1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/arc.h>
45 #include <sys/zfeature.h>
46 #include <sys/vdev_indirect_births.h>
47 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/abd.h>
49 #include <sys/vdev_initialize.h>
50 #include <sys/vdev_trim.h>
51 #include <sys/trace_zfs.h>
52
53 /*
54 * This file contains the necessary logic to remove vdevs from a
55 * storage pool. Currently, the only devices that can be removed
56 * are log, cache, and spare devices; and top level vdevs from a pool
57 * w/o raidz or mirrors. (Note that members of a mirror can be removed
58 * by the detach operation.)
59 *
60 * Log vdevs are removed by evacuating them and then turning the vdev
61 * into a hole vdev while holding spa config locks.
62 *
63 * Top level vdevs are removed and converted into an indirect vdev via
64 * a multi-step process:
65 *
66 * - Disable allocations from this device (spa_vdev_remove_top).
67 *
68 * - From a new thread (spa_vdev_remove_thread), copy data from
69 * the removing vdev to a different vdev. The copy happens in open
70 * context (spa_vdev_copy_impl) and issues a sync task
71 * (vdev_mapping_sync) so the sync thread can update the partial
72 * indirect mappings in core and on disk.
73 *
74 * - If a free happens during a removal, it is freed from the
75 * removing vdev, and if it has already been copied, from the new
76 * location as well (free_from_removing_vdev).
77 *
78 * - After the removal is completed, the copy thread converts the vdev
79 * into an indirect vdev (vdev_remove_complete) before instructing
80 * the sync thread to destroy the space maps and finish the removal
81 * (spa_finish_removal).
82 */
83
84 typedef struct vdev_copy_arg {
85 metaslab_t *vca_msp;
86 uint64_t vca_outstanding_bytes;
87 uint64_t vca_read_error_bytes;
88 uint64_t vca_write_error_bytes;
89 kcondvar_t vca_cv;
90 kmutex_t vca_lock;
91 } vdev_copy_arg_t;
92
93 /*
94 * The maximum amount of memory we can use for outstanding i/o while
95 * doing a device removal. This determines how much i/o we can have
96 * in flight concurrently.
97 */
98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
99
100 /*
101 * The largest contiguous segment that we will attempt to allocate when
102 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
103 * there is a performance problem with attempting to allocate large blocks,
104 * consider decreasing this.
105 *
106 * See also the accessor function spa_remove_max_segment().
107 */
108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
109
110 /*
111 * Ignore hard IO errors during device removal. When set if a device
112 * encounters hard IO error during the removal process the removal will
113 * not be cancelled. This can result in a normally recoverable block
114 * becoming permanently damaged and is not recommended.
115 */
116 static int zfs_removal_ignore_errors = 0;
117
118 /*
119 * Allow a remap segment to span free chunks of at most this size. The main
120 * impact of a larger span is that we will read and write larger, more
121 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
122 * for iops. The value here was chosen to align with
123 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
124 * reads (but there's no reason it has to be the same).
125 *
126 * Additionally, a higher span will have the following relatively minor
127 * effects:
128 * - the mapping will be smaller, since one entry can cover more allocated
129 * segments
130 * - more of the fragmentation in the removing device will be preserved
131 * - we'll do larger allocations, which may fail and fall back on smaller
132 * allocations
133 */
134 uint_t vdev_removal_max_span = 32 * 1024;
135
136 /*
137 * This is used by the test suite so that it can ensure that certain
138 * actions happen while in the middle of a removal.
139 */
140 int zfs_removal_suspend_progress = 0;
141
142 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
143
144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
145 static int spa_vdev_remove_cancel_impl(spa_t *spa);
146
147 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
149 {
150 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
151 DMU_POOL_DIRECTORY_OBJECT,
152 DMU_POOL_REMOVING, sizeof (uint64_t),
153 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
154 &spa->spa_removing_phys, tx));
155 }
156
157 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
159 {
160 for (int i = 0; i < count; i++) {
161 uint64_t guid =
162 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
163
164 if (guid == target_guid)
165 return (nvpp[i]);
166 }
167
168 return (NULL);
169 }
170
171 static void
vdev_activate(vdev_t * vd)172 vdev_activate(vdev_t *vd)
173 {
174 metaslab_group_t *mg = vd->vdev_mg;
175
176 ASSERT(!vd->vdev_islog);
177 ASSERT(vd->vdev_noalloc);
178
179 metaslab_group_activate(mg);
180 metaslab_group_activate(vd->vdev_log_mg);
181
182 vdev_update_nonallocating_space(vd, B_FALSE);
183
184 vd->vdev_noalloc = B_FALSE;
185 }
186
187 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)188 vdev_passivate(vdev_t *vd, uint64_t *txg)
189 {
190 spa_t *spa = vd->vdev_spa;
191 int error;
192
193 ASSERT(!vd->vdev_noalloc);
194
195 vdev_t *rvd = spa->spa_root_vdev;
196 metaslab_group_t *mg = vd->vdev_mg;
197 metaslab_class_t *normal = spa_normal_class(spa);
198 if (mg->mg_class == normal) {
199 /*
200 * We must check that this is not the only allocating device in
201 * the pool before passivating, otherwise we will not be able
202 * to make progress because we can't allocate from any vdevs.
203 */
204 boolean_t last = B_TRUE;
205 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
206 vdev_t *cvd = rvd->vdev_child[id];
207
208 if (cvd == vd || !vdev_is_concrete(cvd) ||
209 vdev_is_dead(cvd))
210 continue;
211
212 metaslab_class_t *mc = cvd->vdev_mg->mg_class;
213 if (mc != normal)
214 continue;
215
216 if (!cvd->vdev_noalloc) {
217 last = B_FALSE;
218 break;
219 }
220 }
221 if (last)
222 return (SET_ERROR(EINVAL));
223 }
224
225 metaslab_group_passivate(mg);
226 ASSERT(!vd->vdev_islog);
227 metaslab_group_passivate(vd->vdev_log_mg);
228
229 /*
230 * Wait for the youngest allocations and frees to sync,
231 * and then wait for the deferral of those frees to finish.
232 */
233 spa_vdev_config_exit(spa, NULL,
234 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
235
236 /*
237 * We must ensure that no "stubby" log blocks are allocated
238 * on the device to be removed. These blocks could be
239 * written at any time, including while we are in the middle
240 * of copying them.
241 */
242 error = spa_reset_logs(spa);
243
244 *txg = spa_vdev_config_enter(spa);
245
246 if (error != 0) {
247 metaslab_group_activate(mg);
248 ASSERT(!vd->vdev_islog);
249 if (vd->vdev_log_mg != NULL)
250 metaslab_group_activate(vd->vdev_log_mg);
251 return (error);
252 }
253
254 vdev_update_nonallocating_space(vd, B_TRUE);
255 vd->vdev_noalloc = B_TRUE;
256
257 return (0);
258 }
259
260 /*
261 * Turn off allocations for a top-level device from the pool.
262 *
263 * Turning off allocations for a top-level device can take a significant
264 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
265 * functions which allow us to grab and release the spa_config_lock while
266 * still holding the namespace lock. During each step the configuration
267 * is synced out.
268 */
269 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)270 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
271 {
272 vdev_t *vd;
273 uint64_t txg;
274 int error = 0;
275
276 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
277 ASSERT(spa_writeable(spa));
278
279 txg = spa_vdev_enter(spa);
280
281 ASSERT(MUTEX_HELD(&spa_namespace_lock));
282
283 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
284
285 if (vd == NULL)
286 error = SET_ERROR(ENOENT);
287 else if (vd->vdev_mg == NULL)
288 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
289 else if (!vd->vdev_noalloc)
290 error = vdev_passivate(vd, &txg);
291
292 if (error == 0) {
293 vdev_dirty_leaves(vd, VDD_DTL, txg);
294 vdev_config_dirty(vd);
295 }
296
297 error = spa_vdev_exit(spa, NULL, txg, error);
298
299 return (error);
300 }
301
302 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)303 spa_vdev_alloc(spa_t *spa, uint64_t guid)
304 {
305 vdev_t *vd;
306 uint64_t txg;
307 int error = 0;
308
309 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
310 ASSERT(spa_writeable(spa));
311
312 txg = spa_vdev_enter(spa);
313
314 ASSERT(MUTEX_HELD(&spa_namespace_lock));
315
316 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
317
318 if (vd == NULL)
319 error = SET_ERROR(ENOENT);
320 else if (vd->vdev_mg == NULL)
321 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
322 else if (!vd->vdev_removing)
323 vdev_activate(vd);
324
325 if (error == 0) {
326 vdev_dirty_leaves(vd, VDD_DTL, txg);
327 vdev_config_dirty(vd);
328 }
329
330 (void) spa_vdev_exit(spa, NULL, txg, error);
331
332 return (error);
333 }
334
335 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)336 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
337 int count, nvlist_t *dev_to_remove)
338 {
339 nvlist_t **newdev = NULL;
340
341 if (count > 1)
342 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
343
344 for (int i = 0, j = 0; i < count; i++) {
345 if (dev[i] == dev_to_remove)
346 continue;
347 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
348 }
349
350 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
351 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
352 count - 1);
353
354 for (int i = 0; i < count - 1; i++)
355 nvlist_free(newdev[i]);
356
357 if (count > 1)
358 kmem_free(newdev, (count - 1) * sizeof (void *));
359 }
360
361 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)362 spa_vdev_removal_create(vdev_t *vd)
363 {
364 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
365 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
366 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
367 svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
368 NULL, 0, 0);
369 svr->svr_vdev_id = vd->vdev_id;
370
371 for (int i = 0; i < TXG_SIZE; i++) {
372 svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
373 NULL, 0, 0);
374 list_create(&svr->svr_new_segments[i],
375 sizeof (vdev_indirect_mapping_entry_t),
376 offsetof(vdev_indirect_mapping_entry_t, vime_node));
377 }
378
379 return (svr);
380 }
381
382 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)383 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
384 {
385 for (int i = 0; i < TXG_SIZE; i++) {
386 ASSERT0(svr->svr_bytes_done[i]);
387 ASSERT0(svr->svr_max_offset_to_sync[i]);
388 zfs_range_tree_destroy(svr->svr_frees[i]);
389 list_destroy(&svr->svr_new_segments[i]);
390 }
391
392 zfs_range_tree_destroy(svr->svr_allocd_segs);
393 mutex_destroy(&svr->svr_lock);
394 cv_destroy(&svr->svr_cv);
395 kmem_free(svr, sizeof (*svr));
396 }
397
398 /*
399 * This is called as a synctask in the txg in which we will mark this vdev
400 * as removing (in the config stored in the MOS).
