures
743 		 * that the vast majority of blocks on indirect vdevs
744 		 * (which are not split) are handled identically to blocks
745 		 * on non-indirect vdevs.  This allows us to be less strict
746 		 * about performance in the general (but rare) case.
747 		 */
748 		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
749 		    zio.io_data, first->is_target_offset, bytes);
750 	} else {
751 		iv->iv_split_block = B_TRUE;
752 		/*
753 		 * Read one copy of each split segment, from the
754 		 * top-level vdev.  Since we don't know the
755 		 * checksum of each split individually, the child
756 		 * zio can't ensure that we get the right data.
757 		 * E.g. if it's a mirror, it will just read from a
758 		 * random (healthy) leaf vdev.  We have to verify
759 		 * the checksum in vdev_indirect_io_done().
760 		 */
761 		for (indirect_split_t *is = list_head(&iv->iv_splits);
762 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
763 			char *ptr = zio.io_data;
764 
765 			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
766 			    ptr + is->is_split_offset, is->is_target_offset,
767 			    is->is_size);
768 		}
769 		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
770 			rc = ECKSUM;
771 		else
772 			rc = 0;
773 	}
774 
775 	vdev_indirect_map_free(&zio);
776 	if (rc == 0)
777 		rc = zio.io_error;
778 
779 	return (rc);
780 }
781 
782 static int
vdev_disk_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)783 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
784     off_t offset, size_t bytes)
785 {
786 
787 	return (vdev_read_phys(vdev, bp, buf,
788 	    offset + VDEV_LABEL_START_SIZE, bytes));
789 }
790 
791 static int
vdev_missing_read(vdev_t * vdev __unused,const blkptr_t * bp __unused,void * buf __unused,off_t offset __unused,size_t bytes __unused)792 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
793     void *buf __unused, off_t offset __unused, size_t bytes __unused)
794 {
795 
796 	return (ENOTSUP);
797 }
798 
799 static int
vdev_mirror_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)800 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
801     off_t offset, size_t bytes)
802 {
803 	vdev_t *kid;
804 	int rc;
805 
806 	rc = EIO;
807 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
808 		if (kid->v_state != VDEV_STATE_HEALTHY)
809 			continue;
810 		rc = kid->v_read(kid, bp, buf, offset, bytes);
811 		if (!rc)
812 			return (0);
813 	}
814 
815 	return (rc);
816 }
817 
818 static int
vdev_replacing_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)819 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
820     off_t offset, size_t bytes)
821 {
822 	vdev_t *kid;
823 
824 	/*
825 	 * Here we should have two kids:
826 	 * First one which is the one we are replacing and we can trust
827 	 * only this one to have valid data, but it might not be present.
828 	 * Second one is that one we are replacing with. It is most likely
829 	 * healthy, but we can't trust it has needed data, so we won't use it.
830 	 */
831 	kid = STAILQ_FIRST(&vdev->v_children);
832 	if (kid == NULL)
833 		return (EIO);
834 	if (kid->v_state != VDEV_STATE_HEALTHY)
835 		return (EIO);
836 	return (kid->v_read(kid, bp, buf, offset, bytes));
837 }
838 
839 /*
840  * List of vdevs that were fully initialized from their own label, but later a
841  * newer label was found that obsoleted the stale label, freeing its
842  * configuration tree.  We keep those vdevs around, since a new configuration
843  * may include them.
844  */
845 static vdev_list_t orphans = STAILQ_HEAD_INITIALIZER(orphans);
846 
847 static vdev_t *
vdev_find(vdev_list_t * list,uint64_t guid)848 vdev_find(vdev_list_t *list, uint64_t guid)
849 {
850 	vdev_t *vdev, *safe;
851 
852 	STAILQ_FOREACH_SAFE(vdev, list, v_childlink, safe) {
853 		if (vdev->v_guid == guid)
854 			return (vdev);
855 		if ((vdev = vdev_find(&vdev->v_children, guid)) != NULL)
856 			return (vdev);
857 	}
858 
859 	return (NULL);
860 }
861 
862 static vdev_t *
vdev_create(uint64_t guid,vdev_read_t * _read)863 vdev_create(uint64_t guid, vdev_read_t *_read)
864 {
865 	vdev_t *vdev;
866 	vdev_indirect_config_t *vic;
867 
868 	if ((vdev = vdev_find(&orphans, guid))) {
869 		STAILQ_REMOVE(&orphans, vdev, vdev, v_childlink);
870 		return (vdev);
871 	}
872 
873 	vdev = calloc(1, sizeof(vdev_t));
874 	if (vdev != NULL) {
875 		STAILQ_INIT(&vdev->v_children);
876 		vdev->v_guid = guid;
877 		vdev->v_read = _read;
878 
879 		/*
880 		 * root vdev has no read function, we use this fact to
881 		 * skip setting up data we do not need for root vdev.
882 		 * We only point root vdev from spa.
883 		 */
884 		if (_read != NULL) {
885 			vic = &vdev->vdev_indirect_config;
886 			vic->vic_prev_indirect_vdev = UINT64_MAX;
887 		}
888 	}
889 
890 	return (vdev);
891 }
892 
893 static void
vdev_set_initial_state(vdev_t * vdev,const nvlist_t * nvlist)894 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
895 {
896 	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
897 	uint64_t is_log;
898 
899 	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
900 	is_log = 0;
901 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
902 	    &is_offline, NULL);
903 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
904 	    &is_removed, NULL);
905 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
906 	    &is_faulted, NULL);
907 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
908 	    NULL, &is_degraded, NULL);
909 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
910 	    NULL, &isnt_present, NULL);
911 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
912 	    &is_log, NULL);
913 
914 	if (is_offline != 0)
915 		vdev->v_state = VDEV_STATE_OFFLINE;
916 	else if (is_removed != 0)
917 		vdev->v_state = VDEV_STATE_REMOVED;
918 	else if (is_faulted != 0)
919 		vdev->v_state = VDEV_STATE_FAULTED;
920 	else if (is_degraded != 0)
921 		vdev->v_state = VDEV_STATE_DEGRADED;
922 	else if (isnt_present != 0)
923 		vdev->v_state = VDEV_STATE_CANT_OPEN;
924 
925 	vdev->v_islog = is_log != 0;
926 }
927 
928 static int
vdev_init(uint64_t guid,const nvlist_t * nvlist,vdev_t ** vdevp)929 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
930 {
931 	uint64_t id, ashift, asize, nparity;
932 	const char *path;
933 	const char *type;
934 	int len, pathlen;
935 	char *name;
936 	vdev_t *vdev;
937 
938 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
939 	    NULL) ||
940 	    nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
941 	    &type, &len)) {
942 		return (ENOENT);
943 	}
944 
945 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
946 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
947 #ifdef ZFS_TEST
948 	    memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
949 #endif
950 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
951 	    memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
952 	    memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
953 	    memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
954 		printf("ZFS: can only boot from disk, mirror, raidz1, "
955 		    "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
956 		return (EIO);
957 	}
958 
959 	if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
960 		vdev = vdev_create(guid, vdev_mirror_read);
961 	else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
962 		vdev = vdev_create(guid, vdev_raidz_read);
963 	else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
964 		vdev = vdev_create(guid, vdev_replacing_read);
965 	else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
966 		vdev_indirect_config_t *vic;
967 
968 		vdev = vdev_create(guid, vdev_indirect_read);
969 		if (vdev != NULL) {
970 			vdev->v_state = VDEV_STATE_HEALTHY;
971 			vic = &vdev->vdev_indirect_config;
972 
973 			nvlist_find(nvlist,
974 			    ZPOOL_CONFIG_INDIRECT_OBJECT,
975 			    DATA_TYPE_UINT64,
976 			    NULL, &vic->vic_mapping_object, NULL);
977 			nvlist_find(nvlist,
978 			    ZPOOL_CONFIG_INDIRECT_BIRTHS,
979 			    DATA_TYPE_UINT64,
980 			    NULL, &vic->vic_births_object, NULL);
981 			nvlist_find(nvlist,
982 			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
983 			    DATA_TYPE_UINT64,
984 			    NULL, &vic->vic_prev_indirect_vdev, NULL);
985 		}
986 	} else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
987 		vdev = vdev_create(guid, vdev_missing_read);
988 	} else {
989 		vdev = vdev_create(guid, vdev_disk_read);
990 	}
991 
992 	if (vdev == NULL)
993 		return (ENOMEM);
994 
995 	vdev_set_initial_state(vdev, nvlist);
996 	vdev->v_id = id;
997 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
998 	    DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
999 		vdev->v_ashift = ashift;
1000 
1001 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1002 	    DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
1003 		vdev->v_psize = asize +
1004 		    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1005 	}
1006 
1007 	if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1008 	    DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
1009 		vdev->v_nparity = nparity;
1010 
1011 	if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1012 	    DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1013 		char prefix[] = "/dev/";
1014 
1015 		len = strlen(prefix);
1016 		if (len < pathlen && memcmp(path, prefix, len) == 0) {
1017 			path += len;
1018 			pathlen -= len;
1019 		}
1020 		name = malloc(pathlen + 1);
1021 		bcopy(path, name, pathlen);
1022 		name[pathlen] = '\0';
1023 		vdev->v_name = name;
1024 	} else {
1025 		name = NULL;
1026 		if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1027 			if (vdev->v_nparity < 1 ||
1028 			    vdev->v_nparity > 3) {
1029 				printf("ZFS: invalid raidz parity: %d\n",
1030 				    vdev->v_nparity);
1031 				return (EIO);
1032 			}
1033 			(void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1034 			    vdev->v_nparity, id);
1035 		} else {
1036 			(void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1037 		}
1038 		vdev->v_name = name;
1039 	}
1040 	*vdevp = vdev;
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Find slot for vdev. We return either NULL to signal to use
1046  * STAILQ_INSERT_HEAD, or we return link element to be used with
1047  * STAILQ_INSERT_AFTER.
1048  */
1049 static vdev_t *
vdev_find_previous(vdev_t * top_vdev,uint64_t id)1050 vdev_find_previous(vdev_t *top_vdev, uint64_t id)
1051 {
1052 	vdev_t *v, *previous;
1053 
1054 	previous = NULL;
1055 	STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1056 		if (v->v_id > id)
1057 			return (previous);
1058 
1059 		if (v->v_id == id)
1060 			return (v);
1061 
1062 		if (v->v_id < id)
1063 			previous = v;
1064 	}
1065 	return (previous);
1066 }
1067 
1068 static size_t
vdev_child_count(vdev_t * vdev)1069 vdev_child_count(vdev_t *vdev)
1070 {
1071 	vdev_t *v;
1072 	size_t count;
1073 
1074 	count = 0;
1075 	STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1076 		count++;
1077 	}
1078 	return (count);
1079 }
1080 
1081 /*
1082  * Insert vdev into top_vdev children list. List is ordered by v_id.
1083  */
1084 static vdev_t *
vdev_insert(vdev_t * top_vdev,vdev_t * vdev)1085 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1086 {
1087 	vdev_t *previous;
1088 	size_t count;
1089 
1090 	/*
1091 	 * The top level vdev can appear in random order, depending how
1092 	 * the firmware is presenting the disk devices.
1093 	 * However, we will insert vdev to create list ordered by v_id,
1094 	 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1095 	 * as STAILQ does not have insert before.
1096 	 */
1097 	previous = vdev_find_previous(top_vdev, vdev->v_id);
1098 
1099 	if (previous == NULL) {
1100 		STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1101 	} else if (previous->v_id == vdev->v_id) {
1102 		/*
1103 		 * This vdev was configured from label config,
1104 		 * do not insert duplicate.
1105 		 */
1106 		free(vdev);
1107 		return (previous);
1108 	} else {
1109 		STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1110 		    v_childlink);
1111 	}
1112 
1113 	count = vdev_child_count(top_vdev);
1114 	if (top_vdev->v_nchildren < count)
1115 		top_vdev->v_nchildren = count;
1116 	return (vdev);
1117 }
1118 
1119 static int
vdev_from_nvlist(spa_t * spa,uint64_t top_guid,uint64_t label_guid,uint64_t txg,const nvlist_t * nvlist)1120 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, uint64_t label_guid,
1121     uint64_t txg, const nvlist_t *nvlist)
1122 {
1123 	vdev_t *top_vdev, *vdev;
1124 	nvlist_t **kids = NULL;
1125 	int rc, nkids;
1126 
1127 	/* Get top vdev. */
1128 	top_vdev = vdev_find(&spa->spa_root_vdev->v_children, top_guid);
1129 	if (top_vdev == NULL) {
1130 		rc = vdev_init(top_guid, nvlist, &top_vdev);
1131 		if (rc != 0)
1132 			return (rc);
1133 		top_vdev->v_spa = spa;
1134 		top_vdev->v_top = top_vdev;
1135 		top_vdev->v_label = label_guid;
1136 		top_vdev->v_txg = txg;
1137 		(void )vdev_insert(spa->spa_root_vdev, top_vdev);
1138 	}
1139 
1140 	/* Add children if there are any. */
1141 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1142 	    &nkids, &kids, NULL);
1143 	if (rc == 0) {
1144 		for (int i = 0; i < nkids; i++) {
1145 			uint64_t guid;
1146 
1147 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1148 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1149 			if (rc != 0)
1150 				goto done;
1151 
1152 			rc = vdev_init(guid, kids[i], &vdev);
1153 			if (rc != 0)
1154 				goto done;
1155 
1156 			vdev->v_spa = spa;
1157 			vdev->v_top = top_vdev;
1158 			vdev = vdev_insert(top_vdev, vdev);
1159 		}
1160 	} else {
1161 		/*
1162 		 * When there are no children, nvlist_find() does return
1163 		 * error, reset it because leaf devices have no children.
