1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
26 * Copyright (c) 2016, 2017 Intel Corporation.
27 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
28 */
29
30 /*
31 * Functions to convert between a list of vdevs and an nvlist representing the
32 * configuration. Each entry in the list can be one of:
33 *
34 * Device vdevs
35 * disk=(path=..., devid=...)
36 * file=(path=...)
37 *
38 * Group vdevs
39 * raidz[1|2]=(...)
40 * mirror=(...)
41 *
42 * Hot spares
43 *
44 * While the underlying implementation supports it, group vdevs cannot contain
45 * other group vdevs. All userland verification of devices is contained within
46 * this file. If successful, the nvlist returned can be passed directly to the
47 * kernel; we've done as much verification as possible in userland.
48 *
49 * Hot spares are a special case, and passed down as an array of disk vdevs, at
50 * the same level as the root of the vdev tree.
51 *
52 * The only function exported by this file is 'make_root_vdev'. The
53 * function performs several passes:
54 *
55 * 1. Construct the vdev specification. Performs syntax validation and
56 * makes sure each device is valid.
57 * 2. Check for devices in use. Using libblkid to make sure that no
58 * devices are also in use. Some can be overridden using the 'force'
59 * flag, others cannot.
60 * 3. Check for replication errors if the 'force' flag is not specified.
61 * validates that the replication level is consistent across the
62 * entire pool.
63 * 4. Call libzfs to label any whole disks with an EFI label.
64 */
65
66 #include <assert.h>
67 #include <ctype.h>
68 #include <errno.h>
69 #include <fcntl.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <libzutil.h>
73 #include <limits.h>
74 #include <sys/spa.h>
75 #include <stdio.h>
76 #include <string.h>
77 #include <unistd.h>
78 #include "zpool_util.h"
79 #include <sys/zfs_context.h>
80 #include <sys/stat.h>
81
82 /*
83 * For any given vdev specification, we can have multiple errors. The
84 * vdev_error() function keeps track of whether we have seen an error yet, and
85 * prints out a header if its the first error we've seen.
86 */
87 boolean_t error_seen;
88 boolean_t is_force;
89
90 void
vdev_error(const char * fmt,...)91 vdev_error(const char *fmt, ...)
92 {
93 va_list ap;
94
95 if (!error_seen) {
96 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
97 if (!is_force)
98 (void) fprintf(stderr, gettext("use '-f' to override "
99 "the following errors:\n"));
100 else
101 (void) fprintf(stderr, gettext("the following errors "
102 "must be manually repaired:\n"));
103 error_seen = B_TRUE;
104 }
105
106 va_start(ap, fmt);
107 (void) vfprintf(stderr, fmt, ap);
108 va_end(ap);
109 }
110
111 /*
112 * Check that a file is valid. All we can do in this case is check that it's
113 * not in use by another pool, and not in use by swap.
114 */
115 int
check_file_generic(const char * file,boolean_t force,boolean_t isspare)116 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
117 {
118 char *name;
119 int fd;
120 int ret = 0;
121 pool_state_t state;
122 boolean_t inuse;
123
124 if ((fd = open(file, O_RDONLY)) < 0)
125 return (0);
126
127 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
128 const char *desc;
129
130 switch (state) {
131 case POOL_STATE_ACTIVE:
132 desc = gettext("active");
133 break;
134
135 case POOL_STATE_EXPORTED:
136 desc = gettext("exported");
137 break;
138
139 case POOL_STATE_POTENTIALLY_ACTIVE:
140 desc = gettext("potentially active");
141 break;
142
143 default:
144 desc = gettext("unknown");
145 break;
146 }
147
148 /*
149 * Allow hot spares to be shared between pools.
150 */
151 if (state == POOL_STATE_SPARE && isspare) {
152 free(name);
153 (void) close(fd);
154 return (0);
155 }
156
157 if (state == POOL_STATE_ACTIVE ||
158 state == POOL_STATE_SPARE || !force) {
159 switch (state) {
160 case POOL_STATE_SPARE:
161 vdev_error(gettext("%s is reserved as a hot "
162 "spare for pool %s\n"), file, name);
163 break;
164 default:
165 vdev_error(gettext("%s is part of %s pool "
166 "'%s'\n"), file, desc, name);
167 break;
168 }
169 ret = -1;
170 }
171
172 free(name);
173 }
174
175 (void) close(fd);
176 return (ret);
177 }
178
179 /*
180 * This may be a shorthand device path or it could be total gibberish.
181 * Check to see if it is a known device available in zfs_vdev_paths.
182 * As part of this check, see if we've been given an entire disk
183 * (minus the slice number).
184 */
185 static int
is_shorthand_path(const char * arg,char * path,size_t path_size,struct stat64 * statbuf,boolean_t * wholedisk)186 is_shorthand_path(const char *arg, char *path, size_t path_size,
187 struct stat64 *statbuf, boolean_t *wholedisk)
188 {
189 int error;
190
191 error = zfs_resolve_shortname(arg, path, path_size);
192 if (error == 0) {
193 *wholedisk = zfs_dev_is_whole_disk(path);
194 if (*wholedisk || (stat64(path, statbuf) == 0))
195 return (0);
196 }
197
198 strlcpy(path, arg, path_size);
199 memset(statbuf, 0, sizeof (*statbuf));
200 *wholedisk = B_FALSE;
201
202 return (error);
203 }
204
205 /*
206 * Determine if the given path is a hot spare within the given configuration.
207 * If no configuration is given we rely solely on the label.
208 */
209 static boolean_t
is_spare(nvlist_t * config,const char * path)210 is_spare(nvlist_t *config, const char *path)
211 {
212 int fd;
213 pool_state_t state;
214 char *name = NULL;
215 nvlist_t *label;
216 uint64_t guid, spareguid;
217 nvlist_t *nvroot;
218 nvlist_t **spares;
219 uint_t i, nspares;
220 boolean_t inuse;
221
222 if (zpool_is_draid_spare(path))
223 return (B_TRUE);
224
225 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
226 return (B_FALSE);
227
228 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
229 !inuse ||
230 state != POOL_STATE_SPARE ||
231 zpool_read_label(fd, &label, NULL) != 0) {
232 free(name);
233 (void) close(fd);
234 return (B_FALSE);
235 }
236 free(name);
237 (void) close(fd);
238
239 if (config == NULL) {
240 nvlist_free(label);
241 return (B_TRUE);
242 }
243
244 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
245 nvlist_free(label);
246
247 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
248 &nvroot) == 0);
249 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
250 &spares, &nspares) == 0) {
251 for (i = 0; i < nspares; i++) {
252 verify(nvlist_lookup_uint64(spares[i],
253 ZPOOL_CONFIG_GUID, &spareguid) == 0);
254 if (spareguid == guid)
255 return (B_TRUE);
256 }
257 }
258
259 return (B_FALSE);
260 }
261
262 /*
263 * Create a leaf vdev. Determine if this is a file or a device. If it's a
264 * device, fill in the device id to make a complete nvlist. Valid forms for a
265 * leaf vdev are:
266 *
267 * /dev/xxx Complete disk path
268 * /xxx Full path to file
269 * xxx Shorthand for <zfs_vdev_paths>/xxx
270 * draid* Virtual dRAID spare
271 */
272 static nvlist_t *
make_leaf_vdev(nvlist_t * props,const char * arg,boolean_t is_primary)273 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
274 {
275 char path[MAXPATHLEN];
276 struct stat64 statbuf;
277 nvlist_t *vdev = NULL;
278 const char *type = NULL;
279 boolean_t wholedisk = B_FALSE;
280 uint64_t ashift = 0;
281 int err;
282
283 /*
284 * Determine what type of vdev this is, and put the full path into
285 * 'path'. We detect whether this is a device of file afterwards by
286 * checking the st_mode of the file.
