1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36
37 /*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
42 * I/O scheduler determines when and in what order those operations are
43 * issued. The I/O scheduler divides operations into five I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, and scrub/resilver. Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an i/o is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write i/os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 * | o---------| <-- zfs_vdev_async_write_max_active
88 * ^ | /^ |
89 * | | / | |
90 * active | / | |
91 * I/O | / | |
92 * count | / | |
93 * | / | |
94 * |------------o | | <-- zfs_vdev_async_write_min_active
95 * 0|____________^______|_________|
96 * 0% | | 100% of zfs_dirty_data_max
97 * | |
98 * | `-- zfs_vdev_async_write_active_max_dirty_percent
99 * `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115 /*
116 * The maximum number of i/os active to each device. Ideally, this will be >=
117 * the sum of each queue's max_active. It must be at least the sum of each
118 * queue's min_active.
119 */
120 uint32_t zfs_vdev_max_active = 1000;
121
122 /*
123 * Per-queue limits on the number of i/os active to each device. If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play. We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations. Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs. E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138 uint32_t zfs_vdev_sync_read_min_active = 10;
139 uint32_t zfs_vdev_sync_read_max_active = 10;
140 uint32_t zfs_vdev_sync_write_min_active = 10;
141 uint32_t zfs_vdev_sync_write_max_active = 10;
142 uint32_t zfs_vdev_async_read_min_active = 1;
143 uint32_t zfs_vdev_async_read_max_active = 3;
144 uint32_t zfs_vdev_async_write_min_active = 1;
145 uint32_t zfs_vdev_async_write_max_active = 10;
146 uint32_t zfs_vdev_scrub_min_active = 1;
147 uint32_t zfs_vdev_scrub_max_active = 2;
148
149 /*
150 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
151 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
152 * zfs_vdev_async_write_active_max_dirty_percent, use
153 * zfs_vdev_async_write_max_active. The value is linearly interpolated
154 * between min and max.
155 */
156 int zfs_vdev_async_write_active_min_dirty_percent = 30;
157 int zfs_vdev_async_write_active_max_dirty_percent = 60;
158
159 /*
160 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
161 * For read I/Os, we also aggregate across small adjacency gaps; for writes
162 * we include spans of optional I/Os to aid aggregation at the disk even when
163 * they aren't able to help us aggregate at this level.
164 */
165 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
166 int zfs_vdev_read_gap_limit = 32 << 10;
167 int zfs_vdev_write_gap_limit = 4 << 10;
168
169 int
vdev_queue_offset_compare(const void * x1,const void * x2)170 vdev_queue_offset_compare(const void *x1, const void *x2)
171 {
172 const zio_t *z1 = x1;
173 const zio_t *z2 = x2;
174
175 if (z1->io_offset < z2->io_offset)
176 return (-1);
177 if (z1->io_offset > z2->io_offset)
178 return (1);
179
180 if (z1 < z2)
181 return (-1);
182 if (z1 > z2)
183 return (1);
184
185 return (0);
186 }
187
188 static inline avl_tree_t *
vdev_queue_class_tree(vdev_queue_t * vq,zio_priority_t p)189 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
190 {
191 return (&vq->vq_class[p].vqc_queued_tree);
192 }
193
194 static inline avl_tree_t *
vdev_queue_type_tree(vdev_queue_t * vq,zio_type_t t)195 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
196 {
197 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
198 if (t == ZIO_TYPE_READ)
199 return (&vq->vq_read_offset_tree);
200 else
201 return (&vq->vq_write_offset_tree);
202 }
203
204 int
vdev_queue_timestamp_compare(const void * x1,const void * x2)205 vdev_queue_timestamp_compare(const void *x1, const void *x2)
206 {
207 const zio_t *z1 = x1;
208 const zio_t *z2 = x2;
209
210 if (z1->io_timestamp < z2->io_timestamp)
211 return (-1);
212 if (z1->io_timestamp > z2->io_timestamp)
213 return (1);
214
215 if (z1 < z2)
216 return (-1);
217 if (z1 > z2)
218 return (1);
219
220 return (0);
221 }
222
223 void
vdev_queue_init(vdev_t * vd)224 vdev_queue_init(vdev_t *vd)
225 {
226 vdev_queue_t *vq = &vd->vdev_queue;
227
228 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
229 vq->vq_vdev = vd;
230
231 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
232 sizeof (zio_t), offsetof(struct zio, io_queue_node));
233 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
234 vdev_queue_offset_compare, sizeof (zio_t),
235 offsetof(struct zio, io_offset_node));
236 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
237 vdev_queue_offset_compare, sizeof (zio_t),
238 offsetof(struct zio, io_offset_node));
239
240 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
241 int (*compfn) (const void *, const void *);
242
243 /*
244 * The synchronous i/o queues are dispatched in FIFO rather
245 * than LBA order. This provides more consistent latency for
246 * these i/os.