1164 		 */
1165 		rc = 0;
1166 	}
1167 done:
1168 	if (kids != NULL) {
1169 		for (int i = 0; i < nkids; i++)
1170 			nvlist_destroy(kids[i]);
1171 		free(kids);
1172 	}
1173 
1174 	return (rc);
1175 }
1176 
1177 static void
vdev_set_state(vdev_t * vdev)1178 vdev_set_state(vdev_t *vdev)
1179 {
1180 	vdev_t *kid;
1181 	int good_kids;
1182 	int bad_kids;
1183 
1184 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1185 		vdev_set_state(kid);
1186 	}
1187 
1188 	/*
1189 	 * A mirror or raidz is healthy if all its kids are healthy. A
1190 	 * mirror is degraded if any of its kids is healthy; a raidz
1191 	 * is degraded if at most nparity kids are offline.
1192 	 */
1193 	if (STAILQ_FIRST(&vdev->v_children)) {
1194 		good_kids = 0;
1195 		bad_kids = 0;
1196 		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1197 			if (kid->v_state == VDEV_STATE_HEALTHY)
1198 				good_kids++;
1199 			else
1200 				bad_kids++;
1201 		}
1202 		if (bad_kids == 0) {
1203 			vdev->v_state = VDEV_STATE_HEALTHY;
1204 		} else {
1205 			if (vdev->v_read == vdev_mirror_read) {
1206 				if (good_kids) {
1207 					vdev->v_state = VDEV_STATE_DEGRADED;
1208 				} else {
1209 					vdev->v_state = VDEV_STATE_OFFLINE;
1210 				}
1211 			} else if (vdev->v_read == vdev_raidz_read) {
1212 				if (bad_kids > vdev->v_nparity) {
1213 					vdev->v_state = VDEV_STATE_OFFLINE;
1214 				} else {
1215 					vdev->v_state = VDEV_STATE_DEGRADED;
1216 				}
1217 			}
1218 		}
1219 	}
1220 }
1221 
1222 static int
vdev_update_from_nvlist(vdev_t * root,uint64_t top_guid,const nvlist_t * nvlist)1223 vdev_update_from_nvlist(vdev_t *root, uint64_t top_guid, const nvlist_t *nvlist)
1224 {
1225 	vdev_t *vdev;
1226 	nvlist_t **kids = NULL;
1227 	int rc, nkids;
1228 
1229 	/* Update top vdev. */
1230 	vdev = vdev_find(&root->v_children, top_guid);
1231 	if (vdev != NULL)
1232 		vdev_set_initial_state(vdev, nvlist);
1233 
1234 	/* Update children if there are any. */
1235 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1236 	    &nkids, &kids, NULL);
1237 	if (rc == 0) {
1238 		for (int i = 0; i < nkids; i++) {
1239 			uint64_t guid;
1240 
1241 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1242 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1243 			if (rc != 0)
1244 				break;
1245 
1246 			vdev = vdev_find(&root->v_children, guid);
1247 			if (vdev != NULL)
1248 				vdev_set_initial_state(vdev, kids[i]);
1249 		}
1250 	} else {
1251 		rc = 0;
1252 	}
1253 	if (kids != NULL) {
1254 		for (int i = 0; i < nkids; i++)
1255 			nvlist_destroy(kids[i]);
1256 		free(kids);
1257 	}
1258 
1259 	return (rc);
1260 }
1261 
1262 static void
vdev_free(struct vdev * vdev)1263 vdev_free(struct vdev *vdev)
1264 {
1265 	struct vdev *kid, *safe;
1266 
1267 	STAILQ_FOREACH_SAFE(kid, &vdev->v_children, v_childlink, safe)
1268 		vdev_free(kid);
1269 	if (vdev->v_phys_read != NULL)
1270 		STAILQ_INSERT_HEAD(&orphans, vdev, v_childlink);
1271 	else
1272 		free(vdev);
1273 }
1274 
1275 static int
vdev_init_from_nvlist(spa_t * spa,const nvlist_t * nvlist)1276 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1277 {
1278 	uint64_t pool_guid, vdev_children;
1279 	nvlist_t *vdevs = NULL, **kids = NULL;
1280 	int rc, nkids;
1281 
1282 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1283 	    NULL, &pool_guid, NULL) ||
1284 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1285 	    NULL, &vdev_children, NULL) ||
1286 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1287 	    NULL, &vdevs, NULL)) {
1288 		printf("ZFS: can't find vdev details\n");
1289 		return (ENOENT);
1290 	}
1291 
1292 	/* Wrong guid?! */
1293 	if (spa->spa_guid != pool_guid) {
1294 		nvlist_destroy(vdevs);
1295 		return (EINVAL);
1296 	}
1297 
1298 	spa->spa_root_vdev->v_nchildren = vdev_children;
1299 
1300 	rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1301 	    &nkids, &kids, NULL);
1302 	nvlist_destroy(vdevs);
1303 
1304 	/*
1305 	 * MOS config has at least one child for root vdev.
1306 	 */
1307 	if (rc != 0)
1308 		return (rc);
1309 
1310 	for (int i = 0; i < nkids; i++) {
1311 		uint64_t guid;
1312 		vdev_t *vdev;
1313 
1314 		rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1315 		    NULL, &guid, NULL);
1316 		if (rc != 0)
1317 			break;
1318 		vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
1319 		/*
1320 		 * Top level vdev is missing, create it.
1321 		 * XXXGL: how can this happen?
1322 		 */
1323 		if (vdev == NULL)
1324 			rc = vdev_from_nvlist(spa, guid, 0, 0, kids[i]);
1325 		else
1326 			rc = vdev_update_from_nvlist(spa->spa_root_vdev, guid,
1327 			    kids[i]);
1328 		if (rc != 0)
1329 			break;
1330 	}
1331 	if (kids != NULL) {
1332 		for (int i = 0; i < nkids; i++)
1333 			nvlist_destroy(kids[i]);
1334 		free(kids);
1335 	}
1336 
1337 	/*
1338 	 * Re-evaluate top-level vdev state.
1339 	 */
1340 	vdev_set_state(spa->spa_root_vdev);
1341 
1342 	return (rc);
1343 }
1344 
1345 static bool
nvlist_find_child_guid(const nvlist_t * nvlist,uint64_t guid)1346 nvlist_find_child_guid(const nvlist_t *nvlist, uint64_t guid)
1347 {
1348 	nvlist_t **kids = NULL;
1349 	int nkids, i;
1350 	bool rv = false;
1351 
1352 	if (nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1353 	    &nkids, &kids, NULL) != 0)
1354 		nkids = 0;
1355 
1356 	for (i = 0; i < nkids; i++) {
1357 		uint64_t kid_guid;
1358 
1359 		if (nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1360 		    NULL, &kid_guid, NULL) != 0)
1361 			break;
1362 		if (kid_guid == guid)
1363 			rv = true;
1364 		else
1365 			rv = nvlist_find_child_guid(kids[i], guid);
1366 		if (rv)
1367 			break;
1368 	}
1369 
1370 	for (i = 0; i < nkids; i++)
1371 		nvlist_destroy(kids[i]);
1372 	free(kids);
1373 
1374 	return (rv);
1375 }
1376 
1377 static bool
nvlist_find_vdev_guid(const nvlist_t * nvlist,uint64_t guid)1378 nvlist_find_vdev_guid(const nvlist_t *nvlist, uint64_t guid)
1379 {
1380 	nvlist_t *vdevs;
1381 	bool rv;
1382 
1383 	if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL,
1384 	    &vdevs, NULL) != 0)
1385 		return (false);
1386 	rv = nvlist_find_child_guid(vdevs, guid);
1387 	nvlist_destroy(vdevs);
1388 
1389 	return (rv);
1390 }
1391 
1392 static spa_t *
spa_find_by_guid(uint64_t guid)1393 spa_find_by_guid(uint64_t guid)
1394 {
1395 	spa_t *spa;
1396 
1397 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1398 		if (spa->spa_guid == guid)
1399 			return (spa);
1400 
1401 	return (NULL);
1402 }
1403 
1404 static spa_t *
spa_find_by_name(const char * name)1405 spa_find_by_name(const char *name)
1406 {
1407 	spa_t *spa;
1408 
1409 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1410 		if (strcmp(spa->spa_name, name) == 0)
1411 			return (spa);
1412 
1413 	return (NULL);
1414 }
1415 
1416 static spa_t *
spa_create(uint64_t guid,const char * name)1417 spa_create(uint64_t guid, const char *name)
1418 {
1419 	spa_t *spa;
1420 
1421 	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1422 		return (NULL);
1423 	if ((spa->spa_name = strdup(name)) == NULL) {
1424 		free(spa);
1425 		return (NULL);
1426 	}
1427 	spa->spa_uberblock = &spa->spa_uberblock_master;
1428 	spa->spa_mos = &spa->spa_mos_master;
1429 	spa->spa_guid = guid;
1430 	spa->spa_root_vdev = vdev_create(guid, NULL);
1431 	if (spa->spa_root_vdev == NULL) {
1432 		free(spa->spa_name);
1433 		free(spa);
1434 		return (NULL);
1435 	}
1436 	spa->spa_root_vdev->v_name = spa->spa_name;
1437 	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1438 
1439 	return (spa);
1440 }
1441 
1442 static const char *
state_name(vdev_state_t state)1443 state_name(vdev_state_t state)
1444 {
1445 	static const char *names[] = {
1446 		"UNKNOWN",
1447 		"CLOSED",
1448 		"OFFLINE",
1449 		"REMOVED",
1450 		"CANT_OPEN",
1451 		"FAULTED",
1452 		"DEGRADED",
1453 		"ONLINE"
1454 	};
1455 	return (names[state]);
1456 }
1457 
1458 #ifdef BOOT2
1459 
1460 #define pager_printf printf
1461 
1462 #else
1463 
1464 static int
pager_printf(const char * fmt,...)1465 pager_printf(const char *fmt, ...)
