xref: /freebsd/sys/contrib/openzfs/cmd/zpool/zpool_vdev.c (revision 36c970ed985ff3dd5443db4bf2aa58799028512c)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2016, 2017 Intel Corporation.
27  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
28  */
29 
30 /*
31  * Functions to convert between a list of vdevs and an nvlist representing the
32  * configuration.  Each entry in the list can be one of:
33  *
34  * 	Device vdevs
35  * 		disk=(path=..., devid=...)
36  * 		file=(path=...)
37  *
38  * 	Group vdevs
39  * 		raidz[1|2]=(...)
40  * 		mirror=(...)
41  *
42  * 	Hot spares
43  *
44  * While the underlying implementation supports it, group vdevs cannot contain
45  * other group vdevs.  All userland verification of devices is contained within
46  * this file.  If successful, the nvlist returned can be passed directly to the
47  * kernel; we've done as much verification as possible in userland.
48  *
49  * Hot spares are a special case, and passed down as an array of disk vdevs, at
50  * the same level as the root of the vdev tree.
51  *
52  * The only function exported by this file is 'make_root_vdev'.  The
53  * function performs several passes:
54  *
55  * 	1. Construct the vdev specification.  Performs syntax validation and
56  *         makes sure each device is valid.
57  * 	2. Check for devices in use.  Using libblkid to make sure that no
58  *         devices are also in use.  Some can be overridden using the 'force'
59  *         flag, others cannot.
60  * 	3. Check for replication errors if the 'force' flag is not specified.
61  *         validates that the replication level is consistent across the
62  *         entire pool.
63  * 	4. Call libzfs to label any whole disks with an EFI label.
64  */
65 
66 #include <assert.h>
67 #include <ctype.h>
68 #include <errno.h>
69 #include <fcntl.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <libzutil.h>
73 #include <limits.h>
74 #include <sys/spa.h>
75 #include <stdio.h>
76 #include <string.h>
77 #include <unistd.h>
78 #include "zpool_util.h"
79 #include <sys/zfs_context.h>
80 #include <sys/stat.h>
81 
82 /*
83  * For any given vdev specification, we can have multiple errors.  The
84  * vdev_error() function keeps track of whether we have seen an error yet, and
85  * prints out a header if its the first error we've seen.
86  */
87 boolean_t error_seen;
88 boolean_t is_force;
89 
90 void
vdev_error(const char * fmt,...)91 vdev_error(const char *fmt, ...)
92 {
93 	va_list ap;
94 
95 	if (!error_seen) {
96 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
97 		if (!is_force)
98 			(void) fprintf(stderr, gettext("use '-f' to override "
99 			    "the following errors:\n"));
100 		else
101 			(void) fprintf(stderr, gettext("the following errors "
102 			    "must be manually repaired:\n"));
103 		error_seen = B_TRUE;
104 	}
105 
106 	va_start(ap, fmt);
107 	(void) vfprintf(stderr, fmt, ap);
108 	va_end(ap);
109 }
110 
111 /*
112  * Check that a file is valid.  All we can do in this case is check that it's
113  * not in use by another pool, and not in use by swap.
114  */
115 int
check_file_generic(const char * file,boolean_t force,boolean_t isspare)116 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
117 {
118 	char  *name;
119 	int fd;
120 	int ret = 0;
121 	pool_state_t state;
122 	boolean_t inuse;
123 
124 	if ((fd = open(file, O_RDONLY)) < 0)
125 		return (0);
126 
127 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
128 		const char *desc;
129 
130 		switch (state) {
131 		case POOL_STATE_ACTIVE:
132 			desc = gettext("active");
133 			break;
134 
135 		case POOL_STATE_EXPORTED:
136 			desc = gettext("exported");
137 			break;
138 
139 		case POOL_STATE_POTENTIALLY_ACTIVE:
140 			desc = gettext("potentially active");
141 			break;
142 
143 		default:
144 			desc = gettext("unknown");
145 			break;
146 		}
147 
148 		/*
149 		 * Allow hot spares to be shared between pools.
150 		 */
151 		if (state == POOL_STATE_SPARE && isspare) {
152 			free(name);
153 			(void) close(fd);
154 			return (0);
155 		}
156 
157 		if (state == POOL_STATE_ACTIVE ||
158 		    state == POOL_STATE_SPARE || !force) {
159 			switch (state) {
160 			case POOL_STATE_SPARE:
161 				vdev_error(gettext("%s is reserved as a hot "
162 				    "spare for pool %s\n"), file, name);
163 				break;
164 			default:
165 				vdev_error(gettext("%s is part of %s pool "
166 				    "'%s'\n"), file, desc, name);
167 				break;
168 			}
169 			ret = -1;
170 		}
171 
172 		free(name);
173 	}
174 
175 	(void) close(fd);
176 	return (ret);
177 }
178 
179 /*
180  * This may be a shorthand device path or it could be total gibberish.
181  * Check to see if it is a known device available in zfs_vdev_paths.
182  * As part of this check, see if we've been given an entire disk
183  * (minus the slice number).
184  */
185 static int
is_shorthand_path(const char * arg,char * path,size_t path_size,struct stat64 * statbuf,boolean_t * wholedisk)186 is_shorthand_path(const char *arg, char *path, size_t path_size,
187     struct stat64 *statbuf, boolean_t *wholedisk)
188 {
189 	int error;
190 
191 	error = zfs_resolve_shortname(arg, path, path_size);
192 	if (error == 0) {
193 		*wholedisk = zfs_dev_is_whole_disk(path);
194 		if (*wholedisk || (stat64(path, statbuf) == 0))
195 			return (0);
196 	}
197 
198 	strlcpy(path, arg, path_size);
199 	memset(statbuf, 0, sizeof (*statbuf));
200 	*wholedisk = B_FALSE;
201 
202 	return (error);
203 }
204 
205 /*
206  * Determine if the given path is a hot spare within the given configuration.
207  * If no configuration is given we rely solely on the label.
208  */
209 static boolean_t
is_spare(nvlist_t * config,const char * path)210 is_spare(nvlist_t *config, const char *path)
211 {
212 	int fd;
213 	pool_state_t state;
214 	char *name = NULL;
215 	nvlist_t *label;
216 	uint64_t guid, spareguid;
217 	nvlist_t *nvroot;
218 	nvlist_t **spares;
219 	uint_t i, nspares;
220 	boolean_t inuse;
221 
222 	if (zpool_is_draid_spare(path))
223 		return (B_TRUE);
224 
225 	if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
226 		return (B_FALSE);
227 
228 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
229 	    !inuse ||
230 	    state != POOL_STATE_SPARE ||
231 	    zpool_read_label(fd, &label, NULL) != 0) {
232 		free(name);
233 		(void) close(fd);
234 		return (B_FALSE);
235 	}
236 	free(name);
237 	(void) close(fd);
238 
239 	if (config == NULL) {
240 		nvlist_free(label);
241 		return (B_TRUE);
242 	}
243 
244 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
245 	nvlist_free(label);
246 
247 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
248 	    &nvroot) == 0);
249 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
250 	    &spares, &nspares) == 0) {
251 		for (i = 0; i < nspares; i++) {
252 			verify(nvlist_lookup_uint64(spares[i],
253 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
254 			if (spareguid == guid)
255 				return (B_TRUE);
256 		}
257 	}
258 
259 	return (B_FALSE);
260 }
261 
262 /*
263  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
264  * device, fill in the device id to make a complete nvlist.  Valid forms for a
265  * leaf vdev are:
266  *
267  *	/dev/xxx	Complete disk path
268  *	/xxx		Full path to file
269  *	xxx		Shorthand for <zfs_vdev_paths>/xxx
270  *	draid*		Virtual dRAID spare
271  */
272 static nvlist_t *
make_leaf_vdev(nvlist_t * props,const char * arg,boolean_t is_primary)273 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
274 {
275 	char path[MAXPATHLEN];
276 	struct stat64 statbuf;
277 	nvlist_t *vdev = NULL;
278 	const char *type = NULL;
279 	boolean_t wholedisk = B_FALSE;
280 	uint64_t ashift = 0;
281 	int err;
282 
283 	/*
284 	 * Determine what type of vdev this is, and put the full path into
285 	 * 'path'.  We detect whether this is a device of file afterwards by
286 	 * checking the st_mode of the file.