401 *
402 * It begins the evacuation of a toplevel vdev by:
403 * - initializing the spa_removing_phys which tracks this removal
404 * - computing the amount of space to remove for accounting purposes
405 * - dirtying all dbufs in the spa_config_object
406 * - creating the spa_vdev_removal
407 * - starting the spa_vdev_remove_thread
408 */
409 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)410 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
411 {
412 int vdev_id = (uintptr_t)arg;
413 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
414 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
415 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
416 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
417 spa_vdev_removal_t *svr = NULL;
418 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
419
420 ASSERT0(vdev_get_nparity(vd));
421 svr = spa_vdev_removal_create(vd);
422
423 ASSERT(vd->vdev_removing);
424 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
425
426 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
427 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
428 /*
429 * By activating the OBSOLETE_COUNTS feature, we prevent
430 * the pool from being downgraded and ensure that the
431 * refcounts are precise.
432 */
433 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
434 uint64_t one = 1;
435 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
436 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
437 &one, tx));
438 boolean_t are_precise __maybe_unused;
439 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
440 ASSERT3B(are_precise, ==, B_TRUE);
441 }
442
443 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
444 vd->vdev_indirect_mapping =
445 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
446 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
447 vd->vdev_indirect_births =
448 vdev_indirect_births_open(mos, vic->vic_births_object);
449 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
450 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
451 spa->spa_removing_phys.sr_end_time = 0;
452 spa->spa_removing_phys.sr_state = DSS_SCANNING;
453 spa->spa_removing_phys.sr_to_copy = 0;
454 spa->spa_removing_phys.sr_copied = 0;
455
456 /*
457 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
458 * there may be space in the defer tree, which is free, but still
459 * counted in vs_alloc.
460 */
461 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
462 metaslab_t *ms = vd->vdev_ms[i];
463 if (ms->ms_sm == NULL)
464 continue;
465
466 spa->spa_removing_phys.sr_to_copy +=
467 metaslab_allocated_space(ms);
468
469 /*
470 * Space which we are freeing this txg does not need to
471 * be copied.
472 */
473 spa->spa_removing_phys.sr_to_copy -=
474 zfs_range_tree_space(ms->ms_freeing);
475
476 ASSERT0(zfs_range_tree_space(ms->ms_freed));
477 for (int t = 0; t < TXG_SIZE; t++)
478 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
479 }
480
481 /*
482 * Sync tasks are called before metaslab_sync(), so there should
483 * be no already-synced metaslabs in the TXG_CLEAN list.
484 */
485 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
486
487 spa_sync_removing_state(spa, tx);
488
489 /*
490 * All blocks that we need to read the most recent mapping must be
491 * stored on concrete vdevs. Therefore, we must dirty anything that
492 * is read before spa_remove_init(). Specifically, the
493 * spa_config_object. (Note that although we already modified the
494 * spa_config_object in spa_sync_removing_state, that may not have
495 * modified all blocks of the object.)
496 */
497 dmu_object_info_t doi;
498 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
499 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
500 dmu_buf_t *dbuf;
501 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
502 offset, FTAG, &dbuf, 0));
503 dmu_buf_will_dirty(dbuf, tx);
504 offset += dbuf->db_size;
505 dmu_buf_rele(dbuf, FTAG);
506 }
507
508 /*
509 * Now that we've allocated the im_object, dirty the vdev to ensure
510 * that the object gets written to the config on disk.
511 */
512 vdev_config_dirty(vd);
513
514 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
515 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
516 (u_longlong_t)dmu_tx_get_txg(tx),
517 (u_longlong_t)vic->vic_mapping_object);
518
519 spa_history_log_internal(spa, "vdev remove started", tx,
520 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
521 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
522 /*
523 * Setting spa_vdev_removal causes subsequent frees to call
524 * free_from_removing_vdev(). Note that we don't need any locking
525 * because we are the sync thread, and metaslab_free_impl() is only
526 * called from syncing context (potentially from a zio taskq thread,
527 * but in any case only when there are outstanding free i/os, which
528 * there are not).
529 */
530 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
531 spa->spa_vdev_removal = svr;
532 svr->svr_thread = thread_create(NULL, 0,
533 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
534 }
535
536 /*
537 * When we are opening a pool, we must read the mapping for each
538 * indirect vdev in order from most recently removed to least
539 * recently removed. We do this because the blocks for the mapping
540 * of older indirect vdevs may be stored on more recently removed vdevs.
541 * In order to read each indirect mapping object, we must have
542 * initialized all more recently removed vdevs.
543 */
544 int
spa_remove_init(spa_t * spa)545 spa_remove_init(spa_t *spa)
546 {
547 int error;
548
549 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
550 DMU_POOL_DIRECTORY_OBJECT,
551 DMU_POOL_REMOVING, sizeof (uint64_t),
552 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
553 &spa->spa_removing_phys);
554
555 if (error == ENOENT) {
556 spa->spa_removing_phys.sr_state = DSS_NONE;
557 spa->spa_removing_phys.sr_removing_vdev = -1;
558 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
559 spa->spa_indirect_vdevs_loaded = B_TRUE;
560 return (0);
561 } else if (error != 0) {
562 return (error);
563 }
564
565 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
566 /*
567 * We are currently removing a vdev. Create and
568 * initialize a spa_vdev_removal_t from the bonus
569 * buffer of the removing vdevs vdev_im_object, and
570 * initialize its partial mapping.
571 */
572 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
573 vdev_t *vd = vdev_lookup_top(spa,
574 spa->spa_removing_phys.sr_removing_vdev);
575
576 if (vd == NULL) {
577 spa_config_exit(spa, SCL_STATE, FTAG);
578 return (EINVAL);
579 }
580
581 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
582
583 ASSERT(vdev_is_concrete(vd));
584 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
585 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
586 ASSERT(vd->vdev_removing);
587
588 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
589 spa->spa_meta_objset, vic->vic_mapping_object);
590 vd->vdev_indirect_births = vdev_indirect_births_open(
591 spa->spa_meta_objset, vic->vic_births_object);
592 spa_config_exit(spa, SCL_STATE, FTAG);
593
594 spa->spa_vdev_removal = svr;
595 }
596
597 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
598 uint64_t indirect_vdev_id =
599 spa->spa_removing_phys.sr_prev_indirect_vdev;
600 while (indirect_vdev_id != UINT64_MAX) {
601 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
602 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
603
604 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
605 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
606 spa->spa_meta_objset, vic->vic_mapping_object);
607 vd->vdev_indirect_births = vdev_indirect_births_open(
608 spa->spa_meta_objset, vic->vic_births_object);
609
610 indirect_vdev_id = vic->vic_prev_indirect_vdev;
611 }
612 spa_config_exit(spa, SCL_STATE, FTAG);
613
614 /*
615 * Now that we've loaded all the indirect mappings, we can allow
616 * reads from other blocks (e.g. via predictive prefetch).
617 */
618 spa->spa_indirect_vdevs_loaded = B_TRUE;
619 return (0);
620 }
621
622 void
spa_restart_removal(spa_t * spa)623 spa_restart_removal(spa_t *spa)
624 {
625 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
626
627 if (svr == NULL)
628 return;
629
630 /*
631 * In general when this function is called there is no
632 * removal thread running. The only scenario where this
633 * is not true is during spa_import() where this function
634 * is called twice [once from spa_import_impl() and
635 * spa_async_resume()]. Thus, in the scenario where we
636 * import a pool that has an ongoing removal we don't
637 * want to spawn a second thread.
638 */
639 if (svr->svr_thread != NULL)
640 return;
641
642 if (!spa_writeable(spa))
643 return;
644
645 zfs_dbgmsg("restarting removal of %llu",
646 (u_longlong_t)svr->svr_vdev_id);
647 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
648 0, &p0, TS_RUN, minclsyspri);
649 }
650
651 /*
652 * Process freeing from a device which is in the middle of being removed.
653 * We must handle this carefully so that we attempt to copy freed data,
654 * and we correctly free already-copied data.
655 */
656 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)657 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
658 {
659 spa_t *spa = vd->vdev_spa;
660 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
661 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
662 uint64_t txg = spa_syncing_txg(spa);
663 uint64_t max_offset_yet = 0;
664
665 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
666 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
667 vdev_indirect_mapping_object(vim));
668 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
669
670 mutex_enter(&svr->svr_lock);
671
672 /*
673 * Remove the segment from the removing vdev's spacemap. This
674 * ensures that we will not attempt to copy this space (if the
675 * removal thread has not yet visited it), and also ensures
676 * that we know what is actually allocated on the new vdevs
677 * (needed if we cancel the removal).
678 *
679 * Note: we must do the metaslab_free_concrete() with the svr_lock
680 * held, so that the remove_thread can not load this metaslab and then
681 * visit this offset between the time that we metaslab_free_concrete()
682 * and when we check to see if it has been visited.
683 *
684 * Note: The checkpoint flag is set to false as having/taking
685 * a checkpoint and removing a device can't happen at the same
686 * time.
687 */
688 ASSERT(!spa_has_checkpoint(spa));
689 metaslab_free_concrete(vd, offset, size, B_FALSE);
690
691 uint64_t synced_size = 0;
692 uint64_t synced_offset = 0;
693 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
694 if (offset < max_offset_synced) {
695 /*
696 * The mapping for this offset is already on disk.
