1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2019, Datto Inc. All rights reserved.
32 * Copyright (c) 2021, 2025, Klara, Inc.
33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66
67 /*
68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70 * part of the spa_embedded_log_class. The metaslab with the most free space
71 * in each vdev is selected for this purpose when the pool is opened (or a
72 * vdev is added). See vdev_metaslab_init().
73 *
74 * Log blocks can be allocated from the following locations. Each one is tried
75 * in order until the allocation succeeds:
76 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77 * 2. embedded slog metaslabs (spa_embedded_log_class)
78 * 3. other metaslabs in normal vdevs (spa_normal_class)
79 *
80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81 * than this number of metaslabs in the vdev. This ensures that we don't set
82 * aside an unreasonable amount of space for the ZIL. If set to less than
83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85 */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102
103 int vdev_validate_skip = B_FALSE;
104
105 /*
106 * Since the DTL space map of a vdev is not expected to have a lot of
107 * entries, we default its block size to 4K.
108 */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110
111 /*
112 * Rate limit slow IO (delay) events to this many per second.
113 */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115
116 /*
117 * Rate limit deadman "hung IO" events to this many per second.
118 */
119 static unsigned int zfs_deadman_events_per_second = 1;
120
121 /*
122 * Rate limit direct write IO verify failures to this many per scond.
123 */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125
126 /*
127 * Rate limit checksum events after this many checksum errors per second.
128 */
129 static unsigned int zfs_checksum_events_per_second = 20;
130
131 /*
132 * Ignore errors during scrub/resilver. Allows to work around resilver
133 * upon import when there are pool errors.
134 */
135 static int zfs_scan_ignore_errors = 0;
136
137 /*
138 * vdev-wide space maps that have lots of entries written to them at
139 * the end of each transaction can benefit from a higher I/O bandwidth
140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141 */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143
144 /*
145 * Tunable parameter for debugging or performance analysis. Setting this
146 * will cause pool corruption on power loss if a volatile out-of-order
147 * write cache is enabled.
148 */
149 int zfs_nocacheflush = 0;
150
151 /*
152 * Maximum and minimum ashift values that can be automatically set based on
153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
154 * is higher than the maximum value, it is intentionally limited here to not
155 * excessively impact pool space efficiency. Higher ashift values may still
156 * be forced by vdev logical ashift or by user via ashift property, but won't
157 * be set automatically as a performance optimization.
158 */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161
162 /*
163 * VDEV checksum verification for Direct I/O writes. This is neccessary for
164 * Linux, because anonymous pages can not be placed under write protection
165 * during Direct I/O writes.
166 */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 va_list adx;
177 char buf[256];
178
179 va_start(adx, fmt);
180 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 va_end(adx);
182
183 if (vd->vdev_path != NULL) {
184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 vd->vdev_path, buf);
186 } else {
187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 vd->vdev_ops->vdev_op_type,
189 (u_longlong_t)vd->vdev_id,
190 (u_longlong_t)vd->vdev_guid, buf);
191 }
192 }
193
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 char state[20];
198
199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 (u_longlong_t)vd->vdev_id,
202 vd->vdev_ops->vdev_op_type);
203 return;
204 }
205
206 switch (vd->vdev_state) {
207 case VDEV_STATE_UNKNOWN:
208 (void) snprintf(state, sizeof (state), "unknown");
209 break;
210 case VDEV_STATE_CLOSED:
211 (void) snprintf(state, sizeof (state), "closed");
212 break;
213 case VDEV_STATE_OFFLINE:
214 (void) snprintf(state, sizeof (state), "offline");
215 break;
216 case VDEV_STATE_REMOVED:
217 (void) snprintf(state, sizeof (state), "removed");
218 break;
219 case VDEV_STATE_CANT_OPEN:
220 (void) snprintf(state, sizeof (state), "can't open");
221 break;
222 case VDEV_STATE_FAULTED:
223 (void) snprintf(state, sizeof (state), "faulted");
224 break;
225 case VDEV_STATE_DEGRADED:
226 (void) snprintf(state, sizeof (state), "degraded");
227 break;
228 case VDEV_STATE_HEALTHY:
229 (void) snprintf(state, sizeof (state), "healthy");
230 break;
231 default:
232 (void) snprintf(state, sizeof (state), "<state %u>",
233 (uint_t)vd->vdev_state);
234 }
235
236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 vd->vdev_islog ? " (log)" : "",
239 (u_longlong_t)vd->vdev_guid,
240 vd->vdev_path ? vd->vdev_path : "N/A", state);
241
242 for (uint64_t i = 0; i < vd->vdev_children; i++)
243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245
246 char *
vdev_rt_name(vdev_t * vd,const char * name)247 vdev_rt_name(vdev_t *vd, const char *name)
248 {
249 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}",
250 spa_name(vd->vdev_spa),
251 (u_longlong_t)vd->vdev_guid,
252 name));
253 }
254
255 static char *
vdev_rt_name_dtl(vdev_t * vd,const char * name,vdev_dtl_type_t dtl_type)256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type)
257 {
258 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}",
259 spa_name(vd->vdev_spa),
260 (u_longlong_t)vd->vdev_guid,
261 name,
262 dtl_type));
263 }
264
265 /*
266 * Virtual device management.
267 */
268
269 static vdev_ops_t *const vdev_ops_table[] = {
270 &vdev_root_ops,
271 &vdev_raidz_ops,
272 &vdev_draid_ops,
273 &vdev_draid_spare_ops,
274 &vdev_mirror_ops,
275 &vdev_replacing_ops,
276 &vdev_spare_ops,
277 &vdev_disk_ops,
278 &vdev_file_ops,
279 &vdev_missing_ops,
280 &vdev_hole_ops,
281 &vdev_indirect_ops,
282 NULL
283 };
284
285 /*
286 * Given a vdev type, return the appropriate ops vector.
287 */
288 static vdev_ops_t *
vdev_getops(const char * type)289 vdev_getops(const char *type)
290 {
291 vdev_ops_t *ops, *const *opspp;
292
293 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
294 if (strcmp(ops->vdev_op_type, type) == 0)
295 break;
296
297 return (ops);
298 }
299
300 /*
301 * Given a vdev and a metaslab class, find which metaslab group we're
302 * interested in. All vdevs may belong to two different metaslab classes.
303 * Dedicated slog devices use only the primary metaslab group, rather than a
304 * separate log group. For embedded slogs, vdev_log_mg will be non-NULL and
305 * will point to a metaslab group of either embedded_log_class (for normal
306 * vdevs) or special_embedded_log_class (for special vdevs).
307 */
308 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
310 {
311 if ((mc == spa_embedded_log_class(vd->vdev_spa) ||
312 mc == spa_special_embedded_log_class(vd->vdev_spa)) &&
313 vd->vdev_log_mg != NULL)
314 return (vd->vdev_log_mg);
315 else
316 return (vd->vdev_mg);
317 }
318
319 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
321 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
322 {
323 (void) vd, (void) remain_rs;
324
325 physical_rs->rs_start = logical_rs->rs_start;
326 physical_rs->rs_end = logical_rs->rs_end;
327 }
328
329 /*
330 * Derive the enumerated allocation bias from string input.
331 * String origin is either the per-vdev zap or zpool(8).
332 */
333 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)334 vdev_derive_alloc_bias(const char *bias)
335 {
336 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
337
338 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
339 alloc_bias = VDEV_BIAS_LOG;
340 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
341 alloc_bias = VDEV_BIAS_SPECIAL;
342 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
343 alloc_bias = VDEV_BIAS_DEDUP;
344
345 return (alloc_bias);
346 }
347
348 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
350 {
351 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
352 uint64_t csize, psize = asize;
353 for (int c = 0; c < vd->vdev_children; c++) {
354 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
355 psize = MIN(psize, csize);
356 }
357
358 return (psize);
359 }
360
361 /*
362 * Default asize function: return the MAX of psize with the asize of
363 * all children. This is what's used by anything other than RAID-Z.
364 */
365 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
367 {
368 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
369 uint64_t csize;
370
371 for (int c = 0; c < vd->vdev_children; c++) {
372 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
373 asize = MAX(asize, csize);
374 }
375
376 return (asize);
377 }
378
379 uint64_t
vdev_default_min_asize(vdev_t * vd)380 vdev_default_min_asize(vdev_t *vd)
381 {
382 return (vd->vdev_min_asize);
383 }
384
385 /*
386 * Get the minimum allocatable size. We define the allocatable size as
387 * the vdev's asize rounded to the nearest metaslab. This allows us to
388 * replace or attach devices which don't have the same physical size but
389 * can still satisfy the same number of allocations.
390 */
391 uint64_t
vdev_get_min_asize(vdev_t * vd)392 vdev_get_min_asize(vdev_t *vd)
393 {
394 vdev_t *pvd = vd->vdev_parent;
395
396 /*
397 * If our parent is NULL (inactive spare or cache) or is the root,
398 * just return our own asize.
399 */
400 if (pvd == NULL)
401 return (vd->vdev_asize);
402
403 /*
404 * The top-level vdev just returns the allocatable size rounded
405 * to the nearest metaslab.
406 */
407 if (vd == vd->vdev_top)
408 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
409 uint64_t));
410
411 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
412 }
413
414 void
vdev_set_min_asize(vdev_t * vd)415 vdev_set_min_asize(vdev_t *vd)
416 {
417 vd->vdev_min_asize = vdev_get_min_asize(vd);
418
419 for (int c = 0; c < vd->vdev_children; c++)
420 vdev_set_min_asize(vd->vdev_child[c]);
421 }
422
423 /*
424 * Get the minimal allocation size for the top-level vdev.
425 */
426 uint64_t
vdev_get_min_alloc(vdev_t * vd)427 vdev_get_min_alloc(vdev_t *vd)
428 {
429 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
430
431 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
432 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
433
434 return (min_alloc);
435 }
436
437 /*
438 * Get the parity level for a top-level vdev.
439 */
440 uint64_t
vdev_get_nparity(vdev_t * vd)441 vdev_get_nparity(vdev_t *vd)
442 {
443 uint64_t nparity = 0;
444
445 if (vd->vdev_ops->vdev_op_nparity != NULL)
446 nparity = vd->vdev_ops->vdev_op_nparity(vd);
447
448 return (nparity);
449 }
450
451 static int
vdev_prop_get_objid(vdev_t * vd,uint64_t * objid)452 vdev_prop_get_objid(vdev_t *vd, uint64_t *objid)
453 {
454
455 if (vd->vdev_root_zap != 0) {
456 *objid = vd->vdev_root_zap;
457 } else if (vd->vdev_top_zap != 0) {
458 *objid = vd->vdev_top_zap;
459 } else if (vd->vdev_leaf_zap != 0) {
460 *objid = vd->vdev_leaf_zap;
461 } else {
462 return (EINVAL);
463 }
464
465 return (0);
466 }
467
468 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)469 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
470 {
471 spa_t *spa = vd->vdev_spa;
472 objset_t *mos = spa->spa_meta_objset;
473 uint64_t objid;
474 int err;
475
476 if (vdev_prop_get_objid(vd, &objid) != 0)
477 return (EINVAL);
478
479 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
480 sizeof (uint64_t), 1, value);
481 if (err == ENOENT)
482 *value = vdev_prop_default_numeric(prop);
483
484 return (err);
485 }
486
487 static int
vdev_prop_get_bool(vdev_t * vd,vdev_prop_t prop,boolean_t * bvalue)488 vdev_prop_get_bool(vdev_t *vd, vdev_prop_t prop, boolean_t *bvalue)
489 {
490 int err;
491 uint64_t ivalue;
492
493 err = vdev_prop_get_int(vd, prop, &ivalue);
494 *bvalue = ivalue != 0;
495
496 return (err);
497 }
498
499 /*
500 * Get the number of data disks for a top-level vdev.
501 */
502 uint64_t
vdev_get_ndisks(vdev_t * vd)503 vdev_get_ndisks(vdev_t *vd)
504 {
505 uint64_t ndisks = 1;
506
507 if (vd->vdev_ops->vdev_op_ndisks != NULL)
508 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
509
510 return (ndisks);
511 }
512
513 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)514 vdev_lookup_top(spa_t *spa, uint64_t vdev)
515 {
516 vdev_t *rvd = spa->spa_root_vdev;
517
518 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
519
520 if (vdev < rvd->vdev_children) {
521 ASSERT(rvd->vdev_child[vdev] != NULL);
522 return (rvd->vdev_child[vdev]);
523 }
524
525 return (NULL);
526 }
527
528 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)529 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
530 {
531 vdev_t *mvd;
532
533 if (vd->vdev_guid == guid)
534 return (vd);
535
536 for (int c = 0; c < vd->vdev_children; c++)
537 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
538 NULL)
539 return (mvd);
540
541 return (NULL);
542 }
543
544 static int
vdev_count_leaves_impl(vdev_t * vd)545 vdev_count_leaves_impl(vdev_t *vd)
546 {
547 int n = 0;
548
549 if (vd->vdev_ops->vdev_op_leaf)
550 return (1);
551
552 for (int c = 0; c < vd->vdev_children; c++)
553 n += vdev_count_leaves_impl(vd->vdev_child[c]);
554
555 return (n);
556 }
557
558 int
vdev_count_leaves(spa_t * spa)559 vdev_count_leaves(spa_t *spa)
560 {
561 int rc;
562
563 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
564 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
565 spa_config_exit(spa, SCL_VDEV, FTAG);
566
567 return (rc);
568 }
569
570 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)571 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
572 {
573 size_t oldsize, newsize;
574 uint64_t id = cvd->vdev_id;
575 vdev_t **newchild;
576
577 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
578 ASSERT0P(cvd->vdev_parent);
579
580 cvd->vdev_parent = pvd;
581
582 if (pvd == NULL)
583 return;
584
585 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
586
587 oldsize = pvd->vdev_children * sizeof (vdev_t *);
588 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
589 newsize = pvd->vdev_children * sizeof (vdev_t *);
590
591 newchild = kmem_alloc(newsize, KM_SLEEP);
592 if (pvd->vdev_child != NULL) {
593 memcpy(newchild, pvd->vdev_child, oldsize);
594 kmem_free(pvd->vdev_child, oldsize);
595 }
596
597 pvd->vdev_child = newchild;
598 pvd->vdev_child[id] = cvd;
599 pvd->vdev_nonrot &= cvd->vdev_nonrot;
600
601 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
602 ASSERT0P(cvd->vdev_top->vdev_parent->vdev_parent);
603
604 /*
605 * Walk up all ancestors to update guid sum.
606 */
607 for (; pvd != NULL; pvd = pvd->vdev_parent)
608 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
609
610 if (cvd->vdev_ops->vdev_op_leaf) {
611 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
612 cvd->vdev_spa->spa_leaf_list_gen++;
613 }
614 }
615
616 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)617 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
618 {
619 int c;
620 uint_t id = cvd->vdev_id;
621
622 ASSERT(cvd->vdev_parent == pvd);
623
624 if (pvd == NULL)
625 return;
626
627 ASSERT(id < pvd->vdev_children);
628 ASSERT(pvd->vdev_child[id] == cvd);
629
630 pvd->vdev_child[id] = NULL;
631 cvd->vdev_parent = NULL;
632
633 for (c = 0; c < pvd->vdev_children; c++)
634 if (pvd->vdev_child[c])
635 break;
636
637 if (c == pvd->vdev_children) {
638 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
639 pvd->vdev_child = NULL;
640 pvd->vdev_children = 0;
641 }
642
643 if (cvd->vdev_ops->vdev_op_leaf) {
644 spa_t *spa = cvd->vdev_spa;
645 list_remove(&spa->spa_leaf_list, cvd);
646 spa->spa_leaf_list_gen++;
647 }
648
649 /*
650 * Walk up all ancestors to update guid sum.
651 */
652 for (; pvd != NULL; pvd = pvd->vdev_parent)
653 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
654 }
655
656 /*
657 * Remove any holes in the child array.
658 */
659 void
vdev_compact_children(vdev_t * pvd)660 vdev_compact_children(vdev_t *pvd)
661 {
662 vdev_t **newchild, *cvd;
663 int oldc = pvd->vdev_children;
664 int newc;
665
666 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
667
668 if (oldc == 0)
669 return;
670
671 for (int c = newc = 0; c < oldc; c++)
672 if (pvd->vdev_child[c])
673 newc++;
674
675 if (newc > 0) {
676 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
677
678 for (int c = newc = 0; c < oldc; c++) {
679 if ((cvd = pvd->vdev_child[c]) != NULL) {
680 newchild[newc] = cvd;
681 cvd->vdev_id = newc++;
682 }
683 }
684 } else {
685 newchild = NULL;
686 }
687
688 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
689 pvd->vdev_child = newchild;
690 pvd->vdev_children = newc;
691 }
692
693 /*
694 * Allocate and minimally initialize a vdev_t.
695 */
696 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)697 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
698 {
699 vdev_t *vd;
700 vdev_indirect_config_t *vic;
701
702 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
703 vic = &vd->vdev_indirect_config;
704
705 if (spa->spa_root_vdev == NULL) {
706 ASSERT(ops == &vdev_root_ops);
707 spa->spa_root_vdev = vd;
708 spa->spa_load_guid = spa_generate_load_guid();
709 }
710
711 if (guid == 0 && ops != &vdev_hole_ops) {
712 if (spa->spa_root_vdev == vd) {
713 /*
714 * The root vdev's guid will also be the pool guid,
715 * which must be unique among all pools.
716 */
717 guid = spa_generate_guid(NULL);
718 } else {
719 /*
720 * Any other vdev's guid must be unique within the pool.
721 */
722 guid = spa_generate_guid(spa);
723 }
724 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
725 }
726
727 vd->vdev_spa = spa;
728 vd->vdev_id = id;
729 vd->vdev_guid = guid;
730 vd->vdev_guid_sum = guid;
731 vd->vdev_ops = ops;
732 vd->vdev_state = VDEV_STATE_CLOSED;
733 vd->vdev_ishole = (ops == &vdev_hole_ops);
734 vic->vic_prev_indirect_vdev = UINT64_MAX;
735
736 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
737 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
738 vd->vdev_obsolete_segments = zfs_range_tree_create_flags(
739 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
740 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments"));
741
742 /*
743 * Initialize rate limit structs for events. We rate limit ZIO delay
744 * and checksum events so that we don't overwhelm ZED with thousands
745 * of events when a disk is acting up.
746 */
747 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
748 1);
749 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
750 1);
751 zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
752 &zfs_dio_write_verify_events_per_second, 1);
753 zfs_ratelimit_init(&vd->vdev_checksum_rl,
754 &zfs_checksum_events_per_second, 1);
755
756 /*
757 * Default Thresholds for tuning ZED
758 */
759 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
760 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
761
762 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
763 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
764
765 vd->vdev_slow_io_events = vdev_prop_default_numeric(
766 VDEV_PROP_SLOW_IO_EVENTS);
767 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
768 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
769
770 list_link_init(&vd->vdev_config_dirty_node);
771 list_link_init(&vd->vdev_state_dirty_node);
772 list_link_init(&vd->vdev_initialize_node);
773 list_link_init(&vd->vdev_leaf_node);
774 list_link_init(&vd->vdev_trim_node);
775
776 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
777 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
778 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
779 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
780
781 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
782 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
783 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
784 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
785
786 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
787 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
788 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
789 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
790 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
791 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
792 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
793
794 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
795 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
796
797 for (int t = 0; t < DTL_TYPES; t++) {
798 vd->vdev_dtl[t] = zfs_range_tree_create_flags(
799 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
800 ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t));
801 }
802
803 txg_list_create(&vd->vdev_ms_list, spa,
804 offsetof(struct metaslab, ms_txg_node));
805 txg_list_create(&vd->vdev_dtl_list, spa,
806 offsetof(struct vdev, vdev_dtl_node));
807 vd->vdev_stat.vs_timestamp = gethrtime();
808 vdev_queue_init(vd);
809
810 return (vd);
811 }
812
813 /*
814 * Allocate a new vdev. The 'alloctype' is used to control whether we are
815 * creating a new vdev or loading an existing one - the behavior is slightly
816 * different for each case.
817 */
818 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)819 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
820 int alloctype)
821 {
822 vdev_ops_t *ops;
823 const char *type;
824 uint64_t guid = 0, islog;
825 vdev_t *vd;
826 vdev_indirect_config_t *vic;
827 const char *tmp = NULL;
828 int rc;
829 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
830 boolean_t top_level = (parent && !parent->vdev_parent);
831
832 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
833
834 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
835 return (SET_ERROR(EINVAL));
836
837 if ((ops = vdev_getops(type)) == NULL)
838 return (SET_ERROR(EINVAL));
839
840 /*
841 * If this is a load, get the vdev guid from the nvlist.
842 * Otherwise, vdev_alloc_common() will generate one for us.
843 */
844 if (alloctype == VDEV_ALLOC_LOAD) {
845 uint64_t label_id;
846
847 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
848 label_id != id)
849 return (SET_ERROR(EINVAL));
850
851 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
852 return (SET_ERROR(EINVAL));
853 } else if (alloctype == VDEV_ALLOC_SPARE) {
854 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
855 return (SET_ERROR(EINVAL));
856 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
857 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
858 return (SET_ERROR(EINVAL));
859 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
860 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
861 return (SET_ERROR(EINVAL));
862 }
863
864 /*
865 * The first allocated vdev must be of type 'root'.
866 */
867 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
868 return (SET_ERROR(EINVAL));
869
870 /*
871 * Determine whether we're a log vdev.
872 */
873 islog = 0;
874 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
875 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
876 return (SET_ERROR(ENOTSUP));
877
878 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
879 return (SET_ERROR(ENOTSUP));
880
881 if (top_level && alloctype == VDEV_ALLOC_ADD) {
882 const char *bias;
883
884 /*
885 * If creating a top-level vdev, check for allocation
886 * classes input.
887 */
888 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
889 &bias) == 0) {
890 alloc_bias = vdev_derive_alloc_bias(bias);
891
892 /* spa_vdev_add() expects feature to be enabled */
893 if (spa->spa_load_state != SPA_LOAD_CREATE &&
894 !spa_feature_is_enabled(spa,
895 SPA_FEATURE_ALLOCATION_CLASSES)) {
896 return (SET_ERROR(ENOTSUP));
897 }
898 }
899
900 /* spa_vdev_add() expects feature to be enabled */
901 if (ops == &vdev_draid_ops &&
902 spa->spa_load_state != SPA_LOAD_CREATE &&
903 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
904 return (SET_ERROR(ENOTSUP));
905 }
906 }
907
908 /*
909 * Initialize the vdev specific data. This is done before calling
910 * vdev_alloc_common() since it may fail and this simplifies the
911 * error reporting and cleanup code paths.