287 	 */
288 	if (arg[0] == '/') {
289 		/*
290 		 * Complete device or file path.  Exact type is determined by
291 		 * examining the file descriptor afterwards.  Symbolic links
292 		 * are resolved to their real paths to determine whole disk
293 		 * and S_ISBLK/S_ISREG type checks.  However, we are careful
294 		 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
295 		 * can leverage udev's persistent device labels.
296 		 */
297 		if (realpath(arg, path) == NULL) {
298 			(void) fprintf(stderr,
299 			    gettext("cannot resolve path '%s'\n"), arg);
300 			return (NULL);
301 		}
302 
303 		wholedisk = zfs_dev_is_whole_disk(path);
304 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
305 			(void) fprintf(stderr,
306 			    gettext("cannot open '%s': %s\n"),
307 			    path, strerror(errno));
308 			return (NULL);
309 		}
310 
311 		/* After whole disk check restore original passed path */
312 		strlcpy(path, arg, sizeof (path));
313 	} else if (zpool_is_draid_spare(arg)) {
314 		if (!is_primary) {
315 			(void) fprintf(stderr,
316 			    gettext("cannot open '%s': dRAID spares can only "
317 			    "be used to replace primary vdevs\n"), arg);
318 			return (NULL);
319 		}
320 
321 		wholedisk = B_TRUE;
322 		strlcpy(path, arg, sizeof (path));
323 		type = VDEV_TYPE_DRAID_SPARE;
324 	} else {
325 		err = is_shorthand_path(arg, path, sizeof (path),
326 		    &statbuf, &wholedisk);
327 		if (err != 0) {
328 			/*
329 			 * If we got ENOENT, then the user gave us
330 			 * gibberish, so try to direct them with a
331 			 * reasonable error message.  Otherwise,
332 			 * regurgitate strerror() since it's the best we
333 			 * can do.
334 			 */
335 			if (err == ENOENT) {
336 				(void) fprintf(stderr,
337 				    gettext("cannot open '%s': no such "
338 				    "device in %s\n"), arg, DISK_ROOT);
339 				(void) fprintf(stderr,
340 				    gettext("must be a full path or "
341 				    "shorthand device name\n"));
342 				return (NULL);
343 			} else {
344 				(void) fprintf(stderr,
345 				    gettext("cannot open '%s': %s\n"),
346 				    path, strerror(errno));
347 				return (NULL);
348 			}
349 		}
350 	}
351 
352 	if (type == NULL) {
353 		/*
354 		 * Determine whether this is a device or a file.
355 		 */
356 		if (wholedisk || S_ISBLK(statbuf.st_mode)) {
357 			type = VDEV_TYPE_DISK;
358 		} else if (S_ISREG(statbuf.st_mode)) {
359 			type = VDEV_TYPE_FILE;
360 		} else {
361 			fprintf(stderr, gettext("cannot use '%s': must "
362 			    "be a block device or regular file\n"), path);
363 			return (NULL);
364 		}
365 	}
366 
367 	/*
368 	 * Finally, we have the complete device or file, and we know that it is
369 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
370 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
371 	 */
372 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
373 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
374 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
375 
376 	/* Lookup and add the enclosure sysfs path (if exists) */
377 	update_vdev_config_dev_sysfs_path(vdev, path,
378 	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
379 
380 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
381 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
382 		    (uint64_t)wholedisk) == 0);
383 
384 	/*
385 	 * Override defaults if custom properties are provided.
386 	 */
387 	if (props != NULL) {
388 		const char *value = NULL;
389 
390 		if (nvlist_lookup_string(props,
391 		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
392 			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
393 				(void) fprintf(stderr,
394 				    gettext("ashift must be a number.\n"));
395 				return (NULL);
396 			}
397 			if (ashift != 0 &&
398 			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
399 				(void) fprintf(stderr,
400 				    gettext("invalid 'ashift=%" PRIu64 "' "
401 				    "property: only values between %" PRId32 " "
402 				    "and %" PRId32 " are allowed.\n"),
403 				    ashift, ASHIFT_MIN, ASHIFT_MAX);
404 				return (NULL);
405 			}
406 		}
407 	}
408 
409 	/*
410 	 * If the device is known to incorrectly report its physical sector
411 	 * size explicitly provide the known correct value.
412 	 */
413 	if (ashift == 0) {
414 		int sector_size;
415 
416 		if (check_sector_size_database(path, &sector_size) == B_TRUE)
417 			ashift = highbit64(sector_size) - 1;
418 	}
419 
420 	if (ashift > 0)
421 		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
422 
423 	return (vdev);
424 }
425 
426 /*
427  * Go through and verify the replication level of the pool is consistent.
428  * Performs the following checks:
429  *
430  * 	For the new spec, verifies that devices in mirrors and raidz are the
431  * 	same size.
432  *
433  * 	If the current configuration already has inconsistent replication
434  * 	levels, ignore any other potential problems in the new spec.
435  *
436  * 	Otherwise, make sure that the current spec (if there is one) and the new
437  * 	spec have consistent replication levels.
438  *
439  *	If there is no current spec (create), make sure new spec has at least
440  *	one general purpose vdev.
441  */
442 typedef struct replication_level {
443 	const char *zprl_type;
444 	uint64_t zprl_children;
445 	uint64_t zprl_parity;
446 } replication_level_t;
447 
448 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
449 
450 /*
451  * N.B. For the purposes of comparing replication levels dRAID can be
452  * considered functionally equivalent to raidz.
453  */
454 static boolean_t
is_raidz_mirror(replication_level_t * a,replication_level_t * b,replication_level_t ** raidz,replication_level_t ** mirror)455 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
456     replication_level_t **raidz, replication_level_t **mirror)
457 {
458 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
459 	    strcmp(a->zprl_type, "draid") == 0) &&
460 	    strcmp(b->zprl_type, "mirror") == 0) {
461 		*raidz = a;
462 		*mirror = b;
463 		return (B_TRUE);
464 	}
465 	return (B_FALSE);
466 }
467 
468 /*
469  * Comparison for determining if dRAID and raidz where passed in either order.
470  */
471 static boolean_t
is_raidz_draid(replication_level_t * a,replication_level_t * b)472 is_raidz_draid(replication_level_t *a, replication_level_t *b)
473 {
474 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
475 	    strcmp(a->zprl_type, "draid") == 0) &&
476 	    (strcmp(b->zprl_type, "raidz") == 0 ||
477 	    strcmp(b->zprl_type, "draid") == 0)) {
478 		return (B_TRUE);
479 	}
480 
481 	return (B_FALSE);
482 }
483 
484 /*
485  * Given a list of toplevel vdevs, return the current replication level.  If
486  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
487  * an error message will be displayed for each self-inconsistent vdev.
488  */
489 static replication_level_t *
get_replication(nvlist_t * nvroot,boolean_t fatal)490 get_replication(nvlist_t *nvroot, boolean_t fatal)
491 {
492 	nvlist_t **top;
493 	uint_t t, toplevels;
494 	nvlist_t **child;
495 	uint_t c, children;
496 	nvlist_t *nv;
497 	const char *type;
498 	replication_level_t lastrep = {0};
499 	replication_level_t rep;
500 	replication_level_t *ret;
501 	replication_level_t *raidz, *mirror;
502 	boolean_t dontreport;
503 
504 	ret = safe_malloc(sizeof (replication_level_t));
505 
506 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
507 	    &top, &toplevels) == 0);
508 
509 	for (t = 0; t < toplevels; t++) {
510 		uint64_t is_log = B_FALSE;
511 
512 		nv = top[t];
513 
514 		/*
515 		 * For separate logs we ignore the top level vdev replication
516 		 * constraints.
