1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
26 * Copyright 2019 Joyent, Inc.
27 * Copyright (c) 2014 Integros [integros.com]
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_file.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/abd.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/vdev_raidz.h>
40 #include <sys/vdev_raidz_impl.h>
41
42 #ifdef ZFS_DEBUG
43 #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */
44 #endif
45
46 /*
47 * Virtual device vector for RAID-Z.
48 *
49 * This vdev supports single, double, and triple parity. For single parity,
50 * we use a simple XOR of all the data columns. For double or triple parity,
51 * we use a special case of Reed-Solomon coding. This extends the
52 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
53 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
54 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
55 * former is also based. The latter is designed to provide higher performance
56 * for writes.
57 *
58 * Note that the Plank paper claimed to support arbitrary N+M, but was then
59 * amended six years later identifying a critical flaw that invalidates its
60 * claims. Nevertheless, the technique can be adapted to work for up to
61 * triple parity. For additional parity, the amendment "Note: Correction to
62 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
63 * is viable, but the additional complexity means that write performance will
64 * suffer.
65 *
66 * All of the methods above operate on a Galois field, defined over the
67 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
68 * can be expressed with a single byte. Briefly, the operations on the
69 * field are defined as follows:
70 *
71 * o addition (+) is represented by a bitwise XOR
72 * o subtraction (-) is therefore identical to addition: A + B = A - B
73 * o multiplication of A by 2 is defined by the following bitwise expression:
74 *
75 * (A * 2)_7 = A_6
76 * (A * 2)_6 = A_5
77 * (A * 2)_5 = A_4
78 * (A * 2)_4 = A_3 + A_7
79 * (A * 2)_3 = A_2 + A_7
80 * (A * 2)_2 = A_1 + A_7
81 * (A * 2)_1 = A_0
82 * (A * 2)_0 = A_7
83 *
84 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
85 * As an aside, this multiplication is derived from the error correcting
86 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
87 *
88 * Observe that any number in the field (except for 0) can be expressed as a
89 * power of 2 -- a generator for the field. We store a table of the powers of
90 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
91 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
92 * than field addition). The inverse of a field element A (A^-1) is therefore
93 * A ^ (255 - 1) = A^254.
94 *
95 * The up-to-three parity columns, P, Q, R over several data columns,
96 * D_0, ... D_n-1, can be expressed by field operations:
97 *
98 * P = D_0 + D_1 + ... + D_n-2 + D_n-1
99 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
100 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
101 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
102 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
103 *
104 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
105 * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
106 * independent coefficients. (There are no additional coefficients that have
107 * this property which is why the uncorrected Plank method breaks down.)
108 *
109 * See the reconstruction code below for how P, Q and R can used individually
110 * or in concert to recover missing data columns.
111 */
112
113 #define VDEV_RAIDZ_P 0
114 #define VDEV_RAIDZ_Q 1
115 #define VDEV_RAIDZ_R 2
116
117 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
118 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
119
120 /*
121 * We provide a mechanism to perform the field multiplication operation on a
122 * 64-bit value all at once rather than a byte at a time. This works by
123 * creating a mask from the top bit in each byte and using that to
124 * conditionally apply the XOR of 0x1d.
125 */
126 #define VDEV_RAIDZ_64MUL_2(x, mask) \
127 { \
128 (mask) = (x) & 0x8080808080808080ULL; \
129 (mask) = ((mask) << 1) - ((mask) >> 7); \
130 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
131 ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
132 }
133
134 #define VDEV_RAIDZ_64MUL_4(x, mask) \
135 { \
136 VDEV_RAIDZ_64MUL_2((x), mask); \
137 VDEV_RAIDZ_64MUL_2((x), mask); \
138 }
139
140 void
vdev_raidz_map_free(raidz_map_t * rm)141 vdev_raidz_map_free(raidz_map_t *rm)
142 {
143 int c;
144
145 for (c = 0; c < rm->rm_firstdatacol; c++) {
146 abd_free(rm->rm_col[c].rc_abd);
147
148 if (rm->rm_col[c].rc_gdata != NULL)
149 abd_free(rm->rm_col[c].rc_gdata);
150 }
151
152 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
153 abd_put(rm->rm_col[c].rc_abd);
154
155 if (rm->rm_abd_copy != NULL)
156 abd_free(rm->rm_abd_copy);
157
158 kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
159 }
160
161 static void
vdev_raidz_map_free_vsd(zio_t * zio)162 vdev_raidz_map_free_vsd(zio_t *zio)
163 {
164 raidz_map_t *rm = zio->io_vsd;
165
166 ASSERT0(rm->rm_freed);
167 rm->rm_freed = 1;
168
169 if (rm->rm_reports == 0)
170 vdev_raidz_map_free(rm);
171 }
172
173 /*ARGSUSED*/
174 static void
vdev_raidz_cksum_free(void * arg,size_t ignored)175 vdev_raidz_cksum_free(void *arg, size_t ignored)
176 {
177 raidz_map_t *rm = arg;
178
179 ASSERT3U(rm->rm_reports, >, 0);
180
181 if (--rm->rm_reports == 0 && rm->rm_freed != 0)
182 vdev_raidz_map_free(rm);
183 }
184
185 static void
vdev_raidz_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_data)186 vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
187 {
188 raidz_map_t *rm = zcr->zcr_cbdata;
189 const size_t c = zcr->zcr_cbinfo;
190 size_t x, offset;
191
192 const abd_t *good = NULL;
193 const abd_t *bad = rm->rm_col[c].rc_abd;
194
195 if (good_data == NULL) {
196 zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
197 return;
198 }
199
200 if (c < rm->rm_firstdatacol) {
201 /*
202 * The first time through, calculate the parity blocks for
203 * the good data (this relies on the fact that the good
204 * data never changes for a given logical ZIO)
205 */
206 if (rm->rm_col[0].rc_gdata == NULL) {
207 abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
208
209 /*
210 * Set up the rm_col[]s to generate the parity for
211 * good_data, first saving the parity bufs and
212 * replacing them with buffers to hold the result.
213 */
214 for (x = 0; x < rm->rm_firstdatacol; x++) {
215 bad_parity[x] = rm->rm_col[x].rc_abd;
216 rm->rm_col[x].rc_abd =
217 rm->rm_col[x].rc_gdata =
218 abd_alloc_sametype(rm->rm_col[x].rc_abd,
219 rm->rm_col[x].rc_size);
220 }
221
222 /* fill in the data columns from good_data */
223 offset = 0;
224 for (; x < rm->rm_cols; x++) {
225 abd_put(rm->rm_col[x].rc_abd);
226
227 rm->rm_col[x].rc_abd =
228 abd_get_offset_size((abd_t *)good_data,
229 offset, rm->rm_col[x].rc_size);
230 offset += rm->rm_col[x].rc_size;
231 }
232
233 /*
234 * Construct the parity from the good data.
235 */
236 vdev_raidz_generate_parity(rm);
237
238 /* restore everything back to its original state */
239 for (x = 0; x < rm->rm_firstdatacol; x++)
240 rm->rm_col[x].rc_abd = bad_parity[x];
241
242 offset = 0;
243 for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
244 abd_put(rm->rm_col[x].rc_abd);
245 rm->rm_col[x].rc_abd = abd_get_offset_size(
246 rm->rm_abd_copy, offset,
247 rm->rm_col[x].rc_size);
248 offset += rm->rm_col[x].rc_size;
249 }
250 }
251
252 ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
253 good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0,
254 rm->rm_col[c].rc_size);
255 } else {
256 /* adjust good_data to point at the start of our column */
257 offset = 0;
258 for (x = rm->rm_firstdatacol; x < c; x++)
259 offset += rm->rm_col[x].rc_size;
260
261 good = abd_get_offset_size((abd_t *)good_data, offset,
262 rm->rm_col[c].rc_size);
263 }
264
265 /* we drop the ereport if it ends up that the data was good */
266 zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
267 abd_put((abd_t *)good);
268 }
269
270 /*
271 * Invoked indirectly by zfs_ereport_start_checksum(), called
272 * below when our read operation fails completely. The main point
273 * is to keep a copy of everything we read from disk, so that at
274 * vdev_raidz_cksum_finish() time we can compare it with the good data.
275 */
276 static void
vdev_raidz_cksum_report(zio_t * zio,zio_cksum_report_t * zcr,void * arg)277 vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
278 {
279 size_t c = (size_t)(uintptr_t)arg;
280 size_t offset;
281
282 raidz_map_t *rm = zio->io_vsd;
283 size_t size;
284
285 /* set up the report and bump the refcount */
286 zcr->zcr_cbdata = rm;
287 zcr->zcr_cbinfo = c;
288 zcr->zcr_finish = vdev_raidz_cksum_finish;
289 zcr->zcr_free = vdev_raidz_cksum_free;
290
291 rm->rm_reports++;
292 ASSERT3U(rm->rm_reports, >, 0);
293
294 if (rm->rm_abd_copy != NULL)
295 return;
296
297 /*
298 * It's the first time we're called for this raidz_map_t, so we need
299 * to copy the data aside; there's no guarantee that our zio's buffer
300 * won't be re-used for something else.
301 *
302 * Our parity data is already in separate buffers, so there's no need
303 * to copy them.
304 */
305
306 size = 0;
307 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
308 size += rm->rm_col[c].rc_size;
309
310 rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE);
311
312 for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
313 raidz_col_t *col = &rm->rm_col[c];
314 abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
315 col->rc_size);
316
317 ASSERT3S(tmp->abd_size, >=, col->rc_size);
318 ASSERT3S(col->rc_abd->abd_size, >=, col->rc_size);
319 abd_copy_off(tmp, col->rc_abd, 0, 0, col->rc_size);
320 abd_put(col->rc_abd);
321 col->rc_abd = tmp;
322
323 offset += col->rc_size;
324 }
325 ASSERT3U(offset, ==, size);
326 }
327
328 static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
329 vdev_raidz_map_free_vsd,
330 vdev_raidz_cksum_report
331 };
332
333 /*
334 * Divides the IO evenly across all child vdevs; usually, dcols is
335 * the number of children in the target vdev.
336 */
337 raidz_map_t *
vdev_raidz_map_alloc(zio_t * zio,uint64_t ashift,uint64_t dcols,uint64_t nparity)338 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
339 uint64_t nparity)
340 {
341 raidz_map_t *rm;
342 /* The starting RAIDZ (parent) vdev sector of the block. */
343 uint64_t b = zio->io_offset >> ashift;
344 /* The zio's size in units of the vdev's minimum sector size. */
345 uint64_t s = zio->io_size >> ashift;
346 /* The first column for this stripe. */
347 uint64_t f = b % dcols;
348 /* The starting byte offset on each child vdev. */
349 uint64_t o = (b / dcols) << ashift;
350 uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
351 uint64_t off = 0;
352
353 /*
354 * "Quotient": The number of data sectors for this stripe on all but
355 * the "big column" child vdevs that also contain "remainder" data.