287 */
288 if (arg[0] == '/') {
289 /*
290 * Complete device or file path. Exact type is determined by
291 * examining the file descriptor afterwards. Symbolic links
292 * are resolved to their real paths to determine whole disk
293 * and S_ISBLK/S_ISREG type checks. However, we are careful
294 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
295 * can leverage udev's persistent device labels.
296 */
297 if (realpath(arg, path) == NULL) {
298 (void) fprintf(stderr,
299 gettext("cannot resolve path '%s'\n"), arg);
300 return (NULL);
301 }
302
303 wholedisk = zfs_dev_is_whole_disk(path);
304 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
305 (void) fprintf(stderr,
306 gettext("cannot open '%s': %s\n"),
307 path, strerror(errno));
308 return (NULL);
309 }
310
311 /* After whole disk check restore original passed path */
312 strlcpy(path, arg, sizeof (path));
313 } else if (zpool_is_draid_spare(arg)) {
314 if (!is_primary) {
315 (void) fprintf(stderr,
316 gettext("cannot open '%s': dRAID spares can only "
317 "be used to replace primary vdevs\n"), arg);
318 return (NULL);
319 }
320
321 wholedisk = B_TRUE;
322 strlcpy(path, arg, sizeof (path));
323 type = VDEV_TYPE_DRAID_SPARE;
324 } else {
325 err = is_shorthand_path(arg, path, sizeof (path),
326 &statbuf, &wholedisk);
327 if (err != 0) {
328 /*
329 * If we got ENOENT, then the user gave us
330 * gibberish, so try to direct them with a
331 * reasonable error message. Otherwise,
332 * regurgitate strerror() since it's the best we
333 * can do.
334 */
335 if (err == ENOENT) {
336 (void) fprintf(stderr,
337 gettext("cannot open '%s': no such "
338 "device in %s\n"), arg, DISK_ROOT);
339 (void) fprintf(stderr,
340 gettext("must be a full path or "
341 "shorthand device name\n"));
342 return (NULL);
343 } else {
344 (void) fprintf(stderr,
345 gettext("cannot open '%s': %s\n"),
346 path, strerror(errno));
347 return (NULL);
348 }
349 }
350 }
351
352 if (type == NULL) {
353 /*
354 * Determine whether this is a device or a file.
355 */
356 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
357 type = VDEV_TYPE_DISK;
358 } else if (S_ISREG(statbuf.st_mode)) {
359 type = VDEV_TYPE_FILE;
360 } else {
361 fprintf(stderr, gettext("cannot use '%s': must "
362 "be a block device or regular file\n"), path);
363 return (NULL);
364 }
365 }
366
367 /*
368 * Finally, we have the complete device or file, and we know that it is
369 * acceptable to use. Construct the nvlist to describe this vdev. All
370 * vdevs have a 'path' element, and devices also have a 'devid' element.
371 */
372 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
373 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
374 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
375
376 /* Lookup and add the enclosure sysfs path (if exists) */
377 update_vdev_config_dev_sysfs_path(vdev, path,
378 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
379
380 if (strcmp(type, VDEV_TYPE_DISK) == 0)
381 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
382 (uint64_t)wholedisk) == 0);
383
384 /*
385 * Override defaults if custom properties are provided.
386 */
387 if (props != NULL) {
388 const char *value = NULL;
389
390 if (nvlist_lookup_string(props,
391 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
392 if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
393 (void) fprintf(stderr,
394 gettext("ashift must be a number.\n"));
395 return (NULL);
396 }
397 if (ashift != 0 &&
398 (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
399 (void) fprintf(stderr,
400 gettext("invalid 'ashift=%" PRIu64 "' "
401 "property: only values between %" PRId32 " "
402 "and %" PRId32 " are allowed.\n"),
403 ashift, ASHIFT_MIN, ASHIFT_MAX);
404 return (NULL);
405 }
406 }
407 }
408
409 /*
410 * If the device is known to incorrectly report its physical sector
411 * size explicitly provide the known correct value.
412 */
413 if (ashift == 0) {
414 int sector_size;
415
416 if (check_sector_size_database(path, §or_size) == B_TRUE)
417 ashift = highbit64(sector_size) - 1;
418 }
419
420 if (ashift > 0)
421 (void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
422
423 return (vdev);
424 }
425
426 /*
427 * Go through and verify the replication level of the pool is consistent.
428 * Performs the following checks:
429 *
430 * For the new spec, verifies that devices in mirrors and raidz are the
431 * same size.
432 *
433 * If the current configuration already has inconsistent replication
434 * levels, ignore any other potential problems in the new spec.
435 *
436 * Otherwise, make sure that the current spec (if there is one) and the new
437 * spec have consistent replication levels.
438 *
439 * If there is no current spec (create), make sure new spec has at least
440 * one general purpose vdev.
441 */
442 typedef struct replication_level {
443 const char *zprl_type;
444 uint64_t zprl_children;
445 uint64_t zprl_parity;
446 } replication_level_t;
447
448 #define ZPOOL_FUZZ (16 * 1024 * 1024)
449
450 /*
451 * N.B. For the purposes of comparing replication levels dRAID can be
452 * considered functionally equivalent to raidz.
453 */
454 static boolean_t
is_raidz_mirror(replication_level_t * a,replication_level_t * b,replication_level_t ** raidz,replication_level_t ** mirror)455 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
456 replication_level_t **raidz, replication_level_t **mirror)
457 {
458 if ((strcmp(a->zprl_type, "raidz") == 0 ||
459 strcmp(a->zprl_type, "draid") == 0) &&
460 strcmp(b->zprl_type, "mirror") == 0) {
461 *raidz = a;
462 *mirror = b;
463 return (B_TRUE);
464 }
465 return (B_FALSE);
466 }
467
468 /*
469 * Comparison for determining if dRAID and raidz where passed in either order.
470 */
471 static boolean_t
is_raidz_draid(replication_level_t * a,replication_level_t * b)472 is_raidz_draid(replication_level_t *a, replication_level_t *b)
473 {
474 if ((strcmp(a->zprl_type, "raidz") == 0 ||
475 strcmp(a->zprl_type, "draid") == 0) &&
476 (strcmp(b->zprl_type, "raidz") == 0 ||
477 strcmp(b->zprl_type, "draid") == 0)) {
478 return (B_TRUE);
479 }
480
481 return (B_FALSE);
482 }
483
484 /*
485 * Given a list of toplevel vdevs, return the current replication level. If
486 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
487 * an error message will be displayed for each self-inconsistent vdev.