1466 {
1467 	char line[80];
1468 	va_list args;
1469 
1470 	va_start(args, fmt);
1471 	vsnprintf(line, sizeof(line), fmt, args);
1472 	va_end(args);
1473 	return (pager_output(line));
1474 }
1475 
1476 #endif
1477 
1478 #define	STATUS_FORMAT	"        %s %s\n"
1479 
1480 static int
print_state(int indent,const char * name,vdev_state_t state)1481 print_state(int indent, const char *name, vdev_state_t state)
1482 {
1483 	int i;
1484 	char buf[512];
1485 
1486 	buf[0] = 0;
1487 	for (i = 0; i < indent; i++)
1488 		strcat(buf, "  ");
1489 	strcat(buf, name);
1490 	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1491 }
1492 
1493 static int
vdev_status(vdev_t * vdev,int indent)1494 vdev_status(vdev_t *vdev, int indent)
1495 {
1496 	vdev_t *kid;
1497 	int ret;
1498 
1499 	if (vdev->v_islog) {
1500 		(void) pager_output("        logs\n");
1501 		indent++;
1502 	}
1503 
1504 	ret = print_state(indent, vdev->v_name, vdev->v_state);
1505 	if (ret != 0)
1506 		return (ret);
1507 
1508 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1509 		ret = vdev_status(kid, indent + 1);
1510 		if (ret != 0)
1511 			return (ret);
1512 	}
1513 	return (ret);
1514 }
1515 
1516 static int
spa_status(spa_t * spa)1517 spa_status(spa_t *spa)
1518 {
1519 	static char bootfs[ZFS_MAXNAMELEN];
1520 	uint64_t rootid;
1521 	vdev_list_t *vlist;
1522 	vdev_t *vdev;
1523 	int good_kids, bad_kids, degraded_kids, ret;
1524 	vdev_state_t state;
1525 
1526 	ret = pager_printf("  pool: %s\n", spa->spa_name);
1527 	if (ret != 0)
1528 		return (ret);
1529 
1530 	if (zfs_get_root(spa, &rootid) == 0 &&
1531 	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1532 		if (bootfs[0] == '\0')
1533 			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1534 		else
1535 			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1536 			    bootfs);
1537 		if (ret != 0)
1538 			return (ret);
1539 	}
1540 	ret = pager_printf("config:\n\n");
1541 	if (ret != 0)
1542 		return (ret);
1543 	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1544 	if (ret != 0)
1545 		return (ret);
1546 
1547 	good_kids = 0;
1548 	degraded_kids = 0;
1549 	bad_kids = 0;
1550 	vlist = &spa->spa_root_vdev->v_children;
1551 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1552 		if (vdev->v_state == VDEV_STATE_HEALTHY)
1553 			good_kids++;
1554 		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1555 			degraded_kids++;
1556 		else
1557 			bad_kids++;
1558 	}
1559 
1560 	state = VDEV_STATE_CLOSED;
1561 	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1562 		state = VDEV_STATE_HEALTHY;
1563 	else if ((good_kids + degraded_kids) > 0)
1564 		state = VDEV_STATE_DEGRADED;
1565 
1566 	ret = print_state(0, spa->spa_name, state);
1567 	if (ret != 0)
1568 		return (ret);
1569 
1570 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1571 		ret = vdev_status(vdev, 1);
1572 		if (ret != 0)
1573 			return (ret);
1574 	}
1575 	return (ret);
1576 }
1577 
1578 static int
spa_all_status(void)1579 spa_all_status(void)
1580 {
1581 	spa_t *spa;
1582 	int first = 1, ret = 0;
1583 
1584 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1585 		if (!first) {
1586 			ret = pager_printf("\n");
1587 			if (ret != 0)
1588 				return (ret);
1589 		}
1590 		first = 0;
1591 		ret = spa_status(spa);
1592 		if (ret != 0)
1593 			return (ret);
1594 	}
1595 	return (ret);
1596 }
1597 
1598 static uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)1599 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1600 {
1601 	uint64_t label_offset;
1602 
1603 	if (l < VDEV_LABELS / 2)
1604 		label_offset = 0;
1605 	else
1606 		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1607 
1608 	return (offset + l * sizeof (vdev_label_t) + label_offset);
1609 }
1610 
1611 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1612 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1613 {
1614 	unsigned int seq1 = 0;
1615 	unsigned int seq2 = 0;
1616 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1617 
1618 	if (cmp != 0)
1619 		return (cmp);
1620 
1621 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1622 	if (cmp != 0)
1623 		return (cmp);
1624 
1625 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1626 		seq1 = MMP_SEQ(ub1);
1627 
1628 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1629 		seq2 = MMP_SEQ(ub2);
1630 
1631 	return (AVL_CMP(seq1, seq2));
1632 }
1633 
1634 static int
uberblock_verify(uberblock_t * ub)1635 uberblock_verify(uberblock_t *ub)
1636 {
1637 	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1638 		byteswap_uint64_array(ub, sizeof (uberblock_t));
1639 	}
1640 
1641 	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1642 	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1643 		return (EINVAL);
1644 
1645 	return (0);
1646 }
1647 
1648 static int
vdev_label_read(vdev_t * vd,int l,void * buf,uint64_t offset,size_t size)1649 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1650     size_t size)
1651 {
1652 	blkptr_t bp;
1653 	off_t off;
1654 
1655 	off = vdev_label_offset(vd->v_psize, l, offset);
1656 
1657 	BP_ZERO(&bp);
1658 	BP_SET_LSIZE(&bp, size);
1659 	BP_SET_PSIZE(&bp, size);
1660 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1661 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1662 	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1663 	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1664 
1665 	return (vdev_read_phys(vd, &bp, buf, off, size));
1666 }
1667 
1668 /*
1669  * We do need to be sure we write to correct location.
1670  * Our vdev label does consist of 4 fields:
1671  * pad1 (8k), reserved.
1672  * bootenv (8k), checksummed, previously reserved, may contian garbage.
1673  * vdev_phys (112k), checksummed
1674  * uberblock ring (128k), checksummed.
1675  *
1676  * Since bootenv area may contain garbage, we can not reliably read it, as
1677  * we can get checksum errors.
1678  * Next best thing is vdev_phys - it is just after bootenv. It still may
1679  * be corrupted, but in such case we will miss this one write.
1680  */
1681 static int
vdev_label_write_validate(vdev_t * vd,int l,uint64_t offset)1682 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1683 {
1684 	uint64_t off, o_phys;
1685 	void *buf;
1686 	size_t size = VDEV_PHYS_SIZE;
1687 	int rc;
1688 
1689 	o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1690 	off = vdev_label_offset(vd->v_psize, l, o_phys);
1691 
1692 	/* off should be 8K from bootenv */
1693 	if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1694 		return (EINVAL);
1695 
1696 	buf = malloc(size);
1697 	if (buf == NULL)
1698 		return (ENOMEM);
1699 
1700 	/* Read vdev_phys */
1701 	rc = vdev_label_read(vd, l, buf, o_phys, size);
1702 	free(buf);
1703 	return (rc);
1704 }
1705 
1706 static int
vdev_label_write(vdev_t * vd,int l,vdev_boot_envblock_t * be,uint64_t offset)1707 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1708 {
1709 	zio_checksum_info_t *ci;
1710 	zio_cksum_t cksum;
1711 	off_t off;
1712 	size_t size = VDEV_PAD_SIZE;
1713 	int rc;
1714 
1715 	if (vd->v_phys_write == NULL)
1716 		return (ENOTSUP);
1717 
1718 	off = vdev_label_offset(vd->v_psize, l, offset);
1719 
1720 	rc = vdev_label_write_validate(vd, l, offset);
1721 	if (rc != 0) {
1722 		return (rc);
1723 	}
1724 
1725 	ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1726 	be->vbe_zbt.zec_magic = ZEC_MAGIC;
1727 	zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1728 	ci->ci_func[0](be, size, NULL, &cksum);
1729 	be->vbe_zbt.zec_cksum = cksum;
1730 
1731 	return (vdev_write_phys(vd, be, off, size));
1732 }
1733 
1734 static int
vdev_write_bootenv_impl(vdev_t * vdev,vdev_boot_envblock_t * be)1735 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1736 {
1737 	vdev_t *kid;
1738 	int rv = 0, err;
1739 
1740 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1741 		if (kid->v_state != VDEV_STATE_HEALTHY)
1742 			continue;
1743 		err = vdev_write_bootenv_impl(kid, be);
1744 		if (err != 0)
1745 			rv = err;
1746 	}
1747 
1748 	/*
1749 	 * Non-leaf vdevs do not have v_phys_write.
1750 	 */
1751 	if (vdev->v_phys_write == NULL)
1752 		return (rv);
1753 
1754 	for (int l = 0; l < VDEV_LABELS; l++) {
1755 		err = vdev_label_write(vdev, l, be,
1756 		    offsetof(vdev_label_t, vl_be));
1757 		if (err != 0) {
1758 			printf("failed to write bootenv to %s label %d: %d\n",
1759 			    vdev->v_name ? vdev->v_name : "unknown", l, err);
1760 			rv = err;
1761 		}
1762 	}
1763 	return (rv);
1764 }
1765 
1766 int
vdev_write_bootenv(vdev_t * vdev,nvlist_t * nvl)1767 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1768 {
1769 	vdev_boot_envblock_t *be;
1770 	nvlist_t nv, *nvp;
1771 	uint64_t version;
1772 	int rv;
1773 
1774 	if (nvl->nv_size > sizeof(be->vbe_bootenv))
1775 		return (E2BIG);
1776 
1777 	version = VB_RAW;
1778 	nvp = vdev_read_bootenv(vdev);
1779 	if (nvp != NULL) {
1780 		nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1781 		    &version, NULL);
1782 		nvlist_destroy(nvp);
1783 	}
1784 
1785 	be = calloc(1, sizeof(*be));
1786 	if (be == NULL)
1787 		return (ENOMEM);
1788 
1789 	be->vbe_version = version;
1790 	switch (version) {
1791 	case VB_RAW:
1792 		/*
1793 		 * If there is no envmap, we will just wipe bootenv.
1794 		 */
1795 		nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1796 		    be->vbe_bootenv, NULL);
1797 		rv = 0;
1798 		break;
1799 
1800 	case VB_NVLIST:
1801 		nv.nv_header = nvl->nv_header;
1802 		nv.nv_asize = nvl->nv_asize;
1803 		nv.nv_size = nvl->nv_size;
1804 
1805 		bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1806 		nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1807 		bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1808 		rv = nvlist_export(&nv);
1809 		break;
1810 
1811 	default:
1812 		rv = EINVAL;
1813 		break;
1814 	}
1815 
1816 	if (rv == 0) {
1817 		be->vbe_version = htobe64(be->vbe_version);
1818 		rv = vdev_write_bootenv_impl(vdev, be);
1819 	}
1820 	free(be);
1821 	return (rv);
1822 }
1823 
1824 /*
1825  * Read the bootenv area from pool label, return the nvlist from it.
1826  * We return from first successful read.
1827  */
1828 nvlist_t *
vdev_read_bootenv(vdev_t * vdev)1829 vdev_read_bootenv(vdev_t *vdev)
1830 {
1831 	vdev_t *kid;
1832 	nvlist_t *benv;
1833 	vdev_boot_envblock_t *be;
1834 	char *command;
1835 	bool ok;
1836 	int rv;
1837 
1838 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1839 		if (kid->v_state != VDEV_STATE_HEALTHY)
1840 			continue;
1841 
1842 		benv = vdev_read_bootenv(kid);
1843 		if (benv != NULL)
1844 			return (benv);
1845 	}
1846 
1847 	be = malloc(sizeof (*be));
1848 	if (be == NULL)
1849 		return (NULL);
1850 
1851 	rv = 0;
1852 	for (int l = 0; l < VDEV_LABELS; l++) {
1853 		rv = vdev_label_read(vdev, l, be,
1854 		    offsetof(vdev_label_t, vl_be),
1855 		    sizeof (*be));
1856 		if (rv == 0)
1857 			break;
1858 	}
1859 	if (rv != 0) {
1860 		free(be);
1861 		return (NULL);
1862 	}
1863 
1864 	be->vbe_version = be64toh(be->vbe_version);
1865 	switch (be->vbe_version) {
1866 	case VB_RAW:
1867 		/*
1868 		 * we have textual data in vbe_bootenv, create nvlist
1869 		 * with key "envmap".
1870 		 */
1871 		benv = nvlist_create(NV_UNIQUE_NAME);
1872 		if (benv != NULL) {
1873 			if (*be->vbe_bootenv == '\0') {
1874 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1875 				    VB_NVLIST);
1876 				break;
1877 			}
1878 			nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1879 			be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1880 			nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1881 		}
1882 		break;
1883 
1884 	case VB_NVLIST:
1885 		benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1886 		break;
1887 
1888 	default:
1889 		command = (char *)be;
1890 		ok = false;
1891 
1892 		/* Check for legacy zfsbootcfg command string */
1893 		for (int i = 0; command[i] != '\0'; i++) {
1894 			if (iscntrl(command[i])) {
1895 				ok = false;
1896 				break;
1897 			} else {
1898 				ok = true;
1899 			}
1900 		}
1901 		benv = nvlist_create(NV_UNIQUE_NAME);
1902 		if (benv != NULL) {
1903 			if (ok)
1904 				nvlist_add_string(benv, FREEBSD_BOOTONCE,
1905 				    command);
1906 			else
1907 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1908 				    VB_NVLIST);
1909 		}
1910 		break;
1911 	}
1912 	free(be);
1913 	return (benv);
1914 }
1915 
1916 static uint64_t
vdev_get_label_asize(nvlist_t * nvl)1917 vdev_get_label_asize(nvlist_t *nvl)
1918 {
1919 	nvlist_t *vdevs;
1920 	uint64_t asize;
1921 	const char *type;
1922 	int len;
1923 
1924 	asize = 0;
1925 	/* Get vdev tree */
1926 	if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1927 	    NULL, &vdevs, NULL) != 0)
1928 		return (asize);
1929 
1930 	/*
1931 	 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1932 	 * For raidz, the asize is raw size of all children.
1933 	 */
1934 	if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1935 	    NULL, &type, &len) != 0)
1936 		goto done;
1937 
1938 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1939 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1940 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1941 		goto done;
1942 
1943 	if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1944 	    NULL, &asize, NULL) != 0)
1945 		goto done;
1946 
1947 	if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1948 		nvlist_t **kids;
1949 		int nkids;
1950 
1951 		if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1952 		    DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1953 			asize = 0;
1954 			goto done;
1955 		}
1956 
1957 		asize /= nkids;
1958 		for (int i = 0; i < nkids; i++)
1959 			nvlist_destroy(kids[i]);
1960 		free(kids);
1961 	}
1962 
1963 	asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1964 done:
1965 	nvlist_destroy(vdevs);
1966 	return (asize);
1967 }
1968 
1969 static nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)1970 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1971 {
1972 	vdev_phys_t *label;
1973 	uint64_t best_txg = 0;
1974 	uint64_t label_txg = 0;
1975 	uint64_t asize;
1976 	nvlist_t *nvl = NULL, *tmp;
1977 	int error;
1978 
1979 	label = malloc(sizeof (vdev_phys_t));
1980 	if (label == NULL)
1981 		return (NULL);
1982 
1983 	for (int l = 0; l < VDEV_LABELS; l++) {
1984 		if (vdev_label_read(vd, l, label,
1985 		    offsetof(vdev_label_t, vl_vdev_phys),
1986 		    sizeof (vdev_phys_t)))
1987 			continue;
1988 
1989 		tmp = nvlist_import(label->vp_nvlist,
1990 		    sizeof(label->vp_nvlist));
1991 		if (tmp == NULL)
1992 			continue;
1993 
1994 		error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1995 		    DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1996 		if (error != 0 || label_txg == 0) {
1997 			nvlist_destroy(nvl);
1998 			nvl = tmp;
1999 			goto done;
2000 		}
2001 
2002 		if (label_txg <= txg && label_txg > best_txg) {
2003 			best_txg = label_txg;
2004 			nvlist_destroy(nvl);
2005 			nvl = tmp;
2006 			tmp = NULL;
2007 
2008 			/*
2009 			 * Use asize from pool config. We need this
2010 			 * because we can get bad value from BIOS.