356 */
357 q = s / (dcols - nparity);
358
359 /*
360 * "Remainder": The number of partial stripe data sectors in this I/O.
361 * This will add a sector to some, but not all, child vdevs.
362 */
363 r = s - q * (dcols - nparity);
364
365 /* The number of "big columns" - those which contain remainder data. */
366 bc = (r == 0 ? 0 : r + nparity);
367
368 /*
369 * The total number of data and parity sectors associated with
370 * this I/O.
371 */
372 tot = s + nparity * (q + (r == 0 ? 0 : 1));
373
374 /* acols: The columns that will be accessed. */
375 /* scols: The columns that will be accessed or skipped. */
376 if (q == 0) {
377 /* Our I/O request doesn't span all child vdevs. */
378 acols = bc;
379 scols = MIN(dcols, roundup(bc, nparity + 1));
380 } else {
381 acols = dcols;
382 scols = dcols;
383 }
384
385 ASSERT3U(acols, <=, scols);
386
387 rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
388
389 rm->rm_cols = acols;
390 rm->rm_scols = scols;
391 rm->rm_bigcols = bc;
392 rm->rm_skipstart = bc;
393 rm->rm_missingdata = 0;
394 rm->rm_missingparity = 0;
395 rm->rm_firstdatacol = nparity;
396 rm->rm_abd_copy = NULL;
397 rm->rm_reports = 0;
398 rm->rm_freed = 0;
399 rm->rm_ecksuminjected = 0;
400
401 asize = 0;
402
403 for (c = 0; c < scols; c++) {
404 col = f + c;
405 coff = o;
406 if (col >= dcols) {
407 col -= dcols;
408 coff += 1ULL << ashift;
409 }
410 rm->rm_col[c].rc_devidx = col;
411 rm->rm_col[c].rc_offset = coff;
412 rm->rm_col[c].rc_abd = NULL;
413 rm->rm_col[c].rc_gdata = NULL;
414 rm->rm_col[c].rc_error = 0;
415 rm->rm_col[c].rc_tried = 0;
416 rm->rm_col[c].rc_skipped = 0;
417
418 if (c >= acols)
419 rm->rm_col[c].rc_size = 0;
420 else if (c < bc)
421 rm->rm_col[c].rc_size = (q + 1) << ashift;
422 else
423 rm->rm_col[c].rc_size = q << ashift;
424
425 asize += rm->rm_col[c].rc_size;
426 }
427
428 ASSERT3U(asize, ==, tot << ashift);
429 rm->rm_asize = roundup(asize, (nparity + 1) << ashift);
430 rm->rm_nskip = roundup(tot, nparity + 1) - tot;
431 ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift);
432 ASSERT3U(rm->rm_nskip, <=, nparity);
433
434 for (c = 0; c < rm->rm_firstdatacol; c++)
435 rm->rm_col[c].rc_abd =
436 abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
437
438 rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
439 rm->rm_col[c].rc_size);
440 off = rm->rm_col[c].rc_size;
441
442 for (c = c + 1; c < acols; c++) {
443 rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
444 rm->rm_col[c].rc_size);
445 off += rm->rm_col[c].rc_size;
446 }
447
448 /*
449 * If all data stored spans all columns, there's a danger that parity
450 * will always be on the same device and, since parity isn't read
451 * during normal operation, that device's I/O bandwidth won't be
452 * used effectively. We therefore switch the parity every 1MB.
453 *
454 * ... at least that was, ostensibly, the theory. As a practical
455 * matter unless we juggle the parity between all devices evenly, we
456 * won't see any benefit. Further, occasional writes that aren't a
457 * multiple of the LCM of the number of children and the minimum
458 * stripe width are sufficient to avoid pessimal behavior.
459 * Unfortunately, this decision created an implicit on-disk format
460 * requirement that we need to support for all eternity, but only
461 * for single-parity RAID-Z.
462 *
463 * If we intend to skip a sector in the zeroth column for padding
464 * we must make sure to note this swap. We will never intend to
465 * skip the first column since at least one data and one parity
466 * column must appear in each row.
467 */
468 ASSERT(rm->rm_cols >= 2);
469 ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
470
471 if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
472 devidx = rm->rm_col[0].rc_devidx;
473 o = rm->rm_col[0].rc_offset;
474 rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
475 rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
476 rm->rm_col[1].rc_devidx = devidx;
477 rm->rm_col[1].rc_offset = o;
478
479 if (rm->rm_skipstart == 0)
480 rm->rm_skipstart = 1;
481 }
482
483 /* init RAIDZ parity ops */
484 rm->rm_ops = vdev_raidz_math_get_ops();
485
486 return (rm);
487 }
488
489 struct pqr_struct {
490 uint64_t *p;
491 uint64_t *q;
492 uint64_t *r;
493 };
494
495 static int
vdev_raidz_p_func(void * buf,size_t size,void * private)496 vdev_raidz_p_func(void *buf, size_t size, void *private)
497 {
498 struct pqr_struct *pqr = private;
499 const uint64_t *src = buf;
500 int i, cnt = size / sizeof (src[0]);
501
502 ASSERT(pqr->p && !pqr->q && !pqr->r);
503
504 for (i = 0; i < cnt; i++, src++, pqr->p++)
505 *pqr->p ^= *src;
506
507 return (0);
508 }
509
510 static int
vdev_raidz_pq_func(void * buf,size_t size,void * private)511 vdev_raidz_pq_func(void *buf, size_t size, void *private)
512 {
513 struct pqr_struct *pqr = private;
514 const uint64_t *src = buf;
515 uint64_t mask;
516 int i, cnt = size / sizeof (src[0]);
517
518 ASSERT(pqr->p && pqr->q && !pqr->r);
519
520 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
521 *pqr->p ^= *src;
522 VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
523 *pqr->q ^= *src;
524 }
525
526 return (0);
527 }
528
529 static int
vdev_raidz_pqr_func(void * buf,size_t size,void * private)530 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
531 {
532 struct pqr_struct *pqr = private;
533 const uint64_t *src = buf;
534 uint64_t mask;
535 int i, cnt = size / sizeof (src[0]);
536
537 ASSERT(pqr->p && pqr->q && pqr->r);
538
539 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
540 *pqr->p ^= *src;
541 VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
542 *pqr->q ^= *src;
543 VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
544 *pqr->r ^= *src;
545 }
546
547 return (0);
548 }
549
550 static void
vdev_raidz_generate_parity_p(raidz_map_t * rm)551 vdev_raidz_generate_parity_p(raidz_map_t *rm)
552 {
553 uint64_t *p;
554 int c;
555 abd_t *src;
556
557 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
558 src = rm->rm_col[c].rc_abd;
559 p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
560
561 if (c == rm->rm_firstdatacol) {
562 abd_copy_to_buf_off(p, src, 0, rm->rm_col[c].rc_size);
563 } else {
564 struct pqr_struct pqr = { p, NULL, NULL };
565 (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
566 vdev_raidz_p_func, &pqr);
567 }
568 }
569 }
570
571 static void
vdev_raidz_generate_parity_pq(raidz_map_t * rm)572 vdev_raidz_generate_parity_pq(raidz_map_t *rm)
573 {
574 uint64_t *p, *q, pcnt, ccnt, mask, i;
575 int c;
576 abd_t *src;
577
578 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
579 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
580 rm->rm_col[VDEV_RAIDZ_Q].rc_size);
581
582 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
583 src = rm->rm_col[c].rc_abd;
584 p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
585 q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
586
587 ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
588
589 if (c == rm->rm_firstdatacol) {
590 ASSERT(ccnt == pcnt || ccnt == 0);
591
592 abd_copy_to_buf_off(p, src, 0, rm->rm_col[c].rc_size);
593 (void) memcpy(q, p, rm->rm_col[c].rc_size);
594 for (i = ccnt; i < pcnt; i++) {
595 p[i] = 0;
596 q[i] = 0;
597 }
598 } else {
599 struct pqr_struct pqr = { p, q, NULL };
600
601 ASSERT(ccnt <= pcnt);
602
603 (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
604 vdev_raidz_pq_func, &pqr);
605
606 /*
607 * Treat short columns as though they are full of 0s.
608 * Note that there's therefore nothing needed for P.
609 */
610 for (i = ccnt; i < pcnt; i++) {
611 VDEV_RAIDZ_64MUL_2(q[i], mask);
612 }
613 }
614 }
615 }
616
617 static void
vdev_raidz_generate_parity_pqr(raidz_map_t * rm)618 vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
619 {
620 uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
621 int c;
622 abd_t *src;
623
624 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
625 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
626 rm->rm_col[VDEV_RAIDZ_Q].rc_size);
627 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
628 rm->rm_col[VDEV_RAIDZ_R].rc_size);
629
630 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
631 src = rm->rm_col[c].rc_abd;
632 p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
633 q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
634 r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
635
636 ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
637
638 if (c == rm->rm_firstdatacol) {
639 ASSERT3S(src->abd_size, >=, rm->rm_col[c].rc_size);
640 ASSERT(ccnt == pcnt || ccnt == 0);
641 abd_copy_to_buf_off(p, src, 0, rm->rm_col[c].rc_size);
642 (void) memcpy(q, p, rm->rm_col[c].rc_size);
643 (void) memcpy(r, p, rm->rm_col[c].rc_size);
644
645 for (i = ccnt; i < pcnt; i++) {
646 p[i] = 0;
647 q[i] = 0;
648 r[i] = 0;
649 }
650 } else {
651 struct pqr_struct pqr = { p, q, r };
652
653 ASSERT(ccnt <= pcnt);
654 (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
655 vdev_raidz_pqr_func, &pqr);
656
657 /*
658 * Treat short columns as though they are full of 0s.
659 * Note that there's therefore nothing needed for P.
660 */
661 for (i = ccnt; i < pcnt; i++) {
662 VDEV_RAIDZ_64MUL_2(q[i], mask);
663 VDEV_RAIDZ_64MUL_4(r[i], mask);
664 }
665 }
666 }
667 }
668
669 /*
670 * Generate RAID parity in the first virtual columns according to the number of
671 * parity columns available.