697 * Free from the new location.
698 *
699 * Note that we use svr_max_synced_offset because it is
700 * updated atomically with respect to the in-core mapping.
701 * By contrast, vim_max_offset is not.
702 *
703 * This block may be split between a synced entry and an
704 * in-flight or unvisited entry. Only process the synced
705 * portion of it here.
706 */
707 synced_size = MIN(size, max_offset_synced - offset);
708 synced_offset = offset;
709
710 ASSERT3U(max_offset_yet, <=, max_offset_synced);
711 max_offset_yet = max_offset_synced;
712
713 DTRACE_PROBE3(remove__free__synced,
714 spa_t *, spa,
715 uint64_t, offset,
716 uint64_t, synced_size);
717
718 size -= synced_size;
719 offset += synced_size;
720 }
721
722 /*
723 * Look at all in-flight txgs starting from the currently syncing one
724 * and see if a section of this free is being copied. By starting from
725 * this txg and iterating forward, we might find that this region
726 * was copied in two different txgs and handle it appropriately.
727 */
728 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
729 int txgoff = (txg + i) & TXG_MASK;
730 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
731 /*
732 * The mapping for this offset is in flight, and
733 * will be synced in txg+i.
734 */
735 uint64_t inflight_size = MIN(size,
736 svr->svr_max_offset_to_sync[txgoff] - offset);
737
738 DTRACE_PROBE4(remove__free__inflight,
739 spa_t *, spa,
740 uint64_t, offset,
741 uint64_t, inflight_size,
742 uint64_t, txg + i);
743
744 /*
745 * We copy data in order of increasing offset.
746 * Therefore the max_offset_to_sync[] must increase
747 * (or be zero, indicating that nothing is being
748 * copied in that txg).
749 */
750 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
751 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
752 >=, max_offset_yet);
753 max_offset_yet =
754 svr->svr_max_offset_to_sync[txgoff];
755 }
756
757 /*
758 * We've already committed to copying this segment:
759 * we have allocated space elsewhere in the pool for
760 * it and have an IO outstanding to copy the data. We
761 * cannot free the space before the copy has
762 * completed, or else the copy IO might overwrite any
763 * new data. To free that space, we record the
764 * segment in the appropriate svr_frees tree and free
765 * the mapped space later, in the txg where we have
766 * completed the copy and synced the mapping (see
767 * vdev_mapping_sync).
768 */
769 zfs_range_tree_add(svr->svr_frees[txgoff],
770 offset, inflight_size);
771 size -= inflight_size;
772 offset += inflight_size;
773
774 /*
775 * This space is already accounted for as being
776 * done, because it is being copied in txg+i.
777 * However, if i!=0, then it is being copied in
778 * a future txg. If we crash after this txg
779 * syncs but before txg+i syncs, then the space
780 * will be free. Therefore we must account
781 * for the space being done in *this* txg
782 * (when it is freed) rather than the future txg
783 * (when it will be copied).
784 */
785 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
786 inflight_size);
787 svr->svr_bytes_done[txgoff] -= inflight_size;
788 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
789 }
790 }
791 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
792
793 if (size > 0) {
794 /*
795 * The copy thread has not yet visited this offset. Ensure
796 * that it doesn't.
797 */
798
799 DTRACE_PROBE3(remove__free__unvisited,
800 spa_t *, spa,
801 uint64_t, offset,
802 uint64_t, size);
803
804 if (svr->svr_allocd_segs != NULL)
805 zfs_range_tree_clear(svr->svr_allocd_segs, offset,
806 size);
807
808 /*
809 * Since we now do not need to copy this data, for
810 * accounting purposes we have done our job and can count
811 * it as completed.
812 */
813 svr->svr_bytes_done[txg & TXG_MASK] += size;
814 }
815 mutex_exit(&svr->svr_lock);
816
817 /*
818 * Now that we have dropped svr_lock, process the synced portion
819 * of this free.
820 */
821 if (synced_size > 0) {
822 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
823
824 /*
825 * Note: this can only be called from syncing context,
826 * and the vdev_indirect_mapping is only changed from the
827 * sync thread, so we don't need svr_lock while doing
828 * metaslab_free_impl_cb.
829 */
830 boolean_t checkpoint = B_FALSE;
831 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
832 metaslab_free_impl_cb, &checkpoint);
833 }
834 }
835
836 /*
837 * Stop an active removal and update the spa_removing phys.
838 */
839 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)840 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
841 {
842 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
843 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
844
845 /* Ensure the removal thread has completed before we free the svr. */
846 spa_vdev_remove_suspend(spa);
847
848 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
849
850 if (state == DSS_FINISHED) {
851 spa_removing_phys_t *srp = &spa->spa_removing_phys;
852 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
853 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
854
855 if (srp->sr_prev_indirect_vdev != -1) {
856 vdev_t *pvd;
857 pvd = vdev_lookup_top(spa,
858 srp->sr_prev_indirect_vdev);
859 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
860 }
861
862 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
863 srp->sr_prev_indirect_vdev = vd->vdev_id;
864 }
865 spa->spa_removing_phys.sr_state = state;
866 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
867
868 spa->spa_vdev_removal = NULL;
869 spa_vdev_removal_destroy(svr);
870
871 spa_sync_removing_state(spa, tx);
872 spa_notify_waiters(spa);
873
874 vdev_config_dirty(spa->spa_root_vdev);
875 }
876
877 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)878 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
879 {
880 vdev_t *vd = arg;
881 vdev_indirect_mark_obsolete(vd, offset, size);
882 boolean_t checkpoint = B_FALSE;
883 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
884 metaslab_free_impl_cb, &checkpoint);
885 }
886
887 /*
888 * On behalf of the removal thread, syncs an incremental bit more of
889 * the indirect mapping to disk and updates the in-memory mapping.
890 * Called as a sync task in every txg that the removal thread makes progress.
891 */
892 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)893 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
894 {
895 spa_vdev_removal_t *svr = arg;
896 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
897 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
898 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
899 uint64_t txg = dmu_tx_get_txg(tx);
900 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
901
902 ASSERT(vic->vic_mapping_object != 0);
903 ASSERT3U(txg, ==, spa_syncing_txg(spa));
904
905 vdev_indirect_mapping_add_entries(vim,
906 &svr->svr_new_segments[txg & TXG_MASK], tx);
907 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
908 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
909
910 /*
911 * Free the copied data for anything that was freed while the
912 * mapping entries were in flight.
913 */
914 mutex_enter(&svr->svr_lock);
915 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
916 free_mapped_segment_cb, vd);
917 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
918 vdev_indirect_mapping_max_offset(vim));
919 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
920 mutex_exit(&svr->svr_lock);
921
922 spa_sync_removing_state(spa, tx);
923 }
924
925 typedef struct vdev_copy_segment_arg {
926 spa_t *vcsa_spa;
927 dva_t *vcsa_dest_dva;
928 uint64_t vcsa_txg;
929 zfs_range_tree_t *vcsa_obsolete_segs;
930 } vdev_copy_segment_arg_t;
931
932 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)933 unalloc_seg(void *arg, uint64_t start, uint64_t size)
934 {
935 vdev_copy_segment_arg_t *vcsa = arg;
936 spa_t *spa = vcsa->vcsa_spa;
937 blkptr_t bp = { { { {0} } } };
938
939 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
940 BP_SET_LSIZE(&bp, size);
941 BP_SET_PSIZE(&bp, size);
942 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
943 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
944 BP_SET_TYPE(&bp, DMU_OT_NONE);
945 BP_SET_LEVEL(&bp, 0);
946 BP_SET_DEDUP(&bp, 0);
947 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
948
949 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
950 DVA_SET_OFFSET(&bp.blk_dva[0],
951 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
952 DVA_SET_ASIZE(&bp.blk_dva[0], size);
953
954 zio_free(spa, vcsa->vcsa_txg, &bp);
955 }
956
957 /*
958 * All reads and writes associated with a call to spa_vdev_copy_segment()
959 * are done.
960 */
961 static void
spa_vdev_copy_segment_done(zio_t * zio)962 spa_vdev_copy_segment_done(zio_t *zio)
963 {
964 vdev_copy_segment_arg_t *vcsa = zio->io_private;
965
966 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
967 unalloc_seg, vcsa);
968 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
969 kmem_free(vcsa, sizeof (*vcsa));
970
971 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
972 }
973
974 /*
975 * The write of the new location is done.
976 */
977 static void
spa_vdev_copy_segment_write_done(zio_t * zio)978 spa_vdev_copy_segment_write_done(zio_t *zio)
979 {
980 vdev_copy_arg_t *vca = zio->io_private;
981
982 abd_free(zio->io_abd);
983
984 mutex_enter(&vca->vca_lock);
985 vca->vca_outstanding_bytes -= zio->io_size;
986
987 if (zio->io_error != 0)
988 vca->vca_write_error_bytes += zio->io_size;
989
990 cv_signal(&vca->vca_cv);
991 mutex_exit(&vca->vca_lock);
992 }
993
994 /*
995 * The read of the old location is done. The parent zio is the write to
996 * the new location. Allow it to start.
997 */
998 static void
spa_vdev_copy_segment_read_done(zio_t * zio)999 spa_vdev_copy_segment_read_done(zio_t *zio)
1000 {
1001 vdev_copy_arg_t *vca = zio->io_private;
1002
1003 if (zio->io_error != 0) {
1004 mutex_enter(&vca->vca_lock);
1005 vca->vca_read_error_bytes += zio->io_size;
1006 mutex_exit(&vca->vca_lock);
1007 }
1008
1009 zio_nowait(zio_unique_parent(zio));
1010 }
1011
1012 /*
1013 * If the old and new vdevs are mirrors, we will read both sides of the old
1014 * mirror, and write each copy to the corresponding side of the new mirror.