2011 			 */
2012 			asize = vdev_get_label_asize(nvl);
2013 			if (asize != 0) {
2014 				vd->v_psize = asize;
2015 			}
2016 		}
2017 		nvlist_destroy(tmp);
2018 	}
2019 
2020 	if (best_txg == 0) {
2021 		nvlist_destroy(nvl);
2022 		nvl = NULL;
2023 	}
2024 done:
2025 	free(label);
2026 	return (nvl);
2027 }
2028 
2029 static void
vdev_uberblock_load(vdev_t * vd,uberblock_t * ub)2030 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
2031 {
2032 	uberblock_t *buf;
2033 
2034 	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
2035 	if (buf == NULL)
2036 		return;
2037 
2038 	for (int l = 0; l < VDEV_LABELS; l++) {
2039 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
2040 			if (vdev_label_read(vd, l, buf,
2041 			    VDEV_UBERBLOCK_OFFSET(vd, n),
2042 			    VDEV_UBERBLOCK_SIZE(vd)))
2043 				continue;
2044 			if (uberblock_verify(buf) != 0)
2045 				continue;
2046 
2047 			if (vdev_uberblock_compare(buf, ub) > 0)
2048 				*ub = *buf;
2049 		}
2050 	}
2051 	free(buf);
2052 }
2053 
2054 static int
vdev_probe(vdev_phys_read_t * _read,vdev_phys_write_t * _write,void * priv,spa_t ** spap)2055 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2056     spa_t **spap)
2057 {
2058 	vdev_t vtmp;
2059 	spa_t *spa;
2060 	vdev_t *vdev, *top;
2061 	nvlist_t *nvl, *vdevs;
2062 	uint64_t val;
2063 	uint64_t guid, pool_guid, top_guid, txg;
2064 	const char *pool_name;
2065 	int rc, namelen;
2066 
2067 	/*
2068 	 * Load the vdev label and figure out which
2069 	 * uberblock is most current.
2070 	 */
2071 	memset(&vtmp, 0, sizeof(vtmp));
2072 	vtmp.v_phys_read = _read;
2073 	vtmp.v_phys_write = _write;
2074 	vtmp.v_priv = priv;
2075 	vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2076 	    (uint64_t)sizeof (vdev_label_t));
2077 
2078 	/* Test for minimum device size. */
2079 	if (vtmp.v_psize < SPA_MINDEVSIZE)
2080 		return (EIO);
2081 
2082 	nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2083 	if (nvl == NULL)
2084 		return (EIO);
2085 
2086 	if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2087 	    NULL, &val, NULL) != 0) {
2088 		nvlist_destroy(nvl);
2089 		return (EIO);
2090 	}
2091 
2092 	if (!SPA_VERSION_IS_SUPPORTED(val)) {
2093 		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2094 		    (unsigned)val, (unsigned)SPA_VERSION);
2095 		nvlist_destroy(nvl);
2096 		return (EIO);
2097 	}
2098 
2099 	/* Check ZFS features for read */
2100 	rc = nvlist_check_features_for_read(nvl);
2101 	if (rc != 0) {
2102 		nvlist_destroy(nvl);
2103 		return (EIO);
2104 	}
2105 
2106 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2107 	    NULL, &val, NULL) != 0) {
2108 		nvlist_destroy(nvl);
2109 		return (EIO);
2110 	}
2111 
2112 	if (val == POOL_STATE_DESTROYED) {
2113 		/* We don't boot only from destroyed pools. */
2114 		nvlist_destroy(nvl);
2115 		return (EIO);
2116 	}
2117 
2118 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2119 	    NULL, &txg, NULL) != 0 ||
2120 	    txg == 0 ||
2121 	    nvlist_find(nvl, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
2122 	    NULL, &top_guid, NULL) != 0 ||
2123 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2124 	    NULL, &pool_guid, NULL) != 0 ||
2125 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2126 	    NULL, &pool_name, &namelen) != 0 ||
2127 	    nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2128 	    NULL, &guid, NULL) != 0) {
2129 		/*
2130 		 * Cache, spare and replaced devices end up here - just ignore
2131 		 * them.
2132 		 */
2133 		nvlist_destroy(nvl);
2134 		return (EIO);
2135 	}
2136 
2137 	/*
2138 	 * Create the pool if this is the first time we've seen it.
2139 	 */
2140 	spa = spa_find_by_guid(pool_guid);
2141 	if (spa == NULL) {
2142 		char *name;
2143 
2144 		name = malloc(namelen + 1);
2145 		if (name == NULL) {
2146 			nvlist_destroy(nvl);
2147 			return (ENOMEM);
2148 		}
2149 		bcopy(pool_name, name, namelen);
2150 		name[namelen] = '\0';
2151 		spa = spa_create(pool_guid, name);
2152 		free(name);
2153 		if (spa == NULL) {
2154 			nvlist_destroy(nvl);
2155 			return (ENOMEM);
2156 		}
2157 	}
2158 
2159 	/*
2160 	 * Check if configuration is already known.  If configuration is known
2161 	 * and txg numbers don't match, we got 2x2 scenarios here.  First, is
2162 	 * the label being read right now _newer_ than the one read before.
2163 	 * Second, is the vdev that provided the stale label _present_ in the
2164 	 * newer configuration.  If neither is true, we completely ignore the
2165 	 * label.
2166 	 */
2167 	STAILQ_FOREACH(top, &spa->spa_root_vdev->v_children, v_childlink)
2168 		if (top->v_guid == top_guid) {
2169 			bool newer, present;
2170 
2171 			if (top->v_txg == txg)
2172 				break;
2173 			newer = (top->v_txg < txg);
2174 			present = newer ?
2175 			    nvlist_find_vdev_guid(nvl, top->v_label) :
2176 			    (vdev_find(&top->v_children, guid) != NULL);
2177 			printf("ZFS: pool %s vdev %s %s stale label from "
2178 			    "0x%jx@0x%jx, %s 0x%jx@0x%jx\n",
2179 			    spa->spa_name, top->v_name,
2180 			    present ? "using" : "ignoring",
2181 			    newer ? top->v_label : guid,
2182 			    newer ? top->v_txg : txg,
2183 			    present ? "referred by" : "using",
2184 			    newer ? guid : top->v_label,
2185 			    newer ? txg : top->v_txg);
2186 			if (newer) {
2187 				STAILQ_REMOVE(&spa->spa_root_vdev->v_children,
2188 				    top, vdev, v_childlink);
2189 				vdev_free(top);
2190 				break;
2191 			} else if (present) {
2192 				break;
2193 			} else {
2194 				nvlist_destroy(nvl);
2195 				return (EIO);
2196 			}
2197 		}
2198 
2199 	/*
2200 	 * Get the vdev tree and create our in-core copy of it.
2201 	 * If we already have a vdev with this guid, this must
2202 	 * be some kind of alias (overlapping slices, dangerously dedicated
2203 	 * disks etc).
2204 	 */
2205 	vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
2206 	/* Has this vdev already been inited? */
2207 	if (vdev && vdev->v_phys_read) {
2208 		nvlist_destroy(nvl);
2209 		return (EIO);
2210 	}
2211 
2212 	if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL,
2213 	    &vdevs, NULL)) {
2214 		printf("ZFS: can't find vdev details\n");
2215 		nvlist_destroy(nvl);
2216 		return (ENOENT);
2217 	}
2218 
2219 	rc = vdev_from_nvlist(spa, top_guid, guid, txg, vdevs);
2220 	nvlist_destroy(vdevs);
2221 	nvlist_destroy(nvl);
2222 	if (rc != 0)
2223 		return (rc);
2224 
2225 	/*
2226 	 * We should already have created an incomplete vdev for this
2227 	 * vdev. Find it and initialise it with our read proc.
2228 	 */
2229 	vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
2230 	if (vdev != NULL) {
2231 		vdev->v_phys_read = _read;
2232 		vdev->v_phys_write = _write;
2233 		vdev->v_priv = priv;
2234 		vdev->v_psize = vtmp.v_psize;
2235 		/*
2236 		 * If no other state is set, mark vdev healthy.
2237 		 */
2238 		if (vdev->v_state == VDEV_STATE_UNKNOWN)
2239 			vdev->v_state = VDEV_STATE_HEALTHY;
2240 	} else {
2241 		printf("ZFS: inconsistent nvlist contents\n");
2242 		return (EIO);
2243 	}
2244 
2245 	if (vdev->v_islog)
2246 		spa->spa_with_log = vdev->v_islog;
2247 
2248 	/*
2249 	 * Re-evaluate top-level vdev state.
2250 	 */
2251 	vdev_set_state(vdev->v_top);
2252 
2253 	/*
2254 	 * Ok, we are happy with the pool so far. Lets find
2255 	 * the best uberblock and then we can actually access
2256 	 * the contents of the pool.