488 */
489 static replication_level_t *
get_replication(nvlist_t * nvroot,boolean_t fatal)490 get_replication(nvlist_t *nvroot, boolean_t fatal)
491 {
492 nvlist_t **top;
493 uint_t t, toplevels;
494 nvlist_t **child;
495 uint_t c, children;
496 nvlist_t *nv;
497 const char *type;
498 replication_level_t lastrep = {0};
499 replication_level_t rep;
500 replication_level_t *ret;
501 replication_level_t *raidz, *mirror;
502 boolean_t dontreport;
503
504 ret = safe_malloc(sizeof (replication_level_t));
505
506 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
507 &top, &toplevels) == 0);
508
509 for (t = 0; t < toplevels; t++) {
510 uint64_t is_log = B_FALSE;
511
512 nv = top[t];
513
514 /*
515 * For separate logs we ignore the top level vdev replication
516 * constraints.
517 */
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
519 if (is_log)
520 continue;
521
522 /*
523 * Ignore holes introduced by removing aux devices, along
524 * with indirect vdevs introduced by previously removed
525 * vdevs.
526 */
527 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
528 if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
529 strcmp(type, VDEV_TYPE_INDIRECT) == 0)
530 continue;
531
532 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
533 &child, &children) != 0) {
534 /*
535 * This is a 'file' or 'disk' vdev.
536 */
537 rep.zprl_type = type;
538 rep.zprl_children = 1;
539 rep.zprl_parity = 0;
540 } else {
541 int64_t vdev_size;
542
543 /*
544 * This is a mirror or RAID-Z vdev. Go through and make
545 * sure the contents are all the same (files vs. disks),
546 * keeping track of the number of elements in the
547 * process.
548 *
549 * We also check that the size of each vdev (if it can
550 * be determined) is the same.
551 */
552 rep.zprl_type = type;
553 rep.zprl_children = 0;
554
555 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
556 strcmp(type, VDEV_TYPE_DRAID) == 0) {
557 verify(nvlist_lookup_uint64(nv,
558 ZPOOL_CONFIG_NPARITY,
559 &rep.zprl_parity) == 0);
560 assert(rep.zprl_parity != 0);
561 } else {
562 rep.zprl_parity = 0;
563 }
564
565 /*
566 * The 'dontreport' variable indicates that we've
567 * already reported an error for this spec, so don't
568 * bother doing it again.
569 */
570 type = NULL;
571 dontreport = 0;
572 vdev_size = -1LL;
573 for (c = 0; c < children; c++) {
574 nvlist_t *cnv = child[c];
575 const char *path;
576 struct stat64 statbuf;
577 const char *childtype;
578 int fd, err;
579
580 rep.zprl_children++;
581
582 verify(nvlist_lookup_string(cnv,
583 ZPOOL_CONFIG_TYPE, &childtype) == 0);
584
585 /*
586 * If this is a replacing or spare vdev, then
587 * get the real first child of the vdev: do this
588 * in a loop because replacing and spare vdevs
589 * can be nested.
590 */
591 while (strcmp(childtype,
592 VDEV_TYPE_REPLACING) == 0 ||
593 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
594 nvlist_t **rchild;
595 uint_t rchildren;
596
597 verify(nvlist_lookup_nvlist_array(cnv,
598 ZPOOL_CONFIG_CHILDREN, &rchild,
599 &rchildren) == 0);
600 assert(rchildren == 2);
601 cnv = rchild[0];
602
603 verify(nvlist_lookup_string(cnv,
604 ZPOOL_CONFIG_TYPE,
605 &childtype) == 0);
606 }
607
608 verify(nvlist_lookup_string(cnv,
609 ZPOOL_CONFIG_PATH, &path) == 0);
610
611 /*
612 * Skip active spares they should never cause
613 * the pool to be evaluated as inconsistent.
614 */
615 if (is_spare(NULL, path))
616 continue;
617
618 /*
619 * If we have a raidz/mirror that combines disks
620 * with files, only report it as an error when
621 * fatal is set to ensure all the replication
622 * checks aren't skipped in check_replication().
623 */
624 if (fatal && !dontreport && type != NULL &&
625 strcmp(type, childtype) != 0) {
626 if (ret != NULL)
627 free(ret);
628 ret = NULL;
629 vdev_error(gettext(
630 "mismatched replication "
631 "level: %s contains both "
632 "files and devices\n"),
633 rep.zprl_type);
634 dontreport = B_TRUE;
635 }
636
637 /*
638 * According to stat(2), the value of 'st_size'
639 * is undefined for block devices and character
640 * devices. But there is no effective way to
641 * determine the real size in userland.
642 *
643 * Instead, we'll take advantage of an
644 * implementation detail of spec_size(). If the
645 * device is currently open, then we (should)
646 * return a valid size.
647 *
648 * If we still don't get a valid size (indicated
649 * by a size of 0 or MAXOFFSET_T), then ignore
650 * this device altogether.
651 */
652 if ((fd = open(path, O_RDONLY)) >= 0) {
653 err = fstat64_blk(fd, &statbuf);
654 (void) close(fd);
655 } else {
656 err = stat64(path, &statbuf);
657 }
658
659 if (err != 0 ||
660 statbuf.st_size == 0 ||
661 statbuf.st_size == MAXOFFSET_T)
662 continue;
663
664 int64_t size = statbuf.st_size;
665
666 /*
667 * Also make sure that devices and
668 * slices have a consistent size. If
669 * they differ by a significant amount
670 * (~16MB) then report an error.
671 */
672 if (!dontreport &&
673 (vdev_size != -1LL &&
674 (llabs(size - vdev_size) >
675 ZPOOL_FUZZ))) {
676 if (ret != NULL)
677 free(ret);
678 ret = NULL;
679 if (fatal)
680 vdev_error(gettext(
681 "%s contains devices of "
682 "different sizes\n"),
683 rep.zprl_type);
684 else
685 return (NULL);
686 dontreport = B_TRUE;
687 }
688
689 type = childtype;
690 vdev_size = size;
691 }
692 }
693
694 /*
695 * At this point, we have the replication of the last toplevel
696 * vdev in 'rep'. Compare it to 'lastrep' to see if it is
697 * different.
698 */
699 if (lastrep.zprl_type != NULL) {
700 if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
701 is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
702 /*
703 * Accepted raidz and mirror when they can
704 * handle the same number of disk failures.
705 */
706 if (raidz->zprl_parity !=
707 mirror->zprl_children - 1) {
708 if (ret != NULL)
709 free(ret);
710 ret = NULL;
711 if (fatal)
712 vdev_error(gettext(
713 "mismatched replication "
714 "level: "
715 "%s and %s vdevs with "
716 "different redundancy, "
717 "%llu vs. %llu (%llu-way) "
718 "are present\n"),
719 raidz->zprl_type,
720 mirror->zprl_type,
721 (u_longlong_t)
722 raidz->zprl_parity,
723 (u_longlong_t)
724 mirror->zprl_children - 1,
725 (u_longlong_t)
726 mirror->zprl_children);
727 else
728 return (NULL);
729 }
730 } else if (is_raidz_draid(&lastrep, &rep)) {
731 /*
732 * Accepted raidz and draid when they can
733 * handle the same number of disk failures.