1015 * If the old and new vdevs have a different number of children, we will do
1016 * this as best as possible. Since we aren't verifying checksums, this
1017 * ensures that as long as there's a good copy of the data, we'll have a
1018 * good copy after the removal, even if there's silent damage to one side
1019 * of the mirror. If we're removing a mirror that has some silent damage,
1020 * we'll have exactly the same damage in the new location (assuming that
1021 * the new location is also a mirror).
1022 *
1023 * We accomplish this by creating a tree of zio_t's, with as many writes as
1024 * there are "children" of the new vdev (a non-redundant vdev counts as one
1025 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1026 * read from a child of the old vdev. Typically there will be the same
1027 * number of children of the old and new vdevs. However, if there are more
1028 * children of the new vdev, some child(ren) of the old vdev will be issued
1029 * multiple reads. If there are more children of the old vdev, some copies
1030 * will be dropped.
1031 *
1032 * For example, the tree of zio_t's for a 2-way mirror is:
1033 *
1034 * null
1035 * / \
1036 * write(new vdev, child 0) write(new vdev, child 1)
1037 * | |
1038 * read(old vdev, child 0) read(old vdev, child 1)
1039 *
1040 * Child zio's complete before their parents complete. However, zio's
1041 * created with zio_vdev_child_io() may be issued before their children
1042 * complete. In this case we need to make sure that the children (reads)
1043 * complete before the parents (writes) are *issued*. We do this by not
1044 * calling zio_nowait() on each write until its corresponding read has
1045 * completed.
1046 *
1047 * The spa_config_lock must be held while zio's created by
1048 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1049 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1050 * zio is needed to release the spa_config_lock after all the reads and
1051 * writes complete. (Note that we can't grab the config lock for each read,
1052 * because it is not reentrant - we could deadlock with a thread waiting
1053 * for a write lock.)
1054 */
1055 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1056 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1057 vdev_t *source_vd, uint64_t source_offset,
1058 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1059 {
1060 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1061
1062 /*
1063 * If the destination child in unwritable then there is no point
1064 * in issuing the source reads which cannot be written.
1065 */
1066 if (!vdev_writeable(dest_child_vd))
1067 return;
1068
1069 mutex_enter(&vca->vca_lock);
1070 vca->vca_outstanding_bytes += size;
1071 mutex_exit(&vca->vca_lock);
1072
1073 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1074
1075 vdev_t *source_child_vd = NULL;
1076 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1077 /*
1078 * Source and dest are both mirrors. Copy from the same
1079 * child id as we are copying to (wrapping around if there
1080 * are more dest children than source children). If the
1081 * preferred source child is unreadable select another.
1082 */
1083 for (int i = 0; i < source_vd->vdev_children; i++) {
1084 source_child_vd = source_vd->vdev_child[
1085 (dest_id + i) % source_vd->vdev_children];
1086 if (vdev_readable(source_child_vd))
1087 break;
1088 }
1089 } else {
1090 source_child_vd = source_vd;
1091 }
1092
1093 /*
1094 * There should always be at least one readable source child or
1095 * the pool would be in a suspended state. Somehow selecting an
1096 * unreadable child would result in IO errors, the removal process
1097 * being cancelled, and the pool reverting to its pre-removal state.
1098 */
1099 ASSERT3P(source_child_vd, !=, NULL);
1100
1101 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1102 dest_child_vd, dest_offset, abd, size,
1103 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1104 ZIO_FLAG_CANFAIL,
1105 spa_vdev_copy_segment_write_done, vca);
1106
1107 zio_nowait(zio_vdev_child_io(write_zio, NULL,
1108 source_child_vd, source_offset, abd, size,
1109 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1110 ZIO_FLAG_CANFAIL,
1111 spa_vdev_copy_segment_read_done, vca));
1112 }
1113
1114 /*
1115 * Allocate a new location for this segment, and create the zio_t's to
1116 * read from the old location and write to the new location.
1117 */
1118 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1119 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1120 uint64_t maxalloc, uint64_t txg,
1121 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1122 {
1123 metaslab_group_t *mg = vd->vdev_mg;
1124 spa_t *spa = vd->vdev_spa;
1125 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1126 vdev_indirect_mapping_entry_t *entry;
1127 dva_t dst = {{ 0 }};
1128 uint64_t start = zfs_range_tree_min(segs);
1129 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1130
1131 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1132 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1133
1134 uint64_t size = zfs_range_tree_span(segs);
1135 if (zfs_range_tree_span(segs) > maxalloc) {
1136 /*
1137 * We can't allocate all the segments. Prefer to end
1138 * the allocation at the end of a segment, thus avoiding
1139 * additional split blocks.
1140 */
1141 zfs_range_seg_max_t search;
1142 zfs_btree_index_t where;
1143 zfs_rs_set_start(&search, segs, start + maxalloc);
1144 zfs_rs_set_end(&search, segs, start + maxalloc);
1145 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1146 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1147 &where);
1148 if (rs != NULL) {
1149 size = zfs_rs_get_end(rs, segs) - start;
1150 } else {
1151 /*
1152 * There are no segments that end before maxalloc.
1153 * I.e. the first segment is larger than maxalloc,
1154 * so we must split it.
1155 */
1156 size = maxalloc;
1157 }
1158 }
1159 ASSERT3U(size, <=, maxalloc);
1160 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1161
1162 /*
1163 * An allocation class might not have any remaining vdevs or space
1164 */
1165 metaslab_class_t *mc = mg->mg_class;
1166 if (mc->mc_groups == 0)
1167 mc = spa_normal_class(spa);
1168 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1169 0, zal, 0);
1170 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1171 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1172 &dst, 0, NULL, txg, 0, zal, 0);
1173 }
1174 if (error != 0)
1175 return (error);
1176
1177 /*
1178 * Determine the ranges that are not actually needed. Offsets are
1179 * relative to the start of the range to be copied (i.e. relative to the
1180 * local variable "start").
1181 */
1182 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL,
1183 ZFS_RANGE_SEG64, NULL, 0, 0);
1184
1185 zfs_btree_index_t where;
1186 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1187 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1188 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1189 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1190 if (zfs_rs_get_start(rs, segs) >= start + size) {
1191 break;
1192 } else {
1193 zfs_range_tree_add(obsolete_segs,
1194 prev_seg_end - start,
1195 zfs_rs_get_start(rs, segs) - prev_seg_end);
1196 }
1197 prev_seg_end = zfs_rs_get_end(rs, segs);
1198 }
1199 /* We don't end in the middle of an obsolete range */
1200 ASSERT3U(start + size, <=, prev_seg_end);
1201
1202 zfs_range_tree_clear(segs, start, size);
1203
1204 /*
1205 * We can't have any padding of the allocated size, otherwise we will
1206 * misunderstand what's allocated, and the size of the mapping. We
1207 * prevent padding by ensuring that all devices in the pool have the
1208 * same ashift, and the allocation size is a multiple of the ashift.
1209 */
1210 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1211
1212 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1213 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1214 entry->vime_mapping.vimep_dst = dst;
1215 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1216 entry->vime_obsolete_count =
1217 zfs_range_tree_space(obsolete_segs);
1218 }
1219
1220 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1221 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1222 vcsa->vcsa_obsolete_segs = obsolete_segs;
1223 vcsa->vcsa_spa = spa;
1224 vcsa->vcsa_txg = txg;
1225
1226 /*
1227 * See comment before spa_vdev_copy_one_child().
1228 */
1229 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1230 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1231 spa_vdev_copy_segment_done, vcsa, 0);
1232 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1233 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1234 for (int i = 0; i < dest_vd->vdev_children; i++) {
1235 vdev_t *child = dest_vd->vdev_child[i];
1236 spa_vdev_copy_one_child(vca, nzio, vd, start,
1237 child, DVA_GET_OFFSET(&dst), i, size);
1238 }
1239 } else {
1240 spa_vdev_copy_one_child(vca, nzio, vd, start,
1241 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1242 }
1243 zio_nowait(nzio);
1244
1245 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1246 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1247 vdev_dirty(vd, 0, NULL, txg);
1248
1249 return (0);
1250 }
1251
1252 /*
1253 * Complete the removal of a toplevel vdev. This is called as a
1254 * synctask in the same txg that we will sync out the new config (to the
1255 * MOS object) which indicates that this vdev is indirect.
1256 */
1257 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1258 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1259 {
1260 spa_vdev_removal_t *svr = arg;
1261 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1262 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1263
1264 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1265
1266 for (int i = 0; i < TXG_SIZE; i++) {
1267 ASSERT0(svr->svr_bytes_done[i]);
1268 }
1269
1270 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1271 spa->spa_removing_phys.sr_to_copy);
1272
1273 vdev_destroy_spacemaps(vd, tx);
1274
1275 /* destroy leaf zaps, if any */
1276 ASSERT3P(svr->svr_zaplist, !=, NULL);
1277 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1278 pair != NULL;
1279 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1280 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1281 }
1282 fnvlist_free(svr->svr_zaplist);
1283
1284 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1285 /* vd->vdev_path is not available here */
1286 spa_history_log_internal(spa, "vdev remove completed", tx,
1287 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1288 }
1289
1290 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1291 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1292 {
1293 ASSERT3P(zlist, !=, NULL);
1294 ASSERT0(vdev_get_nparity(vd));
1295
1296 if (vd->vdev_leaf_zap != 0) {
1297 char zkey[32];
1298 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1299 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1300 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1301 }
1302
1303 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1304 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1305 }
1306 }
1307
1308 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1309 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1310 {
1311 vdev_t *ivd;
1312 dmu_tx_t *tx;
1313 spa_t *spa = vd->vdev_spa;
1314 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1315
1316 /*
1317 * First, build a list of leaf zaps to be destroyed.
1318 * This is passed to the sync context thread,
1319 * which does the actual unlinking.
