xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_queue.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/avl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/spa.h>
39 #include <sys/abd.h>
40 
41 /*
42  * ZFS I/O Scheduler
43  * ---------------
44  *
45  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
46  * I/O scheduler determines when and in what order those operations are
47  * issued.  The I/O scheduler divides operations into five I/O classes
48  * prioritized in the following order: sync read, sync write, async read,
49  * async write, and scrub/resilver.  Each queue defines the minimum and
50  * maximum number of concurrent operations that may be issued to the device.
51  * In addition, the device has an aggregate maximum. Note that the sum of the
52  * per-queue minimums must not exceed the aggregate maximum. If the
53  * sum of the per-queue maximums exceeds the aggregate maximum, then the
54  * number of active i/os may reach zfs_vdev_max_active, in which case no
55  * further i/os will be issued regardless of whether all per-queue
56  * minimums have been met.
57  *
58  * For many physical devices, throughput increases with the number of
59  * concurrent operations, but latency typically suffers. Further, physical
60  * devices typically have a limit at which more concurrent operations have no
61  * effect on throughput or can actually cause it to decrease.
62  *
63  * The scheduler selects the next operation to issue by first looking for an
64  * I/O class whose minimum has not been satisfied. Once all are satisfied and
65  * the aggregate maximum has not been hit, the scheduler looks for classes
66  * whose maximum has not been satisfied. Iteration through the I/O classes is
67  * done in the order specified above. No further operations are issued if the
68  * aggregate maximum number of concurrent operations has been hit or if there
69  * are no operations queued for an I/O class that has not hit its maximum.
70  * Every time an i/o is queued or an operation completes, the I/O scheduler
71  * looks for new operations to issue.
72  *
73  * All I/O classes have a fixed maximum number of outstanding operations
74  * except for the async write class. Asynchronous writes represent the data
75  * that is committed to stable storage during the syncing stage for
76  * transaction groups (see txg.c). Transaction groups enter the syncing state
77  * periodically so the number of queued async writes will quickly burst up and
78  * then bleed down to zero. Rather than servicing them as quickly as possible,
79  * the I/O scheduler changes the maximum number of active async write i/os
80  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
81  * both throughput and latency typically increase with the number of
82  * concurrent operations issued to physical devices, reducing the burstiness
83  * in the number of concurrent operations also stabilizes the response time of
84  * operations from other -- and in particular synchronous -- queues. In broad
85  * strokes, the I/O scheduler will issue more concurrent operations from the
86  * async write queue as there's more dirty data in the pool.
87  *
88  * Async Writes
89  *
90  * The number of concurrent operations issued for the async write I/O class
91  * follows a piece-wise linear function defined by a few adjustable points.
92  *
93  *        |                   o---------| <-- zfs_vdev_async_write_max_active
94  *   ^    |                  /^         |
95  *   |    |                 / |         |
96  * active |                /  |         |
97  *  I/O   |               /   |         |
98  * count  |              /    |         |
99  *        |             /     |         |
100  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
101  *       0|____________^______|_________|
102  *        0%           |      |       100% of zfs_dirty_data_max
103  *                     |      |
104  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
105  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
106  *
107  * Until the amount of dirty data exceeds a minimum percentage of the dirty
108  * data allowed in the pool, the I/O scheduler will limit the number of
109  * concurrent operations to the minimum. As that threshold is crossed, the
110  * number of concurrent operations issued increases linearly to the maximum at
111  * the specified maximum percentage of the dirty data allowed in the pool.
112  *
113  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
114  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
115  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
116  * maximum percentage, this indicates that the rate of incoming data is
117  * greater than the rate that the backend storage can handle. In this case, we
118  * must further throttle incoming writes (see dmu_tx_delay() for details).
119  */
120 
121 /*
122  * The maximum number of i/os active to each device.  Ideally, this will be >=
123  * the sum of each queue's max_active.
124  */
125 uint_t zfs_vdev_max_active = 1000;
126 
127 /*
128  * Per-queue limits on the number of i/os active to each device.  If the
129  * number of active i/os is < zfs_vdev_max_active, then the min_active comes
130  * into play.  We will send min_active from each queue round-robin, and then
131  * send from queues in the order defined by zio_priority_t up to max_active.
132  * Some queues have additional mechanisms to limit number of active I/Os in
133  * addition to min_active and max_active, see below.
134  *
135  * In general, smaller max_active's will lead to lower latency of synchronous
136  * operations.  Larger max_active's may lead to higher overall throughput,
137  * depending on underlying storage.
138  *
139  * The ratio of the queues' max_actives determines the balance of performance
140  * between reads, writes, and scrubs.  E.g., increasing
141  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
142  * more quickly, but reads and writes to have higher latency and lower
143  * throughput.