912 */
913 void *tsd = NULL;
914 if (ops->vdev_op_init != NULL) {
915 rc = ops->vdev_op_init(spa, nv, &tsd);
916 if (rc != 0) {
917 return (rc);
918 }
919 }
920
921 vd = vdev_alloc_common(spa, id, guid, ops);
922 vd->vdev_tsd = tsd;
923 vd->vdev_islog = islog;
924
925 if (top_level && alloc_bias != VDEV_BIAS_NONE)
926 vd->vdev_alloc_bias = alloc_bias;
927
928 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
929 vd->vdev_path = spa_strdup(tmp);
930
931 /*
932 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
933 * fault on a vdev and want it to persist across imports (like with
934 * zpool offline -f).
935 */
936 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
937 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
938 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
939 vd->vdev_faulted = 1;
940 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
941 }
942
943 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
944 vd->vdev_devid = spa_strdup(tmp);
945 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
946 vd->vdev_physpath = spa_strdup(tmp);
947
948 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
949 &tmp) == 0)
950 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
951
952 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
953 vd->vdev_fru = spa_strdup(tmp);
954
955 /*
956 * Set the whole_disk property. If it's not specified, leave the value
957 * as -1.
958 */
959 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
960 &vd->vdev_wholedisk) != 0)
961 vd->vdev_wholedisk = -1ULL;
962
963 vic = &vd->vdev_indirect_config;
964
965 ASSERT0(vic->vic_mapping_object);
966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
967 &vic->vic_mapping_object);
968 ASSERT0(vic->vic_births_object);
969 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
970 &vic->vic_births_object);
971 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
972 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
973 &vic->vic_prev_indirect_vdev);
974
975 /*
976 * Look for the 'not present' flag. This will only be set if the device
977 * was not present at the time of import.
978 */
979 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
980 &vd->vdev_not_present);
981
982 /*
983 * Get the alignment requirement. Ignore pool ashift for vdev
984 * attach case.
985 */
986 if (alloctype != VDEV_ALLOC_ATTACH) {
987 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
988 &vd->vdev_ashift);
989 } else {
990 vd->vdev_attaching = B_TRUE;
991 }
992
993 /*
994 * Retrieve the vdev creation time.
995 */
996 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
997 &vd->vdev_crtxg);
998
999 if (vd->vdev_ops == &vdev_root_ops &&
1000 (alloctype == VDEV_ALLOC_LOAD ||
1001 alloctype == VDEV_ALLOC_SPLIT ||
1002 alloctype == VDEV_ALLOC_ROOTPOOL)) {
1003 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
1004 &vd->vdev_root_zap);
1005 }
1006
1007 /*
1008 * If we're a top-level vdev, try to load the allocation parameters.
1009 */
1010 if (top_level &&
1011 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
1012 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
1013 &vd->vdev_ms_array);
1014 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
1015 &vd->vdev_ms_shift);
1016 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
1017 &vd->vdev_asize);
1018 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
1019 &vd->vdev_noalloc);
1020 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
1021 &vd->vdev_removing);
1022 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
1023 &vd->vdev_top_zap);
1024 vd->vdev_rz_expanding = nvlist_exists(nv,
1025 ZPOOL_CONFIG_RAIDZ_EXPANDING);
1026 } else {
1027 ASSERT0(vd->vdev_top_zap);
1028 }
1029
1030 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
1031 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
1032 alloctype == VDEV_ALLOC_ADD ||
1033 alloctype == VDEV_ALLOC_SPLIT ||
1034 alloctype == VDEV_ALLOC_ROOTPOOL);
1035 /* Note: metaslab_group_create() is now deferred */
1036 }
1037
1038 if (vd->vdev_ops->vdev_op_leaf &&
1039 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
1040 (void) nvlist_lookup_uint64(nv,
1041 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
1042 } else {
1043 ASSERT0(vd->vdev_leaf_zap);
1044 }
1045
1046 /*
1047 * If we're a leaf vdev, try to load the DTL object and other state.
1048 */
1049
1050 if (vd->vdev_ops->vdev_op_leaf &&
1051 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1052 alloctype == VDEV_ALLOC_ROOTPOOL)) {
1053 if (alloctype == VDEV_ALLOC_LOAD) {
1054 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1055 &vd->vdev_dtl_object);
1056 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1057 &vd->vdev_unspare);
1058 }
1059
1060 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1061 uint64_t spare = 0;
1062
1063 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1064 &spare) == 0 && spare)
1065 spa_spare_add(vd);
1066 }
1067
1068 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1069 &vd->vdev_offline);
1070
1071 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1072 &vd->vdev_resilver_txg);
1073
1074 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1075 &vd->vdev_rebuild_txg);
1076
1077 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1078 vdev_defer_resilver(vd);
1079
1080 /*
1081 * In general, when importing a pool we want to ignore the
1082 * persistent fault state, as the diagnosis made on another
1083 * system may not be valid in the current context. The only
1084 * exception is if we forced a vdev to a persistently faulted
1085 * state with 'zpool offline -f'. The persistent fault will
1086 * remain across imports until cleared.
1087 *
1088 * Local vdevs will remain in the faulted state.
1089 */
1090 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1091 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1092 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1093 &vd->vdev_faulted);
1094 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1095 &vd->vdev_degraded);
1096 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1097 &vd->vdev_removed);
1098
1099 if (vd->vdev_faulted || vd->vdev_degraded) {
1100 const char *aux;
1101
1102 vd->vdev_label_aux =
1103 VDEV_AUX_ERR_EXCEEDED;
1104 if (nvlist_lookup_string(nv,
1105 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1106 strcmp(aux, "external") == 0)
1107 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1108 else
1109 vd->vdev_faulted = 0ULL;
1110 }
1111 }
1112 }
1113
1114 if (top_level && (ops == &vdev_raidz_ops || ops == &vdev_draid_ops))
1115 vd->vdev_autosit =
1116 vdev_prop_default_numeric(VDEV_PROP_AUTOSIT);
1117
1118 /*
1119 * Add ourselves to the parent's list of children.
1120 */
1121 vdev_add_child(parent, vd);
1122
1123 *vdp = vd;
1124
1125 return (0);
1126 }
1127
1128 void
vdev_free(vdev_t * vd)1129 vdev_free(vdev_t *vd)
1130 {
1131 spa_t *spa = vd->vdev_spa;
1132
1133 ASSERT0P(vd->vdev_initialize_thread);
1134 ASSERT0P(vd->vdev_trim_thread);
1135 ASSERT0P(vd->vdev_autotrim_thread);
1136 ASSERT0P(vd->vdev_rebuild_thread);
1137
1138 /*
1139 * Scan queues are normally destroyed at the end of a scan. If the
1140 * queue exists here, that implies the vdev is being removed while
1141 * the scan is still running.
1142 */
1143 if (vd->vdev_scan_io_queue != NULL) {
1144 mutex_enter(&vd->vdev_scan_io_queue_lock);
1145 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1146 vd->vdev_scan_io_queue = NULL;
1147 mutex_exit(&vd->vdev_scan_io_queue_lock);
1148 }
1149
1150 /*
1151 * vdev_free() implies closing the vdev first. This is simpler than
1152 * trying to ensure complicated semantics for all callers.
1153 */
1154 vdev_close(vd);
1155
1156 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1157 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1158
1159 /*
1160 * Free all children.
1161 */
1162 for (int c = 0; c < vd->vdev_children; c++)
1163 vdev_free(vd->vdev_child[c]);
1164
1165 ASSERT0P(vd->vdev_child);
1166 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1167
1168 if (vd->vdev_ops->vdev_op_fini != NULL)
1169 vd->vdev_ops->vdev_op_fini(vd);
1170
1171 /*
1172 * Discard allocation state.
1173 */
1174 if (vd->vdev_mg != NULL) {
1175 vdev_metaslab_fini(vd);
1176 metaslab_group_destroy(vd->vdev_mg);
1177 vd->vdev_mg = NULL;
1178 }
1179 if (vd->vdev_log_mg != NULL) {
1180 ASSERT0(vd->vdev_ms_count);
1181 metaslab_group_destroy(vd->vdev_log_mg);
1182 vd->vdev_log_mg = NULL;
1183 }
1184
1185 ASSERT0(vd->vdev_stat.vs_space);
1186 ASSERT0(vd->vdev_stat.vs_dspace);
1187 ASSERT0(vd->vdev_stat.vs_alloc);
1188
1189 /*
1190 * Remove this vdev from its parent's child list.
1191 */
1192 vdev_remove_child(vd->vdev_parent, vd);
1193
1194 ASSERT0P(vd->vdev_parent);
1195 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1196
1197 /*
1198 * Clean up vdev structure.
1199 */
1200 vdev_queue_fini(vd);
1201
1202 if (vd->vdev_path)
1203 spa_strfree(vd->vdev_path);
1204 if (vd->vdev_devid)
1205 spa_strfree(vd->vdev_devid);
1206 if (vd->vdev_physpath)
1207 spa_strfree(vd->vdev_physpath);
1208
1209 if (vd->vdev_enc_sysfs_path)
1210 spa_strfree(vd->vdev_enc_sysfs_path);
1211
1212 if (vd->vdev_fru)
1213 spa_strfree(vd->vdev_fru);
1214
1215 if (vd->vdev_isspare)
1216 spa_spare_remove(vd);
1217 if (vd->vdev_isl2cache)
1218 spa_l2cache_remove(vd);
1219 if (vd->vdev_prev_histo)
1220 kmem_free(vd->vdev_prev_histo,
1221 sizeof (uint64_t) * VDEV_L_HISTO_BUCKETS);
1222
1223 txg_list_destroy(&vd->vdev_ms_list);
1224 txg_list_destroy(&vd->vdev_dtl_list);
1225
1226 mutex_enter(&vd->vdev_dtl_lock);
1227 space_map_close(vd->vdev_dtl_sm);
1228 for (int t = 0; t < DTL_TYPES; t++) {
1229 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1230 zfs_range_tree_destroy(vd->vdev_dtl[t]);
1231 }
1232 mutex_exit(&vd->vdev_dtl_lock);
1233
1234 EQUIV(vd->vdev_indirect_births != NULL,
1235 vd->vdev_indirect_mapping != NULL);
1236 if (vd->vdev_indirect_births != NULL) {
1237 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1238 vdev_indirect_births_close(vd->vdev_indirect_births);
1239 }
1240
1241 if (vd->vdev_obsolete_sm != NULL) {
1242 ASSERT(vd->vdev_removing ||
1243 vd->vdev_ops == &vdev_indirect_ops);
1244 space_map_close(vd->vdev_obsolete_sm);
1245 vd->vdev_obsolete_sm = NULL;
1246 }
1247 zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1248 rw_destroy(&vd->vdev_indirect_rwlock);
1249 mutex_destroy(&vd->vdev_obsolete_lock);
1250
1251 mutex_destroy(&vd->vdev_dtl_lock);
1252 mutex_destroy(&vd->vdev_stat_lock);
1253 mutex_destroy(&vd->vdev_probe_lock);
1254 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1255
1256 mutex_destroy(&vd->vdev_initialize_lock);
1257 mutex_destroy(&vd->vdev_initialize_io_lock);
1258 cv_destroy(&vd->vdev_initialize_io_cv);
1259 cv_destroy(&vd->vdev_initialize_cv);
1260
1261 mutex_destroy(&vd->vdev_trim_lock);
1262 mutex_destroy(&vd->vdev_autotrim_lock);
1263 mutex_destroy(&vd->vdev_trim_io_lock);
1264 cv_destroy(&vd->vdev_trim_cv);
1265 cv_destroy(&vd->vdev_autotrim_cv);
1266 cv_destroy(&vd->vdev_autotrim_kick_cv);
1267 cv_destroy(&vd->vdev_trim_io_cv);
1268
1269 mutex_destroy(&vd->vdev_rebuild_lock);
1270 cv_destroy(&vd->vdev_rebuild_cv);
1271
1272 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1273 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1274 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1275 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1276
1277 if (vd == spa->spa_root_vdev)
1278 spa->spa_root_vdev = NULL;
1279
1280 kmem_free(vd, sizeof (vdev_t));
1281 }
1282
1283 /*
1284 * Transfer top-level vdev state from svd to tvd.
1285 */
1286 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1287 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1288 {
1289 spa_t *spa = svd->vdev_spa;
1290 metaslab_t *msp;
1291 vdev_t *vd;
1292 int t;
1293
1294 ASSERT(tvd == tvd->vdev_top);
1295
1296 tvd->vdev_ms_array = svd->vdev_ms_array;
1297 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1298 tvd->vdev_ms_count = svd->vdev_ms_count;
1299 tvd->vdev_top_zap = svd->vdev_top_zap;
1300
1301 svd->vdev_ms_array = 0;
1302 svd->vdev_ms_shift = 0;
1303 svd->vdev_ms_count = 0;
1304 svd->vdev_top_zap = 0;
1305
1306 if (tvd->vdev_mg)
1307 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1308 if (tvd->vdev_log_mg)
1309 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1310 tvd->vdev_mg = svd->vdev_mg;
1311 tvd->vdev_log_mg = svd->vdev_log_mg;
1312 tvd->vdev_ms = svd->vdev_ms;
1313
1314 svd->vdev_mg = NULL;
1315 svd->vdev_log_mg = NULL;
1316 svd->vdev_ms = NULL;
1317
1318 if (tvd->vdev_mg != NULL)
1319 tvd->vdev_mg->mg_vd = tvd;
1320 if (tvd->vdev_log_mg != NULL)
1321 tvd->vdev_log_mg->mg_vd = tvd;
1322
1323 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1324 svd->vdev_checkpoint_sm = NULL;
1325
1326 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1327 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1328
1329 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1330 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1331 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1332
1333 svd->vdev_stat.vs_alloc = 0;
1334 svd->vdev_stat.vs_space = 0;
1335 svd->vdev_stat.vs_dspace = 0;
1336
1337 /*
1338 * State which may be set on a top-level vdev that's in the
1339 * process of being removed.
1340 */
1341 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1342 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1343 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1344 ASSERT0P(tvd->vdev_indirect_mapping);
1345 ASSERT0P(tvd->vdev_indirect_births);
1346 ASSERT0P(tvd->vdev_obsolete_sm);
1347 ASSERT0(tvd->vdev_noalloc);
1348 ASSERT0(tvd->vdev_removing);
1349 ASSERT0(tvd->vdev_rebuilding);
1350 tvd->vdev_noalloc = svd->vdev_noalloc;
1351 tvd->vdev_removing = svd->vdev_removing;
1352 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1353 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1354 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1355 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1356 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1357 zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1358 &tvd->vdev_obsolete_segments);
1359 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1360 svd->vdev_indirect_config.vic_mapping_object = 0;
1361 svd->vdev_indirect_config.vic_births_object = 0;
1362 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1363 svd->vdev_indirect_mapping = NULL;
1364 svd->vdev_indirect_births = NULL;
1365 svd->vdev_obsolete_sm = NULL;
1366 svd->vdev_noalloc = 0;
1367 svd->vdev_removing = 0;
1368 svd->vdev_rebuilding = 0;
1369
1370 for (t = 0; t < TXG_SIZE; t++) {
1371 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1372 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1373 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1374 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1375 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1376 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1377 }
1378
1379 if (list_link_active(&svd->vdev_config_dirty_node)) {
1380 vdev_config_clean(svd);
1381 vdev_config_dirty(tvd);
1382 }
1383
1384 if (list_link_active(&svd->vdev_state_dirty_node)) {
1385 vdev_state_clean(svd);
1386 vdev_state_dirty(tvd);
1387 }
1388
1389 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1390 svd->vdev_deflate_ratio = 0;
1391
1392 tvd->vdev_islog = svd->vdev_islog;
1393 svd->vdev_islog = 0;
1394
1395 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1396 }
1397
1398 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1399 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1400 {
1401 if (vd == NULL)
1402 return;
1403
1404 vd->vdev_top = tvd;
1405
1406 for (int c = 0; c < vd->vdev_children; c++)
1407 vdev_top_update(tvd, vd->vdev_child[c]);
1408 }
1409
1410 /*
1411 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1412 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1413 */
1414 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1415 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1416 {
1417 spa_t *spa = cvd->vdev_spa;
1418 vdev_t *pvd = cvd->vdev_parent;
1419 vdev_t *mvd;
1420
1421 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1422
1423 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1424
1425 mvd->vdev_asize = cvd->vdev_asize;
1426 mvd->vdev_min_asize = cvd->vdev_min_asize;
1427 mvd->vdev_max_asize = cvd->vdev_max_asize;
1428 mvd->vdev_psize = cvd->vdev_psize;
1429 mvd->vdev_ashift = cvd->vdev_ashift;
1430 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1431 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1432 mvd->vdev_state = cvd->vdev_state;
1433 mvd->vdev_crtxg = cvd->vdev_crtxg;
1434 mvd->vdev_nonrot = cvd->vdev_nonrot;
1435
1436 vdev_remove_child(pvd, cvd);
1437 vdev_add_child(pvd, mvd);
1438 cvd->vdev_id = mvd->vdev_children;
1439 vdev_add_child(mvd, cvd);
1440 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1441
1442 if (mvd == mvd->vdev_top)
1443 vdev_top_transfer(cvd, mvd);
1444
1445 return (mvd);
1446 }
1447
1448 /*
1449 * Remove a 1-way mirror/replacing vdev from the tree.
1450 */
1451 void
vdev_remove_parent(vdev_t * cvd)1452 vdev_remove_parent(vdev_t *cvd)
1453 {
1454 vdev_t *mvd = cvd->vdev_parent;
1455 vdev_t *pvd = mvd->vdev_parent;
1456
1457 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1458
1459 ASSERT(mvd->vdev_children == 1);
1460 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1461 mvd->vdev_ops == &vdev_replacing_ops ||
1462 mvd->vdev_ops == &vdev_spare_ops);
1463 cvd->vdev_ashift = mvd->vdev_ashift;
1464 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1465 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1466 vdev_remove_child(mvd, cvd);
1467 vdev_remove_child(pvd, mvd);
1468
1469 /*
1470 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1471 * Otherwise, we could have detached an offline device, and when we
1472 * go to import the pool we'll think we have two top-level vdevs,
1473 * instead of a different version of the same top-level vdev.
1474 */
1475 if (mvd->vdev_top == mvd) {
1476 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1477 cvd->vdev_orig_guid = cvd->vdev_guid;
1478 cvd->vdev_guid += guid_delta;
1479 cvd->vdev_guid_sum += guid_delta;
1480
1481 /*
1482 * If pool not set for autoexpand, we need to also preserve
1483 * mvd's asize to prevent automatic expansion of cvd.
1484 * Otherwise if we are adjusting the mirror by attaching and
1485 * detaching children of non-uniform sizes, the mirror could
1486 * autoexpand, unexpectedly requiring larger devices to
1487 * re-establish the mirror.
1488 */
1489 if (!cvd->vdev_spa->spa_autoexpand)
1490 cvd->vdev_asize = mvd->vdev_asize;
1491 }
1492 cvd->vdev_id = mvd->vdev_id;
1493 vdev_add_child(pvd, cvd);
1494 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1495
1496 if (cvd == cvd->vdev_top)
1497 vdev_top_transfer(mvd, cvd);
1498
1499 ASSERT0(mvd->vdev_children);
1500 vdev_free(mvd);
1501 }
1502
1503 /*
1504 * Choose GCD for spa_gcd_alloc.
1505 */
1506 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1507 vdev_gcd(uint64_t a, uint64_t b)
1508 {
1509 while (b != 0) {
1510 uint64_t t = b;
1511 b = a % b;
1512 a = t;
1513 }
1514 return (a);
1515 }
1516
1517 /*
1518 * Set spa_min_alloc and spa_gcd_alloc.
1519 */
1520 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1521 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1522 {
1523 if (min_alloc < spa->spa_min_alloc)
1524 spa->spa_min_alloc = min_alloc;
1525
1526 if (min_alloc > spa->spa_max_alloc)
1527 spa->spa_max_alloc = min_alloc;
1528
1529 if (spa->spa_gcd_alloc == INT_MAX)
1530 spa->spa_gcd_alloc = min_alloc;
1531 else
1532 spa->spa_gcd_alloc = vdev_gcd(min_alloc, spa->spa_gcd_alloc);
1533 }
1534
1535 void
vdev_metaslab_group_create(vdev_t * vd)1536 vdev_metaslab_group_create(vdev_t *vd)
1537 {
1538 spa_t *spa = vd->vdev_spa;
1539
1540 /*
1541 * metaslab_group_create was delayed until allocation bias was available
1542 */
1543 if (vd->vdev_mg == NULL) {
1544 metaslab_class_t *mc;
1545
1546 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1547 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1548
1549 ASSERT3U(vd->vdev_islog, ==,
1550 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1551
1552 switch (vd->vdev_alloc_bias) {
1553 case VDEV_BIAS_LOG:
1554 mc = spa_log_class(spa);
1555 break;
1556 case VDEV_BIAS_SPECIAL:
1557 mc = spa_special_class(spa);
1558 break;
1559 case VDEV_BIAS_DEDUP:
1560 mc = spa_dedup_class(spa);
1561 break;
1562 default:
1563 mc = spa_normal_class(spa);
1564 }
1565
1566 vd->vdev_mg = metaslab_group_create(mc, vd);
1567
1568 if (!vd->vdev_islog) {
1569 if (mc == spa_special_class(spa)) {
1570 vd->vdev_log_mg = metaslab_group_create(
1571 spa_special_embedded_log_class(spa), vd);
1572 } else {
1573 vd->vdev_log_mg = metaslab_group_create(
1574 spa_embedded_log_class(spa), vd);
1575 }
1576 }
1577
1578 /*
1579 * The spa ashift min/max only apply for the normal metaslab
1580 * class. Class destination is late binding so ashift boundary
1581 * setting had to wait until now.
1582 */
1583 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1584 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1585 if (vd->vdev_ashift > spa->spa_max_ashift)
1586 spa->spa_max_ashift = vd->vdev_ashift;
1587 if (vd->vdev_ashift < spa->spa_min_ashift)
1588 spa->spa_min_ashift = vd->vdev_ashift;
1589
1590 vdev_spa_set_alloc(spa, vdev_get_min_alloc(vd));
1591 }
1592 }
1593 }
1594
1595 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1596 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1597 {
1598 spa_t *spa = vd->vdev_spa;
1599
1600 if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1601 return;
1602
1603 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1604 uint64_t dspace = spa_deflate(spa) ?
1605 vdev_deflated_space(vd, raw_space) : raw_space;
1606 if (add) {
1607 spa->spa_nonallocating_dspace += dspace;
1608 } else {
1609 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1610 spa->spa_nonallocating_dspace -= dspace;
1611 }
1612 }
1613
1614 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1615 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1616 {
1617 spa_t *spa = vd->vdev_spa;
1618 uint64_t oldc = vd->vdev_ms_count;
1619 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1620 metaslab_t **mspp;
1621 int error;
1622 boolean_t expanding = (oldc != 0);
1623
1624 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1625
1626 /*
1627 * This vdev is not being allocated from yet or is a hole.