1320 */
1321 svr->svr_zaplist = fnvlist_alloc();
1322 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1323
1324 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1325 ivd->vdev_removing = 0;
1326
1327 vd->vdev_leaf_zap = 0;
1328
1329 vdev_remove_child(ivd, vd);
1330 vdev_compact_children(ivd);
1331
1332 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1333
1334 mutex_enter(&svr->svr_lock);
1335 svr->svr_thread = NULL;
1336 cv_broadcast(&svr->svr_cv);
1337 mutex_exit(&svr->svr_lock);
1338
1339 /* After this, we can not use svr. */
1340 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1341 dsl_sync_task_nowait(spa->spa_dsl_pool,
1342 vdev_remove_complete_sync, svr, tx);
1343 dmu_tx_commit(tx);
1344 }
1345
1346 /*
1347 * Complete the removal of a toplevel vdev. This is called in open
1348 * context by the removal thread after we have copied all vdev's data.
1349 */
1350 static void
vdev_remove_complete(spa_t * spa)1351 vdev_remove_complete(spa_t *spa)
1352 {
1353 uint64_t txg;
1354
1355 /*
1356 * Wait for any deferred frees to be synced before we call
1357 * vdev_metaslab_fini()
1358 */
1359 txg_wait_synced(spa->spa_dsl_pool, 0);
1360 txg = spa_vdev_enter(spa);
1361 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1362 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1363 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1364 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1365 vdev_rebuild_stop_wait(vd);
1366 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1367
1368 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1369 ESC_ZFS_VDEV_REMOVE_DEV);
1370
1371 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1372 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1373
1374 /* the vdev is no longer part of the dspace */
1375 vdev_update_nonallocating_space(vd, B_FALSE);
1376
1377 /*
1378 * Discard allocation state.
1379 */
1380 if (vd->vdev_mg != NULL) {
1381 vdev_metaslab_fini(vd);
1382 metaslab_group_destroy(vd->vdev_mg);
1383 vd->vdev_mg = NULL;
1384 }
1385 if (vd->vdev_log_mg != NULL) {
1386 ASSERT0(vd->vdev_ms_count);
1387 metaslab_group_destroy(vd->vdev_log_mg);
1388 vd->vdev_log_mg = NULL;
1389 }
1390 ASSERT0(vd->vdev_stat.vs_space);
1391 ASSERT0(vd->vdev_stat.vs_dspace);
1392
1393 vdev_remove_replace_with_indirect(vd, txg);
1394
1395 /*
1396 * We now release the locks, allowing spa_sync to run and finish the
1397 * removal via vdev_remove_complete_sync in syncing context.
1398 *
1399 * Note that we hold on to the vdev_t that has been replaced. Since
1400 * it isn't part of the vdev tree any longer, it can't be concurrently
1401 * manipulated, even while we don't have the config lock.
1402 */
1403 (void) spa_vdev_exit(spa, NULL, txg, 0);
1404
1405 /*
1406 * Top ZAP should have been transferred to the indirect vdev in
1407 * vdev_remove_replace_with_indirect.
1408 */
1409 ASSERT0(vd->vdev_top_zap);
1410
1411 /*
1412 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1413 */
1414 ASSERT0(vd->vdev_leaf_zap);
1415
1416 txg = spa_vdev_enter(spa);
1417 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1418 /*
1419 * Request to update the config and the config cachefile.
1420 */
1421 vdev_config_dirty(spa->spa_root_vdev);
1422 (void) spa_vdev_exit(spa, vd, txg, 0);
1423
1424 if (ev != NULL)
1425 spa_event_post(ev);
1426 }
1427
1428 /*
1429 * Evacuates a segment of size at most max_alloc from the vdev
1430 * via repeated calls to spa_vdev_copy_segment. If an allocation
1431 * fails, the pool is probably too fragmented to handle such a
1432 * large size, so decrease max_alloc so that the caller will not try
1433 * this size again this txg.
1434 */
1435 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1436 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1437 uint64_t *max_alloc, dmu_tx_t *tx)
1438 {
1439 uint64_t txg = dmu_tx_get_txg(tx);
1440 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1441
1442 mutex_enter(&svr->svr_lock);
1443
1444 /*
1445 * Determine how big of a chunk to copy. We can allocate up
1446 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1447 * bytes of unallocated space at a time. "segs" will track the
1448 * allocated segments that we are copying. We may also be copying
1449 * free segments (of up to vdev_removal_max_span bytes).
1450 */
1451 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1452 NULL, 0, 0);
1453 for (;;) {
1454 zfs_range_tree_t *rt = svr->svr_allocd_segs;
1455 zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1456
1457 if (rs == NULL)
1458 break;
1459
1460 uint64_t seg_length;
1461
1462 if (zfs_range_tree_is_empty(segs)) {
1463 /* need to truncate the first seg based on max_alloc */
1464 seg_length = MIN(zfs_rs_get_end(rs, rt) -
1465 zfs_rs_get_start(rs, rt), *max_alloc);
1466 } else {
1467 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1468 > vdev_removal_max_span) {
1469 /*
1470 * Including this segment would cause us to
1471 * copy a larger unneeded chunk than is allowed.
1472 */
1473 break;
1474 } else if (zfs_rs_get_end(rs, rt) -
1475 zfs_range_tree_min(segs) > *max_alloc) {
1476 /*
1477 * This additional segment would extend past
1478 * max_alloc. Rather than splitting this
1479 * segment, leave it for the next mapping.
1480 */
1481 break;
1482 } else {
1483 seg_length = zfs_rs_get_end(rs, rt) -
1484 zfs_rs_get_start(rs, rt);
1485 }
1486 }
1487
1488 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1489 zfs_range_tree_remove(svr->svr_allocd_segs,
1490 zfs_rs_get_start(rs, rt), seg_length);
1491 }
1492
1493 if (zfs_range_tree_is_empty(segs)) {
1494 mutex_exit(&svr->svr_lock);
1495 zfs_range_tree_destroy(segs);
1496 return;
1497 }
1498
1499 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1500 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1501 svr, tx);
1502 }
1503
1504 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1505
1506 /*
1507 * Note: this is the amount of *allocated* space
1508 * that we are taking care of each txg.
1509 */
1510 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1511
1512 mutex_exit(&svr->svr_lock);
1513
1514 zio_alloc_list_t zal;
1515 metaslab_trace_init(&zal);
1516 uint64_t thismax = SPA_MAXBLOCKSIZE;
1517 while (!zfs_range_tree_is_empty(segs)) {
1518 int error = spa_vdev_copy_segment(vd,
1519 segs, thismax, txg, vca, &zal);
1520
1521 if (error == ENOSPC) {
1522 /*
1523 * Cut our segment in half, and don't try this
1524 * segment size again this txg. Note that the
1525 * allocation size must be aligned to the highest
1526 * ashift in the pool, so that the allocation will
1527 * not be padded out to a multiple of the ashift,
1528 * which could cause us to think that this mapping
1529 * is larger than we intended.
1530 */
1531 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1532 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1533 uint64_t attempted =
1534 MIN(zfs_range_tree_span(segs), thismax);
1535 thismax = P2ROUNDUP(attempted / 2,
1536 1 << spa->spa_max_ashift);
1537 /*
1538 * The minimum-size allocation can not fail.
1539 */
1540 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1541 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1542 } else {
1543 ASSERT0(error);
1544
1545 /*
1546 * We've performed an allocation, so reset the
1547 * alloc trace list.
1548 */
1549 metaslab_trace_fini(&zal);
1550 metaslab_trace_init(&zal);
1551 }
1552 }
1553 metaslab_trace_fini(&zal);
1554 zfs_range_tree_destroy(segs);
1555 }
1556
1557 /*
1558 * The size of each removal mapping is limited by the tunable
1559 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1560 * pool's ashift, so that we don't try to split individual sectors regardless
1561 * of the tunable value. (Note that device removal requires that all devices
1562 * have the same ashift, so there's no difference between spa_min_ashift and
1563 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1564 */
1565 uint64_t
spa_remove_max_segment(spa_t * spa)1566 spa_remove_max_segment(spa_t *spa)
1567 {
1568 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1569 }
1570
1571 /*
1572 * The removal thread operates in open context. It iterates over all
1573 * allocated space in the vdev, by loading each metaslab's spacemap.
1574 * For each contiguous segment of allocated space (capping the segment
1575 * size at SPA_MAXBLOCKSIZE), we:
1576 * - Allocate space for it on another vdev.
1577 * - Create a new mapping from the old location to the new location
1578 * (as a record in svr_new_segments).
1579 * - Initiate a physical read zio to get the data off the removing disk.
1580 * - In the read zio's done callback, initiate a physical write zio to
1581 * write it to the new vdev.
1582 * Note that all of this will take effect when a particular TXG syncs.
1583 * The sync thread ensures that all the phys reads and writes for the syncing
1584 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1585 * (see vdev_mapping_sync()).
1586 */
1587 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1588 spa_vdev_remove_thread(void *arg)
1589 {
1590 spa_t *spa = arg;
1591 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1592 vdev_copy_arg_t vca;
1593 uint64_t max_alloc = spa_remove_max_segment(spa);
1594 uint64_t last_txg = 0;
1595
1596 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1597 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1598 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1599 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1600
1601 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1602 ASSERT(vdev_is_concrete(vd));
1603 ASSERT(vd->vdev_removing);
1604 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1605 ASSERT(vim != NULL);
1606
1607 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1608 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1609 vca.vca_outstanding_bytes = 0;
1610 vca.vca_read_error_bytes = 0;
1611 vca.vca_write_error_bytes = 0;
1612
1613 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1614 NULL, 0, 0);
1615
1616 mutex_enter(&svr->svr_lock);
1617
1618 /*
1619 * Start from vim_max_offset so we pick up where we left off
1620 * if we are restarting the removal after opening the pool.
