1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2019, Datto Inc. All rights reserved.
32 * Copyright (c) 2021, Klara Inc.
33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66
67 /*
68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70 * part of the spa_embedded_log_class. The metaslab with the most free space
71 * in each vdev is selected for this purpose when the pool is opened (or a
72 * vdev is added). See vdev_metaslab_init().
73 *
74 * Log blocks can be allocated from the following locations. Each one is tried
75 * in order until the allocation succeeds:
76 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77 * 2. embedded slog metaslabs (spa_embedded_log_class)
78 * 3. other metaslabs in normal vdevs (spa_normal_class)
79 *
80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81 * than this number of metaslabs in the vdev. This ensures that we don't set
82 * aside an unreasonable amount of space for the ZIL. If set to less than
83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85 */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102
103 int vdev_validate_skip = B_FALSE;
104
105 /*
106 * Since the DTL space map of a vdev is not expected to have a lot of
107 * entries, we default its block size to 4K.
108 */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110
111 /*
112 * Rate limit slow IO (delay) events to this many per second.
113 */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115
116 /*
117 * Rate limit deadman "hung IO" events to this many per second.
118 */
119 static unsigned int zfs_deadman_events_per_second = 1;
120
121 /*
122 * Rate limit direct write IO verify failures to this many per scond.
123 */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125
126 /*
127 * Rate limit checksum events after this many checksum errors per second.
128 */
129 static unsigned int zfs_checksum_events_per_second = 20;
130
131 /*
132 * Ignore errors during scrub/resilver. Allows to work around resilver
133 * upon import when there are pool errors.
134 */
135 static int zfs_scan_ignore_errors = 0;
136
137 /*
138 * vdev-wide space maps that have lots of entries written to them at
139 * the end of each transaction can benefit from a higher I/O bandwidth
140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141 */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143
144 /*
145 * Tunable parameter for debugging or performance analysis. Setting this
146 * will cause pool corruption on power loss if a volatile out-of-order
147 * write cache is enabled.
148 */
149 int zfs_nocacheflush = 0;
150
151 /*
152 * Maximum and minimum ashift values that can be automatically set based on
153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
154 * is higher than the maximum value, it is intentionally limited here to not
155 * excessively impact pool space efficiency. Higher ashift values may still
156 * be forced by vdev logical ashift or by user via ashift property, but won't
157 * be set automatically as a performance optimization.
158 */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161
162 /*
163 * VDEV checksum verification for Direct I/O writes. This is neccessary for
164 * Linux, because anonymous pages can not be placed under write protection
165 * during Direct I/O writes.
166 */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 va_list adx;
177 char buf[256];
178
179 va_start(adx, fmt);
180 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 va_end(adx);
182
183 if (vd->vdev_path != NULL) {
184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 vd->vdev_path, buf);
186 } else {
187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 vd->vdev_ops->vdev_op_type,
189 (u_longlong_t)vd->vdev_id,
190 (u_longlong_t)vd->vdev_guid, buf);
191 }
192 }
193
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 char state[20];
198
199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 (u_longlong_t)vd->vdev_id,
202 vd->vdev_ops->vdev_op_type);
203 return;
204 }
205
206 switch (vd->vdev_state) {
207 case VDEV_STATE_UNKNOWN:
208 (void) snprintf(state, sizeof (state), "unknown");
209 break;
210 case VDEV_STATE_CLOSED:
211 (void) snprintf(state, sizeof (state), "closed");
212 break;
213 case VDEV_STATE_OFFLINE:
214 (void) snprintf(state, sizeof (state), "offline");
215 break;
216 case VDEV_STATE_REMOVED:
217 (void) snprintf(state, sizeof (state), "removed");
218 break;
219 case VDEV_STATE_CANT_OPEN:
220 (void) snprintf(state, sizeof (state), "can't open");
221 break;
222 case VDEV_STATE_FAULTED:
223 (void) snprintf(state, sizeof (state), "faulted");
224 break;
225 case VDEV_STATE_DEGRADED:
226 (void) snprintf(state, sizeof (state), "degraded");
227 break;
228 case VDEV_STATE_HEALTHY:
229 (void) snprintf(state, sizeof (state), "healthy");
230 break;
231 default:
232 (void) snprintf(state, sizeof (state), "<state %u>",
233 (uint_t)vd->vdev_state);
234 }
235
236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 vd->vdev_islog ? " (log)" : "",
239 (u_longlong_t)vd->vdev_guid,
240 vd->vdev_path ? vd->vdev_path : "N/A", state);
241
242 for (uint64_t i = 0; i < vd->vdev_children; i++)
243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245
246 char *
vdev_rt_name(vdev_t * vd,const char * name)247 vdev_rt_name(vdev_t *vd, const char *name)
248 {
249 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}",
250 spa_name(vd->vdev_spa),
251 (u_longlong_t)vd->vdev_guid,
252 name));
253 }
254
255 static char *
vdev_rt_name_dtl(vdev_t * vd,const char * name,vdev_dtl_type_t dtl_type)256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type)
257 {
258 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}",
259 spa_name(vd->vdev_spa),
260 (u_longlong_t)vd->vdev_guid,
261 name,
262 dtl_type));
263 }
264
265 /*
266 * Virtual device management.
267 */
268
269 static vdev_ops_t *const vdev_ops_table[] = {
270 &vdev_root_ops,
271 &vdev_raidz_ops,
272 &vdev_draid_ops,
273 &vdev_draid_spare_ops,
274 &vdev_mirror_ops,
275 &vdev_replacing_ops,
276 &vdev_spare_ops,
277 &vdev_disk_ops,
278 &vdev_file_ops,
279 &vdev_missing_ops,
280 &vdev_hole_ops,
281 &vdev_indirect_ops,
282 NULL
283 };
284
285 /*
286 * Given a vdev type, return the appropriate ops vector.
287 */
288 static vdev_ops_t *
vdev_getops(const char * type)289 vdev_getops(const char *type)
290 {
291 vdev_ops_t *ops, *const *opspp;
292
293 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
294 if (strcmp(ops->vdev_op_type, type) == 0)
295 break;
296
297 return (ops);
298 }
299
300 /*
301 * Given a vdev and a metaslab class, find which metaslab group we're
302 * interested in. All vdevs may belong to two different metaslab classes.
303 * Dedicated slog devices use only the primary metaslab group, rather than a
304 * separate log group. For embedded slogs, vdev_log_mg will be non-NULL and
305 * will point to a metaslab group of either embedded_log_class (for normal
306 * vdevs) or special_embedded_log_class (for special vdevs).
307 */
308 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
310 {
311 if ((mc == spa_embedded_log_class(vd->vdev_spa) ||
312 mc == spa_special_embedded_log_class(vd->vdev_spa)) &&
313 vd->vdev_log_mg != NULL)
314 return (vd->vdev_log_mg);
315 else
316 return (vd->vdev_mg);
317 }
318
319 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
321 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
322 {
323 (void) vd, (void) remain_rs;
324
325 physical_rs->rs_start = logical_rs->rs_start;
326 physical_rs->rs_end = logical_rs->rs_end;
327 }
328
329 /*
330 * Derive the enumerated allocation bias from string input.
331 * String origin is either the per-vdev zap or zpool(8).
332 */
333 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)334 vdev_derive_alloc_bias(const char *bias)
335 {
336 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
337
338 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
339 alloc_bias = VDEV_BIAS_LOG;
340 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
341 alloc_bias = VDEV_BIAS_SPECIAL;
342 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
343 alloc_bias = VDEV_BIAS_DEDUP;
344
345 return (alloc_bias);
346 }
347
348 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
350 {
351 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
352 uint64_t csize, psize = asize;
353 for (int c = 0; c < vd->vdev_children; c++) {
354 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
355 psize = MIN(psize, csize);
356 }
357
358 return (psize);
359 }
360
361 /*
362 * Default asize function: return the MAX of psize with the asize of
363 * all children. This is what's used by anything other than RAID-Z.
364 */
365 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
367 {
368 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
369 uint64_t csize;
370
371 for (int c = 0; c < vd->vdev_children; c++) {
372 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
373 asize = MAX(asize, csize);
374 }
375
376 return (asize);
377 }
378
379 uint64_t
vdev_default_min_asize(vdev_t * vd)380 vdev_default_min_asize(vdev_t *vd)
381 {
382 return (vd->vdev_min_asize);
383 }
384
385 /*
386 * Get the minimum allocatable size. We define the allocatable size as
387 * the vdev's asize rounded to the nearest metaslab. This allows us to
388 * replace or attach devices which don't have the same physical size but
389 * can still satisfy the same number of allocations.
390 */
391 uint64_t
vdev_get_min_asize(vdev_t * vd)392 vdev_get_min_asize(vdev_t *vd)
393 {
394 vdev_t *pvd = vd->vdev_parent;
395
396 /*
397 * If our parent is NULL (inactive spare or cache) or is the root,
398 * just return our own asize.
399 */
400 if (pvd == NULL)
401 return (vd->vdev_asize);
402
403 /*
404 * The top-level vdev just returns the allocatable size rounded
405 * to the nearest metaslab.
406 */
407 if (vd == vd->vdev_top)
408 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
409 uint64_t));
410
411 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
412 }
413
414 void
vdev_set_min_asize(vdev_t * vd)415 vdev_set_min_asize(vdev_t *vd)
416 {
417 vd->vdev_min_asize = vdev_get_min_asize(vd);
418
419 for (int c = 0; c < vd->vdev_children; c++)
420 vdev_set_min_asize(vd->vdev_child[c]);
421 }
422
423 /*
424 * Get the minimal allocation size for the top-level vdev.
425 */
426 uint64_t
vdev_get_min_alloc(vdev_t * vd)427 vdev_get_min_alloc(vdev_t *vd)
428 {
429 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
430
431 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
432 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
433
434 return (min_alloc);
435 }
436
437 /*
438 * Get the parity level for a top-level vdev.
439 */
440 uint64_t
vdev_get_nparity(vdev_t * vd)441 vdev_get_nparity(vdev_t *vd)
442 {
443 uint64_t nparity = 0;
444
445 if (vd->vdev_ops->vdev_op_nparity != NULL)
446 nparity = vd->vdev_ops->vdev_op_nparity(vd);
447
448 return (nparity);
449 }
450
451 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)452 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
453 {
454 spa_t *spa = vd->vdev_spa;
455 objset_t *mos = spa->spa_meta_objset;
456 uint64_t objid;
457 int err;
458
459 if (vd->vdev_root_zap != 0) {
460 objid = vd->vdev_root_zap;
461 } else if (vd->vdev_top_zap != 0) {
462 objid = vd->vdev_top_zap;
463 } else if (vd->vdev_leaf_zap != 0) {
464 objid = vd->vdev_leaf_zap;
465 } else {
466 return (EINVAL);
467 }
468
469 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
470 sizeof (uint64_t), 1, value);
471
472 if (err == ENOENT)
473 *value = vdev_prop_default_numeric(prop);
474
475 return (err);
476 }
477
478 /*
479 * Get the number of data disks for a top-level vdev.
480 */
481 uint64_t
vdev_get_ndisks(vdev_t * vd)482 vdev_get_ndisks(vdev_t *vd)
483 {
484 uint64_t ndisks = 1;
485
486 if (vd->vdev_ops->vdev_op_ndisks != NULL)
487 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
488
489 return (ndisks);
490 }
491
492 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)493 vdev_lookup_top(spa_t *spa, uint64_t vdev)
494 {
495 vdev_t *rvd = spa->spa_root_vdev;
496
497 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
498
499 if (vdev < rvd->vdev_children) {
500 ASSERT(rvd->vdev_child[vdev] != NULL);
501 return (rvd->vdev_child[vdev]);
502 }
503
504 return (NULL);
505 }
506
507 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)508 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
509 {
510 vdev_t *mvd;
511
512 if (vd->vdev_guid == guid)
513 return (vd);
514
515 for (int c = 0; c < vd->vdev_children; c++)
516 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
517 NULL)
518 return (mvd);
519
520 return (NULL);
521 }
522
523 static int
vdev_count_leaves_impl(vdev_t * vd)524 vdev_count_leaves_impl(vdev_t *vd)
525 {
526 int n = 0;
527
528 if (vd->vdev_ops->vdev_op_leaf)
529 return (1);
530
531 for (int c = 0; c < vd->vdev_children; c++)
532 n += vdev_count_leaves_impl(vd->vdev_child[c]);
533
534 return (n);
535 }
536
537 int
vdev_count_leaves(spa_t * spa)538 vdev_count_leaves(spa_t *spa)
539 {
540 int rc;
541
542 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
543 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
544 spa_config_exit(spa, SCL_VDEV, FTAG);
545
546 return (rc);
547 }
548
549 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)550 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
551 {
552 size_t oldsize, newsize;
553 uint64_t id = cvd->vdev_id;
554 vdev_t **newchild;
555
556 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
557 ASSERT0P(cvd->vdev_parent);
558
559 cvd->vdev_parent = pvd;
560
561 if (pvd == NULL)
562 return;
563
564 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
565
566 oldsize = pvd->vdev_children * sizeof (vdev_t *);
567 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
568 newsize = pvd->vdev_children * sizeof (vdev_t *);
569
570 newchild = kmem_alloc(newsize, KM_SLEEP);
571 if (pvd->vdev_child != NULL) {
572 memcpy(newchild, pvd->vdev_child, oldsize);
573 kmem_free(pvd->vdev_child, oldsize);
574 }
575
576 pvd->vdev_child = newchild;
577 pvd->vdev_child[id] = cvd;
578 pvd->vdev_nonrot &= cvd->vdev_nonrot;
579
580 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
581 ASSERT0P(cvd->vdev_top->vdev_parent->vdev_parent);
582
583 /*
584 * Walk up all ancestors to update guid sum.
585 */
586 for (; pvd != NULL; pvd = pvd->vdev_parent)
587 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
588
589 if (cvd->vdev_ops->vdev_op_leaf) {
590 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
591 cvd->vdev_spa->spa_leaf_list_gen++;
592 }
593 }
594
595 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)596 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
597 {
598 int c;
599 uint_t id = cvd->vdev_id;
600
601 ASSERT(cvd->vdev_parent == pvd);
602
603 if (pvd == NULL)
604 return;
605
606 ASSERT(id < pvd->vdev_children);
607 ASSERT(pvd->vdev_child[id] == cvd);
608
609 pvd->vdev_child[id] = NULL;
610 cvd->vdev_parent = NULL;
611
612 for (c = 0; c < pvd->vdev_children; c++)
613 if (pvd->vdev_child[c])
614 break;
615
616 if (c == pvd->vdev_children) {
617 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
618 pvd->vdev_child = NULL;
619 pvd->vdev_children = 0;
620 }
621
622 if (cvd->vdev_ops->vdev_op_leaf) {
623 spa_t *spa = cvd->vdev_spa;
624 list_remove(&spa->spa_leaf_list, cvd);
625 spa->spa_leaf_list_gen++;
626 }
627
628 /*
629 * Walk up all ancestors to update guid sum.
630 */
631 for (; pvd != NULL; pvd = pvd->vdev_parent)
632 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
633 }
634
635 /*
636 * Remove any holes in the child array.
637 */
638 void
vdev_compact_children(vdev_t * pvd)639 vdev_compact_children(vdev_t *pvd)
640 {
641 vdev_t **newchild, *cvd;
642 int oldc = pvd->vdev_children;
643 int newc;
644
645 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
646
647 if (oldc == 0)
648 return;
649
650 for (int c = newc = 0; c < oldc; c++)
651 if (pvd->vdev_child[c])
652 newc++;
653
654 if (newc > 0) {
655 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
656
657 for (int c = newc = 0; c < oldc; c++) {
658 if ((cvd = pvd->vdev_child[c]) != NULL) {
659 newchild[newc] = cvd;
660 cvd->vdev_id = newc++;
661 }
662 }
663 } else {
664 newchild = NULL;
665 }
666
667 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
668 pvd->vdev_child = newchild;
669 pvd->vdev_children = newc;
670 }
671
672 /*
673 * Allocate and minimally initialize a vdev_t.
674 */
675 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)676 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
677 {
678 vdev_t *vd;
679 vdev_indirect_config_t *vic;
680
681 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
682 vic = &vd->vdev_indirect_config;
683
684 if (spa->spa_root_vdev == NULL) {
685 ASSERT(ops == &vdev_root_ops);
686 spa->spa_root_vdev = vd;
687 spa->spa_load_guid = spa_generate_load_guid();
688 }
689
690 if (guid == 0 && ops != &vdev_hole_ops) {
691 if (spa->spa_root_vdev == vd) {
692 /*
693 * The root vdev's guid will also be the pool guid,
694 * which must be unique among all pools.
695 */
696 guid = spa_generate_guid(NULL);
697 } else {
698 /*
699 * Any other vdev's guid must be unique within the pool.
700 */
701 guid = spa_generate_guid(spa);
702 }
703 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
704 }
705
706 vd->vdev_spa = spa;
707 vd->vdev_id = id;
708 vd->vdev_guid = guid;
709 vd->vdev_guid_sum = guid;
710 vd->vdev_ops = ops;
711 vd->vdev_state = VDEV_STATE_CLOSED;
712 vd->vdev_ishole = (ops == &vdev_hole_ops);
713 vic->vic_prev_indirect_vdev = UINT64_MAX;
714
715 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
716 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
717 vd->vdev_obsolete_segments = zfs_range_tree_create_flags(
718 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
719 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments"));
720
721 /*
722 * Initialize rate limit structs for events. We rate limit ZIO delay
723 * and checksum events so that we don't overwhelm ZED with thousands
724 * of events when a disk is acting up.
725 */
726 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
727 1);
728 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
729 1);
730 zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
731 &zfs_dio_write_verify_events_per_second, 1);
732 zfs_ratelimit_init(&vd->vdev_checksum_rl,
733 &zfs_checksum_events_per_second, 1);
734
735 /*
736 * Default Thresholds for tuning ZED
737 */
738 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
739 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
740 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
741 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
742 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
743 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
744
745 list_link_init(&vd->vdev_config_dirty_node);
746 list_link_init(&vd->vdev_state_dirty_node);
747 list_link_init(&vd->vdev_initialize_node);
748 list_link_init(&vd->vdev_leaf_node);
749 list_link_init(&vd->vdev_trim_node);
750
751 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
752 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
753 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
754 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
755
756 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
757 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
758 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
759 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
760
761 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
762 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
763 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
764 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
765 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
766 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
767 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
768
769 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
770 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
771
772 for (int t = 0; t < DTL_TYPES; t++) {
773 vd->vdev_dtl[t] = zfs_range_tree_create_flags(
774 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
775 ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t));
776 }
777
778 txg_list_create(&vd->vdev_ms_list, spa,
779 offsetof(struct metaslab, ms_txg_node));
780 txg_list_create(&vd->vdev_dtl_list, spa,
781 offsetof(struct vdev, vdev_dtl_node));
782 vd->vdev_stat.vs_timestamp = gethrtime();
783 vdev_queue_init(vd);
784
785 return (vd);
786 }
787
788 /*
789 * Allocate a new vdev. The 'alloctype' is used to control whether we are
790 * creating a new vdev or loading an existing one - the behavior is slightly
791 * different for each case.
792 */
793 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)794 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
795 int alloctype)
796 {
797 vdev_ops_t *ops;
798 const char *type;
799 uint64_t guid = 0, islog;
800 vdev_t *vd;
801 vdev_indirect_config_t *vic;
802 const char *tmp = NULL;
803 int rc;
804 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
805 boolean_t top_level = (parent && !parent->vdev_parent);
806
807 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
808
809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
810 return (SET_ERROR(EINVAL));
811
812 if ((ops = vdev_getops(type)) == NULL)
813 return (SET_ERROR(EINVAL));
814
815 /*
816 * If this is a load, get the vdev guid from the nvlist.
817 * Otherwise, vdev_alloc_common() will generate one for us.
818 */
819 if (alloctype == VDEV_ALLOC_LOAD) {
820 uint64_t label_id;
821
822 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
823 label_id != id)
824 return (SET_ERROR(EINVAL));
825
826 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
827 return (SET_ERROR(EINVAL));
828 } else if (alloctype == VDEV_ALLOC_SPARE) {
829 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
830 return (SET_ERROR(EINVAL));
831 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
832 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
833 return (SET_ERROR(EINVAL));
834 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
835 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
836 return (SET_ERROR(EINVAL));
837 }
838
839 /*
840 * The first allocated vdev must be of type 'root'.
841 */
842 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
843 return (SET_ERROR(EINVAL));
844
845 /*
846 * Determine whether we're a log vdev.
847 */
848 islog = 0;
849 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
850 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
851 return (SET_ERROR(ENOTSUP));
852
853 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
854 return (SET_ERROR(ENOTSUP));
855
856 if (top_level && alloctype == VDEV_ALLOC_ADD) {
857 const char *bias;
858
859 /*
860 * If creating a top-level vdev, check for allocation
861 * classes input.
862 */
863 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
864 &bias) == 0) {
865 alloc_bias = vdev_derive_alloc_bias(bias);
866
867 /* spa_vdev_add() expects feature to be enabled */
868 if (spa->spa_load_state != SPA_LOAD_CREATE &&
869 !spa_feature_is_enabled(spa,
870 SPA_FEATURE_ALLOCATION_CLASSES)) {
871 return (SET_ERROR(ENOTSUP));
872 }
873 }
874
875 /* spa_vdev_add() expects feature to be enabled */
876 if (ops == &vdev_draid_ops &&
877 spa->spa_load_state != SPA_LOAD_CREATE &&
878 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
879 return (SET_ERROR(ENOTSUP));
880 }
881 }
882
883 /*
884 * Initialize the vdev specific data. This is done before calling
885 * vdev_alloc_common() since it may fail and this simplifies the
886 * error reporting and cleanup code paths.
887 */
888 void *tsd = NULL;
889 if (ops->vdev_op_init != NULL) {
890 rc = ops->vdev_op_init(spa, nv, &tsd);
891 if (rc != 0) {
892 return (rc);
893 }
894 }
895
896 vd = vdev_alloc_common(spa, id, guid, ops);
897 vd->vdev_tsd = tsd;
898 vd->vdev_islog = islog;
899
900 if (top_level && alloc_bias != VDEV_BIAS_NONE)
901 vd->vdev_alloc_bias = alloc_bias;
902
903 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
904 vd->vdev_path = spa_strdup(tmp);
905
906 /*
907 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
908 * fault on a vdev and want it to persist across imports (like with
909 * zpool offline -f).
910 */
911 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
912 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
913 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
914 vd->vdev_faulted = 1;
915 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
916 }
917
918 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
919 vd->vdev_devid = spa_strdup(tmp);
920 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
921 vd->vdev_physpath = spa_strdup(tmp);
922
923 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
924 &tmp) == 0)
925 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
926
927 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
928 vd->vdev_fru = spa_strdup(tmp);
929
930 /*
931 * Set the whole_disk property. If it's not specified, leave the value
932 * as -1.
933 */
934 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
935 &vd->vdev_wholedisk) != 0)
936 vd->vdev_wholedisk = -1ULL;
937
938 vic = &vd->vdev_indirect_config;
939
940 ASSERT0(vic->vic_mapping_object);
941 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
942 &vic->vic_mapping_object);
943 ASSERT0(vic->vic_births_object);
944 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
945 &vic->vic_births_object);
946 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
948 &vic->vic_prev_indirect_vdev);
949
950 /*
951 * Look for the 'not present' flag. This will only be set if the device
952 * was not present at the time of import.
953 */
954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
955 &vd->vdev_not_present);
956
957 /*
958 * Get the alignment requirement. Ignore pool ashift for vdev
959 * attach case.
960 */
961 if (alloctype != VDEV_ALLOC_ATTACH) {
962 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
963 &vd->vdev_ashift);
964 } else {
965 vd->vdev_attaching = B_TRUE;
966 }
967
968 /*
969 * Retrieve the vdev creation time.
970 */
971 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
972 &vd->vdev_crtxg);
973
974 if (vd->vdev_ops == &vdev_root_ops &&
975 (alloctype == VDEV_ALLOC_LOAD ||
976 alloctype == VDEV_ALLOC_SPLIT ||
977 alloctype == VDEV_ALLOC_ROOTPOOL)) {
978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
979 &vd->vdev_root_zap);
980 }
981
982 /*
983 * If we're a top-level vdev, try to load the allocation parameters.
984 */
985 if (top_level &&
986 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
987 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
988 &vd->vdev_ms_array);
989 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
990 &vd->vdev_ms_shift);
991 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
992 &vd->vdev_asize);
993 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
994 &vd->vdev_noalloc);
995 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
996 &vd->vdev_removing);
997 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
998 &vd->vdev_top_zap);
999 vd->vdev_rz_expanding = nvlist_exists(nv,
1000 ZPOOL_CONFIG_RAIDZ_EXPANDING);
1001 } else {
1002 ASSERT0(vd->vdev_top_zap);
1003 }
1004
1005 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
1006 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
1007 alloctype == VDEV_ALLOC_ADD ||
1008 alloctype == VDEV_ALLOC_SPLIT ||
1009 alloctype == VDEV_ALLOC_ROOTPOOL);
1010 /* Note: metaslab_group_create() is now deferred */
1011 }
1012
1013 if (vd->vdev_ops->vdev_op_leaf &&
1014 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
1015 (void) nvlist_lookup_uint64(nv,
1016 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
1017 } else {
1018 ASSERT0(vd->vdev_leaf_zap);
1019 }
1020
1021 /*
1022 * If we're a leaf vdev, try to load the DTL object and other state.
