1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2019, Datto Inc. All rights reserved.
32 * Copyright (c) 2021, 2025, Klara, Inc.
33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66
67 /*
68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70 * part of the spa_embedded_log_class. The metaslab with the most free space
71 * in each vdev is selected for this purpose when the pool is opened (or a
72 * vdev is added). See vdev_metaslab_init().
73 *
74 * Log blocks can be allocated from the following locations. Each one is tried
75 * in order until the allocation succeeds:
76 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77 * 2. embedded slog metaslabs (spa_embedded_log_class)
78 * 3. other metaslabs in normal vdevs (spa_normal_class)
79 *
80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81 * than this number of metaslabs in the vdev. This ensures that we don't set
82 * aside an unreasonable amount of space for the ZIL. If set to less than
83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85 */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102
103 static int vdev_validate_skip = B_FALSE;
104
105 /*
106 * Since the DTL space map of a vdev is not expected to have a lot of
107 * entries, we default its block size to 4K.
108 */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110
111 /*
112 * Rate limit slow IO (delay) events to this many per second.
113 */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115
116 /*
117 * Rate limit deadman "hung IO" events to this many per second.
118 */
119 static unsigned int zfs_deadman_events_per_second = 1;
120
121 /*
122 * Rate limit direct write IO verify failures to this many per scond.
123 */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125
126 /*
127 * Rate limit checksum events after this many checksum errors per second.
128 */
129 static unsigned int zfs_checksum_events_per_second = 20;
130
131 /*
132 * Ignore errors during scrub/resilver. Allows to work around resilver
133 * upon import when there are pool errors.
134 */
135 static int zfs_scan_ignore_errors = 0;
136
137 /*
138 * vdev-wide space maps that have lots of entries written to them at
139 * the end of each transaction can benefit from a higher I/O bandwidth
140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141 */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143
144 /*
145 * Tunable parameter for debugging or performance analysis. Setting this
146 * will cause pool corruption on power loss if a volatile out-of-order
147 * write cache is enabled.
148 */
149 int zfs_nocacheflush = 0;
150
151 /*
152 * Maximum and minimum ashift values that can be automatically set based on
153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
154 * is higher than the maximum value, it is intentionally limited here to not
155 * excessively impact pool space efficiency. Higher ashift values may still
156 * be forced by vdev logical ashift or by user via ashift property, but won't
157 * be set automatically as a performance optimization.
158 */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161
162 /*
163 * VDEV checksum verification for Direct I/O writes. This is neccessary for
164 * Linux, because anonymous pages can not be placed under write protection
165 * during Direct I/O writes.
166 */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 va_list adx;
177 char buf[256];
178
179 va_start(adx, fmt);
180 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 va_end(adx);
182
183 if (vd->vdev_path != NULL) {
184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 vd->vdev_path, buf);
186 } else {
187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 vd->vdev_ops->vdev_op_type,
189 (u_longlong_t)vd->vdev_id,
190 (u_longlong_t)vd->vdev_guid, buf);
191 }
192 }
193
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 char state[20];
198
199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 (u_longlong_t)vd->vdev_id,
202 vd->vdev_ops->vdev_op_type);
203 return;
204 }
205
206 switch (vd->vdev_state) {
207 case VDEV_STATE_UNKNOWN:
208 (void) snprintf(state, sizeof (state), "unknown");
209 break;
210 case VDEV_STATE_CLOSED:
211 (void) snprintf(state, sizeof (state), "closed");
212 break;
213 case VDEV_STATE_OFFLINE:
214 (void) snprintf(state, sizeof (state), "offline");
215 break;
216 case VDEV_STATE_REMOVED:
217 (void) snprintf(state, sizeof (state), "removed");
218 break;
219 case VDEV_STATE_CANT_OPEN:
220 (void) snprintf(state, sizeof (state), "can't open");
221 break;
222 case VDEV_STATE_FAULTED:
223 (void) snprintf(state, sizeof (state), "faulted");
224 break;
225 case VDEV_STATE_DEGRADED:
226 (void) snprintf(state, sizeof (state), "degraded");
227 break;
228 case VDEV_STATE_HEALTHY:
229 (void) snprintf(state, sizeof (state), "healthy");
230 break;
231 default:
232 (void) snprintf(state, sizeof (state), "<state %u>",
233 (uint_t)vd->vdev_state);
234 }
235
236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 vd->vdev_islog ? " (log)" : "",
239 (u_longlong_t)vd->vdev_guid,
240 vd->vdev_path ? vd->vdev_path : "N/A", state);
241
242 for (uint64_t i = 0; i < vd->vdev_children; i++)
243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245
246 char *
vdev_rt_name(vdev_t * vd,const char * name)247 vdev_rt_name(vdev_t *vd, const char *name)
248 {
249 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}",
250 spa_name(vd->vdev_spa),
251 (u_longlong_t)vd->vdev_guid,
252 name));
253 }
254
255 static char *
vdev_rt_name_dtl(vdev_t * vd,const char * name,vdev_dtl_type_t dtl_type)256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type)
257 {
258 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}",
259 spa_name(vd->vdev_spa),
260 (u_longlong_t)vd->vdev_guid,
261 name,
262 dtl_type));
263 }
264
265 /*
266 * Virtual device management.
267 */
268
269 static vdev_ops_t *const vdev_ops_table[] = {
270 &vdev_root_ops,
271 &vdev_raidz_ops,
272 &vdev_draid_ops,
273 &vdev_draid_spare_ops,
274 &vdev_mirror_ops,
275 &vdev_replacing_ops,
276 &vdev_spare_ops,
277 &vdev_disk_ops,
278 &vdev_file_ops,
279 &vdev_missing_ops,
280 &vdev_hole_ops,
281 &vdev_indirect_ops,
282 NULL
283 };
284
285 /*
286 * Given a vdev type, return the appropriate ops vector.
287 */
288 static vdev_ops_t *
vdev_getops(const char * type)289 vdev_getops(const char *type)
290 {
291 vdev_ops_t *ops, *const *opspp;
292
293 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
294 if (strcmp(ops->vdev_op_type, type) == 0)
295 break;
296
297 return (ops);
298 }
299
300 /*
301 * Given a vdev and a metaslab class, find which metaslab group we're
302 * interested in. All vdevs may belong to two different metaslab classes.
303 * Dedicated slog devices use only the primary metaslab group, rather than a
304 * separate log group. For embedded slogs, vdev_log_mg will be non-NULL and
305 * will point to a metaslab group of either embedded_log_class (for normal
306 * vdevs) or special_embedded_log_class (for special vdevs).
307 */
308 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
310 {
311 if ((mc == spa_embedded_log_class(vd->vdev_spa) ||
312 mc == spa_special_embedded_log_class(vd->vdev_spa)) &&
313 vd->vdev_log_mg != NULL)
314 return (vd->vdev_log_mg);
315 else
316 return (vd->vdev_mg);
317 }
318
319 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
321 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
322 {
323 (void) vd, (void) remain_rs;
324
325 physical_rs->rs_start = logical_rs->rs_start;
326 physical_rs->rs_end = logical_rs->rs_end;
327 }
328
329 /*
330 * Derive the enumerated allocation bias from string input.
331 * String origin is either the per-vdev zap or zpool(8).
332 */
333 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)334 vdev_derive_alloc_bias(const char *bias)
335 {
336 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
337
338 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
339 alloc_bias = VDEV_BIAS_LOG;
340 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
341 alloc_bias = VDEV_BIAS_SPECIAL;
342 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
343 alloc_bias = VDEV_BIAS_DEDUP;
344
345 return (alloc_bias);
346 }
347
348 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
350 {
351 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
352 uint64_t csize, psize = asize;
353 for (int c = 0; c < vd->vdev_children; c++) {
354 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
355 psize = MIN(psize, csize);
356 }
357
358 return (psize);
359 }
360
361 /*
362 * Default asize function: return the MAX of psize with the asize of
363 * all children. This is what's used by anything other than RAID-Z.
364 */
365 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
367 {
368 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
369 uint64_t csize;
370
371 for (int c = 0; c < vd->vdev_children; c++) {
372 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
373 asize = MAX(asize, csize);
374 }
375
376 return (asize);
377 }
378
379 uint64_t
vdev_default_min_asize(vdev_t * vd)380 vdev_default_min_asize(vdev_t *vd)
381 {
382 return (vd->vdev_min_asize);
383 }
384
385 /*
386 * Get the minimum allocatable size. We define the allocatable size as
387 * the vdev's asize rounded to the nearest metaslab. This allows us to
388 * replace or attach devices which don't have the same physical size but
389 * can still satisfy the same number of allocations.
390 */
391 uint64_t
vdev_get_min_asize(vdev_t * vd)392 vdev_get_min_asize(vdev_t *vd)
393 {
394 vdev_t *pvd = vd->vdev_parent;
395
396 /*
397 * If our parent is NULL (inactive spare or cache) or is the root,
398 * just return our own asize.
399 */
400 if (pvd == NULL)
401 return (vd->vdev_asize);
402
403 /*
404 * The top-level vdev just returns the allocatable size rounded
405 * to the nearest metaslab.
406 */
407 if (vd == vd->vdev_top)
408 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
409 uint64_t));
410
411 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
412 }
413
414 void
vdev_set_min_asize(vdev_t * vd)415 vdev_set_min_asize(vdev_t *vd)
416 {
417 vd->vdev_min_asize = vdev_get_min_asize(vd);
418
419 for (int c = 0; c < vd->vdev_children; c++)
420 vdev_set_min_asize(vd->vdev_child[c]);
421 }
422
423 /*
424 * Get the minimal allocation size for the top-level vdev.
425 */
426 uint64_t
vdev_get_min_alloc(vdev_t * vd)427 vdev_get_min_alloc(vdev_t *vd)
428 {
429 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
430
431 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
432 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
433
434 return (min_alloc);
435 }
436
437 /*
438 * Get the parity level for a top-level vdev.
439 */
440 uint64_t
vdev_get_nparity(vdev_t * vd)441 vdev_get_nparity(vdev_t *vd)
442 {
443 uint64_t nparity = 0;
444
445 if (vd->vdev_ops->vdev_op_nparity != NULL)
446 nparity = vd->vdev_ops->vdev_op_nparity(vd);
447
448 return (nparity);
449 }
450
451 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)452 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
453 {
454 spa_t *spa = vd->vdev_spa;
455 objset_t *mos = spa->spa_meta_objset;
456 uint64_t objid;
457 int err;
458
459 if (vd->vdev_root_zap != 0) {
460 objid = vd->vdev_root_zap;
461 } else if (vd->vdev_top_zap != 0) {
462 objid = vd->vdev_top_zap;
463 } else if (vd->vdev_leaf_zap != 0) {
464 objid = vd->vdev_leaf_zap;
465 } else {
466 return (EINVAL);
467 }
468
469 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
470 sizeof (uint64_t), 1, value);
471
472 if (err == ENOENT)
473 *value = vdev_prop_default_numeric(prop);
474
475 return (err);
476 }
477
478 /*
479 * Get the number of data disks for a top-level vdev.
480 */
481 uint64_t
vdev_get_ndisks(vdev_t * vd)482 vdev_get_ndisks(vdev_t *vd)
483 {
484 uint64_t ndisks = 1;
485
486 if (vd->vdev_ops->vdev_op_ndisks != NULL)
487 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
488
489 return (ndisks);
490 }
491
492 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)493 vdev_lookup_top(spa_t *spa, uint64_t vdev)
494 {
495 vdev_t *rvd = spa->spa_root_vdev;
496
497 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
498
499 if (vdev < rvd->vdev_children) {
500 ASSERT(rvd->vdev_child[vdev] != NULL);
501 return (rvd->vdev_child[vdev]);
502 }
503
504 return (NULL);
505 }
506
507 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)508 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
509 {
510 vdev_t *mvd;
511
512 if (vd->vdev_guid == guid)
513 return (vd);
514
515 for (int c = 0; c < vd->vdev_children; c++)
516 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
517 NULL)
518 return (mvd);
519
520 return (NULL);
521 }
522
523 static int
vdev_count_leaves_impl(vdev_t * vd)524 vdev_count_leaves_impl(vdev_t *vd)
525 {
526 int n = 0;
527
528 if (vd->vdev_ops->vdev_op_leaf)
529 return (1);
530
531 for (int c = 0; c < vd->vdev_children; c++)
532 n += vdev_count_leaves_impl(vd->vdev_child[c]);
533
534 return (n);
535 }
536
537 int
vdev_count_leaves(spa_t * spa)538 vdev_count_leaves(spa_t *spa)
539 {
540 int rc;
541
542 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
543 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
544 spa_config_exit(spa, SCL_VDEV, FTAG);
545
546 return (rc);
547 }
548
549 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)550 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
551 {
552 size_t oldsize, newsize;
553 uint64_t id = cvd->vdev_id;
554 vdev_t **newchild;
555
556 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
557 ASSERT0P(cvd->vdev_parent);
558
559 cvd->vdev_parent = pvd;
560
561 if (pvd == NULL)
562 return;
563
564 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
565
566 oldsize = pvd->vdev_children * sizeof (vdev_t *);
567 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
568 newsize = pvd->vdev_children * sizeof (vdev_t *);
569
570 newchild = kmem_alloc(newsize, KM_SLEEP);
571 if (pvd->vdev_child != NULL) {
572 memcpy(newchild, pvd->vdev_child, oldsize);
573 kmem_free(pvd->vdev_child, oldsize);
574 }
575
576 pvd->vdev_child = newchild;
577 pvd->vdev_child[id] = cvd;
578 pvd->vdev_nonrot &= cvd->vdev_nonrot;
579
580 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
581 ASSERT0P(cvd->vdev_top->vdev_parent->vdev_parent);
582
583 /*
584 * Walk up all ancestors to update guid sum.
585 */
586 for (; pvd != NULL; pvd = pvd->vdev_parent)
587 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
588
589 if (cvd->vdev_ops->vdev_op_leaf) {
590 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
591 cvd->vdev_spa->spa_leaf_list_gen++;
592 }
593 }
594
595 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)596 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
597 {
598 int c;
599 uint_t id = cvd->vdev_id;
600
601 ASSERT(cvd->vdev_parent == pvd);
602
603 if (pvd == NULL)
604 return;
605
606 ASSERT(id < pvd->vdev_children);
607 ASSERT(pvd->vdev_child[id] == cvd);
608
609 pvd->vdev_child[id] = NULL;
610 cvd->vdev_parent = NULL;
611
612 for (c = 0; c < pvd->vdev_children; c++)
613 if (pvd->vdev_child[c])
614 break;
615
616 if (c == pvd->vdev_children) {
617 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
618 pvd->vdev_child = NULL;
619 pvd->vdev_children = 0;
620 }
621
622 if (cvd->vdev_ops->vdev_op_leaf) {
623 spa_t *spa = cvd->vdev_spa;
624 list_remove(&spa->spa_leaf_list, cvd);
625 spa->spa_leaf_list_gen++;
626 }
627
628 /*
629 * Walk up all ancestors to update guid sum.
630 */
631 for (; pvd != NULL; pvd = pvd->vdev_parent)
632 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
633 }
634
635 /*
636 * Remove any holes in the child array.
637 */
638 void
vdev_compact_children(vdev_t * pvd)639 vdev_compact_children(vdev_t *pvd)
640 {
641 vdev_t **newchild, *cvd;
642 int oldc = pvd->vdev_children;
643 int newc;
644
645 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
646
647 if (oldc == 0)
648 return;
649
650 for (int c = newc = 0; c < oldc; c++)
651 if (pvd->vdev_child[c])
652 newc++;
653
654 if (newc > 0) {
655 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
656
657 for (int c = newc = 0; c < oldc; c++) {
658 if ((cvd = pvd->vdev_child[c]) != NULL) {
659 newchild[newc] = cvd;
660 cvd->vdev_id = newc++;
661 }
662 }
663 } else {
664 newchild = NULL;
665 }
666
667 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
668 pvd->vdev_child = newchild;
669 pvd->vdev_children = newc;
670 }
671
672 /*
673 * Allocate and minimally initialize a vdev_t.
674 */
675 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)676 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
677 {
678 vdev_t *vd;
679 vdev_indirect_config_t *vic;
680
681 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
682 vic = &vd->vdev_indirect_config;
683
684 if (spa->spa_root_vdev == NULL) {
685 ASSERT(ops == &vdev_root_ops);
686 spa->spa_root_vdev = vd;
687 spa->spa_load_guid = spa_generate_load_guid();
688 }
689
690 if (guid == 0 && ops != &vdev_hole_ops) {
691 if (spa->spa_root_vdev == vd) {
692 /*
693 * The root vdev's guid will also be the pool guid,
694 * which must be unique among all pools.
695 */
696 guid = spa_generate_guid(NULL);
697 } else {
698 /*
699 * Any other vdev's guid must be unique within the pool.
700 */
701 guid = spa_generate_guid(spa);
702 }
703 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
704 }
705
706 vd->vdev_spa = spa;
707 vd->vdev_id = id;
708 vd->vdev_guid = guid;
709 vd->vdev_guid_sum = guid;
710 vd->vdev_ops = ops;
711 vd->vdev_state = VDEV_STATE_CLOSED;
712 vd->vdev_ishole = (ops == &vdev_hole_ops);
713 vic->vic_prev_indirect_vdev = UINT64_MAX;
714
715 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
716 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
717 vd->vdev_obsolete_segments = zfs_range_tree_create_flags(
718 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
719 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments"));
720
721 /*
722 * Initialize rate limit structs for events. We rate limit ZIO delay
723 * and checksum events so that we don't overwhelm ZED with thousands
724 * of events when a disk is acting up.
725 */
726 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
727 1);
728 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
729 1);
730 zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
731 &zfs_dio_write_verify_events_per_second, 1);
732 zfs_ratelimit_init(&vd->vdev_checksum_rl,
733 &zfs_checksum_events_per_second, 1);
734
735 /*
736 * Default Thresholds for tuning ZED
737 */
738 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
739 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
740 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
741 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
742 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
743 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
744
745 list_link_init(&vd->vdev_config_dirty_node);
746 list_link_init(&vd->vdev_state_dirty_node);
747 list_link_init(&vd->vdev_initialize_node);
748 list_link_init(&vd->vdev_leaf_node);
749 list_link_init(&vd->vdev_trim_node);
750
751 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
752 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
753 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
754 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
755
756 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
757 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
758 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
759 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
760
761 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
762 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
763 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
764 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
765 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
766 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
767 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
768
769 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
770 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
771
772 for (int t = 0; t < DTL_TYPES; t++) {
773 vd->vdev_dtl[t] = zfs_range_tree_create_flags(
774 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
775 ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t));
776 }
777
778 txg_list_create(&vd->vdev_ms_list, spa,
779 offsetof(struct metaslab, ms_txg_node));
780 txg_list_create(&vd->vdev_dtl_list, spa,
781 offsetof(struct vdev, vdev_dtl_node));
782 vd->vdev_stat.vs_timestamp = gethrtime();
783 vdev_queue_init(vd);
784
785 return (vd);
786 }
787
788 /*
789 * Allocate a new vdev. The 'alloctype' is used to control whether we are
790 * creating a new vdev or loading an existing one - the behavior is slightly
791 * different for each case.
792 */
793 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)794 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
795 int alloctype)
796 {
797 vdev_ops_t *ops;
798 const char *type;
799 uint64_t guid = 0, islog;
800 vdev_t *vd;
801 vdev_indirect_config_t *vic;
802 const char *tmp = NULL;
803 int rc;
804 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
805 boolean_t top_level = (parent && !parent->vdev_parent);
806
807 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
808
809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
810 return (SET_ERROR(EINVAL));
811
812 if ((ops = vdev_getops(type)) == NULL)
813 return (SET_ERROR(EINVAL));
814
815 /*
816 * If this is a load, get the vdev guid from the nvlist.
817 * Otherwise, vdev_alloc_common() will generate one for us.
818 */
819 if (alloctype == VDEV_ALLOC_LOAD) {
820 uint64_t label_id;
821
822 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
823 label_id != id)
824 return (SET_ERROR(EINVAL));
825
826 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
827 return (SET_ERROR(EINVAL));
828 } else if (alloctype == VDEV_ALLOC_SPARE) {
829 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
830 return (SET_ERROR(EINVAL));
831 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
832 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
833 return (SET_ERROR(EINVAL));
834 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
835 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
836 return (SET_ERROR(EINVAL));
837 }
838
839 /*
840 * The first allocated vdev must be of type 'root'.
841 */
842 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
843 return (SET_ERROR(EINVAL));
844
845 /*
846 * Determine whether we're a log vdev.
847 */
848 islog = 0;
849 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
850 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
851 return (SET_ERROR(ENOTSUP));
852
853 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
854 return (SET_ERROR(ENOTSUP));
855
856 if (top_level && alloctype == VDEV_ALLOC_ADD) {
857 const char *bias;
858
859 /*
860 * If creating a top-level vdev, check for allocation
861 * classes input.
862 */
863 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
864 &bias) == 0) {
865 alloc_bias = vdev_derive_alloc_bias(bias);
866
867 /* spa_vdev_add() expects feature to be enabled */
868 if (spa->spa_load_state != SPA_LOAD_CREATE &&
869 !spa_feature_is_enabled(spa,
870 SPA_FEATURE_ALLOCATION_CLASSES)) {
871 return (SET_ERROR(ENOTSUP));
872 }
873 }
874
875 /* spa_vdev_add() expects feature to be enabled */
876 if (ops == &vdev_draid_ops &&
877 spa->spa_load_state != SPA_LOAD_CREATE &&
878 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
879 return (SET_ERROR(ENOTSUP));
880 }
881 }
882
883 /*
884 * Initialize the vdev specific data. This is done before calling
885 * vdev_alloc_common() since it may fail and this simplifies the
886 * error reporting and cleanup code paths.
887 */
888 void *tsd = NULL;
889 if (ops->vdev_op_init != NULL) {
890 rc = ops->vdev_op_init(spa, nv, &tsd);
891 if (rc != 0) {
892 return (rc);
893 }
894 }
895
896 vd = vdev_alloc_common(spa, id, guid, ops);
897 vd->vdev_tsd = tsd;
898 vd->vdev_islog = islog;
899
900 if (top_level && alloc_bias != VDEV_BIAS_NONE)
901 vd->vdev_alloc_bias = alloc_bias;
902
903 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
904 vd->vdev_path = spa_strdup(tmp);
905
906 /*
907 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
908 * fault on a vdev and want it to persist across imports (like with
909 * zpool offline -f).
910 */
911 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
912 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
913 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
914 vd->vdev_faulted = 1;
915 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
916 }
917
918 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
919 vd->vdev_devid = spa_strdup(tmp);
920 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
921 vd->vdev_physpath = spa_strdup(tmp);
922
923 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
924 &tmp) == 0)
925 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
926
927 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
928 vd->vdev_fru = spa_strdup(tmp);
929
930 /*
931 * Set the whole_disk property. If it's not specified, leave the value
932 * as -1.
933 */
934 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
935 &vd->vdev_wholedisk) != 0)
936 vd->vdev_wholedisk = -1ULL;
937
938 vic = &vd->vdev_indirect_config;
939
940 ASSERT0(vic->vic_mapping_object);
941 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
942 &vic->vic_mapping_object);
943 ASSERT0(vic->vic_births_object);
944 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
945 &vic->vic_births_object);
946 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
948 &vic->vic_prev_indirect_vdev);
949
950 /*
951 * Look for the 'not present' flag. This will only be set if the device
952 * was not present at the time of import.
953 */
954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
955 &vd->vdev_not_present);
956
957 /*
958 * Get the alignment requirement. Ignore pool ashift for vdev
959 * attach case.
960 */
961 if (alloctype != VDEV_ALLOC_ATTACH) {
962 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
963 &vd->vdev_ashift);
964 } else {
965 vd->vdev_attaching = B_TRUE;
966 }
967
968 /*
969 * Retrieve the vdev creation time.
970 */
971 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
972 &vd->vdev_crtxg);
973
974 if (vd->vdev_ops == &vdev_root_ops &&
975 (alloctype == VDEV_ALLOC_LOAD ||
976 alloctype == VDEV_ALLOC_SPLIT ||
977 alloctype == VDEV_ALLOC_ROOTPOOL)) {
978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
979 &vd->vdev_root_zap);
980 }
981
982 /*
983 * If we're a top-level vdev, try to load the allocation parameters.
984 */
985 if (top_level &&
986 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
987 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
988 &vd->vdev_ms_array);
989 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
990 &vd->vdev_ms_shift);
991 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
992 &vd->vdev_asize);
993 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
994 &vd->vdev_noalloc);
995 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
996 &vd->vdev_removing);
997 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
998 &vd->vdev_top_zap);
999 vd->vdev_rz_expanding = nvlist_exists(nv,
1000 ZPOOL_CONFIG_RAIDZ_EXPANDING);
1001 } else {
1002 ASSERT0(vd->vdev_top_zap);
1003 }
1004
1005 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
1006 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
1007 alloctype == VDEV_ALLOC_ADD ||
1008 alloctype == VDEV_ALLOC_SPLIT ||
1009 alloctype == VDEV_ALLOC_ROOTPOOL);
1010 /* Note: metaslab_group_create() is now deferred */
1011 }
1012
1013 if (vd->vdev_ops->vdev_op_leaf &&
1014 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
1015 (void) nvlist_lookup_uint64(nv,
1016 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
1017 } else {
1018 ASSERT0(vd->vdev_leaf_zap);
1019 }
1020
1021 /*
1022 * If we're a leaf vdev, try to load the DTL object and other state.