247 */
248 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
249 compfn = vdev_queue_timestamp_compare;
250 else
251 compfn = vdev_queue_offset_compare;
252
253 avl_create(vdev_queue_class_tree(vq, p), compfn,
254 sizeof (zio_t), offsetof(struct zio, io_queue_node));
255 }
256 }
257
258 void
vdev_queue_fini(vdev_t * vd)259 vdev_queue_fini(vdev_t *vd)
260 {
261 vdev_queue_t *vq = &vd->vdev_queue;
262
263 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
264 avl_destroy(vdev_queue_class_tree(vq, p));
265 avl_destroy(&vq->vq_active_tree);
266 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
267 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
268
269 mutex_destroy(&vq->vq_lock);
270 }
271
272 static void
vdev_queue_io_add(vdev_queue_t * vq,zio_t * zio)273 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
274 {
275 spa_t *spa = zio->io_spa;
276 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
277 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
278 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
279
280 mutex_enter(&spa->spa_iokstat_lock);
281 spa->spa_queue_stats[zio->io_priority].spa_queued++;
282 if (spa->spa_iokstat != NULL)
283 kstat_waitq_enter(spa->spa_iokstat->ks_data);
284 mutex_exit(&spa->spa_iokstat_lock);
285 }
286
287 static void
vdev_queue_io_remove(vdev_queue_t * vq,zio_t * zio)288 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
289 {
290 spa_t *spa = zio->io_spa;
291 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
292 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
293 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
294
295 mutex_enter(&spa->spa_iokstat_lock);
296 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
297 spa->spa_queue_stats[zio->io_priority].spa_queued--;
298 if (spa->spa_iokstat != NULL)
299 kstat_waitq_exit(spa->spa_iokstat->ks_data);
300 mutex_exit(&spa->spa_iokstat_lock);
301 }
302
303 static void
vdev_queue_pending_add(vdev_queue_t * vq,zio_t * zio)304 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
305 {
306 spa_t *spa = zio->io_spa;
307 ASSERT(MUTEX_HELD(&vq->vq_lock));
308 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
309 vq->vq_class[zio->io_priority].vqc_active++;
310 avl_add(&vq->vq_active_tree, zio);
311
312 mutex_enter(&spa->spa_iokstat_lock);
313 spa->spa_queue_stats[zio->io_priority].spa_active++;
314 if (spa->spa_iokstat != NULL)
315 kstat_runq_enter(spa->spa_iokstat->ks_data);
316 mutex_exit(&spa->spa_iokstat_lock);
317 }
318
319 static void
vdev_queue_pending_remove(vdev_queue_t * vq,zio_t * zio)320 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
321 {
322 spa_t *spa = zio->io_spa;
323 ASSERT(MUTEX_HELD(&vq->vq_lock));
324 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
325 vq->vq_class[zio->io_priority].vqc_active--;
326 avl_remove(&vq->vq_active_tree, zio);
327
328 mutex_enter(&spa->spa_iokstat_lock);
329 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
330 spa->spa_queue_stats[zio->io_priority].spa_active--;
331 if (spa->spa_iokstat != NULL) {
332 kstat_io_t *ksio = spa->spa_iokstat->ks_data;
333
334 kstat_runq_exit(spa->spa_iokstat->ks_data);
335 if (zio->io_type == ZIO_TYPE_READ) {
336 ksio->reads++;
337 ksio->nread += zio->io_size;
338 } else if (zio->io_type == ZIO_TYPE_WRITE) {
339 ksio->writes++;
340 ksio->nwritten += zio->io_size;
341 }
342 }
343 mutex_exit(&spa->spa_iokstat_lock);
344 }
345
346 static void
vdev_queue_agg_io_done(zio_t * aio)347 vdev_queue_agg_io_done(zio_t *aio)
348 {
349 if (aio->io_type == ZIO_TYPE_READ) {