672 */
673 void
vdev_raidz_generate_parity(raidz_map_t * rm)674 vdev_raidz_generate_parity(raidz_map_t *rm)
675 {
676 /* Generate using the new math implementation */
677 if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
678 return;
679
680 switch (rm->rm_firstdatacol) {
681 case 1:
682 vdev_raidz_generate_parity_p(rm);
683 break;
684 case 2:
685 vdev_raidz_generate_parity_pq(rm);
686 break;
687 case 3:
688 vdev_raidz_generate_parity_pqr(rm);
689 break;
690 default:
691 cmn_err(CE_PANIC, "invalid RAID-Z configuration");
692 }
693 }
694
695 /* ARGSUSED */
696 static int
vdev_raidz_reconst_p_func(void * dbuf,void * sbuf,size_t size,void * private)697 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
698 {
699 uint64_t *dst = dbuf;
700 uint64_t *src = sbuf;
701 int cnt = size / sizeof (src[0]);
702
703 for (int i = 0; i < cnt; i++) {
704 dst[i] ^= src[i];
705 }
706
707 return (0);
708 }
709
710 /* ARGSUSED */
711 static int
vdev_raidz_reconst_q_pre_func(void * dbuf,void * sbuf,size_t size,void * private)712 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
713 void *private)
714 {
715 uint64_t *dst = dbuf;
716 uint64_t *src = sbuf;
717 uint64_t mask;
718 int cnt = size / sizeof (dst[0]);
719
720 for (int i = 0; i < cnt; i++, dst++, src++) {
721 VDEV_RAIDZ_64MUL_2(*dst, mask);
722 *dst ^= *src;
723 }
724
725 return (0);
726 }
727
728 /* ARGSUSED */
729 static int
vdev_raidz_reconst_q_pre_tail_func(void * buf,size_t size,void * private)730 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
731 {
732 uint64_t *dst = buf;
733 uint64_t mask;
734 int cnt = size / sizeof (dst[0]);
735
736 for (int i = 0; i < cnt; i++, dst++) {
737 /* same operation as vdev_raidz_reconst_q_pre_func() on dst */
738 VDEV_RAIDZ_64MUL_2(*dst, mask);
739 }
740
741 return (0);
742 }
743
744 struct reconst_q_struct {
745 uint64_t *q;
746 int exp;
747 };
748
749 static int
vdev_raidz_reconst_q_post_func(void * buf,size_t size,void * private)750 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
751 {
752 struct reconst_q_struct *rq = private;
753 uint64_t *dst = buf;
754 int cnt = size / sizeof (dst[0]);
755
756 for (int i = 0; i < cnt; i++, dst++, rq->q++) {
757
758 *dst ^= *rq->q;
759 int j;
760 uint8_t *b;
761 for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
762 *b = vdev_raidz_exp2(*b, rq->exp);
763 }
764 }
765
766 return (0);
767 }
768
769 struct reconst_pq_struct {
770 uint8_t *p;
771 uint8_t *q;
772 uint8_t *pxy;
773 uint8_t *qxy;
774 int aexp;
775 int bexp;
776 };
777
778 static int
vdev_raidz_reconst_pq_func(void * xbuf,void * ybuf,size_t size,void * private)779 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
780 {
781 struct reconst_pq_struct *rpq = private;
782 uint8_t *xd = xbuf;
783 uint8_t *yd = ybuf;
784
785 for (int i = 0; i < size;
786 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
787 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
788 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
789 *yd = *rpq->p ^ *rpq->pxy ^ *xd;
790 }
791
792 return (0);
793 }
794
795 static int
vdev_raidz_reconst_pq_tail_func(void * xbuf,size_t size,void * private)796 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
797 {
798 struct reconst_pq_struct *rpq = private;
799 uint8_t *xd = xbuf;
800
801 for (int i = 0; i < size;
802 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
803 /* same operation as vdev_raidz_reconst_pq_func() on xd */
804 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
805 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
806 }
807
808 return (0);
809 }
810
811 static int
vdev_raidz_reconstruct_p(raidz_map_t * rm,int * tgts,int ntgts)812 vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
813 {
814 int x = tgts[0];
815 int c;
816 abd_t *dst, *src;
817
818 ASSERT(ntgts == 1);
819 ASSERT(x >= rm->rm_firstdatacol);
820 ASSERT(x < rm->rm_cols);
821
822 ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
823 ASSERT(rm->rm_col[x].rc_size > 0);
824
825 src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
826 dst = rm->rm_col[x].rc_abd;
827
828 ASSERT3S(dst->abd_size, >=, rm->rm_col[x].rc_size);
829 ASSERT3S(src->abd_size, >=, rm->rm_col[x].rc_size);
830 abd_copy_off(dst, src, 0, 0, rm->rm_col[x].rc_size);
831
832 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
833 uint64_t size = MIN(rm->rm_col[x].rc_size,
834 rm->rm_col[c].rc_size);
835
836 src = rm->rm_col[c].rc_abd;
837 dst = rm->rm_col[x].rc_abd;
838
839 if (c == x)
840 continue;
841
842 (void) abd_iterate_func2(dst, src, 0, 0, size,
843 vdev_raidz_reconst_p_func, NULL);
844 }
845
846 return (1 << VDEV_RAIDZ_P);
847 }
848
849 static int
vdev_raidz_reconstruct_q(raidz_map_t * rm,int * tgts,int ntgts)850 vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
851 {
852 int x = tgts[0];
853 int c, exp;
854 abd_t *dst, *src;
855
856 ASSERT(ntgts == 1);
857
858 ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
859
860 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
861 uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
862 rm->rm_col[c].rc_size);
863
864 src = rm->rm_col[c].rc_abd;
865 dst = rm->rm_col[x].rc_abd;
866
867 if (c == rm->rm_firstdatacol) {
868 if (dst != src) {
869 ASSERT3S(dst->abd_size, >=, size);
870 ASSERT3S(src->abd_size, >=, size);
871 abd_copy_off(dst, src, 0, 0, size);
872 }
873 if (rm->rm_col[x].rc_size > size)
874 abd_zero_off(dst, size,
875 rm->rm_col[x].rc_size - size);
876 } else {
877 ASSERT3U(size, <=, rm->rm_col[x].rc_size);
878 if (src != dst)
879 (void) abd_iterate_func2(dst, src, 0, 0, size,
880 vdev_raidz_reconst_q_pre_func, NULL);
881 (void) abd_iterate_func(dst,
882 size, rm->rm_col[x].rc_size - size,
883 vdev_raidz_reconst_q_pre_tail_func, NULL);
884 }
885 }
886
887 src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
888 dst = rm->rm_col[x].rc_abd;
889 exp = 255 - (rm->rm_cols - 1 - x);
890
891 struct reconst_q_struct rq = { abd_to_buf(src), exp };
892 (void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
893 vdev_raidz_reconst_q_post_func, &rq);
894
895 return (1 << VDEV_RAIDZ_Q);
896 }
897
898 static int
vdev_raidz_reconstruct_pq(raidz_map_t * rm,int * tgts,int ntgts)899 vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
900 {
901 uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
902 abd_t *pdata, *qdata;
903 uint64_t xsize, ysize;
904 int x = tgts[0];
905 int y = tgts[1];
906 abd_t *xd, *yd;
907
908 ASSERT(ntgts == 2);
909 ASSERT(x < y);
910 ASSERT(x >= rm->rm_firstdatacol);
911 ASSERT(y < rm->rm_cols);
912
913 ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
914
915 /*
916 * Move the parity data aside -- we're going to compute parity as
917 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
918 * reuse the parity generation mechanism without trashing the actual
919 * parity so we make those columns appear to be full of zeros by
920 * setting their lengths to zero.
921 */
922 pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
923 qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
924 xsize = rm->rm_col[x].rc_size;
925 ysize = rm->rm_col[y].rc_size;
926
927 rm->rm_col[VDEV_RAIDZ_P].rc_abd =
928 abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
929 rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
930 abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
931 rm->rm_col[x].rc_size = 0;
932 rm->rm_col[y].rc_size = 0;
933
934 vdev_raidz_generate_parity_pq(rm);
935
936 rm->rm_col[x].rc_size = xsize;
937 rm->rm_col[y].rc_size = ysize;
938
939 p = abd_to_buf(pdata);
940 q = abd_to_buf(qdata);
941 pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
942 qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
943 xd = rm->rm_col[x].rc_abd;
944 yd = rm->rm_col[y].rc_abd;
945
946 /*
947 * We now have:
948 * Pxy = P + D_x + D_y
949 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
950 *
951 * We can then solve for D_x:
952 * D_x = A * (P + Pxy) + B * (Q + Qxy)
953 * where
954 * A = 2^(x - y) * (2^(x - y) + 1)^-1
955 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
956 *
957 * With D_x in hand, we can easily solve for D_y:
958 * D_y = P + Pxy + D_x
959 */
960
961 a = vdev_raidz_pow2[255 + x - y];
962 b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
963 tmp = 255 - vdev_raidz_log2[a ^ 1];
964
965 aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
966 bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
967
968 ASSERT3U(xsize, >=, ysize);
969 struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
970 (void) abd_iterate_func2(xd, yd, 0, 0, ysize,
971 vdev_raidz_reconst_pq_func, &rpq);
972 (void) abd_iterate_func(xd, ysize, xsize - ysize,
973 vdev_raidz_reconst_pq_tail_func, &rpq);
974
975 abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
976 abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
977
978 /*
979 * Restore the saved parity data.
980 */
981 rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
982 rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
983
984 return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
985 }
986
987 /* BEGIN CSTYLED */
988 /*
989 * In the general case of reconstruction, we must solve the system of linear
990 * equations defined by the coeffecients used to generate parity as well as
991 * the contents of the data and parity disks. This can be expressed with
992 * vectors for the original data (D) and the actual data (d) and parity (p)
993 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
994 *
995 * __ __ __ __
996 * | | __ __ | p_0 |
997 * | V | | D_0 | | p_m-1 |
998 * | | x | : | = | d_0 |
999 * | I | | D_n-1 | | : |
1000 * | | ~~ ~~ | d_n-1 |
1001 * ~~ ~~ ~~ ~~
1002 *
1003 * I is simply a square identity matrix of size n, and V is a vandermonde
1004 * matrix defined by the coeffecients we chose for the various parity columns
1005 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1006 * computation as well as linear separability.