1621 */
1622 uint64_t msi;
1623 for (msi = start_offset >> vd->vdev_ms_shift;
1624 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1625 metaslab_t *msp = vd->vdev_ms[msi];
1626 ASSERT3U(msi, <=, vd->vdev_ms_count);
1627
1628 again:
1629 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1630 mutex_exit(&svr->svr_lock);
1631
1632 mutex_enter(&msp->ms_sync_lock);
1633 mutex_enter(&msp->ms_lock);
1634
1635 /*
1636 * Assert nothing in flight -- ms_*tree is empty.
1637 */
1638 for (int i = 0; i < TXG_SIZE; i++) {
1639 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1640 }
1641
1642 /*
1643 * If the metaslab has ever been synced (ms_sm != NULL),
1644 * read the allocated segments from the space map object
1645 * into svr_allocd_segs. Since we do this while holding
1646 * ms_lock and ms_sync_lock, concurrent frees (which
1647 * would have modified the space map) will wait for us
1648 * to finish loading the spacemap, and then take the
1649 * appropriate action (see free_from_removing_vdev()).
1650 */
1651 if (msp->ms_sm != NULL)
1652 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1653
1654 /*
1655 * We could not hold svr_lock while loading space map, or we
1656 * could hit deadlock in a ZIO pipeline, having to wait for
1657 * it. But we can not block for it here under metaslab locks,
1658 * or it would be a lock ordering violation.
1659 */
1660 if (!mutex_tryenter(&svr->svr_lock)) {
1661 mutex_exit(&msp->ms_lock);
1662 mutex_exit(&msp->ms_sync_lock);
1663 zfs_range_tree_vacate(segs, NULL, NULL);
1664 mutex_enter(&svr->svr_lock);
1665 goto again;
1666 }
1667
1668 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs);
1669 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1670 zfs_range_tree_add, svr->svr_allocd_segs);
1671 zfs_range_tree_walk(msp->ms_unflushed_frees,
1672 zfs_range_tree_remove, svr->svr_allocd_segs);
1673 zfs_range_tree_walk(msp->ms_freeing,
1674 zfs_range_tree_remove, svr->svr_allocd_segs);
1675
1676 mutex_exit(&msp->ms_lock);
1677 mutex_exit(&msp->ms_sync_lock);
1678
1679 /*
1680 * When we are resuming from a paused removal (i.e.
1681 * when importing a pool with a removal in progress),
1682 * discard any state that we have already processed.
1683 */
1684 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1685
1686 vca.vca_msp = msp;
1687 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1688 (u_longlong_t)zfs_btree_numnodes(
1689 &svr->svr_allocd_segs->rt_root),
1690 (u_longlong_t)msp->ms_id);
1691
1692 while (!svr->svr_thread_exit &&
1693 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1694
1695 mutex_exit(&svr->svr_lock);
1696
1697 /*
1698 * We need to periodically drop the config lock so that
1699 * writers can get in. Additionally, we can't wait
1700 * for a txg to sync while holding a config lock
1701 * (since a waiting writer could cause a 3-way deadlock
1702 * with the sync thread, which also gets a config
1703 * lock for reader). So we can't hold the config lock
1704 * while calling dmu_tx_assign().
1705 */
1706 spa_config_exit(spa, SCL_CONFIG, FTAG);
1707
1708 /*
1709 * This delay will pause the removal around the point
1710 * specified by zfs_removal_suspend_progress. We do this
1711 * solely from the test suite or during debugging.
1712 */
1713 while (zfs_removal_suspend_progress &&
1714 !svr->svr_thread_exit)
1715 delay(hz);
1716
1717 mutex_enter(&vca.vca_lock);
1718 while (vca.vca_outstanding_bytes >
1719 zfs_remove_max_copy_bytes) {
1720 cv_wait(&vca.vca_cv, &vca.vca_lock);
1721 }
1722 mutex_exit(&vca.vca_lock);
1723
1724 dmu_tx_t *tx =
1725 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1726
1727 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT |
1728 DMU_TX_SUSPEND));
1729 uint64_t txg = dmu_tx_get_txg(tx);
1730
1731 /*
1732 * Reacquire the vdev_config lock. The vdev_t
1733 * that we're removing may have changed, e.g. due
1734 * to a vdev_attach or vdev_detach.
1735 */
1736 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1737 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1738
1739 if (txg != last_txg)
1740 max_alloc = spa_remove_max_segment(spa);
1741 last_txg = txg;
1742
1743 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1744
1745 dmu_tx_commit(tx);
1746 mutex_enter(&svr->svr_lock);
1747 }
1748
1749 mutex_enter(&vca.vca_lock);
1750 if (zfs_removal_ignore_errors == 0 &&
1751 (vca.vca_read_error_bytes > 0 ||
1752 vca.vca_write_error_bytes > 0)) {
1753 svr->svr_thread_exit = B_TRUE;
1754 }
1755 mutex_exit(&vca.vca_lock);
1756 }
1757
1758 mutex_exit(&svr->svr_lock);
1759
1760 spa_config_exit(spa, SCL_CONFIG, FTAG);
1761
1762 zfs_range_tree_destroy(segs);
1763
1764 /*
1765 * Wait for all copies to finish before cleaning up the vca.
1766 */
1767 txg_wait_synced(spa->spa_dsl_pool, 0);
1768 ASSERT0(vca.vca_outstanding_bytes);
1769
1770 mutex_destroy(&vca.vca_lock);
1771 cv_destroy(&vca.vca_cv);
1772
1773 if (svr->svr_thread_exit) {
1774 mutex_enter(&svr->svr_lock);
1775 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1776 svr->svr_thread = NULL;
1777 cv_broadcast(&svr->svr_cv);
1778 mutex_exit(&svr->svr_lock);
1779
1780 /*
1781 * During the removal process an unrecoverable read or write
1782 * error was encountered. The removal process must be
1783 * cancelled or this damage may become permanent.
1784 */
1785 if (zfs_removal_ignore_errors == 0 &&
1786 (vca.vca_read_error_bytes > 0 ||
1787 vca.vca_write_error_bytes > 0)) {
1788 zfs_dbgmsg("canceling removal due to IO errors: "
1789 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1790 (u_longlong_t)vca.vca_read_error_bytes,
1791 (u_longlong_t)vca.vca_write_error_bytes);
1792 spa_vdev_remove_cancel_impl(spa);
1793 }
1794 } else {
1795 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1796 vdev_remove_complete(spa);
1797 }
1798
1799 thread_exit();
1800 }
1801
1802 void
spa_vdev_remove_suspend(spa_t * spa)1803 spa_vdev_remove_suspend(spa_t *spa)
1804 {
1805 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1806
1807 if (svr == NULL)
1808 return;
1809
1810 mutex_enter(&svr->svr_lock);
1811 svr->svr_thread_exit = B_TRUE;
1812 while (svr->svr_thread != NULL)
1813 cv_wait(&svr->svr_cv, &svr->svr_lock);
1814 svr->svr_thread_exit = B_FALSE;
1815 mutex_exit(&svr->svr_lock);
1816 }
1817
1818 /*
1819 * Return true if the "allocating" property has been set to "off"
1820 */
1821 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1822 vdev_prop_allocating_off(vdev_t *vd)
1823 {
1824 uint64_t objid = vd->vdev_top_zap;
1825 uint64_t allocating = 1;
1826
1827 /* no vdev property object => no props */
1828 if (objid != 0) {
1829 spa_t *spa = vd->vdev_spa;
1830 objset_t *mos = spa->spa_meta_objset;
1831
1832 mutex_enter(&spa->spa_props_lock);
1833 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1834 1, &allocating);
1835 mutex_exit(&spa->spa_props_lock);
1836 }
1837 return (allocating == 0);
1838 }
1839
1840 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1841 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1842 {
1843 (void) arg;
1844 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1845
1846 if (spa->spa_vdev_removal == NULL)
1847 return (ENOTACTIVE);
1848 return (0);
1849 }
1850
1851 /*
1852 * Cancel a removal by freeing all entries from the partial mapping
1853 * and marking the vdev as no longer being removing.
1854 */
1855 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1856 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1857 {
1858 (void) arg;
1859 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1860 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1861 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1862 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1863 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1864 objset_t *mos = spa->spa_meta_objset;
1865
1866 ASSERT3P(svr->svr_thread, ==, NULL);
1867
1868 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1869
1870 boolean_t are_precise;
1871 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1872 if (are_precise) {
1873 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1874 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1875 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1876 }
1877
1878 uint64_t obsolete_sm_object;
1879 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1880 if (obsolete_sm_object != 0) {
1881 ASSERT(vd->vdev_obsolete_sm != NULL);
1882 ASSERT3U(obsolete_sm_object, ==,
1883 space_map_object(vd->vdev_obsolete_sm));
1884
1885 space_map_free(vd->vdev_obsolete_sm, tx);
1886 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1887 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1888 space_map_close(vd->vdev_obsolete_sm);
1889 vd->vdev_obsolete_sm = NULL;
1890 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1891 }
1892 for (int i = 0; i < TXG_SIZE; i++) {
1893 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1894 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1895 vdev_indirect_mapping_max_offset(vim));
1896 }
1897
1898 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1899 NULL, 0, 0);
1900 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1901 metaslab_t *msp = vd->vdev_ms[msi];
1902
1903 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1904 break;
1905
1906 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1907
1908 mutex_enter(&msp->ms_lock);
1909
1910 /*
1911 * Assert nothing in flight -- ms_*tree is empty.
1912 */
1913 for (int i = 0; i < TXG_SIZE; i++)
1914 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1915 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1916 ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1917 ASSERT0(zfs_range_tree_space(msp->ms_freed));
1918
1919 if (msp->ms_sm != NULL)
1920 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1921
1922 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1923 zfs_range_tree_add, segs);
1924 zfs_range_tree_walk(msp->ms_unflushed_frees,
1925 zfs_range_tree_remove, segs);
1926 zfs_range_tree_walk(msp->ms_freeing,
1927 zfs_range_tree_remove, segs);
1928 mutex_exit(&msp->ms_lock);
1929
1930 /*
1931 * Clear everything past what has been synced,
1932 * because we have not allocated mappings for it yet.