1628 */
1629 if (vd->vdev_ms_shift == 0)
1630 return (0);
1631
1632 ASSERT(!vd->vdev_ishole);
1633
1634 ASSERT(oldc <= newc);
1635
1636 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1637
1638 if (expanding) {
1639 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1640 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1641 }
1642
1643 vd->vdev_ms = mspp;
1644 vd->vdev_ms_count = newc;
1645
1646 /*
1647 * Weighting algorithms can depend on the number of metaslabs in the
1648 * vdev. In order to ensure that all weights are correct at all times,
1649 * we need to recalculate here.
1650 */
1651 for (uint64_t m = 0; m < oldc; m++) {
1652 metaslab_t *msp = vd->vdev_ms[m];
1653 mutex_enter(&msp->ms_lock);
1654 metaslab_recalculate_weight_and_sort(msp);
1655 mutex_exit(&msp->ms_lock);
1656 }
1657
1658 for (uint64_t m = oldc; m < newc; m++) {
1659 uint64_t object = 0;
1660 /*
1661 * vdev_ms_array may be 0 if we are creating the "fake"
1662 * metaslabs for an indirect vdev for zdb's leak detection.
1663 * See zdb_leak_init().
1664 */
1665 if (txg == 0 && vd->vdev_ms_array != 0) {
1666 error = dmu_read(spa->spa_meta_objset,
1667 vd->vdev_ms_array,
1668 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1669 DMU_READ_PREFETCH);
1670 if (error != 0) {
1671 vdev_dbgmsg(vd, "unable to read the metaslab "
1672 "array [error=%d]", error);
1673 return (error);
1674 }
1675 }
1676
1677 error = metaslab_init(vd->vdev_mg, m, object, txg,
1678 &(vd->vdev_ms[m]));
1679 if (error != 0) {
1680 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1681 error);
1682 return (error);
1683 }
1684 }
1685
1686 /*
1687 * Find the emptiest metaslab on the vdev and mark it for use for
1688 * embedded slog by moving it from the regular to the log metaslab
1689 * group. This works for normal and special vdevs.
1690 */
1691 if ((vd->vdev_mg->mg_class == spa_normal_class(spa) ||
1692 vd->vdev_mg->mg_class == spa_special_class(spa)) &&
1693 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1694 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1695 uint64_t slog_msid = 0;
1696 uint64_t smallest = UINT64_MAX;
1697
1698 /*
1699 * Note, we only search the new metaslabs, because the old
1700 * (pre-existing) ones may be active (e.g. have non-empty
1701 * range_tree's), and we don't move them to the new
1702 * metaslab_t.
1703 */
1704 for (uint64_t m = oldc; m < newc; m++) {
1705 uint64_t alloc =
1706 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1707 if (alloc < smallest) {
1708 slog_msid = m;
1709 smallest = alloc;
1710 }
1711 }
1712 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1713 /*
1714 * The metaslab was marked as dirty at the end of
1715 * metaslab_init(). Remove it from the dirty list so that we
1716 * can uninitialize and reinitialize it to the new class.
1717 */
1718 if (txg != 0) {
1719 (void) txg_list_remove_this(&vd->vdev_ms_list,
1720 slog_ms, txg);
1721 }
1722 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1723 metaslab_fini(slog_ms);
1724 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1725 &vd->vdev_ms[slog_msid]));
1726 }
1727
1728 if (txg == 0)
1729 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1730
1731 /*
1732 * If the vdev is marked as non-allocating then don't
1733 * activate the metaslabs since we want to ensure that
1734 * no allocations are performed on this device.
1735 */
1736 if (vd->vdev_noalloc) {
1737 /* track non-allocating vdev space */
1738 vdev_update_nonallocating_space(vd, B_TRUE);
1739 } else if (!expanding) {
1740 metaslab_group_activate(vd->vdev_mg);
1741 if (vd->vdev_log_mg != NULL)
1742 metaslab_group_activate(vd->vdev_log_mg);
1743 }
1744
1745 if (txg == 0)
1746 spa_config_exit(spa, SCL_ALLOC, FTAG);
1747
1748 return (0);
1749 }
1750
1751 void
vdev_metaslab_fini(vdev_t * vd)1752 vdev_metaslab_fini(vdev_t *vd)
1753 {
1754 if (vd->vdev_checkpoint_sm != NULL) {
1755 ASSERT(spa_feature_is_active(vd->vdev_spa,
1756 SPA_FEATURE_POOL_CHECKPOINT));
1757 space_map_close(vd->vdev_checkpoint_sm);
1758 /*
1759 * Even though we close the space map, we need to set its
1760 * pointer to NULL. The reason is that vdev_metaslab_fini()
1761 * may be called multiple times for certain operations
1762 * (i.e. when destroying a pool) so we need to ensure that
1763 * this clause never executes twice. This logic is similar
1764 * to the one used for the vdev_ms clause below.
1765 */
1766 vd->vdev_checkpoint_sm = NULL;
1767 }
1768
1769 if (vd->vdev_ms != NULL) {
1770 metaslab_group_t *mg = vd->vdev_mg;
1771
1772 metaslab_group_passivate(mg);
1773 if (vd->vdev_log_mg != NULL) {
1774 ASSERT(!vd->vdev_islog);
1775 metaslab_group_passivate(vd->vdev_log_mg);
1776 }
1777
1778 uint64_t count = vd->vdev_ms_count;
1779 for (uint64_t m = 0; m < count; m++) {
1780 metaslab_t *msp = vd->vdev_ms[m];
1781 if (msp != NULL)
1782 metaslab_fini(msp);
1783 }
1784 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1785 vd->vdev_ms = NULL;
1786 vd->vdev_ms_count = 0;
1787
1788 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1789 ASSERT0(mg->mg_histogram[i]);
1790 if (vd->vdev_log_mg != NULL)
1791 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1792 }
1793 }
1794 ASSERT0(vd->vdev_ms_count);
1795 }
1796
1797 typedef struct vdev_probe_stats {
1798 boolean_t vps_readable;
1799 boolean_t vps_writeable;
1800 boolean_t vps_zio_done_probe;
1801 int vps_flags;
1802 } vdev_probe_stats_t;
1803
1804 static void
vdev_probe_done(zio_t * zio)1805 vdev_probe_done(zio_t *zio)
1806 {
1807 spa_t *spa = zio->io_spa;
1808 vdev_t *vd = zio->io_vd;
1809 vdev_probe_stats_t *vps = zio->io_private;
1810
1811 ASSERT(vd->vdev_probe_zio != NULL);
1812
1813 if (zio->io_type == ZIO_TYPE_READ) {
1814 if (zio->io_error == 0)
1815 vps->vps_readable = 1;
1816 if (zio->io_error == 0 && spa_writeable(spa)) {
1817 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1818 zio->io_offset, zio->io_size, zio->io_abd,
1819 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1820 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1821 } else {
1822 abd_free(zio->io_abd);
1823 }
1824 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1825 if (zio->io_error == 0)
1826 vps->vps_writeable = 1;
1827 abd_free(zio->io_abd);
1828 } else if (zio->io_type == ZIO_TYPE_NULL) {
1829 zio_t *pio;
1830 zio_link_t *zl;
1831
1832 vd->vdev_cant_read |= !vps->vps_readable;
1833 vd->vdev_cant_write |= !vps->vps_writeable;
1834 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1835 vd->vdev_cant_read, vd->vdev_cant_write);
1836
1837 if (vdev_readable(vd) &&
1838 (vdev_writeable(vd) || !spa_writeable(spa))) {
1839 zio->io_error = 0;
1840 } else {
1841 ASSERT(zio->io_error != 0);
1842 vdev_dbgmsg(vd, "failed probe");
1843 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1844 spa, vd, NULL, NULL, 0);
1845 zio->io_error = SET_ERROR(ENXIO);
1846
1847 /*
1848 * If this probe was initiated from zio pipeline, then
1849 * change the state in a spa_async_request. Probes that
1850 * were initiated from a vdev_open can change the state
1851 * as part of the open call.
1852 * Skip fault injection if this vdev is already removed
1853 * or a removal is pending.
1854 */
1855 if (vps->vps_zio_done_probe &&
1856 !vd->vdev_remove_wanted && !vd->vdev_removed) {
1857 vd->vdev_fault_wanted = B_TRUE;
1858 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1859 }
1860 }
1861
1862 mutex_enter(&vd->vdev_probe_lock);
1863 ASSERT(vd->vdev_probe_zio == zio);
1864 vd->vdev_probe_zio = NULL;
1865 mutex_exit(&vd->vdev_probe_lock);
1866
1867 zl = NULL;
1868 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1869 if (!vdev_accessible(vd, pio))
1870 pio->io_error = SET_ERROR(ENXIO);
1871
1872 kmem_free(vps, sizeof (*vps));
1873 }
1874 }
1875
1876 /*
1877 * Determine whether this device is accessible.
1878 *
1879 * Read and write to several known locations: the pad regions of each
1880 * vdev label but the first, which we leave alone in case it contains
1881 * a VTOC.
1882 */
1883 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1884 vdev_probe(vdev_t *vd, zio_t *zio)
1885 {
1886 spa_t *spa = vd->vdev_spa;
1887 vdev_probe_stats_t *vps = NULL;
1888 zio_t *pio;
1889
1890 ASSERT(vd->vdev_ops->vdev_op_leaf);
1891
1892 /*
1893 * Don't probe the probe.
1894 */
1895 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1896 return (NULL);
1897
1898 /*
1899 * To prevent 'probe storms' when a device fails, we create
1900 * just one probe i/o at a time. All zios that want to probe
1901 * this vdev will become parents of the probe io.
1902 */
1903 mutex_enter(&vd->vdev_probe_lock);
1904
1905 if ((pio = vd->vdev_probe_zio) == NULL) {
1906 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1907
1908 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1909 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1910 vps->vps_zio_done_probe = (zio != NULL);
1911
1912 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1913 /*
1914 * vdev_cant_read and vdev_cant_write can only
1915 * transition from TRUE to FALSE when we have the
1916 * SCL_ZIO lock as writer; otherwise they can only
1917 * transition from FALSE to TRUE. This ensures that
1918 * any zio looking at these values can assume that
1919 * failures persist for the life of the I/O. That's
1920 * important because when a device has intermittent
1921 * connectivity problems, we want to ensure that
1922 * they're ascribed to the device (ENXIO) and not
1923 * the zio (EIO).
1924 *
1925 * Since we hold SCL_ZIO as writer here, clear both
1926 * values so the probe can reevaluate from first
1927 * principles.
1928 */
1929 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1930 vd->vdev_cant_read = B_FALSE;
1931 vd->vdev_cant_write = B_FALSE;
1932 }
1933
1934 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1935 vdev_probe_done, vps,
1936 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1937 }
1938
1939 if (zio != NULL)
1940 zio_add_child(zio, pio);
1941
1942 mutex_exit(&vd->vdev_probe_lock);
1943
1944 if (vps == NULL) {
1945 ASSERT(zio != NULL);
1946 return (NULL);
1947 }
1948
1949 for (int l = 1; l < VDEV_LABELS; l++) {
1950 zio_nowait(zio_read_phys(pio, vd,
1951 vdev_label_offset(vd->vdev_psize, l,
1952 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1953 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1954 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1955 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1956 }
1957
1958 if (zio == NULL)
1959 return (pio);
1960
1961 zio_nowait(pio);
1962 return (NULL);
1963 }
1964
1965 static void
vdev_load_child(void * arg)1966 vdev_load_child(void *arg)
1967 {
1968 vdev_t *vd = arg;
1969
1970 vd->vdev_load_error = vdev_load(vd);
1971 }
1972
1973 static void
vdev_open_child(void * arg)1974 vdev_open_child(void *arg)
1975 {
1976 vdev_t *vd = arg;
1977
1978 vd->vdev_open_thread = curthread;
1979 vd->vdev_open_error = vdev_open(vd);
1980 vd->vdev_open_thread = NULL;
1981 }
1982
1983 static boolean_t
vdev_uses_zvols(vdev_t * vd)1984 vdev_uses_zvols(vdev_t *vd)
1985 {
1986 #ifdef _KERNEL
1987 if (zvol_is_zvol(vd->vdev_path))
1988 return (B_TRUE);
1989 #endif
1990
1991 for (int c = 0; c < vd->vdev_children; c++)
1992 if (vdev_uses_zvols(vd->vdev_child[c]))
1993 return (B_TRUE);
1994
1995 return (B_FALSE);
1996 }
1997
1998 /*
1999 * Returns B_TRUE if the passed child should be opened.
2000 */
2001 static boolean_t
vdev_default_open_children_func(vdev_t * vd)2002 vdev_default_open_children_func(vdev_t *vd)
2003 {
2004 (void) vd;
2005 return (B_TRUE);
2006 }
2007
2008 /*
2009 * Open the requested child vdevs. If any of the leaf vdevs are using
2010 * a ZFS volume then do the opens in a single thread. This avoids a
2011 * deadlock when the current thread is holding the spa_namespace_lock.
2012 */
2013 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)2014 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
2015 {
2016 int children = vd->vdev_children;
2017
2018 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
2019 children, children, TASKQ_PREPOPULATE);
2020 vd->vdev_nonrot = B_TRUE;
2021
2022 for (int c = 0; c < children; c++) {
2023 vdev_t *cvd = vd->vdev_child[c];
2024
2025 if (open_func(cvd) == B_FALSE)
2026 continue;
2027
2028 if (tq == NULL || vdev_uses_zvols(vd)) {
2029 cvd->vdev_open_error = vdev_open(cvd);
2030 } else {
2031 VERIFY(taskq_dispatch(tq, vdev_open_child,
2032 cvd, TQ_SLEEP) != TASKQID_INVALID);
2033 }
2034 }
2035
2036 if (tq != NULL)
2037 taskq_wait(tq);
2038 for (int c = 0; c < children; c++) {
2039 vdev_t *cvd = vd->vdev_child[c];
2040
2041 if (open_func(cvd) == B_FALSE ||
2042 cvd->vdev_state <= VDEV_STATE_FAULTED)
2043 continue;
2044 vd->vdev_nonrot &= cvd->vdev_nonrot;
2045 }
2046
2047 if (tq != NULL)
2048 taskq_destroy(tq);
2049 }
2050
2051 /*
2052 * Open all child vdevs.
2053 */
2054 void
vdev_open_children(vdev_t * vd)2055 vdev_open_children(vdev_t *vd)
2056 {
2057 vdev_open_children_impl(vd, vdev_default_open_children_func);
2058 }
2059
2060 /*
2061 * Conditionally open a subset of child vdevs.
2062 */
2063 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2064 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2065 {
2066 vdev_open_children_impl(vd, open_func);
2067 }
2068
2069 /*
2070 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
2071 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
2072 * changed, this algorithm can not change, otherwise it would inconsistently
2073 * account for existing bp's. We also hard-code txg 0 for the same reason
2074 * since expanded RAIDZ vdevs can use a different asize for different birth
2075 * txg's.
2076 */
2077 static void
vdev_set_deflate_ratio(vdev_t * vd)2078 vdev_set_deflate_ratio(vdev_t *vd)
2079 {
2080 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2081 vd->vdev_deflate_ratio = (1 << 17) /
2082 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2083 SPA_MINBLOCKSHIFT);
2084 }
2085 }
2086
2087 /*
2088 * Choose the best of two ashifts, preferring one between logical ashift
2089 * (absolute minimum) and administrator defined maximum, otherwise take
2090 * the biggest of the two.
2091 */
2092 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2093 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2094 {
2095 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2096 if (b <= logical || b > zfs_vdev_max_auto_ashift)
2097 return (a);
2098 else
2099 return (MAX(a, b));
2100 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2101 return (MAX(a, b));
2102 return (b);
2103 }
2104
2105 /*
2106 * Maximize performance by inflating the configured ashift for top level
2107 * vdevs to be as close to the physical ashift as possible while maintaining
2108 * administrator defined limits and ensuring it doesn't go below the
2109 * logical ashift.
2110 */
2111 static void
vdev_ashift_optimize(vdev_t * vd)2112 vdev_ashift_optimize(vdev_t *vd)
2113 {
2114 ASSERT(vd == vd->vdev_top);
2115
2116 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2117 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2118 vd->vdev_ashift = MIN(
2119 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2120 MAX(zfs_vdev_min_auto_ashift,
2121 vd->vdev_physical_ashift));
2122 } else {
2123 /*
2124 * If the logical and physical ashifts are the same, then
2125 * we ensure that the top-level vdev's ashift is not smaller
2126 * than our minimum ashift value. For the unusual case
2127 * where logical ashift > physical ashift, we can't cap
2128 * the calculated ashift based on max ashift as that
2129 * would cause failures.
2130 * We still check if we need to increase it to match
2131 * the min ashift.
2132 */
2133 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2134 vd->vdev_ashift);
2135 }
2136 }
2137
2138 /*
2139 * Prepare a virtual device for access.
2140 */
2141 int
vdev_open(vdev_t * vd)2142 vdev_open(vdev_t *vd)
2143 {
2144 spa_t *spa = vd->vdev_spa;
2145 int error;
2146 uint64_t osize = 0;
2147 uint64_t max_osize = 0;
2148 uint64_t asize, max_asize, psize;
2149 uint64_t logical_ashift = 0;
2150 uint64_t physical_ashift = 0;
2151
2152 ASSERT(vd->vdev_open_thread == curthread ||
2153 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2154 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2155 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2156 vd->vdev_state == VDEV_STATE_OFFLINE);
2157
2158 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2159 vd->vdev_cant_read = B_FALSE;
2160 vd->vdev_cant_write = B_FALSE;
2161 vd->vdev_fault_wanted = B_FALSE;
2162 vd->vdev_remove_wanted = B_FALSE;
2163 vd->vdev_min_asize = vdev_get_min_asize(vd);
2164
2165 /*
2166 * If this vdev is not removed, check its fault status. If it's
2167 * faulted, bail out of the open.
2168 */
2169 if (!vd->vdev_removed && vd->vdev_faulted) {
2170 ASSERT0(vd->vdev_children);
2171 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2172 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2173 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2174 vd->vdev_label_aux);
2175 return (SET_ERROR(ENXIO));
2176 } else if (vd->vdev_offline) {
2177 ASSERT0(vd->vdev_children);
2178 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2179 return (SET_ERROR(ENXIO));
2180 }
2181
2182 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2183 &logical_ashift, &physical_ashift);
2184
2185 /* Keep the device in removed state if unplugged */
2186 if (error == ENOENT && vd->vdev_removed) {
2187 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2188 VDEV_AUX_NONE);
2189 return (error);
2190 }
2191
2192 /*
2193 * Physical volume size should never be larger than its max size, unless
2194 * the disk has shrunk while we were reading it or the device is buggy
2195 * or damaged: either way it's not safe for use, bail out of the open.
2196 */
2197 if (osize > max_osize) {
2198 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2199 VDEV_AUX_OPEN_FAILED);
2200 return (SET_ERROR(ENXIO));
2201 }
2202
2203 /*
2204 * Reset the vdev_reopening flag so that we actually close
2205 * the vdev on error.
2206 */
2207 vd->vdev_reopening = B_FALSE;
2208 if (zio_injection_enabled && error == 0)
2209 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2210
2211 if (error) {
2212 if (vd->vdev_removed &&
2213 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2214 vd->vdev_removed = B_FALSE;
2215
2216 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2218 vd->vdev_stat.vs_aux);
2219 } else {
2220 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2221 vd->vdev_stat.vs_aux);
2222 }
2223 return (error);
2224 }
2225
2226 vd->vdev_removed = B_FALSE;
2227
2228 /*
2229 * Recheck the faulted flag now that we have confirmed that
2230 * the vdev is accessible. If we're faulted, bail.
2231 */
2232 if (vd->vdev_faulted) {
2233 ASSERT0(vd->vdev_children);
2234 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2235 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2236 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2237 vd->vdev_label_aux);
2238 return (SET_ERROR(ENXIO));
2239 }
2240
2241 if (vd->vdev_degraded) {
2242 ASSERT0(vd->vdev_children);
2243 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2244 VDEV_AUX_ERR_EXCEEDED);
2245 } else {
2246 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2247 }
2248
2249 /*
2250 * For hole or missing vdevs we just return success.
2251 */
2252 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2253 return (0);
2254
2255 for (int c = 0; c < vd->vdev_children; c++) {
2256 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2257 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2258 VDEV_AUX_NONE);
2259 break;
2260 }
2261 }
2262
2263 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2264 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2265
2266 if (vd->vdev_children == 0) {
2267 if (osize < SPA_MINDEVSIZE) {
2268 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2269 VDEV_AUX_TOO_SMALL);
2270 return (SET_ERROR(EOVERFLOW));
2271 }
2272 psize = osize;
2273 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2274 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2275 VDEV_LABEL_END_SIZE);
2276 } else {
2277 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2278 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2279 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2280 VDEV_AUX_TOO_SMALL);
2281 return (SET_ERROR(EOVERFLOW));
2282 }
2283 psize = 0;
2284 asize = osize;
2285 max_asize = max_osize;
2286 }
2287
2288 /*
2289 * If the vdev was expanded, record this so that we can re-create the
2290 * uberblock rings in labels {2,3}, during the next sync.
2291 */
2292 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2293 vd->vdev_copy_uberblocks = B_TRUE;
2294
2295 vd->vdev_psize = psize;
2296
2297 /*
2298 * Make sure the allocatable size hasn't shrunk too much.
2299 */
2300 if (asize < vd->vdev_min_asize) {
2301 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2302 VDEV_AUX_BAD_LABEL);
2303 return (SET_ERROR(EINVAL));
2304 }
2305
2306 /*
2307 * We can always set the logical/physical ashift members since
2308 * their values are only used to calculate the vdev_ashift when
2309 * the device is first added to the config. These values should
2310 * not be used for anything else since they may change whenever
2311 * the device is reopened and we don't store them in the label.
2312 */
2313 vd->vdev_physical_ashift =
2314 MAX(physical_ashift, vd->vdev_physical_ashift);
2315 vd->vdev_logical_ashift = MAX(logical_ashift,
2316 vd->vdev_logical_ashift);
2317
2318 if (vd->vdev_asize == 0) {
2319 /*
2320 * This is the first-ever open, so use the computed values.
2321 * For compatibility, a different ashift can be requested.
2322 */
2323 vd->vdev_asize = asize;
2324 vd->vdev_max_asize = max_asize;
2325
2326 /*
2327 * If the vdev_ashift was not overridden at creation time
2328 * (0) or the override value is impossible for the device,
2329 * then set it the logical ashift and optimize the ashift.
2330 */
2331 if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2332 vd->vdev_ashift = vd->vdev_logical_ashift;
2333
2334 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2335 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2336 VDEV_AUX_ASHIFT_TOO_BIG);
2337 return (SET_ERROR(EDOM));
2338 }
2339
2340 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2341 vdev_ashift_optimize(vd);
2342 vd->vdev_attaching = B_FALSE;
2343 }
2344 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2345 vd->vdev_ashift > ASHIFT_MAX)) {
2346 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2347 VDEV_AUX_BAD_ASHIFT);
2348 return (SET_ERROR(EDOM));
2349 }
2350 } else {
2351 /*
2352 * Make sure the alignment required hasn't increased.