144  */
145 static uint_t zfs_vdev_sync_read_min_active = 10;
146 static uint_t zfs_vdev_sync_read_max_active = 10;
147 static uint_t zfs_vdev_sync_write_min_active = 10;
148 static uint_t zfs_vdev_sync_write_max_active = 10;
149 static uint_t zfs_vdev_async_read_min_active = 1;
150 /*  */ uint_t zfs_vdev_async_read_max_active = 3;
151 static uint_t zfs_vdev_async_write_min_active = 2;
152 static uint_t zfs_vdev_async_write_max_active = 10;
153 static uint_t zfs_vdev_scrub_min_active = 1;
154 static uint_t zfs_vdev_scrub_max_active = 3;
155 static uint_t zfs_vdev_removal_min_active = 1;
156 static uint_t zfs_vdev_removal_max_active = 2;
157 static uint_t zfs_vdev_initializing_min_active = 1;
158 static uint_t zfs_vdev_initializing_max_active = 1;
159 static uint_t zfs_vdev_trim_min_active = 1;
160 static uint_t zfs_vdev_trim_max_active = 2;
161 static uint_t zfs_vdev_rebuild_min_active = 1;
162 static uint_t zfs_vdev_rebuild_max_active = 3;
163 
164 /*
165  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
166  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
167  * zfs_vdev_async_write_active_max_dirty_percent, use
168  * zfs_vdev_async_write_max_active. The value is linearly interpolated
169  * between min and max.
170  */
171 uint_t zfs_vdev_async_write_active_min_dirty_percent = 30;
172 uint_t zfs_vdev_async_write_active_max_dirty_percent = 60;
173 
174 /*
175  * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
176  * the number of concurrently-active I/O's is limited to *_min_active, unless
177  * the vdev is "idle".  When there are no interactive I/Os active (sync or
178  * async), and zfs_vdev_nia_delay I/Os have completed since the last
179  * interactive I/O, then the vdev is considered to be "idle", and the number
180  * of concurrently-active non-interactive I/O's is increased to *_max_active.
181  */
182 static uint_t zfs_vdev_nia_delay = 5;
183 
184 /*
185  * Some HDDs tend to prioritize sequential I/O so high that concurrent
186  * random I/O latency reaches several seconds.  On some HDDs it happens
187  * even if sequential I/Os are submitted one at a time, and so setting
188  * *_max_active to 1 does not help.  To prevent non-interactive I/Os, like
189  * scrub, from monopolizing the device no more than zfs_vdev_nia_credit
190  * I/Os can be sent while there are outstanding incomplete interactive
191  * I/Os.  This enforced wait ensures the HDD services the interactive I/O
192  * within a reasonable amount of time.
193  */
194 static uint_t zfs_vdev_nia_credit = 5;
195 
196 /*
197  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
198  * For read I/Os, we also aggregate across small adjacency gaps; for writes
199  * we include spans of optional I/Os to aid aggregation at the disk even when
200  * they aren't able to help us aggregate at this level.
201  */
202 static uint_t zfs_vdev_aggregation_limit = 1 << 20;
203 static uint_t zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
204 static uint_t zfs_vdev_read_gap_limit = 32 << 10;
205 static uint_t zfs_vdev_write_gap_limit = 4 << 10;
206 
207 static int
vdev_queue_offset_compare(const void * x1,const void * x2)208 vdev_queue_offset_compare(const void *x1, const void *x2)
209 {
210 	const zio_t *z1 = (const zio_t *)x1;
211 	const zio_t *z2 = (const zio_t *)x2;
212 
213 	int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
214 
215 	if (likely(cmp))
216 		return (cmp);
217 
218 	return (TREE_PCMP(z1, z2));
219 }
220 
221 #define	VDQ_T_SHIFT 29
222 
223 static int
vdev_queue_to_compare(const void * x1,const void * x2)224 vdev_queue_to_compare(const void *x1, const void *x2)
225 {
226 	const zio_t *z1 = (const zio_t *)x1;
227 	const zio_t *z2 = (const zio_t *)x2;
228 
229 	int tcmp = TREE_CMP(z1->io_timestamp >> VDQ_T_SHIFT,
230 	    z2->io_timestamp >> VDQ_T_SHIFT);
231 	int ocmp = TREE_CMP(z1->io_offset, z2->io_offset);
232 	int cmp = tcmp ? tcmp : ocmp;
233 
234 	if (likely(cmp | (z1->io_queue_state == ZIO_QS_NONE)))
235 		return (cmp);
236 
237 	return (TREE_PCMP(z1, z2));
238 }
239 
240 static inline boolean_t
vdev_queue_class_fifo(zio_priority_t p)241 vdev_queue_class_fifo(zio_priority_t p)
242 {
243 	return (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE ||
244 	    p == ZIO_PRIORITY_TRIM);
245 }
246 
247 static void
vdev_queue_class_add(vdev_queue_t * vq,zio_t * zio)248 vdev_queue_class_add(vdev_queue_t *vq, zio_t *zio)
249 {
250 	zio_priority_t p = zio->io_priority;
251 	vq->vq_cqueued |= 1U << p;
252 	if (vdev_queue_class_fifo(p)) {
253 		list_insert_tail(&vq->vq_class[p].vqc_list, zio);
254 		vq->vq_class[p].vqc_list_numnodes++;
255 	}
256 	else
257 		avl_add(&vq->vq_class[p].vqc_tree, zio);
258 }
259 
260 static void
vdev_queue_class_remove(vdev_queue_t * vq,zio_t * zio)261 vdev_queue_class_remove(vdev_queue_t *vq, zio_t *zio)
262 {
263 	zio_priority_t p = zio->io_priority;
264 	uint32_t empty;
265 	if (vdev_queue_class_fifo(p)) {
266 		list_t *list = &vq->vq_class[p].vqc_list;
267 		list_remove(list, zio);
268 		empty = list_is_empty(list);
269 		vq->vq_class[p].vqc_list_numnodes--;
270 	} else {