1023 */
1024
1025 if (vd->vdev_ops->vdev_op_leaf &&
1026 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1027 alloctype == VDEV_ALLOC_ROOTPOOL)) {
1028 if (alloctype == VDEV_ALLOC_LOAD) {
1029 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1030 &vd->vdev_dtl_object);
1031 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1032 &vd->vdev_unspare);
1033 }
1034
1035 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1036 uint64_t spare = 0;
1037
1038 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1039 &spare) == 0 && spare)
1040 spa_spare_add(vd);
1041 }
1042
1043 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1044 &vd->vdev_offline);
1045
1046 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1047 &vd->vdev_resilver_txg);
1048
1049 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1050 &vd->vdev_rebuild_txg);
1051
1052 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1053 vdev_defer_resilver(vd);
1054
1055 /*
1056 * In general, when importing a pool we want to ignore the
1057 * persistent fault state, as the diagnosis made on another
1058 * system may not be valid in the current context. The only
1059 * exception is if we forced a vdev to a persistently faulted
1060 * state with 'zpool offline -f'. The persistent fault will
1061 * remain across imports until cleared.
1062 *
1063 * Local vdevs will remain in the faulted state.
1064 */
1065 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1066 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1067 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1068 &vd->vdev_faulted);
1069 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1070 &vd->vdev_degraded);
1071 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1072 &vd->vdev_removed);
1073
1074 if (vd->vdev_faulted || vd->vdev_degraded) {
1075 const char *aux;
1076
1077 vd->vdev_label_aux =
1078 VDEV_AUX_ERR_EXCEEDED;
1079 if (nvlist_lookup_string(nv,
1080 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1081 strcmp(aux, "external") == 0)
1082 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1083 else
1084 vd->vdev_faulted = 0ULL;
1085 }
1086 }
1087 }
1088
1089 if (top_level && (ops == &vdev_raidz_ops || ops == &vdev_draid_ops))
1090 vd->vdev_autosit =
1091 vdev_prop_default_numeric(VDEV_PROP_AUTOSIT);
1092
1093 /*
1094 * Add ourselves to the parent's list of children.
1095 */
1096 vdev_add_child(parent, vd);
1097
1098 *vdp = vd;
1099
1100 return (0);
1101 }
1102
1103 void
vdev_free(vdev_t * vd)1104 vdev_free(vdev_t *vd)
1105 {
1106 spa_t *spa = vd->vdev_spa;
1107
1108 ASSERT0P(vd->vdev_initialize_thread);
1109 ASSERT0P(vd->vdev_trim_thread);
1110 ASSERT0P(vd->vdev_autotrim_thread);
1111 ASSERT0P(vd->vdev_rebuild_thread);
1112
1113 /*
1114 * Scan queues are normally destroyed at the end of a scan. If the
1115 * queue exists here, that implies the vdev is being removed while
1116 * the scan is still running.
1117 */
1118 if (vd->vdev_scan_io_queue != NULL) {
1119 mutex_enter(&vd->vdev_scan_io_queue_lock);
1120 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1121 vd->vdev_scan_io_queue = NULL;
1122 mutex_exit(&vd->vdev_scan_io_queue_lock);
1123 }
1124
1125 /*
1126 * vdev_free() implies closing the vdev first. This is simpler than
1127 * trying to ensure complicated semantics for all callers.
1128 */
1129 vdev_close(vd);
1130
1131 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1132 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1133
1134 /*
1135 * Free all children.
1136 */
1137 for (int c = 0; c < vd->vdev_children; c++)
1138 vdev_free(vd->vdev_child[c]);
1139
1140 ASSERT0P(vd->vdev_child);
1141 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1142
1143 if (vd->vdev_ops->vdev_op_fini != NULL)
1144 vd->vdev_ops->vdev_op_fini(vd);
1145
1146 /*
1147 * Discard allocation state.
1148 */
1149 if (vd->vdev_mg != NULL) {
1150 vdev_metaslab_fini(vd);
1151 metaslab_group_destroy(vd->vdev_mg);
1152 vd->vdev_mg = NULL;
1153 }
1154 if (vd->vdev_log_mg != NULL) {
1155 ASSERT0(vd->vdev_ms_count);
1156 metaslab_group_destroy(vd->vdev_log_mg);
1157 vd->vdev_log_mg = NULL;
1158 }
1159
1160 ASSERT0(vd->vdev_stat.vs_space);
1161 ASSERT0(vd->vdev_stat.vs_dspace);
1162 ASSERT0(vd->vdev_stat.vs_alloc);
1163
1164 /*
1165 * Remove this vdev from its parent's child list.
1166 */
1167 vdev_remove_child(vd->vdev_parent, vd);
1168
1169 ASSERT0P(vd->vdev_parent);
1170 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1171
1172 /*
1173 * Clean up vdev structure.
1174 */
1175 vdev_queue_fini(vd);
1176
1177 if (vd->vdev_path)
1178 spa_strfree(vd->vdev_path);
1179 if (vd->vdev_devid)
1180 spa_strfree(vd->vdev_devid);
1181 if (vd->vdev_physpath)
1182 spa_strfree(vd->vdev_physpath);
1183
1184 if (vd->vdev_enc_sysfs_path)
1185 spa_strfree(vd->vdev_enc_sysfs_path);
1186
1187 if (vd->vdev_fru)
1188 spa_strfree(vd->vdev_fru);
1189
1190 if (vd->vdev_isspare)
1191 spa_spare_remove(vd);
1192 if (vd->vdev_isl2cache)
1193 spa_l2cache_remove(vd);
1194 if (vd->vdev_prev_histo)
1195 kmem_free(vd->vdev_prev_histo,
1196 sizeof (uint64_t) * VDEV_L_HISTO_BUCKETS);
1197
1198 txg_list_destroy(&vd->vdev_ms_list);
1199 txg_list_destroy(&vd->vdev_dtl_list);
1200
1201 mutex_enter(&vd->vdev_dtl_lock);
1202 space_map_close(vd->vdev_dtl_sm);
1203 for (int t = 0; t < DTL_TYPES; t++) {
1204 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1205 zfs_range_tree_destroy(vd->vdev_dtl[t]);
1206 }
1207 mutex_exit(&vd->vdev_dtl_lock);
1208
1209 EQUIV(vd->vdev_indirect_births != NULL,
1210 vd->vdev_indirect_mapping != NULL);
1211 if (vd->vdev_indirect_births != NULL) {
1212 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1213 vdev_indirect_births_close(vd->vdev_indirect_births);
1214 }
1215
1216 if (vd->vdev_obsolete_sm != NULL) {
1217 ASSERT(vd->vdev_removing ||
1218 vd->vdev_ops == &vdev_indirect_ops);
1219 space_map_close(vd->vdev_obsolete_sm);
1220 vd->vdev_obsolete_sm = NULL;
1221 }
1222 zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1223 rw_destroy(&vd->vdev_indirect_rwlock);
1224 mutex_destroy(&vd->vdev_obsolete_lock);
1225
1226 mutex_destroy(&vd->vdev_dtl_lock);
1227 mutex_destroy(&vd->vdev_stat_lock);
1228 mutex_destroy(&vd->vdev_probe_lock);
1229 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1230
1231 mutex_destroy(&vd->vdev_initialize_lock);
1232 mutex_destroy(&vd->vdev_initialize_io_lock);
1233 cv_destroy(&vd->vdev_initialize_io_cv);
1234 cv_destroy(&vd->vdev_initialize_cv);
1235
1236 mutex_destroy(&vd->vdev_trim_lock);
1237 mutex_destroy(&vd->vdev_autotrim_lock);
1238 mutex_destroy(&vd->vdev_trim_io_lock);
1239 cv_destroy(&vd->vdev_trim_cv);
1240 cv_destroy(&vd->vdev_autotrim_cv);
1241 cv_destroy(&vd->vdev_autotrim_kick_cv);
1242 cv_destroy(&vd->vdev_trim_io_cv);
1243
1244 mutex_destroy(&vd->vdev_rebuild_lock);
1245 cv_destroy(&vd->vdev_rebuild_cv);
1246
1247 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1248 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1249 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1250 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1251
1252 if (vd == spa->spa_root_vdev)
1253 spa->spa_root_vdev = NULL;
1254
1255 kmem_free(vd, sizeof (vdev_t));
1256 }
1257
1258 /*
1259 * Transfer top-level vdev state from svd to tvd.
1260 */
1261 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1262 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1263 {
1264 spa_t *spa = svd->vdev_spa;
1265 metaslab_t *msp;
1266 vdev_t *vd;
1267 int t;
1268
1269 ASSERT(tvd == tvd->vdev_top);
1270
1271 tvd->vdev_ms_array = svd->vdev_ms_array;
1272 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1273 tvd->vdev_ms_count = svd->vdev_ms_count;
1274 tvd->vdev_top_zap = svd->vdev_top_zap;
1275
1276 svd->vdev_ms_array = 0;
1277 svd->vdev_ms_shift = 0;
1278 svd->vdev_ms_count = 0;
1279 svd->vdev_top_zap = 0;
1280
1281 if (tvd->vdev_mg)
1282 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1283 if (tvd->vdev_log_mg)
1284 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1285 tvd->vdev_mg = svd->vdev_mg;
1286 tvd->vdev_log_mg = svd->vdev_log_mg;
1287 tvd->vdev_ms = svd->vdev_ms;
1288
1289 svd->vdev_mg = NULL;
1290 svd->vdev_log_mg = NULL;
1291 svd->vdev_ms = NULL;
1292
1293 if (tvd->vdev_mg != NULL)
1294 tvd->vdev_mg->mg_vd = tvd;
1295 if (tvd->vdev_log_mg != NULL)
1296 tvd->vdev_log_mg->mg_vd = tvd;
1297
1298 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1299 svd->vdev_checkpoint_sm = NULL;
1300
1301 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1302 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1303
1304 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1305 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1306 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1307
1308 svd->vdev_stat.vs_alloc = 0;
1309 svd->vdev_stat.vs_space = 0;
1310 svd->vdev_stat.vs_dspace = 0;
1311
1312 /*
1313 * State which may be set on a top-level vdev that's in the
1314 * process of being removed.
1315 */
1316 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1317 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1318 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1319 ASSERT0P(tvd->vdev_indirect_mapping);
1320 ASSERT0P(tvd->vdev_indirect_births);
1321 ASSERT0P(tvd->vdev_obsolete_sm);
1322 ASSERT0(tvd->vdev_noalloc);
1323 ASSERT0(tvd->vdev_removing);
1324 ASSERT0(tvd->vdev_rebuilding);
1325 tvd->vdev_noalloc = svd->vdev_noalloc;
1326 tvd->vdev_removing = svd->vdev_removing;
1327 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1328 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1329 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1330 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1331 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1332 zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1333 &tvd->vdev_obsolete_segments);
1334 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1335 svd->vdev_indirect_config.vic_mapping_object = 0;
1336 svd->vdev_indirect_config.vic_births_object = 0;
1337 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1338 svd->vdev_indirect_mapping = NULL;
1339 svd->vdev_indirect_births = NULL;
1340 svd->vdev_obsolete_sm = NULL;
1341 svd->vdev_noalloc = 0;
1342 svd->vdev_removing = 0;
1343 svd->vdev_rebuilding = 0;
1344
1345 for (t = 0; t < TXG_SIZE; t++) {
1346 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1347 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1348 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1349 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1350 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1351 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1352 }
1353
1354 if (list_link_active(&svd->vdev_config_dirty_node)) {
1355 vdev_config_clean(svd);
1356 vdev_config_dirty(tvd);
1357 }
1358
1359 if (list_link_active(&svd->vdev_state_dirty_node)) {
1360 vdev_state_clean(svd);
1361 vdev_state_dirty(tvd);
1362 }
1363
1364 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1365 svd->vdev_deflate_ratio = 0;
1366
1367 tvd->vdev_islog = svd->vdev_islog;
1368 svd->vdev_islog = 0;
1369
1370 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1371 }
1372
1373 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1374 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1375 {
1376 if (vd == NULL)
1377 return;
1378
1379 vd->vdev_top = tvd;
1380
1381 for (int c = 0; c < vd->vdev_children; c++)
1382 vdev_top_update(tvd, vd->vdev_child[c]);
1383 }
1384
1385 /*
1386 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1387 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1388 */
1389 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1390 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1391 {
1392 spa_t *spa = cvd->vdev_spa;
1393 vdev_t *pvd = cvd->vdev_parent;
1394 vdev_t *mvd;
1395
1396 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1397
1398 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1399
1400 mvd->vdev_asize = cvd->vdev_asize;
1401 mvd->vdev_min_asize = cvd->vdev_min_asize;
1402 mvd->vdev_max_asize = cvd->vdev_max_asize;
1403 mvd->vdev_psize = cvd->vdev_psize;
1404 mvd->vdev_ashift = cvd->vdev_ashift;
1405 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1406 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1407 mvd->vdev_state = cvd->vdev_state;
1408 mvd->vdev_crtxg = cvd->vdev_crtxg;
1409 mvd->vdev_nonrot = cvd->vdev_nonrot;
1410
1411 vdev_remove_child(pvd, cvd);
1412 vdev_add_child(pvd, mvd);
1413 cvd->vdev_id = mvd->vdev_children;
1414 vdev_add_child(mvd, cvd);
1415 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1416
1417 if (mvd == mvd->vdev_top)
1418 vdev_top_transfer(cvd, mvd);
1419
1420 return (mvd);
1421 }
1422
1423 /*
1424 * Remove a 1-way mirror/replacing vdev from the tree.
1425 */
1426 void
vdev_remove_parent(vdev_t * cvd)1427 vdev_remove_parent(vdev_t *cvd)
1428 {
1429 vdev_t *mvd = cvd->vdev_parent;
1430 vdev_t *pvd = mvd->vdev_parent;
1431
1432 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1433
1434 ASSERT(mvd->vdev_children == 1);
1435 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1436 mvd->vdev_ops == &vdev_replacing_ops ||
1437 mvd->vdev_ops == &vdev_spare_ops);
1438 cvd->vdev_ashift = mvd->vdev_ashift;
1439 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1440 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1441 vdev_remove_child(mvd, cvd);
1442 vdev_remove_child(pvd, mvd);
1443
1444 /*
1445 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1446 * Otherwise, we could have detached an offline device, and when we
1447 * go to import the pool we'll think we have two top-level vdevs,
1448 * instead of a different version of the same top-level vdev.
1449 */
1450 if (mvd->vdev_top == mvd) {
1451 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1452 cvd->vdev_orig_guid = cvd->vdev_guid;
1453 cvd->vdev_guid += guid_delta;
1454 cvd->vdev_guid_sum += guid_delta;
1455
1456 /*
1457 * If pool not set for autoexpand, we need to also preserve
1458 * mvd's asize to prevent automatic expansion of cvd.
1459 * Otherwise if we are adjusting the mirror by attaching and
1460 * detaching children of non-uniform sizes, the mirror could
1461 * autoexpand, unexpectedly requiring larger devices to
1462 * re-establish the mirror.
1463 */
1464 if (!cvd->vdev_spa->spa_autoexpand)
1465 cvd->vdev_asize = mvd->vdev_asize;
1466 }
1467 cvd->vdev_id = mvd->vdev_id;
1468 vdev_add_child(pvd, cvd);
1469 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1470
1471 if (cvd == cvd->vdev_top)
1472 vdev_top_transfer(mvd, cvd);
1473
1474 ASSERT0(mvd->vdev_children);
1475 vdev_free(mvd);
1476 }
1477
1478 /*
1479 * Choose GCD for spa_gcd_alloc.
1480 */
1481 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1482 vdev_gcd(uint64_t a, uint64_t b)
1483 {
1484 while (b != 0) {
1485 uint64_t t = b;
1486 b = a % b;
1487 a = t;
1488 }
1489 return (a);
1490 }
1491
1492 /*
1493 * Set spa_min_alloc and spa_gcd_alloc.
1494 */
1495 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1496 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1497 {
1498 if (min_alloc < spa->spa_min_alloc)
1499 spa->spa_min_alloc = min_alloc;
1500
1501 if (min_alloc > spa->spa_max_alloc)
1502 spa->spa_max_alloc = min_alloc;
1503
1504 if (spa->spa_gcd_alloc == INT_MAX)
1505 spa->spa_gcd_alloc = min_alloc;
1506 else
1507 spa->spa_gcd_alloc = vdev_gcd(min_alloc, spa->spa_gcd_alloc);
1508 }
1509
1510 void
vdev_metaslab_group_create(vdev_t * vd)1511 vdev_metaslab_group_create(vdev_t *vd)
1512 {
1513 spa_t *spa = vd->vdev_spa;
1514
1515 /*
1516 * metaslab_group_create was delayed until allocation bias was available
1517 */
1518 if (vd->vdev_mg == NULL) {
1519 metaslab_class_t *mc;
1520
1521 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1522 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1523
1524 ASSERT3U(vd->vdev_islog, ==,
1525 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1526
1527 switch (vd->vdev_alloc_bias) {
1528 case VDEV_BIAS_LOG:
1529 mc = spa_log_class(spa);
1530 break;
1531 case VDEV_BIAS_SPECIAL:
1532 mc = spa_special_class(spa);
1533 break;
1534 case VDEV_BIAS_DEDUP:
1535 mc = spa_dedup_class(spa);
1536 break;
1537 default:
1538 mc = spa_normal_class(spa);
1539 }
1540
1541 vd->vdev_mg = metaslab_group_create(mc, vd);
1542
1543 if (!vd->vdev_islog) {
1544 if (mc == spa_special_class(spa)) {
1545 vd->vdev_log_mg = metaslab_group_create(
1546 spa_special_embedded_log_class(spa), vd);
1547 } else {
1548 vd->vdev_log_mg = metaslab_group_create(
1549 spa_embedded_log_class(spa), vd);
1550 }
1551 }
1552
1553 /*
1554 * The spa ashift min/max only apply for the normal metaslab
1555 * class. Class destination is late binding so ashift boundary
1556 * setting had to wait until now.
1557 */
1558 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1559 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1560 if (vd->vdev_ashift > spa->spa_max_ashift)
1561 spa->spa_max_ashift = vd->vdev_ashift;
1562 if (vd->vdev_ashift < spa->spa_min_ashift)
1563 spa->spa_min_ashift = vd->vdev_ashift;
1564
1565 vdev_spa_set_alloc(spa, vdev_get_min_alloc(vd));
1566 }
1567 }
1568 }
1569
1570 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1571 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1572 {
1573 spa_t *spa = vd->vdev_spa;
1574
1575 if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1576 return;
1577
1578 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1579 uint64_t dspace = spa_deflate(spa) ?
1580 vdev_deflated_space(vd, raw_space) : raw_space;
1581 if (add) {
1582 spa->spa_nonallocating_dspace += dspace;
1583 } else {
1584 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1585 spa->spa_nonallocating_dspace -= dspace;
1586 }
1587 }
1588
1589 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1590 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1591 {
1592 spa_t *spa = vd->vdev_spa;
1593 uint64_t oldc = vd->vdev_ms_count;
1594 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1595 metaslab_t **mspp;
1596 int error;
1597 boolean_t expanding = (oldc != 0);
1598
1599 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1600
1601 /*
1602 * This vdev is not being allocated from yet or is a hole.
1603 */
1604 if (vd->vdev_ms_shift == 0)
1605 return (0);
1606
1607 ASSERT(!vd->vdev_ishole);
1608
1609 ASSERT(oldc <= newc);
1610
1611 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1612
1613 if (expanding) {
1614 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1615 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1616 }
1617
1618 vd->vdev_ms = mspp;
1619 vd->vdev_ms_count = newc;
1620
1621 /*
1622 * Weighting algorithms can depend on the number of metaslabs in the
1623 * vdev. In order to ensure that all weights are correct at all times,
1624 * we need to recalculate here.
1625 */
1626 for (uint64_t m = 0; m < oldc; m++) {
1627 metaslab_t *msp = vd->vdev_ms[m];
1628 mutex_enter(&msp->ms_lock);
1629 metaslab_recalculate_weight_and_sort(msp);
1630 mutex_exit(&msp->ms_lock);
1631 }
1632
1633 for (uint64_t m = oldc; m < newc; m++) {
1634 uint64_t object = 0;
1635 /*
1636 * vdev_ms_array may be 0 if we are creating the "fake"
1637 * metaslabs for an indirect vdev for zdb's leak detection.
1638 * See zdb_leak_init().
1639 */
1640 if (txg == 0 && vd->vdev_ms_array != 0) {
1641 error = dmu_read(spa->spa_meta_objset,
1642 vd->vdev_ms_array,
1643 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1644 DMU_READ_PREFETCH);
1645 if (error != 0) {
1646 vdev_dbgmsg(vd, "unable to read the metaslab "
1647 "array [error=%d]", error);
1648 return (error);
1649 }
1650 }
1651
1652 error = metaslab_init(vd->vdev_mg, m, object, txg,
1653 &(vd->vdev_ms[m]));
1654 if (error != 0) {
1655 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1656 error);
1657 return (error);
1658 }
1659 }
1660
1661 /*
1662 * Find the emptiest metaslab on the vdev and mark it for use for
1663 * embedded slog by moving it from the regular to the log metaslab
1664 * group. This works for normal and special vdevs.
1665 */
1666 if ((vd->vdev_mg->mg_class == spa_normal_class(spa) ||
1667 vd->vdev_mg->mg_class == spa_special_class(spa)) &&
1668 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1669 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1670 uint64_t slog_msid = 0;
1671 uint64_t smallest = UINT64_MAX;
1672
1673 /*
1674 * Note, we only search the new metaslabs, because the old
1675 * (pre-existing) ones may be active (e.g. have non-empty
1676 * range_tree's), and we don't move them to the new
1677 * metaslab_t.
1678 */
1679 for (uint64_t m = oldc; m < newc; m++) {
1680 uint64_t alloc =
1681 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1682 if (alloc < smallest) {
1683 slog_msid = m;
1684 smallest = alloc;
1685 }
1686 }
1687 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1688 /*
1689 * The metaslab was marked as dirty at the end of
1690 * metaslab_init(). Remove it from the dirty list so that we
1691 * can uninitialize and reinitialize it to the new class.
1692 */
1693 if (txg != 0) {
1694 (void) txg_list_remove_this(&vd->vdev_ms_list,
1695 slog_ms, txg);
1696 }
1697 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1698 metaslab_fini(slog_ms);
1699 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1700 &vd->vdev_ms[slog_msid]));
1701 }
1702
1703 if (txg == 0)
1704 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1705
1706 /*
1707 * If the vdev is marked as non-allocating then don't
1708 * activate the metaslabs since we want to ensure that
1709 * no allocations are performed on this device.
1710 */
1711 if (vd->vdev_noalloc) {
1712 /* track non-allocating vdev space */
1713 vdev_update_nonallocating_space(vd, B_TRUE);
1714 } else if (!expanding) {
1715 metaslab_group_activate(vd->vdev_mg);
1716 if (vd->vdev_log_mg != NULL)
1717 metaslab_group_activate(vd->vdev_log_mg);
1718 }
1719
1720 if (txg == 0)
1721 spa_config_exit(spa, SCL_ALLOC, FTAG);
1722
1723 return (0);
1724 }
1725
1726 void
vdev_metaslab_fini(vdev_t * vd)1727 vdev_metaslab_fini(vdev_t *vd)
1728 {
1729 if (vd->vdev_checkpoint_sm != NULL) {
1730 ASSERT(spa_feature_is_active(vd->vdev_spa,
1731 SPA_FEATURE_POOL_CHECKPOINT));
1732 space_map_close(vd->vdev_checkpoint_sm);
1733 /*
1734 * Even though we close the space map, we need to set its
1735 * pointer to NULL. The reason is that vdev_metaslab_fini()
1736 * may be called multiple times for certain operations
1737 * (i.e. when destroying a pool) so we need to ensure that
1738 * this clause never executes twice. This logic is similar
1739 * to the one used for the vdev_ms clause below.
1740 */
1741 vd->vdev_checkpoint_sm = NULL;
1742 }
1743
1744 if (vd->vdev_ms != NULL) {
1745 metaslab_group_t *mg = vd->vdev_mg;
1746
1747 metaslab_group_passivate(mg);
1748 if (vd->vdev_log_mg != NULL) {
1749 ASSERT(!vd->vdev_islog);
1750 metaslab_group_passivate(vd->vdev_log_mg);
1751 }
1752
1753 uint64_t count = vd->vdev_ms_count;
1754 for (uint64_t m = 0; m < count; m++) {
1755 metaslab_t *msp = vd->vdev_ms[m];
1756 if (msp != NULL)
1757 metaslab_fini(msp);
1758 }
1759 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1760 vd->vdev_ms = NULL;
1761 vd->vdev_ms_count = 0;
1762
1763 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1764 ASSERT0(mg->mg_histogram[i]);
1765 if (vd->vdev_log_mg != NULL)
1766 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1767 }
1768 }
1769 ASSERT0(vd->vdev_ms_count);
1770 }
1771
1772 typedef struct vdev_probe_stats {
1773 boolean_t vps_readable;
1774 boolean_t vps_writeable;
1775 boolean_t vps_zio_done_probe;
1776 int vps_flags;
1777 } vdev_probe_stats_t;
1778
1779 static void
vdev_probe_done(zio_t * zio)1780 vdev_probe_done(zio_t *zio)
1781 {
1782 spa_t *spa = zio->io_spa;
1783 vdev_t *vd = zio->io_vd;
1784 vdev_probe_stats_t *vps = zio->io_private;
1785
1786 ASSERT(vd->vdev_probe_zio != NULL);
1787
1788 if (zio->io_type == ZIO_TYPE_READ) {
1789 if (zio->io_error == 0)
1790 vps->vps_readable = 1;
1791 if (zio->io_error == 0 && spa_writeable(spa)) {
1792 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1793 zio->io_offset, zio->io_size, zio->io_abd,
1794 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1795 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1796 } else {
1797 abd_free(zio->io_abd);
1798 }
1799 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1800 if (zio->io_error == 0)
1801 vps->vps_writeable = 1;
1802 abd_free(zio->io_abd);
1803 } else if (zio->io_type == ZIO_TYPE_NULL) {
1804 zio_t *pio;
1805 zio_link_t *zl;
1806
1807 vd->vdev_cant_read |= !vps->vps_readable;
1808 vd->vdev_cant_write |= !vps->vps_writeable;
1809 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1810 vd->vdev_cant_read, vd->vdev_cant_write);
1811
1812 if (vdev_readable(vd) &&
1813 (vdev_writeable(vd) || !spa_writeable(spa))) {
1814 zio->io_error = 0;
1815 } else {
1816 ASSERT(zio->io_error != 0);
1817 vdev_dbgmsg(vd, "failed probe");
1818 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1819 spa, vd, NULL, NULL, 0);
1820 zio->io_error = SET_ERROR(ENXIO);
1821
1822 /*
1823 * If this probe was initiated from zio pipeline, then
1824 * change the state in a spa_async_request. Probes that
1825 * were initiated from a vdev_open can change the state
1826 * as part of the open call.