1023 */
1024
1025 if (vd->vdev_ops->vdev_op_leaf &&
1026 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1027 alloctype == VDEV_ALLOC_ROOTPOOL)) {
1028 if (alloctype == VDEV_ALLOC_LOAD) {
1029 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1030 &vd->vdev_dtl_object);
1031 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1032 &vd->vdev_unspare);
1033 }
1034
1035 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1036 uint64_t spare = 0;
1037
1038 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1039 &spare) == 0 && spare)
1040 spa_spare_add(vd);
1041 }
1042
1043 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1044 &vd->vdev_offline);
1045
1046 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1047 &vd->vdev_resilver_txg);
1048
1049 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1050 &vd->vdev_rebuild_txg);
1051
1052 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1053 vdev_defer_resilver(vd);
1054
1055 /*
1056 * In general, when importing a pool we want to ignore the
1057 * persistent fault state, as the diagnosis made on another
1058 * system may not be valid in the current context. The only
1059 * exception is if we forced a vdev to a persistently faulted
1060 * state with 'zpool offline -f'. The persistent fault will
1061 * remain across imports until cleared.
1062 *
1063 * Local vdevs will remain in the faulted state.
1064 */
1065 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1066 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1067 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1068 &vd->vdev_faulted);
1069 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1070 &vd->vdev_degraded);
1071 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1072 &vd->vdev_removed);
1073
1074 if (vd->vdev_faulted || vd->vdev_degraded) {
1075 const char *aux;
1076
1077 vd->vdev_label_aux =
1078 VDEV_AUX_ERR_EXCEEDED;
1079 if (nvlist_lookup_string(nv,
1080 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1081 strcmp(aux, "external") == 0)
1082 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1083 else
1084 vd->vdev_faulted = 0ULL;
1085 }
1086 }
1087 }
1088
1089 /*
1090 * Add ourselves to the parent's list of children.
1091 */
1092 vdev_add_child(parent, vd);
1093
1094 *vdp = vd;
1095
1096 return (0);
1097 }
1098
1099 void
vdev_free(vdev_t * vd)1100 vdev_free(vdev_t *vd)
1101 {
1102 spa_t *spa = vd->vdev_spa;
1103
1104 ASSERT0P(vd->vdev_initialize_thread);
1105 ASSERT0P(vd->vdev_trim_thread);
1106 ASSERT0P(vd->vdev_autotrim_thread);
1107 ASSERT0P(vd->vdev_rebuild_thread);
1108
1109 /*
1110 * Scan queues are normally destroyed at the end of a scan. If the
1111 * queue exists here, that implies the vdev is being removed while
1112 * the scan is still running.
1113 */
1114 if (vd->vdev_scan_io_queue != NULL) {
1115 mutex_enter(&vd->vdev_scan_io_queue_lock);
1116 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1117 vd->vdev_scan_io_queue = NULL;
1118 mutex_exit(&vd->vdev_scan_io_queue_lock);
1119 }
1120
1121 /*
1122 * vdev_free() implies closing the vdev first. This is simpler than
1123 * trying to ensure complicated semantics for all callers.
1124 */
1125 vdev_close(vd);
1126
1127 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1128 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1129
1130 /*
1131 * Free all children.
1132 */
1133 for (int c = 0; c < vd->vdev_children; c++)
1134 vdev_free(vd->vdev_child[c]);
1135
1136 ASSERT0P(vd->vdev_child);
1137 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1138
1139 if (vd->vdev_ops->vdev_op_fini != NULL)
1140 vd->vdev_ops->vdev_op_fini(vd);
1141
1142 /*
1143 * Discard allocation state.
1144 */
1145 if (vd->vdev_mg != NULL) {
1146 vdev_metaslab_fini(vd);
1147 metaslab_group_destroy(vd->vdev_mg);
1148 vd->vdev_mg = NULL;
1149 }
1150 if (vd->vdev_log_mg != NULL) {
1151 ASSERT0(vd->vdev_ms_count);
1152 metaslab_group_destroy(vd->vdev_log_mg);
1153 vd->vdev_log_mg = NULL;
1154 }
1155
1156 ASSERT0(vd->vdev_stat.vs_space);
1157 ASSERT0(vd->vdev_stat.vs_dspace);
1158 ASSERT0(vd->vdev_stat.vs_alloc);
1159
1160 /*
1161 * Remove this vdev from its parent's child list.
1162 */
1163 vdev_remove_child(vd->vdev_parent, vd);
1164
1165 ASSERT0P(vd->vdev_parent);
1166 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1167
1168 /*
1169 * Clean up vdev structure.
1170 */
1171 vdev_queue_fini(vd);
1172
1173 if (vd->vdev_path)
1174 spa_strfree(vd->vdev_path);
1175 if (vd->vdev_devid)
1176 spa_strfree(vd->vdev_devid);
1177 if (vd->vdev_physpath)
1178 spa_strfree(vd->vdev_physpath);
1179
1180 if (vd->vdev_enc_sysfs_path)
1181 spa_strfree(vd->vdev_enc_sysfs_path);
1182
1183 if (vd->vdev_fru)
1184 spa_strfree(vd->vdev_fru);
1185
1186 if (vd->vdev_isspare)
1187 spa_spare_remove(vd);
1188 if (vd->vdev_isl2cache)
1189 spa_l2cache_remove(vd);
1190
1191 txg_list_destroy(&vd->vdev_ms_list);
1192 txg_list_destroy(&vd->vdev_dtl_list);
1193
1194 mutex_enter(&vd->vdev_dtl_lock);
1195 space_map_close(vd->vdev_dtl_sm);
1196 for (int t = 0; t < DTL_TYPES; t++) {
1197 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1198 zfs_range_tree_destroy(vd->vdev_dtl[t]);
1199 }
1200 mutex_exit(&vd->vdev_dtl_lock);
1201
1202 EQUIV(vd->vdev_indirect_births != NULL,
1203 vd->vdev_indirect_mapping != NULL);
1204 if (vd->vdev_indirect_births != NULL) {
1205 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1206 vdev_indirect_births_close(vd->vdev_indirect_births);
1207 }
1208
1209 if (vd->vdev_obsolete_sm != NULL) {
1210 ASSERT(vd->vdev_removing ||
1211 vd->vdev_ops == &vdev_indirect_ops);
1212 space_map_close(vd->vdev_obsolete_sm);
1213 vd->vdev_obsolete_sm = NULL;
1214 }
1215 zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1216 rw_destroy(&vd->vdev_indirect_rwlock);
1217 mutex_destroy(&vd->vdev_obsolete_lock);
1218
1219 mutex_destroy(&vd->vdev_dtl_lock);
1220 mutex_destroy(&vd->vdev_stat_lock);
1221 mutex_destroy(&vd->vdev_probe_lock);
1222 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1223
1224 mutex_destroy(&vd->vdev_initialize_lock);
1225 mutex_destroy(&vd->vdev_initialize_io_lock);
1226 cv_destroy(&vd->vdev_initialize_io_cv);
1227 cv_destroy(&vd->vdev_initialize_cv);
1228
1229 mutex_destroy(&vd->vdev_trim_lock);
1230 mutex_destroy(&vd->vdev_autotrim_lock);
1231 mutex_destroy(&vd->vdev_trim_io_lock);
1232 cv_destroy(&vd->vdev_trim_cv);
1233 cv_destroy(&vd->vdev_autotrim_cv);
1234 cv_destroy(&vd->vdev_autotrim_kick_cv);
1235 cv_destroy(&vd->vdev_trim_io_cv);
1236
1237 mutex_destroy(&vd->vdev_rebuild_lock);
1238 cv_destroy(&vd->vdev_rebuild_cv);
1239
1240 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1241 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1242 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1243 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1244
1245 if (vd == spa->spa_root_vdev)
1246 spa->spa_root_vdev = NULL;
1247
1248 kmem_free(vd, sizeof (vdev_t));
1249 }
1250
1251 /*
1252 * Transfer top-level vdev state from svd to tvd.
1253 */
1254 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1255 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1256 {
1257 spa_t *spa = svd->vdev_spa;
1258 metaslab_t *msp;
1259 vdev_t *vd;
1260 int t;
1261
1262 ASSERT(tvd == tvd->vdev_top);
1263
1264 tvd->vdev_ms_array = svd->vdev_ms_array;
1265 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1266 tvd->vdev_ms_count = svd->vdev_ms_count;
1267 tvd->vdev_top_zap = svd->vdev_top_zap;
1268
1269 svd->vdev_ms_array = 0;
1270 svd->vdev_ms_shift = 0;
1271 svd->vdev_ms_count = 0;
1272 svd->vdev_top_zap = 0;
1273
1274 if (tvd->vdev_mg)
1275 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1276 if (tvd->vdev_log_mg)
1277 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1278 tvd->vdev_mg = svd->vdev_mg;
1279 tvd->vdev_log_mg = svd->vdev_log_mg;
1280 tvd->vdev_ms = svd->vdev_ms;
1281
1282 svd->vdev_mg = NULL;
1283 svd->vdev_log_mg = NULL;
1284 svd->vdev_ms = NULL;
1285
1286 if (tvd->vdev_mg != NULL)
1287 tvd->vdev_mg->mg_vd = tvd;
1288 if (tvd->vdev_log_mg != NULL)
1289 tvd->vdev_log_mg->mg_vd = tvd;
1290
1291 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1292 svd->vdev_checkpoint_sm = NULL;
1293
1294 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1295 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1296
1297 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1298 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1299 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1300
1301 svd->vdev_stat.vs_alloc = 0;
1302 svd->vdev_stat.vs_space = 0;
1303 svd->vdev_stat.vs_dspace = 0;
1304
1305 /*
1306 * State which may be set on a top-level vdev that's in the
1307 * process of being removed.
1308 */
1309 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1310 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1311 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1312 ASSERT0P(tvd->vdev_indirect_mapping);
1313 ASSERT0P(tvd->vdev_indirect_births);
1314 ASSERT0P(tvd->vdev_obsolete_sm);
1315 ASSERT0(tvd->vdev_noalloc);
1316 ASSERT0(tvd->vdev_removing);
1317 ASSERT0(tvd->vdev_rebuilding);
1318 tvd->vdev_noalloc = svd->vdev_noalloc;
1319 tvd->vdev_removing = svd->vdev_removing;
1320 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1321 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1322 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1323 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1324 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1325 zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1326 &tvd->vdev_obsolete_segments);
1327 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1328 svd->vdev_indirect_config.vic_mapping_object = 0;
1329 svd->vdev_indirect_config.vic_births_object = 0;
1330 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1331 svd->vdev_indirect_mapping = NULL;
1332 svd->vdev_indirect_births = NULL;
1333 svd->vdev_obsolete_sm = NULL;
1334 svd->vdev_noalloc = 0;
1335 svd->vdev_removing = 0;
1336 svd->vdev_rebuilding = 0;
1337
1338 for (t = 0; t < TXG_SIZE; t++) {
1339 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1340 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1341 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1342 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1343 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1344 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1345 }
1346
1347 if (list_link_active(&svd->vdev_config_dirty_node)) {
1348 vdev_config_clean(svd);
1349 vdev_config_dirty(tvd);
1350 }
1351
1352 if (list_link_active(&svd->vdev_state_dirty_node)) {
1353 vdev_state_clean(svd);
1354 vdev_state_dirty(tvd);
1355 }
1356
1357 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1358 svd->vdev_deflate_ratio = 0;
1359
1360 tvd->vdev_islog = svd->vdev_islog;
1361 svd->vdev_islog = 0;
1362
1363 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1364 }
1365
1366 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1367 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1368 {
1369 if (vd == NULL)
1370 return;
1371
1372 vd->vdev_top = tvd;
1373
1374 for (int c = 0; c < vd->vdev_children; c++)
1375 vdev_top_update(tvd, vd->vdev_child[c]);
1376 }
1377
1378 /*
1379 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1380 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1381 */
1382 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1383 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1384 {
1385 spa_t *spa = cvd->vdev_spa;
1386 vdev_t *pvd = cvd->vdev_parent;
1387 vdev_t *mvd;
1388
1389 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1390
1391 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1392
1393 mvd->vdev_asize = cvd->vdev_asize;
1394 mvd->vdev_min_asize = cvd->vdev_min_asize;
1395 mvd->vdev_max_asize = cvd->vdev_max_asize;
1396 mvd->vdev_psize = cvd->vdev_psize;
1397 mvd->vdev_ashift = cvd->vdev_ashift;
1398 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1399 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1400 mvd->vdev_state = cvd->vdev_state;
1401 mvd->vdev_crtxg = cvd->vdev_crtxg;
1402 mvd->vdev_nonrot = cvd->vdev_nonrot;
1403
1404 vdev_remove_child(pvd, cvd);
1405 vdev_add_child(pvd, mvd);
1406 cvd->vdev_id = mvd->vdev_children;
1407 vdev_add_child(mvd, cvd);
1408 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1409
1410 if (mvd == mvd->vdev_top)
1411 vdev_top_transfer(cvd, mvd);
1412
1413 return (mvd);
1414 }
1415
1416 /*
1417 * Remove a 1-way mirror/replacing vdev from the tree.
1418 */
1419 void
vdev_remove_parent(vdev_t * cvd)1420 vdev_remove_parent(vdev_t *cvd)
1421 {
1422 vdev_t *mvd = cvd->vdev_parent;
1423 vdev_t *pvd = mvd->vdev_parent;
1424
1425 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1426
1427 ASSERT(mvd->vdev_children == 1);
1428 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1429 mvd->vdev_ops == &vdev_replacing_ops ||
1430 mvd->vdev_ops == &vdev_spare_ops);
1431 cvd->vdev_ashift = mvd->vdev_ashift;
1432 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1433 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1434 vdev_remove_child(mvd, cvd);
1435 vdev_remove_child(pvd, mvd);
1436
1437 /*
1438 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1439 * Otherwise, we could have detached an offline device, and when we
1440 * go to import the pool we'll think we have two top-level vdevs,
1441 * instead of a different version of the same top-level vdev.
1442 */
1443 if (mvd->vdev_top == mvd) {
1444 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1445 cvd->vdev_orig_guid = cvd->vdev_guid;
1446 cvd->vdev_guid += guid_delta;
1447 cvd->vdev_guid_sum += guid_delta;
1448
1449 /*
1450 * If pool not set for autoexpand, we need to also preserve
1451 * mvd's asize to prevent automatic expansion of cvd.
1452 * Otherwise if we are adjusting the mirror by attaching and
1453 * detaching children of non-uniform sizes, the mirror could
1454 * autoexpand, unexpectedly requiring larger devices to
1455 * re-establish the mirror.
1456 */
1457 if (!cvd->vdev_spa->spa_autoexpand)
1458 cvd->vdev_asize = mvd->vdev_asize;
1459 }
1460 cvd->vdev_id = mvd->vdev_id;
1461 vdev_add_child(pvd, cvd);
1462 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1463
1464 if (cvd == cvd->vdev_top)
1465 vdev_top_transfer(mvd, cvd);
1466
1467 ASSERT0(mvd->vdev_children);
1468 vdev_free(mvd);
1469 }
1470
1471 /*
1472 * Choose GCD for spa_gcd_alloc.
1473 */
1474 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1475 vdev_gcd(uint64_t a, uint64_t b)
1476 {
1477 while (b != 0) {
1478 uint64_t t = b;
1479 b = a % b;
1480 a = t;
1481 }
1482 return (a);
1483 }
1484
1485 /*
1486 * Set spa_min_alloc and spa_gcd_alloc.
1487 */
1488 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1489 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1490 {
1491 if (min_alloc < spa->spa_min_alloc)
1492 spa->spa_min_alloc = min_alloc;
1493 if (spa->spa_gcd_alloc == INT_MAX) {
1494 spa->spa_gcd_alloc = min_alloc;
1495 } else {
1496 spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1497 spa->spa_gcd_alloc);
1498 }
1499 }
1500
1501 void
vdev_metaslab_group_create(vdev_t * vd)1502 vdev_metaslab_group_create(vdev_t *vd)
1503 {
1504 spa_t *spa = vd->vdev_spa;
1505
1506 /*
1507 * metaslab_group_create was delayed until allocation bias was available
1508 */
1509 if (vd->vdev_mg == NULL) {
1510 metaslab_class_t *mc;
1511
1512 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1513 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1514
1515 ASSERT3U(vd->vdev_islog, ==,
1516 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1517
1518 switch (vd->vdev_alloc_bias) {
1519 case VDEV_BIAS_LOG:
1520 mc = spa_log_class(spa);
1521 break;
1522 case VDEV_BIAS_SPECIAL:
1523 mc = spa_special_class(spa);
1524 break;
1525 case VDEV_BIAS_DEDUP:
1526 mc = spa_dedup_class(spa);
1527 break;
1528 default:
1529 mc = spa_normal_class(spa);
1530 }
1531
1532 vd->vdev_mg = metaslab_group_create(mc, vd);
1533
1534 if (!vd->vdev_islog) {
1535 if (mc == spa_special_class(spa)) {
1536 vd->vdev_log_mg = metaslab_group_create(
1537 spa_special_embedded_log_class(spa), vd);
1538 } else {
1539 vd->vdev_log_mg = metaslab_group_create(
1540 spa_embedded_log_class(spa), vd);
1541 }
1542 }
1543
1544 /*
1545 * The spa ashift min/max only apply for the normal metaslab
1546 * class. Class destination is late binding so ashift boundary
1547 * setting had to wait until now.
1548 */
1549 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1550 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1551 if (vd->vdev_ashift > spa->spa_max_ashift)
1552 spa->spa_max_ashift = vd->vdev_ashift;
1553 if (vd->vdev_ashift < spa->spa_min_ashift)
1554 spa->spa_min_ashift = vd->vdev_ashift;
1555
1556 uint64_t min_alloc = vdev_get_min_alloc(vd);
1557 vdev_spa_set_alloc(spa, min_alloc);
1558 }
1559 }
1560 }
1561
1562 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1563 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1564 {
1565 spa_t *spa = vd->vdev_spa;
1566
1567 if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1568 return;
1569
1570 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1571 uint64_t dspace = spa_deflate(spa) ?
1572 vdev_deflated_space(vd, raw_space) : raw_space;
1573 if (add) {
1574 spa->spa_nonallocating_dspace += dspace;
1575 } else {
1576 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1577 spa->spa_nonallocating_dspace -= dspace;
1578 }
1579 }
1580
1581 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1582 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1583 {
1584 spa_t *spa = vd->vdev_spa;
1585 uint64_t oldc = vd->vdev_ms_count;
1586 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1587 metaslab_t **mspp;
1588 int error;
1589 boolean_t expanding = (oldc != 0);
1590
1591 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1592
1593 /*
1594 * This vdev is not being allocated from yet or is a hole.
1595 */
1596 if (vd->vdev_ms_shift == 0)
1597 return (0);
1598
1599 ASSERT(!vd->vdev_ishole);
1600
1601 ASSERT(oldc <= newc);
1602
1603 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1604
1605 if (expanding) {
1606 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1607 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1608 }
1609
1610 vd->vdev_ms = mspp;
1611 vd->vdev_ms_count = newc;
1612
1613 /*
1614 * Weighting algorithms can depend on the number of metaslabs in the
1615 * vdev. In order to ensure that all weights are correct at all times,
1616 * we need to recalculate here.
1617 */
1618 for (uint64_t m = 0; m < oldc; m++) {
1619 metaslab_t *msp = vd->vdev_ms[m];
1620 mutex_enter(&msp->ms_lock);
1621 metaslab_recalculate_weight_and_sort(msp);
1622 mutex_exit(&msp->ms_lock);
1623 }
1624
1625 for (uint64_t m = oldc; m < newc; m++) {
1626 uint64_t object = 0;
1627 /*
1628 * vdev_ms_array may be 0 if we are creating the "fake"
1629 * metaslabs for an indirect vdev for zdb's leak detection.
1630 * See zdb_leak_init().
1631 */
1632 if (txg == 0 && vd->vdev_ms_array != 0) {
1633 error = dmu_read(spa->spa_meta_objset,
1634 vd->vdev_ms_array,
1635 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1636 DMU_READ_PREFETCH);
1637 if (error != 0) {
1638 vdev_dbgmsg(vd, "unable to read the metaslab "
1639 "array [error=%d]", error);
1640 return (error);
1641 }
1642 }
1643
1644 error = metaslab_init(vd->vdev_mg, m, object, txg,
1645 &(vd->vdev_ms[m]));
1646 if (error != 0) {
1647 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1648 error);
1649 return (error);
1650 }
1651 }
1652
1653 /*
1654 * Find the emptiest metaslab on the vdev and mark it for use for
1655 * embedded slog by moving it from the regular to the log metaslab
1656 * group. This works for normal and special vdevs.
1657 */
1658 if ((vd->vdev_mg->mg_class == spa_normal_class(spa) ||
1659 vd->vdev_mg->mg_class == spa_special_class(spa)) &&
1660 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1661 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1662 uint64_t slog_msid = 0;
1663 uint64_t smallest = UINT64_MAX;
1664
1665 /*
1666 * Note, we only search the new metaslabs, because the old
1667 * (pre-existing) ones may be active (e.g. have non-empty
1668 * range_tree's), and we don't move them to the new
1669 * metaslab_t.
1670 */
1671 for (uint64_t m = oldc; m < newc; m++) {
1672 uint64_t alloc =
1673 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1674 if (alloc < smallest) {
1675 slog_msid = m;
1676 smallest = alloc;
1677 }
1678 }
1679 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1680 /*
1681 * The metaslab was marked as dirty at the end of
1682 * metaslab_init(). Remove it from the dirty list so that we
1683 * can uninitialize and reinitialize it to the new class.
1684 */
1685 if (txg != 0) {
1686 (void) txg_list_remove_this(&vd->vdev_ms_list,
1687 slog_ms, txg);
1688 }
1689 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1690 metaslab_fini(slog_ms);
1691 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1692 &vd->vdev_ms[slog_msid]));
1693 }
1694
1695 if (txg == 0)
1696 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1697
1698 /*
1699 * If the vdev is marked as non-allocating then don't
1700 * activate the metaslabs since we want to ensure that
1701 * no allocations are performed on this device.
1702 */
1703 if (vd->vdev_noalloc) {
1704 /* track non-allocating vdev space */
1705 vdev_update_nonallocating_space(vd, B_TRUE);
1706 } else if (!expanding) {
1707 metaslab_group_activate(vd->vdev_mg);
1708 if (vd->vdev_log_mg != NULL)
1709 metaslab_group_activate(vd->vdev_log_mg);
1710 }
1711
1712 if (txg == 0)
1713 spa_config_exit(spa, SCL_ALLOC, FTAG);
1714
1715 return (0);
1716 }
1717
1718 void
vdev_metaslab_fini(vdev_t * vd)1719 vdev_metaslab_fini(vdev_t *vd)
1720 {
1721 if (vd->vdev_checkpoint_sm != NULL) {
1722 ASSERT(spa_feature_is_active(vd->vdev_spa,
1723 SPA_FEATURE_POOL_CHECKPOINT));
1724 space_map_close(vd->vdev_checkpoint_sm);
1725 /*
1726 * Even though we close the space map, we need to set its
1727 * pointer to NULL. The reason is that vdev_metaslab_fini()
1728 * may be called multiple times for certain operations
1729 * (i.e. when destroying a pool) so we need to ensure that
1730 * this clause never executes twice. This logic is similar
1731 * to the one used for the vdev_ms clause below.