350 zio_t *pio;
351 while ((pio = zio_walk_parents(aio)) != NULL) {
352 bcopy((char *)aio->io_data + (pio->io_offset -
353 aio->io_offset), pio->io_data, pio->io_size);
354 }
355 }
356
357 zio_buf_free(aio->io_data, aio->io_size);
358 }
359
360 static int
vdev_queue_class_min_active(zio_priority_t p)361 vdev_queue_class_min_active(zio_priority_t p)
362 {
363 switch (p) {
364 case ZIO_PRIORITY_SYNC_READ:
365 return (zfs_vdev_sync_read_min_active);
366 case ZIO_PRIORITY_SYNC_WRITE:
367 return (zfs_vdev_sync_write_min_active);
368 case ZIO_PRIORITY_ASYNC_READ:
369 return (zfs_vdev_async_read_min_active);
370 case ZIO_PRIORITY_ASYNC_WRITE:
371 return (zfs_vdev_async_write_min_active);
372 case ZIO_PRIORITY_SCRUB:
373 return (zfs_vdev_scrub_min_active);
374 default:
375 panic("invalid priority %u", p);
376 return (0);
377 }
378 }
379
380 static int
vdev_queue_max_async_writes(spa_t * spa)381 vdev_queue_max_async_writes(spa_t *spa)
382 {
383 int writes;
384 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
385 uint64_t min_bytes = zfs_dirty_data_max *
386 zfs_vdev_async_write_active_min_dirty_percent / 100;
387 uint64_t max_bytes = zfs_dirty_data_max *
388 zfs_vdev_async_write_active_max_dirty_percent / 100;
389
390 /*
391 * Sync tasks correspond to interactive user actions. To reduce the
392 * execution time of those actions we push data out as fast as possible.
393 */
394 if (spa_has_pending_synctask(spa)) {
395 return (zfs_vdev_async_write_max_active);
396 }
397
398 if (dirty < min_bytes)
399 return (zfs_vdev_async_write_min_active);
400 if (dirty > max_bytes)
401 return (zfs_vdev_async_write_max_active);
402
403 /*
404 * linear interpolation:
405 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
406 * move right by min_bytes
407 * move up by min_writes
408 */
409 writes = (dirty - min_bytes) *
410 (zfs_vdev_async_write_max_active -
411 zfs_vdev_async_write_min_active) /
412 (max_bytes - min_bytes) +
413 zfs_vdev_async_write_min_active;
414 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
415 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
416 return (writes);
417 }
418
419 static int
vdev_queue_class_max_active(spa_t * spa,zio_priority_t p)420 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
421 {
422 switch (p) {
423 case ZIO_PRIORITY_SYNC_READ:
424 return (zfs_vdev_sync_read_max_active);
425 case ZIO_PRIORITY_SYNC_WRITE:
426 return (zfs_vdev_sync_write_max_active);
427 case ZIO_PRIORITY_ASYNC_READ:
428 return (zfs_vdev_async_read_max_active);
429 case ZIO_PRIORITY_ASYNC_WRITE:
430 return (vdev_queue_max_async_writes(spa));
431 case ZIO_PRIORITY_SCRUB:
432 return (zfs_vdev_scrub_max_active);
433 default:
434 panic("invalid priority %u", p);
435 return (0);
436 }
437 }
438
439 /*
440 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
441 * there is no eligible class.
442 */
443 static zio_priority_t
vdev_queue_class_to_issue(vdev_queue_t * vq)444 vdev_queue_class_to_issue(vdev_queue_t *vq)
445 {
446 spa_t *spa = vq->vq_vdev->vdev_spa;
447 zio_priority_t p;
448
449 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
450 return (ZIO_PRIORITY_NUM_QUEUEABLE);
451
452 /* find a queue that has not reached its minimum # outstanding i/os */
453 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
454 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
455 vq->vq_class[p].vqc_active <
456 vdev_queue_class_min_active(p))
457 return (p);
458 }
459
460 /*
461 * If we haven't found a queue, look for one that hasn't reached its
462 * maximum # outstanding i/os.