1933 */
1934 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1935 uint64_t ms_end = msp->ms_start + msp->ms_size;
1936 if (ms_end > syncd)
1937 zfs_range_tree_clear(segs, syncd, ms_end - syncd);
1938
1939 zfs_range_tree_vacate(segs, free_mapped_segment_cb, vd);
1940 }
1941 zfs_range_tree_destroy(segs);
1942
1943 /*
1944 * Note: this must happen after we invoke free_mapped_segment_cb,
1945 * because it adds to the obsolete_segments.
1946 */
1947 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1948
1949 ASSERT3U(vic->vic_mapping_object, ==,
1950 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1951 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1952 vd->vdev_indirect_mapping = NULL;
1953 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1954 vic->vic_mapping_object = 0;
1955
1956 ASSERT3U(vic->vic_births_object, ==,
1957 vdev_indirect_births_object(vd->vdev_indirect_births));
1958 vdev_indirect_births_close(vd->vdev_indirect_births);
1959 vd->vdev_indirect_births = NULL;
1960 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1961 vic->vic_births_object = 0;
1962
1963 /*
1964 * We may have processed some frees from the removing vdev in this
1965 * txg, thus increasing svr_bytes_done; discard that here to
1966 * satisfy the assertions in spa_vdev_removal_destroy().
1967 * Note that future txg's can not have any bytes_done, because
1968 * future TXG's are only modified from open context, and we have
1969 * already shut down the copying thread.
1970 */
1971 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1972 spa_finish_removal(spa, DSS_CANCELED, tx);
1973
1974 vd->vdev_removing = B_FALSE;
1975
1976 if (!vdev_prop_allocating_off(vd)) {
1977 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1978 vdev_activate(vd);
1979 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1980 }
1981
1982 vdev_config_dirty(vd);
1983
1984 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1985 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1986 spa_history_log_internal(spa, "vdev remove canceled", tx,
1987 "%s vdev %llu %s", spa_name(spa),
1988 (u_longlong_t)vd->vdev_id,
1989 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1990 }
1991
1992 static int
spa_vdev_remove_cancel_impl(spa_t * spa)1993 spa_vdev_remove_cancel_impl(spa_t *spa)
1994 {
1995 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1996 spa_vdev_remove_cancel_sync, NULL, 0,
1997 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1998 return (error);
1999 }
2000
2001 int
spa_vdev_remove_cancel(spa_t * spa)2002 spa_vdev_remove_cancel(spa_t *spa)
2003 {
2004 spa_vdev_remove_suspend(spa);
2005
2006 if (spa->spa_vdev_removal == NULL)
2007 return (ENOTACTIVE);
2008
2009 return (spa_vdev_remove_cancel_impl(spa));
2010 }
2011
2012 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2013 svr_sync(spa_t *spa, dmu_tx_t *tx)
2014 {
2015 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2016 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2017
2018 if (svr == NULL)
2019 return;
2020
2021 /*
2022 * This check is necessary so that we do not dirty the
2023 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2024 * is nothing to do. Dirtying it every time would prevent us
2025 * from syncing-to-convergence.
2026 */
2027 if (svr->svr_bytes_done[txgoff] == 0)
2028 return;
2029
2030 /*
2031 * Update progress accounting.
2032 */
2033 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2034 svr->svr_bytes_done[txgoff] = 0;
2035
2036 spa_sync_removing_state(spa, tx);
2037 }
2038
2039 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2040 vdev_remove_make_hole_and_free(vdev_t *vd)
2041 {
2042 uint64_t id = vd->vdev_id;
2043 spa_t *spa = vd->vdev_spa;
2044 vdev_t *rvd = spa->spa_root_vdev;
2045
2046 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2047 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2048
2049 vdev_free(vd);
2050
2051 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2052 vdev_add_child(rvd, vd);
2053 vdev_config_dirty(rvd);
2054
2055 /*
2056 * Reassess the health of our root vdev.
2057 */
2058 vdev_reopen(rvd);
2059 }
2060
2061 /*
2062 * Remove a log device. The config lock is held for the specified TXG.
2063 */
2064 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2065 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2066 {
2067 metaslab_group_t *mg = vd->vdev_mg;
2068 spa_t *spa = vd->vdev_spa;
2069 int error = 0;
2070
2071 ASSERT(vd->vdev_islog);
2072 ASSERT(vd == vd->vdev_top);
2073 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2074 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2075
2076 /*
2077 * Stop allocating from this vdev.
2078 */
2079 metaslab_group_passivate(mg);
2080
2081 /*
2082 * Wait for the youngest allocations and frees to sync,
2083 * and then wait for the deferral of those frees to finish.
2084 */
2085 spa_vdev_config_exit(spa, NULL,
2086 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2087
2088 /*
2089 * Cancel any initialize or TRIM which was in progress.
2090 */
2091 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2092 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2093 vdev_autotrim_stop_wait(vd);
2094
2095 /*
2096 * Evacuate the device. We don't hold the config lock as
2097 * writer since we need to do I/O but we do keep the
2098 * spa_namespace_lock held. Once this completes the device
2099 * should no longer have any blocks allocated on it.
2100 */
2101 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2102 if (vd->vdev_stat.vs_alloc != 0)
2103 error = spa_reset_logs(spa);
2104
2105 *txg = spa_vdev_config_enter(spa);
2106
2107 if (error != 0) {
2108 metaslab_group_activate(mg);
2109 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2110 return (error);
2111 }
2112 ASSERT0(vd->vdev_stat.vs_alloc);
2113
2114 /*
2115 * The evacuation succeeded. Remove any remaining MOS metadata
2116 * associated with this vdev, and wait for these changes to sync.
2117 */
2118 vd->vdev_removing = B_TRUE;
2119
2120 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2121 vdev_config_dirty(vd);
2122
2123 /*
2124 * When the log space map feature is enabled we look at
2125 * the vdev's top_zap to find the on-disk flush data of
2126 * the metaslab we just flushed. Thus, while removing a
2127 * log vdev we make sure to call vdev_metaslab_fini()
2128 * first, which removes all metaslabs of this vdev from
2129 * spa_metaslabs_by_flushed before vdev_remove_empty()
2130 * destroys the top_zap of this log vdev.
2131 *
2132 * This avoids the scenario where we flush a metaslab
2133 * from the log vdev being removed that doesn't have a
2134 * top_zap and end up failing to lookup its on-disk flush
2135 * data.
2136 *
2137 * We don't call metaslab_group_destroy() right away
2138 * though (it will be called in vdev_free() later) as
2139 * during metaslab_sync() of metaslabs from other vdevs
2140 * we may touch the metaslab group of this vdev through
2141 * metaslab_class_histogram_verify()
2142 */
2143 vdev_metaslab_fini(vd);
2144
2145 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2146 *txg = spa_vdev_config_enter(spa);
2147
2148 sysevent_t *ev = spa_event_create(spa, vd, NULL,
2149 ESC_ZFS_VDEV_REMOVE_DEV);
2150 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2151 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2152
2153 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2154 ASSERT0(vd->vdev_top_zap);
2155 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2156 ASSERT0(vd->vdev_leaf_zap);
2157
2158 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2159
2160 if (list_link_active(&vd->vdev_state_dirty_node))
2161 vdev_state_clean(vd);
2162 if (list_link_active(&vd->vdev_config_dirty_node))
2163 vdev_config_clean(vd);
2164
2165 ASSERT0(vd->vdev_stat.vs_alloc);
2166
2167 /*
2168 * Clean up the vdev namespace.
2169 */
2170 vdev_remove_make_hole_and_free(vd);
2171
2172 if (ev != NULL)
2173 spa_event_post(ev);
2174
2175 return (0);
2176 }
2177
2178 static int
spa_vdev_remove_top_check(vdev_t * vd)2179 spa_vdev_remove_top_check(vdev_t *vd)
2180 {
2181 spa_t *spa = vd->vdev_spa;
2182
2183 if (vd != vd->vdev_top)
2184 return (SET_ERROR(ENOTSUP));
2185
2186 if (!vdev_is_concrete(vd))
2187 return (SET_ERROR(ENOTSUP));
2188
2189 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2190 return (SET_ERROR(ENOTSUP));
2191
2192 /*
2193 * This device is already being removed
2194 */
2195 if (vd->vdev_removing)
2196 return (SET_ERROR(EALREADY));
2197
2198 metaslab_class_t *mc = vd->vdev_mg->mg_class;
2199 metaslab_class_t *normal = spa_normal_class(spa);
2200 if (mc != normal) {
2201 /*
2202 * Space allocated from the special (or dedup) class is
2203 * included in the DMU's space usage, but it's not included
2204 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2205 * there is always at least as much free space in the normal
2206 * class, as is allocated from the special (and dedup) class.
2207 * As a backup check, we will return ENOSPC if this is
2208 * violated. See also spa_update_dspace().
2209 */
2210 uint64_t available = metaslab_class_get_space(normal) -
2211 metaslab_class_get_alloc(normal);
2212 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2213 if (available < vd->vdev_stat.vs_alloc)
2214 return (SET_ERROR(ENOSPC));
2215 } else if (!vd->vdev_noalloc) {
2216 /* available space in the pool's normal class */
2217 uint64_t available = dsl_dir_space_available(
2218 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2219 if (available < vd->vdev_stat.vs_dspace)
2220 return (SET_ERROR(ENOSPC));
2221 }
2222
2223 /*
2224 * There can not be a removal in progress.
2225 */
2226 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2227 return (SET_ERROR(EBUSY));
2228
2229 /*
2230 * The device must have all its data.
2231 */
2232 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2233 !vdev_dtl_empty(vd, DTL_OUTAGE))
2234 return (SET_ERROR(EBUSY));
2235
2236 /*
2237 * The device must be healthy.
2238 */
2239 if (!vdev_readable(vd))
2240 return (SET_ERROR(EIO));
2241
2242 /*
2243 * All vdevs in normal class must have the same ashift.