2353 */
2354 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2355 vd->vdev_ops->vdev_op_leaf) {
2356 (void) zfs_ereport_post(
2357 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2358 spa, vd, NULL, NULL, 0);
2359 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2360 VDEV_AUX_BAD_LABEL);
2361 return (SET_ERROR(EDOM));
2362 }
2363 vd->vdev_max_asize = max_asize;
2364 }
2365
2366 /*
2367 * If all children are healthy we update asize if either:
2368 * The asize has increased, due to a device expansion caused by dynamic
2369 * LUN growth or vdev replacement, and automatic expansion is enabled;
2370 * making the additional space available.
2371 *
2372 * The asize has decreased, due to a device shrink usually caused by a
2373 * vdev replace with a smaller device. This ensures that calculations
2374 * based of max_asize and asize e.g. esize are always valid. It's safe
2375 * to do this as we've already validated that asize is greater than
2376 * vdev_min_asize.
2377 */
2378 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2379 ((asize > vd->vdev_asize &&
2380 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2381 (asize < vd->vdev_asize)))
2382 vd->vdev_asize = asize;
2383
2384 vdev_set_min_asize(vd);
2385
2386 /*
2387 * Ensure we can issue some IO before declaring the
2388 * vdev open for business.
2389 */
2390 if (vd->vdev_ops->vdev_op_leaf &&
2391 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2392 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2393 VDEV_AUX_ERR_EXCEEDED);
2394 return (error);
2395 }
2396
2397 /*
2398 * Track the minimum allocation size.
2399 */
2400 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2401 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2402 uint64_t min_alloc = vdev_get_min_alloc(vd);
2403 vdev_spa_set_alloc(spa, min_alloc);
2404 }
2405
2406 /*
2407 * If this is a leaf vdev, assess whether a resilver is needed.
2408 * But don't do this if we are doing a reopen for a scrub, since
2409 * this would just restart the scrub we are already doing.
2410 */
2411 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2412 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2413
2414 return (0);
2415 }
2416
2417 static void
vdev_validate_child(void * arg)2418 vdev_validate_child(void *arg)
2419 {
2420 vdev_t *vd = arg;
2421
2422 vd->vdev_validate_thread = curthread;
2423 vd->vdev_validate_error = vdev_validate(vd);
2424 vd->vdev_validate_thread = NULL;
2425 }
2426
2427 /*
2428 * Called once the vdevs are all opened, this routine validates the label
2429 * contents. This needs to be done before vdev_load() so that we don't
2430 * inadvertently do repair I/Os to the wrong device.
2431 *
2432 * This function will only return failure if one of the vdevs indicates that it
2433 * has since been destroyed or exported. This is only possible if
2434 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2435 * will be updated but the function will return 0.
2436 */
2437 int
vdev_validate(vdev_t * vd)2438 vdev_validate(vdev_t *vd)
2439 {
2440 spa_t *spa = vd->vdev_spa;
2441 taskq_t *tq = NULL;
2442 nvlist_t *label;
2443 uint64_t guid = 0, aux_guid = 0, top_guid;
2444 uint64_t state;
2445 nvlist_t *nvl;
2446 uint64_t txg;
2447 int children = vd->vdev_children;
2448
2449 if (vdev_validate_skip)
2450 return (0);
2451
2452 if (children > 0) {
2453 tq = taskq_create("vdev_validate", children, minclsyspri,
2454 children, children, TASKQ_PREPOPULATE);
2455 }
2456
2457 for (uint64_t c = 0; c < children; c++) {
2458 vdev_t *cvd = vd->vdev_child[c];
2459
2460 if (tq == NULL || vdev_uses_zvols(cvd)) {
2461 vdev_validate_child(cvd);
2462 } else {
2463 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2464 TQ_SLEEP) != TASKQID_INVALID);
2465 }
2466 }
2467 if (tq != NULL) {
2468 taskq_wait(tq);
2469 taskq_destroy(tq);
2470 }
2471 for (int c = 0; c < children; c++) {
2472 int error = vd->vdev_child[c]->vdev_validate_error;
2473
2474 if (error != 0)
2475 return (SET_ERROR(EBADF));
2476 }
2477
2478
2479 /*
2480 * If the device has already failed, or was marked offline, don't do
2481 * any further validation. Otherwise, label I/O will fail and we will
2482 * overwrite the previous state.
2483 */
2484 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2485 return (0);
2486
2487 /*
2488 * If we are performing an extreme rewind, we allow for a label that
2489 * was modified at a point after the current txg.
2490 * If config lock is not held do not check for the txg. spa_sync could
2491 * be updating the vdev's label before updating spa_last_synced_txg.
2492 */
2493 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2494 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2495 txg = UINT64_MAX;
2496 else
2497 txg = spa_last_synced_txg(spa);
2498
2499 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2500 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2501 VDEV_AUX_BAD_LABEL);
2502 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2503 "txg %llu", (u_longlong_t)txg);
2504 return (0);
2505 }
2506
2507 /*
2508 * Determine if this vdev has been split off into another
2509 * pool. If so, then refuse to open it.
2510 */
2511 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2512 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2513 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2514 VDEV_AUX_SPLIT_POOL);
2515 nvlist_free(label);
2516 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2517 return (0);
2518 }
2519
2520 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2521 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2522 VDEV_AUX_CORRUPT_DATA);
2523 nvlist_free(label);
2524 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2525 ZPOOL_CONFIG_POOL_GUID);
2526 return (0);
2527 }
2528
2529 /*
2530 * If config is not trusted then ignore the spa guid check. This is
2531 * necessary because if the machine crashed during a re-guid the new
2532 * guid might have been written to all of the vdev labels, but not the
2533 * cached config. The check will be performed again once we have the
2534 * trusted config from the MOS.
2535 */
2536 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2537 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2538 VDEV_AUX_CORRUPT_DATA);
2539 nvlist_free(label);
2540 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2541 "match config (%llu != %llu)", (u_longlong_t)guid,
2542 (u_longlong_t)spa_guid(spa));
2543 return (0);
2544 }
2545
2546 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2547 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2548 &aux_guid) != 0)
2549 aux_guid = 0;
2550
2551 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2552 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2553 VDEV_AUX_CORRUPT_DATA);
2554 nvlist_free(label);
2555 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2556 ZPOOL_CONFIG_GUID);
2557 return (0);
2558 }
2559
2560 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2561 != 0) {
2562 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2563 VDEV_AUX_CORRUPT_DATA);
2564 nvlist_free(label);
2565 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2566 ZPOOL_CONFIG_TOP_GUID);
2567 return (0);
2568 }
2569
2570 /*
2571 * If this vdev just became a top-level vdev because its sibling was
2572 * detached, it will have adopted the parent's vdev guid -- but the
2573 * label may or may not be on disk yet. Fortunately, either version
2574 * of the label will have the same top guid, so if we're a top-level
2575 * vdev, we can safely compare to that instead.
2576 * However, if the config comes from a cachefile that failed to update
2577 * after the detach, a top-level vdev will appear as a non top-level
2578 * vdev in the config. Also relax the constraints if we perform an
2579 * extreme rewind.
2580 *
2581 * If we split this vdev off instead, then we also check the
2582 * original pool's guid. We don't want to consider the vdev
2583 * corrupt if it is partway through a split operation.
2584 */
2585 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2586 boolean_t mismatch = B_FALSE;
2587 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2588 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2589 mismatch = B_TRUE;
2590 } else {
2591 if (vd->vdev_guid != top_guid &&
2592 vd->vdev_top->vdev_guid != guid)
2593 mismatch = B_TRUE;
2594 }
2595
2596 if (mismatch) {
2597 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2598 VDEV_AUX_CORRUPT_DATA);
2599 nvlist_free(label);
2600 vdev_dbgmsg(vd, "vdev_validate: config guid "
2601 "doesn't match label guid");
2602 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2603 (u_longlong_t)vd->vdev_guid,
2604 (u_longlong_t)vd->vdev_top->vdev_guid);
2605 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2606 "aux_guid %llu", (u_longlong_t)guid,
2607 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2608 return (0);
2609 }
2610 }
2611
2612 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2613 &state) != 0) {
2614 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2615 VDEV_AUX_CORRUPT_DATA);
2616 nvlist_free(label);
2617 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2618 ZPOOL_CONFIG_POOL_STATE);
2619 return (0);
2620 }
2621
2622 nvlist_free(label);
2623
2624 /*
2625 * If this is a verbatim import, no need to check the
2626 * state of the pool.
2627 */
2628 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2629 spa_load_state(spa) == SPA_LOAD_OPEN &&
2630 state != POOL_STATE_ACTIVE) {
2631 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2632 "for spa %s", (u_longlong_t)state, spa->spa_name);
2633 return (SET_ERROR(EBADF));
2634 }
2635
2636 /*
2637 * If we were able to open and validate a vdev that was
2638 * previously marked permanently unavailable, clear that state
2639 * now.
2640 */
2641 if (vd->vdev_not_present)
2642 vd->vdev_not_present = 0;
2643
2644 return (0);
2645 }
2646
2647 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2648 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2649 {
2650 if (svd != NULL && *dvd != NULL) {
2651 if (strcmp(svd, *dvd) != 0) {
2652 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2653 "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2654 *dvd, svd);
2655 spa_strfree(*dvd);
2656 *dvd = spa_strdup(svd);
2657 }
2658 } else if (svd != NULL) {
2659 *dvd = spa_strdup(svd);
2660 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2661 (u_longlong_t)guid, *dvd);
2662 }
2663 }
2664
2665 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2666 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2667 {
2668 char *old, *new;
2669
2670 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2671 dvd->vdev_guid);
2672
2673 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2674 dvd->vdev_guid);
2675
2676 vdev_update_path("vdev_physpath", svd->vdev_physpath,
2677 &dvd->vdev_physpath, dvd->vdev_guid);
2678
2679 /*
2680 * Our enclosure sysfs path may have changed between imports
2681 */
2682 old = dvd->vdev_enc_sysfs_path;
2683 new = svd->vdev_enc_sysfs_path;
2684 if ((old != NULL && new == NULL) ||
2685 (old == NULL && new != NULL) ||
2686 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2687 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2688 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2689 old, new);
2690
2691 if (dvd->vdev_enc_sysfs_path)
2692 spa_strfree(dvd->vdev_enc_sysfs_path);
2693
2694 if (svd->vdev_enc_sysfs_path) {
2695 dvd->vdev_enc_sysfs_path = spa_strdup(
2696 svd->vdev_enc_sysfs_path);
2697 } else {
2698 dvd->vdev_enc_sysfs_path = NULL;
2699 }
2700 }
2701 }
2702
2703 /*
2704 * Recursively copy vdev paths from one vdev to another. Source and destination
2705 * vdev trees must have same geometry otherwise return error. Intended to copy
2706 * paths from userland config into MOS config.
2707 */
2708 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2709 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2710 {
2711 if ((svd->vdev_ops == &vdev_missing_ops) ||
2712 (svd->vdev_ishole && dvd->vdev_ishole) ||
2713 (dvd->vdev_ops == &vdev_indirect_ops))
2714 return (0);
2715
2716 if (svd->vdev_ops != dvd->vdev_ops) {
2717 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2718 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2719 return (SET_ERROR(EINVAL));
2720 }
2721
2722 if (svd->vdev_guid != dvd->vdev_guid) {
2723 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2724 "%llu)", (u_longlong_t)svd->vdev_guid,
2725 (u_longlong_t)dvd->vdev_guid);
2726 return (SET_ERROR(EINVAL));
2727 }
2728
2729 if (svd->vdev_children != dvd->vdev_children) {
2730 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2731 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2732 (u_longlong_t)dvd->vdev_children);
2733 return (SET_ERROR(EINVAL));
2734 }
2735
2736 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2737 int error = vdev_copy_path_strict(svd->vdev_child[i],
2738 dvd->vdev_child[i]);
2739 if (error != 0)
2740 return (error);
2741 }
2742
2743 if (svd->vdev_ops->vdev_op_leaf)
2744 vdev_copy_path_impl(svd, dvd);
2745
2746 return (0);
2747 }
2748
2749 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2750 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2751 {
2752 ASSERT(stvd->vdev_top == stvd);
2753 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2754
2755 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2756 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2757 }
2758
2759 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2760 return;
2761
2762 /*
2763 * The idea here is that while a vdev can shift positions within
2764 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2765 * step outside of it.
2766 */
2767 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2768
2769 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2770 return;
2771
2772 ASSERT(vd->vdev_ops->vdev_op_leaf);
2773
2774 vdev_copy_path_impl(vd, dvd);
2775 }
2776
2777 /*
2778 * Recursively copy vdev paths from one root vdev to another. Source and
2779 * destination vdev trees may differ in geometry. For each destination leaf
2780 * vdev, search a vdev with the same guid and top vdev id in the source.
2781 * Intended to copy paths from userland config into MOS config.
2782 */
2783 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2784 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2785 {
2786 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2787 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2788 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2789
2790 for (uint64_t i = 0; i < children; i++) {
2791 vdev_copy_path_search(srvd->vdev_child[i],
2792 drvd->vdev_child[i]);
2793 }
2794 }
2795
2796 /*
2797 * Close a virtual device.
2798 */
2799 void
vdev_close(vdev_t * vd)2800 vdev_close(vdev_t *vd)
2801 {
2802 vdev_t *pvd = vd->vdev_parent;
2803 spa_t *spa __maybe_unused = vd->vdev_spa;
2804
2805 ASSERT(vd != NULL);
2806 ASSERT(vd->vdev_open_thread == curthread ||
2807 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2808
2809 /*
2810 * If our parent is reopening, then we are as well, unless we are
2811 * going offline.
2812 */
2813 if (pvd != NULL && pvd->vdev_reopening)
2814 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2815
2816 vd->vdev_ops->vdev_op_close(vd);
2817
2818 /*
2819 * We record the previous state before we close it, so that if we are
2820 * doing a reopen(), we don't generate FMA ereports if we notice that
2821 * it's still faulted.
2822 */
2823 vd->vdev_prevstate = vd->vdev_state;
2824
2825 if (vd->vdev_offline)
2826 vd->vdev_state = VDEV_STATE_OFFLINE;
2827 else
2828 vd->vdev_state = VDEV_STATE_CLOSED;
2829 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2830 }
2831
2832 void
vdev_hold(vdev_t * vd)2833 vdev_hold(vdev_t *vd)
2834 {
2835 spa_t *spa = vd->vdev_spa;
2836
2837 ASSERT(spa_is_root(spa));
2838 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2839 return;
2840
2841 for (int c = 0; c < vd->vdev_children; c++)
2842 vdev_hold(vd->vdev_child[c]);
2843
2844 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2845 vd->vdev_ops->vdev_op_hold(vd);
2846 }
2847
2848 void
vdev_rele(vdev_t * vd)2849 vdev_rele(vdev_t *vd)
2850 {
2851 ASSERT(spa_is_root(vd->vdev_spa));
2852 for (int c = 0; c < vd->vdev_children; c++)
2853 vdev_rele(vd->vdev_child[c]);
2854
2855 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2856 vd->vdev_ops->vdev_op_rele(vd);
2857 }
2858
2859 /*
2860 * Reopen all interior vdevs and any unopened leaves. We don't actually
2861 * reopen leaf vdevs which had previously been opened as they might deadlock
2862 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2863 * If the leaf has never been opened then open it, as usual.
2864 */
2865 void
vdev_reopen(vdev_t * vd)2866 vdev_reopen(vdev_t *vd)
2867 {
2868 spa_t *spa = vd->vdev_spa;
2869
2870 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2871
2872 /* set the reopening flag unless we're taking the vdev offline */
2873 vd->vdev_reopening = !vd->vdev_offline;
2874 vdev_close(vd);
2875 (void) vdev_open(vd);
2876
2877 /*
2878 * Call vdev_validate() here to make sure we have the same device.
2879 * Otherwise, a device with an invalid label could be successfully
2880 * opened in response to vdev_reopen().
2881 */
2882 if (vd->vdev_aux) {
2883 (void) vdev_validate_aux(vd);
2884 if (vdev_readable(vd) && vdev_writeable(vd) &&
2885 vd->vdev_aux == &spa->spa_l2cache) {
2886 /*
2887 * In case the vdev is present we should evict all ARC
2888 * buffers and pointers to log blocks and reclaim their
2889 * space before restoring its contents to L2ARC.
2890 */
2891 if (l2arc_vdev_present(vd)) {
2892 l2arc_rebuild_vdev(vd, B_TRUE);
2893 } else {
2894 l2arc_add_vdev(spa, vd);
2895 }
2896 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2897 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2898 }
2899 } else {
2900 (void) vdev_validate(vd);
2901 }
2902
2903 /*
2904 * Recheck if resilver is still needed and cancel any
2905 * scheduled resilver if resilver is unneeded.
2906 */
2907 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2908 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2909 mutex_enter(&spa->spa_async_lock);
2910 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2911 mutex_exit(&spa->spa_async_lock);
2912 }
2913
2914 /*
2915 * Reassess parent vdev's health.
2916 */
2917 vdev_propagate_state(vd);
2918 }
2919
2920 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2921 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2922 {
2923 int error;
2924
2925 /*
2926 * Normally, partial opens (e.g. of a mirror) are allowed.
2927 * For a create, however, we want to fail the request if
2928 * there are any components we can't open.
2929 */
2930 error = vdev_open(vd);
2931
2932 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2933 vdev_close(vd);
2934 return (error ? error : SET_ERROR(ENXIO));
2935 }
2936
2937 /*
2938 * Recursively load DTLs and initialize all labels.
2939 */
2940 if ((error = vdev_dtl_load(vd)) != 0 ||
2941 (error = vdev_label_init(vd, txg, isreplacing ?
2942 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2943 vdev_close(vd);
2944 return (error);
2945 }
2946
2947 return (0);
2948 }
2949
2950 void
vdev_metaslab_set_size(vdev_t * vd)2951 vdev_metaslab_set_size(vdev_t *vd)
2952 {
2953 uint64_t asize = vd->vdev_asize;
2954 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2955 uint64_t ms_shift;
2956
2957 /*
2958 * There are two dimensions to the metaslab sizing calculation:
2959 * the size of the metaslab and the count of metaslabs per vdev.
2960 *
2961 * The default values used below are a good balance between memory
2962 * usage (larger metaslab size means more memory needed for loaded
2963 * metaslabs; more metaslabs means more memory needed for the
2964 * metaslab_t structs), metaslab load time (larger metaslabs take
2965 * longer to load), and metaslab sync time (more metaslabs means
2966 * more time spent syncing all of them).
2967 *
2968 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2969 * The range of the dimensions are as follows:
2970 *
2971 * 2^29 <= ms_size <= 2^34
2972 * 16 <= ms_count <= 131,072
2973 *
2974 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2975 * at least 512MB (2^29) to minimize fragmentation effects when
2976 * testing with smaller devices. However, the count constraint
2977 * of at least 16 metaslabs will override this minimum size goal.
2978 *
2979 * On the upper end of vdev sizes, we aim for a maximum metaslab
2980 * size of 16GB. However, we will cap the total count to 2^17
2981 * metaslabs to keep our memory footprint in check and let the
2982 * metaslab size grow from there if that limit is hit.
2983 *
2984 * The net effect of applying above constrains is summarized below.
2985 *
2986 * vdev size metaslab count
2987 * --------------|-----------------
2988 * < 8GB ~16
2989 * 8GB - 100GB one per 512MB
2990 * 100GB - 3TB ~200
2991 * 3TB - 2PB one per 16GB
2992 * > 2PB ~131,072
2993 * --------------------------------
2994 *
2995 * Finally, note that all of the above calculate the initial
2996 * number of metaslabs. Expanding a top-level vdev will result
2997 * in additional metaslabs being allocated making it possible
2998 * to exceed the zfs_vdev_ms_count_limit.
2999 */
3000
3001 if (ms_count < zfs_vdev_min_ms_count)
3002 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
3003 else if (ms_count > zfs_vdev_default_ms_count)
3004 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
3005 else
3006 ms_shift = zfs_vdev_default_ms_shift;
3007
3008 if (ms_shift < SPA_MAXBLOCKSHIFT) {
3009 ms_shift = SPA_MAXBLOCKSHIFT;
3010 } else if (ms_shift > zfs_vdev_max_ms_shift) {
3011 ms_shift = zfs_vdev_max_ms_shift;
3012 /* cap the total count to constrain memory footprint */
3013 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
3014 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
3015 }
3016
3017 vd->vdev_ms_shift = ms_shift;
3018 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
3019 }
3020
3021 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)3022 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
3023 {
3024 ASSERT(vd == vd->vdev_top);
3025 /* indirect vdevs don't have metaslabs or dtls */
3026 ASSERT(vdev_is_concrete(vd) || flags == 0);
3027 ASSERT(ISP2(flags));
3028 ASSERT(spa_writeable(vd->vdev_spa));
3029
3030 if (flags & VDD_METASLAB)
3031 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
3032
3033 if (flags & VDD_DTL)
3034 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
3035
3036 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
3037 }
3038
3039 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)3040 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
3041 {
3042 for (int c = 0; c < vd->vdev_children; c++)
3043 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
3044
3045 if (vd->vdev_ops->vdev_op_leaf)
3046 vdev_dirty(vd->vdev_top, flags, vd, txg);
3047 }
3048
3049 /*
3050 * DTLs.
3051 *
3052 * A vdev's DTL (dirty time log) is the set of transaction groups for which
3053 * the vdev has less than perfect replication. There are four kinds of DTL:
3054 *
3055 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
3056 *
3057 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
3058 *
3059 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
3060 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
3061 * txgs that was scrubbed.
3062 *
3063 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3064 * persistent errors or just some device being offline.
3065 * Unlike the other three, the DTL_OUTAGE map is not generally
3066 * maintained; it's only computed when needed, typically to
3067 * determine whether a device can be detached.
3068 *
3069 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3070 * either has the data or it doesn't.
3071 *
3072 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3073 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3074 * if any child is less than fully replicated, then so is its parent.
3075 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3076 * comprising only those txgs which appear in 'maxfaults' or more children;
3077 * those are the txgs we don't have enough replication to read. For example,
3078 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3079 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3080 * two child DTL_MISSING maps.
3081 *
3082 * It should be clear from the above that to compute the DTLs and outage maps
3083 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3084 * Therefore, that is all we keep on disk. When loading the pool, or after
3085 * a configuration change, we generate all other DTLs from first principles.