1007 *
1008 * __ __ __ __
1009 * | 1 .. 1 1 1 | | p_0 |
1010 * | 2^n-1 .. 4 2 1 | __ __ | : |
1011 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
1012 * | 1 .. 0 0 0 | | D_1 | | d_0 |
1013 * | 0 .. 0 0 0 | x | D_2 | = | d_1 |
1014 * | : : : : | | : | | d_2 |
1015 * | 0 .. 1 0 0 | | D_n-1 | | : |
1016 * | 0 .. 0 1 0 | ~~ ~~ | : |
1017 * | 0 .. 0 0 1 | | d_n-1 |
1018 * ~~ ~~ ~~ ~~
1019 *
1020 * Note that I, V, d, and p are known. To compute D, we must invert the
1021 * matrix and use the known data and parity values to reconstruct the unknown
1022 * data values. We begin by removing the rows in V|I and d|p that correspond
1023 * to failed or missing columns; we then make V|I square (n x n) and d|p
1024 * sized n by removing rows corresponding to unused parity from the bottom up
1025 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1026 * using Gauss-Jordan elimination. In the example below we use m=3 parity
1027 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1028 * __ __
1029 * | 1 1 1 1 1 1 1 1 |
1030 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
1031 * | 19 205 116 29 64 16 4 1 | / /
1032 * | 1 0 0 0 0 0 0 0 | / /
1033 * | 0 1 0 0 0 0 0 0 | <--' /
1034 * (V|I) = | 0 0 1 0 0 0 0 0 | <---'
1035 * | 0 0 0 1 0 0 0 0 |
1036 * | 0 0 0 0 1 0 0 0 |
1037 * | 0 0 0 0 0 1 0 0 |
1038 * | 0 0 0 0 0 0 1 0 |
1039 * | 0 0 0 0 0 0 0 1 |
1040 * ~~ ~~
1041 * __ __
1042 * | 1 1 1 1 1 1 1 1 |
1043 * | 128 64 32 16 8 4 2 1 |
1044 * | 19 205 116 29 64 16 4 1 |
1045 * | 1 0 0 0 0 0 0 0 |
1046 * | 0 1 0 0 0 0 0 0 |
1047 * (V|I)' = | 0 0 1 0 0 0 0 0 |
1048 * | 0 0 0 1 0 0 0 0 |
1049 * | 0 0 0 0 1 0 0 0 |
1050 * | 0 0 0 0 0 1 0 0 |
1051 * | 0 0 0 0 0 0 1 0 |
1052 * | 0 0 0 0 0 0 0 1 |
1053 * ~~ ~~
1054 *
1055 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1056 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1057 * matrix is not singular.
1058 * __ __
1059 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1060 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1061 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1062 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1063 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1064 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1065 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1066 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1067 * ~~ ~~
1068 * __ __
1069 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1070 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1071 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1072 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1073 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1074 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1075 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1076 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1077 * ~~ ~~
1078 * __ __
1079 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1080 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1081 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
1082 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1083 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1084 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1085 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1086 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1087 * ~~ ~~
1088 * __ __
1089 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1090 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1091 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
1092 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1093 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1094 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1095 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1096 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1097 * ~~ ~~
1098 * __ __
1099 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1100 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1101 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1102 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1103 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1104 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1105 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1106 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1107 * ~~ ~~
1108 * __ __
1109 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1110 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
1111 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1112 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1113 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1114 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1115 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1116 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1117 * ~~ ~~
1118 * __ __
1119 * | 0 0 1 0 0 0 0 0 |
1120 * | 167 100 5 41 159 169 217 208 |
1121 * | 166 100 4 40 158 168 216 209 |
1122 * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
1123 * | 0 0 0 0 1 0 0 0 |
1124 * | 0 0 0 0 0 1 0 0 |
1125 * | 0 0 0 0 0 0 1 0 |
1126 * | 0 0 0 0 0 0 0 1 |
1127 * ~~ ~~
1128 *
1129 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1130 * of the missing data.
1131 *
1132 * As is apparent from the example above, the only non-trivial rows in the
1133 * inverse matrix correspond to the data disks that we're trying to
1134 * reconstruct. Indeed, those are the only rows we need as the others would
1135 * only be useful for reconstructing data known or assumed to be valid. For
1136 * that reason, we only build the coefficients in the rows that correspond to
1137 * targeted columns.
1138 */
1139 /* END CSTYLED */
1140
1141 static void
vdev_raidz_matrix_init(raidz_map_t * rm,int n,int nmap,int * map,uint8_t ** rows)1142 vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
1143 uint8_t **rows)
1144 {
1145 int i, j;
1146 int pow;
1147
1148 ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
1149
1150 /*
1151 * Fill in the missing rows of interest.
1152 */
1153 for (i = 0; i < nmap; i++) {
1154 ASSERT3S(0, <=, map[i]);
1155 ASSERT3S(map[i], <=, 2);
1156
1157 pow = map[i] * n;
1158 if (pow > 255)
1159 pow -= 255;
1160 ASSERT(pow <= 255);
1161
1162 for (j = 0; j < n; j++) {
1163 pow -= map[i];
1164 if (pow < 0)
1165 pow += 255;
1166 rows[i][j] = vdev_raidz_pow2[pow];
1167 }
1168 }
1169 }
1170
1171 static void
vdev_raidz_matrix_invert(raidz_map_t * rm,int n,int nmissing,int * missing,uint8_t ** rows,uint8_t ** invrows,const uint8_t * used)1172 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1173 uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1174 {
1175 int i, j, ii, jj;
1176 uint8_t log;
1177
1178 /*
1179 * Assert that the first nmissing entries from the array of used
1180 * columns correspond to parity columns and that subsequent entries
1181 * correspond to data columns.
1182 */
1183 for (i = 0; i < nmissing; i++) {
1184 ASSERT3S(used[i], <, rm->rm_firstdatacol);
1185 }
1186 for (; i < n; i++) {
1187 ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1188 }
1189
1190 /*
1191 * First initialize the storage where we'll compute the inverse rows.
1192 */
1193 for (i = 0; i < nmissing; i++) {
1194 for (j = 0; j < n; j++) {
1195 invrows[i][j] = (i == j) ? 1 : 0;
1196 }
1197 }
1198
1199 /*
1200 * Subtract all trivial rows from the rows of consequence.
1201 */
1202 for (i = 0; i < nmissing; i++) {
1203 for (j = nmissing; j < n; j++) {
1204 ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1205 jj = used[j] - rm->rm_firstdatacol;
1206 ASSERT3S(jj, <, n);
1207 invrows[i][j] = rows[i][jj];
1208 rows[i][jj] = 0;
1209 }
1210 }
1211
1212 /*
1213 * For each of the rows of interest, we must normalize it and subtract
1214 * a multiple of it from the other rows.
1215 */
1216 for (i = 0; i < nmissing; i++) {
1217 for (j = 0; j < missing[i]; j++) {
1218 ASSERT0(rows[i][j]);
1219 }
1220 ASSERT3U(rows[i][missing[i]], !=, 0);
1221
1222 /*
1223 * Compute the inverse of the first element and multiply each
1224 * element in the row by that value.
1225 */
1226 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1227
1228 for (j = 0; j < n; j++) {
1229 rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1230 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1231 }
1232
1233 for (ii = 0; ii < nmissing; ii++) {
1234 if (i == ii)
1235 continue;
1236
1237 ASSERT3U(rows[ii][missing[i]], !=, 0);
1238
1239 log = vdev_raidz_log2[rows[ii][missing[i]]];
1240
1241 for (j = 0; j < n; j++) {
1242 rows[ii][j] ^=
1243 vdev_raidz_exp2(rows[i][j], log);
1244 invrows[ii][j] ^=
1245 vdev_raidz_exp2(invrows[i][j], log);
1246 }
1247 }
1248 }
1249
1250 /*
1251 * Verify that the data that is left in the rows are properly part of
1252 * an identity matrix.
1253 */
1254 for (i = 0; i < nmissing; i++) {
1255 for (j = 0; j < n; j++) {
1256 if (j == missing[i]) {
1257 ASSERT3U(rows[i][j], ==, 1);
1258 } else {
1259 ASSERT0(rows[i][j]);
1260 }
1261 }
1262 }
1263 }
1264
1265 static void
vdev_raidz_matrix_reconstruct(raidz_map_t * rm,int n,int nmissing,int * missing,uint8_t ** invrows,const uint8_t * used)1266 vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
1267 int *missing, uint8_t **invrows, const uint8_t *used)
1268 {
1269 int i, j, x, cc, c;
1270 uint8_t *src;
1271 uint64_t ccount;
1272 uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1273 uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1274 uint8_t log = 0;
1275 uint8_t val;
1276 int ll;
1277 uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1278 uint8_t *p, *pp;
1279 size_t psize;
1280
1281 psize = sizeof (invlog[0][0]) * n * nmissing;
1282 p = kmem_alloc(psize, KM_SLEEP);
1283
1284 for (pp = p, i = 0; i < nmissing; i++) {
1285 invlog[i] = pp;
1286 pp += n;
1287 }
1288
1289 for (i = 0; i < nmissing; i++) {
1290 for (j = 0; j < n; j++) {
1291 ASSERT3U(invrows[i][j], !=, 0);
1292 invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1293 }
1294 }
1295
1296 for (i = 0; i < n; i++) {
1297 c = used[i];
1298 ASSERT3U(c, <, rm->rm_cols);
1299
1300 src = abd_to_buf(rm->rm_col[c].rc_abd);
1301 ccount = rm->rm_col[c].rc_size;
1302 for (j = 0; j < nmissing; j++) {
1303 cc = missing[j] + rm->rm_firstdatacol;
1304 ASSERT3U(cc, >=, rm->rm_firstdatacol);
1305 ASSERT3U(cc, <, rm->rm_cols);
1306 ASSERT3U(cc, !=, c);
1307
1308 dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
1309 dcount[j] = rm->rm_col[cc].rc_size;
1310 }
1311
1312 ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
1313
1314 for (x = 0; x < ccount; x++, src++) {
1315 if (*src != 0)
1316 log = vdev_raidz_log2[*src];
1317
1318 for (cc = 0; cc < nmissing; cc++) {
1319 if (x >= dcount[cc])
1320 continue;
1321
1322 if (*src == 0) {
1323 val = 0;
1324 } else {
1325 if ((ll = log + invlog[cc][i]) >= 255)
1326 ll -= 255;
1327 val = vdev_raidz_pow2[ll];
1328 }
1329
1330 if (i == 0)
1331 dst[cc][x] = val;
1332 else
1333 dst[cc][x] ^= val;
1334 }
1335 }
1336 }
1337
1338 kmem_free(p, psize);
1339 }
1340
1341 static int
vdev_raidz_reconstruct_general(raidz_map_t * rm,int * tgts,int ntgts)1342 vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1343 {
1344 int n, i, c, t, tt;
1345 int nmissing_rows;
1346 int missing_rows[VDEV_RAIDZ_MAXPARITY];
1347 int parity_map[VDEV_RAIDZ_MAXPARITY];
1348
1349 uint8_t *p, *pp;
1350 size_t psize;
1351
1352 uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1353 uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1354 uint8_t *used;
1355
1356 abd_t **bufs = NULL;
1357
1358 int code = 0;
1359
1360 /*
1361 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1362 * temporary linear ABDs.