463 */
464 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
465 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
466 vq->vq_class[p].vqc_active <
467 vdev_queue_class_max_active(spa, p))
468 return (p);
469 }
470
471 /* No eligible queued i/os */
472 return (ZIO_PRIORITY_NUM_QUEUEABLE);
473 }
474
475 /*
476 * Compute the range spanned by two i/os, which is the endpoint of the last
477 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
478 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
479 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
480 */
481 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
482 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
483
484 static zio_t *
vdev_queue_aggregate(vdev_queue_t * vq,zio_t * zio)485 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
486 {
487 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
488 uint64_t maxgap = 0;
489 uint64_t size;
490 boolean_t stretch = B_FALSE;
491 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
492 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
493
494 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
495 return (NULL);
496
497 first = last = zio;
498
499 if (zio->io_type == ZIO_TYPE_READ)
500 maxgap = zfs_vdev_read_gap_limit;
501
502 /*
503 * We can aggregate I/Os that are sufficiently adjacent and of
504 * the same flavor, as expressed by the AGG_INHERIT flags.
505 * The latter requirement is necessary so that certain
506 * attributes of the I/O, such as whether it's a normal I/O
507 * or a scrub/resilver, can be preserved in the aggregate.
508 * We can include optional I/Os, but don't allow them
509 * to begin a range as they add no benefit in that situation.
510 */
511
512 /*
513 * We keep track of the last non-optional I/O.
514 */
515 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
516
517 /*
518 * Walk backwards through sufficiently contiguous I/Os
519 * recording the last non-option I/O.
520 */
521 while ((dio = AVL_PREV(t, first)) != NULL &&
522 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
523 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
524 IO_GAP(dio, first) <= maxgap) {
525 first = dio;
526 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
527 mandatory = first;
528 }
529
530 /*
531 * Skip any initial optional I/Os.
532 */
533 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
534 first = AVL_NEXT(t, first);
535 ASSERT(first != NULL);
536 }
537
538 /*
539 * Walk forward through sufficiently contiguous I/Os.
540 */
541 while ((dio = AVL_NEXT(t, last)) != NULL &&
542 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
543 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
544 IO_GAP(last, dio) <= maxgap) {
545 last = dio;
546 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
547 mandatory = last;
548 }
549
550 /*
551 * Now that we've established the range of the I/O aggregation
552 * we must decide what to do with trailing optional I/Os.
553 * For reads, there's nothing to do. While we are unable to
554 * aggregate further, it's possible that a trailing optional
555 * I/O would allow the underlying device to aggregate with
556 * subsequent I/Os. We must therefore determine if the next
557 * non-optional I/O is close enough to make aggregation
558 * worthwhile.
559 */
560 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
561 zio_t *nio = last;
562 while ((dio = AVL_NEXT(t, nio)) != NULL &&
563 IO_GAP(nio, dio) == 0 &&
564 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
565 nio = dio;
566 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
567 stretch = B_TRUE;
568 break;
569 }
570 }
571 }
572
573 if (stretch) {
574 /* This may be a no-op. */
575 dio = AVL_NEXT(t, last);
576 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
577 } else {
578 while (last != mandatory && last != first) {
579 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
580 last = AVL_PREV(t, last);
581 ASSERT(last != NULL);
582 }
583 }
584
585 if (first == last)
586 return (NULL);
587
588 size = IO_SPAN(first, last);
589 ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
590
591 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
592 zio_buf_alloc(size), size, first->io_type, zio->io_priority,
593 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
594 vdev_queue_agg_io_done, NULL);
595 aio->io_timestamp = first->io_timestamp;
596
597 nio = first;
598 do {
599 dio = nio;
600 nio = AVL_NEXT(t, dio);
601 ASSERT3U(dio->io_type, ==, aio->io_type);
602
603 if (dio->io_flags & ZIO_FLAG_NODATA) {
604 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
605 bzero((char *)aio->io_data + (dio->io_offset -
606 aio->io_offset), dio->io_size);
607 } else if (dio->io_type == ZIO_TYPE_WRITE) {
608 bcopy(dio->io_data, (char *)aio->io_data +
609 (dio->io_offset - aio->io_offset),
610 dio->io_size);
611 }
612
613 zio_add_child(dio, aio);
614 vdev_queue_io_remove(vq, dio);
615 zio_vdev_io_bypass(dio);
616 zio_execute(dio);
617 } while (dio != last);
618
619 return (aio);
620 }
621
622 static zio_t *
vdev_queue_io_to_issue(vdev_queue_t * vq)623 vdev_queue_io_to_issue(vdev_queue_t *vq)
624 {
625 zio_t *zio, *aio;
626 zio_priority_t p;
627 avl_index_t idx;
628 avl_tree_t *tree;
629 zio_t search;
630
631 again:
632 ASSERT(MUTEX_HELD(&vq->vq_lock));
633
634 p = vdev_queue_class_to_issue(vq);
635
636 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
637 /* No eligible queued i/os */
638 return (NULL);
639 }
640
641 /*
642 * For LBA-ordered queues (async / scrub), issue the i/o which follows
643 * the most recently issued i/o in LBA (offset) order.