734 */
735 if (lastrep.zprl_parity != rep.zprl_parity) {
736 if (ret != NULL)
737 free(ret);
738 ret = NULL;
739 if (fatal)
740 vdev_error(gettext(
741 "mismatched replication "
742 "level: %s and %s vdevs "
743 "with different "
744 "redundancy, %llu vs. "
745 "%llu are present\n"),
746 lastrep.zprl_type,
747 rep.zprl_type,
748 (u_longlong_t)
749 lastrep.zprl_parity,
750 (u_longlong_t)
751 rep.zprl_parity);
752 else
753 return (NULL);
754 }
755 } else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
756 0) {
757 if (ret != NULL)
758 free(ret);
759 ret = NULL;
760 if (fatal)
761 vdev_error(gettext(
762 "mismatched replication level: "
763 "both %s and %s vdevs are "
764 "present\n"),
765 lastrep.zprl_type, rep.zprl_type);
766 else
767 return (NULL);
768 } else if (lastrep.zprl_parity != rep.zprl_parity) {
769 if (ret)
770 free(ret);
771 ret = NULL;
772 if (fatal)
773 vdev_error(gettext(
774 "mismatched replication level: "
775 "both %llu and %llu device parity "
776 "%s vdevs are present\n"),
777 (u_longlong_t)
778 lastrep.zprl_parity,
779 (u_longlong_t)rep.zprl_parity,
780 rep.zprl_type);
781 else
782 return (NULL);
783 } else if (lastrep.zprl_children != rep.zprl_children) {
784 if (ret)
785 free(ret);
786 ret = NULL;
787 if (fatal)
788 vdev_error(gettext(
789 "mismatched replication level: "
790 "both %llu-way and %llu-way %s "
791 "vdevs are present\n"),
792 (u_longlong_t)
793 lastrep.zprl_children,
794 (u_longlong_t)
795 rep.zprl_children,
796 rep.zprl_type);
797 else
798 return (NULL);
799 }
800 }
801 lastrep = rep;
802 }
803
804 if (ret != NULL)
805 *ret = rep;
806
807 return (ret);
808 }
809
810 /*
811 * Check the replication level of the vdev spec against the current pool. Calls
812 * get_replication() to make sure the new spec is self-consistent. If the pool
813 * has a consistent replication level, then we ignore any errors. Otherwise,
814 * report any difference between the two.
815 */
816 static int
check_replication(nvlist_t * config,nvlist_t * newroot)817 check_replication(nvlist_t *config, nvlist_t *newroot)
818 {
819 nvlist_t **child;
820 uint_t children;
821 replication_level_t *current = NULL, *new;
822 replication_level_t *raidz, *mirror;
823 int ret;
824
825 /*
826 * If we have a current pool configuration, check to see if it's
827 * self-consistent. If not, simply return success.
828 */
829 if (config != NULL) {
830 nvlist_t *nvroot;
831
832 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
833 &nvroot) == 0);
834 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
835 return (0);
836 }
837 /*
838 * for spares there may be no children, and therefore no
839 * replication level to check
840 */
841 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
842 &child, &children) != 0) || (children == 0)) {
843 free(current);
844 return (0);
845 }
846
847 /*
848 * If all we have is logs then there's no replication level to check.
849 */
850 if (num_logs(newroot) == children) {
851 free(current);
852 return (0);
853 }
854
855 /*
856 * Get the replication level of the new vdev spec, reporting any
857 * inconsistencies found.
858 */
859 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
860 free(current);
861 return (-1);
862 }
863
864 /*
865 * Check to see if the new vdev spec matches the replication level of
866 * the current pool.
867 */
868 ret = 0;
869 if (current != NULL) {
870 if (is_raidz_mirror(current, new, &raidz, &mirror) ||
871 is_raidz_mirror(new, current, &raidz, &mirror)) {
872 if (raidz->zprl_parity != mirror->zprl_children - 1) {
873 vdev_error(gettext(
874 "mismatched replication level: pool and "
875 "new vdev with different redundancy, %s "
876 "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
877 raidz->zprl_type,
878 mirror->zprl_type,
879 (u_longlong_t)raidz->zprl_parity,
880 (u_longlong_t)mirror->zprl_children - 1,
881 (u_longlong_t)mirror->zprl_children);
882 ret = -1;
883 }
884 } else if (is_raidz_draid(current, new)) {
885 if (current->zprl_parity != new->zprl_parity) {
886 vdev_error(gettext(
887 "mismatched replication level: pool and "
888 "new vdev with different redundancy, %s "
889 "and %s vdevs, %llu vs. %llu\n"),
890 current->zprl_type,
891 new->zprl_type,
892 (u_longlong_t)current->zprl_parity,
893 (u_longlong_t)new->zprl_parity);
894 ret = -1;
895 }
896 } else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
897 vdev_error(gettext(
898 "mismatched replication level: pool uses %s "
899 "and new vdev is %s\n"),
900 current->zprl_type, new->zprl_type);
901 ret = -1;
902 } else if (current->zprl_parity != new->zprl_parity) {
903 vdev_error(gettext(
904 "mismatched replication level: pool uses %llu "
905 "device parity and new vdev uses %llu\n"),
906 (u_longlong_t)current->zprl_parity,
907 (u_longlong_t)new->zprl_parity);
908 ret = -1;
909 } else if (current->zprl_children != new->zprl_children) {
910 vdev_error(gettext(
911 "mismatched replication level: pool uses %llu-way "
912 "%s and new vdev uses %llu-way %s\n"),
913 (u_longlong_t)current->zprl_children,
914 current->zprl_type,
915 (u_longlong_t)new->zprl_children,
916 new->zprl_type);
917 ret = -1;
918 }
919 }
920
921 free(new);
922 if (current != NULL)
923 free(current);
924
925 return (ret);
926 }
927
928 static int
zero_label(const char * path)929 zero_label(const char *path)
930 {
931 const int size = 4096;
932 char buf[size];
933 int err, fd;
934
935 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
936 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
937 path, strerror(errno));
938 return (-1);
939 }
940
941 memset(buf, 0, size);
942 err = write(fd, buf, size);
943 (void) fdatasync(fd);
944 (void) close(fd);
945
946 if (err == -1) {
947 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
948 "of '%s': %s\n"), size, path, strerror(errno));
949 return (-1);
950 }
951
952 if (err != size) {
953 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
954 "of '%s'\n"), err, size, path);
955 return (-1);
956 }
957
958 return (0);
959 }
960
961 static void
lines_to_stderr(char * lines[],int lines_cnt)962 lines_to_stderr(char *lines[], int lines_cnt)
963 {
964 int i;
965 for (i = 0; i < lines_cnt; i++) {
966 fprintf(stderr, "%s\n", lines[i]);
967 }
968 }
969
970 /*
971 * Go through and find any whole disks in the vdev specification, labelling them
972 * as appropriate. When constructing the vdev spec, we were unable to open this
973 * device in order to provide a devid. Now that we have labelled the disk and
974 * know that slice 0 is valid, we can construct the devid now.
975 *
976 * If the disk was already labeled with an EFI label, we will have gotten the
977 * devid already (because we were able to open the whole disk). Otherwise, we
978 * need to get the devid after we label the disk.
979 */
980 static int
make_disks(zpool_handle_t * zhp,nvlist_t * nv,boolean_t replacing)981 make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing)
982 {
983 nvlist_t **child;
984 uint_t c, children;
985 const char *type, *path;
986 char devpath[MAXPATHLEN];
987 char udevpath[MAXPATHLEN];
988 uint64_t wholedisk;
989 struct stat64 statbuf;
990 int is_exclusive = 0;
991 int fd;
992 int ret;
993
994 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
995
996 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
997 &child, &children) != 0) {
998
999 if (strcmp(type, VDEV_TYPE_DISK) != 0)
1000 return (0);
1001
1002 /*
1003 * We have a disk device. If this is a whole disk write
1004 * out the efi partition table, otherwise write zero's to
1005 * the first 4k of the partition. This is to ensure that
1006 * libblkid will not misidentify the partition due to a
1007 * magic value left by the previous filesystem.