1732 */
1733 vd->vdev_checkpoint_sm = NULL;
1734 }
1735
1736 if (vd->vdev_ms != NULL) {
1737 metaslab_group_t *mg = vd->vdev_mg;
1738
1739 metaslab_group_passivate(mg);
1740 if (vd->vdev_log_mg != NULL) {
1741 ASSERT(!vd->vdev_islog);
1742 metaslab_group_passivate(vd->vdev_log_mg);
1743 }
1744
1745 uint64_t count = vd->vdev_ms_count;
1746 for (uint64_t m = 0; m < count; m++) {
1747 metaslab_t *msp = vd->vdev_ms[m];
1748 if (msp != NULL)
1749 metaslab_fini(msp);
1750 }
1751 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1752 vd->vdev_ms = NULL;
1753 vd->vdev_ms_count = 0;
1754
1755 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1756 ASSERT0(mg->mg_histogram[i]);
1757 if (vd->vdev_log_mg != NULL)
1758 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1759 }
1760 }
1761 ASSERT0(vd->vdev_ms_count);
1762 }
1763
1764 typedef struct vdev_probe_stats {
1765 boolean_t vps_readable;
1766 boolean_t vps_writeable;
1767 boolean_t vps_zio_done_probe;
1768 int vps_flags;
1769 } vdev_probe_stats_t;
1770
1771 static void
vdev_probe_done(zio_t * zio)1772 vdev_probe_done(zio_t *zio)
1773 {
1774 spa_t *spa = zio->io_spa;
1775 vdev_t *vd = zio->io_vd;
1776 vdev_probe_stats_t *vps = zio->io_private;
1777
1778 ASSERT(vd->vdev_probe_zio != NULL);
1779
1780 if (zio->io_type == ZIO_TYPE_READ) {
1781 if (zio->io_error == 0)
1782 vps->vps_readable = 1;
1783 if (zio->io_error == 0 && spa_writeable(spa)) {
1784 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1785 zio->io_offset, zio->io_size, zio->io_abd,
1786 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1787 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1788 } else {
1789 abd_free(zio->io_abd);
1790 }
1791 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1792 if (zio->io_error == 0)
1793 vps->vps_writeable = 1;
1794 abd_free(zio->io_abd);
1795 } else if (zio->io_type == ZIO_TYPE_NULL) {
1796 zio_t *pio;
1797 zio_link_t *zl;
1798
1799 vd->vdev_cant_read |= !vps->vps_readable;
1800 vd->vdev_cant_write |= !vps->vps_writeable;
1801 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1802 vd->vdev_cant_read, vd->vdev_cant_write);
1803
1804 if (vdev_readable(vd) &&
1805 (vdev_writeable(vd) || !spa_writeable(spa))) {
1806 zio->io_error = 0;
1807 } else {
1808 ASSERT(zio->io_error != 0);
1809 vdev_dbgmsg(vd, "failed probe");
1810 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1811 spa, vd, NULL, NULL, 0);
1812 zio->io_error = SET_ERROR(ENXIO);
1813
1814 /*
1815 * If this probe was initiated from zio pipeline, then
1816 * change the state in a spa_async_request. Probes that
1817 * were initiated from a vdev_open can change the state
1818 * as part of the open call.
1819 * Skip fault injection if this vdev is already removed
1820 * or a removal is pending.
1821 */
1822 if (vps->vps_zio_done_probe &&
1823 !vd->vdev_remove_wanted && !vd->vdev_removed) {
1824 vd->vdev_fault_wanted = B_TRUE;
1825 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1826 }
1827 }
1828
1829 mutex_enter(&vd->vdev_probe_lock);
1830 ASSERT(vd->vdev_probe_zio == zio);
1831 vd->vdev_probe_zio = NULL;
1832 mutex_exit(&vd->vdev_probe_lock);
1833
1834 zl = NULL;
1835 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1836 if (!vdev_accessible(vd, pio))
1837 pio->io_error = SET_ERROR(ENXIO);
1838
1839 kmem_free(vps, sizeof (*vps));
1840 }
1841 }
1842
1843 /*
1844 * Determine whether this device is accessible.
1845 *
1846 * Read and write to several known locations: the pad regions of each
1847 * vdev label but the first, which we leave alone in case it contains
1848 * a VTOC.
1849 */
1850 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1851 vdev_probe(vdev_t *vd, zio_t *zio)
1852 {
1853 spa_t *spa = vd->vdev_spa;
1854 vdev_probe_stats_t *vps = NULL;
1855 zio_t *pio;
1856
1857 ASSERT(vd->vdev_ops->vdev_op_leaf);
1858
1859 /*
1860 * Don't probe the probe.
1861 */
1862 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1863 return (NULL);
1864
1865 /*
1866 * To prevent 'probe storms' when a device fails, we create
1867 * just one probe i/o at a time. All zios that want to probe
1868 * this vdev will become parents of the probe io.
1869 */
1870 mutex_enter(&vd->vdev_probe_lock);
1871
1872 if ((pio = vd->vdev_probe_zio) == NULL) {
1873 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1874
1875 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1876 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1877 vps->vps_zio_done_probe = (zio != NULL);
1878
1879 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1880 /*
1881 * vdev_cant_read and vdev_cant_write can only
1882 * transition from TRUE to FALSE when we have the
1883 * SCL_ZIO lock as writer; otherwise they can only
1884 * transition from FALSE to TRUE. This ensures that
1885 * any zio looking at these values can assume that
1886 * failures persist for the life of the I/O. That's
1887 * important because when a device has intermittent
1888 * connectivity problems, we want to ensure that
1889 * they're ascribed to the device (ENXIO) and not
1890 * the zio (EIO).
1891 *
1892 * Since we hold SCL_ZIO as writer here, clear both
1893 * values so the probe can reevaluate from first
1894 * principles.
1895 */
1896 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1897 vd->vdev_cant_read = B_FALSE;
1898 vd->vdev_cant_write = B_FALSE;
1899 }
1900
1901 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1902 vdev_probe_done, vps,
1903 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1904 }
1905
1906 if (zio != NULL)
1907 zio_add_child(zio, pio);
1908
1909 mutex_exit(&vd->vdev_probe_lock);
1910
1911 if (vps == NULL) {
1912 ASSERT(zio != NULL);
1913 return (NULL);
1914 }
1915
1916 for (int l = 1; l < VDEV_LABELS; l++) {
1917 zio_nowait(zio_read_phys(pio, vd,
1918 vdev_label_offset(vd->vdev_psize, l,
1919 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1920 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1921 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1922 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1923 }
1924
1925 if (zio == NULL)
1926 return (pio);
1927
1928 zio_nowait(pio);
1929 return (NULL);
1930 }
1931
1932 static void
vdev_load_child(void * arg)1933 vdev_load_child(void *arg)
1934 {
1935 vdev_t *vd = arg;
1936
1937 vd->vdev_load_error = vdev_load(vd);
1938 }
1939
1940 static void
vdev_open_child(void * arg)1941 vdev_open_child(void *arg)
1942 {
1943 vdev_t *vd = arg;
1944
1945 vd->vdev_open_thread = curthread;
1946 vd->vdev_open_error = vdev_open(vd);
1947 vd->vdev_open_thread = NULL;
1948 }
1949
1950 static boolean_t
vdev_uses_zvols(vdev_t * vd)1951 vdev_uses_zvols(vdev_t *vd)
1952 {
1953 #ifdef _KERNEL
1954 if (zvol_is_zvol(vd->vdev_path))
1955 return (B_TRUE);
1956 #endif
1957
1958 for (int c = 0; c < vd->vdev_children; c++)
1959 if (vdev_uses_zvols(vd->vdev_child[c]))
1960 return (B_TRUE);
1961
1962 return (B_FALSE);
1963 }
1964
1965 /*
1966 * Returns B_TRUE if the passed child should be opened.
1967 */
1968 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1969 vdev_default_open_children_func(vdev_t *vd)
1970 {
1971 (void) vd;
1972 return (B_TRUE);
1973 }
1974
1975 /*
1976 * Open the requested child vdevs. If any of the leaf vdevs are using
1977 * a ZFS volume then do the opens in a single thread. This avoids a
1978 * deadlock when the current thread is holding the spa_namespace_lock.
1979 */
1980 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1981 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1982 {
1983 int children = vd->vdev_children;
1984
1985 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1986 children, children, TASKQ_PREPOPULATE);
1987 vd->vdev_nonrot = B_TRUE;
1988
1989 for (int c = 0; c < children; c++) {
1990 vdev_t *cvd = vd->vdev_child[c];
1991
1992 if (open_func(cvd) == B_FALSE)
1993 continue;
1994
1995 if (tq == NULL || vdev_uses_zvols(vd)) {
1996 cvd->vdev_open_error = vdev_open(cvd);
1997 } else {
1998 VERIFY(taskq_dispatch(tq, vdev_open_child,
1999 cvd, TQ_SLEEP) != TASKQID_INVALID);
2000 }
2001 }
2002
2003 if (tq != NULL)
2004 taskq_wait(tq);
2005 for (int c = 0; c < children; c++) {
2006 vdev_t *cvd = vd->vdev_child[c];
2007
2008 if (open_func(cvd) == B_FALSE ||
2009 cvd->vdev_state <= VDEV_STATE_FAULTED)
2010 continue;
2011 vd->vdev_nonrot &= cvd->vdev_nonrot;
2012 }
2013
2014 if (tq != NULL)
2015 taskq_destroy(tq);
2016 }
2017
2018 /*
2019 * Open all child vdevs.
2020 */
2021 void
vdev_open_children(vdev_t * vd)2022 vdev_open_children(vdev_t *vd)
2023 {
2024 vdev_open_children_impl(vd, vdev_default_open_children_func);
2025 }
2026
2027 /*
2028 * Conditionally open a subset of child vdevs.
2029 */
2030 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2031 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2032 {
2033 vdev_open_children_impl(vd, open_func);
2034 }
2035
2036 /*
2037 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
2038 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
2039 * changed, this algorithm can not change, otherwise it would inconsistently
2040 * account for existing bp's. We also hard-code txg 0 for the same reason
2041 * since expanded RAIDZ vdevs can use a different asize for different birth
2042 * txg's.
2043 */
2044 static void
vdev_set_deflate_ratio(vdev_t * vd)2045 vdev_set_deflate_ratio(vdev_t *vd)
2046 {
2047 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2048 vd->vdev_deflate_ratio = (1 << 17) /
2049 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2050 SPA_MINBLOCKSHIFT);
2051 }
2052 }
2053
2054 /*
2055 * Choose the best of two ashifts, preferring one between logical ashift
2056 * (absolute minimum) and administrator defined maximum, otherwise take
2057 * the biggest of the two.
2058 */
2059 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2060 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2061 {
2062 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2063 if (b <= logical || b > zfs_vdev_max_auto_ashift)
2064 return (a);
2065 else
2066 return (MAX(a, b));
2067 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2068 return (MAX(a, b));
2069 return (b);
2070 }
2071
2072 /*
2073 * Maximize performance by inflating the configured ashift for top level
2074 * vdevs to be as close to the physical ashift as possible while maintaining
2075 * administrator defined limits and ensuring it doesn't go below the
2076 * logical ashift.
2077 */
2078 static void
vdev_ashift_optimize(vdev_t * vd)2079 vdev_ashift_optimize(vdev_t *vd)
2080 {
2081 ASSERT(vd == vd->vdev_top);
2082
2083 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2084 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2085 vd->vdev_ashift = MIN(
2086 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2087 MAX(zfs_vdev_min_auto_ashift,
2088 vd->vdev_physical_ashift));
2089 } else {
2090 /*
2091 * If the logical and physical ashifts are the same, then
2092 * we ensure that the top-level vdev's ashift is not smaller
2093 * than our minimum ashift value. For the unusual case
2094 * where logical ashift > physical ashift, we can't cap
2095 * the calculated ashift based on max ashift as that
2096 * would cause failures.
2097 * We still check if we need to increase it to match
2098 * the min ashift.
2099 */
2100 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2101 vd->vdev_ashift);
2102 }
2103 }
2104
2105 /*
2106 * Prepare a virtual device for access.
2107 */
2108 int
vdev_open(vdev_t * vd)2109 vdev_open(vdev_t *vd)
2110 {
2111 spa_t *spa = vd->vdev_spa;
2112 int error;
2113 uint64_t osize = 0;
2114 uint64_t max_osize = 0;
2115 uint64_t asize, max_asize, psize;
2116 uint64_t logical_ashift = 0;
2117 uint64_t physical_ashift = 0;
2118
2119 ASSERT(vd->vdev_open_thread == curthread ||
2120 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2121 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2122 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2123 vd->vdev_state == VDEV_STATE_OFFLINE);
2124
2125 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2126 vd->vdev_cant_read = B_FALSE;
2127 vd->vdev_cant_write = B_FALSE;
2128 vd->vdev_fault_wanted = B_FALSE;
2129 vd->vdev_remove_wanted = B_FALSE;
2130 vd->vdev_min_asize = vdev_get_min_asize(vd);
2131
2132 /*
2133 * If this vdev is not removed, check its fault status. If it's
2134 * faulted, bail out of the open.
2135 */
2136 if (!vd->vdev_removed && vd->vdev_faulted) {
2137 ASSERT0(vd->vdev_children);
2138 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2139 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2140 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2141 vd->vdev_label_aux);
2142 return (SET_ERROR(ENXIO));
2143 } else if (vd->vdev_offline) {
2144 ASSERT0(vd->vdev_children);
2145 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2146 return (SET_ERROR(ENXIO));
2147 }
2148
2149 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2150 &logical_ashift, &physical_ashift);
2151
2152 /* Keep the device in removed state if unplugged */
2153 if (error == ENOENT && vd->vdev_removed) {
2154 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2155 VDEV_AUX_NONE);
2156 return (error);
2157 }
2158
2159 /*
2160 * Physical volume size should never be larger than its max size, unless
2161 * the disk has shrunk while we were reading it or the device is buggy
2162 * or damaged: either way it's not safe for use, bail out of the open.
2163 */
2164 if (osize > max_osize) {
2165 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2166 VDEV_AUX_OPEN_FAILED);
2167 return (SET_ERROR(ENXIO));
2168 }
2169
2170 /*
2171 * Reset the vdev_reopening flag so that we actually close
2172 * the vdev on error.
2173 */
2174 vd->vdev_reopening = B_FALSE;
2175 if (zio_injection_enabled && error == 0)
2176 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2177
2178 if (error) {
2179 if (vd->vdev_removed &&
2180 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2181 vd->vdev_removed = B_FALSE;
2182
2183 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2184 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2185 vd->vdev_stat.vs_aux);
2186 } else {
2187 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2188 vd->vdev_stat.vs_aux);
2189 }
2190 return (error);
2191 }
2192
2193 vd->vdev_removed = B_FALSE;
2194
2195 /*
2196 * Recheck the faulted flag now that we have confirmed that
2197 * the vdev is accessible. If we're faulted, bail.
2198 */
2199 if (vd->vdev_faulted) {
2200 ASSERT0(vd->vdev_children);
2201 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2202 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2203 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2204 vd->vdev_label_aux);
2205 return (SET_ERROR(ENXIO));
2206 }
2207
2208 if (vd->vdev_degraded) {
2209 ASSERT0(vd->vdev_children);
2210 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2211 VDEV_AUX_ERR_EXCEEDED);
2212 } else {
2213 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2214 }
2215
2216 /*
2217 * For hole or missing vdevs we just return success.
2218 */
2219 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2220 return (0);
2221
2222 for (int c = 0; c < vd->vdev_children; c++) {
2223 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2224 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2225 VDEV_AUX_NONE);
2226 break;
2227 }
2228 }
2229
2230 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2231 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2232
2233 if (vd->vdev_children == 0) {
2234 if (osize < SPA_MINDEVSIZE) {
2235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2236 VDEV_AUX_TOO_SMALL);
2237 return (SET_ERROR(EOVERFLOW));
2238 }
2239 psize = osize;
2240 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2241 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2242 VDEV_LABEL_END_SIZE);
2243 } else {
2244 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2245 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2246 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2247 VDEV_AUX_TOO_SMALL);
2248 return (SET_ERROR(EOVERFLOW));
2249 }
2250 psize = 0;
2251 asize = osize;
2252 max_asize = max_osize;
2253 }
2254
2255 /*
2256 * If the vdev was expanded, record this so that we can re-create the
2257 * uberblock rings in labels {2,3}, during the next sync.
2258 */
2259 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2260 vd->vdev_copy_uberblocks = B_TRUE;
2261
2262 vd->vdev_psize = psize;
2263
2264 /*
2265 * Make sure the allocatable size hasn't shrunk too much.
2266 */
2267 if (asize < vd->vdev_min_asize) {
2268 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2269 VDEV_AUX_BAD_LABEL);
2270 return (SET_ERROR(EINVAL));
2271 }
2272
2273 /*
2274 * We can always set the logical/physical ashift members since
2275 * their values are only used to calculate the vdev_ashift when
2276 * the device is first added to the config. These values should
2277 * not be used for anything else since they may change whenever
2278 * the device is reopened and we don't store them in the label.
2279 */
2280 vd->vdev_physical_ashift =
2281 MAX(physical_ashift, vd->vdev_physical_ashift);
2282 vd->vdev_logical_ashift = MAX(logical_ashift,
2283 vd->vdev_logical_ashift);
2284
2285 if (vd->vdev_asize == 0) {
2286 /*
2287 * This is the first-ever open, so use the computed values.
2288 * For compatibility, a different ashift can be requested.
2289 */
2290 vd->vdev_asize = asize;
2291 vd->vdev_max_asize = max_asize;
2292
2293 /*
2294 * If the vdev_ashift was not overridden at creation time
2295 * (0) or the override value is impossible for the device,
2296 * then set it the logical ashift and optimize the ashift.
2297 */
2298 if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2299 vd->vdev_ashift = vd->vdev_logical_ashift;
2300
2301 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2302 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2303 VDEV_AUX_ASHIFT_TOO_BIG);
2304 return (SET_ERROR(EDOM));
2305 }
2306
2307 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2308 vdev_ashift_optimize(vd);
2309 vd->vdev_attaching = B_FALSE;
2310 }
2311 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2312 vd->vdev_ashift > ASHIFT_MAX)) {
2313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2314 VDEV_AUX_BAD_ASHIFT);
2315 return (SET_ERROR(EDOM));
2316 }
2317 } else {
2318 /*
2319 * Make sure the alignment required hasn't increased.
2320 */
2321 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2322 vd->vdev_ops->vdev_op_leaf) {
2323 (void) zfs_ereport_post(
2324 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2325 spa, vd, NULL, NULL, 0);
2326 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2327 VDEV_AUX_BAD_LABEL);
2328 return (SET_ERROR(EDOM));
2329 }
2330 vd->vdev_max_asize = max_asize;
2331 }
2332
2333 /*
2334 * If all children are healthy we update asize if either:
2335 * The asize has increased, due to a device expansion caused by dynamic
2336 * LUN growth or vdev replacement, and automatic expansion is enabled;
2337 * making the additional space available.
2338 *
2339 * The asize has decreased, due to a device shrink usually caused by a
2340 * vdev replace with a smaller device. This ensures that calculations
2341 * based of max_asize and asize e.g. esize are always valid. It's safe
2342 * to do this as we've already validated that asize is greater than
2343 * vdev_min_asize.
2344 */
2345 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2346 ((asize > vd->vdev_asize &&
2347 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2348 (asize < vd->vdev_asize)))
2349 vd->vdev_asize = asize;
2350
2351 vdev_set_min_asize(vd);
2352
2353 /*
2354 * Ensure we can issue some IO before declaring the
2355 * vdev open for business.
2356 */
2357 if (vd->vdev_ops->vdev_op_leaf &&
2358 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2359 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2360 VDEV_AUX_ERR_EXCEEDED);
2361 return (error);
2362 }
2363
2364 /*
2365 * Track the minimum allocation size.
2366 */
2367 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2368 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2369 uint64_t min_alloc = vdev_get_min_alloc(vd);
2370 vdev_spa_set_alloc(spa, min_alloc);
2371 }
2372
2373 /*
2374 * If this is a leaf vdev, assess whether a resilver is needed.
2375 * But don't do this if we are doing a reopen for a scrub, since
2376 * this would just restart the scrub we are already doing.
2377 */
2378 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2379 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2380
2381 return (0);
2382 }
2383
2384 static void
vdev_validate_child(void * arg)2385 vdev_validate_child(void *arg)
2386 {
2387 vdev_t *vd = arg;
2388
2389 vd->vdev_validate_thread = curthread;
2390 vd->vdev_validate_error = vdev_validate(vd);
2391 vd->vdev_validate_thread = NULL;
2392 }
2393
2394 /*
2395 * Called once the vdevs are all opened, this routine validates the label
2396 * contents. This needs to be done before vdev_load() so that we don't
2397 * inadvertently do repair I/Os to the wrong device.
2398 *
2399 * This function will only return failure if one of the vdevs indicates that it
2400 * has since been destroyed or exported. This is only possible if
2401 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2402 * will be updated but the function will return 0.
2403 */
2404 int
vdev_validate(vdev_t * vd)2405 vdev_validate(vdev_t *vd)
2406 {
2407 spa_t *spa = vd->vdev_spa;
2408 taskq_t *tq = NULL;
2409 nvlist_t *label;
2410 uint64_t guid = 0, aux_guid = 0, top_guid;
2411 uint64_t state;
2412 nvlist_t *nvl;
2413 uint64_t txg;
2414 int children = vd->vdev_children;
2415
2416 if (vdev_validate_skip)
2417 return (0);
2418
2419 if (children > 0) {
2420 tq = taskq_create("vdev_validate", children, minclsyspri,
2421 children, children, TASKQ_PREPOPULATE);
2422 }
2423
2424 for (uint64_t c = 0; c < children; c++) {
2425 vdev_t *cvd = vd->vdev_child[c];
2426
2427 if (tq == NULL || vdev_uses_zvols(cvd)) {
2428 vdev_validate_child(cvd);
2429 } else {
2430 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2431 TQ_SLEEP) != TASKQID_INVALID);
2432 }
2433 }
2434 if (tq != NULL) {
2435 taskq_wait(tq);
2436 taskq_destroy(tq);
2437 }
2438 for (int c = 0; c < children; c++) {
2439 int error = vd->vdev_child[c]->vdev_validate_error;
2440
2441 if (error != 0)
2442 return (SET_ERROR(EBADF));
2443 }
2444
2445
2446 /*
2447 * If the device has already failed, or was marked offline, don't do
2448 * any further validation. Otherwise, label I/O will fail and we will
2449 * overwrite the previous state.
2450 */
2451 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2452 return (0);
2453
2454 /*
2455 * If we are performing an extreme rewind, we allow for a label that
2456 * was modified at a point after the current txg.
2457 * If config lock is not held do not check for the txg. spa_sync could
2458 * be updating the vdev's label before updating spa_last_synced_txg.
2459 */
2460 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2461 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2462 txg = UINT64_MAX;
2463 else
2464 txg = spa_last_synced_txg(spa);
2465
2466 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2467 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2468 VDEV_AUX_BAD_LABEL);
2469 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2470 "txg %llu", (u_longlong_t)txg);
2471 return (0);
2472 }
2473
2474 /*
2475 * Determine if this vdev has been split off into another
2476 * pool. If so, then refuse to open it.
2477 */
2478 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2479 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2480 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2481 VDEV_AUX_SPLIT_POOL);
2482 nvlist_free(label);
2483 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2484 return (0);
2485 }
2486
2487 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2488 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2489 VDEV_AUX_CORRUPT_DATA);
2490 nvlist_free(label);
2491 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2492 ZPOOL_CONFIG_POOL_GUID);
2493 return (0);
2494 }
2495
2496 /*
2497 * If config is not trusted then ignore the spa guid check. This is
2498 * necessary because if the machine crashed during a re-guid the new
2499 * guid might have been written to all of the vdev labels, but not the
2500 * cached config. The check will be performed again once we have the
2501 * trusted config from the MOS.
2502 */
2503 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2504 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2505 VDEV_AUX_CORRUPT_DATA);
2506 nvlist_free(label);
2507 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2508 "match config (%llu != %llu)", (u_longlong_t)guid,
2509 (u_longlong_t)spa_guid(spa));
2510 return (0);
2511 }
2512
2513 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2514 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2515 &aux_guid) != 0)
2516 aux_guid = 0;
2517
2518 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2519 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2520 VDEV_AUX_CORRUPT_DATA);
2521 nvlist_free(label);
2522 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2523 ZPOOL_CONFIG_GUID);
2524 return (0);
2525 }
2526
2527 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2528 != 0) {
2529 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2530 VDEV_AUX_CORRUPT_DATA);
2531 nvlist_free(label);
2532 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2533 ZPOOL_CONFIG_TOP_GUID);
2534 return (0);
2535 }
2536
2537 /*
2538 * If this vdev just became a top-level vdev because its sibling was
2539 * detached, it will have adopted the parent's vdev guid -- but the
2540 * label may or may not be on disk yet. Fortunately, either version
2541 * of the label will have the same top guid, so if we're a top-level
2542 * vdev, we can safely compare to that instead.
2543 * However, if the config comes from a cachefile that failed to update
2544 * after the detach, a top-level vdev will appear as a non top-level
2545 * vdev in the config. Also relax the constraints if we perform an
2546 * extreme rewind.
2547 *
2548 * If we split this vdev off instead, then we also check the
2549 * original pool's guid. We don't want to consider the vdev
2550 * corrupt if it is partway through a split operation.
2551 */
2552 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2553 boolean_t mismatch = B_FALSE;
2554 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2555 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2556 mismatch = B_TRUE;
2557 } else {
2558 if (vd->vdev_guid != top_guid &&
2559 vd->vdev_top->vdev_guid != guid)
2560 mismatch = B_TRUE;
2561 }
2562
2563 if (mismatch) {
2564 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2565 VDEV_AUX_CORRUPT_DATA);
2566 nvlist_free(label);
2567 vdev_dbgmsg(vd, "vdev_validate: config guid "
2568 "doesn't match label guid");
2569 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2570 (u_longlong_t)vd->vdev_guid,
2571 (u_longlong_t)vd->vdev_top->vdev_guid);
2572 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2573 "aux_guid %llu", (u_longlong_t)guid,
2574 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2575 return (0);
2576 }
2577 }
2578
2579 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2580 &state) != 0) {
2581 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2582 VDEV_AUX_CORRUPT_DATA);
2583 nvlist_free(label);
2584 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2585 ZPOOL_CONFIG_POOL_STATE);
2586 return (0);
2587 }
2588
2589 nvlist_free(label);
2590
2591 /*
2592 * If this is a verbatim import, no need to check the
2593 * state of the pool.