1827 * Skip fault injection if this vdev is already removed
1828 * or a removal is pending.
1829 */
1830 if (vps->vps_zio_done_probe &&
1831 !vd->vdev_remove_wanted && !vd->vdev_removed) {
1832 vd->vdev_fault_wanted = B_TRUE;
1833 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1834 }
1835 }
1836
1837 mutex_enter(&vd->vdev_probe_lock);
1838 ASSERT(vd->vdev_probe_zio == zio);
1839 vd->vdev_probe_zio = NULL;
1840 mutex_exit(&vd->vdev_probe_lock);
1841
1842 zl = NULL;
1843 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1844 if (!vdev_accessible(vd, pio))
1845 pio->io_error = SET_ERROR(ENXIO);
1846
1847 kmem_free(vps, sizeof (*vps));
1848 }
1849 }
1850
1851 /*
1852 * Determine whether this device is accessible.
1853 *
1854 * Read and write to several known locations: the pad regions of each
1855 * vdev label but the first, which we leave alone in case it contains
1856 * a VTOC.
1857 */
1858 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1859 vdev_probe(vdev_t *vd, zio_t *zio)
1860 {
1861 spa_t *spa = vd->vdev_spa;
1862 vdev_probe_stats_t *vps = NULL;
1863 zio_t *pio;
1864
1865 ASSERT(vd->vdev_ops->vdev_op_leaf);
1866
1867 /*
1868 * Don't probe the probe.
1869 */
1870 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1871 return (NULL);
1872
1873 /*
1874 * To prevent 'probe storms' when a device fails, we create
1875 * just one probe i/o at a time. All zios that want to probe
1876 * this vdev will become parents of the probe io.
1877 */
1878 mutex_enter(&vd->vdev_probe_lock);
1879
1880 if ((pio = vd->vdev_probe_zio) == NULL) {
1881 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1882
1883 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1884 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1885 vps->vps_zio_done_probe = (zio != NULL);
1886
1887 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1888 /*
1889 * vdev_cant_read and vdev_cant_write can only
1890 * transition from TRUE to FALSE when we have the
1891 * SCL_ZIO lock as writer; otherwise they can only
1892 * transition from FALSE to TRUE. This ensures that
1893 * any zio looking at these values can assume that
1894 * failures persist for the life of the I/O. That's
1895 * important because when a device has intermittent
1896 * connectivity problems, we want to ensure that
1897 * they're ascribed to the device (ENXIO) and not
1898 * the zio (EIO).
1899 *
1900 * Since we hold SCL_ZIO as writer here, clear both
1901 * values so the probe can reevaluate from first
1902 * principles.
1903 */
1904 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1905 vd->vdev_cant_read = B_FALSE;
1906 vd->vdev_cant_write = B_FALSE;
1907 }
1908
1909 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1910 vdev_probe_done, vps,
1911 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1912 }
1913
1914 if (zio != NULL)
1915 zio_add_child(zio, pio);
1916
1917 mutex_exit(&vd->vdev_probe_lock);
1918
1919 if (vps == NULL) {
1920 ASSERT(zio != NULL);
1921 return (NULL);
1922 }
1923
1924 for (int l = 1; l < VDEV_LABELS; l++) {
1925 zio_nowait(zio_read_phys(pio, vd,
1926 vdev_label_offset(vd->vdev_psize, l,
1927 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1928 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1929 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1930 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1931 }
1932
1933 if (zio == NULL)
1934 return (pio);
1935
1936 zio_nowait(pio);
1937 return (NULL);
1938 }
1939
1940 static void
vdev_load_child(void * arg)1941 vdev_load_child(void *arg)
1942 {
1943 vdev_t *vd = arg;
1944
1945 vd->vdev_load_error = vdev_load(vd);
1946 }
1947
1948 static void
vdev_open_child(void * arg)1949 vdev_open_child(void *arg)
1950 {
1951 vdev_t *vd = arg;
1952
1953 vd->vdev_open_thread = curthread;
1954 vd->vdev_open_error = vdev_open(vd);
1955 vd->vdev_open_thread = NULL;
1956 }
1957
1958 static boolean_t
vdev_uses_zvols(vdev_t * vd)1959 vdev_uses_zvols(vdev_t *vd)
1960 {
1961 #ifdef _KERNEL
1962 if (zvol_is_zvol(vd->vdev_path))
1963 return (B_TRUE);
1964 #endif
1965
1966 for (int c = 0; c < vd->vdev_children; c++)
1967 if (vdev_uses_zvols(vd->vdev_child[c]))
1968 return (B_TRUE);
1969
1970 return (B_FALSE);
1971 }
1972
1973 /*
1974 * Returns B_TRUE if the passed child should be opened.
1975 */
1976 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1977 vdev_default_open_children_func(vdev_t *vd)
1978 {
1979 (void) vd;
1980 return (B_TRUE);
1981 }
1982
1983 /*
1984 * Open the requested child vdevs. If any of the leaf vdevs are using
1985 * a ZFS volume then do the opens in a single thread. This avoids a
1986 * deadlock when the current thread is holding the spa_namespace_lock.
1987 */
1988 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1989 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1990 {
1991 int children = vd->vdev_children;
1992
1993 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1994 children, children, TASKQ_PREPOPULATE);
1995 vd->vdev_nonrot = B_TRUE;
1996
1997 for (int c = 0; c < children; c++) {
1998 vdev_t *cvd = vd->vdev_child[c];
1999
2000 if (open_func(cvd) == B_FALSE)
2001 continue;
2002
2003 if (tq == NULL || vdev_uses_zvols(vd)) {
2004 cvd->vdev_open_error = vdev_open(cvd);
2005 } else {
2006 VERIFY(taskq_dispatch(tq, vdev_open_child,
2007 cvd, TQ_SLEEP) != TASKQID_INVALID);
2008 }
2009 }
2010
2011 if (tq != NULL)
2012 taskq_wait(tq);
2013 for (int c = 0; c < children; c++) {
2014 vdev_t *cvd = vd->vdev_child[c];
2015
2016 if (open_func(cvd) == B_FALSE ||
2017 cvd->vdev_state <= VDEV_STATE_FAULTED)
2018 continue;
2019 vd->vdev_nonrot &= cvd->vdev_nonrot;
2020 }
2021
2022 if (tq != NULL)
2023 taskq_destroy(tq);
2024 }
2025
2026 /*
2027 * Open all child vdevs.
2028 */
2029 void
vdev_open_children(vdev_t * vd)2030 vdev_open_children(vdev_t *vd)
2031 {
2032 vdev_open_children_impl(vd, vdev_default_open_children_func);
2033 }
2034
2035 /*
2036 * Conditionally open a subset of child vdevs.
2037 */
2038 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2039 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2040 {
2041 vdev_open_children_impl(vd, open_func);
2042 }
2043
2044 /*
2045 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
2046 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
2047 * changed, this algorithm can not change, otherwise it would inconsistently
2048 * account for existing bp's. We also hard-code txg 0 for the same reason
2049 * since expanded RAIDZ vdevs can use a different asize for different birth
2050 * txg's.
2051 */
2052 static void
vdev_set_deflate_ratio(vdev_t * vd)2053 vdev_set_deflate_ratio(vdev_t *vd)
2054 {
2055 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2056 vd->vdev_deflate_ratio = (1 << 17) /
2057 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2058 SPA_MINBLOCKSHIFT);
2059 }
2060 }
2061
2062 /*
2063 * Choose the best of two ashifts, preferring one between logical ashift
2064 * (absolute minimum) and administrator defined maximum, otherwise take
2065 * the biggest of the two.
2066 */
2067 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2068 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2069 {
2070 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2071 if (b <= logical || b > zfs_vdev_max_auto_ashift)
2072 return (a);
2073 else
2074 return (MAX(a, b));
2075 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2076 return (MAX(a, b));
2077 return (b);
2078 }
2079
2080 /*
2081 * Maximize performance by inflating the configured ashift for top level
2082 * vdevs to be as close to the physical ashift as possible while maintaining
2083 * administrator defined limits and ensuring it doesn't go below the
2084 * logical ashift.
2085 */
2086 static void
vdev_ashift_optimize(vdev_t * vd)2087 vdev_ashift_optimize(vdev_t *vd)
2088 {
2089 ASSERT(vd == vd->vdev_top);
2090
2091 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2092 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2093 vd->vdev_ashift = MIN(
2094 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2095 MAX(zfs_vdev_min_auto_ashift,
2096 vd->vdev_physical_ashift));
2097 } else {
2098 /*
2099 * If the logical and physical ashifts are the same, then
2100 * we ensure that the top-level vdev's ashift is not smaller
2101 * than our minimum ashift value. For the unusual case
2102 * where logical ashift > physical ashift, we can't cap
2103 * the calculated ashift based on max ashift as that
2104 * would cause failures.
2105 * We still check if we need to increase it to match
2106 * the min ashift.
2107 */
2108 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2109 vd->vdev_ashift);
2110 }
2111 }
2112
2113 /*
2114 * Prepare a virtual device for access.
2115 */
2116 int
vdev_open(vdev_t * vd)2117 vdev_open(vdev_t *vd)
2118 {
2119 spa_t *spa = vd->vdev_spa;
2120 int error;
2121 uint64_t osize = 0;
2122 uint64_t max_osize = 0;
2123 uint64_t asize, max_asize, psize;
2124 uint64_t logical_ashift = 0;
2125 uint64_t physical_ashift = 0;
2126
2127 ASSERT(vd->vdev_open_thread == curthread ||
2128 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2129 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2130 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2131 vd->vdev_state == VDEV_STATE_OFFLINE);
2132
2133 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2134 vd->vdev_cant_read = B_FALSE;
2135 vd->vdev_cant_write = B_FALSE;
2136 vd->vdev_fault_wanted = B_FALSE;
2137 vd->vdev_remove_wanted = B_FALSE;
2138 vd->vdev_min_asize = vdev_get_min_asize(vd);
2139
2140 /*
2141 * If this vdev is not removed, check its fault status. If it's
2142 * faulted, bail out of the open.
2143 */
2144 if (!vd->vdev_removed && vd->vdev_faulted) {
2145 ASSERT0(vd->vdev_children);
2146 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2147 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2148 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2149 vd->vdev_label_aux);
2150 return (SET_ERROR(ENXIO));
2151 } else if (vd->vdev_offline) {
2152 ASSERT0(vd->vdev_children);
2153 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2154 return (SET_ERROR(ENXIO));
2155 }
2156
2157 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2158 &logical_ashift, &physical_ashift);
2159
2160 /* Keep the device in removed state if unplugged */
2161 if (error == ENOENT && vd->vdev_removed) {
2162 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2163 VDEV_AUX_NONE);
2164 return (error);
2165 }
2166
2167 /*
2168 * Physical volume size should never be larger than its max size, unless
2169 * the disk has shrunk while we were reading it or the device is buggy
2170 * or damaged: either way it's not safe for use, bail out of the open.
2171 */
2172 if (osize > max_osize) {
2173 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2174 VDEV_AUX_OPEN_FAILED);
2175 return (SET_ERROR(ENXIO));
2176 }
2177
2178 /*
2179 * Reset the vdev_reopening flag so that we actually close
2180 * the vdev on error.
2181 */
2182 vd->vdev_reopening = B_FALSE;
2183 if (zio_injection_enabled && error == 0)
2184 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2185
2186 if (error) {
2187 if (vd->vdev_removed &&
2188 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2189 vd->vdev_removed = B_FALSE;
2190
2191 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2192 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2193 vd->vdev_stat.vs_aux);
2194 } else {
2195 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2196 vd->vdev_stat.vs_aux);
2197 }
2198 return (error);
2199 }
2200
2201 vd->vdev_removed = B_FALSE;
2202
2203 /*
2204 * Recheck the faulted flag now that we have confirmed that
2205 * the vdev is accessible. If we're faulted, bail.
2206 */
2207 if (vd->vdev_faulted) {
2208 ASSERT0(vd->vdev_children);
2209 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2210 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2211 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2212 vd->vdev_label_aux);
2213 return (SET_ERROR(ENXIO));
2214 }
2215
2216 if (vd->vdev_degraded) {
2217 ASSERT0(vd->vdev_children);
2218 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2219 VDEV_AUX_ERR_EXCEEDED);
2220 } else {
2221 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2222 }
2223
2224 /*
2225 * For hole or missing vdevs we just return success.
2226 */
2227 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2228 return (0);
2229
2230 for (int c = 0; c < vd->vdev_children; c++) {
2231 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2232 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2233 VDEV_AUX_NONE);
2234 break;
2235 }
2236 }
2237
2238 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2239 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2240
2241 if (vd->vdev_children == 0) {
2242 if (osize < SPA_MINDEVSIZE) {
2243 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2244 VDEV_AUX_TOO_SMALL);
2245 return (SET_ERROR(EOVERFLOW));
2246 }
2247 psize = osize;
2248 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2249 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2250 VDEV_LABEL_END_SIZE);
2251 } else {
2252 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2253 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2254 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2255 VDEV_AUX_TOO_SMALL);
2256 return (SET_ERROR(EOVERFLOW));
2257 }
2258 psize = 0;
2259 asize = osize;
2260 max_asize = max_osize;
2261 }
2262
2263 /*
2264 * If the vdev was expanded, record this so that we can re-create the
2265 * uberblock rings in labels {2,3}, during the next sync.
2266 */
2267 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2268 vd->vdev_copy_uberblocks = B_TRUE;
2269
2270 vd->vdev_psize = psize;
2271
2272 /*
2273 * Make sure the allocatable size hasn't shrunk too much.
2274 */
2275 if (asize < vd->vdev_min_asize) {
2276 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2277 VDEV_AUX_BAD_LABEL);
2278 return (SET_ERROR(EINVAL));
2279 }
2280
2281 /*
2282 * We can always set the logical/physical ashift members since
2283 * their values are only used to calculate the vdev_ashift when
2284 * the device is first added to the config. These values should
2285 * not be used for anything else since they may change whenever
2286 * the device is reopened and we don't store them in the label.
2287 */
2288 vd->vdev_physical_ashift =
2289 MAX(physical_ashift, vd->vdev_physical_ashift);
2290 vd->vdev_logical_ashift = MAX(logical_ashift,
2291 vd->vdev_logical_ashift);
2292
2293 if (vd->vdev_asize == 0) {
2294 /*
2295 * This is the first-ever open, so use the computed values.
2296 * For compatibility, a different ashift can be requested.
2297 */
2298 vd->vdev_asize = asize;
2299 vd->vdev_max_asize = max_asize;
2300
2301 /*
2302 * If the vdev_ashift was not overridden at creation time
2303 * (0) or the override value is impossible for the device,
2304 * then set it the logical ashift and optimize the ashift.
2305 */
2306 if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2307 vd->vdev_ashift = vd->vdev_logical_ashift;
2308
2309 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2310 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2311 VDEV_AUX_ASHIFT_TOO_BIG);
2312 return (SET_ERROR(EDOM));
2313 }
2314
2315 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2316 vdev_ashift_optimize(vd);
2317 vd->vdev_attaching = B_FALSE;
2318 }
2319 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2320 vd->vdev_ashift > ASHIFT_MAX)) {
2321 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2322 VDEV_AUX_BAD_ASHIFT);
2323 return (SET_ERROR(EDOM));
2324 }
2325 } else {
2326 /*
2327 * Make sure the alignment required hasn't increased.
2328 */
2329 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2330 vd->vdev_ops->vdev_op_leaf) {
2331 (void) zfs_ereport_post(
2332 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2333 spa, vd, NULL, NULL, 0);
2334 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2335 VDEV_AUX_BAD_LABEL);
2336 return (SET_ERROR(EDOM));
2337 }
2338 vd->vdev_max_asize = max_asize;
2339 }
2340
2341 /*
2342 * If all children are healthy we update asize if either:
2343 * The asize has increased, due to a device expansion caused by dynamic
2344 * LUN growth or vdev replacement, and automatic expansion is enabled;
2345 * making the additional space available.
2346 *
2347 * The asize has decreased, due to a device shrink usually caused by a
2348 * vdev replace with a smaller device. This ensures that calculations
2349 * based of max_asize and asize e.g. esize are always valid. It's safe
2350 * to do this as we've already validated that asize is greater than
2351 * vdev_min_asize.
2352 */
2353 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2354 ((asize > vd->vdev_asize &&
2355 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2356 (asize < vd->vdev_asize)))
2357 vd->vdev_asize = asize;
2358
2359 vdev_set_min_asize(vd);
2360
2361 /*
2362 * Ensure we can issue some IO before declaring the
2363 * vdev open for business.
2364 */
2365 if (vd->vdev_ops->vdev_op_leaf &&
2366 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2367 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2368 VDEV_AUX_ERR_EXCEEDED);
2369 return (error);
2370 }
2371
2372 /*
2373 * Track the minimum allocation size.
2374 */
2375 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2376 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2377 uint64_t min_alloc = vdev_get_min_alloc(vd);
2378 vdev_spa_set_alloc(spa, min_alloc);
2379 }
2380
2381 /*
2382 * If this is a leaf vdev, assess whether a resilver is needed.
2383 * But don't do this if we are doing a reopen for a scrub, since
2384 * this would just restart the scrub we are already doing.
2385 */
2386 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2387 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2388
2389 return (0);
2390 }
2391
2392 static void
vdev_validate_child(void * arg)2393 vdev_validate_child(void *arg)
2394 {
2395 vdev_t *vd = arg;
2396
2397 vd->vdev_validate_thread = curthread;
2398 vd->vdev_validate_error = vdev_validate(vd);
2399 vd->vdev_validate_thread = NULL;
2400 }
2401
2402 /*
2403 * Called once the vdevs are all opened, this routine validates the label
2404 * contents. This needs to be done before vdev_load() so that we don't
2405 * inadvertently do repair I/Os to the wrong device.
2406 *
2407 * This function will only return failure if one of the vdevs indicates that it
2408 * has since been destroyed or exported. This is only possible if
2409 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2410 * will be updated but the function will return 0.
2411 */
2412 int
vdev_validate(vdev_t * vd)2413 vdev_validate(vdev_t *vd)
2414 {
2415 spa_t *spa = vd->vdev_spa;
2416 taskq_t *tq = NULL;
2417 nvlist_t *label;
2418 uint64_t guid = 0, aux_guid = 0, top_guid;
2419 uint64_t state;
2420 nvlist_t *nvl;
2421 uint64_t txg;
2422 int children = vd->vdev_children;
2423
2424 if (vdev_validate_skip)
2425 return (0);
2426
2427 if (children > 0) {
2428 tq = taskq_create("vdev_validate", children, minclsyspri,
2429 children, children, TASKQ_PREPOPULATE);
2430 }
2431
2432 for (uint64_t c = 0; c < children; c++) {
2433 vdev_t *cvd = vd->vdev_child[c];
2434
2435 if (tq == NULL || vdev_uses_zvols(cvd)) {
2436 vdev_validate_child(cvd);
2437 } else {
2438 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2439 TQ_SLEEP) != TASKQID_INVALID);
2440 }
2441 }
2442 if (tq != NULL) {
2443 taskq_wait(tq);
2444 taskq_destroy(tq);
2445 }
2446 for (int c = 0; c < children; c++) {
2447 int error = vd->vdev_child[c]->vdev_validate_error;
2448
2449 if (error != 0)
2450 return (SET_ERROR(EBADF));
2451 }
2452
2453
2454 /*
2455 * If the device has already failed, or was marked offline, don't do
2456 * any further validation. Otherwise, label I/O will fail and we will
2457 * overwrite the previous state.
2458 */
2459 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2460 return (0);
2461
2462 /*
2463 * If we are performing an extreme rewind, we allow for a label that
2464 * was modified at a point after the current txg.
2465 * If config lock is not held do not check for the txg. spa_sync could
2466 * be updating the vdev's label before updating spa_last_synced_txg.
2467 */
2468 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2469 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2470 txg = UINT64_MAX;
2471 else
2472 txg = spa_last_synced_txg(spa);
2473
2474 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2475 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2476 VDEV_AUX_BAD_LABEL);
2477 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2478 "txg %llu", (u_longlong_t)txg);
2479 return (0);
2480 }
2481
2482 /*
2483 * Determine if this vdev has been split off into another
2484 * pool. If so, then refuse to open it.
2485 */
2486 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2487 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2488 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2489 VDEV_AUX_SPLIT_POOL);
2490 nvlist_free(label);
2491 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2492 return (0);
2493 }
2494
2495 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2496 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2497 VDEV_AUX_CORRUPT_DATA);
2498 nvlist_free(label);
2499 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2500 ZPOOL_CONFIG_POOL_GUID);
2501 return (0);
2502 }
2503
2504 /*
2505 * If config is not trusted then ignore the spa guid check. This is
2506 * necessary because if the machine crashed during a re-guid the new
2507 * guid might have been written to all of the vdev labels, but not the
2508 * cached config. The check will be performed again once we have the
2509 * trusted config from the MOS.
2510 */
2511 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2512 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2513 VDEV_AUX_CORRUPT_DATA);
2514 nvlist_free(label);
2515 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2516 "match config (%llu != %llu)", (u_longlong_t)guid,
2517 (u_longlong_t)spa_guid(spa));
2518 return (0);
2519 }
2520
2521 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2522 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2523 &aux_guid) != 0)
2524 aux_guid = 0;
2525
2526 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2527 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2528 VDEV_AUX_CORRUPT_DATA);
2529 nvlist_free(label);
2530 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2531 ZPOOL_CONFIG_GUID);
2532 return (0);
2533 }
2534
2535 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2536 != 0) {
2537 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2538 VDEV_AUX_CORRUPT_DATA);
2539 nvlist_free(label);
2540 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2541 ZPOOL_CONFIG_TOP_GUID);
2542 return (0);
2543 }
2544
2545 /*
2546 * If this vdev just became a top-level vdev because its sibling was
2547 * detached, it will have adopted the parent's vdev guid -- but the
2548 * label may or may not be on disk yet. Fortunately, either version
2549 * of the label will have the same top guid, so if we're a top-level
2550 * vdev, we can safely compare to that instead.
2551 * However, if the config comes from a cachefile that failed to update
2552 * after the detach, a top-level vdev will appear as a non top-level
2553 * vdev in the config. Also relax the constraints if we perform an
2554 * extreme rewind.
2555 *
2556 * If we split this vdev off instead, then we also check the
2557 * original pool's guid. We don't want to consider the vdev
2558 * corrupt if it is partway through a split operation.
2559 */
2560 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2561 boolean_t mismatch = B_FALSE;
2562 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2563 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2564 mismatch = B_TRUE;
2565 } else {
2566 if (vd->vdev_guid != top_guid &&
2567 vd->vdev_top->vdev_guid != guid)
2568 mismatch = B_TRUE;
2569 }
2570
2571 if (mismatch) {
2572 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2573 VDEV_AUX_CORRUPT_DATA);
2574 nvlist_free(label);
2575 vdev_dbgmsg(vd, "vdev_validate: config guid "
2576 "doesn't match label guid");
2577 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2578 (u_longlong_t)vd->vdev_guid,
2579 (u_longlong_t)vd->vdev_top->vdev_guid);
2580 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2581 "aux_guid %llu", (u_longlong_t)guid,
2582 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2583 return (0);
2584 }
2585 }
2586
2587 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2588 &state) != 0) {
2589 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2590 VDEV_AUX_CORRUPT_DATA);
2591 nvlist_free(label);
2592 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2593 ZPOOL_CONFIG_POOL_STATE);
2594 return (0);
2595 }
2596
2597 nvlist_free(label);
2598
2599 /*
2600 * If this is a verbatim import, no need to check the
2601 * state of the pool.
2602 */
2603 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2604 spa_load_state(spa) == SPA_LOAD_OPEN &&
2605 state != POOL_STATE_ACTIVE) {
2606 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2607 "for spa %s", (u_longlong_t)state, spa->spa_name);
2608 return (SET_ERROR(EBADF));
2609 }
2610
2611 /*
2612 * If we were able to open and validate a vdev that was
2613 * previously marked permanently unavailable, clear that state
2614 * now.