3086 */
3087 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3088 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3089 {
3090 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3091
3092 ASSERT(t < DTL_TYPES);
3093 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3094 ASSERT(spa_writeable(vd->vdev_spa));
3095
3096 mutex_enter(&vd->vdev_dtl_lock);
3097 if (!zfs_range_tree_contains(rt, txg, size))
3098 zfs_range_tree_add(rt, txg, size);
3099 mutex_exit(&vd->vdev_dtl_lock);
3100 }
3101
3102 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3103 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3104 {
3105 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3106 boolean_t dirty = B_FALSE;
3107
3108 ASSERT(t < DTL_TYPES);
3109 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3110
3111 /*
3112 * While we are loading the pool, the DTLs have not been loaded yet.
3113 * This isn't a problem but it can result in devices being tried
3114 * which are known to not have the data. In which case, the import
3115 * is relying on the checksum to ensure that we get the right data.
3116 * Note that while importing we are only reading the MOS, which is
3117 * always checksummed.
3118 */
3119 mutex_enter(&vd->vdev_dtl_lock);
3120 if (!zfs_range_tree_is_empty(rt))
3121 dirty = zfs_range_tree_contains(rt, txg, size);
3122 mutex_exit(&vd->vdev_dtl_lock);
3123
3124 return (dirty);
3125 }
3126
3127 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3128 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3129 {
3130 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3131 boolean_t empty;
3132
3133 mutex_enter(&vd->vdev_dtl_lock);
3134 empty = zfs_range_tree_is_empty(rt);
3135 mutex_exit(&vd->vdev_dtl_lock);
3136
3137 return (empty);
3138 }
3139
3140 /*
3141 * Check if the txg falls within the range which must be
3142 * resilvered. DVAs outside this range can always be skipped.
3143 */
3144 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3145 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3146 uint64_t phys_birth)
3147 {
3148 (void) dva, (void) psize;
3149
3150 /* Set by sequential resilver. */
3151 if (phys_birth == TXG_UNKNOWN)
3152 return (B_TRUE);
3153
3154 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3155 }
3156
3157 /*
3158 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3159 */
3160 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3161 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3162 uint64_t phys_birth)
3163 {
3164 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3165
3166 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3167 vd->vdev_ops->vdev_op_leaf)
3168 return (B_TRUE);
3169
3170 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3171 phys_birth));
3172 }
3173
3174 /*
3175 * Returns the lowest txg in the DTL range.
3176 */
3177 static uint64_t
vdev_dtl_min(vdev_t * vd)3178 vdev_dtl_min(vdev_t *vd)
3179 {
3180 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3181 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3182 ASSERT0(vd->vdev_children);
3183
3184 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3185 }
3186
3187 /*
3188 * Returns the highest txg in the DTL.
3189 */
3190 static uint64_t
vdev_dtl_max(vdev_t * vd)3191 vdev_dtl_max(vdev_t *vd)
3192 {
3193 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3194 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3195 ASSERT0(vd->vdev_children);
3196
3197 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3198 }
3199
3200 /*
3201 * Determine if a resilvering vdev should remove any DTL entries from
3202 * its range. If the vdev was resilvering for the entire duration of the
3203 * scan then it should excise that range from its DTLs. Otherwise, this
3204 * vdev is considered partially resilvered and should leave its DTL
3205 * entries intact. The comment in vdev_dtl_reassess() describes how we
3206 * excise the DTLs.
3207 */
3208 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3209 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3210 {
3211 ASSERT0(vd->vdev_children);
3212
3213 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3214 return (B_FALSE);
3215
3216 if (vd->vdev_resilver_deferred)
3217 return (B_FALSE);
3218
3219 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3220 return (B_TRUE);
3221
3222 if (rebuild_done) {
3223 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3224 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3225
3226 /* Rebuild not initiated by attach */
3227 if (vd->vdev_rebuild_txg == 0)
3228 return (B_TRUE);
3229
3230 /*
3231 * When a rebuild completes without error then all missing data
3232 * up to the rebuild max txg has been reconstructed and the DTL
3233 * is eligible for excision.
3234 */
3235 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3236 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3237 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3238 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3239 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3240 return (B_TRUE);
3241 }
3242 } else {
3243 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3244 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3245
3246 /* Resilver not initiated by attach */
3247 if (vd->vdev_resilver_txg == 0)
3248 return (B_TRUE);
3249
3250 /*
3251 * When a resilver is initiated the scan will assign the
3252 * scn_max_txg value to the highest txg value that exists
3253 * in all DTLs. If this device's max DTL is not part of this
3254 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3255 * then it is not eligible for excision.
3256 */
3257 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3258 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3259 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3260 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3261 return (B_TRUE);
3262 }
3263 }
3264
3265 return (B_FALSE);
3266 }
3267
3268 /*
3269 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3270 * write operations will be issued to the pool.
3271 */
3272 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3273 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3274 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3275 {
3276 spa_t *spa = vd->vdev_spa;
3277 avl_tree_t reftree;
3278 int minref;
3279
3280 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3281
3282 for (int c = 0; c < vd->vdev_children; c++)
3283 vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3284 scrub_txg, scrub_done, rebuild_done, faulting);
3285
3286 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3287 return;
3288
3289 if (vd->vdev_ops->vdev_op_leaf) {
3290 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3291 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3292 boolean_t check_excise = B_FALSE;
3293 boolean_t wasempty = B_TRUE;
3294
3295 mutex_enter(&vd->vdev_dtl_lock);
3296
3297 /*
3298 * If requested, pretend the scan or rebuild completed cleanly.
3299 */
3300 if (zfs_scan_ignore_errors) {
3301 if (scn != NULL)
3302 scn->scn_phys.scn_errors = 0;
3303 if (vr != NULL)
3304 vr->vr_rebuild_phys.vrp_errors = 0;
3305 }
3306
3307 if (scrub_txg != 0 &&
3308 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3309 wasempty = B_FALSE;
3310 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3311 "dtl:%llu/%llu errors:%llu",
3312 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3313 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3314 (u_longlong_t)vdev_dtl_min(vd),
3315 (u_longlong_t)vdev_dtl_max(vd),
3316 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3317 }
3318
3319 /*
3320 * If we've completed a scrub/resilver or a rebuild cleanly
3321 * then determine if this vdev should remove any DTLs. We
3322 * only want to excise regions on vdevs that were available
3323 * during the entire duration of this scan.
3324 */
3325 if (rebuild_done &&
3326 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3327 check_excise = B_TRUE;
3328 } else {
3329 if (spa->spa_scrub_started ||
3330 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3331 check_excise = B_TRUE;
3332 }
3333 }
3334
3335 if (scrub_txg && check_excise &&
3336 vdev_dtl_should_excise(vd, rebuild_done)) {
3337 /*
3338 * We completed a scrub, resilver or rebuild up to
3339 * scrub_txg. If we did it without rebooting, then
3340 * the scrub dtl will be valid, so excise the old
3341 * region and fold in the scrub dtl. Otherwise,
3342 * leave the dtl as-is if there was an error.
3343 *
3344 * There's little trick here: to excise the beginning
3345 * of the DTL_MISSING map, we put it into a reference
3346 * tree and then add a segment with refcnt -1 that
3347 * covers the range [0, scrub_txg). This means
3348 * that each txg in that range has refcnt -1 or 0.
3349 * We then add DTL_SCRUB with a refcnt of 2, so that
3350 * entries in the range [0, scrub_txg) will have a
3351 * positive refcnt -- either 1 or 2. We then convert
3352 * the reference tree into the new DTL_MISSING map.
3353 */
3354 space_reftree_create(&reftree);
3355 space_reftree_add_map(&reftree,
3356 vd->vdev_dtl[DTL_MISSING], 1);
3357 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3358 space_reftree_add_map(&reftree,
3359 vd->vdev_dtl[DTL_SCRUB], 2);
3360 space_reftree_generate_map(&reftree,
3361 vd->vdev_dtl[DTL_MISSING], 1);
3362 space_reftree_destroy(&reftree);
3363
3364 if (!zfs_range_tree_is_empty(
3365 vd->vdev_dtl[DTL_MISSING])) {
3366 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3367 (u_longlong_t)vdev_dtl_min(vd),
3368 (u_longlong_t)vdev_dtl_max(vd));
3369 } else if (!wasempty) {
3370 zfs_dbgmsg("DTL_MISSING is now empty");
3371 }
3372 }
3373 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3374 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3375 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3376 if (scrub_done)
3377 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3378 NULL);
3379 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3380
3381 /*
3382 * For the faulting case, treat members of a replacing vdev
3383 * as if they are not available. It's more likely than not that
3384 * a vdev in a replacing vdev could encounter read errors so
3385 * treat it as not being able to contribute.
3386 */
3387 if (!vdev_readable(vd) ||
3388 (faulting && vd->vdev_parent != NULL &&
3389 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3390 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3391 } else {
3392 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3393 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3394 }
3395
3396 /*
3397 * If the vdev was resilvering or rebuilding and no longer
3398 * has any DTLs then reset the appropriate flag and dirty
3399 * the top level so that we persist the change.
3400 */
3401 if (txg != 0 &&
3402 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3403 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3404 if (vd->vdev_rebuild_txg != 0) {
3405 vd->vdev_rebuild_txg = 0;
3406 vdev_config_dirty(vd->vdev_top);
3407 } else if (vd->vdev_resilver_txg != 0) {
3408 vd->vdev_resilver_txg = 0;
3409 vdev_config_dirty(vd->vdev_top);
3410 }
3411 }
3412
3413 mutex_exit(&vd->vdev_dtl_lock);
3414
3415 if (txg != 0)
3416 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3417 } else {
3418 mutex_enter(&vd->vdev_dtl_lock);
3419 for (int t = 0; t < DTL_TYPES; t++) {
3420 /* account for child's outage in parent's missing map */
3421 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3422 if (t == DTL_SCRUB) {
3423 /* leaf vdevs only */
3424 continue;
3425 }
3426 if (t == DTL_PARTIAL) {
3427 /* i.e. non-zero */
3428 minref = 1;
3429 } else if (vdev_get_nparity(vd) != 0) {
3430 /* RAIDZ, DRAID */
3431 minref = vdev_get_nparity(vd) + 1;
3432 } else {
3433 /* any kind of mirror */
3434 minref = vd->vdev_children;
3435 }
3436 space_reftree_create(&reftree);
3437 for (int c = 0; c < vd->vdev_children; c++) {
3438 vdev_t *cvd = vd->vdev_child[c];
3439 mutex_enter(&cvd->vdev_dtl_lock);
3440 space_reftree_add_map(&reftree,
3441 cvd->vdev_dtl[s], 1);
3442 mutex_exit(&cvd->vdev_dtl_lock);
3443 }
3444 space_reftree_generate_map(&reftree,
3445 vd->vdev_dtl[t], minref);
3446 space_reftree_destroy(&reftree);
3447 }
3448 mutex_exit(&vd->vdev_dtl_lock);
3449 }
3450
3451 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3452 raidz_dtl_reassessed(vd);
3453 }
3454 }
3455
3456 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3457 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3458 boolean_t scrub_done, boolean_t rebuild_done)
3459 {
3460 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3461 rebuild_done, B_FALSE));
3462 }
3463
3464 /*
3465 * Iterate over all the vdevs except spare, and post kobj events
3466 */
3467 void
vdev_post_kobj_evt(vdev_t * vd)3468 vdev_post_kobj_evt(vdev_t *vd)
3469 {
3470 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3471 vd->vdev_kobj_flag == B_FALSE) {
3472 vd->vdev_kobj_flag = B_TRUE;
3473 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3474 }
3475
3476 for (int c = 0; c < vd->vdev_children; c++)
3477 vdev_post_kobj_evt(vd->vdev_child[c]);
3478 }
3479
3480 /*
3481 * Iterate over all the vdevs except spare, and clear kobj events
3482 */
3483 void
vdev_clear_kobj_evt(vdev_t * vd)3484 vdev_clear_kobj_evt(vdev_t *vd)
3485 {
3486 vd->vdev_kobj_flag = B_FALSE;
3487
3488 for (int c = 0; c < vd->vdev_children; c++)
3489 vdev_clear_kobj_evt(vd->vdev_child[c]);
3490 }
3491
3492 int
vdev_dtl_load(vdev_t * vd)3493 vdev_dtl_load(vdev_t *vd)
3494 {
3495 spa_t *spa = vd->vdev_spa;
3496 objset_t *mos = spa->spa_meta_objset;
3497 zfs_range_tree_t *rt;
3498 int error = 0;
3499
3500 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3501 ASSERT(vdev_is_concrete(vd));
3502
3503 /*
3504 * If the dtl cannot be sync'd there is no need to open it.
3505 */
3506 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3507 return (0);
3508
3509 error = space_map_open(&vd->vdev_dtl_sm, mos,
3510 vd->vdev_dtl_object, 0, -1ULL, 0);
3511 if (error)
3512 return (error);
3513 ASSERT(vd->vdev_dtl_sm != NULL);
3514
3515 rt = zfs_range_tree_create_flags(
3516 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3517 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt"));
3518 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3519 if (error == 0) {
3520 mutex_enter(&vd->vdev_dtl_lock);
3521 zfs_range_tree_walk(rt, zfs_range_tree_add,
3522 vd->vdev_dtl[DTL_MISSING]);
3523 mutex_exit(&vd->vdev_dtl_lock);
3524 }
3525
3526 zfs_range_tree_vacate(rt, NULL, NULL);
3527 zfs_range_tree_destroy(rt);
3528
3529 return (error);
3530 }
3531
3532 for (int c = 0; c < vd->vdev_children; c++) {
3533 error = vdev_dtl_load(vd->vdev_child[c]);
3534 if (error != 0)
3535 break;
3536 }
3537
3538 return (error);
3539 }
3540
3541 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3542 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3543 {
3544 spa_t *spa = vd->vdev_spa;
3545 objset_t *mos = spa->spa_meta_objset;
3546 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3547 const char *string;
3548
3549 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3550
3551 string =
3552 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3553 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3554 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3555
3556 ASSERT(string != NULL);
3557 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3558 1, strlen(string) + 1, string, tx));
3559
3560 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3561 spa_activate_allocation_classes(spa, tx);
3562 }
3563 }
3564
3565 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3566 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3567 {
3568 spa_t *spa = vd->vdev_spa;
3569
3570 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3571 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3572 zapobj, tx));
3573 }
3574
3575 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3576 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3577 {
3578 spa_t *spa = vd->vdev_spa;
3579 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3580 DMU_OT_NONE, 0, tx);
3581
3582 ASSERT(zap != 0);
3583 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3584 zap, tx));
3585
3586 return (zap);
3587 }
3588
3589 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3590 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3591 {
3592 if (vd->vdev_ops != &vdev_hole_ops &&
3593 vd->vdev_ops != &vdev_missing_ops &&
3594 vd->vdev_ops != &vdev_root_ops &&
3595 !vd->vdev_top->vdev_removing) {
3596 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3597 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3598 }
3599 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3600 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3601 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3602 vdev_zap_allocation_data(vd, tx);
3603 }
3604 }
3605 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3606 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3607 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3608 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3609 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3610 }
3611
3612 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3613 vdev_construct_zaps(vd->vdev_child[i], tx);
3614 }
3615 }
3616
3617 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3618 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3619 {
3620 spa_t *spa = vd->vdev_spa;
3621 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3622 objset_t *mos = spa->spa_meta_objset;
3623 zfs_range_tree_t *rtsync;
3624 dmu_tx_t *tx;
3625 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3626
3627 ASSERT(vdev_is_concrete(vd));
3628 ASSERT(vd->vdev_ops->vdev_op_leaf);
3629
3630 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3631
3632 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3633 mutex_enter(&vd->vdev_dtl_lock);
3634 space_map_free(vd->vdev_dtl_sm, tx);
3635 space_map_close(vd->vdev_dtl_sm);
3636 vd->vdev_dtl_sm = NULL;
3637 mutex_exit(&vd->vdev_dtl_lock);
3638
3639 /*
3640 * We only destroy the leaf ZAP for detached leaves or for
3641 * removed log devices. Removed data devices handle leaf ZAP
3642 * cleanup later, once cancellation is no longer possible.
3643 */
3644 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3645 vd->vdev_top->vdev_islog)) {
3646 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3647 vd->vdev_leaf_zap = 0;
3648 }
3649
3650 dmu_tx_commit(tx);
3651 return;
3652 }
3653
3654 if (vd->vdev_dtl_sm == NULL) {
3655 uint64_t new_object;
3656
3657 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3658 VERIFY3U(new_object, !=, 0);
3659
3660 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3661 0, -1ULL, 0));
3662 ASSERT(vd->vdev_dtl_sm != NULL);
3663 }
3664
3665 rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3666 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync"));
3667
3668 mutex_enter(&vd->vdev_dtl_lock);
3669 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3670 mutex_exit(&vd->vdev_dtl_lock);
3671
3672 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3673 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3674 zfs_range_tree_vacate(rtsync, NULL, NULL);
3675
3676 zfs_range_tree_destroy(rtsync);
3677
3678 /*
3679 * If the object for the space map has changed then dirty
3680 * the top level so that we update the config.
3681 */
3682 if (object != space_map_object(vd->vdev_dtl_sm)) {
3683 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3684 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3685 (u_longlong_t)object,
3686 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3687 vdev_config_dirty(vd->vdev_top);
3688 }
3689
3690 dmu_tx_commit(tx);
3691 }
3692
3693 /*
3694 * Determine whether the specified vdev can be
3695 * - offlined
3696 * - detached
3697 * - removed
3698 * - faulted
3699 * without losing data.
3700 */
3701 boolean_t
vdev_dtl_required(vdev_t * vd)3702 vdev_dtl_required(vdev_t *vd)
3703 {
3704 spa_t *spa = vd->vdev_spa;
3705 vdev_t *tvd = vd->vdev_top;
3706 uint8_t cant_read = vd->vdev_cant_read;
3707 boolean_t required;
3708 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3709
3710 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3711
3712 if (vd == spa->spa_root_vdev || vd == tvd)
3713 return (B_TRUE);
3714
3715 /*
3716 * Temporarily mark the device as unreadable, and then determine
3717 * whether this results in any DTL outages in the top-level vdev.
3718 * If not, we can safely offline/detach/remove the device.
3719 */
3720 vd->vdev_cant_read = B_TRUE;
3721 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3722 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3723 vd->vdev_cant_read = cant_read;
3724 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3725
3726 if (!required && zio_injection_enabled) {
3727 required = !!zio_handle_device_injection(vd, NULL,
3728 SET_ERROR(ECHILD));
3729 }
3730
3731 return (required);
3732 }
3733
3734 /*
3735 * Determine if resilver is needed, and if so the txg range.
3736 */
3737 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3738 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3739 {
3740 boolean_t needed = B_FALSE;
3741 uint64_t thismin = UINT64_MAX;
3742 uint64_t thismax = 0;
3743
3744 if (vd->vdev_children == 0) {
3745 mutex_enter(&vd->vdev_dtl_lock);
3746 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3747 vdev_writeable(vd)) {
3748
3749 thismin = vdev_dtl_min(vd);
3750 thismax = vdev_dtl_max(vd);
3751 needed = B_TRUE;
3752 }
3753 mutex_exit(&vd->vdev_dtl_lock);
3754 } else {
3755 for (int c = 0; c < vd->vdev_children; c++) {
3756 vdev_t *cvd = vd->vdev_child[c];
3757 uint64_t cmin, cmax;
3758
3759 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3760 thismin = MIN(thismin, cmin);
3761 thismax = MAX(thismax, cmax);
3762 needed = B_TRUE;
3763 }
3764 }
3765 }
3766
3767 if (needed && minp) {
3768 *minp = thismin;
3769 *maxp = thismax;
3770 }
3771 return (needed);
3772 }
3773
3774 /*
3775 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3776 * will contain either the checkpoint spacemap object or zero if none exists.
3777 * All other errors are returned to the caller.
3778 */
3779 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3780 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3781 {
3782 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3783
3784 if (vd->vdev_top_zap == 0) {
3785 *sm_obj = 0;
3786 return (0);
3787 }
3788
3789 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3790 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3791 if (error == ENOENT) {
3792 *sm_obj = 0;
3793 error = 0;
3794 }
3795
3796 return (error);
3797 }
3798
3799 int
vdev_load(vdev_t * vd)3800 vdev_load(vdev_t *vd)
3801 {
3802 int children = vd->vdev_children;
3803 int error = 0;
3804 taskq_t *tq = NULL;
3805
3806 /*
3807 * It's only worthwhile to use the taskq for the root vdev, because the
3808 * slow part is metaslab_init, and that only happens for top-level
3809 * vdevs.
3810 */
3811 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3812 tq = taskq_create("vdev_load", children, minclsyspri,
3813 children, children, TASKQ_PREPOPULATE);
3814 }
3815
3816 /*
3817 * Recursively load all children.
3818 */
3819 for (int c = 0; c < vd->vdev_children; c++) {
3820 vdev_t *cvd = vd->vdev_child[c];
3821
3822 if (tq == NULL || vdev_uses_zvols(cvd)) {
3823 cvd->vdev_load_error = vdev_load(cvd);
3824 } else {
3825 VERIFY(taskq_dispatch(tq, vdev_load_child,
3826 cvd, TQ_SLEEP) != TASKQID_INVALID);
3827 }
3828 }
3829
3830 if (tq != NULL) {
3831 taskq_wait(tq);
3832 taskq_destroy(tq);
3833 }
3834
3835 for (int c = 0; c < vd->vdev_children; c++) {
3836 int error = vd->vdev_child[c]->vdev_load_error;
3837
3838 if (error != 0)
3839 return (error);
3840 }
3841
3842 vdev_set_deflate_ratio(vd);
3843
3844 if (vd->vdev_ops == &vdev_raidz_ops) {
3845 error = vdev_raidz_load(vd);
3846 if (error != 0)
3847 return (error);
3848 }
3849
3850 /*
3851 * On spa_load path, grab the allocation bias from our zap
3852 */
3853 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3854 spa_t *spa = vd->vdev_spa;
3855 char bias_str[64];
3856
3857 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3858 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3859 bias_str);
3860 if (error == 0) {
3861 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3862 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3863 } else if (error != ENOENT) {
3864 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3865 VDEV_AUX_CORRUPT_DATA);
3866 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3867 "failed [error=%d]",
3868 (u_longlong_t)vd->vdev_top_zap, error);
3869 return (error);
3870 }
3871 }
3872
3873 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3874 spa_t *spa = vd->vdev_spa;
3875 uint64_t failfast;
3876
3877 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3878 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3879 1, &failfast);
3880 if (error == 0) {
3881 vd->vdev_failfast = failfast & 1;
3882 } else if (error == ENOENT) {
3883 vd->vdev_failfast = vdev_prop_default_numeric(
3884 VDEV_PROP_FAILFAST);
3885 } else {
3886 vdev_dbgmsg(vd,
3887 "vdev_load: zap_lookup(top_zap=%llu) "
3888 "failed [error=%d]",
3889 (u_longlong_t)vd->vdev_top_zap, error);
3890 }
3891 }
3892
3893 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3894 spa_t *spa = vd->vdev_spa;
3895 uint64_t autosit;
3896
3897 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3898 vdev_prop_to_name(VDEV_PROP_AUTOSIT), sizeof (autosit),
3899 1, &autosit);
3900 if (error == 0) {
3901 vd->vdev_autosit = autosit == 1;
3902 } else if (error == ENOENT) {
3903 vd->vdev_autosit = vdev_prop_default_numeric(
3904 VDEV_PROP_AUTOSIT);
3905 } else {
3906 vdev_dbgmsg(vd,
3907 "vdev_load: zap_lookup(top_zap=%llu) "
3908 "failed [error=%d]",
3909 (u_longlong_t)vd->vdev_top_zap, error);
3910 }
3911 }
3912
3913 /*
3914 * Load any rebuild state from the top-level vdev zap.