2594 */
2595 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2596 spa_load_state(spa) == SPA_LOAD_OPEN &&
2597 state != POOL_STATE_ACTIVE) {
2598 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2599 "for spa %s", (u_longlong_t)state, spa->spa_name);
2600 return (SET_ERROR(EBADF));
2601 }
2602
2603 /*
2604 * If we were able to open and validate a vdev that was
2605 * previously marked permanently unavailable, clear that state
2606 * now.
2607 */
2608 if (vd->vdev_not_present)
2609 vd->vdev_not_present = 0;
2610
2611 return (0);
2612 }
2613
2614 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2615 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2616 {
2617 if (svd != NULL && *dvd != NULL) {
2618 if (strcmp(svd, *dvd) != 0) {
2619 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2620 "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2621 *dvd, svd);
2622 spa_strfree(*dvd);
2623 *dvd = spa_strdup(svd);
2624 }
2625 } else if (svd != NULL) {
2626 *dvd = spa_strdup(svd);
2627 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2628 (u_longlong_t)guid, *dvd);
2629 }
2630 }
2631
2632 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2633 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2634 {
2635 char *old, *new;
2636
2637 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2638 dvd->vdev_guid);
2639
2640 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2641 dvd->vdev_guid);
2642
2643 vdev_update_path("vdev_physpath", svd->vdev_physpath,
2644 &dvd->vdev_physpath, dvd->vdev_guid);
2645
2646 /*
2647 * Our enclosure sysfs path may have changed between imports
2648 */
2649 old = dvd->vdev_enc_sysfs_path;
2650 new = svd->vdev_enc_sysfs_path;
2651 if ((old != NULL && new == NULL) ||
2652 (old == NULL && new != NULL) ||
2653 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2654 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2655 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2656 old, new);
2657
2658 if (dvd->vdev_enc_sysfs_path)
2659 spa_strfree(dvd->vdev_enc_sysfs_path);
2660
2661 if (svd->vdev_enc_sysfs_path) {
2662 dvd->vdev_enc_sysfs_path = spa_strdup(
2663 svd->vdev_enc_sysfs_path);
2664 } else {
2665 dvd->vdev_enc_sysfs_path = NULL;
2666 }
2667 }
2668 }
2669
2670 /*
2671 * Recursively copy vdev paths from one vdev to another. Source and destination
2672 * vdev trees must have same geometry otherwise return error. Intended to copy
2673 * paths from userland config into MOS config.
2674 */
2675 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2676 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2677 {
2678 if ((svd->vdev_ops == &vdev_missing_ops) ||
2679 (svd->vdev_ishole && dvd->vdev_ishole) ||
2680 (dvd->vdev_ops == &vdev_indirect_ops))
2681 return (0);
2682
2683 if (svd->vdev_ops != dvd->vdev_ops) {
2684 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2685 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2686 return (SET_ERROR(EINVAL));
2687 }
2688
2689 if (svd->vdev_guid != dvd->vdev_guid) {
2690 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2691 "%llu)", (u_longlong_t)svd->vdev_guid,
2692 (u_longlong_t)dvd->vdev_guid);
2693 return (SET_ERROR(EINVAL));
2694 }
2695
2696 if (svd->vdev_children != dvd->vdev_children) {
2697 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2698 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2699 (u_longlong_t)dvd->vdev_children);
2700 return (SET_ERROR(EINVAL));
2701 }
2702
2703 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2704 int error = vdev_copy_path_strict(svd->vdev_child[i],
2705 dvd->vdev_child[i]);
2706 if (error != 0)
2707 return (error);
2708 }
2709
2710 if (svd->vdev_ops->vdev_op_leaf)
2711 vdev_copy_path_impl(svd, dvd);
2712
2713 return (0);
2714 }
2715
2716 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2717 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2718 {
2719 ASSERT(stvd->vdev_top == stvd);
2720 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2721
2722 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2723 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2724 }
2725
2726 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2727 return;
2728
2729 /*
2730 * The idea here is that while a vdev can shift positions within
2731 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2732 * step outside of it.
2733 */
2734 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2735
2736 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2737 return;
2738
2739 ASSERT(vd->vdev_ops->vdev_op_leaf);
2740
2741 vdev_copy_path_impl(vd, dvd);
2742 }
2743
2744 /*
2745 * Recursively copy vdev paths from one root vdev to another. Source and
2746 * destination vdev trees may differ in geometry. For each destination leaf
2747 * vdev, search a vdev with the same guid and top vdev id in the source.
2748 * Intended to copy paths from userland config into MOS config.
2749 */
2750 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2751 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2752 {
2753 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2754 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2755 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2756
2757 for (uint64_t i = 0; i < children; i++) {
2758 vdev_copy_path_search(srvd->vdev_child[i],
2759 drvd->vdev_child[i]);
2760 }
2761 }
2762
2763 /*
2764 * Close a virtual device.
2765 */
2766 void
vdev_close(vdev_t * vd)2767 vdev_close(vdev_t *vd)
2768 {
2769 vdev_t *pvd = vd->vdev_parent;
2770 spa_t *spa __maybe_unused = vd->vdev_spa;
2771
2772 ASSERT(vd != NULL);
2773 ASSERT(vd->vdev_open_thread == curthread ||
2774 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2775
2776 /*
2777 * If our parent is reopening, then we are as well, unless we are
2778 * going offline.
2779 */
2780 if (pvd != NULL && pvd->vdev_reopening)
2781 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2782
2783 vd->vdev_ops->vdev_op_close(vd);
2784
2785 /*
2786 * We record the previous state before we close it, so that if we are
2787 * doing a reopen(), we don't generate FMA ereports if we notice that
2788 * it's still faulted.
2789 */
2790 vd->vdev_prevstate = vd->vdev_state;
2791
2792 if (vd->vdev_offline)
2793 vd->vdev_state = VDEV_STATE_OFFLINE;
2794 else
2795 vd->vdev_state = VDEV_STATE_CLOSED;
2796 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2797 }
2798
2799 void
vdev_hold(vdev_t * vd)2800 vdev_hold(vdev_t *vd)
2801 {
2802 spa_t *spa = vd->vdev_spa;
2803
2804 ASSERT(spa_is_root(spa));
2805 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2806 return;
2807
2808 for (int c = 0; c < vd->vdev_children; c++)
2809 vdev_hold(vd->vdev_child[c]);
2810
2811 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2812 vd->vdev_ops->vdev_op_hold(vd);
2813 }
2814
2815 void
vdev_rele(vdev_t * vd)2816 vdev_rele(vdev_t *vd)
2817 {
2818 ASSERT(spa_is_root(vd->vdev_spa));
2819 for (int c = 0; c < vd->vdev_children; c++)
2820 vdev_rele(vd->vdev_child[c]);
2821
2822 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2823 vd->vdev_ops->vdev_op_rele(vd);
2824 }
2825
2826 /*
2827 * Reopen all interior vdevs and any unopened leaves. We don't actually
2828 * reopen leaf vdevs which had previously been opened as they might deadlock
2829 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2830 * If the leaf has never been opened then open it, as usual.
2831 */
2832 void
vdev_reopen(vdev_t * vd)2833 vdev_reopen(vdev_t *vd)
2834 {
2835 spa_t *spa = vd->vdev_spa;
2836
2837 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2838
2839 /* set the reopening flag unless we're taking the vdev offline */
2840 vd->vdev_reopening = !vd->vdev_offline;
2841 vdev_close(vd);
2842 (void) vdev_open(vd);
2843
2844 /*
2845 * Call vdev_validate() here to make sure we have the same device.
2846 * Otherwise, a device with an invalid label could be successfully
2847 * opened in response to vdev_reopen().
2848 */
2849 if (vd->vdev_aux) {
2850 (void) vdev_validate_aux(vd);
2851 if (vdev_readable(vd) && vdev_writeable(vd) &&
2852 vd->vdev_aux == &spa->spa_l2cache) {
2853 /*
2854 * In case the vdev is present we should evict all ARC
2855 * buffers and pointers to log blocks and reclaim their
2856 * space before restoring its contents to L2ARC.
2857 */
2858 if (l2arc_vdev_present(vd)) {
2859 l2arc_rebuild_vdev(vd, B_TRUE);
2860 } else {
2861 l2arc_add_vdev(spa, vd);
2862 }
2863 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2864 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2865 }
2866 } else {
2867 (void) vdev_validate(vd);
2868 }
2869
2870 /*
2871 * Recheck if resilver is still needed and cancel any
2872 * scheduled resilver if resilver is unneeded.
2873 */
2874 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2875 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2876 mutex_enter(&spa->spa_async_lock);
2877 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2878 mutex_exit(&spa->spa_async_lock);
2879 }
2880
2881 /*
2882 * Reassess parent vdev's health.
2883 */
2884 vdev_propagate_state(vd);
2885 }
2886
2887 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2888 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2889 {
2890 int error;
2891
2892 /*
2893 * Normally, partial opens (e.g. of a mirror) are allowed.
2894 * For a create, however, we want to fail the request if
2895 * there are any components we can't open.
2896 */
2897 error = vdev_open(vd);
2898
2899 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2900 vdev_close(vd);
2901 return (error ? error : SET_ERROR(ENXIO));
2902 }
2903
2904 /*
2905 * Recursively load DTLs and initialize all labels.
2906 */
2907 if ((error = vdev_dtl_load(vd)) != 0 ||
2908 (error = vdev_label_init(vd, txg, isreplacing ?
2909 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2910 vdev_close(vd);
2911 return (error);
2912 }
2913
2914 return (0);
2915 }
2916
2917 void
vdev_metaslab_set_size(vdev_t * vd)2918 vdev_metaslab_set_size(vdev_t *vd)
2919 {
2920 uint64_t asize = vd->vdev_asize;
2921 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2922 uint64_t ms_shift;
2923
2924 /*
2925 * There are two dimensions to the metaslab sizing calculation:
2926 * the size of the metaslab and the count of metaslabs per vdev.
2927 *
2928 * The default values used below are a good balance between memory
2929 * usage (larger metaslab size means more memory needed for loaded
2930 * metaslabs; more metaslabs means more memory needed for the
2931 * metaslab_t structs), metaslab load time (larger metaslabs take
2932 * longer to load), and metaslab sync time (more metaslabs means
2933 * more time spent syncing all of them).
2934 *
2935 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2936 * The range of the dimensions are as follows:
2937 *
2938 * 2^29 <= ms_size <= 2^34
2939 * 16 <= ms_count <= 131,072
2940 *
2941 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2942 * at least 512MB (2^29) to minimize fragmentation effects when
2943 * testing with smaller devices. However, the count constraint
2944 * of at least 16 metaslabs will override this minimum size goal.
2945 *
2946 * On the upper end of vdev sizes, we aim for a maximum metaslab
2947 * size of 16GB. However, we will cap the total count to 2^17
2948 * metaslabs to keep our memory footprint in check and let the
2949 * metaslab size grow from there if that limit is hit.
2950 *
2951 * The net effect of applying above constrains is summarized below.
2952 *
2953 * vdev size metaslab count
2954 * --------------|-----------------
2955 * < 8GB ~16
2956 * 8GB - 100GB one per 512MB
2957 * 100GB - 3TB ~200
2958 * 3TB - 2PB one per 16GB
2959 * > 2PB ~131,072
2960 * --------------------------------
2961 *
2962 * Finally, note that all of the above calculate the initial
2963 * number of metaslabs. Expanding a top-level vdev will result
2964 * in additional metaslabs being allocated making it possible
2965 * to exceed the zfs_vdev_ms_count_limit.
2966 */
2967
2968 if (ms_count < zfs_vdev_min_ms_count)
2969 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2970 else if (ms_count > zfs_vdev_default_ms_count)
2971 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2972 else
2973 ms_shift = zfs_vdev_default_ms_shift;
2974
2975 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2976 ms_shift = SPA_MAXBLOCKSHIFT;
2977 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2978 ms_shift = zfs_vdev_max_ms_shift;
2979 /* cap the total count to constrain memory footprint */
2980 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2981 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2982 }
2983
2984 vd->vdev_ms_shift = ms_shift;
2985 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2986 }
2987
2988 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2989 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2990 {
2991 ASSERT(vd == vd->vdev_top);
2992 /* indirect vdevs don't have metaslabs or dtls */
2993 ASSERT(vdev_is_concrete(vd) || flags == 0);
2994 ASSERT(ISP2(flags));
2995 ASSERT(spa_writeable(vd->vdev_spa));
2996
2997 if (flags & VDD_METASLAB)
2998 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2999
3000 if (flags & VDD_DTL)
3001 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
3002
3003 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
3004 }
3005
3006 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)3007 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
3008 {
3009 for (int c = 0; c < vd->vdev_children; c++)
3010 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
3011
3012 if (vd->vdev_ops->vdev_op_leaf)
3013 vdev_dirty(vd->vdev_top, flags, vd, txg);
3014 }
3015
3016 /*
3017 * DTLs.
3018 *
3019 * A vdev's DTL (dirty time log) is the set of transaction groups for which
3020 * the vdev has less than perfect replication. There are four kinds of DTL:
3021 *
3022 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
3023 *
3024 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
3025 *
3026 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
3027 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
3028 * txgs that was scrubbed.
3029 *
3030 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3031 * persistent errors or just some device being offline.
3032 * Unlike the other three, the DTL_OUTAGE map is not generally
3033 * maintained; it's only computed when needed, typically to
3034 * determine whether a device can be detached.
3035 *
3036 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3037 * either has the data or it doesn't.
3038 *
3039 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3040 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3041 * if any child is less than fully replicated, then so is its parent.
3042 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3043 * comprising only those txgs which appear in 'maxfaults' or more children;
3044 * those are the txgs we don't have enough replication to read. For example,
3045 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3046 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3047 * two child DTL_MISSING maps.
3048 *
3049 * It should be clear from the above that to compute the DTLs and outage maps
3050 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3051 * Therefore, that is all we keep on disk. When loading the pool, or after
3052 * a configuration change, we generate all other DTLs from first principles.
3053 */
3054 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3055 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3056 {
3057 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3058
3059 ASSERT(t < DTL_TYPES);
3060 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3061 ASSERT(spa_writeable(vd->vdev_spa));
3062
3063 mutex_enter(&vd->vdev_dtl_lock);
3064 if (!zfs_range_tree_contains(rt, txg, size))
3065 zfs_range_tree_add(rt, txg, size);
3066 mutex_exit(&vd->vdev_dtl_lock);
3067 }
3068
3069 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3070 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3071 {
3072 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3073 boolean_t dirty = B_FALSE;
3074
3075 ASSERT(t < DTL_TYPES);
3076 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3077
3078 /*
3079 * While we are loading the pool, the DTLs have not been loaded yet.
3080 * This isn't a problem but it can result in devices being tried
3081 * which are known to not have the data. In which case, the import
3082 * is relying on the checksum to ensure that we get the right data.
3083 * Note that while importing we are only reading the MOS, which is
3084 * always checksummed.
3085 */
3086 mutex_enter(&vd->vdev_dtl_lock);
3087 if (!zfs_range_tree_is_empty(rt))
3088 dirty = zfs_range_tree_contains(rt, txg, size);
3089 mutex_exit(&vd->vdev_dtl_lock);
3090
3091 return (dirty);
3092 }
3093
3094 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3095 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3096 {
3097 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3098 boolean_t empty;
3099
3100 mutex_enter(&vd->vdev_dtl_lock);
3101 empty = zfs_range_tree_is_empty(rt);
3102 mutex_exit(&vd->vdev_dtl_lock);
3103
3104 return (empty);
3105 }
3106
3107 /*
3108 * Check if the txg falls within the range which must be
3109 * resilvered. DVAs outside this range can always be skipped.
3110 */
3111 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3112 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3113 uint64_t phys_birth)
3114 {
3115 (void) dva, (void) psize;
3116
3117 /* Set by sequential resilver. */
3118 if (phys_birth == TXG_UNKNOWN)
3119 return (B_TRUE);
3120
3121 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3122 }
3123
3124 /*
3125 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3126 */
3127 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3128 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3129 uint64_t phys_birth)
3130 {
3131 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3132
3133 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3134 vd->vdev_ops->vdev_op_leaf)
3135 return (B_TRUE);
3136
3137 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3138 phys_birth));
3139 }
3140
3141 /*
3142 * Returns the lowest txg in the DTL range.
3143 */
3144 static uint64_t
vdev_dtl_min(vdev_t * vd)3145 vdev_dtl_min(vdev_t *vd)
3146 {
3147 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3148 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3149 ASSERT0(vd->vdev_children);
3150
3151 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3152 }
3153
3154 /*
3155 * Returns the highest txg in the DTL.
3156 */
3157 static uint64_t
vdev_dtl_max(vdev_t * vd)3158 vdev_dtl_max(vdev_t *vd)
3159 {
3160 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3161 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3162 ASSERT0(vd->vdev_children);
3163
3164 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3165 }
3166
3167 /*
3168 * Determine if a resilvering vdev should remove any DTL entries from
3169 * its range. If the vdev was resilvering for the entire duration of the
3170 * scan then it should excise that range from its DTLs. Otherwise, this
3171 * vdev is considered partially resilvered and should leave its DTL
3172 * entries intact. The comment in vdev_dtl_reassess() describes how we
3173 * excise the DTLs.
3174 */
3175 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3176 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3177 {
3178 ASSERT0(vd->vdev_children);
3179
3180 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3181 return (B_FALSE);
3182
3183 if (vd->vdev_resilver_deferred)
3184 return (B_FALSE);
3185
3186 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3187 return (B_TRUE);
3188
3189 if (rebuild_done) {
3190 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3191 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3192
3193 /* Rebuild not initiated by attach */
3194 if (vd->vdev_rebuild_txg == 0)
3195 return (B_TRUE);
3196
3197 /*
3198 * When a rebuild completes without error then all missing data
3199 * up to the rebuild max txg has been reconstructed and the DTL
3200 * is eligible for excision.
3201 */
3202 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3203 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3204 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3205 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3206 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3207 return (B_TRUE);
3208 }
3209 } else {
3210 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3211 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3212
3213 /* Resilver not initiated by attach */
3214 if (vd->vdev_resilver_txg == 0)
3215 return (B_TRUE);
3216
3217 /*
3218 * When a resilver is initiated the scan will assign the
3219 * scn_max_txg value to the highest txg value that exists
3220 * in all DTLs. If this device's max DTL is not part of this
3221 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3222 * then it is not eligible for excision.
3223 */
3224 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3225 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3226 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3227 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3228 return (B_TRUE);
3229 }
3230 }
3231
3232 return (B_FALSE);
3233 }
3234
3235 /*
3236 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3237 * write operations will be issued to the pool.
3238 */
3239 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3240 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3241 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3242 {
3243 spa_t *spa = vd->vdev_spa;
3244 avl_tree_t reftree;
3245 int minref;
3246
3247 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3248
3249 for (int c = 0; c < vd->vdev_children; c++)
3250 vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3251 scrub_txg, scrub_done, rebuild_done, faulting);
3252
3253 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3254 return;
3255
3256 if (vd->vdev_ops->vdev_op_leaf) {
3257 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3258 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3259 boolean_t check_excise = B_FALSE;
3260 boolean_t wasempty = B_TRUE;
3261
3262 mutex_enter(&vd->vdev_dtl_lock);
3263
3264 /*
3265 * If requested, pretend the scan or rebuild completed cleanly.
3266 */
3267 if (zfs_scan_ignore_errors) {
3268 if (scn != NULL)
3269 scn->scn_phys.scn_errors = 0;
3270 if (vr != NULL)
3271 vr->vr_rebuild_phys.vrp_errors = 0;
3272 }
3273
3274 if (scrub_txg != 0 &&
3275 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3276 wasempty = B_FALSE;
3277 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3278 "dtl:%llu/%llu errors:%llu",
3279 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3280 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3281 (u_longlong_t)vdev_dtl_min(vd),
3282 (u_longlong_t)vdev_dtl_max(vd),
3283 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3284 }
3285
3286 /*
3287 * If we've completed a scrub/resilver or a rebuild cleanly
3288 * then determine if this vdev should remove any DTLs. We
3289 * only want to excise regions on vdevs that were available
3290 * during the entire duration of this scan.
3291 */
3292 if (rebuild_done &&
3293 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3294 check_excise = B_TRUE;
3295 } else {
3296 if (spa->spa_scrub_started ||
3297 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3298 check_excise = B_TRUE;
3299 }
3300 }
3301
3302 if (scrub_txg && check_excise &&
3303 vdev_dtl_should_excise(vd, rebuild_done)) {
3304 /*
3305 * We completed a scrub, resilver or rebuild up to
3306 * scrub_txg. If we did it without rebooting, then
3307 * the scrub dtl will be valid, so excise the old
3308 * region and fold in the scrub dtl. Otherwise,
3309 * leave the dtl as-is if there was an error.
3310 *
3311 * There's little trick here: to excise the beginning
3312 * of the DTL_MISSING map, we put it into a reference
3313 * tree and then add a segment with refcnt -1 that
3314 * covers the range [0, scrub_txg). This means
3315 * that each txg in that range has refcnt -1 or 0.
3316 * We then add DTL_SCRUB with a refcnt of 2, so that
3317 * entries in the range [0, scrub_txg) will have a
3318 * positive refcnt -- either 1 or 2. We then convert
3319 * the reference tree into the new DTL_MISSING map.
3320 */
3321 space_reftree_create(&reftree);
3322 space_reftree_add_map(&reftree,
3323 vd->vdev_dtl[DTL_MISSING], 1);
3324 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3325 space_reftree_add_map(&reftree,
3326 vd->vdev_dtl[DTL_SCRUB], 2);
3327 space_reftree_generate_map(&reftree,
3328 vd->vdev_dtl[DTL_MISSING], 1);
3329 space_reftree_destroy(&reftree);
3330
3331 if (!zfs_range_tree_is_empty(
3332 vd->vdev_dtl[DTL_MISSING])) {
3333 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3334 (u_longlong_t)vdev_dtl_min(vd),
3335 (u_longlong_t)vdev_dtl_max(vd));
3336 } else if (!wasempty) {
3337 zfs_dbgmsg("DTL_MISSING is now empty");
3338 }
3339 }
3340 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3341 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3342 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3343 if (scrub_done)
3344 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3345 NULL);
3346 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3347
3348 /*
3349 * For the faulting case, treat members of a replacing vdev
3350 * as if they are not available. It's more likely than not that
3351 * a vdev in a replacing vdev could encounter read errors so
3352 * treat it as not being able to contribute.
3353 */
3354 if (!vdev_readable(vd) ||
3355 (faulting && vd->vdev_parent != NULL &&
3356 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3357 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3358 } else {
3359 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3360 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3361 }
3362
3363 /*
3364 * If the vdev was resilvering or rebuilding and no longer
3365 * has any DTLs then reset the appropriate flag and dirty
3366 * the top level so that we persist the change.
3367 */
3368 if (txg != 0 &&
3369 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3370 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3371 if (vd->vdev_rebuild_txg != 0) {
3372 vd->vdev_rebuild_txg = 0;
3373 vdev_config_dirty(vd->vdev_top);
3374 } else if (vd->vdev_resilver_txg != 0) {
3375 vd->vdev_resilver_txg = 0;
3376 vdev_config_dirty(vd->vdev_top);
3377 }
3378 }
3379
3380 mutex_exit(&vd->vdev_dtl_lock);
3381
3382 if (txg != 0)
3383 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3384 } else {
3385 mutex_enter(&vd->vdev_dtl_lock);
3386 for (int t = 0; t < DTL_TYPES; t++) {
3387 /* account for child's outage in parent's missing map */
3388 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3389 if (t == DTL_SCRUB) {
3390 /* leaf vdevs only */
3391 continue;
3392 }
3393 if (t == DTL_PARTIAL) {
3394 /* i.e. non-zero */
3395 minref = 1;
3396 } else if (vdev_get_nparity(vd) != 0) {
3397 /* RAIDZ, DRAID */
3398 minref = vdev_get_nparity(vd) + 1;
3399 } else {
3400 /* any kind of mirror */
3401 minref = vd->vdev_children;
3402 }
3403 space_reftree_create(&reftree);
3404 for (int c = 0; c < vd->vdev_children; c++) {
3405 vdev_t *cvd = vd->vdev_child[c];
3406 mutex_enter(&cvd->vdev_dtl_lock);
3407 space_reftree_add_map(&reftree,
3408 cvd->vdev_dtl[s], 1);
3409 mutex_exit(&cvd->vdev_dtl_lock);
3410 }
3411 space_reftree_generate_map(&reftree,
3412 vd->vdev_dtl[t], minref);
3413 space_reftree_destroy(&reftree);
3414 }
3415 mutex_exit(&vd->vdev_dtl_lock);
3416 }
3417
3418 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3419 raidz_dtl_reassessed(vd);
3420 }
3421 }
3422
3423 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3424 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3425 boolean_t scrub_done, boolean_t rebuild_done)
3426 {
3427 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3428 rebuild_done, B_FALSE));
3429 }
3430
3431 /*
3432 * Iterate over all the vdevs except spare, and post kobj events
3433 */
3434 void
vdev_post_kobj_evt(vdev_t * vd)3435 vdev_post_kobj_evt(vdev_t *vd)
3436 {
3437 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3438 vd->vdev_kobj_flag == B_FALSE) {
3439 vd->vdev_kobj_flag = B_TRUE;
3440 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3441 }
3442
3443 for (int c = 0; c < vd->vdev_children; c++)
3444 vdev_post_kobj_evt(vd->vdev_child[c]);
3445 }
3446
3447 /*
3448 * Iterate over all the vdevs except spare, and clear kobj events
3449 */
3450 void
vdev_clear_kobj_evt(vdev_t * vd)3451 vdev_clear_kobj_evt(vdev_t *vd)
3452 {
3453 vd->vdev_kobj_flag = B_FALSE;
3454
3455 for (int c = 0; c < vd->vdev_children; c++)
3456 vdev_clear_kobj_evt(vd->vdev_child[c]);
3457 }
3458
3459 int
vdev_dtl_load(vdev_t * vd)3460 vdev_dtl_load(vdev_t *vd)
3461 {
3462 spa_t *spa = vd->vdev_spa;
3463 objset_t *mos = spa->spa_meta_objset;
3464 zfs_range_tree_t *rt;
3465 int error = 0;
3466
3467 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3468 ASSERT(vdev_is_concrete(vd));
3469
3470 /*
3471 * If the dtl cannot be sync'd there is no need to open it.