2257 	 */
2258 	vdev_uberblock_load(vdev, spa->spa_uberblock);
2259 
2260 	if (spap != NULL)
2261 		*spap = spa;
2262 	return (0);
2263 }
2264 
2265 static int
ilog2(int n)2266 ilog2(int n)
2267 {
2268 	int v;
2269 
2270 	for (v = 0; v < 32; v++)
2271 		if (n == (1 << v))
2272 			return (v);
2273 	return (-1);
2274 }
2275 
2276 static inline uint64_t
gbh_nblkptrs(uint64_t size)2277 gbh_nblkptrs(uint64_t size)
2278 {
2279 	ASSERT(IS_P2ALIGNED(size, sizeof(blkptr_t)));
2280 	return ((size - sizeof(zio_eck_t)) / sizeof(blkptr_t));
2281 }
2282 
2283 static int
zio_read_gang(const spa_t * spa,const blkptr_t * bp,void * buf)2284 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2285 {
2286 	blkptr_t gbh_bp;
2287 	void *gbuf;
2288 	char *pbuf;
2289 	uint64_t gangblocksize;
2290 	int err, i;
2291 
2292 	gangblocksize = UINT64_MAX;
2293 	for (int dva = 0; dva < BP_GET_NDVAS(bp); dva++) {
2294 		vdev_t *vd = vdev_lookup_top(spa,
2295 		    DVA_GET_VDEV(&bp->blk_dva[dva]));
2296 		gangblocksize = MIN(gangblocksize, 1ULL << vd->v_ashift);
2297 	}
2298 
2299 	/* Artificial BP for gang block header. */
2300 	gbh_bp = *bp;
2301 	BP_SET_PSIZE(&gbh_bp, gangblocksize);
2302 	BP_SET_LSIZE(&gbh_bp, gangblocksize);
2303 	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2304 	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2305 	for (i = 0; i < SPA_DVAS_PER_BP; i++)
2306 		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2307 
2308 	gbuf = malloc(gangblocksize);
2309 	if (gbuf == NULL)
2310 		return (ENOMEM);
2311 	/* Read gang header block using the artificial BP. */
2312 	err = zio_read_impl(spa, &gbh_bp, gbuf, false);
2313 	if ((err == EIO || err == ECKSUM) &&
2314 	    gangblocksize > SPA_OLD_GANGBLOCKSIZE) {
2315 		/* This might be a legacy gang block header, try again. */
2316 		gangblocksize = SPA_OLD_GANGBLOCKSIZE;
2317 		BP_SET_PSIZE(&gbh_bp, gangblocksize);
2318 		BP_SET_LSIZE(&gbh_bp, gangblocksize);
2319 		err = zio_read(spa, &gbh_bp, gbuf);
2320 	}
2321 	if (err != 0) {
2322 		free(gbuf);
2323 		return (EIO);
2324 	}
2325 
2326 	pbuf = buf;
2327 	for (i = 0; i < gbh_nblkptrs(gangblocksize); i++) {
2328 		blkptr_t *gbp = &((blkptr_t *)gbuf)[i];
2329 
2330 		if (BP_IS_HOLE(gbp))
2331 			continue;
2332 		if (zio_read(spa, gbp, pbuf)) {
2333 			free(gbuf);
2334 			return (EIO);
2335 		}
2336 		pbuf += BP_GET_PSIZE(gbp);
2337 	}
2338 
2339 	free(gbuf);
2340 	if (zio_checksum_verify(spa, bp, buf))
2341 		return (EIO);
2342 	return (0);
2343 }
2344 
2345 static int
zio_read_impl(const spa_t * spa,const blkptr_t * bp,void * buf,bool print)2346 zio_read_impl(const spa_t *spa, const blkptr_t *bp, void *buf, bool print)
2347 {
2348 	int cpfunc = BP_GET_COMPRESS(bp);
2349 	uint64_t align, size;
2350 	void *pbuf;
2351 	int i, error;
2352 
2353 	/*
2354 	 * Process data embedded in block pointer
2355 	 */
2356 	if (BP_IS_EMBEDDED(bp)) {
2357 		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2358 
2359 		size = BPE_GET_PSIZE(bp);
2360 		ASSERT(size <= BPE_PAYLOAD_SIZE);
2361 
2362 		if (cpfunc != ZIO_COMPRESS_OFF)
2363 			pbuf = malloc(size);
2364 		else
2365 			pbuf = buf;
2366 
2367 		if (pbuf == NULL)
2368 			return (ENOMEM);
2369 
2370 		decode_embedded_bp_compressed(bp, pbuf);
2371 		error = 0;
2372 
2373 		if (cpfunc != ZIO_COMPRESS_OFF) {
2374 			error = zio_decompress_data(cpfunc, pbuf,
2375 			    size, buf, BP_GET_LSIZE(bp));
2376 			free(pbuf);
2377 		}
2378 		if (error != 0 && print)
2379 			printf("ZFS: i/o error - unable to decompress "
2380 			    "block pointer data, error %d\n", error);
2381 		return (error);
2382 	}
2383 
2384 	error = EIO;
2385 
2386 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2387 		const dva_t *dva = &bp->blk_dva[i];
2388 		vdev_t *vdev;
2389 		vdev_list_t *vlist;
2390 		uint64_t vdevid;
2391 		off_t offset;
2392 
2393 		if (!dva->dva_word[0] && !dva->dva_word[1])
2394 			continue;
2395 
2396 		vdevid = DVA_GET_VDEV(dva);
2397 		offset = DVA_GET_OFFSET(dva);
2398 		vlist = &spa->spa_root_vdev->v_children;
2399 		STAILQ_FOREACH(vdev, vlist, v_childlink) {
2400 			if (vdev->v_id == vdevid)
2401 				break;
2402 		}
2403 		if (!vdev || !vdev->v_read)
2404 			continue;
2405 
2406 		size = BP_GET_PSIZE(bp);
2407 		if (vdev->v_read == vdev_raidz_read) {
2408 			align = 1ULL << vdev->v_ashift;
2409 			if (P2PHASE(size, align) != 0)
2410 				size = P2ROUNDUP(size, align);
2411 		}
2412 		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2413 			pbuf = malloc(size);
2414 		else
2415 			pbuf = buf;
2416 
2417 		if (pbuf == NULL) {
2418 			error = ENOMEM;
2419 			break;
2420 		}
2421 
2422 		if (DVA_GET_GANG(dva))
2423 			error = zio_read_gang(spa, bp, pbuf);
2424 		else
2425 			error = vdev->v_read(vdev, bp, pbuf, offset, size);
2426 		if (error == 0) {
2427 			if (cpfunc != ZIO_COMPRESS_OFF)
2428 				error = zio_decompress_data(cpfunc, pbuf,
2429 				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2430 			else if (size != BP_GET_PSIZE(bp))
2431 				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2432 		} else if (print) {
2433 			printf("zio_read error: %d\n", error);
2434 		}
2435 		if (buf != pbuf)
2436 			free(pbuf);
2437 		if (error == 0)
2438 			break;
2439 	}
2440 	if (error != 0 && print)
2441 		printf("ZFS: i/o error - all block copies unavailable\n");
2442 
2443 	return (error);
2444 }
2445 
2446 static int
zio_read(const spa_t * spa,const blkptr_t * bp,void * buf)2447 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2448 {
2449 	return (zio_read_impl(spa, bp, buf, true));
2450 }
2451 
2452 static int
dnode_read(const spa_t * spa,const dnode_phys_t * dnode,off_t offset,void * buf,size_t buflen)2453 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2454     void *buf, size_t buflen)
2455 {
2456 	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2457 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2458 	int nlevels = dnode->dn_nlevels;
2459 	int i, rc;
2460 
2461 	if (bsize > SPA_MAXBLOCKSIZE) {
2462 		printf("ZFS: I/O error - blocks larger than %llu are not "
2463 		    "supported\n", SPA_MAXBLOCKSIZE);
2464 		return (EIO);
2465 	}
2466 
2467 	/*
2468 	 * Handle odd block sizes, mirrors dmu_read_impl().  Data can't exist
2469 	 * past the first block, so we'll clip the read to the portion of the
2470 	 * buffer within bsize and zero out the remainder.
2471 	 */
2472 	if (dnode->dn_maxblkid == 0) {
2473 		size_t newbuflen;
2474 
2475 		newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2476 		bzero((char *)buf + newbuflen, buflen - newbuflen);
2477 		buflen = newbuflen;
2478 	}
2479 
2480 	/*
2481 	 * Note: bsize may not be a power of two here so we need to do an
2482 	 * actual divide rather than a bitshift.
2483 	 */
2484 	while (buflen > 0) {
2485 		uint64_t bn = offset / bsize;
2486 		int boff = offset % bsize;
2487 		int ibn;
2488 		const blkptr_t *indbp;
2489 		blkptr_t bp;
2490 
2491 		if (bn > dnode->dn_maxblkid)
2492 			return (EIO);
2493 
2494 		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2495 			goto cached;
2496 
2497 		indbp = dnode->dn_blkptr;
2498 		for (i = 0; i < nlevels; i++) {
2499 			/*
2500 			 * Copy the bp from the indirect array so that
2501 			 * we can re-use the scratch buffer for multi-level
2502 			 * objects.
2503 			 */
2504 			ibn = bn >> ((nlevels - i - 1) * ibshift);
2505 			ibn &= ((1 << ibshift) - 1);
2506 			bp = indbp[ibn];
2507 			if (BP_IS_HOLE(&bp)) {
2508 				memset(dnode_cache_buf, 0, bsize);
2509 				break;
2510 			}
2511 			rc = zio_read(spa, &bp, dnode_cache_buf);
2512 			if (rc)
2513 				return (rc);
2514 			indbp = (const blkptr_t *) dnode_cache_buf;
2515 		}
2516 		dnode_cache_obj = dnode;
2517 		dnode_cache_bn = bn;
2518 	cached:
2519 
2520 		/*
2521 		 * The buffer contains our data block. Copy what we
2522 		 * need from it and loop.
2523 		 */
2524 		i = bsize - boff;
2525 		if (i > buflen) i = buflen;
2526 		memcpy(buf, &dnode_cache_buf[boff], i);
2527 		buf = ((char *)buf) + i;
2528 		offset += i;
2529 		buflen -= i;
2530 	}
2531 
2532 	return (0);
2533 }
2534 
2535 /*
2536  * Lookup a value in a microzap directory.
2537  */
2538 static int
mzap_lookup(const mzap_phys_t * mz,size_t size,const char * name,uint64_t * value)2539 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2540     uint64_t *value)
2541 {
2542 	const mzap_ent_phys_t *mze;
2543 	int chunks, i;
2544 
2545 	/*
2546 	 * Microzap objects use exactly one block. Read the whole
2547 	 * thing.
2548 	 */
2549 	chunks = size / MZAP_ENT_LEN - 1;
2550 	for (i = 0; i < chunks; i++) {
2551 		mze = &mz->mz_chunk[i];
2552 		if (strcmp(mze->mze_name, name) == 0) {
2553 			*value = mze->mze_value;
2554 			return (0);
2555 		}
2556 	}
2557 
2558 	return (ENOENT);
2559 }
2560 
2561 /*
2562  * Compare a name with a zap leaf entry. Return non-zero if the name
2563  * matches.
2564  */
2565 static int
fzap_name_equal(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,const char * name)2566 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2567     const char *name)
2568 {
2569 	size_t namelen;
2570 	const zap_leaf_chunk_t *nc;
2571 	const char *p;
2572 
2573 	namelen = zc->l_entry.le_name_numints;
2574 
2575 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2576 	p = name;
2577 	while (namelen > 0) {
2578 		size_t len;
2579 
2580 		len = namelen;
2581 		if (len > ZAP_LEAF_ARRAY_BYTES)
2582 			len = ZAP_LEAF_ARRAY_BYTES;
2583 		if (memcmp(p, nc->l_array.la_array, len))
2584 			return (0);
2585 		p += len;
2586 		namelen -= len;
2587 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2588 	}
2589 
2590 	return (1);
2591 }
2592 
2593 /*
2594  * Extract a uint64_t value from a zap leaf entry.
2595  */
2596 static uint64_t
fzap_leaf_value(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc)2597 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2598 {
2599 	const zap_leaf_chunk_t *vc;
2600 	int i;
2601 	uint64_t value;
2602 	const uint8_t *p;
2603 
2604 	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2605 	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2606 		value = (value << 8) | p[i];
2607 	}
2608 
2609 	return (value);
2610 }
2611 
2612 static void
stv(int len,void * addr,uint64_t value)2613 stv(int len, void *addr, uint64_t value)
2614 {
2615 	switch (len) {
2616 	case 1:
2617 		*(uint8_t *)addr = value;
2618 		return;
2619 	case 2:
2620 		*(uint16_t *)addr = value;
2621 		return;
2622 	case 4:
2623 		*(uint32_t *)addr = value;
2624 		return;
2625 	case 8:
2626 		*(uint64_t *)addr = value;
2627 		return;
2628 	}
2629 }
2630 
2631 /*
2632  * Extract a array from a zap leaf entry.
2633  */
2634 static void
fzap_leaf_array(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,uint64_t integer_size,uint64_t num_integers,void * buf)2635 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2636     uint64_t integer_size, uint64_t num_integers, void *buf)
2637 {
2638 	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2639 	uint64_t value = 0;
2640 	uint64_t *u64 = buf;
2641 	char *p = buf;
2642 	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2643 	int chunk = zc->l_entry.le_value_chunk;
2644 	int byten = 0;
2645 
2646 	if (integer_size == 8 && len == 1) {
2647 		*u64 = fzap_leaf_value(zl, zc);
2648 		return;
2649 	}
2650 
2651 	while (len > 0) {
2652 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2653 		int i;
2654 
2655 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2656 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2657 			value = (value << 8) | la->la_array[i];
2658 			byten++;
2659 			if (byten == array_int_len) {
2660 				stv(integer_size, p, value);
2661 				byten = 0;
2662 				len--;
2663 				if (len == 0)
2664 					return;
2665 				p += integer_size;
2666 			}
2667 		}
2668 		chunk = la->la_next;
2669 	}
2670 }
2671 
2672 static int
fzap_check_size(uint64_t integer_size,uint64_t num_integers)2673 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2674 {
2675 
2676 	switch (integer_size) {
2677 	case 1:
2678 	case 2:
2679 	case 4:
2680 	case 8:
2681 		break;
2682 	default:
2683 		return (EINVAL);
2684 	}
2685 
2686 	if (integer_size * num_integers > ZAP_MAXVALUELEN)
2687 		return (E2BIG);
2688 
2689 	return (0);
2690 }
2691 
2692 static void
zap_leaf_free(zap_leaf_t * leaf)2693 zap_leaf_free(zap_leaf_t *leaf)
2694 {
2695 	free(leaf->l_phys);
2696 	free(leaf);
2697 }
2698 
2699 static int
zap_get_leaf_byblk(fat_zap_t * zap,uint64_t blk,zap_leaf_t ** lp)2700 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2701 {
2702 	int bs = FZAP_BLOCK_SHIFT(zap);
2703 	int err;
2704 
2705 	*lp = malloc(sizeof(**lp));
2706 	if (*lp == NULL)
2707 		return (ENOMEM);
2708 
2709 	(*lp)->l_bs = bs;
2710 	(*lp)->l_phys = malloc(1 << bs);
2711 
2712 	if ((*lp)->l_phys == NULL) {
2713 		free(*lp);
2714 		return (ENOMEM);
2715 	}
2716 	err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2717 	    1 << bs);
2718 	if (err != 0) {
2719 		zap_leaf_free(*lp);
2720 	}
2721 	return (err);
2722 }
2723 
2724 static int
zap_table_load(fat_zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)2725 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2726     uint64_t *valp)
2727 {
2728 	int bs = FZAP_BLOCK_SHIFT(zap);
2729 	uint64_t blk = idx >> (bs - 3);
2730 	uint64_t off = idx & ((1 << (bs - 3)) - 1);
2731 	uint64_t *buf;
2732 	int rc;
2733 
2734 	buf = malloc(1 << zap->zap_block_shift);
2735 	if (buf == NULL)
2736 		return (ENOMEM);
2737 	rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2738 	    buf, 1 << zap->zap_block_shift);
2739 	if (rc == 0)
2740 		*valp = buf[off];
2741 	free(buf);
2742 	return (rc);
2743 }
2744 
2745 static int
zap_idx_to_blk(fat_zap_t * zap,uint64_t idx,uint64_t * valp)2746 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2747 {
2748 	if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2749 		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2750 		return (0);
2751 	} else {
2752 		return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2753 		    idx, valp));
2754 	}
2755 }
2756 
2757 #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2758 static int
zap_deref_leaf(fat_zap_t * zap,uint64_t h,zap_leaf_t ** lp)2759 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2760 {
2761 	uint64_t idx, blk;
2762 	int err;
2763 
2764 	idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2765 	err = zap_idx_to_blk(zap, idx, &blk);
2766 	if (err != 0)
2767 		return (err);
2768 	return (zap_get_leaf_byblk(zap, blk, lp));
2769 }
2770 
2771 #define	CHAIN_END	0xffff	/* end of the chunk chain */
2772 #define	LEAF_HASH(l, h) \
2773 	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2774 	((h) >> \
2775 	(64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2776 #define	LEAF_HASH_ENTPTR(l, h)	(&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2777 
2778 static int
zap_leaf_lookup(zap_leaf_t * zl,uint64_t hash,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2779 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2780     uint64_t integer_size, uint64_t num_integers, void *value)
2781 {
2782 	int rc;
2783 	uint16_t *chunkp;
2784 	struct zap_leaf_entry *le;
2785 
2786 	/*
2787 	 * Make sure this chunk matches our hash.