2244 */
2245 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2246 return (SET_ERROR(EINVAL));
2247 }
2248
2249 /*
2250 * A removed special/dedup vdev must have same ashift as normal class.
2251 */
2252 ASSERT(!vd->vdev_islog);
2253 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2254 vd->vdev_ashift != spa->spa_max_ashift) {
2255 return (SET_ERROR(EINVAL));
2256 }
2257
2258 /*
2259 * All vdevs in normal class must have the same ashift
2260 * and not be raidz or draid.
2261 */
2262 vdev_t *rvd = spa->spa_root_vdev;
2263 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2264 vdev_t *cvd = rvd->vdev_child[id];
2265
2266 /*
2267 * A removed special/dedup vdev must have the same ashift
2268 * across all vdevs in its class.
2269 */
2270 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2271 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2272 cvd->vdev_ashift != vd->vdev_ashift) {
2273 return (SET_ERROR(EINVAL));
2274 }
2275 if (cvd->vdev_ashift != 0 &&
2276 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2277 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2278 if (!vdev_is_concrete(cvd))
2279 continue;
2280 if (vdev_get_nparity(cvd) != 0)
2281 return (SET_ERROR(EINVAL));
2282 /*
2283 * Need the mirror to be mirror of leaf vdevs only
2284 */
2285 if (cvd->vdev_ops == &vdev_mirror_ops) {
2286 for (uint64_t cid = 0;
2287 cid < cvd->vdev_children; cid++) {
2288 if (!cvd->vdev_child[cid]->vdev_ops->
2289 vdev_op_leaf)
2290 return (SET_ERROR(EINVAL));
2291 }
2292 }
2293 }
2294
2295 return (0);
2296 }
2297
2298 /*
2299 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2300 * The config lock is held for the specified TXG. Once initiated,
2301 * evacuation of all allocated space (copying it to other vdevs) happens
2302 * in the background (see spa_vdev_remove_thread()), and can be canceled
2303 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2304 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2305 */
2306 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2307 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2308 {
2309 spa_t *spa = vd->vdev_spa;
2310 boolean_t set_noalloc = B_FALSE;
2311 int error;
2312
2313 /*
2314 * Check for errors up-front, so that we don't waste time
2315 * passivating the metaslab group and clearing the ZIL if there
2316 * are errors.
2317 */
2318 error = spa_vdev_remove_top_check(vd);
2319
2320 /*
2321 * Stop allocating from this vdev. Note that we must check
2322 * that this is not the only device in the pool before
2323 * passivating, otherwise we will not be able to make
2324 * progress because we can't allocate from any vdevs.
2325 * The above check for sufficient free space serves this
2326 * purpose.
2327 */
2328 if (error == 0 && !vd->vdev_noalloc) {
2329 set_noalloc = B_TRUE;
2330 error = vdev_passivate(vd, txg);
2331 }
2332
2333 if (error != 0)
2334 return (error);
2335
2336 /*
2337 * We stop any initializing and TRIM that is currently in progress
2338 * but leave the state as "active". This will allow the process to
2339 * resume if the removal is canceled sometime later.
2340 */
2341
2342 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2343
2344 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2345 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2346 vdev_autotrim_stop_wait(vd);
2347
2348 *txg = spa_vdev_config_enter(spa);
2349
2350 /*
2351 * Things might have changed while the config lock was dropped
2352 * (e.g. space usage). Check for errors again.
2353 */
2354 error = spa_vdev_remove_top_check(vd);
2355
2356 if (error != 0) {
2357 if (set_noalloc)
2358 vdev_activate(vd);
2359 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2360 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2361 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2362 return (error);
2363 }
2364
2365 vd->vdev_removing = B_TRUE;
2366
2367 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2368 vdev_config_dirty(vd);
2369 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2370 dsl_sync_task_nowait(spa->spa_dsl_pool,
2371 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2372 dmu_tx_commit(tx);
2373
2374 return (0);
2375 }
2376
2377 /*
2378 * Remove a device from the pool.
2379 *
2380 * Removing a device from the vdev namespace requires several steps
2381 * and can take a significant amount of time. As a result we use
2382 * the spa_vdev_config_[enter/exit] functions which allow us to
2383 * grab and release the spa_config_lock while still holding the namespace
2384 * lock. During each step the configuration is synced out.
2385 */
2386 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2387 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2388 {
2389 vdev_t *vd;
2390 nvlist_t **spares, **l2cache, *nv;
2391 uint64_t txg = 0;
2392 uint_t nspares, nl2cache;
2393 int error = 0, error_log;
2394 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2395 sysevent_t *ev = NULL;
2396 const char *vd_type = NULL;
2397 char *vd_path = NULL;
2398
2399 ASSERT(spa_writeable(spa));
2400
2401 if (!locked)
2402 txg = spa_vdev_enter(spa);
2403
2404 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2405 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2406 error = (spa_has_checkpoint(spa)) ?
2407 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2408
2409 if (!locked)
2410 return (spa_vdev_exit(spa, NULL, txg, error));
2411
2412 return (error);
2413 }
2414
2415 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2416
2417 if (spa->spa_spares.sav_vdevs != NULL &&
2418 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2419 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2420 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2421 /*
2422 * Only remove the hot spare if it's not currently in use
2423 * in this pool.
2424 */
2425 if (vd == NULL || unspare) {
2426 const char *type;
2427 boolean_t draid_spare = B_FALSE;
2428
2429 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2430 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2431 draid_spare = B_TRUE;
2432
2433 if (vd == NULL && draid_spare) {
2434 error = SET_ERROR(ENOTSUP);
2435 } else {
2436 if (vd == NULL)
2437 vd = spa_lookup_by_guid(spa,
2438 guid, B_TRUE);
2439 ev = spa_event_create(spa, vd, NULL,
2440 ESC_ZFS_VDEV_REMOVE_AUX);
2441
2442 vd_type = VDEV_TYPE_SPARE;
2443 vd_path = spa_strdup(fnvlist_lookup_string(
2444 nv, ZPOOL_CONFIG_PATH));
2445 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2446 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2447 spa_load_spares(spa);
2448 spa->spa_spares.sav_sync = B_TRUE;
2449 }
2450 } else {
2451 error = SET_ERROR(EBUSY);
2452 }
2453 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2454 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2455 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2456 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2457 vd_type = VDEV_TYPE_L2CACHE;
2458 vd_path = spa_strdup(fnvlist_lookup_string(
2459 nv, ZPOOL_CONFIG_PATH));
2460 /*
2461 * Cache devices can always be removed.
2462 */
2463 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2464
2465 /*
2466 * Stop trimming the cache device. We need to release the
2467 * config lock to allow the syncing of TRIM transactions
2468 * without releasing the spa_namespace_lock. The same
2469 * strategy is employed in spa_vdev_remove_top().
2470 */
2471 spa_vdev_config_exit(spa, NULL,
2472 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2473 mutex_enter(&vd->vdev_trim_lock);
2474 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2475 mutex_exit(&vd->vdev_trim_lock);
2476 txg = spa_vdev_config_enter(spa);
2477
2478 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2479 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2480 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2481 spa_load_l2cache(spa);
2482 spa->spa_l2cache.sav_sync = B_TRUE;
2483 } else if (vd != NULL && vd->vdev_islog) {
2484 ASSERT(!locked);
2485 vd_type = VDEV_TYPE_LOG;
2486 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2487 vd->vdev_path : "-");
2488 error = spa_vdev_remove_log(vd, &txg);
2489 } else if (vd != NULL) {
2490 ASSERT(!locked);
2491 error = spa_vdev_remove_top(vd, &txg);
2492 } else {
2493 /*
2494 * There is no vdev of any kind with the specified guid.
2495 */
2496 error = SET_ERROR(ENOENT);
2497 }
2498
2499 error_log = error;
2500
2501 if (!locked)
2502 error = spa_vdev_exit(spa, NULL, txg, error);
2503
2504 /*
2505 * Logging must be done outside the spa config lock. Otherwise,
2506 * this code path could end up holding the spa config lock while
2507 * waiting for a txg_sync so it can write to the internal log.
2508 * Doing that would prevent the txg sync from actually happening,
2509 * causing a deadlock.
2510 */
2511 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2512 spa_history_log_internal(spa, "vdev remove", NULL,
2513 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2514 }
2515 if (vd_path != NULL)
2516 spa_strfree(vd_path);
2517
2518 if (ev != NULL)
2519 spa_event_post(ev);
2520
2521 return (error);
2522 }
2523
2524 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2525 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2526 {
2527 prs->prs_state = spa->spa_removing_phys.sr_state;
2528
2529 if (prs->prs_state == DSS_NONE)
2530 return (SET_ERROR(ENOENT));
2531
2532 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2533 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2534 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2535 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2536 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2537
2538 prs->prs_mapping_memory = 0;
2539 uint64_t indirect_vdev_id =
2540 spa->spa_removing_phys.sr_prev_indirect_vdev;
2541 while (indirect_vdev_id != -1) {
2542 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2543 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2544 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2545
2546 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2547 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2548 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2549 }
2550
2551 return (0);
2552 }
2553
2554 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2555 "Ignore hard IO errors when removing device");
2556
2557 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2558 "Largest contiguous segment to allocate when removing device");
2559
2560 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2561 "Largest span of free chunks a remap segment can span");
2562
2563 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2564 "Pause device removal after this many bytes are copied "
2565 "(debug use only - causes removal to hang)");
2566
2567 EXPORT_SYMBOL(free_from_removing_vdev);
2568 EXPORT_SYMBOL(spa_removal_get_stats);
2569 EXPORT_SYMBOL(spa_remove_init);
2570 EXPORT_SYMBOL(spa_restart_removal);
2571 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2572 EXPORT_SYMBOL(spa_vdev_remove);
2573 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2574 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2575 EXPORT_SYMBOL(svr_sync);
2576