1008 */
1009 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1010 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1011 &wholedisk));
1012
1013 if (!wholedisk) {
1014 /*
1015 * Update device id string for mpath nodes (Linux only)
1016 */
1017 if (is_mpath_whole_disk(path))
1018 update_vdev_config_dev_strs(nv);
1019
1020 if (!is_spare(NULL, path))
1021 (void) zero_label(path);
1022 return (0);
1023 }
1024
1025 if (realpath(path, devpath) == NULL) {
1026 ret = errno;
1027 (void) fprintf(stderr,
1028 gettext("cannot resolve path '%s'\n"), path);
1029 return (ret);
1030 }
1031
1032 /*
1033 * Remove any previously existing symlink from a udev path to
1034 * the device before labeling the disk. This ensures that
1035 * only newly created links are used. Otherwise there is a
1036 * window between when udev deletes and recreates the link
1037 * during which access attempts will fail with ENOENT.
1038 */
1039 strlcpy(udevpath, path, MAXPATHLEN);
1040 (void) zfs_append_partition(udevpath, MAXPATHLEN);
1041
1042 fd = open(devpath, O_RDWR|O_EXCL);
1043 if (fd == -1) {
1044 if (errno == EBUSY)
1045 is_exclusive = 1;
1046 #ifdef __FreeBSD__
1047 if (errno == EPERM)
1048 is_exclusive = 1;
1049 #endif
1050 } else {
1051 (void) close(fd);
1052 }
1053
1054 /*
1055 * If the partition exists, contains a valid spare label,
1056 * and is opened exclusively there is no need to partition
1057 * it. Hot spares have already been partitioned and are
1058 * held open exclusively by the kernel as a safety measure.
1059 *
1060 * If the provided path is for a /dev/disk/ device its
1061 * symbolic link will be removed, partition table created,
1062 * and then block until udev creates the new link.
1063 */
1064 if (!is_exclusive && !is_spare(NULL, udevpath)) {
1065 char *devnode = strrchr(devpath, '/') + 1;
1066 char **lines = NULL;
1067 int lines_cnt = 0;
1068
1069 ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1070 if (ret == 0) {
1071 ret = lstat64(udevpath, &statbuf);
1072 if (ret == 0 && S_ISLNK(statbuf.st_mode))
1073 (void) unlink(udevpath);
1074 }
1075
1076 /*
1077 * When labeling a pool the raw device node name
1078 * is provided as it appears under /dev/.
1079 *
1080 * Note that 'zhp' will be NULL when we're creating a
1081 * pool.
1082 */
1083 if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode,
1084 nv, zhp == NULL ? "create" :
1085 replacing ? "replace" : "add", &lines,
1086 &lines_cnt) != 0) {
1087 (void) fprintf(stderr,
1088 gettext(
1089 "Error preparing/labeling disk.\n"));
1090 if (lines_cnt > 0) {
1091 (void) fprintf(stderr,
1092 gettext("zfs_prepare_disk output:\n"));
1093 lines_to_stderr(lines, lines_cnt);
1094 }
1095
1096 libzfs_free_str_array(lines, lines_cnt);
1097 return (-1);
1098 }
1099 libzfs_free_str_array(lines, lines_cnt);
1100
1101 /*
1102 * Wait for udev to signal the device is available
1103 * by the provided path.
1104 */
1105 ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1106 if (ret) {
1107 (void) fprintf(stderr,
1108 gettext("missing link: %s was "
1109 "partitioned but %s is missing\n"),
1110 devnode, udevpath);
1111 return (ret);
1112 }
1113
1114 ret = zero_label(udevpath);
1115 if (ret)
1116 return (ret);
1117 }
1118
1119 /*
1120 * Update the path to refer to the partition. The presence of
1121 * the 'whole_disk' field indicates to the CLI that we should
1122 * chop off the partition number when displaying the device in
1123 * future output.
1124 */
1125 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1126
1127 /*
1128 * Update device id strings for whole disks (Linux only)
1129 */
1130 update_vdev_config_dev_strs(nv);
1131
1132 return (0);
1133 }
1134
1135 for (c = 0; c < children; c++)
1136 if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1137 return (ret);
1138
1139 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1140 &child, &children) == 0)
1141 for (c = 0; c < children; c++)
1142 if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1143 return (ret);
1144
1145 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1146 &child, &children) == 0)
1147 for (c = 0; c < children; c++)
1148 if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1149 return (ret);
1150
1151 return (0);
1152 }
1153
1154 /*
1155 * Go through and find any devices that are in use. We rely on libdiskmgt for
1156 * the majority of this task.
1157 */
1158 static boolean_t
is_device_in_use(nvlist_t * config,nvlist_t * nv,boolean_t force,boolean_t replacing,boolean_t isspare)1159 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1160 boolean_t replacing, boolean_t isspare)
1161 {
1162 nvlist_t **child;
1163 uint_t c, children;
1164 const char *type, *path;
1165 int ret = 0;
1166 char buf[MAXPATHLEN];
1167 uint64_t wholedisk = B_FALSE;
1168 boolean_t anyinuse = B_FALSE;
1169
1170 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1171
1172 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1173 &child, &children) != 0) {
1174
1175 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1176 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1177 verify(!nvlist_lookup_uint64(nv,
1178 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1179
1180 /*
1181 * As a generic check, we look to see if this is a replace of a
1182 * hot spare within the same pool. If so, we allow it
1183 * regardless of what libblkid or zpool_in_use() says.
1184 */
1185 if (replacing) {
1186 (void) strlcpy(buf, path, sizeof (buf));
1187 if (wholedisk) {
1188 ret = zfs_append_partition(buf, sizeof (buf));
1189 if (ret == -1)
1190 return (-1);
1191 }
1192
1193 if (is_spare(config, buf))
1194 return (B_FALSE);
1195 }
1196
1197 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1198 ret = check_device(path, force, isspare, wholedisk);
1199
1200 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1201 ret = check_file(path, force, isspare);
1202
1203 return (ret != 0);
1204 }
1205
1206 for (c = 0; c < children; c++)
1207 if (is_device_in_use(config, child[c], force, replacing,
1208 B_FALSE))
1209 anyinuse = B_TRUE;
1210
1211 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1212 &child, &children) == 0)
1213 for (c = 0; c < children; c++)
1214 if (is_device_in_use(config, child[c], force, replacing,
1215 B_TRUE))
1216 anyinuse = B_TRUE;
1217
1218 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1219 &child, &children) == 0)
1220 for (c = 0; c < children; c++)
1221 if (is_device_in_use(config, child[c], force, replacing,
1222 B_FALSE))
1223 anyinuse = B_TRUE;
1224
1225 return (anyinuse);
1226 }
1227
1228 /*
1229 * Returns the parity level extracted from a raidz or draid type.
1230 * If the parity cannot be determined zero is returned.