2615 */
2616 if (vd->vdev_not_present)
2617 vd->vdev_not_present = 0;
2618
2619 return (0);
2620 }
2621
2622 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2623 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2624 {
2625 if (svd != NULL && *dvd != NULL) {
2626 if (strcmp(svd, *dvd) != 0) {
2627 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2628 "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2629 *dvd, svd);
2630 spa_strfree(*dvd);
2631 *dvd = spa_strdup(svd);
2632 }
2633 } else if (svd != NULL) {
2634 *dvd = spa_strdup(svd);
2635 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2636 (u_longlong_t)guid, *dvd);
2637 }
2638 }
2639
2640 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2641 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2642 {
2643 char *old, *new;
2644
2645 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2646 dvd->vdev_guid);
2647
2648 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2649 dvd->vdev_guid);
2650
2651 vdev_update_path("vdev_physpath", svd->vdev_physpath,
2652 &dvd->vdev_physpath, dvd->vdev_guid);
2653
2654 /*
2655 * Our enclosure sysfs path may have changed between imports
2656 */
2657 old = dvd->vdev_enc_sysfs_path;
2658 new = svd->vdev_enc_sysfs_path;
2659 if ((old != NULL && new == NULL) ||
2660 (old == NULL && new != NULL) ||
2661 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2662 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2663 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2664 old, new);
2665
2666 if (dvd->vdev_enc_sysfs_path)
2667 spa_strfree(dvd->vdev_enc_sysfs_path);
2668
2669 if (svd->vdev_enc_sysfs_path) {
2670 dvd->vdev_enc_sysfs_path = spa_strdup(
2671 svd->vdev_enc_sysfs_path);
2672 } else {
2673 dvd->vdev_enc_sysfs_path = NULL;
2674 }
2675 }
2676 }
2677
2678 /*
2679 * Recursively copy vdev paths from one vdev to another. Source and destination
2680 * vdev trees must have same geometry otherwise return error. Intended to copy
2681 * paths from userland config into MOS config.
2682 */
2683 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2684 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2685 {
2686 if ((svd->vdev_ops == &vdev_missing_ops) ||
2687 (svd->vdev_ishole && dvd->vdev_ishole) ||
2688 (dvd->vdev_ops == &vdev_indirect_ops))
2689 return (0);
2690
2691 if (svd->vdev_ops != dvd->vdev_ops) {
2692 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2693 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2694 return (SET_ERROR(EINVAL));
2695 }
2696
2697 if (svd->vdev_guid != dvd->vdev_guid) {
2698 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2699 "%llu)", (u_longlong_t)svd->vdev_guid,
2700 (u_longlong_t)dvd->vdev_guid);
2701 return (SET_ERROR(EINVAL));
2702 }
2703
2704 if (svd->vdev_children != dvd->vdev_children) {
2705 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2706 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2707 (u_longlong_t)dvd->vdev_children);
2708 return (SET_ERROR(EINVAL));
2709 }
2710
2711 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2712 int error = vdev_copy_path_strict(svd->vdev_child[i],
2713 dvd->vdev_child[i]);
2714 if (error != 0)
2715 return (error);
2716 }
2717
2718 if (svd->vdev_ops->vdev_op_leaf)
2719 vdev_copy_path_impl(svd, dvd);
2720
2721 return (0);
2722 }
2723
2724 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2725 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2726 {
2727 ASSERT(stvd->vdev_top == stvd);
2728 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2729
2730 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2731 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2732 }
2733
2734 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2735 return;
2736
2737 /*
2738 * The idea here is that while a vdev can shift positions within
2739 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2740 * step outside of it.
2741 */
2742 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2743
2744 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2745 return;
2746
2747 ASSERT(vd->vdev_ops->vdev_op_leaf);
2748
2749 vdev_copy_path_impl(vd, dvd);
2750 }
2751
2752 /*
2753 * Recursively copy vdev paths from one root vdev to another. Source and
2754 * destination vdev trees may differ in geometry. For each destination leaf
2755 * vdev, search a vdev with the same guid and top vdev id in the source.
2756 * Intended to copy paths from userland config into MOS config.
2757 */
2758 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2759 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2760 {
2761 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2762 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2763 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2764
2765 for (uint64_t i = 0; i < children; i++) {
2766 vdev_copy_path_search(srvd->vdev_child[i],
2767 drvd->vdev_child[i]);
2768 }
2769 }
2770
2771 /*
2772 * Close a virtual device.
2773 */
2774 void
vdev_close(vdev_t * vd)2775 vdev_close(vdev_t *vd)
2776 {
2777 vdev_t *pvd = vd->vdev_parent;
2778 spa_t *spa __maybe_unused = vd->vdev_spa;
2779
2780 ASSERT(vd != NULL);
2781 ASSERT(vd->vdev_open_thread == curthread ||
2782 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2783
2784 /*
2785 * If our parent is reopening, then we are as well, unless we are
2786 * going offline.
2787 */
2788 if (pvd != NULL && pvd->vdev_reopening)
2789 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2790
2791 vd->vdev_ops->vdev_op_close(vd);
2792
2793 /*
2794 * We record the previous state before we close it, so that if we are
2795 * doing a reopen(), we don't generate FMA ereports if we notice that
2796 * it's still faulted.
2797 */
2798 vd->vdev_prevstate = vd->vdev_state;
2799
2800 if (vd->vdev_offline)
2801 vd->vdev_state = VDEV_STATE_OFFLINE;
2802 else
2803 vd->vdev_state = VDEV_STATE_CLOSED;
2804 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2805 }
2806
2807 void
vdev_hold(vdev_t * vd)2808 vdev_hold(vdev_t *vd)
2809 {
2810 spa_t *spa = vd->vdev_spa;
2811
2812 ASSERT(spa_is_root(spa));
2813 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2814 return;
2815
2816 for (int c = 0; c < vd->vdev_children; c++)
2817 vdev_hold(vd->vdev_child[c]);
2818
2819 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2820 vd->vdev_ops->vdev_op_hold(vd);
2821 }
2822
2823 void
vdev_rele(vdev_t * vd)2824 vdev_rele(vdev_t *vd)
2825 {
2826 ASSERT(spa_is_root(vd->vdev_spa));
2827 for (int c = 0; c < vd->vdev_children; c++)
2828 vdev_rele(vd->vdev_child[c]);
2829
2830 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2831 vd->vdev_ops->vdev_op_rele(vd);
2832 }
2833
2834 /*
2835 * Reopen all interior vdevs and any unopened leaves. We don't actually
2836 * reopen leaf vdevs which had previously been opened as they might deadlock
2837 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2838 * If the leaf has never been opened then open it, as usual.
2839 */
2840 void
vdev_reopen(vdev_t * vd)2841 vdev_reopen(vdev_t *vd)
2842 {
2843 spa_t *spa = vd->vdev_spa;
2844
2845 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2846
2847 /* set the reopening flag unless we're taking the vdev offline */
2848 vd->vdev_reopening = !vd->vdev_offline;
2849 vdev_close(vd);
2850 (void) vdev_open(vd);
2851
2852 /*
2853 * Call vdev_validate() here to make sure we have the same device.
2854 * Otherwise, a device with an invalid label could be successfully
2855 * opened in response to vdev_reopen().
2856 */
2857 if (vd->vdev_aux) {
2858 (void) vdev_validate_aux(vd);
2859 if (vdev_readable(vd) && vdev_writeable(vd) &&
2860 vd->vdev_aux == &spa->spa_l2cache) {
2861 /*
2862 * In case the vdev is present we should evict all ARC
2863 * buffers and pointers to log blocks and reclaim their
2864 * space before restoring its contents to L2ARC.
2865 */
2866 if (l2arc_vdev_present(vd)) {
2867 l2arc_rebuild_vdev(vd, B_TRUE);
2868 } else {
2869 l2arc_add_vdev(spa, vd);
2870 }
2871 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2872 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2873 }
2874 } else {
2875 (void) vdev_validate(vd);
2876 }
2877
2878 /*
2879 * Recheck if resilver is still needed and cancel any
2880 * scheduled resilver if resilver is unneeded.
2881 */
2882 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2883 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2884 mutex_enter(&spa->spa_async_lock);
2885 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2886 mutex_exit(&spa->spa_async_lock);
2887 }
2888
2889 /*
2890 * Reassess parent vdev's health.
2891 */
2892 vdev_propagate_state(vd);
2893 }
2894
2895 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2896 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2897 {
2898 int error;
2899
2900 /*
2901 * Normally, partial opens (e.g. of a mirror) are allowed.
2902 * For a create, however, we want to fail the request if
2903 * there are any components we can't open.
2904 */
2905 error = vdev_open(vd);
2906
2907 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2908 vdev_close(vd);
2909 return (error ? error : SET_ERROR(ENXIO));
2910 }
2911
2912 /*
2913 * Recursively load DTLs and initialize all labels.
2914 */
2915 if ((error = vdev_dtl_load(vd)) != 0 ||
2916 (error = vdev_label_init(vd, txg, isreplacing ?
2917 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2918 vdev_close(vd);
2919 return (error);
2920 }
2921
2922 return (0);
2923 }
2924
2925 void
vdev_metaslab_set_size(vdev_t * vd)2926 vdev_metaslab_set_size(vdev_t *vd)
2927 {
2928 uint64_t asize = vd->vdev_asize;
2929 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2930 uint64_t ms_shift;
2931
2932 /*
2933 * There are two dimensions to the metaslab sizing calculation:
2934 * the size of the metaslab and the count of metaslabs per vdev.
2935 *
2936 * The default values used below are a good balance between memory
2937 * usage (larger metaslab size means more memory needed for loaded
2938 * metaslabs; more metaslabs means more memory needed for the
2939 * metaslab_t structs), metaslab load time (larger metaslabs take
2940 * longer to load), and metaslab sync time (more metaslabs means
2941 * more time spent syncing all of them).
2942 *
2943 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2944 * The range of the dimensions are as follows:
2945 *
2946 * 2^29 <= ms_size <= 2^34
2947 * 16 <= ms_count <= 131,072
2948 *
2949 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2950 * at least 512MB (2^29) to minimize fragmentation effects when
2951 * testing with smaller devices. However, the count constraint
2952 * of at least 16 metaslabs will override this minimum size goal.
2953 *
2954 * On the upper end of vdev sizes, we aim for a maximum metaslab
2955 * size of 16GB. However, we will cap the total count to 2^17
2956 * metaslabs to keep our memory footprint in check and let the
2957 * metaslab size grow from there if that limit is hit.
2958 *
2959 * The net effect of applying above constrains is summarized below.
2960 *
2961 * vdev size metaslab count
2962 * --------------|-----------------
2963 * < 8GB ~16
2964 * 8GB - 100GB one per 512MB
2965 * 100GB - 3TB ~200
2966 * 3TB - 2PB one per 16GB
2967 * > 2PB ~131,072
2968 * --------------------------------
2969 *
2970 * Finally, note that all of the above calculate the initial
2971 * number of metaslabs. Expanding a top-level vdev will result
2972 * in additional metaslabs being allocated making it possible
2973 * to exceed the zfs_vdev_ms_count_limit.
2974 */
2975
2976 if (ms_count < zfs_vdev_min_ms_count)
2977 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2978 else if (ms_count > zfs_vdev_default_ms_count)
2979 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2980 else
2981 ms_shift = zfs_vdev_default_ms_shift;
2982
2983 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2984 ms_shift = SPA_MAXBLOCKSHIFT;
2985 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2986 ms_shift = zfs_vdev_max_ms_shift;
2987 /* cap the total count to constrain memory footprint */
2988 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2989 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2990 }
2991
2992 vd->vdev_ms_shift = ms_shift;
2993 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2994 }
2995
2996 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2997 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2998 {
2999 ASSERT(vd == vd->vdev_top);
3000 /* indirect vdevs don't have metaslabs or dtls */
3001 ASSERT(vdev_is_concrete(vd) || flags == 0);
3002 ASSERT(ISP2(flags));
3003 ASSERT(spa_writeable(vd->vdev_spa));
3004
3005 if (flags & VDD_METASLAB)
3006 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
3007
3008 if (flags & VDD_DTL)
3009 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
3010
3011 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
3012 }
3013
3014 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)3015 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
3016 {
3017 for (int c = 0; c < vd->vdev_children; c++)
3018 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
3019
3020 if (vd->vdev_ops->vdev_op_leaf)
3021 vdev_dirty(vd->vdev_top, flags, vd, txg);
3022 }
3023
3024 /*
3025 * DTLs.
3026 *
3027 * A vdev's DTL (dirty time log) is the set of transaction groups for which
3028 * the vdev has less than perfect replication. There are four kinds of DTL:
3029 *
3030 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
3031 *
3032 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
3033 *
3034 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
3035 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
3036 * txgs that was scrubbed.
3037 *
3038 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3039 * persistent errors or just some device being offline.
3040 * Unlike the other three, the DTL_OUTAGE map is not generally
3041 * maintained; it's only computed when needed, typically to
3042 * determine whether a device can be detached.
3043 *
3044 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3045 * either has the data or it doesn't.
3046 *
3047 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3048 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3049 * if any child is less than fully replicated, then so is its parent.
3050 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3051 * comprising only those txgs which appear in 'maxfaults' or more children;
3052 * those are the txgs we don't have enough replication to read. For example,
3053 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3054 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3055 * two child DTL_MISSING maps.
3056 *
3057 * It should be clear from the above that to compute the DTLs and outage maps
3058 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3059 * Therefore, that is all we keep on disk. When loading the pool, or after
3060 * a configuration change, we generate all other DTLs from first principles.
3061 */
3062 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3063 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3064 {
3065 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3066
3067 ASSERT(t < DTL_TYPES);
3068 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3069 ASSERT(spa_writeable(vd->vdev_spa));
3070
3071 mutex_enter(&vd->vdev_dtl_lock);
3072 if (!zfs_range_tree_contains(rt, txg, size))
3073 zfs_range_tree_add(rt, txg, size);
3074 mutex_exit(&vd->vdev_dtl_lock);
3075 }
3076
3077 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3078 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3079 {
3080 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3081 boolean_t dirty = B_FALSE;
3082
3083 ASSERT(t < DTL_TYPES);
3084 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3085
3086 /*
3087 * While we are loading the pool, the DTLs have not been loaded yet.
3088 * This isn't a problem but it can result in devices being tried
3089 * which are known to not have the data. In which case, the import
3090 * is relying on the checksum to ensure that we get the right data.
3091 * Note that while importing we are only reading the MOS, which is
3092 * always checksummed.
3093 */
3094 mutex_enter(&vd->vdev_dtl_lock);
3095 if (!zfs_range_tree_is_empty(rt))
3096 dirty = zfs_range_tree_contains(rt, txg, size);
3097 mutex_exit(&vd->vdev_dtl_lock);
3098
3099 return (dirty);
3100 }
3101
3102 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3103 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3104 {
3105 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3106 boolean_t empty;
3107
3108 mutex_enter(&vd->vdev_dtl_lock);
3109 empty = zfs_range_tree_is_empty(rt);
3110 mutex_exit(&vd->vdev_dtl_lock);
3111
3112 return (empty);
3113 }
3114
3115 /*
3116 * Check if the txg falls within the range which must be
3117 * resilvered. DVAs outside this range can always be skipped.
3118 */
3119 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3120 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3121 uint64_t phys_birth)
3122 {
3123 (void) dva, (void) psize;
3124
3125 /* Set by sequential resilver. */
3126 if (phys_birth == TXG_UNKNOWN)
3127 return (B_TRUE);
3128
3129 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3130 }
3131
3132 /*
3133 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3134 */
3135 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3136 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3137 uint64_t phys_birth)
3138 {
3139 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3140
3141 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3142 vd->vdev_ops->vdev_op_leaf)
3143 return (B_TRUE);
3144
3145 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3146 phys_birth));
3147 }
3148
3149 /*
3150 * Returns the lowest txg in the DTL range.
3151 */
3152 static uint64_t
vdev_dtl_min(vdev_t * vd)3153 vdev_dtl_min(vdev_t *vd)
3154 {
3155 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3156 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3157 ASSERT0(vd->vdev_children);
3158
3159 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3160 }
3161
3162 /*
3163 * Returns the highest txg in the DTL.
3164 */
3165 static uint64_t
vdev_dtl_max(vdev_t * vd)3166 vdev_dtl_max(vdev_t *vd)
3167 {
3168 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3169 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3170 ASSERT0(vd->vdev_children);
3171
3172 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3173 }
3174
3175 /*
3176 * Determine if a resilvering vdev should remove any DTL entries from
3177 * its range. If the vdev was resilvering for the entire duration of the
3178 * scan then it should excise that range from its DTLs. Otherwise, this
3179 * vdev is considered partially resilvered and should leave its DTL
3180 * entries intact. The comment in vdev_dtl_reassess() describes how we
3181 * excise the DTLs.
3182 */
3183 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3184 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3185 {
3186 ASSERT0(vd->vdev_children);
3187
3188 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3189 return (B_FALSE);
3190
3191 if (vd->vdev_resilver_deferred)
3192 return (B_FALSE);
3193
3194 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3195 return (B_TRUE);
3196
3197 if (rebuild_done) {
3198 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3199 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3200
3201 /* Rebuild not initiated by attach */
3202 if (vd->vdev_rebuild_txg == 0)
3203 return (B_TRUE);
3204
3205 /*
3206 * When a rebuild completes without error then all missing data
3207 * up to the rebuild max txg has been reconstructed and the DTL
3208 * is eligible for excision.
3209 */
3210 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3211 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3212 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3213 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3214 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3215 return (B_TRUE);
3216 }
3217 } else {
3218 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3219 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3220
3221 /* Resilver not initiated by attach */
3222 if (vd->vdev_resilver_txg == 0)
3223 return (B_TRUE);
3224
3225 /*
3226 * When a resilver is initiated the scan will assign the
3227 * scn_max_txg value to the highest txg value that exists
3228 * in all DTLs. If this device's max DTL is not part of this
3229 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3230 * then it is not eligible for excision.
3231 */
3232 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3233 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3234 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3235 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3236 return (B_TRUE);
3237 }
3238 }
3239
3240 return (B_FALSE);
3241 }
3242
3243 /*
3244 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3245 * write operations will be issued to the pool.
3246 */
3247 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3248 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3249 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3250 {
3251 spa_t *spa = vd->vdev_spa;
3252 avl_tree_t reftree;
3253 int minref;
3254
3255 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3256
3257 for (int c = 0; c < vd->vdev_children; c++)
3258 vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3259 scrub_txg, scrub_done, rebuild_done, faulting);
3260
3261 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3262 return;
3263
3264 if (vd->vdev_ops->vdev_op_leaf) {
3265 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3266 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3267 boolean_t check_excise = B_FALSE;
3268 boolean_t wasempty = B_TRUE;
3269
3270 mutex_enter(&vd->vdev_dtl_lock);
3271
3272 /*
3273 * If requested, pretend the scan or rebuild completed cleanly.
3274 */
3275 if (zfs_scan_ignore_errors) {
3276 if (scn != NULL)
3277 scn->scn_phys.scn_errors = 0;
3278 if (vr != NULL)
3279 vr->vr_rebuild_phys.vrp_errors = 0;
3280 }
3281
3282 if (scrub_txg != 0 &&
3283 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3284 wasempty = B_FALSE;
3285 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3286 "dtl:%llu/%llu errors:%llu",
3287 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3288 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3289 (u_longlong_t)vdev_dtl_min(vd),
3290 (u_longlong_t)vdev_dtl_max(vd),
3291 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3292 }
3293
3294 /*
3295 * If we've completed a scrub/resilver or a rebuild cleanly
3296 * then determine if this vdev should remove any DTLs. We
3297 * only want to excise regions on vdevs that were available
3298 * during the entire duration of this scan.
3299 */
3300 if (rebuild_done &&
3301 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3302 check_excise = B_TRUE;
3303 } else {
3304 if (spa->spa_scrub_started ||
3305 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3306 check_excise = B_TRUE;
3307 }
3308 }
3309
3310 if (scrub_txg && check_excise &&
3311 vdev_dtl_should_excise(vd, rebuild_done)) {
3312 /*
3313 * We completed a scrub, resilver or rebuild up to
3314 * scrub_txg. If we did it without rebooting, then
3315 * the scrub dtl will be valid, so excise the old
3316 * region and fold in the scrub dtl. Otherwise,
3317 * leave the dtl as-is if there was an error.
3318 *
3319 * There's little trick here: to excise the beginning
3320 * of the DTL_MISSING map, we put it into a reference
3321 * tree and then add a segment with refcnt -1 that
3322 * covers the range [0, scrub_txg). This means
3323 * that each txg in that range has refcnt -1 or 0.
3324 * We then add DTL_SCRUB with a refcnt of 2, so that
3325 * entries in the range [0, scrub_txg) will have a
3326 * positive refcnt -- either 1 or 2. We then convert
3327 * the reference tree into the new DTL_MISSING map.
3328 */
3329 space_reftree_create(&reftree);
3330 space_reftree_add_map(&reftree,
3331 vd->vdev_dtl[DTL_MISSING], 1);
3332 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3333 space_reftree_add_map(&reftree,
3334 vd->vdev_dtl[DTL_SCRUB], 2);
3335 space_reftree_generate_map(&reftree,
3336 vd->vdev_dtl[DTL_MISSING], 1);
3337 space_reftree_destroy(&reftree);
3338
3339 if (!zfs_range_tree_is_empty(
3340 vd->vdev_dtl[DTL_MISSING])) {
3341 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3342 (u_longlong_t)vdev_dtl_min(vd),
3343 (u_longlong_t)vdev_dtl_max(vd));
3344 } else if (!wasempty) {
3345 zfs_dbgmsg("DTL_MISSING is now empty");
3346 }
3347 }
3348 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3349 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3350 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3351 if (scrub_done)
3352 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3353 NULL);
3354 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3355
3356 /*
3357 * For the faulting case, treat members of a replacing vdev
3358 * as if they are not available. It's more likely than not that
3359 * a vdev in a replacing vdev could encounter read errors so
3360 * treat it as not being able to contribute.
3361 */
3362 if (!vdev_readable(vd) ||
3363 (faulting && vd->vdev_parent != NULL &&
3364 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3365 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3366 } else {
3367 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3368 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3369 }
3370
3371 /*
3372 * If the vdev was resilvering or rebuilding and no longer
3373 * has any DTLs then reset the appropriate flag and dirty
3374 * the top level so that we persist the change.
3375 */
3376 if (txg != 0 &&
3377 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3378 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3379 if (vd->vdev_rebuild_txg != 0) {
3380 vd->vdev_rebuild_txg = 0;
3381 vdev_config_dirty(vd->vdev_top);
3382 } else if (vd->vdev_resilver_txg != 0) {
3383 vd->vdev_resilver_txg = 0;
3384 vdev_config_dirty(vd->vdev_top);
3385 }
3386 }
3387
3388 mutex_exit(&vd->vdev_dtl_lock);
3389
3390 if (txg != 0)
3391 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3392 } else {
3393 mutex_enter(&vd->vdev_dtl_lock);
3394 for (int t = 0; t < DTL_TYPES; t++) {
3395 /* account for child's outage in parent's missing map */
3396 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3397 if (t == DTL_SCRUB) {
3398 /* leaf vdevs only */
3399 continue;
3400 }
3401 if (t == DTL_PARTIAL) {
3402 /* i.e. non-zero */
3403 minref = 1;
3404 } else if (vdev_get_nparity(vd) != 0) {
3405 /* RAIDZ, DRAID */
3406 minref = vdev_get_nparity(vd) + 1;
3407 } else {
3408 /* any kind of mirror */
3409 minref = vd->vdev_children;
3410 }
3411 space_reftree_create(&reftree);
3412 for (int c = 0; c < vd->vdev_children; c++) {
3413 vdev_t *cvd = vd->vdev_child[c];
3414 mutex_enter(&cvd->vdev_dtl_lock);
3415 space_reftree_add_map(&reftree,
3416 cvd->vdev_dtl[s], 1);
3417 mutex_exit(&cvd->vdev_dtl_lock);
3418 }
3419 space_reftree_generate_map(&reftree,
3420 vd->vdev_dtl[t], minref);
3421 space_reftree_destroy(&reftree);
3422 }
3423 mutex_exit(&vd->vdev_dtl_lock);
3424 }
3425
3426 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3427 raidz_dtl_reassessed(vd);
3428 }
3429 }
3430
3431 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3432 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3433 boolean_t scrub_done, boolean_t rebuild_done)
3434 {
3435 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3436 rebuild_done, B_FALSE));
3437 }
3438
3439 /*
3440 * Iterate over all the vdevs except spare, and post kobj events
3441 */
3442 void
vdev_post_kobj_evt(vdev_t * vd)3443 vdev_post_kobj_evt(vdev_t *vd)
3444 {
3445 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3446 vd->vdev_kobj_flag == B_FALSE) {
3447 vd->vdev_kobj_flag = B_TRUE;
3448 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3449 }
3450
3451 for (int c = 0; c < vd->vdev_children; c++)
3452 vdev_post_kobj_evt(vd->vdev_child[c]);
3453 }
3454
3455 /*
3456 * Iterate over all the vdevs except spare, and clear kobj events
3457 */
3458 void
vdev_clear_kobj_evt(vdev_t * vd)3459 vdev_clear_kobj_evt(vdev_t *vd)
3460 {
3461 vd->vdev_kobj_flag = B_FALSE;
3462
3463 for (int c = 0; c < vd->vdev_children; c++)
3464 vdev_clear_kobj_evt(vd->vdev_child[c]);
3465 }
3466
3467 int
vdev_dtl_load(vdev_t * vd)3468 vdev_dtl_load(vdev_t *vd)
3469 {
3470 spa_t *spa = vd->vdev_spa;
3471 objset_t *mos = spa->spa_meta_objset;
3472 zfs_range_tree_t *rt;
3473 int error = 0;
3474
3475 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3476 ASSERT(vdev_is_concrete(vd));
3477
3478 /*
3479 * If the dtl cannot be sync'd there is no need to open it.