1363 */
1364 if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
1365 bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
1366
1367 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1368 raidz_col_t *col = &rm->rm_col[c];
1369
1370 bufs[c] = col->rc_abd;
1371 col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
1372 ASSERT3S(col->rc_abd->abd_size, >=, col->rc_size);
1373 ASSERT3S(bufs[c]->abd_size, >=, col->rc_size);
1374 abd_copy_off(col->rc_abd, bufs[c], 0, 0, col->rc_size);
1375 }
1376 }
1377
1378 n = rm->rm_cols - rm->rm_firstdatacol;
1379
1380 /*
1381 * Figure out which data columns are missing.
1382 */
1383 nmissing_rows = 0;
1384 for (t = 0; t < ntgts; t++) {
1385 if (tgts[t] >= rm->rm_firstdatacol) {
1386 missing_rows[nmissing_rows++] =
1387 tgts[t] - rm->rm_firstdatacol;
1388 }
1389 }
1390
1391 /*
1392 * Figure out which parity columns to use to help generate the missing
1393 * data columns.
1394 */
1395 for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1396 ASSERT(tt < ntgts);
1397 ASSERT(c < rm->rm_firstdatacol);
1398
1399 /*
1400 * Skip any targeted parity columns.
1401 */
1402 if (c == tgts[tt]) {
1403 tt++;
1404 continue;
1405 }
1406
1407 code |= 1 << c;
1408
1409 parity_map[i] = c;
1410 i++;
1411 }
1412
1413 ASSERT(code != 0);
1414 ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
1415
1416 psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1417 nmissing_rows * n + sizeof (used[0]) * n;
1418 p = kmem_alloc(psize, KM_SLEEP);
1419
1420 for (pp = p, i = 0; i < nmissing_rows; i++) {
1421 rows[i] = pp;
1422 pp += n;
1423 invrows[i] = pp;
1424 pp += n;
1425 }
1426 used = pp;
1427
1428 for (i = 0; i < nmissing_rows; i++) {
1429 used[i] = parity_map[i];
1430 }
1431
1432 for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1433 if (tt < nmissing_rows &&
1434 c == missing_rows[tt] + rm->rm_firstdatacol) {
1435 tt++;
1436 continue;
1437 }
1438
1439 ASSERT3S(i, <, n);
1440 used[i] = c;
1441 i++;
1442 }
1443
1444 /*
1445 * Initialize the interesting rows of the matrix.
1446 */
1447 vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
1448
1449 /*
1450 * Invert the matrix.
1451 */
1452 vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1453 invrows, used);
1454
1455 /*
1456 * Reconstruct the missing data using the generated matrix.
1457 */
1458 vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1459 invrows, used);
1460
1461 kmem_free(p, psize);
1462
1463 /*
1464 * copy back from temporary linear abds and free them
1465 */
1466 if (bufs) {
1467 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1468 raidz_col_t *col = &rm->rm_col[c];
1469
1470 ASSERT3S(bufs[c]->abd_size, >=, col->rc_size);
1471 ASSERT3S(col->rc_abd->abd_size, >=, col->rc_size);
1472 abd_copy_off(bufs[c], col->rc_abd, 0, 0, col->rc_size);
1473 abd_free(col->rc_abd);
1474 col->rc_abd = bufs[c];
1475 }
1476 kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
1477 }
1478
1479 return (code);
1480 }
1481
1482 int
vdev_raidz_reconstruct(raidz_map_t * rm,const int * t,int nt)1483 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
1484 {
1485 int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1486 int ntgts;
1487 int i, c, ret;
1488 int code;
1489 int nbadparity, nbaddata;
1490 int parity_valid[VDEV_RAIDZ_MAXPARITY];
1491
1492 /*
1493 * The tgts list must already be sorted.
1494 */
1495 for (i = 1; i < nt; i++) {
1496 ASSERT(t[i] > t[i - 1]);
1497 }
1498
1499 nbadparity = rm->rm_firstdatacol;
1500 nbaddata = rm->rm_cols - nbadparity;
1501 ntgts = 0;
1502 for (i = 0, c = 0; c < rm->rm_cols; c++) {
1503 if (c < rm->rm_firstdatacol)
1504 parity_valid[c] = B_FALSE;
1505
1506 if (i < nt && c == t[i]) {
1507 tgts[ntgts++] = c;
1508 i++;
1509 } else if (rm->rm_col[c].rc_error != 0) {
1510 tgts[ntgts++] = c;
1511 } else if (c >= rm->rm_firstdatacol) {
1512 nbaddata--;
1513 } else {
1514 parity_valid[c] = B_TRUE;
1515 nbadparity--;
1516 }
1517 }
1518
1519 ASSERT(ntgts >= nt);
1520 ASSERT(nbaddata >= 0);
1521 ASSERT(nbaddata + nbadparity == ntgts);
1522
1523 dt = &tgts[nbadparity];
1524
1525 /* Reconstruct using the new math implementation */
1526 ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
1527 if (ret != RAIDZ_ORIGINAL_IMPL)
1528 return (ret);
1529
1530 /*
1531 * See if we can use any of our optimized reconstruction routines.
1532 */
1533 switch (nbaddata) {
1534 case 1:
1535 if (parity_valid[VDEV_RAIDZ_P])
1536 return (vdev_raidz_reconstruct_p(rm, dt, 1));
1537
1538 ASSERT(rm->rm_firstdatacol > 1);
1539
1540 if (parity_valid[VDEV_RAIDZ_Q])
1541 return (vdev_raidz_reconstruct_q(rm, dt, 1));
1542
1543 ASSERT(rm->rm_firstdatacol > 2);
1544 break;
1545
1546 case 2:
1547 ASSERT(rm->rm_firstdatacol > 1);
1548
1549 if (parity_valid[VDEV_RAIDZ_P] &&
1550 parity_valid[VDEV_RAIDZ_Q])
1551 return (vdev_raidz_reconstruct_pq(rm, dt, 2));
1552
1553 ASSERT(rm->rm_firstdatacol > 2);
1554
1555 break;
1556 }
1557
1558 code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
1559 ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1560 ASSERT(code > 0);
1561 return (code);
1562 }
1563
1564 static int
vdev_raidz_open(vdev_t * vd,uint64_t * asize,uint64_t * max_asize,uint64_t * ashift)1565 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1566 uint64_t *ashift)
1567 {
1568 vdev_t *cvd;
1569 uint64_t nparity = vd->vdev_nparity;
1570 int c;
1571 int lasterror = 0;
1572 int numerrors = 0;
1573
1574 ASSERT(nparity > 0);
1575
1576 if (nparity > VDEV_RAIDZ_MAXPARITY ||
1577 vd->vdev_children < nparity + 1) {
1578 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1579 return (SET_ERROR(EINVAL));
1580 }
1581
1582 vdev_open_children(vd);
1583
1584 for (c = 0; c < vd->vdev_children; c++) {
1585 cvd = vd->vdev_child[c];
1586
1587 if (cvd->vdev_open_error != 0) {
1588 lasterror = cvd->vdev_open_error;
1589 numerrors++;
1590 continue;
1591 }
1592
1593 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1594 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1595 *ashift = MAX(*ashift, cvd->vdev_ashift);
1596 }
1597
1598 *asize *= vd->vdev_children;
1599 *max_asize *= vd->vdev_children;
1600
1601 if (numerrors > nparity) {
1602 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1603 return (lasterror);
1604 }
1605
1606 return (0);
1607 }
1608
1609 static void
vdev_raidz_close(vdev_t * vd)1610 vdev_raidz_close(vdev_t *vd)
1611 {
1612 int c;
1613
1614 for (c = 0; c < vd->vdev_children; c++)
1615 vdev_close(vd->vdev_child[c]);
1616 }
1617
1618 /*
1619 * Handle a read or write I/O to a RAID-Z dump device.
1620 *
1621 * The dump device is in a unique situation compared to other ZFS datasets:
1622 * writing to this device should be as simple and fast as possible. In
1623 * addition, durability matters much less since the dump will be extracted
1624 * once the machine reboots. For that reason, this function eschews parity for
1625 * performance and simplicity. The dump device uses the checksum setting
1626 * ZIO_CHECKSUM_NOPARITY to indicate that parity is not maintained for this
1627 * dataset.
1628 *
1629 * Blocks of size 128 KB have been preallocated for this volume. I/Os less than
1630 * 128 KB will not fill an entire block; in addition, they may not be properly
1631 * aligned. In that case, this function uses the preallocated 128 KB block and
1632 * omits reading or writing any "empty" portions of that block, as opposed to
1633 * allocating a fresh appropriately-sized block.
1634 *
1635 * Looking at an example of a 32 KB I/O to a RAID-Z vdev with 5 child vdevs:
1636 *
1637 * vdev_raidz_io_start(data, size: 32 KB, offset: 64 KB)
1638 *
1639 * If this were a standard RAID-Z dataset, a block of at least 40 KB would be
1640 * allocated which spans all five child vdevs. 8 KB of data would be written to
1641 * each of four vdevs, with the fifth containing the parity bits.
1642 *
1643 * parity data data data data
1644 * | PP | XX | XX | XX | XX |
1645 * ^ ^ ^ ^ ^
1646 * | | | | |
1647 * 8 KB parity ------8 KB data blocks------
1648 *
1649 * However, when writing to the dump device, the behavior is different:
1650 *
1651 * vdev_raidz_dumpio(data, size: 32 KB, offset: 64 KB)
1652 *
1653 * Unlike the normal RAID-Z case in which the block is allocated based on the
1654 * I/O size, reads and writes here always use a 128 KB logical I/O size. If the
1655 * I/O size is less than 128 KB, only the actual portions of data are written.
1656 * In this example the data is written to the third data vdev since that vdev
1657 * contains the offset [64 KB, 96 KB).
1658 *
1659 * parity data data data data
1660 * | | | | XX | |
1661 * ^
1662 * |
1663 * 32 KB data block
1664 *
1665 * As a result, an individual I/O may not span all child vdevs; moreover, a
1666 * small I/O may only operate on a single child vdev.