1231 */
1232 static int
get_parity(const char * type)1233 get_parity(const char *type)
1234 {
1235 long parity = 0;
1236 const char *p;
1237
1238 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1239 p = type + strlen(VDEV_TYPE_RAIDZ);
1240
1241 if (*p == '\0') {
1242 /* when unspecified default to single parity */
1243 return (1);
1244 } else if (*p == '0') {
1245 /* no zero prefixes allowed */
1246 return (0);
1247 } else {
1248 /* 0-3, no suffixes allowed */
1249 char *end;
1250 errno = 0;
1251 parity = strtol(p, &end, 10);
1252 if (errno != 0 || *end != '\0' ||
1253 parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1254 return (0);
1255 }
1256 }
1257 } else if (strncmp(type, VDEV_TYPE_DRAID,
1258 strlen(VDEV_TYPE_DRAID)) == 0) {
1259 p = type + strlen(VDEV_TYPE_DRAID);
1260
1261 if (*p == '\0' || *p == ':') {
1262 /* when unspecified default to single parity */
1263 return (1);
1264 } else if (*p == '0') {
1265 /* no zero prefixes allowed */
1266 return (0);
1267 } else {
1268 /* 0-3, allowed suffixes: '\0' or ':' */
1269 char *end;
1270 errno = 0;
1271 parity = strtol(p, &end, 10);
1272 if (errno != 0 ||
1273 parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1274 (*end != '\0' && *end != ':')) {
1275 return (0);
1276 }
1277 }
1278 }
1279
1280 return ((int)parity);
1281 }
1282
1283 /*
1284 * Assign the minimum and maximum number of devices allowed for
1285 * the specified type. On error NULL is returned, otherwise the
1286 * type prefix is returned (raidz, mirror, etc).
1287 */
1288 static const char *
is_grouping(const char * type,int * mindev,int * maxdev)1289 is_grouping(const char *type, int *mindev, int *maxdev)
1290 {
1291 int nparity;
1292
1293 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1294 strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1295 nparity = get_parity(type);
1296 if (nparity == 0)
1297 return (NULL);
1298 if (mindev != NULL)
1299 *mindev = nparity + 1;
1300 if (maxdev != NULL)
1301 *maxdev = 255;
1302
1303 if (strncmp(type, VDEV_TYPE_RAIDZ,
1304 strlen(VDEV_TYPE_RAIDZ)) == 0) {
1305 return (VDEV_TYPE_RAIDZ);
1306 } else {
1307 return (VDEV_TYPE_DRAID);
1308 }
1309 }
1310
1311 if (maxdev != NULL)
1312 *maxdev = INT_MAX;
1313
1314 if (strcmp(type, "mirror") == 0) {
1315 if (mindev != NULL)
1316 *mindev = 2;
1317 return (VDEV_TYPE_MIRROR);
1318 }
1319
1320 if (strcmp(type, "spare") == 0) {
1321 if (mindev != NULL)
1322 *mindev = 1;
1323 return (VDEV_TYPE_SPARE);
1324 }
1325
1326 if (strcmp(type, "log") == 0) {
1327 if (mindev != NULL)
1328 *mindev = 1;
1329 return (VDEV_TYPE_LOG);
1330 }
1331
1332 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1333 strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1334 if (mindev != NULL)
1335 *mindev = 1;
1336 return (type);
1337 }
1338
1339 if (strcmp(type, "cache") == 0) {
1340 if (mindev != NULL)
1341 *mindev = 1;
1342 return (VDEV_TYPE_L2CACHE);
1343 }
1344
1345 return (NULL);
1346 }
1347
1348 /*
1349 * Extract the configuration parameters encoded in the dRAID type and
1350 * use them to generate a dRAID configuration. The expected format is:
1351 *
1352 * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1353 *
1354 * The intent is to be able to generate a good configuration when no
1355 * additional information is provided. The only mandatory component
1356 * of the 'type' is the 'draid' prefix. If a value is not provided
1357 * then reasonable defaults are used. The optional components may
1358 * appear in any order but the d/s/c suffix is required.
1359 *
1360 * Valid inputs:
1361 * - data: number of data devices per group (1-255)
1362 * - parity: number of parity blocks per group (1-3)
1363 * - spares: number of distributed spare (0-100)
1364 * - children: total number of devices (1-255)
1365 *
1366 * Examples:
1367 * - zpool create tank draid <devices...>
1368 * - zpool create tank draid2:8d:51c:2s <devices...>
1369 */
1370 static int
draid_config_by_type(nvlist_t * nv,const char * type,uint64_t children)1371 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1372 {
1373 uint64_t nparity;
1374 uint64_t nspares = 0;
1375 uint64_t ndata = UINT64_MAX;
1376 uint64_t ngroups = 1;
1377 long value;
1378
1379 if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1380 return (EINVAL);
1381
1382 nparity = (uint64_t)get_parity(type);
1383 if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1384 fprintf(stderr,
1385 gettext("invalid dRAID parity level %llu; must be "
1386 "between 1 and %d\n"), (u_longlong_t)nparity,
1387 VDEV_DRAID_MAXPARITY);
1388 return (EINVAL);
1389 }
1390
1391 char *p = (char *)type;
1392 while ((p = strchr(p, ':')) != NULL) {
1393 char *end;
1394
1395 p = p + 1;
1396 errno = 0;
1397
1398 if (!isdigit(p[0])) {
1399 (void) fprintf(stderr, gettext("invalid dRAID "
1400 "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1401 type);
1402 return (EINVAL);
1403 }
1404
1405 /* Expected non-zero value with c/d/s suffix */
1406 value = strtol(p, &end, 10);
1407 char suffix = tolower(*end);
1408 if (errno != 0 ||
1409 (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1410 (void) fprintf(stderr, gettext("invalid dRAID "
1411 "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1412 type);
1413 return (EINVAL);
1414 }
1415
1416 if (suffix == 'c') {
1417 if ((uint64_t)value != children) {
1418 fprintf(stderr,
1419 gettext("invalid number of dRAID children; "
1420 "%llu required but %llu provided\n"),
1421 (u_longlong_t)value,
1422 (u_longlong_t)children);
1423 return (EINVAL);
1424 }
1425 } else if (suffix == 'd') {
1426 ndata = (uint64_t)value;
1427 } else if (suffix == 's') {
1428 nspares = (uint64_t)value;
1429 } else {
1430 verify(0); /* Unreachable */
1431 }
1432 }
1433
1434 /*
1435 * When a specific number of data disks is not provided limit a
1436 * redundancy group to 8 data disks. This value was selected to
1437 * provide a reasonable tradeoff between capacity and performance.
1438 */
1439 if (ndata == UINT64_MAX) {
1440 if (children > nspares + nparity) {
1441 ndata = MIN(children - nspares - nparity, 8);
1442 } else {
1443 fprintf(stderr, gettext("request number of "
1444 "distributed spares %llu and parity level %llu\n"
1445 "leaves no disks available for data\n"),
1446 (u_longlong_t)nspares, (u_longlong_t)nparity);
1447 return (EINVAL);
1448 }
1449 }
1450
1451 /* Verify the maximum allowed group size is never exceeded. */
1452 if (ndata == 0 || (ndata + nparity > children - nspares)) {
1453 fprintf(stderr, gettext("requested number of dRAID data "
1454 "disks per group %llu is too high,\nat most %llu disks "
1455 "are available for data\n"), (u_longlong_t)ndata,
1456 (u_longlong_t)(children - nspares - nparity));
1457 return (EINVAL);
1458 }
1459
1460 /*
1461 * Verify the requested number of spares can be satisfied.
1462 * An arbitrary limit of 100 distributed spares is applied.