3472 */
3473 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3474 return (0);
3475
3476 error = space_map_open(&vd->vdev_dtl_sm, mos,
3477 vd->vdev_dtl_object, 0, -1ULL, 0);
3478 if (error)
3479 return (error);
3480 ASSERT(vd->vdev_dtl_sm != NULL);
3481
3482 rt = zfs_range_tree_create_flags(
3483 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3484 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt"));
3485 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3486 if (error == 0) {
3487 mutex_enter(&vd->vdev_dtl_lock);
3488 zfs_range_tree_walk(rt, zfs_range_tree_add,
3489 vd->vdev_dtl[DTL_MISSING]);
3490 mutex_exit(&vd->vdev_dtl_lock);
3491 }
3492
3493 zfs_range_tree_vacate(rt, NULL, NULL);
3494 zfs_range_tree_destroy(rt);
3495
3496 return (error);
3497 }
3498
3499 for (int c = 0; c < vd->vdev_children; c++) {
3500 error = vdev_dtl_load(vd->vdev_child[c]);
3501 if (error != 0)
3502 break;
3503 }
3504
3505 return (error);
3506 }
3507
3508 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3509 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3510 {
3511 spa_t *spa = vd->vdev_spa;
3512 objset_t *mos = spa->spa_meta_objset;
3513 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3514 const char *string;
3515
3516 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3517
3518 string =
3519 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3520 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3521 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3522
3523 ASSERT(string != NULL);
3524 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3525 1, strlen(string) + 1, string, tx));
3526
3527 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3528 spa_activate_allocation_classes(spa, tx);
3529 }
3530 }
3531
3532 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3533 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3534 {
3535 spa_t *spa = vd->vdev_spa;
3536
3537 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3538 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3539 zapobj, tx));
3540 }
3541
3542 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3543 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3544 {
3545 spa_t *spa = vd->vdev_spa;
3546 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3547 DMU_OT_NONE, 0, tx);
3548
3549 ASSERT(zap != 0);
3550 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3551 zap, tx));
3552
3553 return (zap);
3554 }
3555
3556 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3557 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3558 {
3559 if (vd->vdev_ops != &vdev_hole_ops &&
3560 vd->vdev_ops != &vdev_missing_ops &&
3561 vd->vdev_ops != &vdev_root_ops &&
3562 !vd->vdev_top->vdev_removing) {
3563 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3564 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3565 }
3566 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3567 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3568 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3569 vdev_zap_allocation_data(vd, tx);
3570 }
3571 }
3572 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3573 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3574 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3575 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3576 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3577 }
3578
3579 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3580 vdev_construct_zaps(vd->vdev_child[i], tx);
3581 }
3582 }
3583
3584 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3585 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3586 {
3587 spa_t *spa = vd->vdev_spa;
3588 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3589 objset_t *mos = spa->spa_meta_objset;
3590 zfs_range_tree_t *rtsync;
3591 dmu_tx_t *tx;
3592 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3593
3594 ASSERT(vdev_is_concrete(vd));
3595 ASSERT(vd->vdev_ops->vdev_op_leaf);
3596
3597 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3598
3599 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3600 mutex_enter(&vd->vdev_dtl_lock);
3601 space_map_free(vd->vdev_dtl_sm, tx);
3602 space_map_close(vd->vdev_dtl_sm);
3603 vd->vdev_dtl_sm = NULL;
3604 mutex_exit(&vd->vdev_dtl_lock);
3605
3606 /*
3607 * We only destroy the leaf ZAP for detached leaves or for
3608 * removed log devices. Removed data devices handle leaf ZAP
3609 * cleanup later, once cancellation is no longer possible.
3610 */
3611 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3612 vd->vdev_top->vdev_islog)) {
3613 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3614 vd->vdev_leaf_zap = 0;
3615 }
3616
3617 dmu_tx_commit(tx);
3618 return;
3619 }
3620
3621 if (vd->vdev_dtl_sm == NULL) {
3622 uint64_t new_object;
3623
3624 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3625 VERIFY3U(new_object, !=, 0);
3626
3627 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3628 0, -1ULL, 0));
3629 ASSERT(vd->vdev_dtl_sm != NULL);
3630 }
3631
3632 rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3633 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync"));
3634
3635 mutex_enter(&vd->vdev_dtl_lock);
3636 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3637 mutex_exit(&vd->vdev_dtl_lock);
3638
3639 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3640 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3641 zfs_range_tree_vacate(rtsync, NULL, NULL);
3642
3643 zfs_range_tree_destroy(rtsync);
3644
3645 /*
3646 * If the object for the space map has changed then dirty
3647 * the top level so that we update the config.
3648 */
3649 if (object != space_map_object(vd->vdev_dtl_sm)) {
3650 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3651 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3652 (u_longlong_t)object,
3653 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3654 vdev_config_dirty(vd->vdev_top);
3655 }
3656
3657 dmu_tx_commit(tx);
3658 }
3659
3660 /*
3661 * Determine whether the specified vdev can be
3662 * - offlined
3663 * - detached
3664 * - removed
3665 * - faulted
3666 * without losing data.
3667 */
3668 boolean_t
vdev_dtl_required(vdev_t * vd)3669 vdev_dtl_required(vdev_t *vd)
3670 {
3671 spa_t *spa = vd->vdev_spa;
3672 vdev_t *tvd = vd->vdev_top;
3673 uint8_t cant_read = vd->vdev_cant_read;
3674 boolean_t required;
3675 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3676
3677 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3678
3679 if (vd == spa->spa_root_vdev || vd == tvd)
3680 return (B_TRUE);
3681
3682 /*
3683 * Temporarily mark the device as unreadable, and then determine
3684 * whether this results in any DTL outages in the top-level vdev.
3685 * If not, we can safely offline/detach/remove the device.
3686 */
3687 vd->vdev_cant_read = B_TRUE;
3688 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3689 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3690 vd->vdev_cant_read = cant_read;
3691 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3692
3693 if (!required && zio_injection_enabled) {
3694 required = !!zio_handle_device_injection(vd, NULL,
3695 SET_ERROR(ECHILD));
3696 }
3697
3698 return (required);
3699 }
3700
3701 /*
3702 * Determine if resilver is needed, and if so the txg range.
3703 */
3704 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3705 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3706 {
3707 boolean_t needed = B_FALSE;
3708 uint64_t thismin = UINT64_MAX;
3709 uint64_t thismax = 0;
3710
3711 if (vd->vdev_children == 0) {
3712 mutex_enter(&vd->vdev_dtl_lock);
3713 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3714 vdev_writeable(vd)) {
3715
3716 thismin = vdev_dtl_min(vd);
3717 thismax = vdev_dtl_max(vd);
3718 needed = B_TRUE;
3719 }
3720 mutex_exit(&vd->vdev_dtl_lock);
3721 } else {
3722 for (int c = 0; c < vd->vdev_children; c++) {
3723 vdev_t *cvd = vd->vdev_child[c];
3724 uint64_t cmin, cmax;
3725
3726 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3727 thismin = MIN(thismin, cmin);
3728 thismax = MAX(thismax, cmax);
3729 needed = B_TRUE;
3730 }
3731 }
3732 }
3733
3734 if (needed && minp) {
3735 *minp = thismin;
3736 *maxp = thismax;
3737 }
3738 return (needed);
3739 }
3740
3741 /*
3742 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3743 * will contain either the checkpoint spacemap object or zero if none exists.
3744 * All other errors are returned to the caller.
3745 */
3746 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3747 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3748 {
3749 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3750
3751 if (vd->vdev_top_zap == 0) {
3752 *sm_obj = 0;
3753 return (0);
3754 }
3755
3756 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3757 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3758 if (error == ENOENT) {
3759 *sm_obj = 0;
3760 error = 0;
3761 }
3762
3763 return (error);
3764 }
3765
3766 int
vdev_load(vdev_t * vd)3767 vdev_load(vdev_t *vd)
3768 {
3769 int children = vd->vdev_children;
3770 int error = 0;
3771 taskq_t *tq = NULL;
3772
3773 /*
3774 * It's only worthwhile to use the taskq for the root vdev, because the
3775 * slow part is metaslab_init, and that only happens for top-level
3776 * vdevs.
3777 */
3778 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3779 tq = taskq_create("vdev_load", children, minclsyspri,
3780 children, children, TASKQ_PREPOPULATE);
3781 }
3782
3783 /*
3784 * Recursively load all children.
3785 */
3786 for (int c = 0; c < vd->vdev_children; c++) {
3787 vdev_t *cvd = vd->vdev_child[c];
3788
3789 if (tq == NULL || vdev_uses_zvols(cvd)) {
3790 cvd->vdev_load_error = vdev_load(cvd);
3791 } else {
3792 VERIFY(taskq_dispatch(tq, vdev_load_child,
3793 cvd, TQ_SLEEP) != TASKQID_INVALID);
3794 }
3795 }
3796
3797 if (tq != NULL) {
3798 taskq_wait(tq);
3799 taskq_destroy(tq);
3800 }
3801
3802 for (int c = 0; c < vd->vdev_children; c++) {
3803 int error = vd->vdev_child[c]->vdev_load_error;
3804
3805 if (error != 0)
3806 return (error);
3807 }
3808
3809 vdev_set_deflate_ratio(vd);
3810
3811 if (vd->vdev_ops == &vdev_raidz_ops) {
3812 error = vdev_raidz_load(vd);
3813 if (error != 0)
3814 return (error);
3815 }
3816
3817 /*
3818 * On spa_load path, grab the allocation bias from our zap
3819 */
3820 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3821 spa_t *spa = vd->vdev_spa;
3822 char bias_str[64];
3823
3824 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3825 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3826 bias_str);
3827 if (error == 0) {
3828 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3829 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3830 } else if (error != ENOENT) {
3831 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3832 VDEV_AUX_CORRUPT_DATA);
3833 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3834 "failed [error=%d]",
3835 (u_longlong_t)vd->vdev_top_zap, error);
3836 return (error);
3837 }
3838 }
3839
3840 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3841 spa_t *spa = vd->vdev_spa;
3842 uint64_t failfast;
3843
3844 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3845 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3846 1, &failfast);
3847 if (error == 0) {
3848 vd->vdev_failfast = failfast & 1;
3849 } else if (error == ENOENT) {
3850 vd->vdev_failfast = vdev_prop_default_numeric(
3851 VDEV_PROP_FAILFAST);
3852 } else {
3853 vdev_dbgmsg(vd,
3854 "vdev_load: zap_lookup(top_zap=%llu) "
3855 "failed [error=%d]",
3856 (u_longlong_t)vd->vdev_top_zap, error);
3857 }
3858 }
3859
3860 /*
3861 * Load any rebuild state from the top-level vdev zap.
3862 */
3863 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3864 error = vdev_rebuild_load(vd);
3865 if (error && error != ENOTSUP) {
3866 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3867 VDEV_AUX_CORRUPT_DATA);
3868 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3869 "failed [error=%d]", error);
3870 return (error);
3871 }
3872 }
3873
3874 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3875 uint64_t zapobj;
3876
3877 if (vd->vdev_top_zap != 0)
3878 zapobj = vd->vdev_top_zap;
3879 else
3880 zapobj = vd->vdev_leaf_zap;
3881
3882 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3883 &vd->vdev_checksum_n);
3884 if (error && error != ENOENT)
3885 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3886 "failed [error=%d]", (u_longlong_t)zapobj, error);
3887
3888 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3889 &vd->vdev_checksum_t);
3890 if (error && error != ENOENT)
3891 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3892 "failed [error=%d]", (u_longlong_t)zapobj, error);
3893
3894 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3895 &vd->vdev_io_n);
3896 if (error && error != ENOENT)
3897 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3898 "failed [error=%d]", (u_longlong_t)zapobj, error);
3899
3900 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3901 &vd->vdev_io_t);
3902 if (error && error != ENOENT)
3903 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3904 "failed [error=%d]", (u_longlong_t)zapobj, error);
3905
3906 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3907 &vd->vdev_slow_io_n);
3908 if (error && error != ENOENT)
3909 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3910 "failed [error=%d]", (u_longlong_t)zapobj, error);
3911
3912 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3913 &vd->vdev_slow_io_t);
3914 if (error && error != ENOENT)
3915 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3916 "failed [error=%d]", (u_longlong_t)zapobj, error);
3917 }
3918
3919 /*
3920 * If this is a top-level vdev, initialize its metaslabs.
3921 */
3922 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3923 vdev_metaslab_group_create(vd);
3924
3925 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3926 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3927 VDEV_AUX_CORRUPT_DATA);
3928 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3929 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3930 (u_longlong_t)vd->vdev_asize);
3931 return (SET_ERROR(ENXIO));
3932 }
3933
3934 error = vdev_metaslab_init(vd, 0);
3935 if (error != 0) {
3936 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3937 "[error=%d]", error);
3938 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3939 VDEV_AUX_CORRUPT_DATA);
3940 return (error);
3941 }
3942
3943 uint64_t checkpoint_sm_obj;
3944 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3945 if (error == 0 && checkpoint_sm_obj != 0) {
3946 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3947 ASSERT(vd->vdev_asize != 0);
3948 ASSERT0P(vd->vdev_checkpoint_sm);
3949
3950 error = space_map_open(&vd->vdev_checkpoint_sm,
3951 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3952 vd->vdev_ashift);
3953 if (error != 0) {
3954 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3955 "failed for checkpoint spacemap (obj %llu) "
3956 "[error=%d]",
3957 (u_longlong_t)checkpoint_sm_obj, error);
3958 return (error);
3959 }
3960 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3961
3962 /*
3963 * Since the checkpoint_sm contains free entries
3964 * exclusively we can use space_map_allocated() to
3965 * indicate the cumulative checkpointed space that
3966 * has been freed.
3967 */
3968 vd->vdev_stat.vs_checkpoint_space =
3969 -space_map_allocated(vd->vdev_checkpoint_sm);
3970 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3971 vd->vdev_stat.vs_checkpoint_space;
3972 } else if (error != 0) {
3973 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3974 "checkpoint space map object from vdev ZAP "
3975 "[error=%d]", error);
3976 return (error);
3977 }
3978 }
3979
3980 /*
3981 * If this is a leaf vdev, load its DTL.
3982 */
3983 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3984 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3985 VDEV_AUX_CORRUPT_DATA);
3986 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3987 "[error=%d]", error);
3988 return (error);
3989 }
3990
3991 uint64_t obsolete_sm_object;
3992 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3993 if (error == 0 && obsolete_sm_object != 0) {
3994 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3995 ASSERT(vd->vdev_asize != 0);
3996 ASSERT0P(vd->vdev_obsolete_sm);
3997
3998 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3999 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
4000 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4001 VDEV_AUX_CORRUPT_DATA);
4002 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
4003 "obsolete spacemap (obj %llu) [error=%d]",
4004 (u_longlong_t)obsolete_sm_object, error);
4005 return (error);
4006 }
4007 } else if (error != 0) {
4008 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
4009 "space map object from vdev ZAP [error=%d]", error);
4010 return (error);
4011 }
4012
4013 return (0);
4014 }
4015
4016 /*
4017 * The special vdev case is used for hot spares and l2cache devices. Its
4018 * sole purpose it to set the vdev state for the associated vdev. To do this,
4019 * we make sure that we can open the underlying device, then try to read the
4020 * label, and make sure that the label is sane and that it hasn't been
4021 * repurposed to another pool.
4022 */
4023 int
vdev_validate_aux(vdev_t * vd)4024 vdev_validate_aux(vdev_t *vd)
4025 {
4026 nvlist_t *label;
4027 uint64_t guid, version;
4028 uint64_t state;
4029
4030 if (!vdev_readable(vd))
4031 return (0);
4032
4033 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4034 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4035 VDEV_AUX_CORRUPT_DATA);
4036 return (-1);
4037 }
4038
4039 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4040 !SPA_VERSION_IS_SUPPORTED(version) ||
4041 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4042 guid != vd->vdev_guid ||
4043 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4044 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4045 VDEV_AUX_CORRUPT_DATA);
4046 nvlist_free(label);
4047 return (-1);
4048 }
4049
4050 /*
4051 * We don't actually check the pool state here. If it's in fact in
4052 * use by another pool, we update this fact on the fly when requested.
4053 */
4054 nvlist_free(label);
4055 return (0);
4056 }
4057
4058 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4059 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4060 {
4061 objset_t *mos = spa_meta_objset(vd->vdev_spa);
4062
4063 if (vd->vdev_top_zap == 0)
4064 return;
4065
4066 uint64_t object = 0;
4067 int err = zap_lookup(mos, vd->vdev_top_zap,
4068 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4069 if (err == ENOENT)
4070 return;
4071 VERIFY0(err);
4072
4073 VERIFY0(dmu_object_free(mos, object, tx));
4074 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4075 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4076 }
4077
4078 /*
4079 * Free the objects used to store this vdev's spacemaps, and the array
4080 * that points to them.
4081 */
4082 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4083 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4084 {
4085 if (vd->vdev_ms_array == 0)
4086 return;
4087
4088 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4089 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4090 size_t array_bytes = array_count * sizeof (uint64_t);
4091 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4092 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4093 array_bytes, smobj_array, 0));
4094
4095 for (uint64_t i = 0; i < array_count; i++) {
4096 uint64_t smobj = smobj_array[i];
4097 if (smobj == 0)
4098 continue;
4099
4100 space_map_free_obj(mos, smobj, tx);
4101 }
4102
4103 kmem_free(smobj_array, array_bytes);
4104 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4105 vdev_destroy_ms_flush_data(vd, tx);
4106 vd->vdev_ms_array = 0;
4107 }
4108
4109 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4110 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4111 {
4112 spa_t *spa = vd->vdev_spa;
4113
4114 ASSERT(vd->vdev_islog);
4115 ASSERT(vd == vd->vdev_top);
4116 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4117
4118 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4119
4120 vdev_destroy_spacemaps(vd, tx);
4121 if (vd->vdev_top_zap != 0) {
4122 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4123 vd->vdev_top_zap = 0;
4124 }
4125
4126 dmu_tx_commit(tx);
4127 }
4128
4129 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4130 vdev_sync_done(vdev_t *vd, uint64_t txg)
4131 {
4132 metaslab_t *msp;
4133 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4134
4135 ASSERT(vdev_is_concrete(vd));
4136
4137 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4138 != NULL)
4139 metaslab_sync_done(msp, txg);
4140
4141 if (reassess) {
4142 metaslab_sync_reassess(vd->vdev_mg);
4143 if (vd->vdev_log_mg != NULL)
4144 metaslab_sync_reassess(vd->vdev_log_mg);
4145 }
4146 }
4147
4148 void
vdev_sync(vdev_t * vd,uint64_t txg)4149 vdev_sync(vdev_t *vd, uint64_t txg)
4150 {
4151 spa_t *spa = vd->vdev_spa;
4152 vdev_t *lvd;
4153 metaslab_t *msp;
4154
4155 ASSERT3U(txg, ==, spa->spa_syncing_txg);
4156 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4157 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4158 ASSERT(vd->vdev_removing ||
4159 vd->vdev_ops == &vdev_indirect_ops);
4160
4161 vdev_indirect_sync_obsolete(vd, tx);
4162
4163 /*
4164 * If the vdev is indirect, it can't have dirty
4165 * metaslabs or DTLs.
4166 */
4167 if (vd->vdev_ops == &vdev_indirect_ops) {
4168 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4169 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4170 dmu_tx_commit(tx);
4171 return;
4172 }
4173 }
4174
4175 ASSERT(vdev_is_concrete(vd));
4176
4177 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4178 !vd->vdev_removing) {
4179 ASSERT(vd == vd->vdev_top);
4180 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4181 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4182 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4183 ASSERT(vd->vdev_ms_array != 0);
4184 vdev_config_dirty(vd);
4185 }
4186
4187 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4188 metaslab_sync(msp, txg);
4189 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4190 }
4191
4192 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4193 vdev_dtl_sync(lvd, txg);
4194
4195 /*
4196 * If this is an empty log device being removed, destroy the
4197 * metadata associated with it.
4198 */
4199 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4200 vdev_remove_empty_log(vd, txg);
4201
4202 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4203 dmu_tx_commit(tx);
4204 }
4205 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4206 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4207 {
4208 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4209 }
4210
4211 /*
4212 * Return the amount of space that should be (or was) allocated for the given
4213 * psize (compressed block size) in the given TXG. Note that for expanded
4214 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4215 * vdev_raidz_psize_to_asize().
4216 */
4217 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4218 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4219 {
4220 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4221 }
4222
4223 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4224 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4225 {
4226 return (vdev_psize_to_asize_txg(vd, psize, 0));
4227 }
4228
4229 /*
4230 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4231 * not be opened, and no I/O is attempted.
4232 */
4233 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4234 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4235 {
4236 vdev_t *vd, *tvd;
4237
4238 spa_vdev_state_enter(spa, SCL_NONE);
4239
4240 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4241 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4242
4243 if (!vd->vdev_ops->vdev_op_leaf)
4244 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4245
4246 tvd = vd->vdev_top;
4247
4248 /*
4249 * If user did a 'zpool offline -f' then make the fault persist across
4250 * reboots.
4251 */
4252 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4253 /*
4254 * There are two kinds of forced faults: temporary and
4255 * persistent. Temporary faults go away at pool import, while
4256 * persistent faults stay set. Both types of faults can be
4257 * cleared with a zpool clear.
4258 *
4259 * We tell if a vdev is persistently faulted by looking at the
4260 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4261 * import then it's a persistent fault. Otherwise, it's
4262 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4263 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4264 * tells vdev_config_generate() (which gets run later) to set
4265 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4266 */
4267 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4268 vd->vdev_tmpoffline = B_FALSE;
4269 aux = VDEV_AUX_EXTERNAL;
4270 } else {
4271 vd->vdev_tmpoffline = B_TRUE;
4272 }
4273
4274 /*
4275 * We don't directly use the aux state here, but if we do a
4276 * vdev_reopen(), we need this value to be present to remember why we
4277 * were faulted.
4278 */
4279 vd->vdev_label_aux = aux;
4280
4281 /*
4282 * Faulted state takes precedence over degraded.
4283 */
4284 vd->vdev_delayed_close = B_FALSE;
4285 vd->vdev_faulted = 1ULL;
4286 vd->vdev_degraded = 0ULL;
4287 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4288
4289 /*
4290 * If this device has the only valid copy of the data, then
4291 * back off and simply mark the vdev as degraded instead.
4292 */
4293 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4294 vd->vdev_degraded = 1ULL;
4295 vd->vdev_faulted = 0ULL;
4296
4297 /*
4298 * If we reopen the device and it's not dead, only then do we
4299 * mark it degraded.
4300 */
4301 vdev_reopen(tvd);
4302
4303 if (vdev_readable(vd))
4304 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4305 }
4306
4307 return (spa_vdev_state_exit(spa, vd, 0));
4308 }
4309
4310 /*
4311 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4312 * user that something is wrong. The vdev continues to operate as normal as far
4313 * as I/O is concerned.
4314 */
4315 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4316 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4317 {
4318 vdev_t *vd;
4319
4320 spa_vdev_state_enter(spa, SCL_NONE);
4321
4322 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4323 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4324
4325 if (!vd->vdev_ops->vdev_op_leaf)
4326 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4327
4328 /*
4329 * If the vdev is already faulted, then don't do anything.
4330 */
4331 if (vd->vdev_faulted || vd->vdev_degraded)
4332 return (spa_vdev_state_exit(spa, NULL, 0));
4333
4334 vd->vdev_degraded = 1ULL;
4335 if (!vdev_is_dead(vd))
4336 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4337 aux);
4338
4339 return (spa_vdev_state_exit(spa, vd, 0));
4340 }
4341
4342 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4343 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4344 {
4345 vdev_t *vd;
4346
4347 spa_vdev_state_enter(spa, SCL_NONE);
4348
4349 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4350 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4351
4352 /*
4353 * If the vdev is already removed, or expanding which can trigger
4354 * repartition add/remove events, then don't do anything.