3915 */
3916 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3917 error = vdev_rebuild_load(vd);
3918 if (error && error != ENOTSUP) {
3919 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3920 VDEV_AUX_CORRUPT_DATA);
3921 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3922 "failed [error=%d]", error);
3923 return (error);
3924 }
3925 }
3926
3927 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3928 uint64_t zapobj;
3929
3930 if (vd->vdev_top_zap != 0)
3931 zapobj = vd->vdev_top_zap;
3932 else
3933 zapobj = vd->vdev_leaf_zap;
3934
3935 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3936 &vd->vdev_checksum_n);
3937 if (error && error != ENOENT)
3938 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3939 "failed [error=%d]", (u_longlong_t)zapobj, error);
3940
3941 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3942 &vd->vdev_checksum_t);
3943 if (error && error != ENOENT)
3944 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3945 "failed [error=%d]", (u_longlong_t)zapobj, error);
3946
3947 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3948 &vd->vdev_io_n);
3949 if (error && error != ENOENT)
3950 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3951 "failed [error=%d]", (u_longlong_t)zapobj, error);
3952
3953 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3954 &vd->vdev_io_t);
3955 if (error && error != ENOENT)
3956 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3957 "failed [error=%d]", (u_longlong_t)zapobj, error);
3958
3959 error = vdev_prop_get_bool(vd, VDEV_PROP_SLOW_IO_EVENTS,
3960 &vd->vdev_slow_io_events);
3961 if (error && error != ENOENT)
3962 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3963 "failed [error=%d]", (u_longlong_t)zapobj, error);
3964 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3965 &vd->vdev_slow_io_n);
3966 if (error && error != ENOENT)
3967 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3968 "failed [error=%d]", (u_longlong_t)zapobj, error);
3969
3970 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3971 &vd->vdev_slow_io_t);
3972 if (error && error != ENOENT)
3973 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3974 "failed [error=%d]", (u_longlong_t)zapobj, error);
3975 }
3976
3977 /*
3978 * If this is a top-level vdev, initialize its metaslabs.
3979 */
3980 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3981 vdev_metaslab_group_create(vd);
3982
3983 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3984 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3985 VDEV_AUX_CORRUPT_DATA);
3986 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3987 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3988 (u_longlong_t)vd->vdev_asize);
3989 return (SET_ERROR(ENXIO));
3990 }
3991
3992 error = vdev_metaslab_init(vd, 0);
3993 if (error != 0) {
3994 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3995 "[error=%d]", error);
3996 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3997 VDEV_AUX_CORRUPT_DATA);
3998 return (error);
3999 }
4000
4001 uint64_t checkpoint_sm_obj;
4002 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
4003 if (error == 0 && checkpoint_sm_obj != 0) {
4004 objset_t *mos = spa_meta_objset(vd->vdev_spa);
4005 ASSERT(vd->vdev_asize != 0);
4006 ASSERT0P(vd->vdev_checkpoint_sm);
4007
4008 error = space_map_open(&vd->vdev_checkpoint_sm,
4009 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
4010 vd->vdev_ashift);
4011 if (error != 0) {
4012 vdev_dbgmsg(vd, "vdev_load: space_map_open "
4013 "failed for checkpoint spacemap (obj %llu) "
4014 "[error=%d]",
4015 (u_longlong_t)checkpoint_sm_obj, error);
4016 return (error);
4017 }
4018 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4019
4020 /*
4021 * Since the checkpoint_sm contains free entries
4022 * exclusively we can use space_map_allocated() to
4023 * indicate the cumulative checkpointed space that
4024 * has been freed.
4025 */
4026 vd->vdev_stat.vs_checkpoint_space =
4027 -space_map_allocated(vd->vdev_checkpoint_sm);
4028 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
4029 vd->vdev_stat.vs_checkpoint_space;
4030 } else if (error != 0) {
4031 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
4032 "checkpoint space map object from vdev ZAP "
4033 "[error=%d]", error);
4034 return (error);
4035 }
4036 }
4037
4038 /*
4039 * If this is a leaf vdev, load its DTL.
4040 */
4041 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
4042 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4043 VDEV_AUX_CORRUPT_DATA);
4044 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
4045 "[error=%d]", error);
4046 return (error);
4047 }
4048
4049 uint64_t obsolete_sm_object;
4050 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
4051 if (error == 0 && obsolete_sm_object != 0) {
4052 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4053 ASSERT(vd->vdev_asize != 0);
4054 ASSERT0P(vd->vdev_obsolete_sm);
4055
4056 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
4057 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
4058 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4059 VDEV_AUX_CORRUPT_DATA);
4060 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
4061 "obsolete spacemap (obj %llu) [error=%d]",
4062 (u_longlong_t)obsolete_sm_object, error);
4063 return (error);
4064 }
4065 } else if (error != 0) {
4066 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
4067 "space map object from vdev ZAP [error=%d]", error);
4068 return (error);
4069 }
4070
4071 return (0);
4072 }
4073
4074 /*
4075 * The special vdev case is used for hot spares and l2cache devices. Its
4076 * sole purpose it to set the vdev state for the associated vdev. To do this,
4077 * we make sure that we can open the underlying device, then try to read the
4078 * label, and make sure that the label is sane and that it hasn't been
4079 * repurposed to another pool.
4080 */
4081 int
vdev_validate_aux(vdev_t * vd)4082 vdev_validate_aux(vdev_t *vd)
4083 {
4084 nvlist_t *label;
4085 uint64_t guid, version;
4086 uint64_t state;
4087
4088 if (!vdev_readable(vd))
4089 return (0);
4090
4091 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4092 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4093 VDEV_AUX_CORRUPT_DATA);
4094 return (-1);
4095 }
4096
4097 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4098 !SPA_VERSION_IS_SUPPORTED(version) ||
4099 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4100 guid != vd->vdev_guid ||
4101 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4103 VDEV_AUX_CORRUPT_DATA);
4104 nvlist_free(label);
4105 return (-1);
4106 }
4107
4108 /*
4109 * We don't actually check the pool state here. If it's in fact in
4110 * use by another pool, we update this fact on the fly when requested.
4111 */
4112 nvlist_free(label);
4113 return (0);
4114 }
4115
4116 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4117 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4118 {
4119 objset_t *mos = spa_meta_objset(vd->vdev_spa);
4120
4121 if (vd->vdev_top_zap == 0)
4122 return;
4123
4124 uint64_t object = 0;
4125 int err = zap_lookup(mos, vd->vdev_top_zap,
4126 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4127 if (err == ENOENT)
4128 return;
4129 VERIFY0(err);
4130
4131 VERIFY0(dmu_object_free(mos, object, tx));
4132 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4133 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4134 }
4135
4136 /*
4137 * Free the objects used to store this vdev's spacemaps, and the array
4138 * that points to them.
4139 */
4140 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4141 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4142 {
4143 if (vd->vdev_ms_array == 0)
4144 return;
4145
4146 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4147 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4148 size_t array_bytes = array_count * sizeof (uint64_t);
4149 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4150 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4151 array_bytes, smobj_array, 0));
4152
4153 for (uint64_t i = 0; i < array_count; i++) {
4154 uint64_t smobj = smobj_array[i];
4155 if (smobj == 0)
4156 continue;
4157
4158 space_map_free_obj(mos, smobj, tx);
4159 }
4160
4161 kmem_free(smobj_array, array_bytes);
4162 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4163 vdev_destroy_ms_flush_data(vd, tx);
4164 vd->vdev_ms_array = 0;
4165 }
4166
4167 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4168 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4169 {
4170 spa_t *spa = vd->vdev_spa;
4171
4172 ASSERT(vd->vdev_islog);
4173 ASSERT(vd == vd->vdev_top);
4174 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4175
4176 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4177
4178 vdev_destroy_spacemaps(vd, tx);
4179 if (vd->vdev_top_zap != 0) {
4180 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4181 vd->vdev_top_zap = 0;
4182 }
4183
4184 dmu_tx_commit(tx);
4185 }
4186
4187 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4188 vdev_sync_done(vdev_t *vd, uint64_t txg)
4189 {
4190 metaslab_t *msp;
4191 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4192
4193 ASSERT(vdev_is_concrete(vd));
4194
4195 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4196 != NULL)
4197 metaslab_sync_done(msp, txg);
4198
4199 if (reassess) {
4200 metaslab_sync_reassess(vd->vdev_mg);
4201 if (vd->vdev_log_mg != NULL)
4202 metaslab_sync_reassess(vd->vdev_log_mg);
4203 }
4204 }
4205
4206 void
vdev_sync(vdev_t * vd,uint64_t txg)4207 vdev_sync(vdev_t *vd, uint64_t txg)
4208 {
4209 spa_t *spa = vd->vdev_spa;
4210 vdev_t *lvd;
4211 metaslab_t *msp;
4212
4213 ASSERT3U(txg, ==, spa->spa_syncing_txg);
4214 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4215 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4216 ASSERT(vd->vdev_removing ||
4217 vd->vdev_ops == &vdev_indirect_ops);
4218
4219 vdev_indirect_sync_obsolete(vd, tx);
4220
4221 /*
4222 * If the vdev is indirect, it can't have dirty
4223 * metaslabs or DTLs.
4224 */
4225 if (vd->vdev_ops == &vdev_indirect_ops) {
4226 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4227 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4228 dmu_tx_commit(tx);
4229 return;
4230 }
4231 }
4232
4233 ASSERT(vdev_is_concrete(vd));
4234
4235 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4236 !vd->vdev_removing) {
4237 ASSERT(vd == vd->vdev_top);
4238 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4239 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4240 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4241 ASSERT(vd->vdev_ms_array != 0);
4242 vdev_config_dirty(vd);
4243 }
4244
4245 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4246 metaslab_sync(msp, txg);
4247 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4248 }
4249
4250 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4251 vdev_dtl_sync(lvd, txg);
4252
4253 /*
4254 * If this is an empty log device being removed, destroy the
4255 * metadata associated with it.
4256 */
4257 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4258 vdev_remove_empty_log(vd, txg);
4259
4260 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4261 dmu_tx_commit(tx);
4262 }
4263 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4264 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4265 {
4266 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4267 }
4268
4269 /*
4270 * Return the amount of space that should be (or was) allocated for the given
4271 * psize (compressed block size) in the given TXG. Note that for expanded
4272 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4273 * vdev_raidz_psize_to_asize().
4274 */
4275 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4276 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4277 {
4278 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4279 }
4280
4281 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4282 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4283 {
4284 return (vdev_psize_to_asize_txg(vd, psize, 0));
4285 }
4286
4287 /*
4288 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4289 * not be opened, and no I/O is attempted.
4290 */
4291 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4292 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4293 {
4294 vdev_t *vd, *tvd;
4295
4296 spa_vdev_state_enter(spa, SCL_NONE);
4297
4298 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4299 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4300
4301 if (!vd->vdev_ops->vdev_op_leaf)
4302 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4303
4304 tvd = vd->vdev_top;
4305
4306 /*
4307 * If user did a 'zpool offline -f' then make the fault persist across
4308 * reboots.
4309 */
4310 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4311 /*
4312 * There are two kinds of forced faults: temporary and
4313 * persistent. Temporary faults go away at pool import, while
4314 * persistent faults stay set. Both types of faults can be
4315 * cleared with a zpool clear.
4316 *
4317 * We tell if a vdev is persistently faulted by looking at the
4318 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4319 * import then it's a persistent fault. Otherwise, it's
4320 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4321 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4322 * tells vdev_config_generate() (which gets run later) to set
4323 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4324 */
4325 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4326 vd->vdev_tmpoffline = B_FALSE;
4327 aux = VDEV_AUX_EXTERNAL;
4328 } else {
4329 vd->vdev_tmpoffline = B_TRUE;
4330 }
4331
4332 /*
4333 * We don't directly use the aux state here, but if we do a
4334 * vdev_reopen(), we need this value to be present to remember why we
4335 * were faulted.
4336 */
4337 vd->vdev_label_aux = aux;
4338
4339 /*
4340 * Faulted state takes precedence over degraded.
4341 */
4342 vd->vdev_delayed_close = B_FALSE;
4343 vd->vdev_faulted = 1ULL;
4344 vd->vdev_degraded = 0ULL;
4345 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4346
4347 /*
4348 * If this device has the only valid copy of the data, then
4349 * back off and simply mark the vdev as degraded instead.
4350 */
4351 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4352 vd->vdev_degraded = 1ULL;
4353 vd->vdev_faulted = 0ULL;
4354
4355 /*
4356 * If we reopen the device and it's not dead, only then do we
4357 * mark it degraded.
4358 */
4359 vdev_reopen(tvd);
4360
4361 if (vdev_readable(vd))
4362 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4363 }
4364
4365 return (spa_vdev_state_exit(spa, vd, 0));
4366 }
4367
4368 /*
4369 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4370 * user that something is wrong. The vdev continues to operate as normal as far
4371 * as I/O is concerned.
4372 */
4373 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4374 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4375 {
4376 vdev_t *vd;
4377
4378 spa_vdev_state_enter(spa, SCL_NONE);
4379
4380 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4381 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4382
4383 if (!vd->vdev_ops->vdev_op_leaf)
4384 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4385
4386 /*
4387 * If the vdev is already faulted, then don't do anything.
4388 */
4389 if (vd->vdev_faulted || vd->vdev_degraded)
4390 return (spa_vdev_state_exit(spa, NULL, 0));
4391
4392 vd->vdev_degraded = 1ULL;
4393 if (!vdev_is_dead(vd))
4394 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4395 aux);
4396
4397 return (spa_vdev_state_exit(spa, vd, 0));
4398 }
4399
4400 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4401 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4402 {
4403 vdev_t *vd;
4404
4405 spa_vdev_state_enter(spa, SCL_NONE);
4406
4407 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4408 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4409
4410 /*
4411 * If the vdev is already removed, or expanding which can trigger
4412 * repartition add/remove events, then don't do anything.
4413 */
4414 if (vd->vdev_removed || vd->vdev_expanding)
4415 return (spa_vdev_state_exit(spa, NULL, 0));
4416
4417 /*
4418 * Confirm the vdev has been removed, otherwise don't do anything.
4419 */
4420 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4421 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4422
4423 vd->vdev_remove_wanted = B_TRUE;
4424 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4425
4426 return (spa_vdev_state_exit(spa, vd, 0));
4427 }
4428
4429
4430 /*
4431 * Online the given vdev.
4432 *
4433 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4434 * spare device should be detached when the device finishes resilvering.
4435 * Second, the online should be treated like a 'test' online case, so no FMA
4436 * events are generated if the device fails to open.
4437 */
4438 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4439 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4440 {
4441 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4442 boolean_t wasoffline;
4443 vdev_state_t oldstate;
4444
4445 spa_vdev_state_enter(spa, SCL_NONE);
4446
4447 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4448 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4449
4450 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4451 oldstate = vd->vdev_state;
4452
4453 tvd = vd->vdev_top;
4454 vd->vdev_offline = B_FALSE;
4455 vd->vdev_tmpoffline = B_FALSE;
4456 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4457 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4458
4459 /* XXX - L2ARC 1.0 does not support expansion */
4460 if (!vd->vdev_aux) {
4461 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4462 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4463 spa->spa_autoexpand);
4464 vd->vdev_expansion_time = gethrestime_sec();
4465 }
4466
4467 vdev_reopen(tvd);
4468 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4469
4470 if (!vd->vdev_aux) {
4471 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4472 pvd->vdev_expanding = B_FALSE;
4473 }
4474
4475 if (newstate)
4476 *newstate = vd->vdev_state;
4477 if ((flags & ZFS_ONLINE_UNSPARE) &&
4478 !vdev_is_dead(vd) && vd->vdev_parent &&
4479 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4480 vd->vdev_parent->vdev_child[0] == vd)
4481 vd->vdev_unspare = B_TRUE;
4482
4483 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4484
4485 /* XXX - L2ARC 1.0 does not support expansion */
4486 if (vd->vdev_aux)
4487 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4488 spa->spa_ccw_fail_time = 0;
4489 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4490 }
4491
4492 /* Restart initializing if necessary */
4493 mutex_enter(&vd->vdev_initialize_lock);
4494 if (vdev_writeable(vd) &&
4495 vd->vdev_initialize_thread == NULL &&
4496 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4497 (void) vdev_initialize(vd);
4498 }
4499 mutex_exit(&vd->vdev_initialize_lock);
4500
4501 /*
4502 * Restart trimming if necessary. We do not restart trimming for cache
4503 * devices here. This is triggered by l2arc_rebuild_vdev()
4504 * asynchronously for the whole device or in l2arc_evict() as it evicts
4505 * space for upcoming writes.
4506 */
4507 mutex_enter(&vd->vdev_trim_lock);
4508 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4509 vd->vdev_trim_thread == NULL &&
4510 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4511 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4512 vd->vdev_trim_secure);
4513 }
4514 mutex_exit(&vd->vdev_trim_lock);
4515
4516 if (wasoffline ||
4517 (oldstate < VDEV_STATE_DEGRADED &&
4518 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4519 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4520
4521 /*
4522 * Asynchronously detach spare vdev if resilver or
4523 * rebuild is not required
4524 */
4525 if (vd->vdev_unspare &&
4526 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4527 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4528 !vdev_rebuild_active(tvd))
4529 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4530 }
4531 return (spa_vdev_state_exit(spa, vd, 0));
4532 }
4533
4534 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4535 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4536 {
4537 vdev_t *vd, *tvd;
4538 int error = 0;
4539 uint64_t generation;
4540 metaslab_group_t *mg;
4541
4542 top:
4543 spa_vdev_state_enter(spa, SCL_ALLOC);
4544
4545 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4546 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4547
4548 if (!vd->vdev_ops->vdev_op_leaf)
4549 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4550
4551 if (vd->vdev_ops == &vdev_draid_spare_ops)
4552 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4553
4554 tvd = vd->vdev_top;
4555 mg = tvd->vdev_mg;
4556 generation = spa->spa_config_generation + 1;
4557
4558 /*
4559 * If the device isn't already offline, try to offline it.
4560 */
4561 if (!vd->vdev_offline) {
4562 /*
4563 * If this device has the only valid copy of some data,
4564 * don't allow it to be offlined. Log devices are always
4565 * expendable.
4566 */
4567 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4568 vdev_dtl_required(vd))
4569 return (spa_vdev_state_exit(spa, NULL,
4570 SET_ERROR(EBUSY)));
4571
4572 /*
4573 * If the top-level is a slog and it has had allocations
4574 * then proceed. We check that the vdev's metaslab group
4575 * is not NULL since it's possible that we may have just
4576 * added this vdev but not yet initialized its metaslabs.
4577 */
4578 if (tvd->vdev_islog && mg != NULL) {
4579 /*
4580 * Prevent any future allocations.
4581 */
4582 ASSERT0P(tvd->vdev_log_mg);
4583 metaslab_group_passivate(mg);
4584 (void) spa_vdev_state_exit(spa, vd, 0);
4585
4586 error = spa_reset_logs(spa);
4587
4588 /*
4589 * If the log device was successfully reset but has
4590 * checkpointed data, do not offline it.
4591 */
4592 if (error == 0 &&
4593 tvd->vdev_checkpoint_sm != NULL) {
4594 ASSERT3U(space_map_allocated(
4595 tvd->vdev_checkpoint_sm), !=, 0);
4596 error = ZFS_ERR_CHECKPOINT_EXISTS;
4597 }
4598
4599 spa_vdev_state_enter(spa, SCL_ALLOC);
4600
4601 /*
4602 * Check to see if the config has changed.
4603 */
4604 if (error || generation != spa->spa_config_generation) {
4605 metaslab_group_activate(mg);
4606 if (error)
4607 return (spa_vdev_state_exit(spa,
4608 vd, error));
4609 (void) spa_vdev_state_exit(spa, vd, 0);
4610 goto top;
4611 }
4612 ASSERT0(tvd->vdev_stat.vs_alloc);
4613 }
4614
4615 /*
4616 * Offline this device and reopen its top-level vdev.
4617 * If the top-level vdev is a log device then just offline
4618 * it. Otherwise, if this action results in the top-level
4619 * vdev becoming unusable, undo it and fail the request.
4620 */
4621 vd->vdev_offline = B_TRUE;
4622 vdev_reopen(tvd);
4623
4624 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4625 vdev_is_dead(tvd)) {
4626 vd->vdev_offline = B_FALSE;
4627 vdev_reopen(tvd);
4628 return (spa_vdev_state_exit(spa, NULL,
4629 SET_ERROR(EBUSY)));
4630 }
4631
4632 /*
4633 * Add the device back into the metaslab rotor so that
4634 * once we online the device it's open for business.
4635 */
4636 if (tvd->vdev_islog && mg != NULL)
4637 metaslab_group_activate(mg);
4638 }
4639
4640 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4641
4642 return (spa_vdev_state_exit(spa, vd, 0));
4643 }
4644
4645 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4646 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4647 {
4648 int error;
4649
4650 mutex_enter(&spa->spa_vdev_top_lock);
4651 error = vdev_offline_locked(spa, guid, flags);
4652 mutex_exit(&spa->spa_vdev_top_lock);
4653
4654 return (error);
4655 }
4656
4657 /*
4658 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4659 * vdev_offline(), we assume the spa config is locked. We also clear all
4660 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4661 */
4662 void
vdev_clear(spa_t * spa,vdev_t * vd)4663 vdev_clear(spa_t *spa, vdev_t *vd)
4664 {
4665 vdev_t *rvd = spa->spa_root_vdev;
4666
4667 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4668
4669 if (vd == NULL)
4670 vd = rvd;
4671
4672 vd->vdev_stat.vs_read_errors = 0;
4673 vd->vdev_stat.vs_write_errors = 0;
4674 vd->vdev_stat.vs_checksum_errors = 0;
4675 vd->vdev_stat.vs_dio_verify_errors = 0;
4676 vd->vdev_stat.vs_slow_ios = 0;
4677 atomic_store_64(&vd->vdev_outlier_count, 0);
4678 vd->vdev_read_sit_out_expire = 0;
4679
4680 for (int c = 0; c < vd->vdev_children; c++)
4681 vdev_clear(spa, vd->vdev_child[c]);
4682
4683 /*
4684 * It makes no sense to "clear" an indirect or removed vdev.