271 		avl_tree_t *tree = &vq->vq_class[p].vqc_tree;
272 		avl_remove(tree, zio);
273 		empty = avl_is_empty(tree);
274 	}
275 	vq->vq_cqueued &= ~(empty << p);
276 }
277 
278 static uint_t
vdev_queue_class_min_active(vdev_queue_t * vq,zio_priority_t p)279 vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p)
280 {
281 	switch (p) {
282 	case ZIO_PRIORITY_SYNC_READ:
283 		return (zfs_vdev_sync_read_min_active);
284 	case ZIO_PRIORITY_SYNC_WRITE:
285 		return (zfs_vdev_sync_write_min_active);
286 	case ZIO_PRIORITY_ASYNC_READ:
287 		return (zfs_vdev_async_read_min_active);
288 	case ZIO_PRIORITY_ASYNC_WRITE:
289 		return (zfs_vdev_async_write_min_active);
290 	case ZIO_PRIORITY_SCRUB:
291 		return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active :
292 		    MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active));
293 	case ZIO_PRIORITY_REMOVAL:
294 		return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active :
295 		    MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active));
296 	case ZIO_PRIORITY_INITIALIZING:
297 		return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active:
298 		    MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active));
299 	case ZIO_PRIORITY_TRIM:
300 		return (zfs_vdev_trim_min_active);
301 	case ZIO_PRIORITY_REBUILD:
302 		return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active :
303 		    MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active));
304 	default:
305 		panic("invalid priority %u", p);
306 		return (0);
307 	}
308 }
309 
310 static uint_t
vdev_queue_max_async_writes(spa_t * spa)311 vdev_queue_max_async_writes(spa_t *spa)
312 {
313 	uint_t writes;
314 	uint64_t dirty = 0;
315 	dsl_pool_t *dp = spa_get_dsl(spa);
316 	uint64_t min_bytes = zfs_dirty_data_max *
317 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
318 	uint64_t max_bytes = zfs_dirty_data_max *
319 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
320 
321 	/*
322 	 * Async writes may occur before the assignment of the spa's
323 	 * dsl_pool_t if a self-healing zio is issued prior to the
324 	 * completion of dmu_objset_open_impl().
325 	 */
326 	if (dp == NULL)
327 		return (zfs_vdev_async_write_max_active);
328 
329 	/*
330 	 * Sync tasks correspond to interactive user actions. To reduce the
331 	 * execution time of those actions we push data out as fast as possible.
332 	 */
333 	dirty = dp->dp_dirty_total;
334 	if (dirty > max_bytes || spa_has_pending_synctask(spa))
335 		return (zfs_vdev_async_write_max_active);
336 
337 	if (dirty < min_bytes)
338 		return (zfs_vdev_async_write_min_active);
339 
340 	/*
341 	 * linear interpolation:
342 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
343 	 * move right by min_bytes
344 	 * move up by min_writes
345 	 */
346 	writes = (dirty - min_bytes) *
347 	    (zfs_vdev_async_write_max_active -
348 	    zfs_vdev_async_write_min_active) /
349 	    (max_bytes - min_bytes) +
350 	    zfs_vdev_async_write_min_active;
351 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
352 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
353 	return (writes);
354 }
355 
356 static uint_t
vdev_queue_class_max_active(vdev_queue_t * vq,zio_priority_t p)357 vdev_queue_class_max_active(vdev_queue_t *vq, zio_priority_t p)
358 {
359 	switch (p) {
360 	case ZIO_PRIORITY_SYNC_READ:
361 		return (zfs_vdev_sync_read_max_active);
362 	case ZIO_PRIORITY_SYNC_WRITE:
363 		return (zfs_vdev_sync_write_max_active);
364 	case ZIO_PRIORITY_ASYNC_READ:
365 		return (zfs_vdev_async_read_max_active);
366 	case ZIO_PRIORITY_ASYNC_WRITE:
367 		return (vdev_queue_max_async_writes(vq->vq_vdev->vdev_spa));
368 	case ZIO_PRIORITY_SCRUB:
369 		if (vq->vq_ia_active > 0) {
370 			return (MIN(vq->vq_nia_credit,
371 			    zfs_vdev_scrub_min_active));
372 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
373 			return (MAX(1, zfs_vdev_scrub_min_active));
374 		return (zfs_vdev_scrub_max_active);
375 	case ZIO_PRIORITY_REMOVAL:
376 		if (vq->vq_ia_active > 0) {
377 			return (MIN(vq->vq_nia_credit,
378 			    zfs_vdev_removal_min_active));
379 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
380 			return (MAX(1, zfs_vdev_removal_min_active));
381 		return (zfs_vdev_removal_max_active);
382 	case ZIO_PRIORITY_INITIALIZING:
383 		if (vq->vq_ia_active > 0) {
384 			return (MIN(vq->vq_nia_credit,
385 			    zfs_vdev_initializing_min_active));
386 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
387 			return (MAX(1, zfs_vdev_initializing_min_active));
388 		return (zfs_vdev_initializing_max_active);
389 	case ZIO_PRIORITY_TRIM:
390 		return (zfs_vdev_trim_max_active);
391 	case ZIO_PRIORITY_REBUILD:
392 		if (vq->vq_ia_active > 0) {
393 			return (MIN(vq->vq_nia_credit,
394 			    zfs_vdev_rebuild_min_active));
395 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
396 			return (MAX(1, zfs_vdev_rebuild_min_active));
397 		return (zfs_vdev_rebuild_max_active);
398 	default:
399 		panic("invalid priority %u", p);
400 		return (0);
401 	}
402 }
403 
404 /*
405  * Return the i/o class to issue from, or ZIO_PRIORITY_NUM_QUEUEABLE if
406  * there is no eligible class.