3480 */
3481 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3482 return (0);
3483
3484 error = space_map_open(&vd->vdev_dtl_sm, mos,
3485 vd->vdev_dtl_object, 0, -1ULL, 0);
3486 if (error)
3487 return (error);
3488 ASSERT(vd->vdev_dtl_sm != NULL);
3489
3490 rt = zfs_range_tree_create_flags(
3491 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3492 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt"));
3493 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3494 if (error == 0) {
3495 mutex_enter(&vd->vdev_dtl_lock);
3496 zfs_range_tree_walk(rt, zfs_range_tree_add,
3497 vd->vdev_dtl[DTL_MISSING]);
3498 mutex_exit(&vd->vdev_dtl_lock);
3499 }
3500
3501 zfs_range_tree_vacate(rt, NULL, NULL);
3502 zfs_range_tree_destroy(rt);
3503
3504 return (error);
3505 }
3506
3507 for (int c = 0; c < vd->vdev_children; c++) {
3508 error = vdev_dtl_load(vd->vdev_child[c]);
3509 if (error != 0)
3510 break;
3511 }
3512
3513 return (error);
3514 }
3515
3516 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3517 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3518 {
3519 spa_t *spa = vd->vdev_spa;
3520 objset_t *mos = spa->spa_meta_objset;
3521 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3522 const char *string;
3523
3524 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3525
3526 string =
3527 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3528 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3529 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3530
3531 ASSERT(string != NULL);
3532 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3533 1, strlen(string) + 1, string, tx));
3534
3535 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3536 spa_activate_allocation_classes(spa, tx);
3537 }
3538 }
3539
3540 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3541 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3542 {
3543 spa_t *spa = vd->vdev_spa;
3544
3545 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3546 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3547 zapobj, tx));
3548 }
3549
3550 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3551 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3552 {
3553 spa_t *spa = vd->vdev_spa;
3554 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3555 DMU_OT_NONE, 0, tx);
3556
3557 ASSERT(zap != 0);
3558 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3559 zap, tx));
3560
3561 return (zap);
3562 }
3563
3564 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3565 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3566 {
3567 if (vd->vdev_ops != &vdev_hole_ops &&
3568 vd->vdev_ops != &vdev_missing_ops &&
3569 vd->vdev_ops != &vdev_root_ops &&
3570 !vd->vdev_top->vdev_removing) {
3571 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3572 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3573 }
3574 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3575 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3576 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3577 vdev_zap_allocation_data(vd, tx);
3578 }
3579 }
3580 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3581 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3582 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3583 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3584 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3585 }
3586
3587 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3588 vdev_construct_zaps(vd->vdev_child[i], tx);
3589 }
3590 }
3591
3592 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3593 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3594 {
3595 spa_t *spa = vd->vdev_spa;
3596 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3597 objset_t *mos = spa->spa_meta_objset;
3598 zfs_range_tree_t *rtsync;
3599 dmu_tx_t *tx;
3600 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3601
3602 ASSERT(vdev_is_concrete(vd));
3603 ASSERT(vd->vdev_ops->vdev_op_leaf);
3604
3605 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3606
3607 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3608 mutex_enter(&vd->vdev_dtl_lock);
3609 space_map_free(vd->vdev_dtl_sm, tx);
3610 space_map_close(vd->vdev_dtl_sm);
3611 vd->vdev_dtl_sm = NULL;
3612 mutex_exit(&vd->vdev_dtl_lock);
3613
3614 /*
3615 * We only destroy the leaf ZAP for detached leaves or for
3616 * removed log devices. Removed data devices handle leaf ZAP
3617 * cleanup later, once cancellation is no longer possible.
3618 */
3619 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3620 vd->vdev_top->vdev_islog)) {
3621 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3622 vd->vdev_leaf_zap = 0;
3623 }
3624
3625 dmu_tx_commit(tx);
3626 return;
3627 }
3628
3629 if (vd->vdev_dtl_sm == NULL) {
3630 uint64_t new_object;
3631
3632 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3633 VERIFY3U(new_object, !=, 0);
3634
3635 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3636 0, -1ULL, 0));
3637 ASSERT(vd->vdev_dtl_sm != NULL);
3638 }
3639
3640 rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3641 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync"));
3642
3643 mutex_enter(&vd->vdev_dtl_lock);
3644 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3645 mutex_exit(&vd->vdev_dtl_lock);
3646
3647 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3648 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3649 zfs_range_tree_vacate(rtsync, NULL, NULL);
3650
3651 zfs_range_tree_destroy(rtsync);
3652
3653 /*
3654 * If the object for the space map has changed then dirty
3655 * the top level so that we update the config.
3656 */
3657 if (object != space_map_object(vd->vdev_dtl_sm)) {
3658 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3659 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3660 (u_longlong_t)object,
3661 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3662 vdev_config_dirty(vd->vdev_top);
3663 }
3664
3665 dmu_tx_commit(tx);
3666 }
3667
3668 /*
3669 * Determine whether the specified vdev can be
3670 * - offlined
3671 * - detached
3672 * - removed
3673 * - faulted
3674 * without losing data.
3675 */
3676 boolean_t
vdev_dtl_required(vdev_t * vd)3677 vdev_dtl_required(vdev_t *vd)
3678 {
3679 spa_t *spa = vd->vdev_spa;
3680 vdev_t *tvd = vd->vdev_top;
3681 uint8_t cant_read = vd->vdev_cant_read;
3682 boolean_t required;
3683 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3684
3685 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3686
3687 if (vd == spa->spa_root_vdev || vd == tvd)
3688 return (B_TRUE);
3689
3690 /*
3691 * Temporarily mark the device as unreadable, and then determine
3692 * whether this results in any DTL outages in the top-level vdev.
3693 * If not, we can safely offline/detach/remove the device.
3694 */
3695 vd->vdev_cant_read = B_TRUE;
3696 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3697 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3698 vd->vdev_cant_read = cant_read;
3699 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3700
3701 if (!required && zio_injection_enabled) {
3702 required = !!zio_handle_device_injection(vd, NULL,
3703 SET_ERROR(ECHILD));
3704 }
3705
3706 return (required);
3707 }
3708
3709 /*
3710 * Determine if resilver is needed, and if so the txg range.
3711 */
3712 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3713 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3714 {
3715 boolean_t needed = B_FALSE;
3716 uint64_t thismin = UINT64_MAX;
3717 uint64_t thismax = 0;
3718
3719 if (vd->vdev_children == 0) {
3720 mutex_enter(&vd->vdev_dtl_lock);
3721 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3722 vdev_writeable(vd)) {
3723
3724 thismin = vdev_dtl_min(vd);
3725 thismax = vdev_dtl_max(vd);
3726 needed = B_TRUE;
3727 }
3728 mutex_exit(&vd->vdev_dtl_lock);
3729 } else {
3730 for (int c = 0; c < vd->vdev_children; c++) {
3731 vdev_t *cvd = vd->vdev_child[c];
3732 uint64_t cmin, cmax;
3733
3734 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3735 thismin = MIN(thismin, cmin);
3736 thismax = MAX(thismax, cmax);
3737 needed = B_TRUE;
3738 }
3739 }
3740 }
3741
3742 if (needed && minp) {
3743 *minp = thismin;
3744 *maxp = thismax;
3745 }
3746 return (needed);
3747 }
3748
3749 /*
3750 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3751 * will contain either the checkpoint spacemap object or zero if none exists.
3752 * All other errors are returned to the caller.
3753 */
3754 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3755 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3756 {
3757 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3758
3759 if (vd->vdev_top_zap == 0) {
3760 *sm_obj = 0;
3761 return (0);
3762 }
3763
3764 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3765 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3766 if (error == ENOENT) {
3767 *sm_obj = 0;
3768 error = 0;
3769 }
3770
3771 return (error);
3772 }
3773
3774 int
vdev_load(vdev_t * vd)3775 vdev_load(vdev_t *vd)
3776 {
3777 int children = vd->vdev_children;
3778 int error = 0;
3779 taskq_t *tq = NULL;
3780
3781 /*
3782 * It's only worthwhile to use the taskq for the root vdev, because the
3783 * slow part is metaslab_init, and that only happens for top-level
3784 * vdevs.
3785 */
3786 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3787 tq = taskq_create("vdev_load", children, minclsyspri,
3788 children, children, TASKQ_PREPOPULATE);
3789 }
3790
3791 /*
3792 * Recursively load all children.
3793 */
3794 for (int c = 0; c < vd->vdev_children; c++) {
3795 vdev_t *cvd = vd->vdev_child[c];
3796
3797 if (tq == NULL || vdev_uses_zvols(cvd)) {
3798 cvd->vdev_load_error = vdev_load(cvd);
3799 } else {
3800 VERIFY(taskq_dispatch(tq, vdev_load_child,
3801 cvd, TQ_SLEEP) != TASKQID_INVALID);
3802 }
3803 }
3804
3805 if (tq != NULL) {
3806 taskq_wait(tq);
3807 taskq_destroy(tq);
3808 }
3809
3810 for (int c = 0; c < vd->vdev_children; c++) {
3811 int error = vd->vdev_child[c]->vdev_load_error;
3812
3813 if (error != 0)
3814 return (error);
3815 }
3816
3817 vdev_set_deflate_ratio(vd);
3818
3819 if (vd->vdev_ops == &vdev_raidz_ops) {
3820 error = vdev_raidz_load(vd);
3821 if (error != 0)
3822 return (error);
3823 }
3824
3825 /*
3826 * On spa_load path, grab the allocation bias from our zap
3827 */
3828 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3829 spa_t *spa = vd->vdev_spa;
3830 char bias_str[64];
3831
3832 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3833 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3834 bias_str);
3835 if (error == 0) {
3836 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3837 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3838 } else if (error != ENOENT) {
3839 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3840 VDEV_AUX_CORRUPT_DATA);
3841 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3842 "failed [error=%d]",
3843 (u_longlong_t)vd->vdev_top_zap, error);
3844 return (error);
3845 }
3846 }
3847
3848 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3849 spa_t *spa = vd->vdev_spa;
3850 uint64_t failfast;
3851
3852 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3853 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3854 1, &failfast);
3855 if (error == 0) {
3856 vd->vdev_failfast = failfast & 1;
3857 } else if (error == ENOENT) {
3858 vd->vdev_failfast = vdev_prop_default_numeric(
3859 VDEV_PROP_FAILFAST);
3860 } else {
3861 vdev_dbgmsg(vd,
3862 "vdev_load: zap_lookup(top_zap=%llu) "
3863 "failed [error=%d]",
3864 (u_longlong_t)vd->vdev_top_zap, error);
3865 }
3866 }
3867
3868 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3869 spa_t *spa = vd->vdev_spa;
3870 uint64_t autosit;
3871
3872 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3873 vdev_prop_to_name(VDEV_PROP_AUTOSIT), sizeof (autosit),
3874 1, &autosit);
3875 if (error == 0) {
3876 vd->vdev_autosit = autosit == 1;
3877 } else if (error == ENOENT) {
3878 vd->vdev_autosit = vdev_prop_default_numeric(
3879 VDEV_PROP_AUTOSIT);
3880 } else {
3881 vdev_dbgmsg(vd,
3882 "vdev_load: zap_lookup(top_zap=%llu) "
3883 "failed [error=%d]",
3884 (u_longlong_t)vd->vdev_top_zap, error);
3885 }
3886 }
3887
3888 /*
3889 * Load any rebuild state from the top-level vdev zap.
3890 */
3891 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3892 error = vdev_rebuild_load(vd);
3893 if (error && error != ENOTSUP) {
3894 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3895 VDEV_AUX_CORRUPT_DATA);
3896 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3897 "failed [error=%d]", error);
3898 return (error);
3899 }
3900 }
3901
3902 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3903 uint64_t zapobj;
3904
3905 if (vd->vdev_top_zap != 0)
3906 zapobj = vd->vdev_top_zap;
3907 else
3908 zapobj = vd->vdev_leaf_zap;
3909
3910 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3911 &vd->vdev_checksum_n);
3912 if (error && error != ENOENT)
3913 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3914 "failed [error=%d]", (u_longlong_t)zapobj, error);
3915
3916 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3917 &vd->vdev_checksum_t);
3918 if (error && error != ENOENT)
3919 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3920 "failed [error=%d]", (u_longlong_t)zapobj, error);
3921
3922 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3923 &vd->vdev_io_n);
3924 if (error && error != ENOENT)
3925 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3926 "failed [error=%d]", (u_longlong_t)zapobj, error);
3927
3928 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3929 &vd->vdev_io_t);
3930 if (error && error != ENOENT)
3931 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3932 "failed [error=%d]", (u_longlong_t)zapobj, error);
3933
3934 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3935 &vd->vdev_slow_io_n);
3936 if (error && error != ENOENT)
3937 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3938 "failed [error=%d]", (u_longlong_t)zapobj, error);
3939
3940 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3941 &vd->vdev_slow_io_t);
3942 if (error && error != ENOENT)
3943 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3944 "failed [error=%d]", (u_longlong_t)zapobj, error);
3945 }
3946
3947 /*
3948 * If this is a top-level vdev, initialize its metaslabs.
3949 */
3950 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3951 vdev_metaslab_group_create(vd);
3952
3953 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3954 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3955 VDEV_AUX_CORRUPT_DATA);
3956 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3957 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3958 (u_longlong_t)vd->vdev_asize);
3959 return (SET_ERROR(ENXIO));
3960 }
3961
3962 error = vdev_metaslab_init(vd, 0);
3963 if (error != 0) {
3964 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3965 "[error=%d]", error);
3966 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3967 VDEV_AUX_CORRUPT_DATA);
3968 return (error);
3969 }
3970
3971 uint64_t checkpoint_sm_obj;
3972 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3973 if (error == 0 && checkpoint_sm_obj != 0) {
3974 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3975 ASSERT(vd->vdev_asize != 0);
3976 ASSERT0P(vd->vdev_checkpoint_sm);
3977
3978 error = space_map_open(&vd->vdev_checkpoint_sm,
3979 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3980 vd->vdev_ashift);
3981 if (error != 0) {
3982 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3983 "failed for checkpoint spacemap (obj %llu) "
3984 "[error=%d]",
3985 (u_longlong_t)checkpoint_sm_obj, error);
3986 return (error);
3987 }
3988 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3989
3990 /*
3991 * Since the checkpoint_sm contains free entries
3992 * exclusively we can use space_map_allocated() to
3993 * indicate the cumulative checkpointed space that
3994 * has been freed.
3995 */
3996 vd->vdev_stat.vs_checkpoint_space =
3997 -space_map_allocated(vd->vdev_checkpoint_sm);
3998 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3999 vd->vdev_stat.vs_checkpoint_space;
4000 } else if (error != 0) {
4001 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
4002 "checkpoint space map object from vdev ZAP "
4003 "[error=%d]", error);
4004 return (error);
4005 }
4006 }
4007
4008 /*
4009 * If this is a leaf vdev, load its DTL.
4010 */
4011 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
4012 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4013 VDEV_AUX_CORRUPT_DATA);
4014 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
4015 "[error=%d]", error);
4016 return (error);
4017 }
4018
4019 uint64_t obsolete_sm_object;
4020 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
4021 if (error == 0 && obsolete_sm_object != 0) {
4022 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4023 ASSERT(vd->vdev_asize != 0);
4024 ASSERT0P(vd->vdev_obsolete_sm);
4025
4026 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
4027 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
4028 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4029 VDEV_AUX_CORRUPT_DATA);
4030 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
4031 "obsolete spacemap (obj %llu) [error=%d]",
4032 (u_longlong_t)obsolete_sm_object, error);
4033 return (error);
4034 }
4035 } else if (error != 0) {
4036 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
4037 "space map object from vdev ZAP [error=%d]", error);
4038 return (error);
4039 }
4040
4041 return (0);
4042 }
4043
4044 /*
4045 * The special vdev case is used for hot spares and l2cache devices. Its
4046 * sole purpose it to set the vdev state for the associated vdev. To do this,
4047 * we make sure that we can open the underlying device, then try to read the
4048 * label, and make sure that the label is sane and that it hasn't been
4049 * repurposed to another pool.
4050 */
4051 int
vdev_validate_aux(vdev_t * vd)4052 vdev_validate_aux(vdev_t *vd)
4053 {
4054 nvlist_t *label;
4055 uint64_t guid, version;
4056 uint64_t state;
4057
4058 if (!vdev_readable(vd))
4059 return (0);
4060
4061 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4062 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4063 VDEV_AUX_CORRUPT_DATA);
4064 return (-1);
4065 }
4066
4067 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4068 !SPA_VERSION_IS_SUPPORTED(version) ||
4069 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4070 guid != vd->vdev_guid ||
4071 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4072 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4073 VDEV_AUX_CORRUPT_DATA);
4074 nvlist_free(label);
4075 return (-1);
4076 }
4077
4078 /*
4079 * We don't actually check the pool state here. If it's in fact in
4080 * use by another pool, we update this fact on the fly when requested.
4081 */
4082 nvlist_free(label);
4083 return (0);
4084 }
4085
4086 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4087 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4088 {
4089 objset_t *mos = spa_meta_objset(vd->vdev_spa);
4090
4091 if (vd->vdev_top_zap == 0)
4092 return;
4093
4094 uint64_t object = 0;
4095 int err = zap_lookup(mos, vd->vdev_top_zap,
4096 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4097 if (err == ENOENT)
4098 return;
4099 VERIFY0(err);
4100
4101 VERIFY0(dmu_object_free(mos, object, tx));
4102 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4103 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4104 }
4105
4106 /*
4107 * Free the objects used to store this vdev's spacemaps, and the array
4108 * that points to them.
4109 */
4110 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4111 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4112 {
4113 if (vd->vdev_ms_array == 0)
4114 return;
4115
4116 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4117 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4118 size_t array_bytes = array_count * sizeof (uint64_t);
4119 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4120 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4121 array_bytes, smobj_array, 0));
4122
4123 for (uint64_t i = 0; i < array_count; i++) {
4124 uint64_t smobj = smobj_array[i];
4125 if (smobj == 0)
4126 continue;
4127
4128 space_map_free_obj(mos, smobj, tx);
4129 }
4130
4131 kmem_free(smobj_array, array_bytes);
4132 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4133 vdev_destroy_ms_flush_data(vd, tx);
4134 vd->vdev_ms_array = 0;
4135 }
4136
4137 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4138 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4139 {
4140 spa_t *spa = vd->vdev_spa;
4141
4142 ASSERT(vd->vdev_islog);
4143 ASSERT(vd == vd->vdev_top);
4144 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4145
4146 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4147
4148 vdev_destroy_spacemaps(vd, tx);
4149 if (vd->vdev_top_zap != 0) {
4150 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4151 vd->vdev_top_zap = 0;
4152 }
4153
4154 dmu_tx_commit(tx);
4155 }
4156
4157 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4158 vdev_sync_done(vdev_t *vd, uint64_t txg)
4159 {
4160 metaslab_t *msp;
4161 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4162
4163 ASSERT(vdev_is_concrete(vd));
4164
4165 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4166 != NULL)
4167 metaslab_sync_done(msp, txg);
4168
4169 if (reassess) {
4170 metaslab_sync_reassess(vd->vdev_mg);
4171 if (vd->vdev_log_mg != NULL)
4172 metaslab_sync_reassess(vd->vdev_log_mg);
4173 }
4174 }
4175
4176 void
vdev_sync(vdev_t * vd,uint64_t txg)4177 vdev_sync(vdev_t *vd, uint64_t txg)
4178 {
4179 spa_t *spa = vd->vdev_spa;
4180 vdev_t *lvd;
4181 metaslab_t *msp;
4182
4183 ASSERT3U(txg, ==, spa->spa_syncing_txg);
4184 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4185 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4186 ASSERT(vd->vdev_removing ||
4187 vd->vdev_ops == &vdev_indirect_ops);
4188
4189 vdev_indirect_sync_obsolete(vd, tx);
4190
4191 /*
4192 * If the vdev is indirect, it can't have dirty
4193 * metaslabs or DTLs.
4194 */
4195 if (vd->vdev_ops == &vdev_indirect_ops) {
4196 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4197 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4198 dmu_tx_commit(tx);
4199 return;
4200 }
4201 }
4202
4203 ASSERT(vdev_is_concrete(vd));
4204
4205 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4206 !vd->vdev_removing) {
4207 ASSERT(vd == vd->vdev_top);
4208 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4209 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4210 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4211 ASSERT(vd->vdev_ms_array != 0);
4212 vdev_config_dirty(vd);
4213 }
4214
4215 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4216 metaslab_sync(msp, txg);
4217 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4218 }
4219
4220 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4221 vdev_dtl_sync(lvd, txg);
4222
4223 /*
4224 * If this is an empty log device being removed, destroy the
4225 * metadata associated with it.
4226 */
4227 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4228 vdev_remove_empty_log(vd, txg);
4229
4230 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4231 dmu_tx_commit(tx);
4232 }
4233 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4234 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4235 {
4236 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4237 }
4238
4239 /*
4240 * Return the amount of space that should be (or was) allocated for the given
4241 * psize (compressed block size) in the given TXG. Note that for expanded
4242 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4243 * vdev_raidz_psize_to_asize().
4244 */
4245 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4246 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4247 {
4248 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4249 }
4250
4251 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4252 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4253 {
4254 return (vdev_psize_to_asize_txg(vd, psize, 0));
4255 }
4256
4257 /*
4258 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4259 * not be opened, and no I/O is attempted.
4260 */
4261 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4262 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4263 {
4264 vdev_t *vd, *tvd;
4265
4266 spa_vdev_state_enter(spa, SCL_NONE);
4267
4268 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4269 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4270
4271 if (!vd->vdev_ops->vdev_op_leaf)
4272 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4273
4274 tvd = vd->vdev_top;
4275
4276 /*
4277 * If user did a 'zpool offline -f' then make the fault persist across
4278 * reboots.
4279 */
4280 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4281 /*
4282 * There are two kinds of forced faults: temporary and
4283 * persistent. Temporary faults go away at pool import, while
4284 * persistent faults stay set. Both types of faults can be
4285 * cleared with a zpool clear.
4286 *
4287 * We tell if a vdev is persistently faulted by looking at the
4288 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4289 * import then it's a persistent fault. Otherwise, it's
4290 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4291 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4292 * tells vdev_config_generate() (which gets run later) to set
4293 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4294 */
4295 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4296 vd->vdev_tmpoffline = B_FALSE;
4297 aux = VDEV_AUX_EXTERNAL;
4298 } else {
4299 vd->vdev_tmpoffline = B_TRUE;
4300 }
4301
4302 /*
4303 * We don't directly use the aux state here, but if we do a
4304 * vdev_reopen(), we need this value to be present to remember why we
4305 * were faulted.
4306 */
4307 vd->vdev_label_aux = aux;
4308
4309 /*
4310 * Faulted state takes precedence over degraded.
4311 */
4312 vd->vdev_delayed_close = B_FALSE;
4313 vd->vdev_faulted = 1ULL;
4314 vd->vdev_degraded = 0ULL;
4315 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4316
4317 /*
4318 * If this device has the only valid copy of the data, then
4319 * back off and simply mark the vdev as degraded instead.
4320 */
4321 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4322 vd->vdev_degraded = 1ULL;
4323 vd->vdev_faulted = 0ULL;
4324
4325 /*
4326 * If we reopen the device and it's not dead, only then do we
4327 * mark it degraded.
4328 */
4329 vdev_reopen(tvd);
4330
4331 if (vdev_readable(vd))
4332 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4333 }
4334
4335 return (spa_vdev_state_exit(spa, vd, 0));
4336 }
4337
4338 /*
4339 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4340 * user that something is wrong. The vdev continues to operate as normal as far
4341 * as I/O is concerned.
4342 */
4343 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4344 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4345 {
4346 vdev_t *vd;
4347
4348 spa_vdev_state_enter(spa, SCL_NONE);
4349
4350 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4351 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4352
4353 if (!vd->vdev_ops->vdev_op_leaf)
4354 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4355
4356 /*
4357 * If the vdev is already faulted, then don't do anything.
4358 */
4359 if (vd->vdev_faulted || vd->vdev_degraded)
4360 return (spa_vdev_state_exit(spa, NULL, 0));
4361
4362 vd->vdev_degraded = 1ULL;
4363 if (!vdev_is_dead(vd))
4364 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4365 aux);
4366
4367 return (spa_vdev_state_exit(spa, vd, 0));
4368 }
4369
4370 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4371 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4372 {
4373 vdev_t *vd;
4374
4375 spa_vdev_state_enter(spa, SCL_NONE);
4376
4377 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4378 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4379
4380 /*
4381 * If the vdev is already removed, or expanding which can trigger
4382 * repartition add/remove events, then don't do anything.
4383 */
4384 if (vd->vdev_removed || vd->vdev_expanding)
4385 return (spa_vdev_state_exit(spa, NULL, 0));
4386
4387 /*
4388 * Confirm the vdev has been removed, otherwise don't do anything.
4389 */
4390 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4391 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4392
4393 vd->vdev_remove_wanted = B_TRUE;
4394 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4395
4396 return (spa_vdev_state_exit(spa, vd, 0));
4397 }
4398
4399
4400 /*
4401 * Online the given vdev.
4402 *
4403 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4404 * spare device should be detached when the device finishes resilvering.
4405 * Second, the online should be treated like a 'test' online case, so no FMA
4406 * events are generated if the device fails to open.
4407 */
4408 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4409 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4410 {
4411 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4412 boolean_t wasoffline;
4413 vdev_state_t oldstate;
4414
4415 spa_vdev_state_enter(spa, SCL_NONE);
4416
4417 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4418 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4419
4420 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4421 oldstate = vd->vdev_state;
4422
4423 tvd = vd->vdev_top;
4424 vd->vdev_offline = B_FALSE;
4425 vd->vdev_tmpoffline = B_FALSE;
4426 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4427 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4428
4429 /* XXX - L2ARC 1.0 does not support expansion */
4430 if (!vd->vdev_aux) {
4431 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4432 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4433 spa->spa_autoexpand);
4434 vd->vdev_expansion_time = gethrestime_sec();
4435 }
4436
4437 vdev_reopen(tvd);
4438 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4439
4440 if (!vd->vdev_aux) {
4441 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4442 pvd->vdev_expanding = B_FALSE;
4443 }
4444
4445 if (newstate)
4446 *newstate = vd->vdev_state;
4447 if ((flags & ZFS_ONLINE_UNSPARE) &&
4448 !vdev_is_dead(vd) && vd->vdev_parent &&
4449 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4450 vd->vdev_parent->vdev_child[0] == vd)
4451 vd->vdev_unspare = B_TRUE;
4452
4453 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4454
4455 /* XXX - L2ARC 1.0 does not support expansion */
4456 if (vd->vdev_aux)
4457 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4458 spa->spa_ccw_fail_time = 0;
4459 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4460 }
4461
4462 /* Restart initializing if necessary */
4463 mutex_enter(&vd->vdev_initialize_lock);
4464 if (vdev_writeable(vd) &&
4465 vd->vdev_initialize_thread == NULL &&
4466 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4467 (void) vdev_initialize(vd);
4468 }
4469 mutex_exit(&vd->vdev_initialize_lock);
4470
4471 /*
4472 * Restart trimming if necessary. We do not restart trimming for cache
4473 * devices here. This is triggered by l2arc_rebuild_vdev()
4474 * asynchronously for the whole device or in l2arc_evict() as it evicts
4475 * space for upcoming writes.