2788 	 */
2789 	if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2790 	    zl->l_phys->l_hdr.lh_prefix !=
2791 	    hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2792 		return (EIO);
2793 
2794 	rc = ENOENT;
2795 	for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2796 	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
2797 		zap_leaf_chunk_t *zc;
2798 		uint16_t chunk = *chunkp;
2799 
2800 		le = ZAP_LEAF_ENTRY(zl, chunk);
2801 		if (le->le_hash != hash)
2802 			continue;
2803 		zc = &ZAP_LEAF_CHUNK(zl, chunk);
2804 		if (fzap_name_equal(zl, zc, name)) {
2805 			if (zc->l_entry.le_value_intlen > integer_size) {
2806 				rc = EINVAL;
2807 			} else {
2808 				fzap_leaf_array(zl, zc, integer_size,
2809 				    num_integers, value);
2810 				rc = 0;
2811 			}
2812 			break;
2813 		}
2814 	}
2815 	return (rc);
2816 }
2817 
2818 /*
2819  * Lookup a value in a fatzap directory.
2820  */
2821 static int
fzap_lookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2822 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2823     const char *name, uint64_t integer_size, uint64_t num_integers,
2824     void *value)
2825 {
2826 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2827 	fat_zap_t z;
2828 	zap_leaf_t *zl;
2829 	uint64_t hash;
2830 	int rc;
2831 
2832 	if (zh->zap_magic != ZAP_MAGIC)
2833 		return (EIO);
2834 
2835 	if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2836 		return (rc);
2837 	}
2838 
2839 	z.zap_block_shift = ilog2(bsize);
2840 	z.zap_phys = zh;
2841 	z.zap_spa = spa;
2842 	z.zap_dnode = dnode;
2843 
2844 	hash = zap_hash(zh->zap_salt, name);
2845 	rc = zap_deref_leaf(&z, hash, &zl);
2846 	if (rc != 0)
2847 		return (rc);
2848 
2849 	rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2850 
2851 	zap_leaf_free(zl);
2852 	return (rc);
2853 }
2854 
2855 /*
2856  * Lookup a name in a zap object and return its value as a uint64_t.
2857  */
2858 static int
zap_lookup(const spa_t * spa,const dnode_phys_t * dnode,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2859 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2860     uint64_t integer_size, uint64_t num_integers, void *value)
2861 {
2862 	int rc;
2863 	zap_phys_t *zap;
2864 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2865 
2866 	zap = malloc(size);
2867 	if (zap == NULL)
2868 		return (ENOMEM);
2869 
2870 	rc = dnode_read(spa, dnode, 0, zap, size);
2871 	if (rc)
2872 		goto done;
2873 
2874 	switch (zap->zap_block_type) {
2875 	case ZBT_MICRO:
2876 		rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2877 		break;
2878 	case ZBT_HEADER:
2879 		rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2880 		    num_integers, value);
2881 		break;
2882 	default:
2883 		printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2884 		    zap->zap_block_type);
2885 		rc = EIO;
2886 	}
2887 done:
2888 	free(zap);
2889 	return (rc);
2890 }
2891 
2892 /*
2893  * List a microzap directory.
2894  */
2895 static int
mzap_list(const mzap_phys_t * mz,size_t size,int (* callback)(const char *,uint64_t))2896 mzap_list(const mzap_phys_t *mz, size_t size,
2897     int (*callback)(const char *, uint64_t))
2898 {
2899 	const mzap_ent_phys_t *mze;
2900 	int chunks, i, rc;
2901 
2902 	/*
2903 	 * Microzap objects use exactly one block. Read the whole
2904 	 * thing.
2905 	 */
2906 	rc = 0;
2907 	chunks = size / MZAP_ENT_LEN - 1;
2908 	for (i = 0; i < chunks; i++) {
2909 		mze = &mz->mz_chunk[i];
2910 		if (mze->mze_name[0]) {
2911 			rc = callback(mze->mze_name, mze->mze_value);
2912 			if (rc != 0)
2913 				break;
2914 		}
2915 	}
2916 
2917 	return (rc);
2918 }
2919 
2920 /*
2921  * List a fatzap directory.
2922  */
2923 static int
fzap_list(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,int (* callback)(const char *,uint64_t))2924 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2925     int (*callback)(const char *, uint64_t))
2926 {
2927 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2928 	fat_zap_t z;
2929 	uint64_t i;
2930 	int j, rc;
2931 
2932 	if (zh->zap_magic != ZAP_MAGIC)
2933 		return (EIO);
2934 
2935 	z.zap_block_shift = ilog2(bsize);
2936 	z.zap_phys = zh;
2937 
2938 	/*
2939 	 * This assumes that the leaf blocks start at block 1. The
2940 	 * documentation isn't exactly clear on this.
2941 	 */
2942 	zap_leaf_t zl;
2943 	zl.l_bs = z.zap_block_shift;
2944 	zl.l_phys = malloc(bsize);
2945 	if (zl.l_phys == NULL)
2946 		return (ENOMEM);
2947 
2948 	for (i = 0; i < zh->zap_num_leafs; i++) {
2949 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2950 		char name[256], *p;
2951 		uint64_t value;
2952 
2953 		if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2954 			free(zl.l_phys);
2955 			return (EIO);
2956 		}
2957 
2958 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2959 			zap_leaf_chunk_t *zc, *nc;
2960 			int namelen;
2961 
2962 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2963 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2964 				continue;
2965 			namelen = zc->l_entry.le_name_numints;
2966 			if (namelen > sizeof(name))
2967 				namelen = sizeof(name);
2968 
2969 			/*
2970 			 * Paste the name back together.
2971 			 */
2972 			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2973 			p = name;
2974 			while (namelen > 0) {
2975 				int len;
2976 				len = namelen;
2977 				if (len > ZAP_LEAF_ARRAY_BYTES)
2978 					len = ZAP_LEAF_ARRAY_BYTES;
2979 				memcpy(p, nc->l_array.la_array, len);
2980 				p += len;
2981 				namelen -= len;
2982 				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2983 			}
2984 
2985 			/*
2986 			 * Assume the first eight bytes of the value are
2987 			 * a uint64_t.
2988 			 */
2989 			value = fzap_leaf_value(&zl, zc);
2990 
2991 			/* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2992 			rc = callback((const char *)name, value);
2993 			if (rc != 0) {
2994 				free(zl.l_phys);
2995 				return (rc);
2996 			}
2997 		}
2998 	}
2999 
3000 	free(zl.l_phys);
3001 	return (0);
3002 }
3003 
zfs_printf(const char * name,uint64_t value __unused)3004 static int zfs_printf(const char *name, uint64_t value __unused)
3005 {
3006 
3007 	printf("%s\n", name);
3008 
3009 	return (0);
3010 }
3011 
3012 /*
3013  * List a zap directory.
3014  */
3015 static int
zap_list(const spa_t * spa,const dnode_phys_t * dnode)3016 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
3017 {
3018 	zap_phys_t *zap;
3019 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3020 	int rc;
3021 
3022 	zap = malloc(size);
3023 	if (zap == NULL)
3024 		return (ENOMEM);
3025 
3026 	rc = dnode_read(spa, dnode, 0, zap, size);
3027 	if (rc == 0) {
3028 		if (zap->zap_block_type == ZBT_MICRO)
3029 			rc = mzap_list((const mzap_phys_t *)zap, size,
3030 			    zfs_printf);
3031 		else
3032 			rc = fzap_list(spa, dnode, zap, zfs_printf);
3033 	}
3034 	free(zap);
3035 	return (rc);
3036 }
3037 
3038 static int
objset_get_dnode(const spa_t * spa,const objset_phys_t * os,uint64_t objnum,dnode_phys_t * dnode)3039 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
3040     dnode_phys_t *dnode)
3041 {
3042 	off_t offset;
3043 
3044 	offset = objnum * sizeof(dnode_phys_t);
3045 	return dnode_read(spa, &os->os_meta_dnode, offset,
3046 		dnode, sizeof(dnode_phys_t));
3047 }
3048 
3049 /*
3050  * Lookup a name in a microzap directory.
3051  */
3052 static int
mzap_rlookup(const mzap_phys_t * mz,size_t size,char * name,uint64_t value)3053 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
3054 {
3055 	const mzap_ent_phys_t *mze;
3056 	int chunks, i;
3057 
3058 	/*
3059 	 * Microzap objects use exactly one block. Read the whole
3060 	 * thing.
3061 	 */
3062 	chunks = size / MZAP_ENT_LEN - 1;
3063 	for (i = 0; i < chunks; i++) {
3064 		mze = &mz->mz_chunk[i];
3065 		if (value == mze->mze_value) {
3066 			strcpy(name, mze->mze_name);
3067 			return (0);
3068 		}
3069 	}
3070 
3071 	return (ENOENT);
3072 }
3073 
3074 static void
fzap_name_copy(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,char * name)3075 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
3076 {
3077 	size_t namelen;
3078 	const zap_leaf_chunk_t *nc;
3079 	char *p;
3080 
3081 	namelen = zc->l_entry.le_name_numints;
3082 
3083 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
3084 	p = name;
3085 	while (namelen > 0) {
3086 		size_t len;
3087 		len = namelen;
3088 		if (len > ZAP_LEAF_ARRAY_BYTES)
3089 			len = ZAP_LEAF_ARRAY_BYTES;
3090 		memcpy(p, nc->l_array.la_array, len);
3091 		p += len;
3092 		namelen -= len;
3093 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
3094 	}
3095 
3096 	*p = '\0';
3097 }
3098 
3099 static int
fzap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,char * name,uint64_t value)3100 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
3101     char *name, uint64_t value)
3102 {
3103 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3104 	fat_zap_t z;
3105 	uint64_t i;
3106 	int j, rc;
3107 
3108 	if (zh->zap_magic != ZAP_MAGIC)
3109 		return (EIO);
3110 
3111 	z.zap_block_shift = ilog2(bsize);
3112 	z.zap_phys = zh;
3113 
3114 	/*
3115 	 * This assumes that the leaf blocks start at block 1. The
3116 	 * documentation isn't exactly clear on this.
3117 	 */
3118 	zap_leaf_t zl;
3119 	zl.l_bs = z.zap_block_shift;
3120 	zl.l_phys = malloc(bsize);
3121 	if (zl.l_phys == NULL)
3122 		return (ENOMEM);
3123 
3124 	for (i = 0; i < zh->zap_num_leafs; i++) {
3125 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
3126 
3127 		rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
3128 		if (rc != 0)
3129 			goto done;
3130 
3131 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
3132 			zap_leaf_chunk_t *zc;
3133 
3134 			zc = &ZAP_LEAF_CHUNK(&zl, j);
3135 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3136 				continue;
3137 			if (zc->l_entry.le_value_intlen != 8 ||
3138 			    zc->l_entry.le_value_numints != 1)
3139 				continue;
3140 
3141 			if (fzap_leaf_value(&zl, zc) == value) {
3142 				fzap_name_copy(&zl, zc, name);
3143 				goto done;
3144 			}
3145 		}
3146 	}
3147 
3148 	rc = ENOENT;
3149 done:
3150 	free(zl.l_phys);
3151 	return (rc);
3152 }
3153 
3154 static int
zap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,char * name,uint64_t value)3155 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3156     uint64_t value)
3157 {
3158 	zap_phys_t *zap;
3159 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3160 	int rc;
3161 
3162 	zap = malloc(size);
3163 	if (zap == NULL)
3164 		return (ENOMEM);
3165 
3166 	rc = dnode_read(spa, dnode, 0, zap, size);
3167 	if (rc == 0) {
3168 		if (zap->zap_block_type == ZBT_MICRO)
3169 			rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3170 			    name, value);
3171 		else
3172 			rc = fzap_rlookup(spa, dnode, zap, name, value);
3173 	}
3174 	free(zap);
3175 	return (rc);
3176 }
3177 
3178 static int
zfs_rlookup(const spa_t * spa,uint64_t objnum,char * result)3179 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3180 {
3181 	char name[256];
3182 	char component[256];
3183 	uint64_t dir_obj, parent_obj, child_dir_zapobj;
3184 	dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3185 	dsl_dir_phys_t *dd;
3186 	dsl_dataset_phys_t *ds;
3187 	char *p;
3188 	int len;
3189 	boolean_t issnap = B_FALSE;
3190 
3191 	p = &name[sizeof(name) - 1];
3192 	*p = '\0';
3193 
3194 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3195 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3196 		return (EIO);
3197 	}
3198 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3199 	dir_obj = ds->ds_dir_obj;
3200 	if (ds->ds_snapnames_zapobj == 0)
3201 		issnap = B_TRUE;
3202 
3203 	for (;;) {
3204 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3205 			return (EIO);
3206 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3207 
3208 		/* Actual loop condition. */
3209 		parent_obj = dd->dd_parent_obj;
3210 		if (parent_obj == 0)
3211 			break;
3212 
3213 		if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3214 		    &parent) != 0)
3215 			return (EIO);
3216 		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3217 		if (issnap == B_TRUE) {
3218 			/*
3219 			 * The dataset we are looking up is a snapshot
3220 			 * the dir_obj is the parent already, we don't want
3221 			 * the grandparent just yet. Reset to the parent.