407  */
408 static zio_priority_t
vdev_queue_class_to_issue(vdev_queue_t * vq)409 vdev_queue_class_to_issue(vdev_queue_t *vq)
410 {
411 	uint32_t cq = vq->vq_cqueued;
412 	zio_priority_t p, p1;
413 
414 	if (cq == 0 || vq->vq_active >= zfs_vdev_max_active)
415 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
416 
417 	/*
418 	 * Find a queue that has not reached its minimum # outstanding i/os.
419 	 * Do round-robin to reduce starvation due to zfs_vdev_max_active
420 	 * and vq_nia_credit limits.
421 	 */
422 	p1 = vq->vq_last_prio + 1;
423 	if (p1 >= ZIO_PRIORITY_NUM_QUEUEABLE)
424 		p1 = 0;
425 	for (p = p1; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
426 		if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
427 		    vdev_queue_class_min_active(vq, p))
428 			goto found;
429 	}
430 	for (p = 0; p < p1; p++) {
431 		if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
432 		    vdev_queue_class_min_active(vq, p))
433 			goto found;
434 	}
435 
436 	/*
437 	 * If we haven't found a queue, look for one that hasn't reached its
438 	 * maximum # outstanding i/os.
439 	 */
440 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
441 		if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
442 		    vdev_queue_class_max_active(vq, p))
443 			break;
444 	}
445 
446 found:
447 	vq->vq_last_prio = p;
448 	return (p);
449 }
450 
451 void
vdev_queue_init(vdev_t * vd)452 vdev_queue_init(vdev_t *vd)
453 {
454 	vdev_queue_t *vq = &vd->vdev_queue;
455 	zio_priority_t p;
456 
457 	vq->vq_vdev = vd;
458 
459 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
460 		if (vdev_queue_class_fifo(p)) {
461 			list_create(&vq->vq_class[p].vqc_list,
462 			    sizeof (zio_t),
463 			    offsetof(struct zio, io_queue_node.l));
464 		} else {
465 			avl_create(&vq->vq_class[p].vqc_tree,
466 			    vdev_queue_to_compare, sizeof (zio_t),
467 			    offsetof(struct zio, io_queue_node.a));
468 		}
469 	}
470 	avl_create(&vq->vq_read_offset_tree,
471 	    vdev_queue_offset_compare, sizeof (zio_t),
472 	    offsetof(struct zio, io_offset_node));
473 	avl_create(&vq->vq_write_offset_tree,
474 	    vdev_queue_offset_compare, sizeof (zio_t),
475 	    offsetof(struct zio, io_offset_node));
476 
477 	vq->vq_last_offset = 0;
478 	list_create(&vq->vq_active_list, sizeof (struct zio),
479 	    offsetof(struct zio, io_queue_node.l));
480 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
481 }
482 
483 void
vdev_queue_fini(vdev_t * vd)484 vdev_queue_fini(vdev_t *vd)
485 {
486 	vdev_queue_t *vq = &vd->vdev_queue;
487 
488 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
489 		if (vdev_queue_class_fifo(p))
490 			list_destroy(&vq->vq_class[p].vqc_list);
491 		else
492 			avl_destroy(&vq->vq_class[p].vqc_tree);
493 	}
494 	avl_destroy(&vq->vq_read_offset_tree);
495 	avl_destroy(&vq->vq_write_offset_tree);
496 
497 	list_destroy(&vq->vq_active_list);
498 	mutex_destroy(&vq->vq_lock);
499 }
500 
501 static void
vdev_queue_io_add(vdev_queue_t * vq,zio_t * zio)502 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
503 {
504 	zio->io_queue_state = ZIO_QS_QUEUED;
505 	vdev_queue_class_add(vq, zio);
506 	if (zio->io_type == ZIO_TYPE_READ)
507 		avl_add(&vq->vq_read_offset_tree, zio);
508 	else if (zio->io_type == ZIO_TYPE_WRITE)
509 		avl_add(&vq->vq_write_offset_tree, zio);
510 }
511 
512 static void
vdev_queue_io_remove(vdev_queue_t * vq,zio_t * zio)513 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
514 {
515 	vdev_queue_class_remove(vq, zio);
516 	if (zio->io_type == ZIO_TYPE_READ)
517 		avl_remove(&vq->vq_read_offset_tree, zio);
518 	else if (zio->io_type == ZIO_TYPE_WRITE)
519 		avl_remove(&vq->vq_write_offset_tree, zio);
520 	zio->io_queue_state = ZIO_QS_NONE;
521 }
522 
523 static boolean_t
vdev_queue_is_interactive(zio_priority_t p)524 vdev_queue_is_interactive(zio_priority_t p)
525 {
526 	switch (p) {
527 	case ZIO_PRIORITY_SCRUB:
528 	case ZIO_PRIORITY_REMOVAL:
529 	case ZIO_PRIORITY_INITIALIZING:
530 	case ZIO_PRIORITY_REBUILD:
531 		return (B_FALSE);
532 	default:
533 		return (B_TRUE);
534 	}
535 }
536 
537 static void
vdev_queue_pending_add(vdev_queue_t * vq,zio_t * zio)538 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
539 {
540 	ASSERT(MUTEX_HELD(&vq->vq_lock));
541 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
542 	vq->vq_cactive[zio->io_priority]++;
543 	vq->vq_active++;
544 	if (vdev_queue_is_interactive(zio->io_priority)) {
545 		if (++vq->vq_ia_active == 1)
546 			vq->vq_nia_credit = 1;
547 	} else if (vq->vq_ia_active > 0) {
548 		vq->vq_nia_credit--;
549 	}
550 	zio->io_queue_state = ZIO_QS_ACTIVE;
551 	list_insert_tail(&vq->vq_active_list, zio);