1667 *
1668 * Note that since there are no parity bits calculated or written, this format
1669 * remains the same no matter how many parity bits are used in a normal RAID-Z
1670 * stripe. On a RAID-Z3 configuration with seven child vdevs, the example above
1671 * would look like:
1672 *
1673 * parity parity parity data data data data
1674 * | | | | | | XX | |
1675 * ^
1676 * |
1677 * 32 KB data block
1678 */
1679 static int
vdev_raidz_dumpio(vdev_t * vd,caddr_t data,size_t size,uint64_t offset,uint64_t origoffset,boolean_t doread,boolean_t isdump)1680 vdev_raidz_dumpio(vdev_t *vd, caddr_t data, size_t size,
1681 uint64_t offset, uint64_t origoffset, boolean_t doread, boolean_t isdump)
1682 {
1683 vdev_t *tvd = vd->vdev_top;
1684 vdev_t *cvd;
1685 raidz_map_t *rm;
1686 raidz_col_t *rc;
1687 int c, err = 0;
1688
1689 uint64_t start, end, colstart, colend;
1690 uint64_t coloffset, colsize, colskip;
1691
1692 #ifdef _KERNEL
1693
1694 /*
1695 * Don't write past the end of the block
1696 */
1697 VERIFY3U(offset + size, <=, origoffset + SPA_OLD_MAXBLOCKSIZE);
1698
1699 start = offset;
1700 end = start + size;
1701
1702 /*
1703 * Allocate a RAID-Z map for this block. Note that this block starts
1704 * from the "original" offset, this is, the offset of the extent which
1705 * contains the requisite offset of the data being read or written.
1706 *
1707 * Even if this I/O operation doesn't span the full block size, let's
1708 * treat the on-disk format as if the only blocks are the complete 128
1709 * KB size.
1710 */
1711
1712 /* First, fake a zio for vdev_raidz_map_alloc. */
1713 zio_t *zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
1714 zio->io_offset = origoffset;
1715 zio->io_size = SPA_OLD_MAXBLOCKSIZE;
1716 zio->io_abd = abd_get_from_buf(data - (offset - origoffset),
1717 SPA_OLD_MAXBLOCKSIZE);
1718
1719 rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1720 vd->vdev_nparity);
1721
1722 coloffset = origoffset;
1723
1724 for (c = rm->rm_firstdatacol; c < rm->rm_cols;
1725 c++, coloffset += rc->rc_size) {
1726 rc = &rm->rm_col[c];
1727 cvd = vd->vdev_child[rc->rc_devidx];
1728
1729 if (cvd->vdev_ops->vdev_op_dumpio == NULL) {
1730 err = EINVAL;
1731 break;
1732 }
1733
1734 /*
1735 * Find the start and end of this column in the RAID-Z map,
1736 * keeping in mind that the stated size and offset of the
1737 * operation may not fill the entire column for this vdev.
1738 *
1739 * If any portion of the data spans this column, issue the
1740 * appropriate operation to the vdev.
1741 */
1742 if (coloffset + rc->rc_size <= start)
1743 continue;
1744 if (coloffset >= end)
1745 continue;
1746
1747 colstart = MAX(coloffset, start);
1748 colend = MIN(end, coloffset + rc->rc_size);
1749 colsize = colend - colstart;
1750 colskip = colstart - coloffset;
1751
1752 VERIFY3U(colsize, <=, rc->rc_size);
1753 VERIFY3U(colskip, <=, rc->rc_size);
1754
1755 if ((err = cvd->vdev_ops->vdev_op_dumpio(cvd,
1756 ((char *)abd_to_buf(rc->rc_abd)) + colskip, colsize,
1757 rc->rc_offset + colskip, 0, doread, isdump)) != 0) {
1758 break;
1759 }
1760 }
1761
1762 vdev_raidz_map_free(rm);
1763 abd_put(zio->io_abd);
1764 kmem_free(zio, sizeof (zio_t));
1765
1766 #endif /* KERNEL */
1767
1768 return (err);
1769 }
1770
1771 static uint64_t
vdev_raidz_asize(vdev_t * vd,uint64_t psize)1772 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1773 {
1774 uint64_t asize;
1775 uint64_t ashift = vd->vdev_top->vdev_ashift;
1776 uint64_t cols = vd->vdev_children;
1777 uint64_t nparity = vd->vdev_nparity;
1778
1779 asize = ((psize - 1) >> ashift) + 1;
1780 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1781 asize = roundup(asize, nparity + 1) << ashift;
1782
1783 return (asize);
1784 }
1785
1786 static void
vdev_raidz_child_done(zio_t * zio)1787 vdev_raidz_child_done(zio_t *zio)
1788 {
1789 raidz_col_t *rc = zio->io_private;
1790
1791 rc->rc_error = zio->io_error;
1792 rc->rc_tried = 1;
1793 rc->rc_skipped = 0;
1794 }
1795
1796 static void
vdev_raidz_io_verify(zio_t * zio,raidz_map_t * rm,int col)1797 vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, int col)
1798 {
1799 #ifdef ZFS_DEBUG
1800 vdev_t *vd = zio->io_vd;
1801 vdev_t *tvd = vd->vdev_top;
1802
1803 range_seg64_t logical_rs, physical_rs;
1804 logical_rs.rs_start = zio->io_offset;
1805 logical_rs.rs_end = logical_rs.rs_start +
1806 vdev_raidz_asize(zio->io_vd, zio->io_size);
1807
1808 raidz_col_t *rc = &rm->rm_col[col];
1809 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1810
1811 vdev_xlate(cvd, &logical_rs, &physical_rs);
1812 ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1813 ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1814 /*
1815 * It would be nice to assert that rs_end is equal
1816 * to rc_offset + rc_size but there might be an
1817 * optional I/O at the end that is not accounted in
1818 * rc_size.
1819 */
1820 if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
1821 ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
1822 rc->rc_size + (1 << tvd->vdev_ashift));
1823 } else {
1824 ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
1825 }
1826 #endif
1827 }
1828
1829 /*
1830 * Start an IO operation on a RAIDZ VDev
1831 *
1832 * Outline:
1833 * - For write operations:
1834 * 1. Generate the parity data
1835 * 2. Create child zio write operations to each column's vdev, for both
1836 * data and parity.
1837 * 3. If the column skips any sectors for padding, create optional dummy
1838 * write zio children for those areas to improve aggregation continuity.
1839 * - For read operations:
1840 * 1. Create child zio read operations to each data column's vdev to read
1841 * the range of data required for zio.
1842 * 2. If this is a scrub or resilver operation, or if any of the data
1843 * vdevs have had errors, then create zio read operations to the parity
1844 * columns' VDevs as well.
1845 */
1846 static void
vdev_raidz_io_start(zio_t * zio)1847 vdev_raidz_io_start(zio_t *zio)
1848 {
1849 vdev_t *vd = zio->io_vd;
1850 vdev_t *tvd = vd->vdev_top;
1851 vdev_t *cvd;
1852 raidz_map_t *rm;
1853 raidz_col_t *rc;
1854 int c, i;
1855
1856 rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1857 vd->vdev_nparity);
1858
1859 zio->io_vsd = rm;
1860 zio->io_vsd_ops = &vdev_raidz_vsd_ops;
1861
1862 ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
1863
1864 if (zio->io_type == ZIO_TYPE_WRITE) {
1865 vdev_raidz_generate_parity(rm);
1866
1867 for (c = 0; c < rm->rm_cols; c++) {
1868 rc = &rm->rm_col[c];
1869 cvd = vd->vdev_child[rc->rc_devidx];
1870
1871 /*
1872 * Verify physical to logical translation.
1873 */
1874 vdev_raidz_io_verify(zio, rm, c);
1875
1876 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1877 rc->rc_offset, rc->rc_abd, rc->rc_size,
1878 zio->io_type, zio->io_priority, 0,
1879 vdev_raidz_child_done, rc));
1880 }
1881
1882 /*
1883 * Generate optional I/Os for any skipped sectors to improve
1884 * aggregation contiguity.
1885 */
1886 for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
1887 ASSERT(c <= rm->rm_scols);
1888 if (c == rm->rm_scols)
1889 c = 0;
1890 rc = &rm->rm_col[c];
1891 cvd = vd->vdev_child[rc->rc_devidx];
1892 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1893 rc->rc_offset + rc->rc_size, NULL,
1894 1 << tvd->vdev_ashift,
1895 zio->io_type, zio->io_priority,
1896 ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
1897 }
1898
1899 zio_execute(zio);
1900 return;
1901 }
1902
1903 ASSERT(zio->io_type == ZIO_TYPE_READ);
1904
1905 /*
1906 * Iterate over the columns in reverse order so that we hit the parity
1907 * last -- any errors along the way will force us to read the parity.
1908 */
1909 for (c = rm->rm_cols - 1; c >= 0; c--) {
1910 rc = &rm->rm_col[c];
1911 cvd = vd->vdev_child[rc->rc_devidx];
1912 if (!vdev_readable(cvd)) {
1913 if (c >= rm->rm_firstdatacol)
1914 rm->rm_missingdata++;
1915 else
1916 rm->rm_missingparity++;
1917 rc->rc_error = SET_ERROR(ENXIO);
1918 rc->rc_tried = 1; /* don't even try */
1919 rc->rc_skipped = 1;
1920 continue;
1921 }
1922 if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1923 if (c >= rm->rm_firstdatacol)
1924 rm->rm_missingdata++;
1925 else
1926 rm->rm_missingparity++;
1927 rc->rc_error = SET_ERROR(ESTALE);
1928 rc->rc_skipped = 1;
1929 continue;
1930 }
1931 if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
1932 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1933 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1934 rc->rc_offset, rc->rc_abd, rc->rc_size,
1935 zio->io_type, zio->io_priority, 0,
1936 vdev_raidz_child_done, rc));
1937 }
1938 }
1939
1940 zio_execute(zio);
1941 }
1942
1943
1944 /*
1945 * Report a checksum error for a child of a RAID-Z device.
1946 */
1947 static void
raidz_checksum_error(zio_t * zio,raidz_col_t * rc,abd_t * bad_data)1948 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
1949 {
1950 vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
1951
1952 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1953 zio_bad_cksum_t zbc;
1954 raidz_map_t *rm = zio->io_vsd;
1955
1956 mutex_enter(&vd->vdev_stat_lock);
1957 vd->vdev_stat.vs_checksum_errors++;
1958 mutex_exit(&vd->vdev_stat_lock);
1959
1960 zbc.zbc_has_cksum = 0;
1961 zbc.zbc_injected = rm->rm_ecksuminjected;
1962
1963 (void) zfs_ereport_post_checksum(zio->io_spa, vd,
1964 &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
1965 rc->rc_abd, bad_data, &zbc);
1966 }
1967 }
1968
1969 /*
1970 * We keep track of whether or not there were any injected errors, so that
1971 * any ereports we generate can note it.