4476 */
4477 mutex_enter(&vd->vdev_trim_lock);
4478 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4479 vd->vdev_trim_thread == NULL &&
4480 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4481 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4482 vd->vdev_trim_secure);
4483 }
4484 mutex_exit(&vd->vdev_trim_lock);
4485
4486 if (wasoffline ||
4487 (oldstate < VDEV_STATE_DEGRADED &&
4488 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4489 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4490
4491 /*
4492 * Asynchronously detach spare vdev if resilver or
4493 * rebuild is not required
4494 */
4495 if (vd->vdev_unspare &&
4496 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4497 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4498 !vdev_rebuild_active(tvd))
4499 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4500 }
4501 return (spa_vdev_state_exit(spa, vd, 0));
4502 }
4503
4504 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4505 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4506 {
4507 vdev_t *vd, *tvd;
4508 int error = 0;
4509 uint64_t generation;
4510 metaslab_group_t *mg;
4511
4512 top:
4513 spa_vdev_state_enter(spa, SCL_ALLOC);
4514
4515 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4516 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4517
4518 if (!vd->vdev_ops->vdev_op_leaf)
4519 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4520
4521 if (vd->vdev_ops == &vdev_draid_spare_ops)
4522 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4523
4524 tvd = vd->vdev_top;
4525 mg = tvd->vdev_mg;
4526 generation = spa->spa_config_generation + 1;
4527
4528 /*
4529 * If the device isn't already offline, try to offline it.
4530 */
4531 if (!vd->vdev_offline) {
4532 /*
4533 * If this device has the only valid copy of some data,
4534 * don't allow it to be offlined. Log devices are always
4535 * expendable.
4536 */
4537 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4538 vdev_dtl_required(vd))
4539 return (spa_vdev_state_exit(spa, NULL,
4540 SET_ERROR(EBUSY)));
4541
4542 /*
4543 * If the top-level is a slog and it has had allocations
4544 * then proceed. We check that the vdev's metaslab group
4545 * is not NULL since it's possible that we may have just
4546 * added this vdev but not yet initialized its metaslabs.
4547 */
4548 if (tvd->vdev_islog && mg != NULL) {
4549 /*
4550 * Prevent any future allocations.
4551 */
4552 ASSERT0P(tvd->vdev_log_mg);
4553 metaslab_group_passivate(mg);
4554 (void) spa_vdev_state_exit(spa, vd, 0);
4555
4556 error = spa_reset_logs(spa);
4557
4558 /*
4559 * If the log device was successfully reset but has
4560 * checkpointed data, do not offline it.
4561 */
4562 if (error == 0 &&
4563 tvd->vdev_checkpoint_sm != NULL) {
4564 ASSERT3U(space_map_allocated(
4565 tvd->vdev_checkpoint_sm), !=, 0);
4566 error = ZFS_ERR_CHECKPOINT_EXISTS;
4567 }
4568
4569 spa_vdev_state_enter(spa, SCL_ALLOC);
4570
4571 /*
4572 * Check to see if the config has changed.
4573 */
4574 if (error || generation != spa->spa_config_generation) {
4575 metaslab_group_activate(mg);
4576 if (error)
4577 return (spa_vdev_state_exit(spa,
4578 vd, error));
4579 (void) spa_vdev_state_exit(spa, vd, 0);
4580 goto top;
4581 }
4582 ASSERT0(tvd->vdev_stat.vs_alloc);
4583 }
4584
4585 /*
4586 * Offline this device and reopen its top-level vdev.
4587 * If the top-level vdev is a log device then just offline
4588 * it. Otherwise, if this action results in the top-level
4589 * vdev becoming unusable, undo it and fail the request.
4590 */
4591 vd->vdev_offline = B_TRUE;
4592 vdev_reopen(tvd);
4593
4594 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4595 vdev_is_dead(tvd)) {
4596 vd->vdev_offline = B_FALSE;
4597 vdev_reopen(tvd);
4598 return (spa_vdev_state_exit(spa, NULL,
4599 SET_ERROR(EBUSY)));
4600 }
4601
4602 /*
4603 * Add the device back into the metaslab rotor so that
4604 * once we online the device it's open for business.
4605 */
4606 if (tvd->vdev_islog && mg != NULL)
4607 metaslab_group_activate(mg);
4608 }
4609
4610 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4611
4612 return (spa_vdev_state_exit(spa, vd, 0));
4613 }
4614
4615 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4616 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4617 {
4618 int error;
4619
4620 mutex_enter(&spa->spa_vdev_top_lock);
4621 error = vdev_offline_locked(spa, guid, flags);
4622 mutex_exit(&spa->spa_vdev_top_lock);
4623
4624 return (error);
4625 }
4626
4627 /*
4628 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4629 * vdev_offline(), we assume the spa config is locked. We also clear all
4630 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4631 */
4632 void
vdev_clear(spa_t * spa,vdev_t * vd)4633 vdev_clear(spa_t *spa, vdev_t *vd)
4634 {
4635 vdev_t *rvd = spa->spa_root_vdev;
4636
4637 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4638
4639 if (vd == NULL)
4640 vd = rvd;
4641
4642 vd->vdev_stat.vs_read_errors = 0;
4643 vd->vdev_stat.vs_write_errors = 0;
4644 vd->vdev_stat.vs_checksum_errors = 0;
4645 vd->vdev_stat.vs_dio_verify_errors = 0;
4646 vd->vdev_stat.vs_slow_ios = 0;
4647 atomic_store_64(&vd->vdev_outlier_count, 0);
4648 vd->vdev_read_sit_out_expire = 0;
4649
4650 for (int c = 0; c < vd->vdev_children; c++)
4651 vdev_clear(spa, vd->vdev_child[c]);
4652
4653 /*
4654 * It makes no sense to "clear" an indirect or removed vdev.
4655 */
4656 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4657 return;
4658
4659 /*
4660 * If we're in the FAULTED state or have experienced failed I/O, then
4661 * clear the persistent state and attempt to reopen the device. We
4662 * also mark the vdev config dirty, so that the new faulted state is
4663 * written out to disk.
4664 */
4665 if (vd->vdev_faulted || vd->vdev_degraded ||
4666 !vdev_readable(vd) || !vdev_writeable(vd)) {
4667 /*
4668 * When reopening in response to a clear event, it may be due to
4669 * a fmadm repair request. In this case, if the device is
4670 * still broken, we want to still post the ereport again.
4671 */
4672 vd->vdev_forcefault = B_TRUE;
4673
4674 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4675 vd->vdev_cant_read = B_FALSE;
4676 vd->vdev_cant_write = B_FALSE;
4677 vd->vdev_stat.vs_aux = 0;
4678
4679 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4680
4681 vd->vdev_forcefault = B_FALSE;
4682
4683 if (vd != rvd && vdev_writeable(vd->vdev_top))
4684 vdev_state_dirty(vd->vdev_top);
4685
4686 /* If a resilver isn't required, check if vdevs can be culled */
4687 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4688 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4689 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4690 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4691
4692 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4693 }
4694
4695 /*
4696 * When clearing a FMA-diagnosed fault, we always want to
4697 * unspare the device, as we assume that the original spare was
4698 * done in response to the FMA fault.
4699 */
4700 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4701 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4702 vd->vdev_parent->vdev_child[0] == vd)
4703 vd->vdev_unspare = B_TRUE;
4704
4705 /* Clear recent error events cache (i.e. duplicate events tracking) */
4706 zfs_ereport_clear(spa, vd);
4707 }
4708
4709 boolean_t
vdev_is_dead(vdev_t * vd)4710 vdev_is_dead(vdev_t *vd)
4711 {
4712 /*
4713 * Holes and missing devices are always considered "dead".
4714 * This simplifies the code since we don't have to check for
4715 * these types of devices in the various code paths.
4716 * Instead we rely on the fact that we skip over dead devices
4717 * before issuing I/O to them.
4718 */
4719 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4720 vd->vdev_ops == &vdev_hole_ops ||
4721 vd->vdev_ops == &vdev_missing_ops);
4722 }
4723
4724 boolean_t
vdev_readable(vdev_t * vd)4725 vdev_readable(vdev_t *vd)
4726 {
4727 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4728 }
4729
4730 boolean_t
vdev_writeable(vdev_t * vd)4731 vdev_writeable(vdev_t *vd)
4732 {
4733 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4734 vdev_is_concrete(vd));
4735 }
4736
4737 boolean_t
vdev_allocatable(vdev_t * vd)4738 vdev_allocatable(vdev_t *vd)
4739 {
4740 uint64_t state = vd->vdev_state;
4741
4742 /*
4743 * We currently allow allocations from vdevs which may be in the
4744 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4745 * fails to reopen then we'll catch it later when we're holding
4746 * the proper locks. Note that we have to get the vdev state
4747 * in a local variable because although it changes atomically,
4748 * we're asking two separate questions about it.
4749 */
4750 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4751 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4752 vd->vdev_mg->mg_initialized);
4753 }
4754
4755 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4756 vdev_accessible(vdev_t *vd, zio_t *zio)
4757 {
4758 ASSERT(zio->io_vd == vd);
4759
4760 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4761 return (B_FALSE);
4762
4763 if (zio->io_type == ZIO_TYPE_READ)
4764 return (!vd->vdev_cant_read);
4765
4766 if (zio->io_type == ZIO_TYPE_WRITE)
4767 return (!vd->vdev_cant_write);
4768
4769 return (B_TRUE);
4770 }
4771
4772 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4773 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4774 {
4775 /*
4776 * Exclude the dRAID spare when aggregating to avoid double counting
4777 * the ops and bytes. These IOs are counted by the physical leaves.
4778 */
4779 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4780 return;
4781
4782 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4783 vs->vs_ops[t] += cvs->vs_ops[t];
4784 vs->vs_bytes[t] += cvs->vs_bytes[t];
4785 }
4786
4787 cvs->vs_scan_removing = cvd->vdev_removing;
4788 }
4789
4790 /*
4791 * Get extended stats
4792 */
4793 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4794 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4795 {
4796 (void) cvd;
4797
4798 int t, b;
4799 for (t = 0; t < ZIO_TYPES; t++) {
4800 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4801 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4802
4803 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4804 vsx->vsx_total_histo[t][b] +=
4805 cvsx->vsx_total_histo[t][b];
4806 }
4807 }
4808
4809 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4810 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4811 vsx->vsx_queue_histo[t][b] +=
4812 cvsx->vsx_queue_histo[t][b];
4813 }
4814 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4815 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4816
4817 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4818 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4819
4820 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4821 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4822 }
4823
4824 }
4825
4826 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4827 vdev_is_spacemap_addressable(vdev_t *vd)
4828 {
4829 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4830 return (B_TRUE);
4831
4832 /*
4833 * If double-word space map entries are not enabled we assume
4834 * 47 bits of the space map entry are dedicated to the entry's
4835 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4836 * to calculate the maximum address that can be described by a
4837 * space map entry for the given device.
4838 */
4839 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4840
4841 if (shift >= 63) /* detect potential overflow */
4842 return (B_TRUE);
4843
4844 return (vd->vdev_asize < (1ULL << shift));
4845 }
4846
4847 /*
4848 * Get statistics for the given vdev.
4849 */
4850 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4851 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4852 {
4853 int t;
4854 /*
4855 * If we're getting stats on the root vdev, aggregate the I/O counts
4856 * over all top-level vdevs (i.e. the direct children of the root).
4857 */
4858 if (!vd->vdev_ops->vdev_op_leaf) {
4859 if (vs) {
4860 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4861 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4862 }
4863 if (vsx)
4864 memset(vsx, 0, sizeof (*vsx));
4865
4866 for (int c = 0; c < vd->vdev_children; c++) {
4867 vdev_t *cvd = vd->vdev_child[c];
4868 vdev_stat_t *cvs = &cvd->vdev_stat;
4869 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4870
4871 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4872 if (vs)
4873 vdev_get_child_stat(cvd, vs, cvs);
4874 if (vsx)
4875 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4876 }
4877 } else {
4878 /*
4879 * We're a leaf. Just copy our ZIO active queue stats in. The
4880 * other leaf stats are updated in vdev_stat_update().
4881 */
4882 if (!vsx)
4883 return;
4884
4885 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4886
4887 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4888 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4889 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4890 }
4891 }
4892 }
4893
4894 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4895 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4896 {
4897 vdev_t *tvd = vd->vdev_top;
4898 mutex_enter(&vd->vdev_stat_lock);
4899 if (vs) {
4900 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4901 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4902 vs->vs_state = vd->vdev_state;
4903 vs->vs_rsize = vdev_get_min_asize(vd);
4904
4905 if (vd->vdev_ops->vdev_op_leaf) {
4906 vs->vs_pspace = vd->vdev_psize;
4907 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4908 VDEV_LABEL_END_SIZE;
4909 /*
4910 * Report initializing progress. Since we don't
4911 * have the initializing locks held, this is only
4912 * an estimate (although a fairly accurate one).
4913 */
4914 vs->vs_initialize_bytes_done =
4915 vd->vdev_initialize_bytes_done;
4916 vs->vs_initialize_bytes_est =
4917 vd->vdev_initialize_bytes_est;
4918 vs->vs_initialize_state = vd->vdev_initialize_state;
4919 vs->vs_initialize_action_time =
4920 vd->vdev_initialize_action_time;
4921
4922 /*
4923 * Report manual TRIM progress. Since we don't have
4924 * the manual TRIM locks held, this is only an
4925 * estimate (although fairly accurate one).
4926 */
4927 vs->vs_trim_notsup = !vd->vdev_has_trim;
4928 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4929 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4930 vs->vs_trim_state = vd->vdev_trim_state;
4931 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4932
4933 /* Set when there is a deferred resilver. */
4934 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4935 }
4936
4937 /*
4938 * Report expandable space on top-level, non-auxiliary devices
4939 * only. The expandable space is reported in terms of metaslab
4940 * sized units since that determines how much space the pool
4941 * can expand.
4942 */
4943 if (vd->vdev_aux == NULL && tvd != NULL) {
4944 vs->vs_esize = P2ALIGN_TYPED(
4945 vd->vdev_max_asize - vd->vdev_asize,
4946 1ULL << tvd->vdev_ms_shift, uint64_t);
4947 }
4948
4949 vs->vs_configured_ashift = vd->vdev_top != NULL
4950 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4951 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4952 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4953 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4954 else
4955 vs->vs_physical_ashift = 0;
4956
4957 /*
4958 * Report fragmentation and rebuild progress for top-level,
4959 * non-auxiliary, concrete devices.
4960 */
4961 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4962 vdev_is_concrete(vd)) {
4963 /*
4964 * The vdev fragmentation rating doesn't take into
4965 * account the embedded slog metaslab (vdev_log_mg).
4966 * Since it's only one metaslab, it would have a tiny
4967 * impact on the overall fragmentation.
4968 */
4969 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4970 vd->vdev_mg->mg_fragmentation : 0;
4971 }
4972 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4973 tvd ? tvd->vdev_noalloc : 0);
4974 }
4975
4976 vdev_get_stats_ex_impl(vd, vs, vsx);
4977 mutex_exit(&vd->vdev_stat_lock);
4978 }
4979
4980 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4981 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4982 {
4983 return (vdev_get_stats_ex(vd, vs, NULL));
4984 }
4985
4986 void
vdev_clear_stats(vdev_t * vd)4987 vdev_clear_stats(vdev_t *vd)
4988 {
4989 mutex_enter(&vd->vdev_stat_lock);
4990 vd->vdev_stat.vs_space = 0;
4991 vd->vdev_stat.vs_dspace = 0;
4992 vd->vdev_stat.vs_alloc = 0;
4993 mutex_exit(&vd->vdev_stat_lock);
4994 }
4995
4996 void
vdev_scan_stat_init(vdev_t * vd)4997 vdev_scan_stat_init(vdev_t *vd)
4998 {
4999 vdev_stat_t *vs = &vd->vdev_stat;
5000
5001 for (int c = 0; c < vd->vdev_children; c++)
5002 vdev_scan_stat_init(vd->vdev_child[c]);
5003
5004 mutex_enter(&vd->vdev_stat_lock);
5005 vs->vs_scan_processed = 0;
5006 mutex_exit(&vd->vdev_stat_lock);
5007 }
5008
5009 void
vdev_stat_update(zio_t * zio,uint64_t psize)5010 vdev_stat_update(zio_t *zio, uint64_t psize)
5011 {
5012 spa_t *spa = zio->io_spa;
5013 vdev_t *rvd = spa->spa_root_vdev;
5014 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
5015 vdev_t *pvd;
5016 uint64_t txg = zio->io_txg;
5017 /* Suppress ASAN false positive */
5018 #ifdef __SANITIZE_ADDRESS__
5019 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
5020 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
5021 #else
5022 vdev_stat_t *vs = &vd->vdev_stat;
5023 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
5024 #endif
5025 zio_type_t type = zio->io_type;
5026 int flags = zio->io_flags;
5027
5028 /*
5029 * If this i/o is a gang leader, it didn't do any actual work.
5030 */
5031 if (zio->io_gang_tree)
5032 return;
5033
5034 if (zio->io_error == 0) {
5035 /*
5036 * If this is a root i/o, don't count it -- we've already
5037 * counted the top-level vdevs, and vdev_get_stats() will
5038 * aggregate them when asked. This reduces contention on
5039 * the root vdev_stat_lock and implicitly handles blocks
5040 * that compress away to holes, for which there is no i/o.
5041 * (Holes never create vdev children, so all the counters
5042 * remain zero, which is what we want.)
5043 *
5044 * Note: this only applies to successful i/o (io_error == 0)
5045 * because unlike i/o counts, errors are not additive.
5046 * When reading a ditto block, for example, failure of
5047 * one top-level vdev does not imply a root-level error.
5048 */
5049 if (vd == rvd)
5050 return;
5051
5052 ASSERT(vd == zio->io_vd);
5053
5054 if (flags & ZIO_FLAG_IO_BYPASS)
5055 return;
5056
5057 mutex_enter(&vd->vdev_stat_lock);
5058
5059 if (flags & ZIO_FLAG_IO_REPAIR) {
5060 /*
5061 * Repair is the result of a resilver issued by the
5062 * scan thread (spa_sync).
5063 */
5064 if (flags & ZIO_FLAG_SCAN_THREAD) {
5065 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5066 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5067 uint64_t *processed = &scn_phys->scn_processed;
5068
5069 if (vd->vdev_ops->vdev_op_leaf)
5070 atomic_add_64(processed, psize);
5071 vs->vs_scan_processed += psize;
5072 }
5073
5074 /*
5075 * Repair is the result of a rebuild issued by the
5076 * rebuild thread (vdev_rebuild_thread). To avoid
5077 * double counting repaired bytes the virtual dRAID
5078 * spare vdev is excluded from the processed bytes.
5079 */
5080 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5081 vdev_t *tvd = vd->vdev_top;
5082 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5083 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5084 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5085
5086 if (vd->vdev_ops->vdev_op_leaf &&
5087 vd->vdev_ops != &vdev_draid_spare_ops) {
5088 atomic_add_64(rebuilt, psize);
5089 }
5090 vs->vs_rebuild_processed += psize;
5091 }
5092
5093 if (flags & ZIO_FLAG_SELF_HEAL)
5094 vs->vs_self_healed += psize;
5095 }
5096
5097 /*
5098 * The bytes/ops/histograms are recorded at the leaf level and
5099 * aggregated into the higher level vdevs in vdev_get_stats().
5100 */
5101 if (vd->vdev_ops->vdev_op_leaf &&
5102 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5103 zio_type_t vs_type = type;
5104 zio_priority_t priority = zio->io_priority;
5105
5106 /*
5107 * TRIM ops and bytes are reported to user space as
5108 * ZIO_TYPE_FLUSH. This is done to preserve the
5109 * vdev_stat_t structure layout for user space.
5110 */
5111 if (type == ZIO_TYPE_TRIM)
5112 vs_type = ZIO_TYPE_FLUSH;
5113
5114 /*
5115 * Solely for the purposes of 'zpool iostat -lqrw'
5116 * reporting use the priority to categorize the IO.
5117 * Only the following are reported to user space:
5118 *
5119 * ZIO_PRIORITY_SYNC_READ,
5120 * ZIO_PRIORITY_SYNC_WRITE,
5121 * ZIO_PRIORITY_ASYNC_READ,
5122 * ZIO_PRIORITY_ASYNC_WRITE,
5123 * ZIO_PRIORITY_SCRUB,
5124 * ZIO_PRIORITY_TRIM,
5125 * ZIO_PRIORITY_REBUILD.
5126 */
5127 if (priority == ZIO_PRIORITY_INITIALIZING) {
5128 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5129 priority = ZIO_PRIORITY_ASYNC_WRITE;
5130 } else if (priority == ZIO_PRIORITY_REMOVAL) {
5131 priority = ((type == ZIO_TYPE_WRITE) ?
5132 ZIO_PRIORITY_ASYNC_WRITE :
5133 ZIO_PRIORITY_ASYNC_READ);
5134 }
5135
5136 vs->vs_ops[vs_type]++;
5137 vs->vs_bytes[vs_type] += psize;
5138
5139 if (flags & ZIO_FLAG_DELEGATED) {
5140 vsx->vsx_agg_histo[priority]
5141 [RQ_HISTO(zio->io_size)]++;
5142 } else {
5143 vsx->vsx_ind_histo[priority]
5144 [RQ_HISTO(zio->io_size)]++;
5145 }
5146
5147 if (zio->io_delta && zio->io_delay) {
5148 vsx->vsx_queue_histo[priority]
5149 [L_HISTO(zio->io_delta - zio->io_delay)]++;
5150 vsx->vsx_disk_histo[type]
5151 [L_HISTO(zio->io_delay)]++;
5152 vsx->vsx_total_histo[type]
5153 [L_HISTO(zio->io_delta)]++;
5154 }
5155 }
5156
5157 mutex_exit(&vd->vdev_stat_lock);
5158 return;
5159 }
5160
5161 if (flags & ZIO_FLAG_SPECULATIVE)
5162 return;
5163
5164 /*
5165 * If this is an I/O error that is going to be retried, then ignore the
5166 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5167 * hard errors, when in reality they can happen for any number of
5168 * innocuous reasons (bus resets, MPxIO link failure, etc).
5169 */
5170 if (zio->io_error == EIO &&
5171 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5172 return;
5173
5174 /*
5175 * Intent logs writes won't propagate their error to the root
5176 * I/O so don't mark these types of failures as pool-level
5177 * errors.
5178 */
5179 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5180 return;
5181
5182 if (type == ZIO_TYPE_WRITE && txg != 0 &&
5183 (!(flags & ZIO_FLAG_IO_REPAIR) ||
5184 (flags & ZIO_FLAG_SCAN_THREAD) ||
5185 spa->spa_claiming)) {
5186 /*
5187 * This is either a normal write (not a repair), or it's
5188 * a repair induced by the scrub thread, or it's a repair
5189 * made by zil_claim() during spa_load() in the first txg.
5190 * In the normal case, we commit the DTL change in the same
5191 * txg as the block was born. In the scrub-induced repair
5192 * case, we know that scrubs run in first-pass syncing context,
5193 * so we commit the DTL change in spa_syncing_txg(spa).
5194 * In the zil_claim() case, we commit in spa_first_txg(spa).
5195 *
5196 * We currently do not make DTL entries for failed spontaneous
5197 * self-healing writes triggered by normal (non-scrubbing)
5198 * reads, because we have no transactional context in which to
5199 * do so -- and it's not clear that it'd be desirable anyway.
5200 */
5201 if (vd->vdev_ops->vdev_op_leaf) {
5202 uint64_t commit_txg = txg;
5203 if (flags & ZIO_FLAG_SCAN_THREAD) {
5204 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5205 ASSERT(spa_sync_pass(spa) == 1);
5206 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5207 commit_txg = spa_syncing_txg(spa);
5208 } else if (spa->spa_claiming) {
5209 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5210 commit_txg = spa_first_txg(spa);
5211 }
5212 ASSERT(commit_txg >= spa_syncing_txg(spa));
5213 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5214 return;
5215 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5216 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5217 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5218 }
5219 if (vd != rvd)
5220 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5221 }
5222 }
5223
5224 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5225 vdev_deflated_space(vdev_t *vd, int64_t space)
5226 {
5227 ASSERT0((space & (SPA_MINBLOCKSIZE-1)));
5228 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5229
5230 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5231 }
5232
5233 /*
5234 * Update the in-core space usage stats for this vdev, its metaslab class,
5235 * and the root vdev.
5236 */
5237 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5238 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5239 int64_t space_delta)
5240 {
5241 (void) defer_delta;
5242 int64_t dspace_delta;
5243 spa_t *spa = vd->vdev_spa;
5244 vdev_t *rvd = spa->spa_root_vdev;
5245
5246 ASSERT(vd == vd->vdev_top);
5247
5248 /*
5249 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5250 * factor. We must calculate this here and not at the root vdev
5251 * because the root vdev's psize-to-asize is simply the max of its
5252 * children's, thus not accurate enough for us.