552 }
553 
554 static void
vdev_queue_pending_remove(vdev_queue_t * vq,zio_t * zio)555 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
556 {
557 	ASSERT(MUTEX_HELD(&vq->vq_lock));
558 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
559 	vq->vq_cactive[zio->io_priority]--;
560 	vq->vq_active--;
561 	if (vdev_queue_is_interactive(zio->io_priority)) {
562 		if (--vq->vq_ia_active == 0)
563 			vq->vq_nia_credit = 0;
564 		else
565 			vq->vq_nia_credit = zfs_vdev_nia_credit;
566 	} else if (vq->vq_ia_active == 0)
567 		vq->vq_nia_credit++;
568 	list_remove(&vq->vq_active_list, zio);
569 	zio->io_queue_state = ZIO_QS_NONE;
570 }
571 
572 static void
vdev_queue_agg_io_done(zio_t * aio)573 vdev_queue_agg_io_done(zio_t *aio)
574 {
575 	abd_free(aio->io_abd);
576 }
577 
578 /*
579  * Compute the range spanned by two i/os, which is the endpoint of the last
580  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
581  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
582  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
583  */
584 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
585 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
586 
587 /*
588  * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
589  * by creating a gang ABD from the adjacent ZIOs io_abd's. By using
590  * a gang ABD we avoid doing memory copies to and from the parent,
591  * child ZIOs. The gang ABD also accounts for gaps between adjacent
592  * io_offsets by simply getting the zero ABD for writes or allocating
593  * a new ABD for reads and placing them in the gang ABD as well.
594  */
595 static zio_t *
vdev_queue_aggregate(vdev_queue_t * vq,zio_t * zio)596 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
597 {
598 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
599 	uint64_t maxgap = 0;
600 	uint64_t size;
601 	uint64_t limit;
602 	boolean_t stretch = B_FALSE;
603 	uint64_t next_offset;
604 	abd_t *abd;
605 	avl_tree_t *t;
606 
607 	/*
608 	 * TRIM aggregation should not be needed since code in zfs_trim.c can
609 	 * submit TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M).
610 	 */
611 	if (zio->io_type == ZIO_TYPE_TRIM)
612 		return (NULL);
613 
614 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
615 		return (NULL);
616 
617 	if (vq->vq_vdev->vdev_nonrot)
618 		limit = zfs_vdev_aggregation_limit_non_rotating;
619 	else
620 		limit = zfs_vdev_aggregation_limit;
621 	if (limit == 0)
622 		return (NULL);
623 	limit = MIN(limit, SPA_MAXBLOCKSIZE);
624 
625 	/*
626 	 * I/Os to distributed spares are directly dispatched to the dRAID
627 	 * leaf vdevs for aggregation.  See the comment at the end of the
628 	 * zio_vdev_io_start() function.
629 	 */
630 	ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
631 
632 	first = last = zio;
633 
634 	if (zio->io_type == ZIO_TYPE_READ) {
635 		maxgap = zfs_vdev_read_gap_limit;
636 		t = &vq->vq_read_offset_tree;
637 	} else {
638 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
639 		t = &vq->vq_write_offset_tree;
640 	}
641 
642 	/*
643 	 * We can aggregate I/Os that are sufficiently adjacent and of
644 	 * the same flavor, as expressed by the AGG_INHERIT flags.
645 	 * The latter requirement is necessary so that certain
646 	 * attributes of the I/O, such as whether it's a normal I/O
647 	 * or a scrub/resilver, can be preserved in the aggregate.
648 	 * We can include optional I/Os, but don't allow them
649 	 * to begin a range as they add no benefit in that situation.
650 	 */
651 
652 	/*
653 	 * We keep track of the last non-optional I/O.
654 	 */
655 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
656 
657 	/*
658 	 * Walk backwards through sufficiently contiguous I/Os
659 	 * recording the last non-optional I/O.
660 	 */
661 	zio_flag_t flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
662 	while ((dio = AVL_PREV(t, first)) != NULL &&
663 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
664 	    IO_SPAN(dio, last) <= limit &&
665 	    IO_GAP(dio, first) <= maxgap &&
666 	    dio->io_type == zio->io_type) {
667 		first = dio;
668 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
669 			mandatory = first;
670 	}
671 
672 	/*
673 	 * Skip any initial optional I/Os.
674 	 */
675 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
676 		first = AVL_NEXT(t, first);
677 		ASSERT(first != NULL);
678 	}
679 
680 
681 	/*
682 	 * Walk forward through sufficiently contiguous I/Os.
683 	 * The aggregation limit does not apply to optional i/os, so that
684 	 * we can issue contiguous writes even if they are larger than the
685 	 * aggregation limit.