4685 */
4686 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4687 return;
4688
4689 /*
4690 * If we're in the FAULTED state or have experienced failed I/O, then
4691 * clear the persistent state and attempt to reopen the device. We
4692 * also mark the vdev config dirty, so that the new faulted state is
4693 * written out to disk.
4694 */
4695 if (vd->vdev_faulted || vd->vdev_degraded ||
4696 !vdev_readable(vd) || !vdev_writeable(vd)) {
4697 /*
4698 * When reopening in response to a clear event, it may be due to
4699 * a fmadm repair request. In this case, if the device is
4700 * still broken, we want to still post the ereport again.
4701 */
4702 vd->vdev_forcefault = B_TRUE;
4703
4704 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4705 vd->vdev_cant_read = B_FALSE;
4706 vd->vdev_cant_write = B_FALSE;
4707 vd->vdev_stat.vs_aux = 0;
4708
4709 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4710
4711 vd->vdev_forcefault = B_FALSE;
4712
4713 if (vd != rvd && vdev_writeable(vd->vdev_top))
4714 vdev_state_dirty(vd->vdev_top);
4715
4716 /* If a resilver isn't required, check if vdevs can be culled */
4717 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4718 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4719 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4720 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4721
4722 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4723 }
4724
4725 /*
4726 * When clearing a FMA-diagnosed fault, we always want to
4727 * unspare the device, as we assume that the original spare was
4728 * done in response to the FMA fault.
4729 */
4730 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4731 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4732 vd->vdev_parent->vdev_child[0] == vd)
4733 vd->vdev_unspare = B_TRUE;
4734
4735 /* Clear recent error events cache (i.e. duplicate events tracking) */
4736 zfs_ereport_clear(spa, vd);
4737 }
4738
4739 boolean_t
vdev_is_dead(vdev_t * vd)4740 vdev_is_dead(vdev_t *vd)
4741 {
4742 /*
4743 * Holes and missing devices are always considered "dead".
4744 * This simplifies the code since we don't have to check for
4745 * these types of devices in the various code paths.
4746 * Instead we rely on the fact that we skip over dead devices
4747 * before issuing I/O to them.
4748 */
4749 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4750 vd->vdev_ops == &vdev_hole_ops ||
4751 vd->vdev_ops == &vdev_missing_ops);
4752 }
4753
4754 boolean_t
vdev_readable(vdev_t * vd)4755 vdev_readable(vdev_t *vd)
4756 {
4757 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4758 }
4759
4760 boolean_t
vdev_writeable(vdev_t * vd)4761 vdev_writeable(vdev_t *vd)
4762 {
4763 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4764 vdev_is_concrete(vd));
4765 }
4766
4767 boolean_t
vdev_allocatable(vdev_t * vd)4768 vdev_allocatable(vdev_t *vd)
4769 {
4770 uint64_t state = vd->vdev_state;
4771
4772 /*
4773 * We currently allow allocations from vdevs which may be in the
4774 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4775 * fails to reopen then we'll catch it later when we're holding
4776 * the proper locks. Note that we have to get the vdev state
4777 * in a local variable because although it changes atomically,
4778 * we're asking two separate questions about it.
4779 */
4780 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4781 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4782 vd->vdev_mg->mg_initialized);
4783 }
4784
4785 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4786 vdev_accessible(vdev_t *vd, zio_t *zio)
4787 {
4788 ASSERT(zio->io_vd == vd);
4789
4790 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4791 return (B_FALSE);
4792
4793 if (zio->io_type == ZIO_TYPE_READ)
4794 return (!vd->vdev_cant_read);
4795
4796 if (zio->io_type == ZIO_TYPE_WRITE)
4797 return (!vd->vdev_cant_write);
4798
4799 return (B_TRUE);
4800 }
4801
4802 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4803 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4804 {
4805 /*
4806 * Exclude the dRAID spare when aggregating to avoid double counting
4807 * the ops and bytes. These IOs are counted by the physical leaves.
4808 */
4809 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4810 return;
4811
4812 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4813 vs->vs_ops[t] += cvs->vs_ops[t];
4814 vs->vs_bytes[t] += cvs->vs_bytes[t];
4815 }
4816
4817 cvs->vs_scan_removing = cvd->vdev_removing;
4818 }
4819
4820 /*
4821 * Get extended stats
4822 */
4823 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4824 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4825 {
4826 (void) cvd;
4827
4828 int t, b;
4829 for (t = 0; t < ZIO_TYPES; t++) {
4830 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4831 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4832
4833 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4834 vsx->vsx_total_histo[t][b] +=
4835 cvsx->vsx_total_histo[t][b];
4836 }
4837 }
4838
4839 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4840 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4841 vsx->vsx_queue_histo[t][b] +=
4842 cvsx->vsx_queue_histo[t][b];
4843 }
4844 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4845 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4846
4847 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4848 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4849
4850 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4851 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4852 }
4853
4854 }
4855
4856 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4857 vdev_is_spacemap_addressable(vdev_t *vd)
4858 {
4859 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4860 return (B_TRUE);
4861
4862 /*
4863 * If double-word space map entries are not enabled we assume
4864 * 47 bits of the space map entry are dedicated to the entry's
4865 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4866 * to calculate the maximum address that can be described by a
4867 * space map entry for the given device.
4868 */
4869 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4870
4871 if (shift >= 63) /* detect potential overflow */
4872 return (B_TRUE);
4873
4874 return (vd->vdev_asize < (1ULL << shift));
4875 }
4876
4877 /*
4878 * Get statistics for the given vdev.
4879 */
4880 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4881 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4882 {
4883 int t;
4884 /*
4885 * If we're getting stats on the root vdev, aggregate the I/O counts
4886 * over all top-level vdevs (i.e. the direct children of the root).
4887 */
4888 if (!vd->vdev_ops->vdev_op_leaf) {
4889 if (vs) {
4890 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4891 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4892 }
4893 if (vsx)
4894 memset(vsx, 0, sizeof (*vsx));
4895
4896 for (int c = 0; c < vd->vdev_children; c++) {
4897 vdev_t *cvd = vd->vdev_child[c];
4898 vdev_stat_t *cvs = &cvd->vdev_stat;
4899 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4900
4901 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4902 if (vs)
4903 vdev_get_child_stat(cvd, vs, cvs);
4904 if (vsx)
4905 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4906 }
4907 } else {
4908 /*
4909 * We're a leaf. Just copy our ZIO active queue stats in. The
4910 * other leaf stats are updated in vdev_stat_update().
4911 */
4912 if (!vsx)
4913 return;
4914
4915 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4916
4917 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4918 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4919 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4920 }
4921 }
4922 }
4923
4924 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4925 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4926 {
4927 vdev_t *tvd = vd->vdev_top;
4928 mutex_enter(&vd->vdev_stat_lock);
4929 if (vs) {
4930 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4931 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4932 vs->vs_state = vd->vdev_state;
4933 vs->vs_rsize = vdev_get_min_asize(vd);
4934
4935 if (vd->vdev_ops->vdev_op_leaf) {
4936 vs->vs_pspace = vd->vdev_psize;
4937 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4938 VDEV_LABEL_END_SIZE;
4939 /*
4940 * Report initializing progress. Since we don't
4941 * have the initializing locks held, this is only
4942 * an estimate (although a fairly accurate one).
4943 */
4944 vs->vs_initialize_bytes_done =
4945 vd->vdev_initialize_bytes_done;
4946 vs->vs_initialize_bytes_est =
4947 vd->vdev_initialize_bytes_est;
4948 vs->vs_initialize_state = vd->vdev_initialize_state;
4949 vs->vs_initialize_action_time =
4950 vd->vdev_initialize_action_time;
4951
4952 /*
4953 * Report manual TRIM progress. Since we don't have
4954 * the manual TRIM locks held, this is only an
4955 * estimate (although fairly accurate one).
4956 */
4957 vs->vs_trim_notsup = !vd->vdev_has_trim;
4958 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4959 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4960 vs->vs_trim_state = vd->vdev_trim_state;
4961 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4962
4963 /* Set when there is a deferred resilver. */
4964 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4965 }
4966
4967 /*
4968 * Report expandable space on top-level, non-auxiliary devices
4969 * only. The expandable space is reported in terms of metaslab
4970 * sized units since that determines how much space the pool
4971 * can expand.
4972 */
4973 if (vd->vdev_aux == NULL && tvd != NULL) {
4974 vs->vs_esize = P2ALIGN_TYPED(
4975 vd->vdev_max_asize - vd->vdev_asize,
4976 1ULL << tvd->vdev_ms_shift, uint64_t);
4977 }
4978
4979 vs->vs_configured_ashift = vd->vdev_top != NULL
4980 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4981 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4982 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4983 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4984 else
4985 vs->vs_physical_ashift = 0;
4986
4987 /*
4988 * Report fragmentation and rebuild progress for top-level,
4989 * non-auxiliary, concrete devices.
4990 */
4991 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4992 vdev_is_concrete(vd)) {
4993 /*
4994 * The vdev fragmentation rating doesn't take into
4995 * account the embedded slog metaslab (vdev_log_mg).
4996 * Since it's only one metaslab, it would have a tiny
4997 * impact on the overall fragmentation.
4998 */
4999 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
5000 vd->vdev_mg->mg_fragmentation : 0;
5001 }
5002 vs->vs_noalloc = MAX(vd->vdev_noalloc,
5003 tvd ? tvd->vdev_noalloc : 0);
5004 }
5005
5006 vdev_get_stats_ex_impl(vd, vs, vsx);
5007 mutex_exit(&vd->vdev_stat_lock);
5008 }
5009
5010 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)5011 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
5012 {
5013 return (vdev_get_stats_ex(vd, vs, NULL));
5014 }
5015
5016 void
vdev_clear_stats(vdev_t * vd)5017 vdev_clear_stats(vdev_t *vd)
5018 {
5019 mutex_enter(&vd->vdev_stat_lock);
5020 vd->vdev_stat.vs_space = 0;
5021 vd->vdev_stat.vs_dspace = 0;
5022 vd->vdev_stat.vs_alloc = 0;
5023 mutex_exit(&vd->vdev_stat_lock);
5024 }
5025
5026 void
vdev_scan_stat_init(vdev_t * vd)5027 vdev_scan_stat_init(vdev_t *vd)
5028 {
5029 vdev_stat_t *vs = &vd->vdev_stat;
5030
5031 for (int c = 0; c < vd->vdev_children; c++)
5032 vdev_scan_stat_init(vd->vdev_child[c]);
5033
5034 mutex_enter(&vd->vdev_stat_lock);
5035 vs->vs_scan_processed = 0;
5036 mutex_exit(&vd->vdev_stat_lock);
5037 }
5038
5039 void
vdev_stat_update(zio_t * zio,uint64_t psize)5040 vdev_stat_update(zio_t *zio, uint64_t psize)
5041 {
5042 spa_t *spa = zio->io_spa;
5043 vdev_t *rvd = spa->spa_root_vdev;
5044 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
5045 vdev_t *pvd;
5046 uint64_t txg = zio->io_txg;
5047 /* Suppress ASAN false positive */
5048 #ifdef __SANITIZE_ADDRESS__
5049 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
5050 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
5051 #else
5052 vdev_stat_t *vs = &vd->vdev_stat;
5053 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
5054 #endif
5055 zio_type_t type = zio->io_type;
5056 int flags = zio->io_flags;
5057
5058 /*
5059 * If this i/o is a gang leader, it didn't do any actual work.
5060 */
5061 if (zio->io_gang_tree)
5062 return;
5063
5064 if (zio->io_error == 0) {
5065 /*
5066 * If this is a root i/o, don't count it -- we've already
5067 * counted the top-level vdevs, and vdev_get_stats() will
5068 * aggregate them when asked. This reduces contention on
5069 * the root vdev_stat_lock and implicitly handles blocks
5070 * that compress away to holes, for which there is no i/o.
5071 * (Holes never create vdev children, so all the counters
5072 * remain zero, which is what we want.)
5073 *
5074 * Note: this only applies to successful i/o (io_error == 0)
5075 * because unlike i/o counts, errors are not additive.
5076 * When reading a ditto block, for example, failure of
5077 * one top-level vdev does not imply a root-level error.
5078 */
5079 if (vd == rvd)
5080 return;
5081
5082 ASSERT(vd == zio->io_vd);
5083
5084 if (flags & ZIO_FLAG_IO_BYPASS)
5085 return;
5086
5087 mutex_enter(&vd->vdev_stat_lock);
5088
5089 if (flags & ZIO_FLAG_IO_REPAIR) {
5090 /*
5091 * Repair is the result of a resilver issued by the
5092 * scan thread (spa_sync).
5093 */
5094 if (flags & ZIO_FLAG_SCAN_THREAD) {
5095 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5096 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5097 uint64_t *processed = &scn_phys->scn_processed;
5098
5099 if (vd->vdev_ops->vdev_op_leaf)
5100 atomic_add_64(processed, psize);
5101 vs->vs_scan_processed += psize;
5102 }
5103
5104 /*
5105 * Repair is the result of a rebuild issued by the
5106 * rebuild thread (vdev_rebuild_thread). To avoid
5107 * double counting repaired bytes the virtual dRAID
5108 * spare vdev is excluded from the processed bytes.
5109 */
5110 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5111 vdev_t *tvd = vd->vdev_top;
5112 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5113 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5114 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5115
5116 if (vd->vdev_ops->vdev_op_leaf &&
5117 vd->vdev_ops != &vdev_draid_spare_ops) {
5118 atomic_add_64(rebuilt, psize);
5119 }
5120 vs->vs_rebuild_processed += psize;
5121 }
5122
5123 if (flags & ZIO_FLAG_SELF_HEAL)
5124 vs->vs_self_healed += psize;
5125 }
5126
5127 /*
5128 * The bytes/ops/histograms are recorded at the leaf level and
5129 * aggregated into the higher level vdevs in vdev_get_stats().
5130 */
5131 if (vd->vdev_ops->vdev_op_leaf &&
5132 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5133 zio_type_t vs_type = type;
5134 zio_priority_t priority = zio->io_priority;
5135
5136 /*
5137 * TRIM ops and bytes are reported to user space as
5138 * ZIO_TYPE_FLUSH. This is done to preserve the
5139 * vdev_stat_t structure layout for user space.
5140 */
5141 if (type == ZIO_TYPE_TRIM)
5142 vs_type = ZIO_TYPE_FLUSH;
5143
5144 /*
5145 * Solely for the purposes of 'zpool iostat -lqrw'
5146 * reporting use the priority to categorize the IO.
5147 * Only the following are reported to user space:
5148 *
5149 * ZIO_PRIORITY_SYNC_READ,
5150 * ZIO_PRIORITY_SYNC_WRITE,
5151 * ZIO_PRIORITY_ASYNC_READ,
5152 * ZIO_PRIORITY_ASYNC_WRITE,
5153 * ZIO_PRIORITY_SCRUB,
5154 * ZIO_PRIORITY_TRIM,
5155 * ZIO_PRIORITY_REBUILD.
5156 */
5157 if (priority == ZIO_PRIORITY_INITIALIZING) {
5158 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5159 priority = ZIO_PRIORITY_ASYNC_WRITE;
5160 } else if (priority == ZIO_PRIORITY_REMOVAL) {
5161 priority = ((type == ZIO_TYPE_WRITE) ?
5162 ZIO_PRIORITY_ASYNC_WRITE :
5163 ZIO_PRIORITY_ASYNC_READ);
5164 }
5165
5166 vs->vs_ops[vs_type]++;
5167 vs->vs_bytes[vs_type] += psize;
5168
5169 if (flags & ZIO_FLAG_DELEGATED) {
5170 vsx->vsx_agg_histo[priority]
5171 [RQ_HISTO(zio->io_size)]++;
5172 } else {
5173 vsx->vsx_ind_histo[priority]
5174 [RQ_HISTO(zio->io_size)]++;
5175 }
5176
5177 if (zio->io_delta && zio->io_delay) {
5178 vsx->vsx_queue_histo[priority]
5179 [L_HISTO(zio->io_delta - zio->io_delay)]++;
5180 vsx->vsx_disk_histo[type]
5181 [L_HISTO(zio->io_delay)]++;
5182 vsx->vsx_total_histo[type]
5183 [L_HISTO(zio->io_delta)]++;
5184 }
5185 }
5186
5187 mutex_exit(&vd->vdev_stat_lock);
5188 return;
5189 }
5190
5191 if (flags & ZIO_FLAG_SPECULATIVE)
5192 return;
5193
5194 /*
5195 * If this is an I/O error that is going to be retried, then ignore the
5196 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5197 * hard errors, when in reality they can happen for any number of
5198 * innocuous reasons (bus resets, MPxIO link failure, etc).
5199 */
5200 if (zio->io_error == EIO &&
5201 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5202 return;
5203
5204 /*
5205 * Intent logs writes won't propagate their error to the root
5206 * I/O so don't mark these types of failures as pool-level
5207 * errors.
5208 */
5209 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5210 return;
5211
5212 if (type == ZIO_TYPE_WRITE && txg != 0 &&
5213 (!(flags & ZIO_FLAG_IO_REPAIR) ||
5214 (flags & ZIO_FLAG_SCAN_THREAD) ||
5215 spa->spa_claiming)) {
5216 /*
5217 * This is either a normal write (not a repair), or it's
5218 * a repair induced by the scrub thread, or it's a repair
5219 * made by zil_claim() during spa_load() in the first txg.
5220 * In the normal case, we commit the DTL change in the same
5221 * txg as the block was born. In the scrub-induced repair
5222 * case, we know that scrubs run in first-pass syncing context,
5223 * so we commit the DTL change in spa_syncing_txg(spa).
5224 * In the zil_claim() case, we commit in spa_first_txg(spa).
5225 *
5226 * We currently do not make DTL entries for failed spontaneous
5227 * self-healing writes triggered by normal (non-scrubbing)
5228 * reads, because we have no transactional context in which to
5229 * do so -- and it's not clear that it'd be desirable anyway.
5230 */
5231 if (vd->vdev_ops->vdev_op_leaf) {
5232 uint64_t commit_txg = txg;
5233 if (flags & ZIO_FLAG_SCAN_THREAD) {
5234 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5235 ASSERT(spa_sync_pass(spa) == 1);
5236 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5237 commit_txg = spa_syncing_txg(spa);
5238 } else if (spa->spa_claiming) {
5239 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5240 commit_txg = spa_first_txg(spa);
5241 }
5242 ASSERT(commit_txg >= spa_syncing_txg(spa));
5243 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5244 return;
5245 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5246 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5247 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5248 }
5249 if (vd != rvd)
5250 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5251 }
5252 }
5253
5254 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5255 vdev_deflated_space(vdev_t *vd, int64_t space)
5256 {
5257 ASSERT0((space & (SPA_MINBLOCKSIZE-1)));
5258 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5259
5260 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5261 }
5262
5263 /*
5264 * Update the in-core space usage stats for this vdev, its metaslab class,
5265 * and the root vdev.
5266 */
5267 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5268 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5269 int64_t space_delta)
5270 {
5271 (void) defer_delta;
5272 int64_t dspace_delta;
5273 spa_t *spa = vd->vdev_spa;
5274 vdev_t *rvd = spa->spa_root_vdev;
5275
5276 ASSERT(vd == vd->vdev_top);
5277
5278 /*
5279 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5280 * factor. We must calculate this here and not at the root vdev
5281 * because the root vdev's psize-to-asize is simply the max of its
5282 * children's, thus not accurate enough for us.
5283 */
5284 dspace_delta = vdev_deflated_space(vd, space_delta);
5285
5286 mutex_enter(&vd->vdev_stat_lock);
5287 /* ensure we won't underflow */
5288 if (alloc_delta < 0) {
5289 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5290 }
5291
5292 vd->vdev_stat.vs_alloc += alloc_delta;
5293 vd->vdev_stat.vs_space += space_delta;
5294 vd->vdev_stat.vs_dspace += dspace_delta;
5295 mutex_exit(&vd->vdev_stat_lock);
5296
5297 /* every class but log contributes to root space stats */
5298 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5299 ASSERT(!vd->vdev_isl2cache);
5300 mutex_enter(&rvd->vdev_stat_lock);
5301 rvd->vdev_stat.vs_alloc += alloc_delta;
5302 rvd->vdev_stat.vs_space += space_delta;
5303 rvd->vdev_stat.vs_dspace += dspace_delta;
5304 mutex_exit(&rvd->vdev_stat_lock);
5305 }
5306 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5307 }
5308
5309 /*
5310 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5311 * so that it will be written out next time the vdev configuration is synced.
5312 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5313 */
5314 void
vdev_config_dirty(vdev_t * vd)5315 vdev_config_dirty(vdev_t *vd)
5316 {
5317 spa_t *spa = vd->vdev_spa;
5318 vdev_t *rvd = spa->spa_root_vdev;
5319 int c;
5320
5321 ASSERT(spa_writeable(spa));
5322
5323 /*
5324 * If this is an aux vdev (as with l2cache and spare devices), then we
5325 * update the vdev config manually and set the sync flag.
5326 */
5327 if (vd->vdev_aux != NULL) {
5328 spa_aux_vdev_t *sav = vd->vdev_aux;
5329 nvlist_t **aux;
5330 uint_t naux;
5331
5332 for (c = 0; c < sav->sav_count; c++) {
5333 if (sav->sav_vdevs[c] == vd)
5334 break;
5335 }
5336
5337 if (c == sav->sav_count) {
5338 /*
5339 * We're being removed. There's nothing more to do.
5340 */
5341 ASSERT(sav->sav_sync == B_TRUE);
5342 return;
5343 }
5344
5345 sav->sav_sync = B_TRUE;
5346
5347 if (nvlist_lookup_nvlist_array(sav->sav_config,
5348 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5349 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
5350 ZPOOL_CONFIG_SPARES, &aux, &naux));
5351 }
5352
5353 ASSERT(c < naux);
5354
5355 /*
5356 * Setting the nvlist in the middle if the array is a little
5357 * sketchy, but it will work.
5358 */
5359 nvlist_free(aux[c]);
5360 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5361
5362 return;
5363 }
5364
5365 /*
5366 * The dirty list is protected by the SCL_CONFIG lock. The caller
5367 * must either hold SCL_CONFIG as writer, or must be the sync thread
5368 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5369 * so this is sufficient to ensure mutual exclusion.
5370 */
5371 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5372 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5373 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5374
5375 if (vd == rvd) {
5376 for (c = 0; c < rvd->vdev_children; c++)
5377 vdev_config_dirty(rvd->vdev_child[c]);
5378 } else {
5379 ASSERT(vd == vd->vdev_top);
5380
5381 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5382 vdev_is_concrete(vd)) {
5383 list_insert_head(&spa->spa_config_dirty_list, vd);
5384 }
5385 }
5386 }
5387
5388 void
vdev_config_clean(vdev_t * vd)5389 vdev_config_clean(vdev_t *vd)
5390 {
5391 spa_t *spa = vd->vdev_spa;
5392
5393 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5394 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5395 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5396
5397 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5398 list_remove(&spa->spa_config_dirty_list, vd);
5399 }
5400
5401 /*
5402 * Mark a top-level vdev's state as dirty, so that the next pass of
5403 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5404 * the state changes from larger config changes because they require
5405 * much less locking, and are often needed for administrative actions.