5253 */
5254 dspace_delta = vdev_deflated_space(vd, space_delta);
5255
5256 mutex_enter(&vd->vdev_stat_lock);
5257 /* ensure we won't underflow */
5258 if (alloc_delta < 0) {
5259 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5260 }
5261
5262 vd->vdev_stat.vs_alloc += alloc_delta;
5263 vd->vdev_stat.vs_space += space_delta;
5264 vd->vdev_stat.vs_dspace += dspace_delta;
5265 mutex_exit(&vd->vdev_stat_lock);
5266
5267 /* every class but log contributes to root space stats */
5268 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5269 ASSERT(!vd->vdev_isl2cache);
5270 mutex_enter(&rvd->vdev_stat_lock);
5271 rvd->vdev_stat.vs_alloc += alloc_delta;
5272 rvd->vdev_stat.vs_space += space_delta;
5273 rvd->vdev_stat.vs_dspace += dspace_delta;
5274 mutex_exit(&rvd->vdev_stat_lock);
5275 }
5276 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5277 }
5278
5279 /*
5280 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5281 * so that it will be written out next time the vdev configuration is synced.
5282 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5283 */
5284 void
vdev_config_dirty(vdev_t * vd)5285 vdev_config_dirty(vdev_t *vd)
5286 {
5287 spa_t *spa = vd->vdev_spa;
5288 vdev_t *rvd = spa->spa_root_vdev;
5289 int c;
5290
5291 ASSERT(spa_writeable(spa));
5292
5293 /*
5294 * If this is an aux vdev (as with l2cache and spare devices), then we
5295 * update the vdev config manually and set the sync flag.
5296 */
5297 if (vd->vdev_aux != NULL) {
5298 spa_aux_vdev_t *sav = vd->vdev_aux;
5299 nvlist_t **aux;
5300 uint_t naux;
5301
5302 for (c = 0; c < sav->sav_count; c++) {
5303 if (sav->sav_vdevs[c] == vd)
5304 break;
5305 }
5306
5307 if (c == sav->sav_count) {
5308 /*
5309 * We're being removed. There's nothing more to do.
5310 */
5311 ASSERT(sav->sav_sync == B_TRUE);
5312 return;
5313 }
5314
5315 sav->sav_sync = B_TRUE;
5316
5317 if (nvlist_lookup_nvlist_array(sav->sav_config,
5318 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5319 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
5320 ZPOOL_CONFIG_SPARES, &aux, &naux));
5321 }
5322
5323 ASSERT(c < naux);
5324
5325 /*
5326 * Setting the nvlist in the middle if the array is a little
5327 * sketchy, but it will work.
5328 */
5329 nvlist_free(aux[c]);
5330 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5331
5332 return;
5333 }
5334
5335 /*
5336 * The dirty list is protected by the SCL_CONFIG lock. The caller
5337 * must either hold SCL_CONFIG as writer, or must be the sync thread
5338 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5339 * so this is sufficient to ensure mutual exclusion.
5340 */
5341 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5342 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5343 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5344
5345 if (vd == rvd) {
5346 for (c = 0; c < rvd->vdev_children; c++)
5347 vdev_config_dirty(rvd->vdev_child[c]);
5348 } else {
5349 ASSERT(vd == vd->vdev_top);
5350
5351 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5352 vdev_is_concrete(vd)) {
5353 list_insert_head(&spa->spa_config_dirty_list, vd);
5354 }
5355 }
5356 }
5357
5358 void
vdev_config_clean(vdev_t * vd)5359 vdev_config_clean(vdev_t *vd)
5360 {
5361 spa_t *spa = vd->vdev_spa;
5362
5363 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5364 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5365 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5366
5367 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5368 list_remove(&spa->spa_config_dirty_list, vd);
5369 }
5370
5371 /*
5372 * Mark a top-level vdev's state as dirty, so that the next pass of
5373 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5374 * the state changes from larger config changes because they require
5375 * much less locking, and are often needed for administrative actions.
5376 */
5377 void
vdev_state_dirty(vdev_t * vd)5378 vdev_state_dirty(vdev_t *vd)
5379 {
5380 spa_t *spa = vd->vdev_spa;
5381
5382 ASSERT(spa_writeable(spa));
5383 ASSERT(vd == vd->vdev_top);
5384
5385 /*
5386 * The state list is protected by the SCL_STATE lock. The caller
5387 * must either hold SCL_STATE as writer, or must be the sync thread
5388 * (which holds SCL_STATE as reader). There's only one sync thread,
5389 * so this is sufficient to ensure mutual exclusion.
5390 */
5391 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5392 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5393 spa_config_held(spa, SCL_STATE, RW_READER)));
5394
5395 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5396 vdev_is_concrete(vd))
5397 list_insert_head(&spa->spa_state_dirty_list, vd);
5398 }
5399
5400 void
vdev_state_clean(vdev_t * vd)5401 vdev_state_clean(vdev_t *vd)
5402 {
5403 spa_t *spa = vd->vdev_spa;
5404
5405 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5406 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5407 spa_config_held(spa, SCL_STATE, RW_READER)));
5408
5409 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5410 list_remove(&spa->spa_state_dirty_list, vd);
5411 }
5412
5413 /*
5414 * Propagate vdev state up from children to parent.
5415 */
5416 void
vdev_propagate_state(vdev_t * vd)5417 vdev_propagate_state(vdev_t *vd)
5418 {
5419 spa_t *spa = vd->vdev_spa;
5420 vdev_t *rvd = spa->spa_root_vdev;
5421 int degraded = 0, faulted = 0;
5422 int corrupted = 0;
5423 vdev_t *child;
5424
5425 if (vd->vdev_children > 0) {
5426 for (int c = 0; c < vd->vdev_children; c++) {
5427 child = vd->vdev_child[c];
5428
5429 /*
5430 * Don't factor holes or indirect vdevs into the
5431 * decision.
5432 */
5433 if (!vdev_is_concrete(child))
5434 continue;
5435
5436 if (!vdev_readable(child) ||
5437 (!vdev_writeable(child) && spa_writeable(spa))) {
5438 /*
5439 * Root special: if there is a top-level log
5440 * device, treat the root vdev as if it were
5441 * degraded.
5442 */
5443 if (child->vdev_islog && vd == rvd)
5444 degraded++;
5445 else
5446 faulted++;
5447 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5448 degraded++;
5449 }
5450
5451 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5452 corrupted++;
5453 }
5454
5455 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5456
5457 /*
5458 * Root special: if there is a top-level vdev that cannot be
5459 * opened due to corrupted metadata, then propagate the root
5460 * vdev's aux state as 'corrupt' rather than 'insufficient
5461 * replicas'.
5462 */
5463 if (corrupted && vd == rvd &&
5464 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5465 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5466 VDEV_AUX_CORRUPT_DATA);
5467 }
5468
5469 if (vd->vdev_parent)
5470 vdev_propagate_state(vd->vdev_parent);
5471 }
5472
5473 /*
5474 * Set a vdev's state. If this is during an open, we don't update the parent
5475 * state, because we're in the process of opening children depth-first.
5476 * Otherwise, we propagate the change to the parent.
5477 *
5478 * If this routine places a device in a faulted state, an appropriate ereport is
5479 * generated.
5480 */
5481 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5482 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5483 {
5484 uint64_t save_state;
5485 spa_t *spa = vd->vdev_spa;
5486
5487 if (state == vd->vdev_state) {
5488 /*
5489 * Since vdev_offline() code path is already in an offline
5490 * state we can miss a statechange event to OFFLINE. Check
5491 * the previous state to catch this condition.
5492 */
5493 if (vd->vdev_ops->vdev_op_leaf &&
5494 (state == VDEV_STATE_OFFLINE) &&
5495 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5496 /* post an offline state change */
5497 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5498 }
5499 vd->vdev_stat.vs_aux = aux;
5500 return;
5501 }
5502
5503 save_state = vd->vdev_state;
5504
5505 vd->vdev_state = state;
5506 vd->vdev_stat.vs_aux = aux;
5507
5508 /*
5509 * If we are setting the vdev state to anything but an open state, then
5510 * always close the underlying device unless the device has requested
5511 * a delayed close (i.e. we're about to remove or fault the device).
5512 * Otherwise, we keep accessible but invalid devices open forever.
5513 * We don't call vdev_close() itself, because that implies some extra
5514 * checks (offline, etc) that we don't want here. This is limited to
5515 * leaf devices, because otherwise closing the device will affect other
5516 * children.
5517 */
5518 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5519 vd->vdev_ops->vdev_op_leaf)
5520 vd->vdev_ops->vdev_op_close(vd);
5521
5522 if (vd->vdev_removed &&
5523 state == VDEV_STATE_CANT_OPEN &&
5524 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5525 /*
5526 * If the previous state is set to VDEV_STATE_REMOVED, then this
5527 * device was previously marked removed and someone attempted to
5528 * reopen it. If this failed due to a nonexistent device, then
5529 * keep the device in the REMOVED state. We also let this be if
5530 * it is one of our special test online cases, which is only
5531 * attempting to online the device and shouldn't generate an FMA
5532 * fault.
5533 */
5534 vd->vdev_state = VDEV_STATE_REMOVED;
5535 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5536 } else if (state == VDEV_STATE_REMOVED) {
5537 vd->vdev_removed = B_TRUE;
5538 } else if (state == VDEV_STATE_CANT_OPEN) {
5539 /*
5540 * If we fail to open a vdev during an import or recovery, we
5541 * mark it as "not available", which signifies that it was
5542 * never there to begin with. Failure to open such a device
5543 * is not considered an error.
5544 */
5545 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5546 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5547 vd->vdev_ops->vdev_op_leaf)
5548 vd->vdev_not_present = 1;
5549
5550 /*
5551 * Post the appropriate ereport. If the 'prevstate' field is
5552 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5553 * that this is part of a vdev_reopen(). In this case, we don't
5554 * want to post the ereport if the device was already in the
5555 * CANT_OPEN state beforehand.
5556 *
5557 * If the 'checkremove' flag is set, then this is an attempt to
5558 * online the device in response to an insertion event. If we
5559 * hit this case, then we have detected an insertion event for a
5560 * faulted or offline device that wasn't in the removed state.
5561 * In this scenario, we don't post an ereport because we are
5562 * about to replace the device, or attempt an online with
5563 * vdev_forcefault, which will generate the fault for us.
5564 */
5565 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5566 !vd->vdev_not_present && !vd->vdev_checkremove &&
5567 vd != spa->spa_root_vdev) {
5568 const char *class;
5569
5570 switch (aux) {
5571 case VDEV_AUX_OPEN_FAILED:
5572 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5573 break;
5574 case VDEV_AUX_CORRUPT_DATA:
5575 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5576 break;
5577 case VDEV_AUX_NO_REPLICAS:
5578 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5579 break;
5580 case VDEV_AUX_BAD_GUID_SUM:
5581 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5582 break;
5583 case VDEV_AUX_TOO_SMALL:
5584 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5585 break;
5586 case VDEV_AUX_BAD_LABEL:
5587 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5588 break;
5589 case VDEV_AUX_BAD_ASHIFT:
5590 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5591 break;
5592 default:
5593 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5594 }
5595
5596 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5597 save_state);
5598 }
5599
5600 /* Erase any notion of persistent removed state */
5601 vd->vdev_removed = B_FALSE;
5602 } else {
5603 vd->vdev_removed = B_FALSE;
5604 }
5605
5606 /*
5607 * Notify ZED of any significant state-change on a leaf vdev.
5608 *
5609 */
5610 if (vd->vdev_ops->vdev_op_leaf) {
5611 /* preserve original state from a vdev_reopen() */
5612 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5613 (vd->vdev_prevstate != vd->vdev_state) &&
5614 (save_state <= VDEV_STATE_CLOSED))
5615 save_state = vd->vdev_prevstate;
5616
5617 /* filter out state change due to initial vdev_open */
5618 if (save_state > VDEV_STATE_CLOSED)
5619 zfs_post_state_change(spa, vd, save_state);
5620 }
5621
5622 if (!isopen && vd->vdev_parent)
5623 vdev_propagate_state(vd->vdev_parent);
5624 }
5625
5626 boolean_t
vdev_children_are_offline(vdev_t * vd)5627 vdev_children_are_offline(vdev_t *vd)
5628 {
5629 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5630
5631 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5632 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5633 return (B_FALSE);
5634 }
5635
5636 return (B_TRUE);
5637 }
5638
5639 /*
5640 * Check the vdev configuration to ensure that it's capable of supporting
5641 * a root pool. We do not support partial configuration.
5642 */
5643 boolean_t
vdev_is_bootable(vdev_t * vd)5644 vdev_is_bootable(vdev_t *vd)
5645 {
5646 if (!vd->vdev_ops->vdev_op_leaf) {
5647 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5648
5649 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5650 return (B_FALSE);
5651 }
5652
5653 for (int c = 0; c < vd->vdev_children; c++) {
5654 if (!vdev_is_bootable(vd->vdev_child[c]))
5655 return (B_FALSE);
5656 }
5657 return (B_TRUE);
5658 }
5659
5660 boolean_t
vdev_is_concrete(vdev_t * vd)5661 vdev_is_concrete(vdev_t *vd)
5662 {
5663 vdev_ops_t *ops = vd->vdev_ops;
5664 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5665 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5666 return (B_FALSE);
5667 } else {
5668 return (B_TRUE);
5669 }
5670 }
5671
5672 /*
5673 * Determine if a log device has valid content. If the vdev was
5674 * removed or faulted in the MOS config then we know that
5675 * the content on the log device has already been written to the pool.
5676 */
5677 boolean_t
vdev_log_state_valid(vdev_t * vd)5678 vdev_log_state_valid(vdev_t *vd)
5679 {
5680 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5681 !vd->vdev_removed)
5682 return (B_TRUE);
5683
5684 for (int c = 0; c < vd->vdev_children; c++)
5685 if (vdev_log_state_valid(vd->vdev_child[c]))
5686 return (B_TRUE);
5687
5688 return (B_FALSE);
5689 }
5690
5691 /*
5692 * Expand a vdev if possible.
5693 */
5694 void
vdev_expand(vdev_t * vd,uint64_t txg)5695 vdev_expand(vdev_t *vd, uint64_t txg)
5696 {
5697 ASSERT(vd->vdev_top == vd);
5698 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5699 ASSERT(vdev_is_concrete(vd));
5700
5701 vdev_set_deflate_ratio(vd);
5702
5703 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5704 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5705 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5706 vdev_is_concrete(vd)) {
5707 vdev_metaslab_group_create(vd);
5708 VERIFY0(vdev_metaslab_init(vd, txg));
5709 vdev_config_dirty(vd);
5710 }
5711 }
5712
5713 /*
5714 * Split a vdev.
5715 */
5716 void
vdev_split(vdev_t * vd)5717 vdev_split(vdev_t *vd)
5718 {
5719 vdev_t *cvd, *pvd = vd->vdev_parent;
5720
5721 VERIFY3U(pvd->vdev_children, >, 1);
5722
5723 vdev_remove_child(pvd, vd);
5724 vdev_compact_children(pvd);
5725
5726 ASSERT3P(pvd->vdev_child, !=, NULL);
5727
5728 cvd = pvd->vdev_child[0];
5729 if (pvd->vdev_children == 1) {
5730 vdev_remove_parent(cvd);
5731 cvd->vdev_splitting = B_TRUE;
5732 }
5733 vdev_propagate_state(cvd);
5734 }
5735
5736 void
vdev_deadman(vdev_t * vd,const char * tag)5737 vdev_deadman(vdev_t *vd, const char *tag)
5738 {
5739 for (int c = 0; c < vd->vdev_children; c++) {
5740 vdev_t *cvd = vd->vdev_child[c];
5741
5742 vdev_deadman(cvd, tag);
5743 }
5744
5745 if (vd->vdev_ops->vdev_op_leaf) {
5746 vdev_queue_t *vq = &vd->vdev_queue;
5747
5748 mutex_enter(&vq->vq_lock);
5749 if (vq->vq_active > 0) {
5750 spa_t *spa = vd->vdev_spa;
5751 zio_t *fio;
5752 uint64_t delta;
5753
5754 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5755 vd->vdev_path, vq->vq_active);
5756
5757 /*
5758 * Look at the head of all the pending queues,
5759 * if any I/O has been outstanding for longer than
5760 * the spa_deadman_synctime invoke the deadman logic.
5761 */
5762 fio = list_head(&vq->vq_active_list);
5763 delta = gethrtime() - fio->io_timestamp;
5764 if (delta > spa_deadman_synctime(spa))
5765 zio_deadman(fio, tag);
5766 }
5767 mutex_exit(&vq->vq_lock);
5768 }
5769 }
5770
5771 void
vdev_defer_resilver(vdev_t * vd)5772 vdev_defer_resilver(vdev_t *vd)
5773 {
5774 ASSERT(vd->vdev_ops->vdev_op_leaf);
5775
5776 vd->vdev_resilver_deferred = B_TRUE;
5777 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5778 }
5779
5780 /*
5781 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5782 * B_TRUE if we have devices that need to be resilvered and are available to
5783 * accept resilver I/Os.
5784 */
5785 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5786 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5787 {
5788 boolean_t resilver_needed = B_FALSE;
5789 spa_t *spa = vd->vdev_spa;
5790
5791 for (int c = 0; c < vd->vdev_children; c++) {
5792 vdev_t *cvd = vd->vdev_child[c];
5793 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5794 }
5795
5796 if (vd == spa->spa_root_vdev &&
5797 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5798 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5799 vdev_config_dirty(vd);
5800 spa->spa_resilver_deferred = B_FALSE;
5801 return (resilver_needed);
5802 }
5803
5804 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5805 !vd->vdev_ops->vdev_op_leaf)
5806 return (resilver_needed);
5807
5808 vd->vdev_resilver_deferred = B_FALSE;
5809
5810 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5811 vdev_resilver_needed(vd, NULL, NULL));
5812 }
5813
5814 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5815 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5816 {
5817 return (rs->rs_start == rs->rs_end);
5818 }
5819
5820 /*
5821 * Translate a logical range to the first contiguous physical range for the
5822 * specified vdev_t. This function is initially called with a leaf vdev and
5823 * will walk each parent vdev until it reaches a top-level vdev. Once the
5824 * top-level is reached the physical range is initialized and the recursive
5825 * function begins to unwind. As it unwinds it calls the parent's vdev
5826 * specific translation function to do the real conversion.
5827 */
5828 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5829 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5830 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5831 {
5832 /*
5833 * Walk up the vdev tree
5834 */
5835 if (vd != vd->vdev_top) {
5836 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5837 remain_rs);
5838 } else {
5839 /*
5840 * We've reached the top-level vdev, initialize the physical
5841 * range to the logical range and set an empty remaining
5842 * range then start to unwind.
5843 */
5844 physical_rs->rs_start = logical_rs->rs_start;
5845 physical_rs->rs_end = logical_rs->rs_end;
5846
5847 remain_rs->rs_start = logical_rs->rs_start;
5848 remain_rs->rs_end = logical_rs->rs_start;
5849
5850 return;
5851 }
5852
5853 vdev_t *pvd = vd->vdev_parent;
5854 ASSERT3P(pvd, !=, NULL);
5855 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5856
5857 /*
5858 * As this recursive function unwinds, translate the logical
5859 * range into its physical and any remaining components by calling
5860 * the vdev specific translate function.
5861 */
5862 zfs_range_seg64_t intermediate = { 0 };
5863 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5864
5865 physical_rs->rs_start = intermediate.rs_start;
5866 physical_rs->rs_end = intermediate.rs_end;
5867 }
5868
5869 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5870 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5871 vdev_xlate_func_t *func, void *arg)
5872 {
5873 zfs_range_seg64_t iter_rs = *logical_rs;
5874 zfs_range_seg64_t physical_rs;
5875 zfs_range_seg64_t remain_rs;
5876
5877 while (!vdev_xlate_is_empty(&iter_rs)) {
5878
5879 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5880
5881 /*
5882 * With raidz and dRAID, it's possible that the logical range
5883 * does not live on this leaf vdev. Only when there is a non-
5884 * zero physical size call the provided function.
5885 */
5886 if (!vdev_xlate_is_empty(&physical_rs))
5887 func(arg, &physical_rs);
5888
5889 iter_rs = remain_rs;
5890 }
5891 }
5892
5893 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5894 vdev_name(vdev_t *vd, char *buf, int buflen)
5895 {
5896 if (vd->vdev_path == NULL) {
5897 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5898 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5899 } else if (!vd->vdev_ops->vdev_op_leaf) {
5900 snprintf(buf, buflen, "%s-%llu",
5901 vd->vdev_ops->vdev_op_type,
5902 (u_longlong_t)vd->vdev_id);
5903 }
5904 } else {
5905 strlcpy(buf, vd->vdev_path, buflen);
5906 }
5907 return (buf);
5908 }
5909
5910 /*
5911 * Look at the vdev tree and determine whether any devices are currently being
5912 * replaced.
5913 */
5914 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5915 vdev_replace_in_progress(vdev_t *vdev)
5916 {
5917 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5918
5919 if (vdev->vdev_ops == &vdev_replacing_ops)
5920 return (B_TRUE);
5921
5922 /*
5923 * A 'spare' vdev indicates that we have a replace in progress, unless
5924 * it has exactly two children, and the second, the hot spare, has
5925 * finished being resilvered.
5926 */
5927 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5928 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5929 return (B_TRUE);
5930
5931 for (int i = 0; i < vdev->vdev_children; i++) {
5932 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5933 return (B_TRUE);
5934 }
5935
5936 return (B_FALSE);
5937 }
5938
5939 /*
5940 * Add a (source=src, propname=propval) list to an nvlist.
5941 */
5942 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5943 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5944 uint64_t intval, zprop_source_t src)
5945 {
5946 nvlist_t *propval;
5947
5948 propval = fnvlist_alloc();
5949 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5950
5951 if (strval != NULL)
5952 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5953 else
5954 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5955
5956 fnvlist_add_nvlist(nvl, propname, propval);
5957 nvlist_free(propval);
5958 }
5959
5960 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5961 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5962 {
5963 vdev_t *vd;
5964 nvlist_t *nvp = arg;
5965 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5966 objset_t *mos = spa->spa_meta_objset;
5967 nvpair_t *elem = NULL;
5968 uint64_t vdev_guid;
5969 uint64_t objid;
5970 nvlist_t *nvprops;
5971
5972 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5973 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5974 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5975
5976 /* this vdev could get removed while waiting for this sync task */
5977 if (vd == NULL)
5978 return;
5979
5980 /*
5981 * Set vdev property values in the vdev props mos object.