1972 */
1973 static int
raidz_checksum_verify(zio_t * zio)1974 raidz_checksum_verify(zio_t *zio)
1975 {
1976 zio_bad_cksum_t zbc;
1977 raidz_map_t *rm = zio->io_vsd;
1978
1979 int ret = zio_checksum_error(zio, &zbc);
1980 if (ret != 0 && zbc.zbc_injected != 0)
1981 rm->rm_ecksuminjected = 1;
1982
1983 return (ret);
1984 }
1985
1986 /*
1987 * Generate the parity from the data columns. If we tried and were able to
1988 * read the parity without error, verify that the generated parity matches the
1989 * data we read. If it doesn't, we fire off a checksum error. Return the
1990 * number such failures.
1991 */
1992 static int
raidz_parity_verify(zio_t * zio,raidz_map_t * rm)1993 raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
1994 {
1995 abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1996 int c, ret = 0;
1997 raidz_col_t *rc;
1998
1999 blkptr_t *bp = zio->io_bp;
2000 enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
2001 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
2002
2003 if (checksum == ZIO_CHECKSUM_NOPARITY)
2004 return (ret);
2005
2006 for (c = 0; c < rm->rm_firstdatacol; c++) {
2007 rc = &rm->rm_col[c];
2008 if (!rc->rc_tried || rc->rc_error != 0)
2009 continue;
2010 orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size);
2011 abd_copy(orig[c], rc->rc_abd, rc->rc_size);
2012 }
2013
2014 vdev_raidz_generate_parity(rm);
2015
2016 for (c = 0; c < rm->rm_firstdatacol; c++) {
2017 rc = &rm->rm_col[c];
2018 if (!rc->rc_tried || rc->rc_error != 0)
2019 continue;
2020 if (abd_cmp(orig[c], rc->rc_abd, rc->rc_abd->abd_size) != 0) {
2021 raidz_checksum_error(zio, rc, orig[c]);
2022 rc->rc_error = SET_ERROR(ECKSUM);
2023 ret++;
2024 }
2025 abd_free(orig[c]);
2026 }
2027
2028 return (ret);
2029 }
2030
2031 static int
vdev_raidz_worst_error(raidz_map_t * rm)2032 vdev_raidz_worst_error(raidz_map_t *rm)
2033 {
2034 int error = 0;
2035
2036 for (int c = 0; c < rm->rm_cols; c++)
2037 error = zio_worst_error(error, rm->rm_col[c].rc_error);
2038
2039 return (error);
2040 }
2041
2042 /*
2043 * Iterate over all combinations of bad data and attempt a reconstruction.
2044 * Note that the algorithm below is non-optimal because it doesn't take into
2045 * account how reconstruction is actually performed. For example, with
2046 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
2047 * is targeted as invalid as if columns 1 and 4 are targeted since in both
2048 * cases we'd only use parity information in column 0.
2049 */
2050 static int
vdev_raidz_combrec(zio_t * zio,int total_errors,int data_errors)2051 vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
2052 {
2053 raidz_map_t *rm = zio->io_vsd;
2054 raidz_col_t *rc;
2055 abd_t *orig[VDEV_RAIDZ_MAXPARITY];
2056 int tstore[VDEV_RAIDZ_MAXPARITY + 2];
2057 int *tgts = &tstore[1];
2058 int current, next, i, c, n;
2059 int code, ret = 0;
2060
2061 ASSERT(total_errors < rm->rm_firstdatacol);
2062
2063 /*
2064 * This simplifies one edge condition.
2065 */
2066 tgts[-1] = -1;
2067
2068 for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
2069 /*
2070 * Initialize the targets array by finding the first n columns
2071 * that contain no error.
2072 *
2073 * If there were no data errors, we need to ensure that we're
2074 * always explicitly attempting to reconstruct at least one
2075 * data column. To do this, we simply push the highest target
2076 * up into the data columns.
2077 */
2078 for (c = 0, i = 0; i < n; i++) {
2079 if (i == n - 1 && data_errors == 0 &&
2080 c < rm->rm_firstdatacol) {
2081 c = rm->rm_firstdatacol;
2082 }
2083
2084 while (rm->rm_col[c].rc_error != 0) {
2085 c++;
2086 ASSERT3S(c, <, rm->rm_cols);
2087 }
2088
2089 tgts[i] = c++;
2090 }
2091
2092 /*
2093 * Setting tgts[n] simplifies the other edge condition.
2094 */
2095 tgts[n] = rm->rm_cols;
2096
2097 /*
2098 * These buffers were allocated in previous iterations.
2099 */
2100 for (i = 0; i < n - 1; i++) {
2101 ASSERT(orig[i] != NULL);
2102 }
2103
2104 orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd,
2105 rm->rm_col[0].rc_size);
2106
2107 current = 0;
2108 next = tgts[current];
2109
2110 while (current != n) {
2111 tgts[current] = next;
2112 current = 0;
2113
2114 /*
2115 * Save off the original data that we're going to
2116 * attempt to reconstruct.
2117 */
2118 for (i = 0; i < n; i++) {
2119 ASSERT(orig[i] != NULL);
2120 c = tgts[i];
2121 ASSERT3S(c, >=, 0);
2122 ASSERT3S(c, <, rm->rm_cols);
2123 rc = &rm->rm_col[c];
2124 ASSERT3S(orig[i]->abd_size, >=, rc->rc_size);
2125 ASSERT3S(rc->rc_abd->abd_size, >=, rc->rc_size);
2126 abd_copy_off(orig[i], rc->rc_abd, 0, 0,
2127 rc->rc_size);
2128 }
2129
2130 /*
2131 * Attempt a reconstruction and exit the outer loop on
2132 * success.
2133 */
2134 code = vdev_raidz_reconstruct(rm, tgts, n);
2135 if (raidz_checksum_verify(zio) == 0) {
2136
2137 for (i = 0; i < n; i++) {
2138 c = tgts[i];
2139 rc = &rm->rm_col[c];
2140 ASSERT(rc->rc_error == 0);
2141 if (rc->rc_tried)
2142 raidz_checksum_error(zio, rc,
2143 orig[i]);
2144 rc->rc_error = SET_ERROR(ECKSUM);
2145 }
2146
2147 ret = code;
2148 goto done;
2149 }
2150
2151 /*
2152 * Restore the original data.
2153 */
2154 for (i = 0; i < n; i++) {
2155 c = tgts[i];
2156 rc = &rm->rm_col[c];
2157 ASSERT3S(rc->rc_abd->abd_size, >=, rc->rc_size);
2158 ASSERT3S(orig[i]->abd_size, >=, rc->rc_size);
2159 abd_copy_off(rc->rc_abd, orig[i], 0, 0,
2160 rc->rc_size);
2161 }
2162
2163 do {
2164 /*
2165 * Find the next valid column after the current
2166 * position..
2167 */
2168 for (next = tgts[current] + 1;
2169 next < rm->rm_cols &&
2170 rm->rm_col[next].rc_error != 0; next++)
2171 continue;
2172
2173 ASSERT(next <= tgts[current + 1]);
2174
2175 /*
2176 * If that spot is available, we're done here.
2177 */
2178 if (next != tgts[current + 1])
2179 break;
2180
2181 /*
2182 * Otherwise, find the next valid column after
2183 * the previous position.
2184 */
2185 for (c = tgts[current - 1] + 1;
2186 rm->rm_col[c].rc_error != 0; c++)
2187 continue;
2188
2189 tgts[current] = c;
2190 current++;
2191
2192 } while (current != n);
2193 }
2194 }
2195 n--;
2196 done:
2197 for (i = 0; i < n; i++)
2198 abd_free(orig[i]);
2199
2200 return (ret);
2201 }
2202
2203 /*
2204 * Complete an IO operation on a RAIDZ VDev
2205 *
2206 * Outline:
2207 * - For write operations:
2208 * 1. Check for errors on the child IOs.
2209 * 2. Return, setting an error code if too few child VDevs were written
2210 * to reconstruct the data later. Note that partial writes are
2211 * considered successful if they can be reconstructed at all.
2212 * - For read operations:
2213 * 1. Check for errors on the child IOs.
2214 * 2. If data errors occurred:
2215 * a. Try to reassemble the data from the parity available.
2216 * b. If we haven't yet read the parity drives, read them now.
2217 * c. If all parity drives have been read but the data still doesn't
2218 * reassemble with a correct checksum, then try combinatorial
2219 * reconstruction.
2220 * d. If that doesn't work, return an error.
2221 * 3. If there were unexpected errors or this is a resilver operation,
2222 * rewrite the vdevs that had errors.
2223 */
2224 static void
vdev_raidz_io_done(zio_t * zio)2225 vdev_raidz_io_done(zio_t *zio)
2226 {
2227 vdev_t *vd = zio->io_vd;
2228 vdev_t *cvd;
2229 raidz_map_t *rm = zio->io_vsd;
2230 raidz_col_t *rc;
2231 int unexpected_errors = 0;
2232 int parity_errors = 0;
2233 int parity_untried = 0;
2234 int data_errors = 0;
2235 int total_errors = 0;
2236 int n, c;
2237 int tgts[VDEV_RAIDZ_MAXPARITY];
2238 int code;
2239
2240 ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */
2241
2242 ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
2243 ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
2244
2245 for (c = 0; c < rm->rm_cols; c++) {
2246 rc = &rm->rm_col[c];
2247
2248 if (rc->rc_error) {
2249 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
2250
2251 if (c < rm->rm_firstdatacol)
2252 parity_errors++;
2253 else
2254 data_errors++;
2255
2256 if (!rc->rc_skipped)
2257 unexpected_errors++;
2258
2259 total_errors++;
2260 } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
2261 parity_untried++;
2262 }
2263 }
2264
2265 if (zio->io_type == ZIO_TYPE_WRITE) {
2266 /*
2267 * XXX -- for now, treat partial writes as a success.
2268 * (If we couldn't write enough columns to reconstruct
2269 * the data, the I/O failed. Otherwise, good enough.)
2270 *
2271 * Now that we support write reallocation, it would be better
2272 * to treat partial failure as real failure unless there are
2273 * no non-degraded top-level vdevs left, and not update DTLs
2274 * if we intend to reallocate.
2275 */
2276 /* XXPOLICY */
2277 if (total_errors > rm->rm_firstdatacol)
2278 zio->io_error = vdev_raidz_worst_error(rm);
2279
2280 return;
2281 }
2282
2283 ASSERT(zio->io_type == ZIO_TYPE_READ);
2284 /*
2285 * There are three potential phases for a read:
2286 * 1. produce valid data from the columns read
2287 * 2. read all disks and try again
2288 * 3. perform combinatorial reconstruction
2289 *
2290 * Each phase is progressively both more expensive and less likely to
2291 * occur. If we encounter more errors than we can repair or all phases
2292 * fail, we have no choice but to return an error.