1463 */
1464 if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1465 fprintf(stderr,
1466 gettext("invalid number of dRAID spares %llu; additional "
1467 "disks would be required\n"), (u_longlong_t)nspares);
1468 return (EINVAL);
1469 }
1470
1471 /* Verify the requested number children is sufficient. */
1472 if (children < (ndata + nparity + nspares)) {
1473 fprintf(stderr, gettext("%llu disks were provided, but at "
1474 "least %llu disks are required for this config\n"),
1475 (u_longlong_t)children,
1476 (u_longlong_t)(ndata + nparity + nspares));
1477 }
1478
1479 if (children > VDEV_DRAID_MAX_CHILDREN) {
1480 fprintf(stderr, gettext("%llu disks were provided, but "
1481 "dRAID only supports up to %u disks"),
1482 (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1483 }
1484
1485 /*
1486 * Calculate the minimum number of groups required to fill a slice.
1487 * This is the LCM of the stripe width (ndata + nparity) and the
1488 * number of data drives (children - nspares).
1489 */
1490 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1491 ngroups++;
1492
1493 /* Store the basic dRAID configuration. */
1494 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1498
1499 return (0);
1500 }
1501
1502 /*
1503 * Construct a syntactically valid vdev specification,
1504 * and ensure that all devices and files exist and can be opened.
1505 * Note: we don't bother freeing anything in the error paths
1506 * because the program is just going to exit anyway.
1507 */
1508 static nvlist_t *
construct_spec(nvlist_t * props,int argc,char ** argv)1509 construct_spec(nvlist_t *props, int argc, char **argv)
1510 {
1511 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1512 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1513 const char *type, *fulltype;
1514 boolean_t is_log, is_special, is_dedup, is_spare;
1515 boolean_t seen_logs;
1516
1517 top = NULL;
1518 toplevels = 0;
1519 spares = NULL;
1520 l2cache = NULL;
1521 nspares = 0;
1522 nlogs = 0;
1523 nl2cache = 0;
1524 is_log = is_special = is_dedup = is_spare = B_FALSE;
1525 seen_logs = B_FALSE;
1526 nvroot = NULL;
1527
1528 while (argc > 0) {
1529 fulltype = argv[0];
1530 nv = NULL;
1531
1532 /*
1533 * If it's a mirror, raidz, or draid the subsequent arguments
1534 * are its leaves -- until we encounter the next mirror,
1535 * raidz or draid.
1536 */
1537 if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1538 nvlist_t **child = NULL;
1539 int c, children = 0;
1540
1541 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1542 if (spares != NULL) {
1543 (void) fprintf(stderr,
1544 gettext("invalid vdev "
1545 "specification: 'spare' can be "
1546 "specified only once\n"));
1547 goto spec_out;
1548 }
1549 is_spare = B_TRUE;
1550 is_log = is_special = is_dedup = B_FALSE;
1551 }
1552
1553 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1554 if (seen_logs) {
1555 (void) fprintf(stderr,
1556 gettext("invalid vdev "
1557 "specification: 'log' can be "
1558 "specified only once\n"));
1559 goto spec_out;
1560 }
1561 seen_logs = B_TRUE;
1562 is_log = B_TRUE;
1563 is_special = is_dedup = is_spare = B_FALSE;
1564 argc--;
1565 argv++;
1566 /*
1567 * A log is not a real grouping device.
1568 * We just set is_log and continue.
1569 */
1570 continue;
1571 }
1572
1573 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1574 is_special = B_TRUE;
1575 is_log = is_dedup = is_spare = B_FALSE;
1576 argc--;
1577 argv++;
1578 continue;
1579 }
1580
1581 if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1582 is_dedup = B_TRUE;
1583 is_log = is_special = is_spare = B_FALSE;
1584 argc--;
1585 argv++;
1586 continue;
1587 }
1588
1589 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1590 if (l2cache != NULL) {
1591 (void) fprintf(stderr,
1592 gettext("invalid vdev "
1593 "specification: 'cache' can be "
1594 "specified only once\n"));
1595 goto spec_out;
1596 }
1597 is_log = is_special = B_FALSE;
1598 is_dedup = is_spare = B_FALSE;
1599 }
1600
1601 if (is_log) {
1602 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1603 (void) fprintf(stderr,
1604 gettext("invalid vdev "
1605 "specification: unsupported 'log' "
1606 "device: %s\n"), type);
1607 goto spec_out;
1608 }
1609 nlogs++;
1610 }
1611
1612 for (c = 1; c < argc; c++) {
1613 if (is_grouping(argv[c], NULL, NULL) != NULL)
1614 break;
1615
1616 children++;
1617 child = realloc(child,
1618 children * sizeof (nvlist_t *));
1619 if (child == NULL)
1620 zpool_no_memory();
1621 if ((nv = make_leaf_vdev(props, argv[c],
1622 !(is_log || is_special || is_dedup ||
1623 is_spare))) == NULL) {
1624 for (c = 0; c < children - 1; c++)
1625 nvlist_free(child[c]);
1626 free(child);
1627 goto spec_out;
1628 }
1629
1630 child[children - 1] = nv;
1631 }
1632
1633 if (children < mindev) {
1634 (void) fprintf(stderr, gettext("invalid vdev "
1635 "specification: %s requires at least %d "
1636 "devices\n"), argv[0], mindev);
1637 for (c = 0; c < children; c++)
1638 nvlist_free(child[c]);
1639 free(child);
1640 goto spec_out;
1641 }
1642
1643 if (children > maxdev) {
1644 (void) fprintf(stderr, gettext("invalid vdev "
1645 "specification: %s supports no more than "
1646 "%d devices\n"), argv[0], maxdev);
1647 for (c = 0; c < children; c++)
1648 nvlist_free(child[c]);
1649 free(child);
1650 goto spec_out;
1651 }
1652
1653 argc -= c;
1654 argv += c;
1655
1656 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1657 spares = child;
1658 nspares = children;
1659 continue;
1660 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1661 l2cache = child;
1662 nl2cache = children;
1663 continue;
1664 } else {
1665 /* create a top-level vdev with children */
1666 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1667 0) == 0);
1668 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1669 type) == 0);
1670 verify(nvlist_add_uint64(nv,
1671 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1672 if (is_log) {
1673 verify(nvlist_add_string(nv,
1674 ZPOOL_CONFIG_ALLOCATION_BIAS,
1675 VDEV_ALLOC_BIAS_LOG) == 0);
1676 }
1677 if (is_special) {
1678 verify(nvlist_add_string(nv,
1679 ZPOOL_CONFIG_ALLOCATION_BIAS,
1680 VDEV_ALLOC_BIAS_SPECIAL) == 0);
1681 }
1682 if (is_dedup) {
1683 verify(nvlist_add_string(nv,
1684 ZPOOL_CONFIG_ALLOCATION_BIAS,
1685 VDEV_ALLOC_BIAS_DEDUP) == 0);
1686 }
1687 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1688 verify(nvlist_add_uint64(nv,
1689 ZPOOL_CONFIG_NPARITY,
1690 mindev - 1) == 0);
1691 }
1692 if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1693 if (draid_config_by_type(nv,
1694 fulltype, children) != 0) {
1695 for (c = 0; c < children; c++)
1696 nvlist_free(child[c]);
1697 free(child);
1698 goto spec_out;
1699 }
1700 }
1701 verify(nvlist_add_nvlist_array(nv,
1702 ZPOOL_CONFIG_CHILDREN,
1703 (const nvlist_t **)child, children) == 0);
1704
1705 for (c = 0; c < children; c++)
1706 nvlist_free(child[c]);
1707 free(child);
1708 }
1709 } else {
1710 /*
1711 * We have a device. Pass off to make_leaf_vdev() to
1712 * construct the appropriate nvlist describing the vdev.