5982 */
5983 if (vd->vdev_root_zap != 0) {
5984 objid = vd->vdev_root_zap;
5985 } else if (vd->vdev_top_zap != 0) {
5986 objid = vd->vdev_top_zap;
5987 } else if (vd->vdev_leaf_zap != 0) {
5988 objid = vd->vdev_leaf_zap;
5989 } else {
5990 panic("unexpected vdev type");
5991 }
5992
5993 mutex_enter(&spa->spa_props_lock);
5994
5995 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5996 uint64_t intval;
5997 const char *strval;
5998 vdev_prop_t prop;
5999 const char *propname = nvpair_name(elem);
6000 zprop_type_t proptype;
6001
6002 switch (prop = vdev_name_to_prop(propname)) {
6003 case VDEV_PROP_USERPROP:
6004 if (vdev_prop_user(propname)) {
6005 strval = fnvpair_value_string(elem);
6006 if (strlen(strval) == 0) {
6007 /* remove the property if value == "" */
6008 (void) zap_remove(mos, objid, propname,
6009 tx);
6010 } else {
6011 VERIFY0(zap_update(mos, objid, propname,
6012 1, strlen(strval) + 1, strval, tx));
6013 }
6014 spa_history_log_internal(spa, "vdev set", tx,
6015 "vdev_guid=%llu: %s=%s",
6016 (u_longlong_t)vdev_guid, nvpair_name(elem),
6017 strval);
6018 }
6019 break;
6020 default:
6021 /* normalize the property name */
6022 propname = vdev_prop_to_name(prop);
6023 proptype = vdev_prop_get_type(prop);
6024
6025 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6026 ASSERT(proptype == PROP_TYPE_STRING);
6027 strval = fnvpair_value_string(elem);
6028 VERIFY0(zap_update(mos, objid, propname,
6029 1, strlen(strval) + 1, strval, tx));
6030 spa_history_log_internal(spa, "vdev set", tx,
6031 "vdev_guid=%llu: %s=%s",
6032 (u_longlong_t)vdev_guid, nvpair_name(elem),
6033 strval);
6034 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6035 intval = fnvpair_value_uint64(elem);
6036
6037 if (proptype == PROP_TYPE_INDEX) {
6038 const char *unused;
6039 VERIFY0(vdev_prop_index_to_string(
6040 prop, intval, &unused));
6041 }
6042 VERIFY0(zap_update(mos, objid, propname,
6043 sizeof (uint64_t), 1, &intval, tx));
6044 spa_history_log_internal(spa, "vdev set", tx,
6045 "vdev_guid=%llu: %s=%lld",
6046 (u_longlong_t)vdev_guid,
6047 nvpair_name(elem), (longlong_t)intval);
6048 } else {
6049 panic("invalid vdev property type %u",
6050 nvpair_type(elem));
6051 }
6052 }
6053
6054 }
6055
6056 mutex_exit(&spa->spa_props_lock);
6057 }
6058
6059 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6060 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6061 {
6062 spa_t *spa = vd->vdev_spa;
6063 nvpair_t *elem = NULL;
6064 uint64_t vdev_guid;
6065 nvlist_t *nvprops;
6066 int error = 0;
6067
6068 ASSERT(vd != NULL);
6069
6070 /* Check that vdev has a zap we can use */
6071 if (vd->vdev_root_zap == 0 &&
6072 vd->vdev_top_zap == 0 &&
6073 vd->vdev_leaf_zap == 0)
6074 return (SET_ERROR(EINVAL));
6075
6076 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6077 &vdev_guid) != 0)
6078 return (SET_ERROR(EINVAL));
6079
6080 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6081 &nvprops) != 0)
6082 return (SET_ERROR(EINVAL));
6083
6084 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6085 return (SET_ERROR(EINVAL));
6086
6087 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6088 const char *propname = nvpair_name(elem);
6089 vdev_prop_t prop = vdev_name_to_prop(propname);
6090 uint64_t intval = 0;
6091 const char *strval = NULL;
6092
6093 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6094 error = EINVAL;
6095 goto end;
6096 }
6097
6098 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6099 error = EROFS;
6100 goto end;
6101 }
6102
6103 /* Special Processing */
6104 switch (prop) {
6105 case VDEV_PROP_PATH:
6106 if (vd->vdev_path == NULL) {
6107 error = EROFS;
6108 break;
6109 }
6110 if (nvpair_value_string(elem, &strval) != 0) {
6111 error = EINVAL;
6112 break;
6113 }
6114 /* New path must start with /dev/ */
6115 if (strncmp(strval, "/dev/", 5)) {
6116 error = EINVAL;
6117 break;
6118 }
6119 error = spa_vdev_setpath(spa, vdev_guid, strval);
6120 break;
6121 case VDEV_PROP_ALLOCATING:
6122 if (nvpair_value_uint64(elem, &intval) != 0) {
6123 error = EINVAL;
6124 break;
6125 }
6126 if (intval != vd->vdev_noalloc)
6127 break;
6128 if (intval == 0)
6129 error = spa_vdev_noalloc(spa, vdev_guid);
6130 else
6131 error = spa_vdev_alloc(spa, vdev_guid);
6132 break;
6133 case VDEV_PROP_FAILFAST:
6134 if (nvpair_value_uint64(elem, &intval) != 0) {
6135 error = EINVAL;
6136 break;
6137 }
6138 vd->vdev_failfast = intval & 1;
6139 break;
6140 case VDEV_PROP_SIT_OUT:
6141 /* Only expose this for a draid or raidz leaf */
6142 if (!vd->vdev_ops->vdev_op_leaf ||
6143 vd->vdev_top == NULL ||
6144 (vd->vdev_top->vdev_ops != &vdev_raidz_ops &&
6145 vd->vdev_top->vdev_ops != &vdev_draid_ops)) {
6146 error = ENOTSUP;
6147 break;
6148 }
6149 if (nvpair_value_uint64(elem, &intval) != 0) {
6150 error = EINVAL;
6151 break;
6152 }
6153 if (intval == 1) {
6154 vdev_t *ancestor = vd;
6155 while (ancestor->vdev_parent != vd->vdev_top)
6156 ancestor = ancestor->vdev_parent;
6157 vdev_t *pvd = vd->vdev_top;
6158 uint_t sitouts = 0;
6159 for (int i = 0; i < pvd->vdev_children; i++) {
6160 if (pvd->vdev_child[i] == ancestor)
6161 continue;
6162 if (vdev_sit_out_reads(
6163 pvd->vdev_child[i], 0)) {
6164 sitouts++;
6165 }
6166 }
6167 if (sitouts >= vdev_get_nparity(pvd)) {
6168 error = ZFS_ERR_TOO_MANY_SITOUTS;
6169 break;
6170 }
6171 if (error == 0)
6172 vdev_raidz_sit_child(vd,
6173 INT64_MAX - gethrestime_sec());
6174 } else {
6175 vdev_raidz_unsit_child(vd);
6176 }
6177 break;
6178 case VDEV_PROP_AUTOSIT:
6179 if (vd->vdev_ops != &vdev_raidz_ops &&
6180 vd->vdev_ops != &vdev_draid_ops) {
6181 error = ENOTSUP;
6182 break;
6183 }
6184 if (nvpair_value_uint64(elem, &intval) != 0) {
6185 error = EINVAL;
6186 break;
6187 }
6188 vd->vdev_autosit = intval == 1;
6189 break;
6190 case VDEV_PROP_CHECKSUM_N:
6191 if (nvpair_value_uint64(elem, &intval) != 0) {
6192 error = EINVAL;
6193 break;
6194 }
6195 vd->vdev_checksum_n = intval;
6196 break;
6197 case VDEV_PROP_CHECKSUM_T:
6198 if (nvpair_value_uint64(elem, &intval) != 0) {
6199 error = EINVAL;
6200 break;
6201 }
6202 vd->vdev_checksum_t = intval;
6203 break;
6204 case VDEV_PROP_IO_N:
6205 if (nvpair_value_uint64(elem, &intval) != 0) {
6206 error = EINVAL;
6207 break;
6208 }
6209 vd->vdev_io_n = intval;
6210 break;
6211 case VDEV_PROP_IO_T:
6212 if (nvpair_value_uint64(elem, &intval) != 0) {
6213 error = EINVAL;
6214 break;
6215 }
6216 vd->vdev_io_t = intval;
6217 break;
6218 case VDEV_PROP_SLOW_IO_N:
6219 if (nvpair_value_uint64(elem, &intval) != 0) {
6220 error = EINVAL;
6221 break;
6222 }
6223 vd->vdev_slow_io_n = intval;
6224 break;
6225 case VDEV_PROP_SLOW_IO_T:
6226 if (nvpair_value_uint64(elem, &intval) != 0) {
6227 error = EINVAL;
6228 break;
6229 }
6230 vd->vdev_slow_io_t = intval;
6231 break;
6232 default:
6233 /* Most processing is done in vdev_props_set_sync */
6234 break;
6235 }
6236 end:
6237 if (error != 0) {
6238 intval = error;
6239 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6240 return (error);
6241 }
6242 }
6243
6244 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6245 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6246 }
6247
6248 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6249 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6250 {
6251 spa_t *spa = vd->vdev_spa;
6252 objset_t *mos = spa->spa_meta_objset;
6253 int err = 0;
6254 uint64_t objid;
6255 uint64_t vdev_guid;
6256 nvpair_t *elem = NULL;
6257 nvlist_t *nvprops = NULL;
6258 uint64_t intval = 0;
6259 char *strval = NULL;
6260 const char *propname = NULL;
6261 vdev_prop_t prop;
6262
6263 ASSERT(vd != NULL);
6264 ASSERT(mos != NULL);
6265
6266 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6267 &vdev_guid) != 0)
6268 return (SET_ERROR(EINVAL));
6269
6270 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6271
6272 if (vd->vdev_root_zap != 0) {
6273 objid = vd->vdev_root_zap;
6274 } else if (vd->vdev_top_zap != 0) {
6275 objid = vd->vdev_top_zap;
6276 } else if (vd->vdev_leaf_zap != 0) {
6277 objid = vd->vdev_leaf_zap;
6278 } else {
6279 return (SET_ERROR(EINVAL));
6280 }
6281 ASSERT(objid != 0);
6282
6283 mutex_enter(&spa->spa_props_lock);
6284
6285 if (nvprops != NULL) {
6286 char namebuf[64] = { 0 };
6287
6288 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6289 intval = 0;
6290 strval = NULL;
6291 propname = nvpair_name(elem);
6292 prop = vdev_name_to_prop(propname);
6293 zprop_source_t src = ZPROP_SRC_DEFAULT;
6294 uint64_t integer_size, num_integers;
6295
6296 switch (prop) {
6297 /* Special Read-only Properties */
6298 case VDEV_PROP_NAME:
6299 strval = vdev_name(vd, namebuf,
6300 sizeof (namebuf));
6301 if (strval == NULL)
6302 continue;
6303 vdev_prop_add_list(outnvl, propname, strval, 0,
6304 ZPROP_SRC_NONE);
6305 continue;
6306 case VDEV_PROP_CAPACITY:
6307 /* percent used */
6308 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6309 (vd->vdev_stat.vs_alloc * 100 /
6310 vd->vdev_stat.vs_dspace);
6311 vdev_prop_add_list(outnvl, propname, NULL,
6312 intval, ZPROP_SRC_NONE);
6313 continue;
6314 case VDEV_PROP_STATE:
6315 vdev_prop_add_list(outnvl, propname, NULL,
6316 vd->vdev_state, ZPROP_SRC_NONE);
6317 continue;
6318 case VDEV_PROP_GUID:
6319 vdev_prop_add_list(outnvl, propname, NULL,
6320 vd->vdev_guid, ZPROP_SRC_NONE);
6321 continue;
6322 case VDEV_PROP_ASIZE:
6323 vdev_prop_add_list(outnvl, propname, NULL,
6324 vd->vdev_asize, ZPROP_SRC_NONE);
6325 continue;
6326 case VDEV_PROP_PSIZE:
6327 vdev_prop_add_list(outnvl, propname, NULL,
6328 vd->vdev_psize, ZPROP_SRC_NONE);
6329 continue;
6330 case VDEV_PROP_ASHIFT:
6331 vdev_prop_add_list(outnvl, propname, NULL,
6332 vd->vdev_ashift, ZPROP_SRC_NONE);
6333 continue;
6334 case VDEV_PROP_SIZE:
6335 vdev_prop_add_list(outnvl, propname, NULL,
6336 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6337 continue;
6338 case VDEV_PROP_FREE:
6339 vdev_prop_add_list(outnvl, propname, NULL,
6340 vd->vdev_stat.vs_dspace -
6341 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6342 continue;
6343 case VDEV_PROP_ALLOCATED:
6344 vdev_prop_add_list(outnvl, propname, NULL,
6345 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6346 continue;
6347 case VDEV_PROP_EXPANDSZ:
6348 vdev_prop_add_list(outnvl, propname, NULL,
6349 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6350 continue;
6351 case VDEV_PROP_FRAGMENTATION:
6352 vdev_prop_add_list(outnvl, propname, NULL,
6353 vd->vdev_stat.vs_fragmentation,
6354 ZPROP_SRC_NONE);
6355 continue;
6356 case VDEV_PROP_PARITY:
6357 vdev_prop_add_list(outnvl, propname, NULL,
6358 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6359 continue;
6360 case VDEV_PROP_PATH:
6361 if (vd->vdev_path == NULL)
6362 continue;
6363 vdev_prop_add_list(outnvl, propname,
6364 vd->vdev_path, 0, ZPROP_SRC_NONE);
6365 continue;
6366 case VDEV_PROP_DEVID:
6367 if (vd->vdev_devid == NULL)
6368 continue;
6369 vdev_prop_add_list(outnvl, propname,
6370 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6371 continue;
6372 case VDEV_PROP_PHYS_PATH:
6373 if (vd->vdev_physpath == NULL)
6374 continue;
6375 vdev_prop_add_list(outnvl, propname,
6376 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6377 continue;
6378 case VDEV_PROP_ENC_PATH:
6379 if (vd->vdev_enc_sysfs_path == NULL)
6380 continue;
6381 vdev_prop_add_list(outnvl, propname,
6382 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6383 continue;
6384 case VDEV_PROP_FRU:
6385 if (vd->vdev_fru == NULL)
6386 continue;
6387 vdev_prop_add_list(outnvl, propname,
6388 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6389 continue;
6390 case VDEV_PROP_PARENT:
6391 if (vd->vdev_parent != NULL) {
6392 strval = vdev_name(vd->vdev_parent,
6393 namebuf, sizeof (namebuf));
6394 vdev_prop_add_list(outnvl, propname,
6395 strval, 0, ZPROP_SRC_NONE);
6396 }
6397 continue;
6398 case VDEV_PROP_CHILDREN:
6399 if (vd->vdev_children > 0)
6400 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6401 KM_SLEEP);
6402 for (uint64_t i = 0; i < vd->vdev_children;
6403 i++) {
6404 const char *vname;
6405
6406 vname = vdev_name(vd->vdev_child[i],
6407 namebuf, sizeof (namebuf));
6408 if (vname == NULL)
6409 vname = "(unknown)";
6410 if (strlen(strval) > 0)
6411 strlcat(strval, ",",
6412 ZAP_MAXVALUELEN);
6413 strlcat(strval, vname, ZAP_MAXVALUELEN);
6414 }
6415 if (strval != NULL) {
6416 vdev_prop_add_list(outnvl, propname,
6417 strval, 0, ZPROP_SRC_NONE);
6418 kmem_free(strval, ZAP_MAXVALUELEN);
6419 }
6420 continue;
6421 case VDEV_PROP_NUMCHILDREN:
6422 vdev_prop_add_list(outnvl, propname, NULL,
6423 vd->vdev_children, ZPROP_SRC_NONE);
6424 continue;
6425 case VDEV_PROP_READ_ERRORS:
6426 vdev_prop_add_list(outnvl, propname, NULL,
6427 vd->vdev_stat.vs_read_errors,
6428 ZPROP_SRC_NONE);
6429 continue;
6430 case VDEV_PROP_WRITE_ERRORS:
6431 vdev_prop_add_list(outnvl, propname, NULL,
6432 vd->vdev_stat.vs_write_errors,
6433 ZPROP_SRC_NONE);
6434 continue;
6435 case VDEV_PROP_CHECKSUM_ERRORS:
6436 vdev_prop_add_list(outnvl, propname, NULL,
6437 vd->vdev_stat.vs_checksum_errors,
6438 ZPROP_SRC_NONE);
6439 continue;
6440 case VDEV_PROP_INITIALIZE_ERRORS:
6441 vdev_prop_add_list(outnvl, propname, NULL,
6442 vd->vdev_stat.vs_initialize_errors,
6443 ZPROP_SRC_NONE);
6444 continue;
6445 case VDEV_PROP_TRIM_ERRORS:
6446 vdev_prop_add_list(outnvl, propname, NULL,
6447 vd->vdev_stat.vs_trim_errors,
6448 ZPROP_SRC_NONE);
6449 continue;
6450 case VDEV_PROP_SLOW_IOS:
6451 vdev_prop_add_list(outnvl, propname, NULL,
6452 vd->vdev_stat.vs_slow_ios,
6453 ZPROP_SRC_NONE);
6454 continue;
6455 case VDEV_PROP_OPS_NULL:
6456 vdev_prop_add_list(outnvl, propname, NULL,
6457 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6458 ZPROP_SRC_NONE);
6459 continue;
6460 case VDEV_PROP_OPS_READ:
6461 vdev_prop_add_list(outnvl, propname, NULL,
6462 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6463 ZPROP_SRC_NONE);
6464 continue;
6465 case VDEV_PROP_OPS_WRITE:
6466 vdev_prop_add_list(outnvl, propname, NULL,
6467 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6468 ZPROP_SRC_NONE);
6469 continue;
6470 case VDEV_PROP_OPS_FREE:
6471 vdev_prop_add_list(outnvl, propname, NULL,
6472 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6473 ZPROP_SRC_NONE);
6474 continue;
6475 case VDEV_PROP_OPS_CLAIM:
6476 vdev_prop_add_list(outnvl, propname, NULL,
6477 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6478 ZPROP_SRC_NONE);
6479 continue;
6480 case VDEV_PROP_OPS_TRIM:
6481 /*
6482 * TRIM ops and bytes are reported to user
6483 * space as ZIO_TYPE_FLUSH. This is done to
6484 * preserve the vdev_stat_t structure layout
6485 * for user space.
6486 */
6487 vdev_prop_add_list(outnvl, propname, NULL,
6488 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6489 ZPROP_SRC_NONE);
6490 continue;
6491 case VDEV_PROP_BYTES_NULL:
6492 vdev_prop_add_list(outnvl, propname, NULL,
6493 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6494 ZPROP_SRC_NONE);
6495 continue;
6496 case VDEV_PROP_BYTES_READ:
6497 vdev_prop_add_list(outnvl, propname, NULL,
6498 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6499 ZPROP_SRC_NONE);
6500 continue;
6501 case VDEV_PROP_BYTES_WRITE:
6502 vdev_prop_add_list(outnvl, propname, NULL,
6503 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6504 ZPROP_SRC_NONE);
6505 continue;
6506 case VDEV_PROP_BYTES_FREE:
6507 vdev_prop_add_list(outnvl, propname, NULL,
6508 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6509 ZPROP_SRC_NONE);
6510 continue;
6511 case VDEV_PROP_BYTES_CLAIM:
6512 vdev_prop_add_list(outnvl, propname, NULL,
6513 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6514 ZPROP_SRC_NONE);
6515 continue;
6516 case VDEV_PROP_BYTES_TRIM:
6517 /*
6518 * TRIM ops and bytes are reported to user
6519 * space as ZIO_TYPE_FLUSH. This is done to
6520 * preserve the vdev_stat_t structure layout
6521 * for user space.
6522 */
6523 vdev_prop_add_list(outnvl, propname, NULL,
6524 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6525 ZPROP_SRC_NONE);
6526 continue;
6527 case VDEV_PROP_REMOVING:
6528 vdev_prop_add_list(outnvl, propname, NULL,
6529 vd->vdev_removing, ZPROP_SRC_NONE);
6530 continue;
6531 case VDEV_PROP_RAIDZ_EXPANDING:
6532 /* Only expose this for raidz */
6533 if (vd->vdev_ops == &vdev_raidz_ops) {
6534 vdev_prop_add_list(outnvl, propname,
6535 NULL, vd->vdev_rz_expanding,
6536 ZPROP_SRC_NONE);
6537 }
6538 continue;
6539 case VDEV_PROP_SIT_OUT:
6540 /* Only expose this for a draid or raidz leaf */
6541 if (vd->vdev_ops->vdev_op_leaf &&
6542 vd->vdev_top != NULL &&
6543 (vd->vdev_top->vdev_ops ==
6544 &vdev_raidz_ops ||
6545 vd->vdev_top->vdev_ops ==
6546 &vdev_draid_ops)) {
6547 vdev_prop_add_list(outnvl, propname,
6548 NULL, vdev_sit_out_reads(vd, 0),
6549 ZPROP_SRC_NONE);
6550 }
6551 continue;
6552 case VDEV_PROP_TRIM_SUPPORT:
6553 /* only valid for leaf vdevs */
6554 if (vd->vdev_ops->vdev_op_leaf) {
6555 vdev_prop_add_list(outnvl, propname,
6556 NULL, vd->vdev_has_trim,
6557 ZPROP_SRC_NONE);
6558 }
6559 continue;
6560 /* Numeric Properites */
6561 case VDEV_PROP_ALLOCATING:
6562 /* Leaf vdevs cannot have this property */
6563 if (vd->vdev_mg == NULL &&
6564 vd->vdev_top != NULL) {
6565 src = ZPROP_SRC_NONE;
6566 intval = ZPROP_BOOLEAN_NA;
6567 } else {
6568 err = vdev_prop_get_int(vd, prop,
6569 &intval);
6570 if (err && err != ENOENT)
6571 break;
6572
6573 if (intval ==
6574 vdev_prop_default_numeric(prop))
6575 src = ZPROP_SRC_DEFAULT;
6576 else
6577 src = ZPROP_SRC_LOCAL;
6578 }
6579
6580 vdev_prop_add_list(outnvl, propname, NULL,
6581 intval, src);
6582 break;
6583 case VDEV_PROP_FAILFAST:
6584 src = ZPROP_SRC_LOCAL;
6585 strval = NULL;
6586
6587 err = zap_lookup(mos, objid, nvpair_name(elem),
6588 sizeof (uint64_t), 1, &intval);
6589 if (err == ENOENT) {
6590 intval = vdev_prop_default_numeric(
6591 prop);
6592 err = 0;
6593 } else if (err) {
6594 break;
6595 }
6596 if (intval == vdev_prop_default_numeric(prop))
6597 src = ZPROP_SRC_DEFAULT;
6598
6599 vdev_prop_add_list(outnvl, propname, strval,
6600 intval, src);
6601 break;
6602 case VDEV_PROP_AUTOSIT:
6603 /* Only raidz vdevs cannot have this property */
6604 if (vd->vdev_ops != &vdev_raidz_ops &&
6605 vd->vdev_ops != &vdev_draid_ops) {
6606 src = ZPROP_SRC_NONE;
6607 intval = ZPROP_BOOLEAN_NA;
6608 } else {
6609 err = vdev_prop_get_int(vd, prop,
6610 &intval);
6611 if (err && err != ENOENT)
6612 break;
6613
6614 if (intval ==
6615 vdev_prop_default_numeric(prop))
6616 src = ZPROP_SRC_DEFAULT;
6617 else
6618 src = ZPROP_SRC_LOCAL;
6619 }
6620
6621 vdev_prop_add_list(outnvl, propname, NULL,
6622 intval, src);
6623 break;
6624
6625 case VDEV_PROP_CHECKSUM_N:
6626 case VDEV_PROP_CHECKSUM_T:
6627 case VDEV_PROP_IO_N:
6628 case VDEV_PROP_IO_T:
6629 case VDEV_PROP_SLOW_IO_N:
6630 case VDEV_PROP_SLOW_IO_T:
6631 err = vdev_prop_get_int(vd, prop, &intval);
6632 if (err && err != ENOENT)
6633 break;
6634
6635 if (intval == vdev_prop_default_numeric(prop))
6636 src = ZPROP_SRC_DEFAULT;
6637 else
6638 src = ZPROP_SRC_LOCAL;
6639
6640 vdev_prop_add_list(outnvl, propname, NULL,
6641 intval, src);
6642 break;
6643 /* Text Properties */
6644 case VDEV_PROP_COMMENT:
6645 /* Exists in the ZAP below */
6646 /* FALLTHRU */
6647 case VDEV_PROP_USERPROP:
6648 /* User Properites */
6649 src = ZPROP_SRC_LOCAL;
6650
6651 err = zap_length(mos, objid, nvpair_name(elem),
6652 &integer_size, &num_integers);
6653 if (err)
6654 break;
6655
6656 switch (integer_size) {
6657 case 8:
6658 /* User properties cannot be integers */
6659 err = EINVAL;
6660 break;
6661 case 1:
6662 /* string property */
6663 strval = kmem_alloc(num_integers,
6664 KM_SLEEP);
6665 err = zap_lookup(mos, objid,
6666 nvpair_name(elem), 1,
6667 num_integers, strval);
6668 if (err) {
6669 kmem_free(strval,
6670 num_integers);
6671 break;
6672 }
6673 vdev_prop_add_list(outnvl, propname,
6674 strval, 0, src);
6675 kmem_free(strval, num_integers);
6676 break;
6677 }
6678 break;
6679 default:
6680 err = ENOENT;
6681 break;
6682 }
6683 if (err)
6684 break;
6685 }
6686 } else {
6687 /*
6688 * Get all properties from the MOS vdev property object.
6689 */
6690 zap_cursor_t zc;
6691 zap_attribute_t *za = zap_attribute_alloc();
6692 for (zap_cursor_init(&zc, mos, objid);
6693 (err = zap_cursor_retrieve(&zc, za)) == 0;
6694 zap_cursor_advance(&zc)) {
6695 intval = 0;
6696 strval = NULL;
6697 zprop_source_t src = ZPROP_SRC_DEFAULT;
6698 propname = za->za_name;
6699
6700 switch (za->za_integer_length) {
6701 case 8:
6702 /* We do not allow integer user properties */
6703 /* This is likely an internal value */
6704 break;
6705 case 1:
6706 /* string property */
6707 strval = kmem_alloc(za->za_num_integers,
6708 KM_SLEEP);
6709 err = zap_lookup(mos, objid, za->za_name, 1,
6710 za->za_num_integers, strval);
6711 if (err) {
6712 kmem_free(strval, za->za_num_integers);
6713 break;
6714 }
6715 vdev_prop_add_list(outnvl, propname, strval, 0,
6716 src);
6717 kmem_free(strval, za->za_num_integers);
6718 break;
6719
6720 default:
6721 break;
6722 }
6723 }
6724 zap_cursor_fini(&zc);
6725 zap_attribute_free(za);
6726 }
6727
6728 mutex_exit(&spa->spa_props_lock);
6729 if (err && err != ENOENT) {
6730 return (err);
6731 }
6732
6733 return (0);
6734 }
6735
6736 EXPORT_SYMBOL(vdev_fault);
6737 EXPORT_SYMBOL(vdev_degrade);
6738 EXPORT_SYMBOL(vdev_online);
6739 EXPORT_SYMBOL(vdev_offline);
6740 EXPORT_SYMBOL(vdev_clear);
6741
6742 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6743 "Target number of metaslabs per top-level vdev");
6744
6745 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6746 "Default lower limit for metaslab size");
6747
6748 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6749 "Default upper limit for metaslab size");
6750
6751 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6752 "Minimum number of metaslabs per top-level vdev");
6753
6754 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6755 "Practical upper limit of total metaslabs per top-level vdev");
6756
6757 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6758 "Rate limit slow IO (delay) events to this many per second");
6759
6760 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6761 "Rate limit hung IO (deadman) events to this many per second");
6762
6763 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6764 "Rate Direct I/O write verify events to this many per second");
6765
6766 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6767 "Direct I/O writes will perform for checksum verification before "
6768 "commiting write");
6769
6770 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6771 "Rate limit checksum events to this many checksum errors per second "
6772 "(do not set below ZED threshold).");
6773
6774 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6775 "Ignore errors during resilver/scrub");
6776
6777 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6778 "Bypass vdev_validate()");
6779
6780 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6781 "Disable cache flushes");
6782
6783 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6784 "Minimum number of metaslabs required to dedicate one for log blocks");
6785
6786 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6787 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6788 "Minimum ashift used when creating new top-level vdevs");
6789
6790 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6791 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6792 "Maximum ashift used when optimizing for logical -> physical sector "
6793 "size on new top-level vdevs");
6794
6795 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6796 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6797 "RAIDZ implementation");
6798