517 		 */
518 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
519 		if (is_log)
520 			continue;
521 
522 		/*
523 		 * Ignore holes introduced by removing aux devices, along
524 		 * with indirect vdevs introduced by previously removed
525 		 * vdevs.
526 		 */
527 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
528 		if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
529 		    strcmp(type, VDEV_TYPE_INDIRECT) == 0)
530 			continue;
531 
532 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
533 		    &child, &children) != 0) {
534 			/*
535 			 * This is a 'file' or 'disk' vdev.
536 			 */
537 			rep.zprl_type = type;
538 			rep.zprl_children = 1;
539 			rep.zprl_parity = 0;
540 		} else {
541 			int64_t vdev_size;
542 
543 			/*
544 			 * This is a mirror or RAID-Z vdev.  Go through and make
545 			 * sure the contents are all the same (files vs. disks),
546 			 * keeping track of the number of elements in the
547 			 * process.
548 			 *
549 			 * We also check that the size of each vdev (if it can
550 			 * be determined) is the same.
551 			 */
552 			rep.zprl_type = type;
553 			rep.zprl_children = 0;
554 
555 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
556 			    strcmp(type, VDEV_TYPE_DRAID) == 0) {
557 				verify(nvlist_lookup_uint64(nv,
558 				    ZPOOL_CONFIG_NPARITY,
559 				    &rep.zprl_parity) == 0);
560 				assert(rep.zprl_parity != 0);
561 			} else {
562 				rep.zprl_parity = 0;
563 			}
564 
565 			/*
566 			 * The 'dontreport' variable indicates that we've
567 			 * already reported an error for this spec, so don't
568 			 * bother doing it again.
569 			 */
570 			type = NULL;
571 			dontreport = 0;
572 			vdev_size = -1LL;
573 			for (c = 0; c < children; c++) {
574 				nvlist_t *cnv = child[c];
575 				const char *path;
576 				struct stat64 statbuf;
577 				const char *childtype;
578 				int fd, err;
579 
580 				rep.zprl_children++;
581 
582 				verify(nvlist_lookup_string(cnv,
583 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
584 
585 				/*
586 				 * If this is a replacing or spare vdev, then
587 				 * get the real first child of the vdev: do this
588 				 * in a loop because replacing and spare vdevs
589 				 * can be nested.
590 				 */
591 				while (strcmp(childtype,
592 				    VDEV_TYPE_REPLACING) == 0 ||
593 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
594 					nvlist_t **rchild;
595 					uint_t rchildren;
596 
597 					verify(nvlist_lookup_nvlist_array(cnv,
598 					    ZPOOL_CONFIG_CHILDREN, &rchild,
599 					    &rchildren) == 0);
600 					assert(rchildren == 2);
601 					cnv = rchild[0];
602 
603 					verify(nvlist_lookup_string(cnv,
604 					    ZPOOL_CONFIG_TYPE,
605 					    &childtype) == 0);
606 				}
607 
608 				verify(nvlist_lookup_string(cnv,
609 				    ZPOOL_CONFIG_PATH, &path) == 0);
610 
611 				/*
612 				 * Skip active spares they should never cause
613 				 * the pool to be evaluated as inconsistent.
614 				 */
615 				if (is_spare(NULL, path))
616 					continue;
617 
618 				/*
619 				 * If we have a raidz/mirror that combines disks
620 				 * with files, only report it as an error when
621 				 * fatal is set to ensure all the replication
622 				 * checks aren't skipped in check_replication().
623 				 */
624 				if (fatal && !dontreport && type != NULL &&
625 				    strcmp(type, childtype) != 0) {
626 					if (ret != NULL)
627 						free(ret);
628 					ret = NULL;
629 					vdev_error(gettext(
630 					    "mismatched replication "
631 					    "level: %s contains both "
632 					    "files and devices\n"),
633 					    rep.zprl_type);
634 					dontreport = B_TRUE;
635 				}
636 
637 				/*
638 				 * According to stat(2), the value of 'st_size'
639 				 * is undefined for block devices and character
640 				 * devices.  But there is no effective way to
641 				 * determine the real size in userland.
642 				 *
643 				 * Instead, we'll take advantage of an
644 				 * implementation detail of spec_size().  If the
645 				 * device is currently open, then we (should)
646 				 * return a valid size.
647 				 *
648 				 * If we still don't get a valid size (indicated
649 				 * by a size of 0 or MAXOFFSET_T), then ignore
650 				 * this device altogether.
651 				 */
652 				if ((fd = open(path, O_RDONLY)) >= 0) {
653 					err = fstat64_blk(fd, &statbuf);
654 					(void) close(fd);
655 				} else {
656 					err = stat64(path, &statbuf);
657 				}
658 
659 				if (err != 0 ||
660 				    statbuf.st_size == 0 ||
661 				    statbuf.st_size == MAXOFFSET_T)
662 					continue;
663 
664 				int64_t size = statbuf.st_size;
665 
666 				/*
667 				 * Also make sure that devices and
668 				 * slices have a consistent size.  If
669 				 * they differ by a significant amount
670 				 * (~16MB) then report an error.
671 				 */
672 				if (!dontreport &&
673 				    (vdev_size != -1LL &&
674 				    (llabs(size - vdev_size) >
675 				    ZPOOL_FUZZ))) {
676 					if (ret != NULL)
677 						free(ret);
678 					ret = NULL;
679 					if (fatal)
680 						vdev_error(gettext(
681 						    "%s contains devices of "
682 						    "different sizes\n"),
683 						    rep.zprl_type);
684 					else
685 						return (NULL);
686 					dontreport = B_TRUE;
687 				}
688 
689 				type = childtype;
690 				vdev_size = size;
691 			}
692 		}
693 
694 		/*
695 		 * At this point, we have the replication of the last toplevel
696 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
697 		 * different.
698 		 */
699 		if (lastrep.zprl_type != NULL) {
700 			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
701 			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
702 				/*
703 				 * Accepted raidz and mirror when they can
704 				 * handle the same number of disk failures.
705 				 */
706 				if (raidz->zprl_parity !=
707 				    mirror->zprl_children - 1) {
708 					if (ret != NULL)
709 						free(ret);
710 					ret = NULL;
711 					if (fatal)
712 						vdev_error(gettext(
713 						    "mismatched replication "
714 						    "level: "
715 						    "%s and %s vdevs with "
716 						    "different redundancy, "
717 						    "%llu vs. %llu (%llu-way) "
718 						    "are present\n"),
719 						    raidz->zprl_type,
720 						    mirror->zprl_type,
721 						    (u_longlong_t)
722 						    raidz->zprl_parity,
723 						    (u_longlong_t)
724 						    mirror->zprl_children - 1,
725 						    (u_longlong_t)
726 						    mirror->zprl_children);
727 					else
728 						return (NULL);
729 				}
730 			} else if (is_raidz_draid(&lastrep, &rep)) {
731 				/*
732 				 * Accepted raidz and draid when they can
733 				 * handle the same number of disk failures.