3222 			 */
3223 			dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3224 			/* Lookup the dataset to get the snapname ZAP */
3225 			if (objset_get_dnode(spa, spa->spa_mos,
3226 			    dd->dd_head_dataset_obj, &dataset))
3227 				return (EIO);
3228 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3229 			if (objset_get_dnode(spa, spa->spa_mos,
3230 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3231 				return (EIO);
3232 			/* Get the name of the snapshot */
3233 			if (zap_rlookup(spa, &snapnames_zap, component,
3234 			    objnum) != 0)
3235 				return (EIO);
3236 			len = strlen(component);
3237 			p -= len;
3238 			memcpy(p, component, len);
3239 			--p;
3240 			*p = '@';
3241 			issnap = B_FALSE;
3242 			continue;
3243 		}
3244 
3245 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3246 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3247 		    &child_dir_zap) != 0)
3248 			return (EIO);
3249 		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3250 			return (EIO);
3251 
3252 		len = strlen(component);
3253 		p -= len;
3254 		memcpy(p, component, len);
3255 		--p;
3256 		*p = '/';
3257 
3258 		/* Actual loop iteration. */
3259 		dir_obj = parent_obj;
3260 	}
3261 
3262 	if (*p != '\0')
3263 		++p;
3264 	strcpy(result, p);
3265 
3266 	return (0);
3267 }
3268 
3269 static int
zfs_lookup_dataset(const spa_t * spa,const char * name,uint64_t * objnum)3270 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3271 {
3272 	char element[256];
3273 	uint64_t dir_obj, child_dir_zapobj;
3274 	dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3275 	dsl_dir_phys_t *dd;
3276 	dsl_dataset_phys_t *ds;
3277 	const char *p, *q;
3278 	boolean_t issnap = B_FALSE;
3279 
3280 	if (objset_get_dnode(spa, spa->spa_mos,
3281 	    DMU_POOL_DIRECTORY_OBJECT, &dir))
3282 		return (EIO);
3283 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3284 	    1, &dir_obj))
3285 		return (EIO);
3286 
3287 	p = name;
3288 	for (;;) {
3289 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3290 			return (EIO);
3291 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3292 
3293 		while (*p == '/')
3294 			p++;
3295 		/* Actual loop condition #1. */
3296 		if (*p == '\0')
3297 			break;
3298 
3299 		q = strchr(p, '/');
3300 		if (q) {
3301 			memcpy(element, p, q - p);
3302 			element[q - p] = '\0';
3303 			p = q + 1;
3304 		} else {
3305 			strcpy(element, p);
3306 			p += strlen(p);
3307 		}
3308 
3309 		if (issnap == B_TRUE) {
3310 		        if (objset_get_dnode(spa, spa->spa_mos,
3311 			    dd->dd_head_dataset_obj, &dataset))
3312 		                return (EIO);
3313 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3314 			if (objset_get_dnode(spa, spa->spa_mos,
3315 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3316 				return (EIO);
3317 			/* Actual loop condition #2. */
3318 			if (zap_lookup(spa, &snapnames_zap, element,
3319 			    sizeof (dir_obj), 1, &dir_obj) != 0)
3320 				return (ENOENT);
3321 			*objnum = dir_obj;
3322 			return (0);
3323 		} else if ((q = strchr(element, '@')) != NULL) {
3324 			issnap = B_TRUE;
3325 			element[q - element] = '\0';
3326 			p = q + 1;
3327 		}
3328 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3329 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3330 		    &child_dir_zap) != 0)
3331 			return (EIO);
3332 
3333 		/* Actual loop condition #2. */
3334 		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3335 		    1, &dir_obj) != 0)
3336 			return (ENOENT);
3337 	}
3338 
3339 	*objnum = dd->dd_head_dataset_obj;
3340 	return (0);
3341 }
3342 
3343 #ifndef BOOT2
3344 static int
zfs_list_dataset(const spa_t * spa,uint64_t objnum)3345 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3346 {
3347 	uint64_t dir_obj, child_dir_zapobj;
3348 	dnode_phys_t child_dir_zap, dir, dataset;
3349 	dsl_dataset_phys_t *ds;
3350 	dsl_dir_phys_t *dd;
3351 
3352 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3353 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3354 		return (EIO);
3355 	}
3356 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3357 	dir_obj = ds->ds_dir_obj;
3358 
3359 	if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3360 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3361 		return (EIO);
3362 	}
3363 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3364 
3365 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3366 	if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3367 	    &child_dir_zap) != 0) {
3368 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3369 		return (EIO);
3370 	}
3371 
3372 	return (zap_list(spa, &child_dir_zap) != 0);
3373 }
3374 
3375 int
zfs_callback_dataset(const spa_t * spa,uint64_t objnum,int (* callback)(const char *,uint64_t))3376 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3377     int (*callback)(const char *, uint64_t))
3378 {
3379 	uint64_t dir_obj, child_dir_zapobj;
3380 	dnode_phys_t child_dir_zap, dir, dataset;
3381 	dsl_dataset_phys_t *ds;
3382 	dsl_dir_phys_t *dd;
3383 	zap_phys_t *zap;
3384 	size_t size;
3385 	int err;
3386 
3387 	err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3388 	if (err != 0) {
3389 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3390 		return (err);
3391 	}
3392 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3393 	dir_obj = ds->ds_dir_obj;
3394 
3395 	err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3396 	if (err != 0) {
3397 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3398 		return (err);
3399 	}
3400 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3401 
3402 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3403 	err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3404 	    &child_dir_zap);
3405 	if (err != 0) {
3406 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3407 		return (err);
3408 	}
3409 
3410 	size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3411 	zap = malloc(size);
3412 	if (zap != NULL) {
3413 		err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3414 		if (err != 0)
3415 			goto done;
3416 
3417 		if (zap->zap_block_type == ZBT_MICRO)
3418 			err = mzap_list((const mzap_phys_t *)zap, size,
3419 			    callback);
3420 		else
3421 			err = fzap_list(spa, &child_dir_zap, zap, callback);
3422 	} else {
3423 		err = ENOMEM;
3424 	}
3425 done:
3426 	free(zap);
3427 	return (err);
3428 }
3429 #endif
3430 
3431 /*
3432  * Find the object set given the object number of its dataset object
3433  * and return its details in *objset
3434  */
3435 static int
zfs_mount_dataset(const spa_t * spa,uint64_t objnum,objset_phys_t * objset)3436 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3437 {
3438 	dnode_phys_t dataset;
3439 	dsl_dataset_phys_t *ds;
3440 
3441 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3442 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3443 		return (EIO);
3444 	}
3445 
3446 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3447 	if (zio_read(spa, &ds->ds_bp, objset)) {
3448 		printf("ZFS: can't read object set for dataset %ju\n",
3449 		    (uintmax_t)objnum);
3450 		return (EIO);
3451 	}
3452 
3453 	return (0);
3454 }
3455 
3456 /*
3457  * Find the object set pointed to by the BOOTFS property or the root
3458  * dataset if there is none and return its details in *objset
3459  */
3460 static int
zfs_get_root(const spa_t * spa,uint64_t * objid)3461 zfs_get_root(const spa_t *spa, uint64_t *objid)
3462 {
3463 	dnode_phys_t dir, propdir;
3464 	uint64_t props, bootfs, root;
3465 
3466 	*objid = 0;
3467 
3468 	/*
3469 	 * Start with the MOS directory object.
3470 	 */
3471 	if (objset_get_dnode(spa, spa->spa_mos,
3472 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3473 		printf("ZFS: can't read MOS object directory\n");
3474 		return (EIO);
3475 	}
3476 
3477 	/*
3478 	 * Lookup the pool_props and see if we can find a bootfs.
3479 	 */
3480 	if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3481 	    sizeof(props), 1, &props) == 0 &&
3482 	    objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3483 	    zap_lookup(spa, &propdir, "bootfs",
3484 	    sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3485 		*objid = bootfs;
3486 		return (0);
3487 	}
3488 	/*
3489 	 * Lookup the root dataset directory
3490 	 */
3491 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3492 	    sizeof(root), 1, &root) ||
3493 	    objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3494 		printf("ZFS: can't find root dsl_dir\n");
3495 		return (EIO);
3496 	}
3497 
3498 	/*
3499 	 * Use the information from the dataset directory's bonus buffer
3500 	 * to find the dataset object and from that the object set itself.
3501 	 */
3502 	dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3503 	*objid = dd->dd_head_dataset_obj;
3504 	return (0);
3505 }
3506 
3507 static int
zfs_mount_impl(const spa_t * spa,uint64_t rootobj,struct zfsmount * mount)3508 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3509 {
3510 
3511 	mount->spa = spa;
3512 
3513 	/*
3514 	 * Find the root object set if not explicitly provided
3515 	 */
3516 	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3517 		printf("ZFS: can't find root filesystem\n");
3518 		return (EIO);
3519 	}
3520 
3521 	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3522 		printf("ZFS: can't open root filesystem\n");
3523 		return (EIO);
3524 	}
3525 
3526 	mount->rootobj = rootobj;
3527 
3528 	return (0);
3529 }
3530 
3531 /*
3532  * callback function for feature name checks.
3533  */
3534 static int
check_feature(const char * name,uint64_t value)3535 check_feature(const char *name, uint64_t value)
3536 {
3537 	int i;
3538 
3539 	if (value == 0)
3540 		return (0);
3541 	if (name[0] == '\0')
3542 		return (0);
3543 
3544 	for (i = 0; features_for_read[i] != NULL; i++) {
3545 		if (strcmp(name, features_for_read[i]) == 0)
3546 			return (0);
3547 	}
3548 	printf("ZFS: unsupported feature: %s\n", name);
3549 	return (EIO);
3550 }
3551 
3552 /*
3553  * Checks whether the MOS features that are active are supported.
3554  */
3555 static int
check_mos_features(const spa_t * spa)3556 check_mos_features(const spa_t *spa)
3557 {
3558 	dnode_phys_t dir;
3559 	zap_phys_t *zap;
3560 	uint64_t objnum;
3561 	size_t size;
3562 	int rc;
3563 
3564 	if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3565 	    &dir)) != 0)
3566 		return (rc);
3567 	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3568 	    sizeof (objnum), 1, &objnum)) != 0) {
3569 		/*
3570 		 * It is older pool without features. As we have already
3571 		 * tested the label, just return without raising the error.