4355 */
4356 if (vd->vdev_removed || vd->vdev_expanding)
4357 return (spa_vdev_state_exit(spa, NULL, 0));
4358
4359 /*
4360 * Confirm the vdev has been removed, otherwise don't do anything.
4361 */
4362 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4363 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4364
4365 vd->vdev_remove_wanted = B_TRUE;
4366 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4367
4368 return (spa_vdev_state_exit(spa, vd, 0));
4369 }
4370
4371
4372 /*
4373 * Online the given vdev.
4374 *
4375 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4376 * spare device should be detached when the device finishes resilvering.
4377 * Second, the online should be treated like a 'test' online case, so no FMA
4378 * events are generated if the device fails to open.
4379 */
4380 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4381 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4382 {
4383 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4384 boolean_t wasoffline;
4385 vdev_state_t oldstate;
4386
4387 spa_vdev_state_enter(spa, SCL_NONE);
4388
4389 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4390 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4391
4392 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4393 oldstate = vd->vdev_state;
4394
4395 tvd = vd->vdev_top;
4396 vd->vdev_offline = B_FALSE;
4397 vd->vdev_tmpoffline = B_FALSE;
4398 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4399 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4400
4401 /* XXX - L2ARC 1.0 does not support expansion */
4402 if (!vd->vdev_aux) {
4403 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4404 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4405 spa->spa_autoexpand);
4406 vd->vdev_expansion_time = gethrestime_sec();
4407 }
4408
4409 vdev_reopen(tvd);
4410 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4411
4412 if (!vd->vdev_aux) {
4413 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4414 pvd->vdev_expanding = B_FALSE;
4415 }
4416
4417 if (newstate)
4418 *newstate = vd->vdev_state;
4419 if ((flags & ZFS_ONLINE_UNSPARE) &&
4420 !vdev_is_dead(vd) && vd->vdev_parent &&
4421 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4422 vd->vdev_parent->vdev_child[0] == vd)
4423 vd->vdev_unspare = B_TRUE;
4424
4425 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4426
4427 /* XXX - L2ARC 1.0 does not support expansion */
4428 if (vd->vdev_aux)
4429 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4430 spa->spa_ccw_fail_time = 0;
4431 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4432 }
4433
4434 /* Restart initializing if necessary */
4435 mutex_enter(&vd->vdev_initialize_lock);
4436 if (vdev_writeable(vd) &&
4437 vd->vdev_initialize_thread == NULL &&
4438 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4439 (void) vdev_initialize(vd);
4440 }
4441 mutex_exit(&vd->vdev_initialize_lock);
4442
4443 /*
4444 * Restart trimming if necessary. We do not restart trimming for cache
4445 * devices here. This is triggered by l2arc_rebuild_vdev()
4446 * asynchronously for the whole device or in l2arc_evict() as it evicts
4447 * space for upcoming writes.
4448 */
4449 mutex_enter(&vd->vdev_trim_lock);
4450 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4451 vd->vdev_trim_thread == NULL &&
4452 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4453 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4454 vd->vdev_trim_secure);
4455 }
4456 mutex_exit(&vd->vdev_trim_lock);
4457
4458 if (wasoffline ||
4459 (oldstate < VDEV_STATE_DEGRADED &&
4460 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4461 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4462
4463 /*
4464 * Asynchronously detach spare vdev if resilver or
4465 * rebuild is not required
4466 */
4467 if (vd->vdev_unspare &&
4468 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4469 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4470 !vdev_rebuild_active(tvd))
4471 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4472 }
4473 return (spa_vdev_state_exit(spa, vd, 0));
4474 }
4475
4476 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4477 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4478 {
4479 vdev_t *vd, *tvd;
4480 int error = 0;
4481 uint64_t generation;
4482 metaslab_group_t *mg;
4483
4484 top:
4485 spa_vdev_state_enter(spa, SCL_ALLOC);
4486
4487 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4488 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4489
4490 if (!vd->vdev_ops->vdev_op_leaf)
4491 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4492
4493 if (vd->vdev_ops == &vdev_draid_spare_ops)
4494 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4495
4496 tvd = vd->vdev_top;
4497 mg = tvd->vdev_mg;
4498 generation = spa->spa_config_generation + 1;
4499
4500 /*
4501 * If the device isn't already offline, try to offline it.
4502 */
4503 if (!vd->vdev_offline) {
4504 /*
4505 * If this device has the only valid copy of some data,
4506 * don't allow it to be offlined. Log devices are always
4507 * expendable.
4508 */
4509 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4510 vdev_dtl_required(vd))
4511 return (spa_vdev_state_exit(spa, NULL,
4512 SET_ERROR(EBUSY)));
4513
4514 /*
4515 * If the top-level is a slog and it has had allocations
4516 * then proceed. We check that the vdev's metaslab group
4517 * is not NULL since it's possible that we may have just
4518 * added this vdev but not yet initialized its metaslabs.
4519 */
4520 if (tvd->vdev_islog && mg != NULL) {
4521 /*
4522 * Prevent any future allocations.
4523 */
4524 ASSERT0P(tvd->vdev_log_mg);
4525 metaslab_group_passivate(mg);
4526 (void) spa_vdev_state_exit(spa, vd, 0);
4527
4528 error = spa_reset_logs(spa);
4529
4530 /*
4531 * If the log device was successfully reset but has
4532 * checkpointed data, do not offline it.
4533 */
4534 if (error == 0 &&
4535 tvd->vdev_checkpoint_sm != NULL) {
4536 ASSERT3U(space_map_allocated(
4537 tvd->vdev_checkpoint_sm), !=, 0);
4538 error = ZFS_ERR_CHECKPOINT_EXISTS;
4539 }
4540
4541 spa_vdev_state_enter(spa, SCL_ALLOC);
4542
4543 /*
4544 * Check to see if the config has changed.
4545 */
4546 if (error || generation != spa->spa_config_generation) {
4547 metaslab_group_activate(mg);
4548 if (error)
4549 return (spa_vdev_state_exit(spa,
4550 vd, error));
4551 (void) spa_vdev_state_exit(spa, vd, 0);
4552 goto top;
4553 }
4554 ASSERT0(tvd->vdev_stat.vs_alloc);
4555 }
4556
4557 /*
4558 * Offline this device and reopen its top-level vdev.
4559 * If the top-level vdev is a log device then just offline
4560 * it. Otherwise, if this action results in the top-level
4561 * vdev becoming unusable, undo it and fail the request.
4562 */
4563 vd->vdev_offline = B_TRUE;
4564 vdev_reopen(tvd);
4565
4566 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4567 vdev_is_dead(tvd)) {
4568 vd->vdev_offline = B_FALSE;
4569 vdev_reopen(tvd);
4570 return (spa_vdev_state_exit(spa, NULL,
4571 SET_ERROR(EBUSY)));
4572 }
4573
4574 /*
4575 * Add the device back into the metaslab rotor so that
4576 * once we online the device it's open for business.
4577 */
4578 if (tvd->vdev_islog && mg != NULL)
4579 metaslab_group_activate(mg);
4580 }
4581
4582 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4583
4584 return (spa_vdev_state_exit(spa, vd, 0));
4585 }
4586
4587 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4588 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4589 {
4590 int error;
4591
4592 mutex_enter(&spa->spa_vdev_top_lock);
4593 error = vdev_offline_locked(spa, guid, flags);
4594 mutex_exit(&spa->spa_vdev_top_lock);
4595
4596 return (error);
4597 }
4598
4599 /*
4600 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4601 * vdev_offline(), we assume the spa config is locked. We also clear all
4602 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4603 */
4604 void
vdev_clear(spa_t * spa,vdev_t * vd)4605 vdev_clear(spa_t *spa, vdev_t *vd)
4606 {
4607 vdev_t *rvd = spa->spa_root_vdev;
4608
4609 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4610
4611 if (vd == NULL)
4612 vd = rvd;
4613
4614 vd->vdev_stat.vs_read_errors = 0;
4615 vd->vdev_stat.vs_write_errors = 0;
4616 vd->vdev_stat.vs_checksum_errors = 0;
4617 vd->vdev_stat.vs_dio_verify_errors = 0;
4618 vd->vdev_stat.vs_slow_ios = 0;
4619
4620 for (int c = 0; c < vd->vdev_children; c++)
4621 vdev_clear(spa, vd->vdev_child[c]);
4622
4623 /*
4624 * It makes no sense to "clear" an indirect or removed vdev.
4625 */
4626 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4627 return;
4628
4629 /*
4630 * If we're in the FAULTED state or have experienced failed I/O, then
4631 * clear the persistent state and attempt to reopen the device. We
4632 * also mark the vdev config dirty, so that the new faulted state is
4633 * written out to disk.
4634 */
4635 if (vd->vdev_faulted || vd->vdev_degraded ||
4636 !vdev_readable(vd) || !vdev_writeable(vd)) {
4637 /*
4638 * When reopening in response to a clear event, it may be due to
4639 * a fmadm repair request. In this case, if the device is
4640 * still broken, we want to still post the ereport again.
4641 */
4642 vd->vdev_forcefault = B_TRUE;
4643
4644 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4645 vd->vdev_cant_read = B_FALSE;
4646 vd->vdev_cant_write = B_FALSE;
4647 vd->vdev_stat.vs_aux = 0;
4648
4649 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4650
4651 vd->vdev_forcefault = B_FALSE;
4652
4653 if (vd != rvd && vdev_writeable(vd->vdev_top))
4654 vdev_state_dirty(vd->vdev_top);
4655
4656 /* If a resilver isn't required, check if vdevs can be culled */
4657 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4658 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4659 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4660 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4661
4662 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4663 }
4664
4665 /*
4666 * When clearing a FMA-diagnosed fault, we always want to
4667 * unspare the device, as we assume that the original spare was
4668 * done in response to the FMA fault.
4669 */
4670 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4671 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4672 vd->vdev_parent->vdev_child[0] == vd)
4673 vd->vdev_unspare = B_TRUE;
4674
4675 /* Clear recent error events cache (i.e. duplicate events tracking) */
4676 zfs_ereport_clear(spa, vd);
4677 }
4678
4679 boolean_t
vdev_is_dead(vdev_t * vd)4680 vdev_is_dead(vdev_t *vd)
4681 {
4682 /*
4683 * Holes and missing devices are always considered "dead".
4684 * This simplifies the code since we don't have to check for
4685 * these types of devices in the various code paths.
4686 * Instead we rely on the fact that we skip over dead devices
4687 * before issuing I/O to them.
4688 */
4689 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4690 vd->vdev_ops == &vdev_hole_ops ||
4691 vd->vdev_ops == &vdev_missing_ops);
4692 }
4693
4694 boolean_t
vdev_readable(vdev_t * vd)4695 vdev_readable(vdev_t *vd)
4696 {
4697 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4698 }
4699
4700 boolean_t
vdev_writeable(vdev_t * vd)4701 vdev_writeable(vdev_t *vd)
4702 {
4703 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4704 vdev_is_concrete(vd));
4705 }
4706
4707 boolean_t
vdev_allocatable(vdev_t * vd)4708 vdev_allocatable(vdev_t *vd)
4709 {
4710 uint64_t state = vd->vdev_state;
4711
4712 /*
4713 * We currently allow allocations from vdevs which may be in the
4714 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4715 * fails to reopen then we'll catch it later when we're holding
4716 * the proper locks. Note that we have to get the vdev state
4717 * in a local variable because although it changes atomically,
4718 * we're asking two separate questions about it.
4719 */
4720 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4721 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4722 vd->vdev_mg->mg_initialized);
4723 }
4724
4725 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4726 vdev_accessible(vdev_t *vd, zio_t *zio)
4727 {
4728 ASSERT(zio->io_vd == vd);
4729
4730 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4731 return (B_FALSE);
4732
4733 if (zio->io_type == ZIO_TYPE_READ)
4734 return (!vd->vdev_cant_read);
4735
4736 if (zio->io_type == ZIO_TYPE_WRITE)
4737 return (!vd->vdev_cant_write);
4738
4739 return (B_TRUE);
4740 }
4741
4742 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4743 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4744 {
4745 /*
4746 * Exclude the dRAID spare when aggregating to avoid double counting
4747 * the ops and bytes. These IOs are counted by the physical leaves.
4748 */
4749 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4750 return;
4751
4752 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4753 vs->vs_ops[t] += cvs->vs_ops[t];
4754 vs->vs_bytes[t] += cvs->vs_bytes[t];
4755 }
4756
4757 cvs->vs_scan_removing = cvd->vdev_removing;
4758 }
4759
4760 /*
4761 * Get extended stats
4762 */
4763 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4764 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4765 {
4766 (void) cvd;
4767
4768 int t, b;
4769 for (t = 0; t < ZIO_TYPES; t++) {
4770 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4771 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4772
4773 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4774 vsx->vsx_total_histo[t][b] +=
4775 cvsx->vsx_total_histo[t][b];
4776 }
4777 }
4778
4779 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4780 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4781 vsx->vsx_queue_histo[t][b] +=
4782 cvsx->vsx_queue_histo[t][b];
4783 }
4784 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4785 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4786
4787 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4788 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4789
4790 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4791 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4792 }
4793
4794 }
4795
4796 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4797 vdev_is_spacemap_addressable(vdev_t *vd)
4798 {
4799 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4800 return (B_TRUE);
4801
4802 /*
4803 * If double-word space map entries are not enabled we assume
4804 * 47 bits of the space map entry are dedicated to the entry's
4805 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4806 * to calculate the maximum address that can be described by a
4807 * space map entry for the given device.
4808 */
4809 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4810
4811 if (shift >= 63) /* detect potential overflow */
4812 return (B_TRUE);
4813
4814 return (vd->vdev_asize < (1ULL << shift));
4815 }
4816
4817 /*
4818 * Get statistics for the given vdev.
4819 */
4820 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4821 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4822 {
4823 int t;
4824 /*
4825 * If we're getting stats on the root vdev, aggregate the I/O counts
4826 * over all top-level vdevs (i.e. the direct children of the root).
4827 */
4828 if (!vd->vdev_ops->vdev_op_leaf) {
4829 if (vs) {
4830 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4831 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4832 }
4833 if (vsx)
4834 memset(vsx, 0, sizeof (*vsx));
4835
4836 for (int c = 0; c < vd->vdev_children; c++) {
4837 vdev_t *cvd = vd->vdev_child[c];
4838 vdev_stat_t *cvs = &cvd->vdev_stat;
4839 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4840
4841 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4842 if (vs)
4843 vdev_get_child_stat(cvd, vs, cvs);
4844 if (vsx)
4845 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4846 }
4847 } else {
4848 /*
4849 * We're a leaf. Just copy our ZIO active queue stats in. The
4850 * other leaf stats are updated in vdev_stat_update().
4851 */
4852 if (!vsx)
4853 return;
4854
4855 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4856
4857 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4858 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4859 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4860 }
4861 }
4862 }
4863
4864 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4865 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4866 {
4867 vdev_t *tvd = vd->vdev_top;
4868 mutex_enter(&vd->vdev_stat_lock);
4869 if (vs) {
4870 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4871 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4872 vs->vs_state = vd->vdev_state;
4873 vs->vs_rsize = vdev_get_min_asize(vd);
4874
4875 if (vd->vdev_ops->vdev_op_leaf) {
4876 vs->vs_pspace = vd->vdev_psize;
4877 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4878 VDEV_LABEL_END_SIZE;
4879 /*
4880 * Report initializing progress. Since we don't
4881 * have the initializing locks held, this is only
4882 * an estimate (although a fairly accurate one).
4883 */
4884 vs->vs_initialize_bytes_done =
4885 vd->vdev_initialize_bytes_done;
4886 vs->vs_initialize_bytes_est =
4887 vd->vdev_initialize_bytes_est;
4888 vs->vs_initialize_state = vd->vdev_initialize_state;
4889 vs->vs_initialize_action_time =
4890 vd->vdev_initialize_action_time;
4891
4892 /*
4893 * Report manual TRIM progress. Since we don't have
4894 * the manual TRIM locks held, this is only an
4895 * estimate (although fairly accurate one).
4896 */
4897 vs->vs_trim_notsup = !vd->vdev_has_trim;
4898 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4899 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4900 vs->vs_trim_state = vd->vdev_trim_state;
4901 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4902
4903 /* Set when there is a deferred resilver. */
4904 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4905 }
4906
4907 /*
4908 * Report expandable space on top-level, non-auxiliary devices
4909 * only. The expandable space is reported in terms of metaslab
4910 * sized units since that determines how much space the pool
4911 * can expand.
4912 */
4913 if (vd->vdev_aux == NULL && tvd != NULL) {
4914 vs->vs_esize = P2ALIGN_TYPED(
4915 vd->vdev_max_asize - vd->vdev_asize,
4916 1ULL << tvd->vdev_ms_shift, uint64_t);
4917 }
4918
4919 vs->vs_configured_ashift = vd->vdev_top != NULL
4920 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4921 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4922 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4923 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4924 else
4925 vs->vs_physical_ashift = 0;
4926
4927 /*
4928 * Report fragmentation and rebuild progress for top-level,
4929 * non-auxiliary, concrete devices.
4930 */
4931 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4932 vdev_is_concrete(vd)) {
4933 /*
4934 * The vdev fragmentation rating doesn't take into
4935 * account the embedded slog metaslab (vdev_log_mg).
4936 * Since it's only one metaslab, it would have a tiny
4937 * impact on the overall fragmentation.
4938 */
4939 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4940 vd->vdev_mg->mg_fragmentation : 0;
4941 }
4942 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4943 tvd ? tvd->vdev_noalloc : 0);
4944 }
4945
4946 vdev_get_stats_ex_impl(vd, vs, vsx);
4947 mutex_exit(&vd->vdev_stat_lock);
4948 }
4949
4950 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4951 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4952 {
4953 return (vdev_get_stats_ex(vd, vs, NULL));
4954 }
4955
4956 void
vdev_clear_stats(vdev_t * vd)4957 vdev_clear_stats(vdev_t *vd)
4958 {
4959 mutex_enter(&vd->vdev_stat_lock);
4960 vd->vdev_stat.vs_space = 0;
4961 vd->vdev_stat.vs_dspace = 0;
4962 vd->vdev_stat.vs_alloc = 0;
4963 mutex_exit(&vd->vdev_stat_lock);
4964 }
4965
4966 void
vdev_scan_stat_init(vdev_t * vd)4967 vdev_scan_stat_init(vdev_t *vd)
4968 {
4969 vdev_stat_t *vs = &vd->vdev_stat;
4970
4971 for (int c = 0; c < vd->vdev_children; c++)
4972 vdev_scan_stat_init(vd->vdev_child[c]);
4973
4974 mutex_enter(&vd->vdev_stat_lock);
4975 vs->vs_scan_processed = 0;
4976 mutex_exit(&vd->vdev_stat_lock);
4977 }
4978
4979 void
vdev_stat_update(zio_t * zio,uint64_t psize)4980 vdev_stat_update(zio_t *zio, uint64_t psize)
4981 {
4982 spa_t *spa = zio->io_spa;
4983 vdev_t *rvd = spa->spa_root_vdev;
4984 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4985 vdev_t *pvd;
4986 uint64_t txg = zio->io_txg;
4987 /* Suppress ASAN false positive */
4988 #ifdef __SANITIZE_ADDRESS__
4989 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4990 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4991 #else
4992 vdev_stat_t *vs = &vd->vdev_stat;
4993 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4994 #endif
4995 zio_type_t type = zio->io_type;
4996 int flags = zio->io_flags;
4997
4998 /*
4999 * If this i/o is a gang leader, it didn't do any actual work.
5000 */
5001 if (zio->io_gang_tree)
5002 return;
5003
5004 if (zio->io_error == 0) {
5005 /*
5006 * If this is a root i/o, don't count it -- we've already
5007 * counted the top-level vdevs, and vdev_get_stats() will
5008 * aggregate them when asked. This reduces contention on
5009 * the root vdev_stat_lock and implicitly handles blocks
5010 * that compress away to holes, for which there is no i/o.
5011 * (Holes never create vdev children, so all the counters
5012 * remain zero, which is what we want.)
5013 *
5014 * Note: this only applies to successful i/o (io_error == 0)
5015 * because unlike i/o counts, errors are not additive.
5016 * When reading a ditto block, for example, failure of
5017 * one top-level vdev does not imply a root-level error.
5018 */
5019 if (vd == rvd)
5020 return;
5021
5022 ASSERT(vd == zio->io_vd);
5023
5024 if (flags & ZIO_FLAG_IO_BYPASS)
5025 return;
5026
5027 mutex_enter(&vd->vdev_stat_lock);
5028
5029 if (flags & ZIO_FLAG_IO_REPAIR) {
5030 /*
5031 * Repair is the result of a resilver issued by the
5032 * scan thread (spa_sync).
5033 */
5034 if (flags & ZIO_FLAG_SCAN_THREAD) {
5035 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5036 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5037 uint64_t *processed = &scn_phys->scn_processed;
5038
5039 if (vd->vdev_ops->vdev_op_leaf)
5040 atomic_add_64(processed, psize);
5041 vs->vs_scan_processed += psize;
5042 }
5043
5044 /*
5045 * Repair is the result of a rebuild issued by the
5046 * rebuild thread (vdev_rebuild_thread). To avoid
5047 * double counting repaired bytes the virtual dRAID
5048 * spare vdev is excluded from the processed bytes.
5049 */
5050 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5051 vdev_t *tvd = vd->vdev_top;
5052 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5053 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5054 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5055
5056 if (vd->vdev_ops->vdev_op_leaf &&
5057 vd->vdev_ops != &vdev_draid_spare_ops) {
5058 atomic_add_64(rebuilt, psize);
5059 }
5060 vs->vs_rebuild_processed += psize;
5061 }
5062
5063 if (flags & ZIO_FLAG_SELF_HEAL)
5064 vs->vs_self_healed += psize;
5065 }
5066
5067 /*
5068 * The bytes/ops/histograms are recorded at the leaf level and
5069 * aggregated into the higher level vdevs in vdev_get_stats().
5070 */
5071 if (vd->vdev_ops->vdev_op_leaf &&
5072 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5073 zio_type_t vs_type = type;
5074 zio_priority_t priority = zio->io_priority;
5075
5076 /*
5077 * TRIM ops and bytes are reported to user space as
5078 * ZIO_TYPE_FLUSH. This is done to preserve the
5079 * vdev_stat_t structure layout for user space.
5080 */
5081 if (type == ZIO_TYPE_TRIM)
5082 vs_type = ZIO_TYPE_FLUSH;
5083
5084 /*
5085 * Solely for the purposes of 'zpool iostat -lqrw'
5086 * reporting use the priority to categorize the IO.
5087 * Only the following are reported to user space:
5088 *
5089 * ZIO_PRIORITY_SYNC_READ,
5090 * ZIO_PRIORITY_SYNC_WRITE,
5091 * ZIO_PRIORITY_ASYNC_READ,
5092 * ZIO_PRIORITY_ASYNC_WRITE,
5093 * ZIO_PRIORITY_SCRUB,
5094 * ZIO_PRIORITY_TRIM,
5095 * ZIO_PRIORITY_REBUILD.
5096 */
5097 if (priority == ZIO_PRIORITY_INITIALIZING) {
5098 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5099 priority = ZIO_PRIORITY_ASYNC_WRITE;
5100 } else if (priority == ZIO_PRIORITY_REMOVAL) {
5101 priority = ((type == ZIO_TYPE_WRITE) ?
5102 ZIO_PRIORITY_ASYNC_WRITE :
5103 ZIO_PRIORITY_ASYNC_READ);
5104 }
5105
5106 vs->vs_ops[vs_type]++;
5107 vs->vs_bytes[vs_type] += psize;
5108
5109 if (flags & ZIO_FLAG_DELEGATED) {
5110 vsx->vsx_agg_histo[priority]
5111 [RQ_HISTO(zio->io_size)]++;
5112 } else {
5113 vsx->vsx_ind_histo[priority]
5114 [RQ_HISTO(zio->io_size)]++;
5115 }
5116
5117 if (zio->io_delta && zio->io_delay) {
5118 vsx->vsx_queue_histo[priority]
5119 [L_HISTO(zio->io_delta - zio->io_delay)]++;
5120 vsx->vsx_disk_histo[type]
5121 [L_HISTO(zio->io_delay)]++;
5122 vsx->vsx_total_histo[type]
5123 [L_HISTO(zio->io_delta)]++;
5124 }
5125 }
5126
5127 mutex_exit(&vd->vdev_stat_lock);
5128 return;
5129 }
5130
5131 if (flags & ZIO_FLAG_SPECULATIVE)
5132 return;
5133
5134 /*
5135 * If this is an I/O error that is going to be retried, then ignore the
5136 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5137 * hard errors, when in reality they can happen for any number of
5138 * innocuous reasons (bus resets, MPxIO link failure, etc).
5139 */
5140 if (zio->io_error == EIO &&
5141 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5142 return;
5143
5144 /*
5145 * Intent logs writes won't propagate their error to the root
5146 * I/O so don't mark these types of failures as pool-level
5147 * errors.