2293 */
2294
2295 /*
2296 * If the number of errors we saw was correctable -- less than or equal
2297 * to the number of parity disks read -- attempt to produce data that
2298 * has a valid checksum. Naturally, this case applies in the absence of
2299 * any errors.
2300 */
2301 if (total_errors <= rm->rm_firstdatacol - parity_untried) {
2302 if (data_errors == 0) {
2303 if (raidz_checksum_verify(zio) == 0) {
2304 /*
2305 * If we read parity information (unnecessarily
2306 * as it happens since no reconstruction was
2307 * needed) regenerate and verify the parity.
2308 * We also regenerate parity when resilvering
2309 * so we can write it out to the failed device
2310 * later.
2311 */
2312 if (parity_errors + parity_untried <
2313 rm->rm_firstdatacol ||
2314 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2315 n = raidz_parity_verify(zio, rm);
2316 unexpected_errors += n;
2317 ASSERT(parity_errors + n <=
2318 rm->rm_firstdatacol);
2319 }
2320 goto done;
2321 }
2322 } else {
2323 /*
2324 * We either attempt to read all the parity columns or
2325 * none of them. If we didn't try to read parity, we
2326 * wouldn't be here in the correctable case. There must
2327 * also have been fewer parity errors than parity
2328 * columns or, again, we wouldn't be in this code path.
2329 */
2330 ASSERT(parity_untried == 0);
2331 ASSERT(parity_errors < rm->rm_firstdatacol);
2332
2333 /*
2334 * Identify the data columns that reported an error.
2335 */
2336 n = 0;
2337 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
2338 rc = &rm->rm_col[c];
2339 if (rc->rc_error != 0) {
2340 ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2341 tgts[n++] = c;
2342 }
2343 }
2344
2345 ASSERT(rm->rm_firstdatacol >= n);
2346
2347 code = vdev_raidz_reconstruct(rm, tgts, n);
2348
2349 if (raidz_checksum_verify(zio) == 0) {
2350 /*
2351 * If we read more parity disks than were used
2352 * for reconstruction, confirm that the other
2353 * parity disks produced correct data. This
2354 * routine is suboptimal in that it regenerates
2355 * the parity that we already used in addition
2356 * to the parity that we're attempting to
2357 * verify, but this should be a relatively
2358 * uncommon case, and can be optimized if it
2359 * becomes a problem. Note that we regenerate
2360 * parity when resilvering so we can write it
2361 * out to failed devices later.
2362 */
2363 if (parity_errors < rm->rm_firstdatacol - n ||
2364 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2365 n = raidz_parity_verify(zio, rm);
2366 unexpected_errors += n;
2367 ASSERT(parity_errors + n <=
2368 rm->rm_firstdatacol);
2369 }
2370
2371 goto done;
2372 }
2373 }
2374 }
2375
2376 /*
2377 * This isn't a typical situation -- either we got a read error or
2378 * a child silently returned bad data. Read every block so we can
2379 * try again with as much data and parity as we can track down. If
2380 * we've already been through once before, all children will be marked
2381 * as tried so we'll proceed to combinatorial reconstruction.
2382 */
2383 unexpected_errors = 1;
2384 rm->rm_missingdata = 0;
2385 rm->rm_missingparity = 0;
2386
2387 for (c = 0; c < rm->rm_cols; c++) {
2388 if (rm->rm_col[c].rc_tried)
2389 continue;
2390
2391 zio_vdev_io_redone(zio);
2392 do {
2393 rc = &rm->rm_col[c];
2394 if (rc->rc_tried)
2395 continue;
2396 zio_nowait(zio_vdev_child_io(zio, NULL,
2397 vd->vdev_child[rc->rc_devidx],
2398 rc->rc_offset, rc->rc_abd, rc->rc_size,
2399 zio->io_type, zio->io_priority, 0,
2400 vdev_raidz_child_done, rc));
2401 } while (++c < rm->rm_cols);
2402
2403 return;
2404 }
2405
2406 /*
2407 * At this point we've attempted to reconstruct the data given the
2408 * errors we detected, and we've attempted to read all columns. There
2409 * must, therefore, be one or more additional problems -- silent errors
2410 * resulting in invalid data rather than explicit I/O errors resulting
2411 * in absent data. We check if there is enough additional data to
2412 * possibly reconstruct the data and then perform combinatorial
2413 * reconstruction over all possible combinations. If that fails,
2414 * we're cooked.
2415 */
2416 if (total_errors > rm->rm_firstdatacol) {
2417 zio->io_error = vdev_raidz_worst_error(rm);
2418
2419 } else if (total_errors < rm->rm_firstdatacol &&
2420 (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
2421 /*
2422 * If we didn't use all the available parity for the
2423 * combinatorial reconstruction, verify that the remaining
2424 * parity is correct.
2425 */
2426 if (code != (1 << rm->rm_firstdatacol) - 1)
2427 (void) raidz_parity_verify(zio, rm);
2428 } else {
2429 /*
2430 * We're here because either:
2431 *
2432 * total_errors == rm_first_datacol, or
2433 * vdev_raidz_combrec() failed
2434 *
2435 * In either case, there is enough bad data to prevent
2436 * reconstruction.
2437 *
2438 * Start checksum ereports for all children which haven't
2439 * failed, and the IO wasn't speculative.
2440 */
2441 zio->io_error = SET_ERROR(ECKSUM);
2442
2443 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2444 for (c = 0; c < rm->rm_cols; c++) {
2445 rc = &rm->rm_col[c];
2446 if (rc->rc_error == 0) {
2447 zio_bad_cksum_t zbc;
2448 zbc.zbc_has_cksum = 0;
2449 zbc.zbc_injected =
2450 rm->rm_ecksuminjected;
2451
2452 zfs_ereport_start_checksum(
2453 zio->io_spa,
2454 vd->vdev_child[rc->rc_devidx],
2455 &zio->io_bookmark, zio,
2456 rc->rc_offset, rc->rc_size,
2457 (void *)(uintptr_t)c, &zbc);
2458 }
2459 }
2460 }
2461 }
2462
2463 done:
2464 zio_checksum_verified(zio);
2465
2466 if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2467 (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2468 /*
2469 * Use the good data we have in hand to repair damaged children.
2470 */
2471 for (c = 0; c < rm->rm_cols; c++) {
2472 rc = &rm->rm_col[c];
2473 cvd = vd->vdev_child[rc->rc_devidx];
2474
2475 if (rc->rc_error == 0)
2476 continue;
2477
2478 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2479 rc->rc_offset, rc->rc_abd, rc->rc_size,
2480 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2481 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2482 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2483 }
2484 }
2485 }
2486
2487 static void
vdev_raidz_state_change(vdev_t * vd,int faulted,int degraded)2488 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2489 {
2490 if (faulted > vd->vdev_nparity)
2491 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2492 VDEV_AUX_NO_REPLICAS);
2493 else if (degraded + faulted != 0)
2494 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2495 else
2496 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2497 }
2498
2499 /*
2500 * Determine if any portion of the provided block resides on a child vdev
2501 * with a dirty DTL and therefore needs to be resilvered. The function
2502 * assumes that at least one DTL is dirty which implies that full stripe
2503 * width blocks must be resilvered.
2504 */
2505 static boolean_t
vdev_raidz_need_resilver(vdev_t * vd,uint64_t offset,size_t psize)2506 vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2507 {
2508 uint64_t dcols = vd->vdev_children;
2509 uint64_t nparity = vd->vdev_nparity;
2510 uint64_t ashift = vd->vdev_top->vdev_ashift;
2511 /* The starting RAIDZ (parent) vdev sector of the block. */
2512 uint64_t b = offset >> ashift;
2513 /* The zio's size in units of the vdev's minimum sector size. */
2514 uint64_t s = ((psize - 1) >> ashift) + 1;
2515 /* The first column for this stripe. */
2516 uint64_t f = b % dcols;
2517
2518 if (s + nparity >= dcols)
2519 return (B_TRUE);
2520
2521 for (uint64_t c = 0; c < s + nparity; c++) {
2522 uint64_t devidx = (f + c) % dcols;
2523 vdev_t *cvd = vd->vdev_child[devidx];
2524
2525 /*
2526 * dsl_scan_need_resilver() already checked vd with
2527 * vdev_dtl_contains(). So here just check cvd with
2528 * vdev_dtl_empty(), cheaper and a good approximation.
2529 */
2530 if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
2531 return (B_TRUE);
2532 }
2533
2534 return (B_FALSE);
2535 }
2536
2537 static void
vdev_raidz_xlate(vdev_t * cvd,const range_seg64_t * in,range_seg64_t * res)2538 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res)
2539 {
2540 vdev_t *raidvd = cvd->vdev_parent;
2541 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
2542
2543 uint64_t width = raidvd->vdev_children;
2544 uint64_t tgt_col = cvd->vdev_id;
2545 uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2546
2547 /* make sure the offsets are block-aligned */
2548 ASSERT0(in->rs_start % (1 << ashift));
2549 ASSERT0(in->rs_end % (1 << ashift));
2550 uint64_t b_start = in->rs_start >> ashift;
2551 uint64_t b_end = in->rs_end >> ashift;
2552
2553 uint64_t start_row = 0;
2554 if (b_start > tgt_col) /* avoid underflow */
2555 start_row = ((b_start - tgt_col - 1) / width) + 1;
2556
2557 uint64_t end_row = 0;
2558 if (b_end > tgt_col)
2559 end_row = ((b_end - tgt_col - 1) / width) + 1;
2560
2561 res->rs_start = start_row << ashift;
2562 res->rs_end = end_row << ashift;
2563
2564 ASSERT3U(res->rs_start, <=, in->rs_start);
2565 ASSERT3U(res->rs_end - res->rs_start, <=, in->rs_end - in->rs_start);
2566 }
2567
2568 vdev_ops_t vdev_raidz_ops = {
2569 .vdev_op_open = vdev_raidz_open,
2570 .vdev_op_close = vdev_raidz_close,
2571 .vdev_op_asize = vdev_raidz_asize,
2572 .vdev_op_io_start = vdev_raidz_io_start,
2573 .vdev_op_io_done = vdev_raidz_io_done,
2574 .vdev_op_state_change = vdev_raidz_state_change,
2575 .vdev_op_need_resilver = vdev_raidz_need_resilver,
2576 .vdev_op_hold = NULL,
2577 .vdev_op_rele = NULL,
2578 .vdev_op_remap = NULL,
2579 .vdev_op_xlate = vdev_raidz_xlate,
2580 .vdev_op_dumpio = vdev_raidz_dumpio,
2581 .vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */
2582 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
2583 };
2584