3572 		 */
3573 		return (0);
3574 	}
3575 
3576 	if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3577 		return (rc);
3578 
3579 	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3580 		return (EIO);
3581 
3582 	size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3583 	zap = malloc(size);
3584 	if (zap == NULL)
3585 		return (ENOMEM);
3586 
3587 	if (dnode_read(spa, &dir, 0, zap, size)) {
3588 		free(zap);
3589 		return (EIO);
3590 	}
3591 
3592 	if (zap->zap_block_type == ZBT_MICRO)
3593 		rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3594 	else
3595 		rc = fzap_list(spa, &dir, zap, check_feature);
3596 
3597 	free(zap);
3598 	return (rc);
3599 }
3600 
3601 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)3602 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3603 {
3604 	dnode_phys_t dir;
3605 	size_t size;
3606 	int rc;
3607 	char *nv;
3608 
3609 	*value = NULL;
3610 	if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3611 		return (rc);
3612 	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3613 	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3614 		return (EIO);
3615 	}
3616 
3617 	if (dir.dn_bonuslen != sizeof (uint64_t))
3618 		return (EIO);
3619 
3620 	size = *(uint64_t *)DN_BONUS(&dir);
3621 	nv = malloc(size);
3622 	if (nv == NULL)
3623 		return (ENOMEM);
3624 
3625 	rc = dnode_read(spa, &dir, 0, nv, size);
3626 	if (rc != 0) {
3627 		free(nv);
3628 		nv = NULL;
3629 		return (rc);
3630 	}
3631 	*value = nvlist_import(nv, size);
3632 	free(nv);
3633 	return (rc);
3634 }
3635 
3636 static int
zfs_spa_init(spa_t * spa)3637 zfs_spa_init(spa_t *spa)
3638 {
3639 	struct uberblock checkpoint;
3640 	dnode_phys_t dir;
3641 	uint64_t config_object;
3642 	nvlist_t *nvlist;
3643 	int rc;
3644 
3645 	if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3646 		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3647 		return (EIO);
3648 	}
3649 	if (spa->spa_mos->os_type != DMU_OST_META) {
3650 		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3651 		return (EIO);
3652 	}
3653 
3654 	if (objset_get_dnode(spa, &spa->spa_mos_master,
3655 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3656 		printf("ZFS: failed to read pool %s directory object\n",
3657 		    spa->spa_name);
3658 		return (EIO);
3659 	}
3660 	/* this is allowed to fail, older pools do not have salt */
3661 	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3662 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3663 	    spa->spa_cksum_salt.zcs_bytes);
3664 
3665 	rc = check_mos_features(spa);
3666 	if (rc != 0) {
3667 		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3668 		return (rc);
3669 	}
3670 
3671 	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3672 	    sizeof (config_object), 1, &config_object);
3673 	if (rc != 0) {
3674 		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3675 		return (EIO);
3676 	}
3677 	rc = load_nvlist(spa, config_object, &nvlist);
3678 	if (rc != 0) {
3679 		printf("ZFS: failed to load pool %s nvlist\n", spa->spa_name);
3680 		return (rc);
3681 	}
3682 
3683 	rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3684 	    sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3685 	    &checkpoint);
3686 	if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3687 		memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3688 		    sizeof(checkpoint));
3689 		if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3690 		    &spa->spa_mos_checkpoint)) {
3691 			printf("ZFS: can not read checkpoint data.\n");
3692 			return (EIO);
3693 		}
3694 	}
3695 
3696 	/*
3697 	 * Update vdevs from MOS config. Note, we do skip encoding bytes
3698 	 * here. See also vdev_label_read_config().
3699 	 */
3700 	rc = vdev_init_from_nvlist(spa, nvlist);
3701 	nvlist_destroy(nvlist);
3702 	return (rc);
3703 }
3704 
3705 static int
zfs_dnode_stat(const spa_t * spa,dnode_phys_t * dn,struct stat * sb)3706 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3707 {
3708 
3709 	if (dn->dn_bonustype != DMU_OT_SA) {
3710 		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3711 
3712 		sb->st_mode = zp->zp_mode;
3713 		sb->st_uid = zp->zp_uid;
3714 		sb->st_gid = zp->zp_gid;
3715 		sb->st_size = zp->zp_size;
3716 	} else {
3717 		sa_hdr_phys_t *sahdrp;
3718 		int hdrsize;
3719 		size_t size = 0;
3720 		void *buf = NULL;
3721 
3722 		if (dn->dn_bonuslen != 0)
3723 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3724 		else {
3725 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3726 				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3727 				int error;
3728 
3729 				size = BP_GET_LSIZE(bp);
3730 				buf = malloc(size);
3731 				if (buf == NULL)
3732 					error = ENOMEM;
3733 				else
3734 					error = zio_read(spa, bp, buf);
3735 
3736 				if (error != 0) {
3737 					free(buf);
3738 					return (error);
3739 				}
3740 				sahdrp = buf;
3741 			} else {
3742 				return (EIO);
3743 			}
3744 		}
3745 		hdrsize = SA_HDR_SIZE(sahdrp);
3746 		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3747 		    SA_MODE_OFFSET);
3748 		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3749 		    SA_UID_OFFSET);
3750 		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3751 		    SA_GID_OFFSET);
3752 		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3753 		    SA_SIZE_OFFSET);
3754 		free(buf);
3755 	}
3756 
3757 	return (0);
3758 }
3759 
3760 static int
zfs_dnode_readlink(const spa_t * spa,dnode_phys_t * dn,char * path,size_t psize)3761 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3762 {
3763 	int rc = 0;
3764 
3765 	if (dn->dn_bonustype == DMU_OT_SA) {
3766 		sa_hdr_phys_t *sahdrp = NULL;
3767 		size_t size = 0;
3768 		void *buf = NULL;
3769 		int hdrsize;
3770 		char *p;
3771 
3772 		if (dn->dn_bonuslen != 0) {
3773 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3774 		} else {
3775 			blkptr_t *bp;
3776 
3777 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3778 				return (EIO);
3779 			bp = DN_SPILL_BLKPTR(dn);
3780 
3781 			size = BP_GET_LSIZE(bp);
3782 			buf = malloc(size);
3783 			if (buf == NULL)
3784 				rc = ENOMEM;
3785 			else
3786 				rc = zio_read(spa, bp, buf);
3787 			if (rc != 0) {
3788 				free(buf);
3789 				return (rc);
3790 			}
3791 			sahdrp = buf;
3792 		}
3793 		hdrsize = SA_HDR_SIZE(sahdrp);
3794 		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3795 		memcpy(path, p, psize);
3796 		free(buf);
3797 		return (0);
3798 	}
3799 	/*
3800 	 * Second test is purely to silence bogus compiler
3801 	 * warning about accessing past the end of dn_bonus.
3802 	 */
3803 	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3804 	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3805 		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3806 	} else {
3807 		rc = dnode_read(spa, dn, 0, path, psize);
3808 	}
3809 	return (rc);
3810 }
3811 
3812 struct obj_list {
3813 	uint64_t		objnum;
3814 	STAILQ_ENTRY(obj_list)	entry;
3815 };
3816 
3817 /*
3818  * Lookup a file and return its dnode.
3819  */
3820 static int
zfs_lookup(const struct zfsmount * mount,const char * upath,dnode_phys_t * dnode)3821 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3822 {
3823 	int rc;
3824 	uint64_t objnum;
3825 	const spa_t *spa;
3826 	dnode_phys_t dn;
3827 	const char *p, *q;
3828 	char element[256];
3829 	char path[1024];
3830 	int symlinks_followed = 0;
3831 	struct stat sb;
3832 	struct obj_list *entry, *tentry;
3833 	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3834 
3835 	spa = mount->spa;
3836 	if (mount->objset.os_type != DMU_OST_ZFS) {
3837 		printf("ZFS: unexpected object set type %ju\n",
3838 		    (uintmax_t)mount->objset.os_type);
3839 		return (EIO);
3840 	}
3841 
3842 	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3843 		return (ENOMEM);
3844 
3845 	/*
3846 	 * Get the root directory dnode.
3847 	 */
3848 	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3849 	if (rc) {
3850 		free(entry);
3851 		return (rc);
3852 	}
3853 
3854 	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3855 	if (rc) {
3856 		free(entry);
3857 		return (rc);
3858 	}
3859 	entry->objnum = objnum;
3860 	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3861 
3862 	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3863 	if (rc != 0)
3864 		goto done;
3865 
3866 	p = upath;
3867 	while (p && *p) {
3868 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3869 		if (rc != 0)
3870 			goto done;
3871 
3872 		while (*p == '/')
3873 			p++;
3874 		if (*p == '\0')
3875 			break;
3876 		q = p;
3877 		while (*q != '\0' && *q != '/')
3878 			q++;
3879 
3880 		/* skip dot */
3881 		if (p + 1 == q && p[0] == '.') {
3882 			p++;
3883 			continue;
3884 		}
3885 		/* double dot */
3886 		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3887 			p += 2;
3888 			if (STAILQ_FIRST(&on_cache) ==
3889 			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3890 				rc = ENOENT;
3891 				goto done;
3892 			}
3893 			entry = STAILQ_FIRST(&on_cache);
3894 			STAILQ_REMOVE_HEAD(&on_cache, entry);
3895 			free(entry);
3896 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3897 			continue;
3898 		}
3899 		if (q - p + 1 > sizeof(element)) {
3900 			rc = ENAMETOOLONG;
3901 			goto done;
3902 		}
3903 		memcpy(element, p, q - p);
3904 		element[q - p] = 0;
3905 		p = q;
3906 
3907 		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3908 			goto done;
3909 		if (!S_ISDIR(sb.st_mode)) {
3910 			rc = ENOTDIR;
3911 			goto done;
3912 		}
3913 
3914 		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3915 		if (rc)
3916 			goto done;
3917 		objnum = ZFS_DIRENT_OBJ(objnum);
3918 
3919 		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3920 			rc = ENOMEM;
3921 			goto done;
3922 		}
3923 		entry->objnum = objnum;
3924 		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3925 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3926 		if (rc)
3927 			goto done;
3928 
3929 		/*
3930 		 * Check for symlink.
3931 		 */
3932 		rc = zfs_dnode_stat(spa, &dn, &sb);
3933 		if (rc)
3934 			goto done;
3935 		if (S_ISLNK(sb.st_mode)) {
3936 			if (symlinks_followed > 10) {
3937 				rc = EMLINK;
3938 				goto done;
3939 			}
3940 			symlinks_followed++;
3941 
3942 			/*
3943 			 * Read the link value and copy the tail of our
3944 			 * current path onto the end.
3945 			 */
3946 			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3947 				rc = ENAMETOOLONG;
3948 				goto done;
3949 			}
3950 			strcpy(&path[sb.st_size], p);
3951 
3952 			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3953 			if (rc != 0)
3954 				goto done;
3955 
3956 			/*
3957 			 * Restart with the new path, starting either at
3958 			 * the root or at the parent depending whether or
3959 			 * not the link is relative.
3960 			 */
3961 			p = path;
3962 			if (*p == '/') {
3963 				while (STAILQ_FIRST(&on_cache) !=
3964 				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3965 					entry = STAILQ_FIRST(&on_cache);
3966 					STAILQ_REMOVE_HEAD(&on_cache, entry);
3967 					free(entry);
3968 				}
3969 			} else {
3970 				entry = STAILQ_FIRST(&on_cache);
3971 				STAILQ_REMOVE_HEAD(&on_cache, entry);
3972 				free(entry);
3973 			}
3974 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3975 		}
3976 	}
3977 
3978 	*dnode = dn;
3979 done:
3980 	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3981 		free(entry);
3982 	return (rc);
3983 }
3984 
3985 /*
3986  * Return either a cached copy of the bootenv, or read each of the vdev children
3987  * looking for the bootenv. Cache what's found and return the results. Returns 0
3988  * when benvp is filled in, and some errno when not.
3989  */
3990 static int
zfs_get_bootenv_spa(spa_t * spa,nvlist_t ** benvp)3991 zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp)
3992 {
3993 	vdev_t *vd;
3994 	nvlist_t *benv = NULL;
3995 
3996 	if (spa->spa_bootenv == NULL) {
3997 		STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
3998 		    v_childlink) {
3999 			benv = vdev_read_bootenv(vd);
4000 
4001 			if (benv != NULL)
4002 				break;
4003 		}
4004 		spa->spa_bootenv = benv;
4005 	}
4006 	benv = spa->spa_bootenv;
4007 
4008 	if (benv == NULL)
4009 		return (ENOENT);
4010 
4011 	*benvp = benv;
4012 	return (0);
4013 }
4014 
4015 /*
4016  * Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
4017  */
4018 static int
zfs_set_bootenv_spa(spa_t * spa,nvlist_t * benv)4019 zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv)
4020 {
4021 	vdev_t *vd;
4022 
4023 	STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
4024 		vdev_write_bootenv(vd, benv);
4025 	}
4026 
4027 	spa->spa_bootenv = benv;
4028 	return (0);
4029 }
4030 
4031 /*
4032  * Get bootonce value by key. The bootonce <key, value> pair is removed from the
4033  * bootenv nvlist and the remaining nvlist is committed back to disk. This process
4034  * the bootonce flag since we've reached the point in the boot that we've 'used'
4035  * the BE. For chained boot scenarios, we may reach this point multiple times (but
4036  * only remove it and return 0 the first time).
4037  */
4038 static int
zfs_get_bootonce_spa(spa_t * spa,const char * key,char * buf,size_t size)4039 zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size)
4040 {
4041 	nvlist_t *benv;
4042 	char *result = NULL;
4043 	int result_size, rv;
4044 
4045 	if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0)
4046 		return (rv);
4047 
4048 	if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
4049 	    &result, &result_size)) == 0) {
4050 		if (result_size == 0) {
4051 			/* ignore empty string */
4052 			rv = ENOENT;
4053 		} else if (buf != NULL) {
4054 			size = MIN((size_t)result_size + 1, size);
4055 			strlcpy(buf, result, size);
4056 		}
4057 		(void)nvlist_remove(benv, key, DATA_TYPE_STRING);
4058 		(void)zfs_set_bootenv_spa(spa, benv);
4059 	}
4060 
4061 	return (rv);
4062 }
4063