5148 */
5149 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5150 return;
5151
5152 if (type == ZIO_TYPE_WRITE && txg != 0 &&
5153 (!(flags & ZIO_FLAG_IO_REPAIR) ||
5154 (flags & ZIO_FLAG_SCAN_THREAD) ||
5155 spa->spa_claiming)) {
5156 /*
5157 * This is either a normal write (not a repair), or it's
5158 * a repair induced by the scrub thread, or it's a repair
5159 * made by zil_claim() during spa_load() in the first txg.
5160 * In the normal case, we commit the DTL change in the same
5161 * txg as the block was born. In the scrub-induced repair
5162 * case, we know that scrubs run in first-pass syncing context,
5163 * so we commit the DTL change in spa_syncing_txg(spa).
5164 * In the zil_claim() case, we commit in spa_first_txg(spa).
5165 *
5166 * We currently do not make DTL entries for failed spontaneous
5167 * self-healing writes triggered by normal (non-scrubbing)
5168 * reads, because we have no transactional context in which to
5169 * do so -- and it's not clear that it'd be desirable anyway.
5170 */
5171 if (vd->vdev_ops->vdev_op_leaf) {
5172 uint64_t commit_txg = txg;
5173 if (flags & ZIO_FLAG_SCAN_THREAD) {
5174 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5175 ASSERT(spa_sync_pass(spa) == 1);
5176 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5177 commit_txg = spa_syncing_txg(spa);
5178 } else if (spa->spa_claiming) {
5179 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5180 commit_txg = spa_first_txg(spa);
5181 }
5182 ASSERT(commit_txg >= spa_syncing_txg(spa));
5183 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5184 return;
5185 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5186 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5187 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5188 }
5189 if (vd != rvd)
5190 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5191 }
5192 }
5193
5194 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5195 vdev_deflated_space(vdev_t *vd, int64_t space)
5196 {
5197 ASSERT0((space & (SPA_MINBLOCKSIZE-1)));
5198 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5199
5200 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5201 }
5202
5203 /*
5204 * Update the in-core space usage stats for this vdev, its metaslab class,
5205 * and the root vdev.
5206 */
5207 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5208 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5209 int64_t space_delta)
5210 {
5211 (void) defer_delta;
5212 int64_t dspace_delta;
5213 spa_t *spa = vd->vdev_spa;
5214 vdev_t *rvd = spa->spa_root_vdev;
5215
5216 ASSERT(vd == vd->vdev_top);
5217
5218 /*
5219 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5220 * factor. We must calculate this here and not at the root vdev
5221 * because the root vdev's psize-to-asize is simply the max of its
5222 * children's, thus not accurate enough for us.
5223 */
5224 dspace_delta = vdev_deflated_space(vd, space_delta);
5225
5226 mutex_enter(&vd->vdev_stat_lock);
5227 /* ensure we won't underflow */
5228 if (alloc_delta < 0) {
5229 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5230 }
5231
5232 vd->vdev_stat.vs_alloc += alloc_delta;
5233 vd->vdev_stat.vs_space += space_delta;
5234 vd->vdev_stat.vs_dspace += dspace_delta;
5235 mutex_exit(&vd->vdev_stat_lock);
5236
5237 /* every class but log contributes to root space stats */
5238 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5239 ASSERT(!vd->vdev_isl2cache);
5240 mutex_enter(&rvd->vdev_stat_lock);
5241 rvd->vdev_stat.vs_alloc += alloc_delta;
5242 rvd->vdev_stat.vs_space += space_delta;
5243 rvd->vdev_stat.vs_dspace += dspace_delta;
5244 mutex_exit(&rvd->vdev_stat_lock);
5245 }
5246 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5247 }
5248
5249 /*
5250 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5251 * so that it will be written out next time the vdev configuration is synced.
5252 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5253 */
5254 void
vdev_config_dirty(vdev_t * vd)5255 vdev_config_dirty(vdev_t *vd)
5256 {
5257 spa_t *spa = vd->vdev_spa;
5258 vdev_t *rvd = spa->spa_root_vdev;
5259 int c;
5260
5261 ASSERT(spa_writeable(spa));
5262
5263 /*
5264 * If this is an aux vdev (as with l2cache and spare devices), then we
5265 * update the vdev config manually and set the sync flag.
5266 */
5267 if (vd->vdev_aux != NULL) {
5268 spa_aux_vdev_t *sav = vd->vdev_aux;
5269 nvlist_t **aux;
5270 uint_t naux;
5271
5272 for (c = 0; c < sav->sav_count; c++) {
5273 if (sav->sav_vdevs[c] == vd)
5274 break;
5275 }
5276
5277 if (c == sav->sav_count) {
5278 /*
5279 * We're being removed. There's nothing more to do.
5280 */
5281 ASSERT(sav->sav_sync == B_TRUE);
5282 return;
5283 }
5284
5285 sav->sav_sync = B_TRUE;
5286
5287 if (nvlist_lookup_nvlist_array(sav->sav_config,
5288 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5289 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
5290 ZPOOL_CONFIG_SPARES, &aux, &naux));
5291 }
5292
5293 ASSERT(c < naux);
5294
5295 /*
5296 * Setting the nvlist in the middle if the array is a little
5297 * sketchy, but it will work.
5298 */
5299 nvlist_free(aux[c]);
5300 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5301
5302 return;
5303 }
5304
5305 /*
5306 * The dirty list is protected by the SCL_CONFIG lock. The caller
5307 * must either hold SCL_CONFIG as writer, or must be the sync thread
5308 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5309 * so this is sufficient to ensure mutual exclusion.
5310 */
5311 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5312 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5313 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5314
5315 if (vd == rvd) {
5316 for (c = 0; c < rvd->vdev_children; c++)
5317 vdev_config_dirty(rvd->vdev_child[c]);
5318 } else {
5319 ASSERT(vd == vd->vdev_top);
5320
5321 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5322 vdev_is_concrete(vd)) {
5323 list_insert_head(&spa->spa_config_dirty_list, vd);
5324 }
5325 }
5326 }
5327
5328 void
vdev_config_clean(vdev_t * vd)5329 vdev_config_clean(vdev_t *vd)
5330 {
5331 spa_t *spa = vd->vdev_spa;
5332
5333 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5334 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5335 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5336
5337 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5338 list_remove(&spa->spa_config_dirty_list, vd);
5339 }
5340
5341 /*
5342 * Mark a top-level vdev's state as dirty, so that the next pass of
5343 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5344 * the state changes from larger config changes because they require
5345 * much less locking, and are often needed for administrative actions.
5346 */
5347 void
vdev_state_dirty(vdev_t * vd)5348 vdev_state_dirty(vdev_t *vd)
5349 {
5350 spa_t *spa = vd->vdev_spa;
5351
5352 ASSERT(spa_writeable(spa));
5353 ASSERT(vd == vd->vdev_top);
5354
5355 /*
5356 * The state list is protected by the SCL_STATE lock. The caller
5357 * must either hold SCL_STATE as writer, or must be the sync thread
5358 * (which holds SCL_STATE as reader). There's only one sync thread,
5359 * so this is sufficient to ensure mutual exclusion.
5360 */
5361 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5362 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5363 spa_config_held(spa, SCL_STATE, RW_READER)));
5364
5365 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5366 vdev_is_concrete(vd))
5367 list_insert_head(&spa->spa_state_dirty_list, vd);
5368 }
5369
5370 void
vdev_state_clean(vdev_t * vd)5371 vdev_state_clean(vdev_t *vd)
5372 {
5373 spa_t *spa = vd->vdev_spa;
5374
5375 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5376 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5377 spa_config_held(spa, SCL_STATE, RW_READER)));
5378
5379 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5380 list_remove(&spa->spa_state_dirty_list, vd);
5381 }
5382
5383 /*
5384 * Propagate vdev state up from children to parent.
5385 */
5386 void
vdev_propagate_state(vdev_t * vd)5387 vdev_propagate_state(vdev_t *vd)
5388 {
5389 spa_t *spa = vd->vdev_spa;
5390 vdev_t *rvd = spa->spa_root_vdev;
5391 int degraded = 0, faulted = 0;
5392 int corrupted = 0;
5393 vdev_t *child;
5394
5395 if (vd->vdev_children > 0) {
5396 for (int c = 0; c < vd->vdev_children; c++) {
5397 child = vd->vdev_child[c];
5398
5399 /*
5400 * Don't factor holes or indirect vdevs into the
5401 * decision.
5402 */
5403 if (!vdev_is_concrete(child))
5404 continue;
5405
5406 if (!vdev_readable(child) ||
5407 (!vdev_writeable(child) && spa_writeable(spa))) {
5408 /*
5409 * Root special: if there is a top-level log
5410 * device, treat the root vdev as if it were
5411 * degraded.
5412 */
5413 if (child->vdev_islog && vd == rvd)
5414 degraded++;
5415 else
5416 faulted++;
5417 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5418 degraded++;
5419 }
5420
5421 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5422 corrupted++;
5423 }
5424
5425 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5426
5427 /*
5428 * Root special: if there is a top-level vdev that cannot be
5429 * opened due to corrupted metadata, then propagate the root
5430 * vdev's aux state as 'corrupt' rather than 'insufficient
5431 * replicas'.
5432 */
5433 if (corrupted && vd == rvd &&
5434 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5435 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5436 VDEV_AUX_CORRUPT_DATA);
5437 }
5438
5439 if (vd->vdev_parent)
5440 vdev_propagate_state(vd->vdev_parent);
5441 }
5442
5443 /*
5444 * Set a vdev's state. If this is during an open, we don't update the parent
5445 * state, because we're in the process of opening children depth-first.
5446 * Otherwise, we propagate the change to the parent.
5447 *
5448 * If this routine places a device in a faulted state, an appropriate ereport is
5449 * generated.
5450 */
5451 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5452 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5453 {
5454 uint64_t save_state;
5455 spa_t *spa = vd->vdev_spa;
5456
5457 if (state == vd->vdev_state) {
5458 /*
5459 * Since vdev_offline() code path is already in an offline
5460 * state we can miss a statechange event to OFFLINE. Check
5461 * the previous state to catch this condition.
5462 */
5463 if (vd->vdev_ops->vdev_op_leaf &&
5464 (state == VDEV_STATE_OFFLINE) &&
5465 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5466 /* post an offline state change */
5467 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5468 }
5469 vd->vdev_stat.vs_aux = aux;
5470 return;
5471 }
5472
5473 save_state = vd->vdev_state;
5474
5475 vd->vdev_state = state;
5476 vd->vdev_stat.vs_aux = aux;
5477
5478 /*
5479 * If we are setting the vdev state to anything but an open state, then
5480 * always close the underlying device unless the device has requested
5481 * a delayed close (i.e. we're about to remove or fault the device).
5482 * Otherwise, we keep accessible but invalid devices open forever.
5483 * We don't call vdev_close() itself, because that implies some extra
5484 * checks (offline, etc) that we don't want here. This is limited to
5485 * leaf devices, because otherwise closing the device will affect other
5486 * children.
5487 */
5488 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5489 vd->vdev_ops->vdev_op_leaf)
5490 vd->vdev_ops->vdev_op_close(vd);
5491
5492 if (vd->vdev_removed &&
5493 state == VDEV_STATE_CANT_OPEN &&
5494 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5495 /*
5496 * If the previous state is set to VDEV_STATE_REMOVED, then this
5497 * device was previously marked removed and someone attempted to
5498 * reopen it. If this failed due to a nonexistent device, then
5499 * keep the device in the REMOVED state. We also let this be if
5500 * it is one of our special test online cases, which is only
5501 * attempting to online the device and shouldn't generate an FMA
5502 * fault.
5503 */
5504 vd->vdev_state = VDEV_STATE_REMOVED;
5505 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5506 } else if (state == VDEV_STATE_REMOVED) {
5507 vd->vdev_removed = B_TRUE;
5508 } else if (state == VDEV_STATE_CANT_OPEN) {
5509 /*
5510 * If we fail to open a vdev during an import or recovery, we
5511 * mark it as "not available", which signifies that it was
5512 * never there to begin with. Failure to open such a device
5513 * is not considered an error.
5514 */
5515 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5516 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5517 vd->vdev_ops->vdev_op_leaf)
5518 vd->vdev_not_present = 1;
5519
5520 /*
5521 * Post the appropriate ereport. If the 'prevstate' field is
5522 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5523 * that this is part of a vdev_reopen(). In this case, we don't
5524 * want to post the ereport if the device was already in the
5525 * CANT_OPEN state beforehand.
5526 *
5527 * If the 'checkremove' flag is set, then this is an attempt to
5528 * online the device in response to an insertion event. If we
5529 * hit this case, then we have detected an insertion event for a
5530 * faulted or offline device that wasn't in the removed state.
5531 * In this scenario, we don't post an ereport because we are
5532 * about to replace the device, or attempt an online with
5533 * vdev_forcefault, which will generate the fault for us.
5534 */
5535 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5536 !vd->vdev_not_present && !vd->vdev_checkremove &&
5537 vd != spa->spa_root_vdev) {
5538 const char *class;
5539
5540 switch (aux) {
5541 case VDEV_AUX_OPEN_FAILED:
5542 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5543 break;
5544 case VDEV_AUX_CORRUPT_DATA:
5545 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5546 break;
5547 case VDEV_AUX_NO_REPLICAS:
5548 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5549 break;
5550 case VDEV_AUX_BAD_GUID_SUM:
5551 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5552 break;
5553 case VDEV_AUX_TOO_SMALL:
5554 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5555 break;
5556 case VDEV_AUX_BAD_LABEL:
5557 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5558 break;
5559 case VDEV_AUX_BAD_ASHIFT:
5560 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5561 break;
5562 default:
5563 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5564 }
5565
5566 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5567 save_state);
5568 }
5569
5570 /* Erase any notion of persistent removed state */
5571 vd->vdev_removed = B_FALSE;
5572 } else {
5573 vd->vdev_removed = B_FALSE;
5574 }
5575
5576 /*
5577 * Notify ZED of any significant state-change on a leaf vdev.
5578 *
5579 */
5580 if (vd->vdev_ops->vdev_op_leaf) {
5581 /* preserve original state from a vdev_reopen() */
5582 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5583 (vd->vdev_prevstate != vd->vdev_state) &&
5584 (save_state <= VDEV_STATE_CLOSED))
5585 save_state = vd->vdev_prevstate;
5586
5587 /* filter out state change due to initial vdev_open */
5588 if (save_state > VDEV_STATE_CLOSED)
5589 zfs_post_state_change(spa, vd, save_state);
5590 }
5591
5592 if (!isopen && vd->vdev_parent)
5593 vdev_propagate_state(vd->vdev_parent);
5594 }
5595
5596 boolean_t
vdev_children_are_offline(vdev_t * vd)5597 vdev_children_are_offline(vdev_t *vd)
5598 {
5599 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5600
5601 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5602 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5603 return (B_FALSE);
5604 }
5605
5606 return (B_TRUE);
5607 }
5608
5609 /*
5610 * Check the vdev configuration to ensure that it's capable of supporting
5611 * a root pool. We do not support partial configuration.
5612 */
5613 boolean_t
vdev_is_bootable(vdev_t * vd)5614 vdev_is_bootable(vdev_t *vd)
5615 {
5616 if (!vd->vdev_ops->vdev_op_leaf) {
5617 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5618
5619 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5620 return (B_FALSE);
5621 }
5622
5623 for (int c = 0; c < vd->vdev_children; c++) {
5624 if (!vdev_is_bootable(vd->vdev_child[c]))
5625 return (B_FALSE);
5626 }
5627 return (B_TRUE);
5628 }
5629
5630 boolean_t
vdev_is_concrete(vdev_t * vd)5631 vdev_is_concrete(vdev_t *vd)
5632 {
5633 vdev_ops_t *ops = vd->vdev_ops;
5634 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5635 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5636 return (B_FALSE);
5637 } else {
5638 return (B_TRUE);
5639 }
5640 }
5641
5642 /*
5643 * Determine if a log device has valid content. If the vdev was
5644 * removed or faulted in the MOS config then we know that
5645 * the content on the log device has already been written to the pool.
5646 */
5647 boolean_t
vdev_log_state_valid(vdev_t * vd)5648 vdev_log_state_valid(vdev_t *vd)
5649 {
5650 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5651 !vd->vdev_removed)
5652 return (B_TRUE);
5653
5654 for (int c = 0; c < vd->vdev_children; c++)
5655 if (vdev_log_state_valid(vd->vdev_child[c]))
5656 return (B_TRUE);
5657
5658 return (B_FALSE);
5659 }
5660
5661 /*
5662 * Expand a vdev if possible.
5663 */
5664 void
vdev_expand(vdev_t * vd,uint64_t txg)5665 vdev_expand(vdev_t *vd, uint64_t txg)
5666 {
5667 ASSERT(vd->vdev_top == vd);
5668 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5669 ASSERT(vdev_is_concrete(vd));
5670
5671 vdev_set_deflate_ratio(vd);
5672
5673 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5674 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5675 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5676 vdev_is_concrete(vd)) {
5677 vdev_metaslab_group_create(vd);
5678 VERIFY0(vdev_metaslab_init(vd, txg));
5679 vdev_config_dirty(vd);
5680 }
5681 }
5682
5683 /*
5684 * Split a vdev.
5685 */
5686 void
vdev_split(vdev_t * vd)5687 vdev_split(vdev_t *vd)
5688 {
5689 vdev_t *cvd, *pvd = vd->vdev_parent;
5690
5691 VERIFY3U(pvd->vdev_children, >, 1);
5692
5693 vdev_remove_child(pvd, vd);
5694 vdev_compact_children(pvd);
5695
5696 ASSERT3P(pvd->vdev_child, !=, NULL);
5697
5698 cvd = pvd->vdev_child[0];
5699 if (pvd->vdev_children == 1) {
5700 vdev_remove_parent(cvd);
5701 cvd->vdev_splitting = B_TRUE;
5702 }
5703 vdev_propagate_state(cvd);
5704 }
5705
5706 void
vdev_deadman(vdev_t * vd,const char * tag)5707 vdev_deadman(vdev_t *vd, const char *tag)
5708 {
5709 for (int c = 0; c < vd->vdev_children; c++) {
5710 vdev_t *cvd = vd->vdev_child[c];
5711
5712 vdev_deadman(cvd, tag);
5713 }
5714
5715 if (vd->vdev_ops->vdev_op_leaf) {
5716 vdev_queue_t *vq = &vd->vdev_queue;
5717
5718 mutex_enter(&vq->vq_lock);
5719 if (vq->vq_active > 0) {
5720 spa_t *spa = vd->vdev_spa;
5721 zio_t *fio;
5722 uint64_t delta;
5723
5724 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5725 vd->vdev_path, vq->vq_active);
5726
5727 /*
5728 * Look at the head of all the pending queues,
5729 * if any I/O has been outstanding for longer than
5730 * the spa_deadman_synctime invoke the deadman logic.
5731 */
5732 fio = list_head(&vq->vq_active_list);
5733 delta = gethrtime() - fio->io_timestamp;
5734 if (delta > spa_deadman_synctime(spa))
5735 zio_deadman(fio, tag);
5736 }
5737 mutex_exit(&vq->vq_lock);
5738 }
5739 }
5740
5741 void
vdev_defer_resilver(vdev_t * vd)5742 vdev_defer_resilver(vdev_t *vd)
5743 {
5744 ASSERT(vd->vdev_ops->vdev_op_leaf);
5745
5746 vd->vdev_resilver_deferred = B_TRUE;
5747 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5748 }
5749
5750 /*
5751 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5752 * B_TRUE if we have devices that need to be resilvered and are available to
5753 * accept resilver I/Os.
5754 */
5755 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5756 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5757 {
5758 boolean_t resilver_needed = B_FALSE;
5759 spa_t *spa = vd->vdev_spa;
5760
5761 for (int c = 0; c < vd->vdev_children; c++) {
5762 vdev_t *cvd = vd->vdev_child[c];
5763 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5764 }
5765
5766 if (vd == spa->spa_root_vdev &&
5767 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5768 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5769 vdev_config_dirty(vd);
5770 spa->spa_resilver_deferred = B_FALSE;
5771 return (resilver_needed);
5772 }
5773
5774 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5775 !vd->vdev_ops->vdev_op_leaf)
5776 return (resilver_needed);
5777
5778 vd->vdev_resilver_deferred = B_FALSE;
5779
5780 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5781 vdev_resilver_needed(vd, NULL, NULL));
5782 }
5783
5784 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5785 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5786 {
5787 return (rs->rs_start == rs->rs_end);
5788 }
5789
5790 /*
5791 * Translate a logical range to the first contiguous physical range for the
5792 * specified vdev_t. This function is initially called with a leaf vdev and
5793 * will walk each parent vdev until it reaches a top-level vdev. Once the
5794 * top-level is reached the physical range is initialized and the recursive
5795 * function begins to unwind. As it unwinds it calls the parent's vdev
5796 * specific translation function to do the real conversion.
5797 */
5798 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5799 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5800 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5801 {
5802 /*
5803 * Walk up the vdev tree
5804 */
5805 if (vd != vd->vdev_top) {
5806 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5807 remain_rs);
5808 } else {
5809 /*
5810 * We've reached the top-level vdev, initialize the physical
5811 * range to the logical range and set an empty remaining
5812 * range then start to unwind.
5813 */
5814 physical_rs->rs_start = logical_rs->rs_start;
5815 physical_rs->rs_end = logical_rs->rs_end;
5816
5817 remain_rs->rs_start = logical_rs->rs_start;
5818 remain_rs->rs_end = logical_rs->rs_start;
5819
5820 return;
5821 }
5822
5823 vdev_t *pvd = vd->vdev_parent;
5824 ASSERT3P(pvd, !=, NULL);
5825 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5826
5827 /*
5828 * As this recursive function unwinds, translate the logical
5829 * range into its physical and any remaining components by calling
5830 * the vdev specific translate function.
5831 */
5832 zfs_range_seg64_t intermediate = { 0 };
5833 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5834
5835 physical_rs->rs_start = intermediate.rs_start;
5836 physical_rs->rs_end = intermediate.rs_end;
5837 }
5838
5839 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5840 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5841 vdev_xlate_func_t *func, void *arg)
5842 {
5843 zfs_range_seg64_t iter_rs = *logical_rs;
5844 zfs_range_seg64_t physical_rs;
5845 zfs_range_seg64_t remain_rs;
5846
5847 while (!vdev_xlate_is_empty(&iter_rs)) {
5848
5849 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5850
5851 /*
5852 * With raidz and dRAID, it's possible that the logical range
5853 * does not live on this leaf vdev. Only when there is a non-
5854 * zero physical size call the provided function.
5855 */
5856 if (!vdev_xlate_is_empty(&physical_rs))
5857 func(arg, &physical_rs);
5858
5859 iter_rs = remain_rs;
5860 }
5861 }
5862
5863 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5864 vdev_name(vdev_t *vd, char *buf, int buflen)
5865 {
5866 if (vd->vdev_path == NULL) {
5867 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5868 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5869 } else if (!vd->vdev_ops->vdev_op_leaf) {
5870 snprintf(buf, buflen, "%s-%llu",
5871 vd->vdev_ops->vdev_op_type,
5872 (u_longlong_t)vd->vdev_id);
5873 }
5874 } else {
5875 strlcpy(buf, vd->vdev_path, buflen);
5876 }
5877 return (buf);
5878 }
5879
5880 /*
5881 * Look at the vdev tree and determine whether any devices are currently being
5882 * replaced.
5883 */
5884 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5885 vdev_replace_in_progress(vdev_t *vdev)
5886 {
5887 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5888
5889 if (vdev->vdev_ops == &vdev_replacing_ops)
5890 return (B_TRUE);
5891
5892 /*
5893 * A 'spare' vdev indicates that we have a replace in progress, unless
5894 * it has exactly two children, and the second, the hot spare, has
5895 * finished being resilvered.
5896 */
5897 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5898 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5899 return (B_TRUE);
5900
5901 for (int i = 0; i < vdev->vdev_children; i++) {
5902 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5903 return (B_TRUE);
5904 }
5905
5906 return (B_FALSE);
5907 }
5908
5909 /*
5910 * Add a (source=src, propname=propval) list to an nvlist.
5911 */
5912 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5913 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5914 uint64_t intval, zprop_source_t src)
5915 {
5916 nvlist_t *propval;
5917
5918 propval = fnvlist_alloc();
5919 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5920
5921 if (strval != NULL)
5922 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5923 else
5924 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5925
5926 fnvlist_add_nvlist(nvl, propname, propval);
5927 nvlist_free(propval);
5928 }
5929
5930 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5931 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5932 {
5933 vdev_t *vd;
5934 nvlist_t *nvp = arg;
5935 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5936 objset_t *mos = spa->spa_meta_objset;
5937 nvpair_t *elem = NULL;
5938 uint64_t vdev_guid;
5939 uint64_t objid;
5940 nvlist_t *nvprops;
5941
5942 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5943 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5944 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5945
5946 /* this vdev could get removed while waiting for this sync task */
5947 if (vd == NULL)
5948 return;
5949
5950 /*
5951 * Set vdev property values in the vdev props mos object.