734 				 */
735 				if (lastrep.zprl_parity != rep.zprl_parity) {
736 					if (ret != NULL)
737 						free(ret);
738 					ret = NULL;
739 					if (fatal)
740 						vdev_error(gettext(
741 						    "mismatched replication "
742 						    "level: %s and %s vdevs "
743 						    "with different "
744 						    "redundancy, %llu vs. "
745 						    "%llu are present\n"),
746 						    lastrep.zprl_type,
747 						    rep.zprl_type,
748 						    (u_longlong_t)
749 						    lastrep.zprl_parity,
750 						    (u_longlong_t)
751 						    rep.zprl_parity);
752 					else
753 						return (NULL);
754 				}
755 			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
756 			    0) {
757 				if (ret != NULL)
758 					free(ret);
759 				ret = NULL;
760 				if (fatal)
761 					vdev_error(gettext(
762 					    "mismatched replication level: "
763 					    "both %s and %s vdevs are "
764 					    "present\n"),
765 					    lastrep.zprl_type, rep.zprl_type);
766 				else
767 					return (NULL);
768 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
769 				if (ret)
770 					free(ret);
771 				ret = NULL;
772 				if (fatal)
773 					vdev_error(gettext(
774 					    "mismatched replication level: "
775 					    "both %llu and %llu device parity "
776 					    "%s vdevs are present\n"),
777 					    (u_longlong_t)
778 					    lastrep.zprl_parity,
779 					    (u_longlong_t)rep.zprl_parity,
780 					    rep.zprl_type);
781 				else
782 					return (NULL);
783 			} else if (lastrep.zprl_children != rep.zprl_children) {
784 				if (ret)
785 					free(ret);
786 				ret = NULL;
787 				if (fatal)
788 					vdev_error(gettext(
789 					    "mismatched replication level: "
790 					    "both %llu-way and %llu-way %s "
791 					    "vdevs are present\n"),
792 					    (u_longlong_t)
793 					    lastrep.zprl_children,
794 					    (u_longlong_t)
795 					    rep.zprl_children,
796 					    rep.zprl_type);
797 				else
798 					return (NULL);
799 			}
800 		}
801 		lastrep = rep;
802 	}
803 
804 	if (ret != NULL)
805 		*ret = rep;
806 
807 	return (ret);
808 }
809 
810 /*
811  * Check the replication level of the vdev spec against the current pool.  Calls
812  * get_replication() to make sure the new spec is self-consistent.  If the pool
813  * has a consistent replication level, then we ignore any errors.  Otherwise,
814  * report any difference between the two.
815  */
816 static int
check_replication(nvlist_t * config,nvlist_t * newroot)817 check_replication(nvlist_t *config, nvlist_t *newroot)
818 {
819 	nvlist_t **child;
820 	uint_t	children;
821 	replication_level_t *current = NULL, *new;
822 	replication_level_t *raidz, *mirror;
823 	int ret;
824 
825 	/*
826 	 * If we have a current pool configuration, check to see if it's
827 	 * self-consistent.  If not, simply return success.
828 	 */
829 	if (config != NULL) {
830 		nvlist_t *nvroot;
831 
832 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
833 		    &nvroot) == 0);
834 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
835 			return (0);
836 	}
837 	/*
838 	 * for spares there may be no children, and therefore no
839 	 * replication level to check
840 	 */
841 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
842 	    &child, &children) != 0) || (children == 0)) {
843 		free(current);
844 		return (0);
845 	}
846 
847 	/*
848 	 * If all we have is logs then there's no replication level to check.
849 	 */
850 	if (num_logs(newroot) == children) {
851 		free(current);
852 		return (0);
853 	}
854 
855 	/*
856 	 * Get the replication level of the new vdev spec, reporting any
857 	 * inconsistencies found.
858 	 */
859 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
860 		free(current);
861 		return (-1);
862 	}
863 
864 	/*
865 	 * Check to see if the new vdev spec matches the replication level of
866 	 * the current pool.
867 	 */
868 	ret = 0;
869 	if (current != NULL) {
870 		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
871 		    is_raidz_mirror(new, current, &raidz, &mirror)) {
872 			if (raidz->zprl_parity != mirror->zprl_children - 1) {
873 				vdev_error(gettext(
874 				    "mismatched replication level: pool and "
875 				    "new vdev with different redundancy, %s "
876 				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
877 				    raidz->zprl_type,
878 				    mirror->zprl_type,
879 				    (u_longlong_t)raidz->zprl_parity,
880 				    (u_longlong_t)mirror->zprl_children - 1,
881 				    (u_longlong_t)mirror->zprl_children);
882 				ret = -1;
883 			}
884 		} else if (is_raidz_draid(current, new)) {
885 			if (current->zprl_parity != new->zprl_parity) {
886 				vdev_error(gettext(
887 				    "mismatched replication level: pool and "
888 				    "new vdev with different redundancy, %s "
889 				    "and %s vdevs, %llu vs. %llu\n"),
890 				    current->zprl_type,
891 				    new->zprl_type,
892 				    (u_longlong_t)current->zprl_parity,
893 				    (u_longlong_t)new->zprl_parity);
894 				ret = -1;
895 			}
896 		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
897 			vdev_error(gettext(
898 			    "mismatched replication level: pool uses %s "
899 			    "and new vdev is %s\n"),
900 			    current->zprl_type, new->zprl_type);
901 			ret = -1;
902 		} else if (current->zprl_parity != new->zprl_parity) {
903 			vdev_error(gettext(
904 			    "mismatched replication level: pool uses %llu "
905 			    "device parity and new vdev uses %llu\n"),
906 			    (u_longlong_t)current->zprl_parity,
907 			    (u_longlong_t)new->zprl_parity);
908 			ret = -1;
909 		} else if (current->zprl_children != new->zprl_children) {
910 			vdev_error(gettext(
911 			    "mismatched replication level: pool uses %llu-way "
912 			    "%s and new vdev uses %llu-way %s\n"),
913 			    (u_longlong_t)current->zprl_children,
914 			    current->zprl_type,
915 			    (u_longlong_t)new->zprl_children,
916 			    new->zprl_type);
917 			ret = -1;
918 		}
919 	}
920 
921 	free(new);
922 	if (current != NULL)
923 		free(current);
924 
925 	return (ret);
926 }
927 
928 static int
zero_label(const char * path)929 zero_label(const char *path)
930 {
931 	const int size = 4096;
932 	char buf[size];
933 	int err, fd;
934 
935 	if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
936 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
937 		    path, strerror(errno));
938 		return (-1);
939 	}
940 
941 	memset(buf, 0, size);
942 	err = write(fd, buf, size);
943 	(void) fdatasync(fd);
944 	(void) close(fd);
945 
946 	if (err == -1) {
947 		(void) fprintf(stderr, gettext("cannot zero first %d bytes "
948 		    "of '%s': %s\n"), size, path, strerror(errno));
949 		return (-1);
950 	}
951 
952 	if (err != size) {
953 		(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
954 		    "of '%s'\n"), err, size, path);
955 		return (-1);
956 	}
957 
958 	return (0);
959 }
960 
961 static void
lines_to_stderr(char * lines[],int lines_cnt)962 lines_to_stderr(char *lines[], int lines_cnt)
963 {
964 	int i;
965 	for (i = 0; i < lines_cnt; i++) {
966 		fprintf(stderr, "%s\n", lines[i]);
967 	}
968 }
969 
970 /*
971  * Go through and find any whole disks in the vdev specification, labelling them
972  * as appropriate.  When constructing the vdev spec, we were unable to open this
973  * device in order to provide a devid.  Now that we have labelled the disk and
974  * know that slice 0 is valid, we can construct the devid now.
975  *
976  * If the disk was already labeled with an EFI label, we will have gotten the
977  * devid already (because we were able to open the whole disk).  Otherwise, we
978  * need to get the devid after we label the disk.