686 	 */
687 	while ((dio = AVL_NEXT(t, last)) != NULL &&
688 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
689 	    (IO_SPAN(first, dio) <= limit ||
690 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
691 	    IO_SPAN(first, dio) <= SPA_MAXBLOCKSIZE &&
692 	    IO_GAP(last, dio) <= maxgap &&
693 	    dio->io_type == zio->io_type) {
694 		last = dio;
695 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
696 			mandatory = last;
697 	}
698 
699 	/*
700 	 * Now that we've established the range of the I/O aggregation
701 	 * we must decide what to do with trailing optional I/Os.
702 	 * For reads, there's nothing to do. While we are unable to
703 	 * aggregate further, it's possible that a trailing optional
704 	 * I/O would allow the underlying device to aggregate with
705 	 * subsequent I/Os. We must therefore determine if the next
706 	 * non-optional I/O is close enough to make aggregation
707 	 * worthwhile.
708 	 */
709 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
710 		zio_t *nio = last;
711 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
712 		    IO_GAP(nio, dio) == 0 &&
713 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
714 			nio = dio;
715 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
716 				stretch = B_TRUE;
717 				break;
718 			}
719 		}
720 	}
721 
722 	if (stretch) {
723 		/*
724 		 * We are going to include an optional io in our aggregated
725 		 * span, thus closing the write gap.  Only mandatory i/os can
726 		 * start aggregated spans, so make sure that the next i/o
727 		 * after our span is mandatory.
728 		 */
729 		dio = AVL_NEXT(t, last);
730 		ASSERT3P(dio, !=, NULL);
731 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
732 	} else {
733 		/* do not include the optional i/o */
734 		while (last != mandatory && last != first) {
735 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
736 			last = AVL_PREV(t, last);
737 			ASSERT(last != NULL);
738 		}
739 	}
740 
741 	if (first == last)
742 		return (NULL);
743 
744 	size = IO_SPAN(first, last);
745 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
746 
747 	abd = abd_alloc_gang();
748 	if (abd == NULL)
749 		return (NULL);
750 
751 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
752 	    abd, size, first->io_type, zio->io_priority,
753 	    flags | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL);
754 	aio->io_timestamp = first->io_timestamp;
755 
756 	nio = first;
757 	next_offset = first->io_offset;
758 	do {
759 		dio = nio;
760 		nio = AVL_NEXT(t, dio);
761 		ASSERT3P(dio, !=, NULL);
762 		zio_add_child(dio, aio);
763 		vdev_queue_io_remove(vq, dio);
764 
765 		if (dio->io_offset != next_offset) {
766 			/* allocate a buffer for a read gap */
767 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
768 			ASSERT3U(dio->io_offset, >, next_offset);
769 			abd = abd_alloc_for_io(
770 			    dio->io_offset - next_offset, B_TRUE);
771 			abd_gang_add(aio->io_abd, abd, B_TRUE);
772 		}
773 		if (dio->io_abd &&
774 		    (dio->io_size != abd_get_size(dio->io_abd))) {
775 			/* abd size not the same as IO size */
776 			ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
777 			abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
778 			abd_gang_add(aio->io_abd, abd, B_TRUE);
779 		} else {
780 			if (dio->io_flags & ZIO_FLAG_NODATA) {
781 				/* allocate a buffer for a write gap */
782 				ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
783 				ASSERT3P(dio->io_abd, ==, NULL);
784 				abd_gang_add(aio->io_abd,
785 				    abd_get_zeros(dio->io_size), B_TRUE);
786 			} else {
787 				/*
788 				 * We pass B_FALSE to abd_gang_add()
789 				 * because we did not allocate a new
790 				 * ABD, so it is assumed the caller
791 				 * will free this ABD.
792 				 */
793 				abd_gang_add(aio->io_abd, dio->io_abd,
794 				    B_FALSE);
795 			}
796 		}
797 		next_offset = dio->io_offset + dio->io_size;
798 	} while (dio != last);
799 	ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
800 
801 	/*
802 	 * Callers must call zio_vdev_io_bypass() and zio_execute() for
803 	 * aggregated (parent) I/Os so that we could avoid dropping the
804 	 * queue's lock here to avoid a deadlock that we could encounter
805 	 * due to lock order reversal between vq_lock and io_lock in
806 	 * zio_change_priority().
807 	 */
808 	return (aio);
809 }
810 
811 static zio_t *
vdev_queue_io_to_issue(vdev_queue_t * vq)812 vdev_queue_io_to_issue(vdev_queue_t *vq)
813 {
814 	zio_t *zio, *aio;
815 	zio_priority_t p;
816 	avl_index_t idx;
817 	avl_tree_t *tree;
818 
819 again:
820 	ASSERT(MUTEX_HELD(&vq->vq_lock));
821 
822 	p = vdev_queue_class_to_issue(vq);
823 
824 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
825 		/* No eligible queued i/os */
826 		return (NULL);
827 	}
828 
829 	if (vdev_queue_class_fifo(p)) {
830 		zio = list_head(&vq->vq_class[p].vqc_list);
831 	} else {
832 		/*
833 		 * For LBA-ordered queues (async / scrub / initializing),
834 		 * issue the I/O which follows the most recently issued I/O
835 		 * in LBA (offset) order, but to avoid starvation only within
836 		 * the same 0.5 second interval as the first I/O.