1713 */
1714 if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1715 is_special || is_dedup || is_spare))) == NULL)
1716 goto spec_out;
1717
1718 verify(nvlist_add_uint64(nv,
1719 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1720 if (is_log) {
1721 verify(nvlist_add_string(nv,
1722 ZPOOL_CONFIG_ALLOCATION_BIAS,
1723 VDEV_ALLOC_BIAS_LOG) == 0);
1724 nlogs++;
1725 }
1726
1727 if (is_special) {
1728 verify(nvlist_add_string(nv,
1729 ZPOOL_CONFIG_ALLOCATION_BIAS,
1730 VDEV_ALLOC_BIAS_SPECIAL) == 0);
1731 }
1732 if (is_dedup) {
1733 verify(nvlist_add_string(nv,
1734 ZPOOL_CONFIG_ALLOCATION_BIAS,
1735 VDEV_ALLOC_BIAS_DEDUP) == 0);
1736 }
1737 argc--;
1738 argv++;
1739 }
1740
1741 toplevels++;
1742 top = realloc(top, toplevels * sizeof (nvlist_t *));
1743 if (top == NULL)
1744 zpool_no_memory();
1745 top[toplevels - 1] = nv;
1746 }
1747
1748 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1749 (void) fprintf(stderr, gettext("invalid vdev "
1750 "specification: at least one toplevel vdev must be "
1751 "specified\n"));
1752 goto spec_out;
1753 }
1754
1755 if (seen_logs && nlogs == 0) {
1756 (void) fprintf(stderr, gettext("invalid vdev specification: "
1757 "log requires at least 1 device\n"));
1758 goto spec_out;
1759 }
1760
1761 /*
1762 * Finally, create nvroot and add all top-level vdevs to it.
1763 */
1764 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1765 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1766 VDEV_TYPE_ROOT) == 0);
1767 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1768 (const nvlist_t **)top, toplevels) == 0);
1769 if (nspares != 0)
1770 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1771 (const nvlist_t **)spares, nspares) == 0);
1772 if (nl2cache != 0)
1773 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1774 (const nvlist_t **)l2cache, nl2cache) == 0);
1775
1776 spec_out:
1777 for (t = 0; t < toplevels; t++)
1778 nvlist_free(top[t]);
1779 for (t = 0; t < nspares; t++)
1780 nvlist_free(spares[t]);
1781 for (t = 0; t < nl2cache; t++)
1782 nvlist_free(l2cache[t]);
1783
1784 free(spares);
1785 free(l2cache);
1786 free(top);
1787
1788 return (nvroot);
1789 }
1790
1791 nvlist_t *
split_mirror_vdev(zpool_handle_t * zhp,char * newname,nvlist_t * props,splitflags_t flags,int argc,char ** argv)1792 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1793 splitflags_t flags, int argc, char **argv)
1794 {
1795 nvlist_t *newroot = NULL, **child;
1796 uint_t c, children;
1797
1798 if (argc > 0) {
1799 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1800 (void) fprintf(stderr, gettext("Unable to build a "
1801 "pool from the specified devices\n"));
1802 return (NULL);
1803 }
1804
1805 if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) {
1806 nvlist_free(newroot);
1807 return (NULL);
1808 }
1809
1810 /* avoid any tricks in the spec */
1811 verify(nvlist_lookup_nvlist_array(newroot,
1812 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1813 for (c = 0; c < children; c++) {
1814 const char *path;
1815 const char *type;
1816 int min, max;
1817
1818 verify(nvlist_lookup_string(child[c],
1819 ZPOOL_CONFIG_PATH, &path) == 0);
1820 if ((type = is_grouping(path, &min, &max)) != NULL) {
1821 (void) fprintf(stderr, gettext("Cannot use "
1822 "'%s' as a device for splitting\n"), type);
1823 nvlist_free(newroot);
1824 return (NULL);
1825 }
1826 }
1827 }
1828
1829 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1830 nvlist_free(newroot);
1831 return (NULL);
1832 }
1833
1834 return (newroot);
1835 }
1836
1837 static int
num_normal_vdevs(nvlist_t * nvroot)1838 num_normal_vdevs(nvlist_t *nvroot)
1839 {
1840 nvlist_t **top;
1841 uint_t t, toplevels, normal = 0;
1842
1843 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1844 &top, &toplevels) == 0);
1845
1846 for (t = 0; t < toplevels; t++) {
1847 uint64_t log = B_FALSE;
1848
1849 (void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1850 if (log)
1851 continue;
1852 if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1853 continue;
1854
1855 normal++;
1856 }
1857
1858 return (normal);
1859 }
1860
1861 /*
1862 * Get and validate the contents of the given vdev specification. This ensures
1863 * that the nvlist returned is well-formed, that all the devices exist, and that
1864 * they are not currently in use by any other known consumer. The 'poolconfig'
1865 * parameter is the current configuration of the pool when adding devices
1866 * existing pool, and is used to perform additional checks, such as changing the
1867 * replication level of the pool. It can be 'NULL' to indicate that this is a
1868 * new pool. The 'force' flag controls whether devices should be forcefully
1869 * added, even if they appear in use.
1870 */
1871 nvlist_t *
make_root_vdev(zpool_handle_t * zhp,nvlist_t * props,int force,int check_rep,boolean_t replacing,boolean_t dryrun,int argc,char ** argv)1872 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1873 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1874 {
1875 nvlist_t *newroot;
1876 nvlist_t *poolconfig = NULL;
1877 is_force = force;
1878
1879 /*
1880 * Construct the vdev specification. If this is successful, we know
1881 * that we have a valid specification, and that all devices can be
1882 * opened.
1883 */
1884 if ((newroot = construct_spec(props, argc, argv)) == NULL)
1885 return (NULL);
1886
1887 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1888 nvlist_free(newroot);
1889 return (NULL);
1890 }
1891
1892 /*
1893 * Validate each device to make sure that it's not shared with another
1894 * subsystem. We do this even if 'force' is set, because there are some
1895 * uses (such as a dedicated dump device) that even '-f' cannot
1896 * override.
1897 */
1898 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1899 nvlist_free(newroot);
1900 return (NULL);
1901 }
1902
1903 /*
1904 * Check the replication level of the given vdevs and report any errors
1905 * found. We include the existing pool spec, if any, as we need to
1906 * catch changes against the existing replication level.
1907 */
1908 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1909 nvlist_free(newroot);
1910 return (NULL);
1911 }
1912
1913 /*
1914 * On pool create the new vdev spec must have one normal vdev.
1915 */
1916 if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1917 vdev_error(gettext("at least one general top-level vdev must "
1918 "be specified\n"));
1919 nvlist_free(newroot);
1920 return (NULL);
1921 }
1922
1923 /*
1924 * Run through the vdev specification and label any whole disks found.
1925 */
1926 if (!dryrun && make_disks(zhp, newroot, replacing) != 0) {
1927 nvlist_free(newroot);
1928 return (NULL);
1929 }
1930
1931 return (newroot);
1932 }
1933