979  */
980 static int
make_disks(zpool_handle_t * zhp,nvlist_t * nv,boolean_t replacing)981 make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing)
982 {
983 	nvlist_t **child;
984 	uint_t c, children;
985 	const char *type, *path;
986 	char devpath[MAXPATHLEN];
987 	char udevpath[MAXPATHLEN];
988 	uint64_t wholedisk;
989 	struct stat64 statbuf;
990 	int is_exclusive = 0;
991 	int fd;
992 	int ret;
993 
994 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
995 
996 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
997 	    &child, &children) != 0) {
998 
999 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
1000 			return (0);
1001 
1002 		/*
1003 		 * We have a disk device.  If this is a whole disk write
1004 		 * out the efi partition table, otherwise write zero's to
1005 		 * the first 4k of the partition.  This is to ensure that
1006 		 * libblkid will not misidentify the partition due to a
1007 		 * magic value left by the previous filesystem.
1008 		 */
1009 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1010 		verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1011 		    &wholedisk));
1012 
1013 		if (!wholedisk) {
1014 			/*
1015 			 * Update device id string for mpath nodes (Linux only)
1016 			 */
1017 			if (is_mpath_whole_disk(path))
1018 				update_vdev_config_dev_strs(nv);
1019 
1020 			if (!is_spare(NULL, path))
1021 				(void) zero_label(path);
1022 			return (0);
1023 		}
1024 
1025 		if (realpath(path, devpath) == NULL) {
1026 			ret = errno;
1027 			(void) fprintf(stderr,
1028 			    gettext("cannot resolve path '%s'\n"), path);
1029 			return (ret);
1030 		}
1031 
1032 		/*
1033 		 * Remove any previously existing symlink from a udev path to
1034 		 * the device before labeling the disk.  This ensures that
1035 		 * only newly created links are used.  Otherwise there is a
1036 		 * window between when udev deletes and recreates the link
1037 		 * during which access attempts will fail with ENOENT.
1038 		 */
1039 		strlcpy(udevpath, path, MAXPATHLEN);
1040 		(void) zfs_append_partition(udevpath, MAXPATHLEN);
1041 
1042 		fd = open(devpath, O_RDWR|O_EXCL);
1043 		if (fd == -1) {
1044 			if (errno == EBUSY)
1045 				is_exclusive = 1;
1046 #ifdef __FreeBSD__
1047 			if (errno == EPERM)
1048 				is_exclusive = 1;
1049 #endif
1050 		} else {
1051 			(void) close(fd);
1052 		}
1053 
1054 		/*
1055 		 * If the partition exists, contains a valid spare label,
1056 		 * and is opened exclusively there is no need to partition
1057 		 * it.  Hot spares have already been partitioned and are
1058 		 * held open exclusively by the kernel as a safety measure.
1059 		 *
1060 		 * If the provided path is for a /dev/disk/ device its
1061 		 * symbolic link will be removed, partition table created,
1062 		 * and then block until udev creates the new link.
1063 		 */
1064 		if (!is_exclusive && !is_spare(NULL, udevpath)) {
1065 			char *devnode = strrchr(devpath, '/') + 1;
1066 			char **lines = NULL;
1067 			int lines_cnt = 0;
1068 
1069 			ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1070 			if (ret == 0) {
1071 				ret = lstat64(udevpath, &statbuf);
1072 				if (ret == 0 && S_ISLNK(statbuf.st_mode))
1073 					(void) unlink(udevpath);
1074 			}
1075 
1076 			/*
1077 			 * When labeling a pool the raw device node name
1078 			 * is provided as it appears under /dev/.
1079 			 *
1080 			 * Note that 'zhp' will be NULL when we're creating a
1081 			 * pool.
1082 			 */
1083 			if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode,
1084 			    nv, zhp == NULL ? "create" :
1085 			    replacing ? "replace" : "add", &lines,
1086 			    &lines_cnt) != 0) {
1087 				(void) fprintf(stderr,
1088 				    gettext(
1089 				    "Error preparing/labeling disk.\n"));
1090 				if (lines_cnt > 0) {
1091 					(void) fprintf(stderr,
1092 					gettext("zfs_prepare_disk output:\n"));
1093 					lines_to_stderr(lines, lines_cnt);
1094 				}
1095 
1096 				libzfs_free_str_array(lines, lines_cnt);
1097 				return (-1);
1098 			}
1099 			libzfs_free_str_array(lines, lines_cnt);
1100 
1101 			/*
1102 			 * Wait for udev to signal the device is available
1103 			 * by the provided path.
1104 			 */
1105 			ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1106 			if (ret) {
1107 				(void) fprintf(stderr,
1108 				    gettext("missing link: %s was "
1109 				    "partitioned but %s is missing\n"),
1110 				    devnode, udevpath);
1111 				return (ret);
1112 			}
1113 
1114 			ret = zero_label(udevpath);
1115 			if (ret)
1116 				return (ret);
1117 		}
1118 
1119 		/*
1120 		 * Update the path to refer to the partition.  The presence of
1121 		 * the 'whole_disk' field indicates to the CLI that we should
1122 		 * chop off the partition number when displaying the device in
1123 		 * future output.
1124 		 */
1125 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1126 
1127 		/*
1128 		 * Update device id strings for whole disks (Linux only)
1129 		 */
1130 		update_vdev_config_dev_strs(nv);
1131 
1132 		return (0);
1133 	}
1134 
1135 	for (c = 0; c < children; c++)
1136 		if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1137 			return (ret);
1138 
1139 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1140 	    &child, &children) == 0)
1141 		for (c = 0; c < children; c++)
1142 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1143 				return (ret);
1144 
1145 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1146 	    &child, &children) == 0)
1147 		for (c = 0; c < children; c++)
1148 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1149 				return (ret);
1150 
1151 	return (0);
1152 }
1153 
1154 /*
1155  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1156  * the majority of this task.
1157  */
1158 static boolean_t
is_device_in_use(nvlist_t * config,nvlist_t * nv,boolean_t force,boolean_t replacing,boolean_t isspare)1159 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1160     boolean_t replacing, boolean_t isspare)
1161 {
1162 	nvlist_t **child;
1163 	uint_t c, children;
1164 	const char *type, *path;
1165 	int ret = 0;
1166 	char buf[MAXPATHLEN];
1167 	uint64_t wholedisk = B_FALSE;
1168 	boolean_t anyinuse = B_FALSE;
1169 
1170 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1171 
1172 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1173 	    &child, &children) != 0) {
1174 
1175 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1176 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1177 			verify(!nvlist_lookup_uint64(nv,
1178 			    ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1179 
1180 		/*
1181 		 * As a generic check, we look to see if this is a replace of a
1182 		 * hot spare within the same pool.  If so, we allow it
1183 		 * regardless of what libblkid or zpool_in_use() says.
1184 		 */
1185 		if (replacing) {
1186 			(void) strlcpy(buf, path, sizeof (buf));
1187 			if (wholedisk) {
1188 				ret = zfs_append_partition(buf,  sizeof (buf));
1189 				if (ret == -1)
1190 					return (-1);
1191 			}
1192 
1193 			if (is_spare(config, buf))
1194 				return (B_FALSE);
1195 		}
1196 
1197 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1198 			ret = check_device(path, force, isspare, wholedisk);
1199 
1200 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1201 			ret = check_file(path, force, isspare);
1202 
1203 		return (ret != 0);
1204 	}
1205 
1206 	for (c = 0; c < children; c++)
1207 		if (is_device_in_use(config, child[c], force, replacing,
1208 		    B_FALSE))
1209 			anyinuse = B_TRUE;
1210 
1211 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1212 	    &child, &children) == 0)
1213 		for (c = 0; c < children; c++)
1214 			if (is_device_in_use(config, child[c], force, replacing,
1215 			    B_TRUE))
1216 				anyinuse = B_TRUE;
1217 
1218 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1219 	    &child, &children) == 0)
1220 		for (c = 0; c < children; c++)
1221 			if (is_device_in_use(config, child[c], force, replacing,
1222 			    B_FALSE))
1223 				anyinuse = B_TRUE;
1224 
1225 	return (anyinuse);
1226 }
1227 
1228 /*
1229  * Returns the parity level extracted from a raidz or draid type.