5952 */
5953 if (vd->vdev_root_zap != 0) {
5954 objid = vd->vdev_root_zap;
5955 } else if (vd->vdev_top_zap != 0) {
5956 objid = vd->vdev_top_zap;
5957 } else if (vd->vdev_leaf_zap != 0) {
5958 objid = vd->vdev_leaf_zap;
5959 } else {
5960 panic("unexpected vdev type");
5961 }
5962
5963 mutex_enter(&spa->spa_props_lock);
5964
5965 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5966 uint64_t intval;
5967 const char *strval;
5968 vdev_prop_t prop;
5969 const char *propname = nvpair_name(elem);
5970 zprop_type_t proptype;
5971
5972 switch (prop = vdev_name_to_prop(propname)) {
5973 case VDEV_PROP_USERPROP:
5974 if (vdev_prop_user(propname)) {
5975 strval = fnvpair_value_string(elem);
5976 if (strlen(strval) == 0) {
5977 /* remove the property if value == "" */
5978 (void) zap_remove(mos, objid, propname,
5979 tx);
5980 } else {
5981 VERIFY0(zap_update(mos, objid, propname,
5982 1, strlen(strval) + 1, strval, tx));
5983 }
5984 spa_history_log_internal(spa, "vdev set", tx,
5985 "vdev_guid=%llu: %s=%s",
5986 (u_longlong_t)vdev_guid, nvpair_name(elem),
5987 strval);
5988 }
5989 break;
5990 default:
5991 /* normalize the property name */
5992 propname = vdev_prop_to_name(prop);
5993 proptype = vdev_prop_get_type(prop);
5994
5995 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5996 ASSERT(proptype == PROP_TYPE_STRING);
5997 strval = fnvpair_value_string(elem);
5998 VERIFY0(zap_update(mos, objid, propname,
5999 1, strlen(strval) + 1, strval, tx));
6000 spa_history_log_internal(spa, "vdev set", tx,
6001 "vdev_guid=%llu: %s=%s",
6002 (u_longlong_t)vdev_guid, nvpair_name(elem),
6003 strval);
6004 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6005 intval = fnvpair_value_uint64(elem);
6006
6007 if (proptype == PROP_TYPE_INDEX) {
6008 const char *unused;
6009 VERIFY0(vdev_prop_index_to_string(
6010 prop, intval, &unused));
6011 }
6012 VERIFY0(zap_update(mos, objid, propname,
6013 sizeof (uint64_t), 1, &intval, tx));
6014 spa_history_log_internal(spa, "vdev set", tx,
6015 "vdev_guid=%llu: %s=%lld",
6016 (u_longlong_t)vdev_guid,
6017 nvpair_name(elem), (longlong_t)intval);
6018 } else {
6019 panic("invalid vdev property type %u",
6020 nvpair_type(elem));
6021 }
6022 }
6023
6024 }
6025
6026 mutex_exit(&spa->spa_props_lock);
6027 }
6028
6029 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6030 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6031 {
6032 spa_t *spa = vd->vdev_spa;
6033 nvpair_t *elem = NULL;
6034 uint64_t vdev_guid;
6035 nvlist_t *nvprops;
6036 int error = 0;
6037
6038 ASSERT(vd != NULL);
6039
6040 /* Check that vdev has a zap we can use */
6041 if (vd->vdev_root_zap == 0 &&
6042 vd->vdev_top_zap == 0 &&
6043 vd->vdev_leaf_zap == 0)
6044 return (SET_ERROR(EINVAL));
6045
6046 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6047 &vdev_guid) != 0)
6048 return (SET_ERROR(EINVAL));
6049
6050 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6051 &nvprops) != 0)
6052 return (SET_ERROR(EINVAL));
6053
6054 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6055 return (SET_ERROR(EINVAL));
6056
6057 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6058 const char *propname = nvpair_name(elem);
6059 vdev_prop_t prop = vdev_name_to_prop(propname);
6060 uint64_t intval = 0;
6061 const char *strval = NULL;
6062
6063 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6064 error = EINVAL;
6065 goto end;
6066 }
6067
6068 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6069 error = EROFS;
6070 goto end;
6071 }
6072
6073 /* Special Processing */
6074 switch (prop) {
6075 case VDEV_PROP_PATH:
6076 if (vd->vdev_path == NULL) {
6077 error = EROFS;
6078 break;
6079 }
6080 if (nvpair_value_string(elem, &strval) != 0) {
6081 error = EINVAL;
6082 break;
6083 }
6084 /* New path must start with /dev/ */
6085 if (strncmp(strval, "/dev/", 5)) {
6086 error = EINVAL;
6087 break;
6088 }
6089 error = spa_vdev_setpath(spa, vdev_guid, strval);
6090 break;
6091 case VDEV_PROP_ALLOCATING:
6092 if (nvpair_value_uint64(elem, &intval) != 0) {
6093 error = EINVAL;
6094 break;
6095 }
6096 if (intval != vd->vdev_noalloc)
6097 break;
6098 if (intval == 0)
6099 error = spa_vdev_noalloc(spa, vdev_guid);
6100 else
6101 error = spa_vdev_alloc(spa, vdev_guid);
6102 break;
6103 case VDEV_PROP_FAILFAST:
6104 if (nvpair_value_uint64(elem, &intval) != 0) {
6105 error = EINVAL;
6106 break;
6107 }
6108 vd->vdev_failfast = intval & 1;
6109 break;
6110 case VDEV_PROP_CHECKSUM_N:
6111 if (nvpair_value_uint64(elem, &intval) != 0) {
6112 error = EINVAL;
6113 break;
6114 }
6115 vd->vdev_checksum_n = intval;
6116 break;
6117 case VDEV_PROP_CHECKSUM_T:
6118 if (nvpair_value_uint64(elem, &intval) != 0) {
6119 error = EINVAL;
6120 break;
6121 }
6122 vd->vdev_checksum_t = intval;
6123 break;
6124 case VDEV_PROP_IO_N:
6125 if (nvpair_value_uint64(elem, &intval) != 0) {
6126 error = EINVAL;
6127 break;
6128 }
6129 vd->vdev_io_n = intval;
6130 break;
6131 case VDEV_PROP_IO_T:
6132 if (nvpair_value_uint64(elem, &intval) != 0) {
6133 error = EINVAL;
6134 break;
6135 }
6136 vd->vdev_io_t = intval;
6137 break;
6138 case VDEV_PROP_SLOW_IO_N:
6139 if (nvpair_value_uint64(elem, &intval) != 0) {
6140 error = EINVAL;
6141 break;
6142 }
6143 vd->vdev_slow_io_n = intval;
6144 break;
6145 case VDEV_PROP_SLOW_IO_T:
6146 if (nvpair_value_uint64(elem, &intval) != 0) {
6147 error = EINVAL;
6148 break;
6149 }
6150 vd->vdev_slow_io_t = intval;
6151 break;
6152 default:
6153 /* Most processing is done in vdev_props_set_sync */
6154 break;
6155 }
6156 end:
6157 if (error != 0) {
6158 intval = error;
6159 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6160 return (error);
6161 }
6162 }
6163
6164 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6165 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6166 }
6167
6168 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6169 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6170 {
6171 spa_t *spa = vd->vdev_spa;
6172 objset_t *mos = spa->spa_meta_objset;
6173 int err = 0;
6174 uint64_t objid;
6175 uint64_t vdev_guid;
6176 nvpair_t *elem = NULL;
6177 nvlist_t *nvprops = NULL;
6178 uint64_t intval = 0;
6179 char *strval = NULL;
6180 const char *propname = NULL;
6181 vdev_prop_t prop;
6182
6183 ASSERT(vd != NULL);
6184 ASSERT(mos != NULL);
6185
6186 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6187 &vdev_guid) != 0)
6188 return (SET_ERROR(EINVAL));
6189
6190 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6191
6192 if (vd->vdev_root_zap != 0) {
6193 objid = vd->vdev_root_zap;
6194 } else if (vd->vdev_top_zap != 0) {
6195 objid = vd->vdev_top_zap;
6196 } else if (vd->vdev_leaf_zap != 0) {
6197 objid = vd->vdev_leaf_zap;
6198 } else {
6199 return (SET_ERROR(EINVAL));
6200 }
6201 ASSERT(objid != 0);
6202
6203 mutex_enter(&spa->spa_props_lock);
6204
6205 if (nvprops != NULL) {
6206 char namebuf[64] = { 0 };
6207
6208 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6209 intval = 0;
6210 strval = NULL;
6211 propname = nvpair_name(elem);
6212 prop = vdev_name_to_prop(propname);
6213 zprop_source_t src = ZPROP_SRC_DEFAULT;
6214 uint64_t integer_size, num_integers;
6215
6216 switch (prop) {
6217 /* Special Read-only Properties */
6218 case VDEV_PROP_NAME:
6219 strval = vdev_name(vd, namebuf,
6220 sizeof (namebuf));
6221 if (strval == NULL)
6222 continue;
6223 vdev_prop_add_list(outnvl, propname, strval, 0,
6224 ZPROP_SRC_NONE);
6225 continue;
6226 case VDEV_PROP_CAPACITY:
6227 /* percent used */
6228 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6229 (vd->vdev_stat.vs_alloc * 100 /
6230 vd->vdev_stat.vs_dspace);
6231 vdev_prop_add_list(outnvl, propname, NULL,
6232 intval, ZPROP_SRC_NONE);
6233 continue;
6234 case VDEV_PROP_STATE:
6235 vdev_prop_add_list(outnvl, propname, NULL,
6236 vd->vdev_state, ZPROP_SRC_NONE);
6237 continue;
6238 case VDEV_PROP_GUID:
6239 vdev_prop_add_list(outnvl, propname, NULL,
6240 vd->vdev_guid, ZPROP_SRC_NONE);
6241 continue;
6242 case VDEV_PROP_ASIZE:
6243 vdev_prop_add_list(outnvl, propname, NULL,
6244 vd->vdev_asize, ZPROP_SRC_NONE);
6245 continue;
6246 case VDEV_PROP_PSIZE:
6247 vdev_prop_add_list(outnvl, propname, NULL,
6248 vd->vdev_psize, ZPROP_SRC_NONE);
6249 continue;
6250 case VDEV_PROP_ASHIFT:
6251 vdev_prop_add_list(outnvl, propname, NULL,
6252 vd->vdev_ashift, ZPROP_SRC_NONE);
6253 continue;
6254 case VDEV_PROP_SIZE:
6255 vdev_prop_add_list(outnvl, propname, NULL,
6256 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6257 continue;
6258 case VDEV_PROP_FREE:
6259 vdev_prop_add_list(outnvl, propname, NULL,
6260 vd->vdev_stat.vs_dspace -
6261 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6262 continue;
6263 case VDEV_PROP_ALLOCATED:
6264 vdev_prop_add_list(outnvl, propname, NULL,
6265 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6266 continue;
6267 case VDEV_PROP_EXPANDSZ:
6268 vdev_prop_add_list(outnvl, propname, NULL,
6269 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6270 continue;
6271 case VDEV_PROP_FRAGMENTATION:
6272 vdev_prop_add_list(outnvl, propname, NULL,
6273 vd->vdev_stat.vs_fragmentation,
6274 ZPROP_SRC_NONE);
6275 continue;
6276 case VDEV_PROP_PARITY:
6277 vdev_prop_add_list(outnvl, propname, NULL,
6278 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6279 continue;
6280 case VDEV_PROP_PATH:
6281 if (vd->vdev_path == NULL)
6282 continue;
6283 vdev_prop_add_list(outnvl, propname,
6284 vd->vdev_path, 0, ZPROP_SRC_NONE);
6285 continue;
6286 case VDEV_PROP_DEVID:
6287 if (vd->vdev_devid == NULL)
6288 continue;
6289 vdev_prop_add_list(outnvl, propname,
6290 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6291 continue;
6292 case VDEV_PROP_PHYS_PATH:
6293 if (vd->vdev_physpath == NULL)
6294 continue;
6295 vdev_prop_add_list(outnvl, propname,
6296 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6297 continue;
6298 case VDEV_PROP_ENC_PATH:
6299 if (vd->vdev_enc_sysfs_path == NULL)
6300 continue;
6301 vdev_prop_add_list(outnvl, propname,
6302 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6303 continue;
6304 case VDEV_PROP_FRU:
6305 if (vd->vdev_fru == NULL)
6306 continue;
6307 vdev_prop_add_list(outnvl, propname,
6308 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6309 continue;
6310 case VDEV_PROP_PARENT:
6311 if (vd->vdev_parent != NULL) {
6312 strval = vdev_name(vd->vdev_parent,
6313 namebuf, sizeof (namebuf));
6314 vdev_prop_add_list(outnvl, propname,
6315 strval, 0, ZPROP_SRC_NONE);
6316 }
6317 continue;
6318 case VDEV_PROP_CHILDREN:
6319 if (vd->vdev_children > 0)
6320 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6321 KM_SLEEP);
6322 for (uint64_t i = 0; i < vd->vdev_children;
6323 i++) {
6324 const char *vname;
6325
6326 vname = vdev_name(vd->vdev_child[i],
6327 namebuf, sizeof (namebuf));
6328 if (vname == NULL)
6329 vname = "(unknown)";
6330 if (strlen(strval) > 0)
6331 strlcat(strval, ",",
6332 ZAP_MAXVALUELEN);
6333 strlcat(strval, vname, ZAP_MAXVALUELEN);
6334 }
6335 if (strval != NULL) {
6336 vdev_prop_add_list(outnvl, propname,
6337 strval, 0, ZPROP_SRC_NONE);
6338 kmem_free(strval, ZAP_MAXVALUELEN);
6339 }
6340 continue;
6341 case VDEV_PROP_NUMCHILDREN:
6342 vdev_prop_add_list(outnvl, propname, NULL,
6343 vd->vdev_children, ZPROP_SRC_NONE);
6344 continue;
6345 case VDEV_PROP_READ_ERRORS:
6346 vdev_prop_add_list(outnvl, propname, NULL,
6347 vd->vdev_stat.vs_read_errors,
6348 ZPROP_SRC_NONE);
6349 continue;
6350 case VDEV_PROP_WRITE_ERRORS:
6351 vdev_prop_add_list(outnvl, propname, NULL,
6352 vd->vdev_stat.vs_write_errors,
6353 ZPROP_SRC_NONE);
6354 continue;
6355 case VDEV_PROP_CHECKSUM_ERRORS:
6356 vdev_prop_add_list(outnvl, propname, NULL,
6357 vd->vdev_stat.vs_checksum_errors,
6358 ZPROP_SRC_NONE);
6359 continue;
6360 case VDEV_PROP_INITIALIZE_ERRORS:
6361 vdev_prop_add_list(outnvl, propname, NULL,
6362 vd->vdev_stat.vs_initialize_errors,
6363 ZPROP_SRC_NONE);
6364 continue;
6365 case VDEV_PROP_TRIM_ERRORS:
6366 vdev_prop_add_list(outnvl, propname, NULL,
6367 vd->vdev_stat.vs_trim_errors,
6368 ZPROP_SRC_NONE);
6369 continue;
6370 case VDEV_PROP_SLOW_IOS:
6371 vdev_prop_add_list(outnvl, propname, NULL,
6372 vd->vdev_stat.vs_slow_ios,
6373 ZPROP_SRC_NONE);
6374 continue;
6375 case VDEV_PROP_OPS_NULL:
6376 vdev_prop_add_list(outnvl, propname, NULL,
6377 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6378 ZPROP_SRC_NONE);
6379 continue;
6380 case VDEV_PROP_OPS_READ:
6381 vdev_prop_add_list(outnvl, propname, NULL,
6382 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6383 ZPROP_SRC_NONE);
6384 continue;
6385 case VDEV_PROP_OPS_WRITE:
6386 vdev_prop_add_list(outnvl, propname, NULL,
6387 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6388 ZPROP_SRC_NONE);
6389 continue;
6390 case VDEV_PROP_OPS_FREE:
6391 vdev_prop_add_list(outnvl, propname, NULL,
6392 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6393 ZPROP_SRC_NONE);
6394 continue;
6395 case VDEV_PROP_OPS_CLAIM:
6396 vdev_prop_add_list(outnvl, propname, NULL,
6397 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6398 ZPROP_SRC_NONE);
6399 continue;
6400 case VDEV_PROP_OPS_TRIM:
6401 /*
6402 * TRIM ops and bytes are reported to user
6403 * space as ZIO_TYPE_FLUSH. This is done to
6404 * preserve the vdev_stat_t structure layout
6405 * for user space.
6406 */
6407 vdev_prop_add_list(outnvl, propname, NULL,
6408 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6409 ZPROP_SRC_NONE);
6410 continue;
6411 case VDEV_PROP_BYTES_NULL:
6412 vdev_prop_add_list(outnvl, propname, NULL,
6413 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6414 ZPROP_SRC_NONE);
6415 continue;
6416 case VDEV_PROP_BYTES_READ:
6417 vdev_prop_add_list(outnvl, propname, NULL,
6418 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6419 ZPROP_SRC_NONE);
6420 continue;
6421 case VDEV_PROP_BYTES_WRITE:
6422 vdev_prop_add_list(outnvl, propname, NULL,
6423 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6424 ZPROP_SRC_NONE);
6425 continue;
6426 case VDEV_PROP_BYTES_FREE:
6427 vdev_prop_add_list(outnvl, propname, NULL,
6428 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6429 ZPROP_SRC_NONE);
6430 continue;
6431 case VDEV_PROP_BYTES_CLAIM:
6432 vdev_prop_add_list(outnvl, propname, NULL,
6433 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6434 ZPROP_SRC_NONE);
6435 continue;
6436 case VDEV_PROP_BYTES_TRIM:
6437 /*
6438 * TRIM ops and bytes are reported to user
6439 * space as ZIO_TYPE_FLUSH. This is done to
6440 * preserve the vdev_stat_t structure layout
6441 * for user space.
6442 */
6443 vdev_prop_add_list(outnvl, propname, NULL,
6444 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6445 ZPROP_SRC_NONE);
6446 continue;
6447 case VDEV_PROP_REMOVING:
6448 vdev_prop_add_list(outnvl, propname, NULL,
6449 vd->vdev_removing, ZPROP_SRC_NONE);
6450 continue;
6451 case VDEV_PROP_RAIDZ_EXPANDING:
6452 /* Only expose this for raidz */
6453 if (vd->vdev_ops == &vdev_raidz_ops) {
6454 vdev_prop_add_list(outnvl, propname,
6455 NULL, vd->vdev_rz_expanding,
6456 ZPROP_SRC_NONE);
6457 }
6458 continue;
6459 case VDEV_PROP_TRIM_SUPPORT:
6460 /* only valid for leaf vdevs */
6461 if (vd->vdev_ops->vdev_op_leaf) {
6462 vdev_prop_add_list(outnvl, propname,
6463 NULL, vd->vdev_has_trim,
6464 ZPROP_SRC_NONE);
6465 }
6466 continue;
6467 /* Numeric Properites */
6468 case VDEV_PROP_ALLOCATING:
6469 /* Leaf vdevs cannot have this property */
6470 if (vd->vdev_mg == NULL &&
6471 vd->vdev_top != NULL) {
6472 src = ZPROP_SRC_NONE;
6473 intval = ZPROP_BOOLEAN_NA;
6474 } else {
6475 err = vdev_prop_get_int(vd, prop,
6476 &intval);
6477 if (err && err != ENOENT)
6478 break;
6479
6480 if (intval ==
6481 vdev_prop_default_numeric(prop))
6482 src = ZPROP_SRC_DEFAULT;
6483 else
6484 src = ZPROP_SRC_LOCAL;
6485 }
6486
6487 vdev_prop_add_list(outnvl, propname, NULL,
6488 intval, src);
6489 break;
6490 case VDEV_PROP_FAILFAST:
6491 src = ZPROP_SRC_LOCAL;
6492 strval = NULL;
6493
6494 err = zap_lookup(mos, objid, nvpair_name(elem),
6495 sizeof (uint64_t), 1, &intval);
6496 if (err == ENOENT) {
6497 intval = vdev_prop_default_numeric(
6498 prop);
6499 err = 0;
6500 } else if (err) {
6501 break;
6502 }
6503 if (intval == vdev_prop_default_numeric(prop))
6504 src = ZPROP_SRC_DEFAULT;
6505
6506 vdev_prop_add_list(outnvl, propname, strval,
6507 intval, src);
6508 break;
6509 case VDEV_PROP_CHECKSUM_N:
6510 case VDEV_PROP_CHECKSUM_T:
6511 case VDEV_PROP_IO_N:
6512 case VDEV_PROP_IO_T:
6513 case VDEV_PROP_SLOW_IO_N:
6514 case VDEV_PROP_SLOW_IO_T:
6515 err = vdev_prop_get_int(vd, prop, &intval);
6516 if (err && err != ENOENT)
6517 break;
6518
6519 if (intval == vdev_prop_default_numeric(prop))
6520 src = ZPROP_SRC_DEFAULT;
6521 else
6522 src = ZPROP_SRC_LOCAL;
6523
6524 vdev_prop_add_list(outnvl, propname, NULL,
6525 intval, src);
6526 break;
6527 /* Text Properties */
6528 case VDEV_PROP_COMMENT:
6529 /* Exists in the ZAP below */
6530 /* FALLTHRU */
6531 case VDEV_PROP_USERPROP:
6532 /* User Properites */
6533 src = ZPROP_SRC_LOCAL;
6534
6535 err = zap_length(mos, objid, nvpair_name(elem),
6536 &integer_size, &num_integers);
6537 if (err)
6538 break;
6539
6540 switch (integer_size) {
6541 case 8:
6542 /* User properties cannot be integers */
6543 err = EINVAL;
6544 break;
6545 case 1:
6546 /* string property */
6547 strval = kmem_alloc(num_integers,
6548 KM_SLEEP);
6549 err = zap_lookup(mos, objid,
6550 nvpair_name(elem), 1,
6551 num_integers, strval);
6552 if (err) {
6553 kmem_free(strval,
6554 num_integers);
6555 break;
6556 }
6557 vdev_prop_add_list(outnvl, propname,
6558 strval, 0, src);
6559 kmem_free(strval, num_integers);
6560 break;
6561 }
6562 break;
6563 default:
6564 err = ENOENT;
6565 break;
6566 }
6567 if (err)
6568 break;
6569 }
6570 } else {
6571 /*
6572 * Get all properties from the MOS vdev property object.
6573 */
6574 zap_cursor_t zc;
6575 zap_attribute_t *za = zap_attribute_alloc();
6576 for (zap_cursor_init(&zc, mos, objid);
6577 (err = zap_cursor_retrieve(&zc, za)) == 0;
6578 zap_cursor_advance(&zc)) {
6579 intval = 0;
6580 strval = NULL;
6581 zprop_source_t src = ZPROP_SRC_DEFAULT;
6582 propname = za->za_name;
6583
6584 switch (za->za_integer_length) {
6585 case 8:
6586 /* We do not allow integer user properties */
6587 /* This is likely an internal value */
6588 break;
6589 case 1:
6590 /* string property */
6591 strval = kmem_alloc(za->za_num_integers,
6592 KM_SLEEP);
6593 err = zap_lookup(mos, objid, za->za_name, 1,
6594 za->za_num_integers, strval);
6595 if (err) {
6596 kmem_free(strval, za->za_num_integers);
6597 break;
6598 }
6599 vdev_prop_add_list(outnvl, propname, strval, 0,
6600 src);
6601 kmem_free(strval, za->za_num_integers);
6602 break;
6603
6604 default:
6605 break;
6606 }
6607 }
6608 zap_cursor_fini(&zc);
6609 zap_attribute_free(za);
6610 }
6611
6612 mutex_exit(&spa->spa_props_lock);
6613 if (err && err != ENOENT) {
6614 return (err);
6615 }
6616
6617 return (0);
6618 }
6619
6620 EXPORT_SYMBOL(vdev_fault);
6621 EXPORT_SYMBOL(vdev_degrade);
6622 EXPORT_SYMBOL(vdev_online);
6623 EXPORT_SYMBOL(vdev_offline);
6624 EXPORT_SYMBOL(vdev_clear);
6625
6626 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6627 "Target number of metaslabs per top-level vdev");
6628
6629 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6630 "Default lower limit for metaslab size");
6631
6632 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6633 "Default upper limit for metaslab size");
6634
6635 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6636 "Minimum number of metaslabs per top-level vdev");
6637
6638 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6639 "Practical upper limit of total metaslabs per top-level vdev");
6640
6641 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6642 "Rate limit slow IO (delay) events to this many per second");
6643
6644 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6645 "Rate limit hung IO (deadman) events to this many per second");
6646
6647 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6648 "Rate Direct I/O write verify events to this many per second");
6649
6650 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6651 "Direct I/O writes will perform for checksum verification before "
6652 "commiting write");
6653
6654 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6655 "Rate limit checksum events to this many checksum errors per second "
6656 "(do not set below ZED threshold).");
6657
6658 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6659 "Ignore errors during resilver/scrub");
6660
6661 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6662 "Bypass vdev_validate()");
6663
6664 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6665 "Disable cache flushes");
6666
6667 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6668 "Minimum number of metaslabs required to dedicate one for log blocks");
6669
6670 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6671 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6672 "Minimum ashift used when creating new top-level vdevs");
6673
6674 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6675 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6676 "Maximum ashift used when optimizing for logical -> physical sector "
6677 "size on new top-level vdevs");
6678
6679 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6680 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6681 "RAIDZ implementation");
6682