644 *
645 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
646 */
647 tree = vdev_queue_class_tree(vq, p);
648 search.io_timestamp = 0;
649 search.io_offset = vq->vq_last_offset + 1;
650 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
651 zio = avl_nearest(tree, idx, AVL_AFTER);
652 if (zio == NULL)
653 zio = avl_first(tree);
654 ASSERT3U(zio->io_priority, ==, p);
655
656 aio = vdev_queue_aggregate(vq, zio);
657 if (aio != NULL)
658 zio = aio;
659 else
660 vdev_queue_io_remove(vq, zio);
661
662 /*
663 * If the I/O is or was optional and therefore has no data, we need to
664 * simply discard it. We need to drop the vdev queue's lock to avoid a
665 * deadlock that we could encounter since this I/O will complete
666 * immediately.
667 */
668 if (zio->io_flags & ZIO_FLAG_NODATA) {
669 mutex_exit(&vq->vq_lock);
670 zio_vdev_io_bypass(zio);
671 zio_execute(zio);
672 mutex_enter(&vq->vq_lock);
673 goto again;
674 }
675
676 vdev_queue_pending_add(vq, zio);
677 vq->vq_last_offset = zio->io_offset;
678
679 return (zio);
680 }
681
682 zio_t *
vdev_queue_io(zio_t * zio)683 vdev_queue_io(zio_t *zio)
684 {
685 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
686 zio_t *nio;
687
688 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
689 return (zio);
690
691 /*
692 * Children i/os inherent their parent's priority, which might
693 * not match the child's i/o type. Fix it up here.
694 */
695 if (zio->io_type == ZIO_TYPE_READ) {
696 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
697 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
698 zio->io_priority != ZIO_PRIORITY_SCRUB)
699 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
700 } else {
701 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
702 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
703 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
704 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
705 }
706
707 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
708
709 mutex_enter(&vq->vq_lock);
710 zio->io_timestamp = gethrtime();
711 vdev_queue_io_add(vq, zio);
712 nio = vdev_queue_io_to_issue(vq);
713 mutex_exit(&vq->vq_lock);
714
715 if (nio == NULL)
716 return (NULL);
717
718 if (nio->io_done == vdev_queue_agg_io_done) {
719 zio_nowait(nio);
720 return (NULL);
721 }
722
723 return (nio);
724 }
725
726 void
vdev_queue_io_done(zio_t * zio)727 vdev_queue_io_done(zio_t *zio)
728 {
729 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
730 zio_t *nio;
731
732 if (zio_injection_enabled)
733 delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
734
735 mutex_enter(&vq->vq_lock);
736
737 vdev_queue_pending_remove(vq, zio);
738
739 vq->vq_io_complete_ts = gethrtime();
740
741 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
742 mutex_exit(&vq->vq_lock);
743 if (nio->io_done == vdev_queue_agg_io_done) {
744 zio_nowait(nio);
745 } else {
746 zio_vdev_io_reissue(nio);
747 zio_execute(nio);
748 }
749 mutex_enter(&vq->vq_lock);
750 }
751
752 mutex_exit(&vq->vq_lock);
753 }
754