1230  * If the parity cannot be determined zero is returned.
1231  */
1232 static int
get_parity(const char * type)1233 get_parity(const char *type)
1234 {
1235 	long parity = 0;
1236 	const char *p;
1237 
1238 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1239 		p = type + strlen(VDEV_TYPE_RAIDZ);
1240 
1241 		if (*p == '\0') {
1242 			/* when unspecified default to single parity */
1243 			return (1);
1244 		} else if (*p == '0') {
1245 			/* no zero prefixes allowed */
1246 			return (0);
1247 		} else {
1248 			/* 0-3, no suffixes allowed */
1249 			char *end;
1250 			errno = 0;
1251 			parity = strtol(p, &end, 10);
1252 			if (errno != 0 || *end != '\0' ||
1253 			    parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1254 				return (0);
1255 			}
1256 		}
1257 	} else if (strncmp(type, VDEV_TYPE_DRAID,
1258 	    strlen(VDEV_TYPE_DRAID)) == 0) {
1259 		p = type + strlen(VDEV_TYPE_DRAID);
1260 
1261 		if (*p == '\0' || *p == ':') {
1262 			/* when unspecified default to single parity */
1263 			return (1);
1264 		} else if (*p == '0') {
1265 			/* no zero prefixes allowed */
1266 			return (0);
1267 		} else {
1268 			/* 0-3, allowed suffixes: '\0' or ':' */
1269 			char *end;
1270 			errno = 0;
1271 			parity = strtol(p, &end, 10);
1272 			if (errno != 0 ||
1273 			    parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1274 			    (*end != '\0' && *end != ':')) {
1275 				return (0);
1276 			}
1277 		}
1278 	}
1279 
1280 	return ((int)parity);
1281 }
1282 
1283 /*
1284  * Assign the minimum and maximum number of devices allowed for
1285  * the specified type.  On error NULL is returned, otherwise the
1286  * type prefix is returned (raidz, mirror, etc).
1287  */
1288 static const char *
is_grouping(const char * type,int * mindev,int * maxdev)1289 is_grouping(const char *type, int *mindev, int *maxdev)
1290 {
1291 	int nparity;
1292 
1293 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1294 	    strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1295 		nparity = get_parity(type);
1296 		if (nparity == 0)
1297 			return (NULL);
1298 		if (mindev != NULL)
1299 			*mindev = nparity + 1;
1300 		if (maxdev != NULL)
1301 			*maxdev = 255;
1302 
1303 		if (strncmp(type, VDEV_TYPE_RAIDZ,
1304 		    strlen(VDEV_TYPE_RAIDZ)) == 0) {
1305 			return (VDEV_TYPE_RAIDZ);
1306 		} else {
1307 			return (VDEV_TYPE_DRAID);
1308 		}
1309 	}
1310 
1311 	if (maxdev != NULL)
1312 		*maxdev = INT_MAX;
1313 
1314 	if (strcmp(type, "mirror") == 0) {
1315 		if (mindev != NULL)
1316 			*mindev = 2;
1317 		return (VDEV_TYPE_MIRROR);
1318 	}
1319 
1320 	if (strcmp(type, "spare") == 0) {
1321 		if (mindev != NULL)
1322 			*mindev = 1;
1323 		return (VDEV_TYPE_SPARE);
1324 	}
1325 
1326 	if (strcmp(type, "log") == 0) {
1327 		if (mindev != NULL)
1328 			*mindev = 1;
1329 		return (VDEV_TYPE_LOG);
1330 	}
1331 
1332 	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1333 	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1334 		if (mindev != NULL)
1335 			*mindev = 1;
1336 		return (type);
1337 	}
1338 
1339 	if (strcmp(type, "cache") == 0) {
1340 		if (mindev != NULL)
1341 			*mindev = 1;
1342 		return (VDEV_TYPE_L2CACHE);
1343 	}
1344 
1345 	return (NULL);
1346 }
1347 
1348 /*
1349  * Extract the configuration parameters encoded in the dRAID type and
1350  * use them to generate a dRAID configuration.  The expected format is:
1351  *
1352  * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1353  *
1354  * The intent is to be able to generate a good configuration when no
1355  * additional information is provided.  The only mandatory component
1356  * of the 'type' is the 'draid' prefix.  If a value is not provided
1357  * then reasonable defaults are used.  The optional components may
1358  * appear in any order but the d/s/c suffix is required.
1359  *
1360  * Valid inputs:
1361  * - data:     number of data devices per group (1-255)
1362  * - parity:   number of parity blocks per group (1-3)
1363  * - spares:   number of distributed spare (0-100)
1364  * - children: total number of devices (1-255)
1365  *
1366  * Examples:
1367  * - zpool create tank draid <devices...>
1368  * - zpool create tank draid2:8d:51c:2s <devices...>
1369  */
1370 static int
draid_config_by_type(nvlist_t * nv,const char * type,uint64_t children)1371 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1372 {
1373 	uint64_t nparity;
1374 	uint64_t nspares = 0;
1375 	uint64_t ndata = UINT64_MAX;
1376 	uint64_t ngroups = 1;
1377 	long value;
1378 
1379 	if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1380 		return (EINVAL);
1381 
1382 	nparity = (uint64_t)get_parity(type);
1383 	if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1384 		fprintf(stderr,
1385 		    gettext("invalid dRAID parity level %llu; must be "
1386 		    "between 1 and %d\n"), (u_longlong_t)nparity,
1387 		    VDEV_DRAID_MAXPARITY);
1388 		return (EINVAL);
1389 	}
1390 
1391 	char *p = (char *)type;
1392 	while ((p = strchr(p, ':')) != NULL) {
1393 		char *end;
1394 
1395 		p = p + 1;
1396 		errno = 0;
1397 
1398 		if (!isdigit(p[0])) {
1399 			(void) fprintf(stderr, gettext("invalid dRAID "
1400 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1401 			    type);
1402 			return (EINVAL);
1403 		}
1404 
1405 		/* Expected non-zero value with c/d/s suffix */
1406 		value = strtol(p, &end, 10);
1407 		char suffix = tolower(*end);
1408 		if (errno != 0 ||
1409 		    (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1410 			(void) fprintf(stderr, gettext("invalid dRAID "
1411 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1412 			    type);
1413 			return (EINVAL);
1414 		}
1415 
1416 		if (suffix == 'c') {
1417 			if ((uint64_t)value != children) {
1418 				fprintf(stderr,
1419 				    gettext("invalid number of dRAID children; "
1420 				    "%llu required but %llu provided\n"),
1421 				    (u_longlong_t)value,
1422 				    (u_longlong_t)children);
1423 				return (EINVAL);
1424 			}
1425 		} else if (suffix == 'd') {
1426 			ndata = (uint64_t)value;
1427 		} else if (suffix == 's') {
1428 			nspares = (uint64_t)value;
1429 		} else {
1430 			verify(0); /* Unreachable */
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * When a specific number of data disks is not provided limit a
1436 	 * redundancy group to 8 data disks.  This value was selected to
1437 	 * provide a reasonable tradeoff between capacity and performance.
1438 	 */
1439 	if (ndata == UINT64_MAX) {
1440 		if (children > nspares + nparity) {
1441 			ndata = MIN(children - nspares - nparity, 8);
1442 		} else {
1443 			fprintf(stderr, gettext("request number of "
1444 			    "distributed spares %llu and parity level %llu\n"
1445 			    "leaves no disks available for data\n"),
1446 			    (u_longlong_t)nspares, (u_longlong_t)nparity);
1447 			return (EINVAL);
1448 		}
1449 	}
1450 
1451 	/* Verify the maximum allowed group size is never exceeded. */
1452 	if (ndata == 0 || (ndata + nparity > children - nspares)) {
1453 		fprintf(stderr, gettext("requested number of dRAID data "
1454 		    "disks per group %llu is too high,\nat most %llu disks "
1455 		    "are available for data\n"), (u_longlong_t)ndata,
1456 		    (u_longlong_t)(children - nspares - nparity));
1457 		return (EINVAL);
1458 	}
1459 
1460 	/*
1461 	 * Verify the requested number of spares can be satisfied.