837 		 */
838 		tree = &vq->vq_class[p].vqc_tree;
839 		zio = aio = avl_first(tree);
840 		if (zio->io_offset < vq->vq_last_offset) {
841 			vq->vq_io_search.io_timestamp = zio->io_timestamp;
842 			vq->vq_io_search.io_offset = vq->vq_last_offset;
843 			zio = avl_find(tree, &vq->vq_io_search, &idx);
844 			if (zio == NULL) {
845 				zio = avl_nearest(tree, idx, AVL_AFTER);
846 				if (zio == NULL ||
847 				    (zio->io_timestamp >> VDQ_T_SHIFT) !=
848 				    (aio->io_timestamp >> VDQ_T_SHIFT))
849 					zio = aio;
850 			}
851 		}
852 	}
853 	ASSERT3U(zio->io_priority, ==, p);
854 
855 	aio = vdev_queue_aggregate(vq, zio);
856 	if (aio != NULL) {
857 		zio = aio;
858 	} else {
859 		vdev_queue_io_remove(vq, zio);
860 
861 		/*
862 		 * If the I/O is or was optional and therefore has no data, we
863 		 * need to simply discard it. We need to drop the vdev queue's
864 		 * lock to avoid a deadlock that we could encounter since this
865 		 * I/O will complete immediately.
866 		 */
867 		if (zio->io_flags & ZIO_FLAG_NODATA) {
868 			mutex_exit(&vq->vq_lock);
869 			zio_vdev_io_bypass(zio);
870 			zio_execute(zio);
871 			mutex_enter(&vq->vq_lock);
872 			goto again;
873 		}
874 	}
875 
876 	vdev_queue_pending_add(vq, zio);
877 	vq->vq_last_offset = zio->io_offset + zio->io_size;
878 
879 	return (zio);
880 }
881 
882 zio_t *
vdev_queue_io(zio_t * zio)883 vdev_queue_io(zio_t *zio)
884 {
885 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
886 	zio_t *dio, *nio;
887 	zio_link_t *zl = NULL;
888 
889 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
890 		return (zio);
891 
892 	/*
893 	 * Children i/os inherent their parent's priority, which might
894 	 * not match the child's i/o type.  Fix it up here.
895 	 */
896 	if (zio->io_type == ZIO_TYPE_READ) {
897 		ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
898 
899 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
900 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
901 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
902 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
903 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
904 		    zio->io_priority != ZIO_PRIORITY_REBUILD) {
905 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
906 		}
907 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
908 		ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
909 
910 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
911 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
912 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
913 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
914 		    zio->io_priority != ZIO_PRIORITY_REBUILD) {
915 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
916 		}
917 	} else {
918 		ASSERT(zio->io_type == ZIO_TYPE_TRIM);
919 		ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
920 	}
921 
922 	zio->io_flags |= ZIO_FLAG_DONT_QUEUE;
923 	zio->io_timestamp = gethrtime();
924 
925 	mutex_enter(&vq->vq_lock);
926 	vdev_queue_io_add(vq, zio);
927 	nio = vdev_queue_io_to_issue(vq);
928 	mutex_exit(&vq->vq_lock);
929 
930 	if (nio == NULL)
931 		return (NULL);
932 
933 	if (nio->io_done == vdev_queue_agg_io_done) {
934 		while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
935 			ASSERT3U(dio->io_type, ==, nio->io_type);
936 			zio_vdev_io_bypass(dio);
937 			zio_execute(dio);
938 		}
939 		zio_nowait(nio);
940 		return (NULL);
941 	}
942 
943 	return (nio);
944 }
945 
946 void
vdev_queue_io_done(zio_t * zio)947 vdev_queue_io_done(zio_t *zio)
948 {
949 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
950 	zio_t *dio, *nio;
951 	zio_link_t *zl = NULL;
952 
953 	hrtime_t now = gethrtime();
954 	vq->vq_io_complete_ts = now;
955 	vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp;
956 
957 	mutex_enter(&vq->vq_lock);
958 	vdev_queue_pending_remove(vq, zio);
959 
960 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
961 		mutex_exit(&vq->vq_lock);
962 		if (nio->io_done == vdev_queue_agg_io_done) {
963 			while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
964 				ASSERT3U(dio->io_type, ==, nio->io_type);
965 				zio_vdev_io_bypass(dio);
966 				zio_execute(dio);
967 			}
968 			zio_nowait(nio);
969 		} else {
970 			zio_vdev_io_reissue(nio);
971 			zio_execute(nio);
972 		}
973 		mutex_enter(&vq->vq_lock);
974 	}
975 
976 	mutex_exit(&vq->vq_lock);
977 }
978 
979 void
vdev_queue_change_io_priority(zio_t * zio,zio_priority_t priority)980 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
981 {
982 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
983 
984 	/*
985 	 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
986 	 * code to issue IOs without adding them to the vdev queue. In this
987 	 * case, the zio is already going to be issued as quickly as possible
988 	 * and so it doesn't need any reprioritization to help.
989 	 */
990 	if (zio->io_priority == ZIO_PRIORITY_NOW)
991 		return;
992 
993 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
994 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
995 
996 	if (zio->io_type == ZIO_TYPE_READ) {
997 		if (priority != ZIO_PRIORITY_SYNC_READ &&
998 		    priority != ZIO_PRIORITY_ASYNC_READ &&
999 		    priority != ZIO_PRIORITY_SCRUB)
1000 			priority = ZIO_PRIORITY_ASYNC_READ;
1001 	} else {
1002 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1003 		if (priority != ZIO_PRIORITY_SYNC_WRITE &&
1004 		    priority != ZIO_PRIORITY_ASYNC_WRITE)
1005 			priority = ZIO_PRIORITY_ASYNC_WRITE;
1006 	}
1007 
1008 	mutex_enter(&vq->vq_lock);
1009 
1010 	/*
1011 	 * If the zio is in none of the queues we can simply change
1012 	 * the priority. If the zio is waiting to be submitted we must
1013 	 * remove it from the queue and re-insert it with the new priority.