1462 	 * An arbitrary limit of 100 distributed spares is applied.
1463 	 */
1464 	if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1465 		fprintf(stderr,
1466 		    gettext("invalid number of dRAID spares %llu; additional "
1467 		    "disks would be required\n"), (u_longlong_t)nspares);
1468 		return (EINVAL);
1469 	}
1470 
1471 	/* Verify the requested number children is sufficient. */
1472 	if (children < (ndata + nparity + nspares)) {
1473 		fprintf(stderr, gettext("%llu disks were provided, but at "
1474 		    "least %llu disks are required for this config\n"),
1475 		    (u_longlong_t)children,
1476 		    (u_longlong_t)(ndata + nparity + nspares));
1477 	}
1478 
1479 	if (children > VDEV_DRAID_MAX_CHILDREN) {
1480 		fprintf(stderr, gettext("%llu disks were provided, but "
1481 		    "dRAID only supports up to %u disks"),
1482 		    (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1483 	}
1484 
1485 	/*
1486 	 * Calculate the minimum number of groups required to fill a slice.
1487 	 * This is the LCM of the stripe width (ndata + nparity) and the
1488 	 * number of data drives (children - nspares).
1489 	 */
1490 	while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1491 		ngroups++;
1492 
1493 	/* Store the basic dRAID configuration. */
1494 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1495 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1496 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1497 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1498 
1499 	return (0);
1500 }
1501 
1502 /*
1503  * Construct a syntactically valid vdev specification,
1504  * and ensure that all devices and files exist and can be opened.
1505  * Note: we don't bother freeing anything in the error paths
1506  * because the program is just going to exit anyway.
1507  */
1508 static nvlist_t *
construct_spec(nvlist_t * props,int argc,char ** argv)1509 construct_spec(nvlist_t *props, int argc, char **argv)
1510 {
1511 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1512 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1513 	const char *type, *fulltype;
1514 	boolean_t is_log, is_special, is_dedup, is_spare;
1515 	boolean_t seen_logs;
1516 
1517 	top = NULL;
1518 	toplevels = 0;
1519 	spares = NULL;
1520 	l2cache = NULL;
1521 	nspares = 0;
1522 	nlogs = 0;
1523 	nl2cache = 0;
1524 	is_log = is_special = is_dedup = is_spare = B_FALSE;
1525 	seen_logs = B_FALSE;
1526 	nvroot = NULL;
1527 
1528 	while (argc > 0) {
1529 		fulltype = argv[0];
1530 		nv = NULL;
1531 
1532 		/*
1533 		 * If it's a mirror, raidz, or draid the subsequent arguments
1534 		 * are its leaves -- until we encounter the next mirror,
1535 		 * raidz or draid.
1536 		 */
1537 		if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1538 			nvlist_t **child = NULL;
1539 			int c, children = 0;
1540 
1541 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1542 				if (spares != NULL) {
1543 					(void) fprintf(stderr,
1544 					    gettext("invalid vdev "
1545 					    "specification: 'spare' can be "
1546 					    "specified only once\n"));
1547 					goto spec_out;
1548 				}
1549 				is_spare = B_TRUE;
1550 				is_log = is_special = is_dedup = B_FALSE;
1551 			}
1552 
1553 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1554 				if (seen_logs) {
1555 					(void) fprintf(stderr,
1556 					    gettext("invalid vdev "
1557 					    "specification: 'log' can be "
1558 					    "specified only once\n"));
1559 					goto spec_out;
1560 				}
1561 				seen_logs = B_TRUE;
1562 				is_log = B_TRUE;
1563 				is_special = is_dedup = is_spare = B_FALSE;
1564 				argc--;
1565 				argv++;
1566 				/*
1567 				 * A log is not a real grouping device.
1568 				 * We just set is_log and continue.
1569 				 */
1570 				continue;
1571 			}
1572 
1573 			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1574 				is_special = B_TRUE;
1575 				is_log = is_dedup = is_spare = B_FALSE;
1576 				argc--;
1577 				argv++;
1578 				continue;
1579 			}
1580 
1581 			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1582 				is_dedup = B_TRUE;
1583 				is_log = is_special = is_spare = B_FALSE;
1584 				argc--;
1585 				argv++;
1586 				continue;
1587 			}
1588 
1589 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1590 				if (l2cache != NULL) {
1591 					(void) fprintf(stderr,
1592 					    gettext("invalid vdev "
1593 					    "specification: 'cache' can be "
1594 					    "specified only once\n"));
1595 					goto spec_out;
1596 				}
1597 				is_log = is_special = B_FALSE;
1598 				is_dedup = is_spare = B_FALSE;
1599 			}
1600 
1601 			if (is_log) {
1602 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1603 					(void) fprintf(stderr,
1604 					    gettext("invalid vdev "
1605 					    "specification: unsupported 'log' "
1606 					    "device: %s\n"), type);
1607 					goto spec_out;
1608 				}
1609 				nlogs++;
1610 			}
1611 
1612 			for (c = 1; c < argc; c++) {
1613 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1614 					break;
1615 
1616 				children++;
1617 				child = realloc(child,
1618 				    children * sizeof (nvlist_t *));
1619 				if (child == NULL)
1620 					zpool_no_memory();
1621 				if ((nv = make_leaf_vdev(props, argv[c],
1622 				    !(is_log || is_special || is_dedup ||
1623 				    is_spare))) == NULL) {
1624 					for (c = 0; c < children - 1; c++)
1625 						nvlist_free(child[c]);
1626 					free(child);
1627 					goto spec_out;
1628 				}
1629 
1630 				child[children - 1] = nv;
1631 			}
1632 
1633 			if (children < mindev) {
1634 				(void) fprintf(stderr, gettext("invalid vdev "
1635 				    "specification: %s requires at least %d "
1636 				    "devices\n"), argv[0], mindev);
1637 				for (c = 0; c < children; c++)
1638 					nvlist_free(child[c]);
1639 				free(child);
1640 				goto spec_out;
1641 			}
1642 
1643 			if (children > maxdev) {
1644 				(void) fprintf(stderr, gettext("invalid vdev "
1645 				    "specification: %s supports no more than "
1646 				    "%d devices\n"), argv[0], maxdev);
1647 				for (c = 0; c < children; c++)
1648 					nvlist_free(child[c]);
1649 				free(child);
1650 				goto spec_out;
1651 			}
1652 
1653 			argc -= c;
1654 			argv += c;
1655 
1656 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1657 				spares = child;
1658 				nspares = children;
1659 				continue;
1660 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1661 				l2cache = child;
1662 				nl2cache = children;
1663 				continue;
1664 			} else {
1665 				/* create a top-level vdev with children */
1666 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1667 				    0) == 0);
1668 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1669 				    type) == 0);
1670 				verify(nvlist_add_uint64(nv,
1671 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1672 				if (is_log) {
1673 					verify(nvlist_add_string(nv,
1674 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1675 					    VDEV_ALLOC_BIAS_LOG) == 0);
1676 				}
1677 				if (is_special) {
1678 					verify(nvlist_add_string(nv,
1679 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1680 					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1681 				}
1682 				if (is_dedup) {
1683 					verify(nvlist_add_string(nv,
1684 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1685 					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1686 				}
1687 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1688 					verify(nvlist_add_uint64(nv,
1689 					    ZPOOL_CONFIG_NPARITY,
1690 					    mindev - 1) == 0);
1691 				}
1692 				if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1693 					if (draid_config_by_type(nv,
1694 					    fulltype, children) != 0) {
1695 						for (c = 0; c < children; c++)
1696 							nvlist_free(child[c]);
1697 						free(child);
1698 						goto spec_out;
1699 					}
1700 				}
1701 				verify(nvlist_add_nvlist_array(nv,
1702 				    ZPOOL_CONFIG_CHILDREN,
1703 				    (const nvlist_t **)child, children) == 0);
1704 
1705 				for (c = 0; c < children; c++)
1706 					nvlist_free(child[c]);
1707 				free(child);
1708 			}
1709 		} else {
1710 			/*
1711 			 * We have a device.  Pass off to make_leaf_vdev() to
1712 			 * construct the appropriate nvlist describing the vdev.
1713 			 */
1714 			if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1715 			    is_special || is_dedup || is_spare))) == NULL)
1716 				goto spec_out;
1717 
1718 			verify(nvlist_add_uint64(nv,
1719 			    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1720 			if (is_log) {
1721 				verify(nvlist_add_string(nv,
1722 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1723 				    VDEV_ALLOC_BIAS_LOG) == 0);
1724 				nlogs++;
1725 			}
1726 
1727 			if (is_special) {
1728 				verify(nvlist_add_string(nv,
1729 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1730 				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1731 			}
1732 			if (is_dedup) {
1733 				verify(nvlist_add_string(nv,
1734 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1735 				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1736 			}
1737 			argc--;
1738 			argv++;
1739 		}
1740 
1741 		toplevels++;
1742 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1743 		if (top == NULL)
1744 			zpool_no_memory();
1745 		top[toplevels - 1] = nv;
1746 	}
1747 
1748 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1749 		(void) fprintf(stderr, gettext("invalid vdev "
1750 		    "specification: at least one toplevel vdev must be "
1751 		    "specified\n"));
1752 		goto spec_out;
1753 	}
1754 
1755 	if (seen_logs && nlogs == 0) {
1756 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1757 		    "log requires at least 1 device\n"));
1758 		goto spec_out;
1759 	}
1760 
1761 	/*
1762 	 * Finally, create nvroot and add all top-level vdevs to it.
1763 	 */
1764 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1765 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1766 	    VDEV_TYPE_ROOT) == 0);
1767 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1768 	    (const nvlist_t **)top, toplevels) == 0);
1769 	if (nspares != 0)
1770 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1771 		    (const nvlist_t **)spares, nspares) == 0);
1772 	if (nl2cache != 0)
1773 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1774 		    (const nvlist_t **)l2cache, nl2cache) == 0);
1775 
1776 spec_out:
1777 	for (t = 0; t < toplevels; t++)
1778 		nvlist_free(top[t]);
1779 	for (t = 0; t < nspares; t++)
1780 		nvlist_free(spares[t]);
1781 	for (t = 0; t < nl2cache; t++)
1782 		nvlist_free(l2cache[t]);
1783 
1784 	free(spares);
1785 	free(l2cache);
1786 	free(top);
1787 
1788 	return (nvroot);
1789 }
1790 
1791 nvlist_t *
split_mirror_vdev(zpool_handle_t * zhp,char * newname,nvlist_t * props,splitflags_t flags,int argc,char ** argv)1792 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1793     splitflags_t flags, int argc, char **argv)
1794 {
1795 	nvlist_t *newroot = NULL, **child;
1796 	uint_t c, children;
1797 
1798 	if (argc > 0) {
1799 		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1800 			(void) fprintf(stderr, gettext("Unable to build a "
1801 			    "pool from the specified devices\n"));
1802 			return (NULL);
1803 		}
1804 
1805 		if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) {
1806 			nvlist_free(newroot);
1807 			return (NULL);
1808 		}
1809 
1810 		/* avoid any tricks in the spec */
1811 		verify(nvlist_lookup_nvlist_array(newroot,
1812 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1813 		for (c = 0; c < children; c++) {
1814 			const char *path;
1815 			const char *type;
1816 			int min, max;
1817 
1818 			verify(nvlist_lookup_string(child[c],
1819 			    ZPOOL_CONFIG_PATH, &path) == 0);
1820 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1821 				(void) fprintf(stderr, gettext("Cannot use "
1822 				    "'%s' as a device for splitting\n"), type);
1823 				nvlist_free(newroot);
1824 				return (NULL);
1825 			}
1826 		}
1827 	}
1828 
1829 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1830 		nvlist_free(newroot);
1831 		return (NULL);
1832 	}
1833 
1834 	return (newroot);
1835 }
1836 
1837 static int
num_normal_vdevs(nvlist_t * nvroot)1838 num_normal_vdevs(nvlist_t *nvroot)
1839 {
1840 	nvlist_t **top;
1841 	uint_t t, toplevels, normal = 0;
1842 
1843 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1844 	    &top, &toplevels) == 0);
1845 
1846 	for (t = 0; t < toplevels; t++) {
1847 		uint64_t log = B_FALSE;
1848 
1849 		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1850 		if (log)
1851 			continue;
1852 		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1853 			continue;
1854 
1855 		normal++;
1856 	}
1857 
1858 	return (normal);
1859 }
1860 
1861 /*
1862  * Get and validate the contents of the given vdev specification.  This ensures
1863  * that the nvlist returned is well-formed, that all the devices exist, and that
1864  * they are not currently in use by any other known consumer.  The 'poolconfig'
1865  * parameter is the current configuration of the pool when adding devices
1866  * existing pool, and is used to perform additional checks, such as changing the
1867  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1868  * new pool.  The 'force' flag controls whether devices should be forcefully
1869  * added, even if they appear in use.
1870  */
1871 nvlist_t *
make_root_vdev(zpool_handle_t * zhp,nvlist_t * props,int force,int check_rep,boolean_t replacing,boolean_t dryrun,int argc,char ** argv)1872 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1873     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1874 {
1875 	nvlist_t *newroot;
1876 	nvlist_t *poolconfig = NULL;
1877 	is_force = force;
1878 
1879 	/*
1880 	 * Construct the vdev specification.  If this is successful, we know
1881 	 * that we have a valid specification, and that all devices can be
1882 	 * opened.
1883 	 */
1884 	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1885 		return (NULL);
1886 
1887 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1888 		nvlist_free(newroot);
1889 		return (NULL);
1890 	}
1891 
1892 	/*
1893 	 * Validate each device to make sure that it's not shared with another
1894 	 * subsystem.  We do this even if 'force' is set, because there are some
1895 	 * uses (such as a dedicated dump device) that even '-f' cannot
1896 	 * override.
1897 	 */
1898 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1899 		nvlist_free(newroot);
1900 		return (NULL);
1901 	}
1902 
1903 	/*
1904 	 * Check the replication level of the given vdevs and report any errors
1905 	 * found.  We include the existing pool spec, if any, as we need to
1906 	 * catch changes against the existing replication level.
1907 	 */
1908 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1909 		nvlist_free(newroot);
1910 		return (NULL);
1911 	}
1912 
1913 	/*
1914 	 * On pool create the new vdev spec must have one normal vdev.
1915 	 */
1916 	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1917 		vdev_error(gettext("at least one general top-level vdev must "
1918 		    "be specified\n"));
1919 		nvlist_free(newroot);
1920 		return (NULL);
1921 	}
1922 
1923 	/*
1924 	 * Run through the vdev specification and label any whole disks found.
1925 	 */
1926 	if (!dryrun && make_disks(zhp, newroot, replacing) != 0) {
1927 		nvlist_free(newroot);
1928 		return (NULL);
1929 	}
1930 
1931 	return (newroot);
1932 }
1933