1014 	 * Otherwise, the zio is currently active and we cannot change its
1015 	 * priority.
1016 	 */
1017 	if (zio->io_queue_state == ZIO_QS_QUEUED) {
1018 		vdev_queue_class_remove(vq, zio);
1019 		zio->io_priority = priority;
1020 		vdev_queue_class_add(vq, zio);
1021 	} else if (zio->io_queue_state == ZIO_QS_NONE) {
1022 		zio->io_priority = priority;
1023 	}
1024 
1025 	mutex_exit(&vq->vq_lock);
1026 }
1027 
1028 boolean_t
vdev_queue_pool_busy(spa_t * spa)1029 vdev_queue_pool_busy(spa_t *spa)
1030 {
1031 	dsl_pool_t *dp = spa_get_dsl(spa);
1032 	uint64_t min_bytes = zfs_dirty_data_max *
1033 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1034 
1035 	return (dp->dp_dirty_total > min_bytes);
1036 }
1037 
1038 /*
1039  * As these two methods are only used for load calculations we're not
1040  * concerned if we get an incorrect value on 32bit platforms due to lack of
1041  * vq_lock mutex use here, instead we prefer to keep it lock free for
1042  * performance.
1043  */
1044 uint32_t
vdev_queue_length(vdev_t * vd)1045 vdev_queue_length(vdev_t *vd)
1046 {
1047 	return (vd->vdev_queue.vq_active);
1048 }
1049 
1050 uint64_t
vdev_queue_last_offset(vdev_t * vd)1051 vdev_queue_last_offset(vdev_t *vd)
1052 {
1053 	return (vd->vdev_queue.vq_last_offset);
1054 }
1055 
1056 uint64_t
vdev_queue_class_length(vdev_t * vd,zio_priority_t p)1057 vdev_queue_class_length(vdev_t *vd, zio_priority_t p)
1058 {
1059 	vdev_queue_t *vq = &vd->vdev_queue;
1060 	if (vdev_queue_class_fifo(p))
1061 		return (vq->vq_class[p].vqc_list_numnodes);
1062 	else
1063 		return (avl_numnodes(&vq->vq_class[p].vqc_tree));
1064 }
1065 
1066 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, UINT, ZMOD_RW,
1067 	"Max vdev I/O aggregation size");
1068 
1069 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, UINT,
1070 	ZMOD_RW, "Max vdev I/O aggregation size for non-rotating media");
1071 
1072 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, UINT, ZMOD_RW,
1073 	"Aggregate read I/O over gap");
1074 
1075 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, UINT, ZMOD_RW,
1076 	"Aggregate write I/O over gap");
1077 
1078 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, UINT, ZMOD_RW,
1079 	"Maximum number of active I/Os per vdev");
1080 
1081 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent,
1082 	UINT, ZMOD_RW, "Async write concurrency max threshold");
1083 
1084 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent,
1085 	UINT, ZMOD_RW, "Async write concurrency min threshold");
1086 
1087 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, UINT, ZMOD_RW,
1088 	"Max active async read I/Os per vdev");
1089 
1090 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, UINT, ZMOD_RW,
1091 	"Min active async read I/Os per vdev");
1092 
1093 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, UINT, ZMOD_RW,
1094 	"Max active async write I/Os per vdev");
1095 
1096 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, UINT, ZMOD_RW,
1097 	"Min active async write I/Os per vdev");
1098 
1099 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, UINT, ZMOD_RW,
1100 	"Max active initializing I/Os per vdev");
1101 
1102 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, UINT, ZMOD_RW,
1103 	"Min active initializing I/Os per vdev");
1104 
1105 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, UINT, ZMOD_RW,
1106 	"Max active removal I/Os per vdev");
1107 
1108 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, UINT, ZMOD_RW,
1109 	"Min active removal I/Os per vdev");
1110 
1111 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, UINT, ZMOD_RW,
1112 	"Max active scrub I/Os per vdev");
1113 
1114 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, UINT, ZMOD_RW,
1115 	"Min active scrub I/Os per vdev");
1116 
1117 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, UINT, ZMOD_RW,
1118 	"Max active sync read I/Os per vdev");
1119 
1120 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, UINT, ZMOD_RW,
1121 	"Min active sync read I/Os per vdev");
1122 
1123 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, UINT, ZMOD_RW,
1124 	"Max active sync write I/Os per vdev");
1125 
1126 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, UINT, ZMOD_RW,
1127 	"Min active sync write I/Os per vdev");
1128 
1129 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, UINT, ZMOD_RW,
1130 	"Max active trim/discard I/Os per vdev");
1131 
1132 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, UINT, ZMOD_RW,
1133 	"Min active trim/discard I/Os per vdev");
1134 
1135 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, UINT, ZMOD_RW,
1136 	"Max active rebuild I/Os per vdev");
1137 
1138 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, UINT, ZMOD_RW,
1139 	"Min active rebuild I/Os per vdev");
1140 
1141 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, UINT, ZMOD_RW,
1142 	"Number of non-interactive I/Os to allow in sequence");
1143 
1144 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, UINT, ZMOD_RW,
1145 	"Number of non-interactive I/Os before _max_active");
1146