5406 */
5407 void
vdev_state_dirty(vdev_t * vd)5408 vdev_state_dirty(vdev_t *vd)
5409 {
5410 spa_t *spa = vd->vdev_spa;
5411
5412 ASSERT(spa_writeable(spa));
5413 ASSERT(vd == vd->vdev_top);
5414
5415 /*
5416 * The state list is protected by the SCL_STATE lock. The caller
5417 * must either hold SCL_STATE as writer, or must be the sync thread
5418 * (which holds SCL_STATE as reader). There's only one sync thread,
5419 * so this is sufficient to ensure mutual exclusion.
5420 */
5421 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5422 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5423 spa_config_held(spa, SCL_STATE, RW_READER)));
5424
5425 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5426 vdev_is_concrete(vd))
5427 list_insert_head(&spa->spa_state_dirty_list, vd);
5428 }
5429
5430 void
vdev_state_clean(vdev_t * vd)5431 vdev_state_clean(vdev_t *vd)
5432 {
5433 spa_t *spa = vd->vdev_spa;
5434
5435 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5436 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5437 spa_config_held(spa, SCL_STATE, RW_READER)));
5438
5439 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5440 list_remove(&spa->spa_state_dirty_list, vd);
5441 }
5442
5443 /*
5444 * Propagate vdev state up from children to parent.
5445 */
5446 void
vdev_propagate_state(vdev_t * vd)5447 vdev_propagate_state(vdev_t *vd)
5448 {
5449 spa_t *spa = vd->vdev_spa;
5450 vdev_t *rvd = spa->spa_root_vdev;
5451 int degraded = 0, faulted = 0;
5452 int corrupted = 0;
5453 vdev_t *child;
5454
5455 if (vd->vdev_children > 0) {
5456 for (int c = 0; c < vd->vdev_children; c++) {
5457 child = vd->vdev_child[c];
5458
5459 /*
5460 * Don't factor holes or indirect vdevs into the
5461 * decision.
5462 */
5463 if (!vdev_is_concrete(child))
5464 continue;
5465
5466 if (!vdev_readable(child) ||
5467 (!vdev_writeable(child) && spa_writeable(spa))) {
5468 /*
5469 * Root special: if there is a top-level log
5470 * device, treat the root vdev as if it were
5471 * degraded.
5472 */
5473 if (child->vdev_islog && vd == rvd)
5474 degraded++;
5475 else
5476 faulted++;
5477 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5478 degraded++;
5479 }
5480
5481 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5482 corrupted++;
5483 }
5484
5485 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5486
5487 /*
5488 * Root special: if there is a top-level vdev that cannot be
5489 * opened due to corrupted metadata, then propagate the root
5490 * vdev's aux state as 'corrupt' rather than 'insufficient
5491 * replicas'.
5492 */
5493 if (corrupted && vd == rvd &&
5494 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5495 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5496 VDEV_AUX_CORRUPT_DATA);
5497 }
5498
5499 if (vd->vdev_parent)
5500 vdev_propagate_state(vd->vdev_parent);
5501 }
5502
5503 /*
5504 * Set a vdev's state. If this is during an open, we don't update the parent
5505 * state, because we're in the process of opening children depth-first.
5506 * Otherwise, we propagate the change to the parent.
5507 *
5508 * If this routine places a device in a faulted state, an appropriate ereport is
5509 * generated.
5510 */
5511 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5512 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5513 {
5514 uint64_t save_state;
5515 spa_t *spa = vd->vdev_spa;
5516
5517 if (state == vd->vdev_state) {
5518 /*
5519 * Since vdev_offline() code path is already in an offline
5520 * state we can miss a statechange event to OFFLINE. Check
5521 * the previous state to catch this condition.
5522 */
5523 if (vd->vdev_ops->vdev_op_leaf &&
5524 (state == VDEV_STATE_OFFLINE) &&
5525 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5526 /* post an offline state change */
5527 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5528 }
5529 vd->vdev_stat.vs_aux = aux;
5530 return;
5531 }
5532
5533 save_state = vd->vdev_state;
5534
5535 vd->vdev_state = state;
5536 vd->vdev_stat.vs_aux = aux;
5537
5538 /*
5539 * If we are setting the vdev state to anything but an open state, then
5540 * always close the underlying device unless the device has requested
5541 * a delayed close (i.e. we're about to remove or fault the device).
5542 * Otherwise, we keep accessible but invalid devices open forever.
5543 * We don't call vdev_close() itself, because that implies some extra
5544 * checks (offline, etc) that we don't want here. This is limited to
5545 * leaf devices, because otherwise closing the device will affect other
5546 * children.
5547 */
5548 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5549 vd->vdev_ops->vdev_op_leaf)
5550 vd->vdev_ops->vdev_op_close(vd);
5551
5552 if (vd->vdev_removed &&
5553 state == VDEV_STATE_CANT_OPEN &&
5554 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5555 /*
5556 * If the previous state is set to VDEV_STATE_REMOVED, then this
5557 * device was previously marked removed and someone attempted to
5558 * reopen it. If this failed due to a nonexistent device, then
5559 * keep the device in the REMOVED state. We also let this be if
5560 * it is one of our special test online cases, which is only
5561 * attempting to online the device and shouldn't generate an FMA
5562 * fault.
5563 */
5564 vd->vdev_state = VDEV_STATE_REMOVED;
5565 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5566 } else if (state == VDEV_STATE_REMOVED) {
5567 vd->vdev_removed = B_TRUE;
5568 } else if (state == VDEV_STATE_CANT_OPEN) {
5569 /*
5570 * If we fail to open a vdev during an import or recovery, we
5571 * mark it as "not available", which signifies that it was
5572 * never there to begin with. Failure to open such a device
5573 * is not considered an error.
5574 */
5575 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5576 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5577 vd->vdev_ops->vdev_op_leaf)
5578 vd->vdev_not_present = 1;
5579
5580 /*
5581 * Post the appropriate ereport. If the 'prevstate' field is
5582 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5583 * that this is part of a vdev_reopen(). In this case, we don't
5584 * want to post the ereport if the device was already in the
5585 * CANT_OPEN state beforehand.
5586 *
5587 * If the 'checkremove' flag is set, then this is an attempt to
5588 * online the device in response to an insertion event. If we
5589 * hit this case, then we have detected an insertion event for a
5590 * faulted or offline device that wasn't in the removed state.
5591 * In this scenario, we don't post an ereport because we are
5592 * about to replace the device, or attempt an online with
5593 * vdev_forcefault, which will generate the fault for us.
5594 */
5595 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5596 !vd->vdev_not_present && !vd->vdev_checkremove &&
5597 vd != spa->spa_root_vdev) {
5598 const char *class;
5599
5600 switch (aux) {
5601 case VDEV_AUX_OPEN_FAILED:
5602 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5603 break;
5604 case VDEV_AUX_CORRUPT_DATA:
5605 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5606 break;
5607 case VDEV_AUX_NO_REPLICAS:
5608 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5609 break;
5610 case VDEV_AUX_BAD_GUID_SUM:
5611 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5612 break;
5613 case VDEV_AUX_TOO_SMALL:
5614 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5615 break;
5616 case VDEV_AUX_BAD_LABEL:
5617 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5618 break;
5619 case VDEV_AUX_BAD_ASHIFT:
5620 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5621 break;
5622 default:
5623 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5624 }
5625
5626 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5627 save_state);
5628 }
5629
5630 /* Erase any notion of persistent removed state */
5631 vd->vdev_removed = B_FALSE;
5632 } else {
5633 vd->vdev_removed = B_FALSE;
5634 }
5635
5636 /*
5637 * Notify ZED of any significant state-change on a leaf vdev.
5638 *
5639 */
5640 if (vd->vdev_ops->vdev_op_leaf) {
5641 /* preserve original state from a vdev_reopen() */
5642 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5643 (vd->vdev_prevstate != vd->vdev_state) &&
5644 (save_state <= VDEV_STATE_CLOSED))
5645 save_state = vd->vdev_prevstate;
5646
5647 /* filter out state change due to initial vdev_open */
5648 if (save_state > VDEV_STATE_CLOSED)
5649 zfs_post_state_change(spa, vd, save_state);
5650 }
5651
5652 if (!isopen && vd->vdev_parent)
5653 vdev_propagate_state(vd->vdev_parent);
5654 }
5655
5656 boolean_t
vdev_children_are_offline(vdev_t * vd)5657 vdev_children_are_offline(vdev_t *vd)
5658 {
5659 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5660
5661 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5662 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5663 return (B_FALSE);
5664 }
5665
5666 return (B_TRUE);
5667 }
5668
5669 /*
5670 * Check the vdev configuration to ensure that it's capable of supporting
5671 * a root pool. We do not support partial configuration.
5672 */
5673 boolean_t
vdev_is_bootable(vdev_t * vd)5674 vdev_is_bootable(vdev_t *vd)
5675 {
5676 if (!vd->vdev_ops->vdev_op_leaf) {
5677 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5678
5679 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5680 return (B_FALSE);
5681 }
5682
5683 for (int c = 0; c < vd->vdev_children; c++) {
5684 if (!vdev_is_bootable(vd->vdev_child[c]))
5685 return (B_FALSE);
5686 }
5687 return (B_TRUE);
5688 }
5689
5690 boolean_t
vdev_is_concrete(vdev_t * vd)5691 vdev_is_concrete(vdev_t *vd)
5692 {
5693 vdev_ops_t *ops = vd->vdev_ops;
5694 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5695 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5696 return (B_FALSE);
5697 } else {
5698 return (B_TRUE);
5699 }
5700 }
5701
5702 /*
5703 * Determine if a log device has valid content. If the vdev was
5704 * removed or faulted in the MOS config then we know that
5705 * the content on the log device has already been written to the pool.
5706 */
5707 boolean_t
vdev_log_state_valid(vdev_t * vd)5708 vdev_log_state_valid(vdev_t *vd)
5709 {
5710 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5711 !vd->vdev_removed)
5712 return (B_TRUE);
5713
5714 for (int c = 0; c < vd->vdev_children; c++)
5715 if (vdev_log_state_valid(vd->vdev_child[c]))
5716 return (B_TRUE);
5717
5718 return (B_FALSE);
5719 }
5720
5721 /*
5722 * Expand a vdev if possible.
5723 */
5724 void
vdev_expand(vdev_t * vd,uint64_t txg)5725 vdev_expand(vdev_t *vd, uint64_t txg)
5726 {
5727 ASSERT(vd->vdev_top == vd);
5728 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5729 ASSERT(vdev_is_concrete(vd));
5730
5731 vdev_set_deflate_ratio(vd);
5732
5733 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5734 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5735 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5736 vdev_is_concrete(vd)) {
5737 vdev_metaslab_group_create(vd);
5738 VERIFY0(vdev_metaslab_init(vd, txg));
5739 vdev_config_dirty(vd);
5740 }
5741 }
5742
5743 /*
5744 * Split a vdev.
5745 */
5746 void
vdev_split(vdev_t * vd)5747 vdev_split(vdev_t *vd)
5748 {
5749 vdev_t *cvd, *pvd = vd->vdev_parent;
5750
5751 VERIFY3U(pvd->vdev_children, >, 1);
5752
5753 vdev_remove_child(pvd, vd);
5754 vdev_compact_children(pvd);
5755
5756 ASSERT3P(pvd->vdev_child, !=, NULL);
5757
5758 cvd = pvd->vdev_child[0];
5759 if (pvd->vdev_children == 1) {
5760 vdev_remove_parent(cvd);
5761 cvd->vdev_splitting = B_TRUE;
5762 }
5763 vdev_propagate_state(cvd);
5764 }
5765
5766 void
vdev_deadman(vdev_t * vd,const char * tag)5767 vdev_deadman(vdev_t *vd, const char *tag)
5768 {
5769 for (int c = 0; c < vd->vdev_children; c++) {
5770 vdev_t *cvd = vd->vdev_child[c];
5771
5772 vdev_deadman(cvd, tag);
5773 }
5774
5775 if (vd->vdev_ops->vdev_op_leaf) {
5776 vdev_queue_t *vq = &vd->vdev_queue;
5777
5778 mutex_enter(&vq->vq_lock);
5779 if (vq->vq_active > 0) {
5780 spa_t *spa = vd->vdev_spa;
5781 zio_t *fio;
5782 uint64_t delta;
5783
5784 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5785 vd->vdev_path, vq->vq_active);
5786
5787 /*
5788 * Look at the head of all the pending queues,
5789 * if any I/O has been outstanding for longer than
5790 * the spa_deadman_synctime invoke the deadman logic.
5791 */
5792 fio = list_head(&vq->vq_active_list);
5793 delta = gethrtime() - fio->io_timestamp;
5794 if (delta > spa_deadman_synctime(spa))
5795 zio_deadman(fio, tag);
5796 }
5797 mutex_exit(&vq->vq_lock);
5798 }
5799 }
5800
5801 void
vdev_defer_resilver(vdev_t * vd)5802 vdev_defer_resilver(vdev_t *vd)
5803 {
5804 ASSERT(vd->vdev_ops->vdev_op_leaf);
5805
5806 vd->vdev_resilver_deferred = B_TRUE;
5807 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5808 }
5809
5810 /*
5811 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5812 * B_TRUE if we have devices that need to be resilvered and are available to
5813 * accept resilver I/Os.
5814 */
5815 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5816 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5817 {
5818 boolean_t resilver_needed = B_FALSE;
5819 spa_t *spa = vd->vdev_spa;
5820
5821 for (int c = 0; c < vd->vdev_children; c++) {
5822 vdev_t *cvd = vd->vdev_child[c];
5823 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5824 }
5825
5826 if (vd == spa->spa_root_vdev &&
5827 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5828 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5829 vdev_config_dirty(vd);
5830 spa->spa_resilver_deferred = B_FALSE;
5831 return (resilver_needed);
5832 }
5833
5834 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5835 !vd->vdev_ops->vdev_op_leaf)
5836 return (resilver_needed);
5837
5838 vd->vdev_resilver_deferred = B_FALSE;
5839
5840 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5841 vdev_resilver_needed(vd, NULL, NULL));
5842 }
5843
5844 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5845 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5846 {
5847 return (rs->rs_start == rs->rs_end);
5848 }
5849
5850 /*
5851 * Translate a logical range to the first contiguous physical range for the
5852 * specified vdev_t. This function is initially called with a leaf vdev and
5853 * will walk each parent vdev until it reaches a top-level vdev. Once the
5854 * top-level is reached the physical range is initialized and the recursive
5855 * function begins to unwind. As it unwinds it calls the parent's vdev
5856 * specific translation function to do the real conversion.
5857 */
5858 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5859 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5860 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5861 {
5862 /*
5863 * Walk up the vdev tree
5864 */
5865 if (vd != vd->vdev_top) {
5866 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5867 remain_rs);
5868 } else {
5869 /*
5870 * We've reached the top-level vdev, initialize the physical
5871 * range to the logical range and set an empty remaining
5872 * range then start to unwind.
5873 */
5874 physical_rs->rs_start = logical_rs->rs_start;
5875 physical_rs->rs_end = logical_rs->rs_end;
5876
5877 remain_rs->rs_start = logical_rs->rs_start;
5878 remain_rs->rs_end = logical_rs->rs_start;
5879
5880 return;
5881 }
5882
5883 vdev_t *pvd = vd->vdev_parent;
5884 ASSERT3P(pvd, !=, NULL);
5885 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5886
5887 /*
5888 * As this recursive function unwinds, translate the logical
5889 * range into its physical and any remaining components by calling
5890 * the vdev specific translate function.
5891 */
5892 zfs_range_seg64_t intermediate = { 0 };
5893 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5894
5895 physical_rs->rs_start = intermediate.rs_start;
5896 physical_rs->rs_end = intermediate.rs_end;
5897 }
5898
5899 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5900 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5901 vdev_xlate_func_t *func, void *arg)
5902 {
5903 zfs_range_seg64_t iter_rs = *logical_rs;
5904 zfs_range_seg64_t physical_rs;
5905 zfs_range_seg64_t remain_rs;
5906
5907 while (!vdev_xlate_is_empty(&iter_rs)) {
5908
5909 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5910
5911 /*
5912 * With raidz and dRAID, it's possible that the logical range
5913 * does not live on this leaf vdev. Only when there is a non-
5914 * zero physical size call the provided function.
5915 */
5916 if (!vdev_xlate_is_empty(&physical_rs))
5917 func(arg, &physical_rs);
5918
5919 iter_rs = remain_rs;
5920 }
5921 }
5922
5923 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5924 vdev_name(vdev_t *vd, char *buf, int buflen)
5925 {
5926 if (vd->vdev_path == NULL) {
5927 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5928 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5929 } else if (!vd->vdev_ops->vdev_op_leaf) {
5930 snprintf(buf, buflen, "%s-%llu",
5931 vd->vdev_ops->vdev_op_type,
5932 (u_longlong_t)vd->vdev_id);
5933 }
5934 } else {
5935 strlcpy(buf, vd->vdev_path, buflen);
5936 }
5937 return (buf);
5938 }
5939
5940 /*
5941 * Look at the vdev tree and determine whether any devices are currently being
5942 * replaced.
5943 */
5944 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5945 vdev_replace_in_progress(vdev_t *vdev)
5946 {
5947 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5948
5949 if (vdev->vdev_ops == &vdev_replacing_ops)
5950 return (B_TRUE);
5951
5952 /*
5953 * A 'spare' vdev indicates that we have a replace in progress, unless
5954 * it has exactly two children, and the second, the hot spare, has
5955 * finished being resilvered.
5956 */
5957 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5958 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5959 return (B_TRUE);
5960
5961 for (int i = 0; i < vdev->vdev_children; i++) {
5962 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5963 return (B_TRUE);
5964 }
5965
5966 return (B_FALSE);
5967 }
5968
5969 /*
5970 * Add a (source=src, propname=propval) list to an nvlist.
5971 */
5972 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5973 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5974 uint64_t intval, zprop_source_t src)
5975 {
5976 nvlist_t *propval;
5977
5978 propval = fnvlist_alloc();
5979 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5980
5981 if (strval != NULL)
5982 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5983 else
5984 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5985
5986 fnvlist_add_nvlist(nvl, propname, propval);
5987 nvlist_free(propval);
5988 }
5989
5990 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5991 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5992 {
5993 vdev_t *vd;
5994 nvlist_t *nvp = arg;
5995 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5996 objset_t *mos = spa->spa_meta_objset;
5997 nvpair_t *elem = NULL;
5998 uint64_t vdev_guid;
5999 uint64_t objid;
6000 nvlist_t *nvprops;
6001
6002 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
6003 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
6004 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
6005
6006 /* this vdev could get removed while waiting for this sync task */
6007 if (vd == NULL)
6008 return;
6009
6010 /*
6011 * Set vdev property values in the vdev props mos object.
6012 */
6013 if (vdev_prop_get_objid(vd, &objid) != 0)
6014 panic("unexpected vdev type");
6015
6016 mutex_enter(&spa->spa_props_lock);
6017
6018 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6019 uint64_t intval;
6020 const char *strval;
6021 vdev_prop_t prop;
6022 const char *propname = nvpair_name(elem);
6023 zprop_type_t proptype;
6024
6025 switch (prop = vdev_name_to_prop(propname)) {
6026 case VDEV_PROP_USERPROP:
6027 if (vdev_prop_user(propname)) {
6028 strval = fnvpair_value_string(elem);
6029 if (strlen(strval) == 0) {
6030 /* remove the property if value == "" */
6031 (void) zap_remove(mos, objid, propname,
6032 tx);
6033 } else {
6034 VERIFY0(zap_update(mos, objid, propname,
6035 1, strlen(strval) + 1, strval, tx));
6036 }
6037 spa_history_log_internal(spa, "vdev set", tx,
6038 "vdev_guid=%llu: %s=%s",
6039 (u_longlong_t)vdev_guid, nvpair_name(elem),
6040 strval);
6041 }
6042 break;
6043 default:
6044 /* normalize the property name */
6045 propname = vdev_prop_to_name(prop);
6046 proptype = vdev_prop_get_type(prop);
6047
6048 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6049 ASSERT(proptype == PROP_TYPE_STRING);
6050 strval = fnvpair_value_string(elem);
6051 VERIFY0(zap_update(mos, objid, propname,
6052 1, strlen(strval) + 1, strval, tx));
6053 spa_history_log_internal(spa, "vdev set", tx,
6054 "vdev_guid=%llu: %s=%s",
6055 (u_longlong_t)vdev_guid, nvpair_name(elem),
6056 strval);
6057 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6058 intval = fnvpair_value_uint64(elem);
6059
6060 if (proptype == PROP_TYPE_INDEX) {
6061 const char *unused;
6062 VERIFY0(vdev_prop_index_to_string(
6063 prop, intval, &unused));
6064 }
6065 VERIFY0(zap_update(mos, objid, propname,
6066 sizeof (uint64_t), 1, &intval, tx));
6067 spa_history_log_internal(spa, "vdev set", tx,
6068 "vdev_guid=%llu: %s=%lld",
6069 (u_longlong_t)vdev_guid,
6070 nvpair_name(elem), (longlong_t)intval);
6071 } else {
6072 panic("invalid vdev property type %u",
6073 nvpair_type(elem));
6074 }
6075 }
6076
6077 }
6078
6079 mutex_exit(&spa->spa_props_lock);
6080 }
6081
6082 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6083 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6084 {
6085 spa_t *spa = vd->vdev_spa;
6086 nvpair_t *elem = NULL;
6087 uint64_t vdev_guid;
6088 nvlist_t *nvprops;
6089 int error = 0;
6090
6091 ASSERT(vd != NULL);
6092
6093 /* Check that vdev has a zap we can use */
6094 if (vd->vdev_root_zap == 0 &&
6095 vd->vdev_top_zap == 0 &&
6096 vd->vdev_leaf_zap == 0)
6097 return (SET_ERROR(EINVAL));
6098
6099 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6100 &vdev_guid) != 0)
6101 return (SET_ERROR(EINVAL));
6102
6103 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6104 &nvprops) != 0)
6105 return (SET_ERROR(EINVAL));
6106
6107 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6108 return (SET_ERROR(EINVAL));
6109
6110 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6111 const char *propname = nvpair_name(elem);
6112 vdev_prop_t prop = vdev_name_to_prop(propname);
6113 uint64_t intval = 0;
6114 const char *strval = NULL;
6115
6116 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6117 error = EINVAL;
6118 goto end;
6119 }
6120
6121 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6122 error = EROFS;
6123 goto end;
6124 }
6125
6126 /* Special Processing */
6127 switch (prop) {
6128 case VDEV_PROP_PATH:
6129 if (vd->vdev_path == NULL) {
6130 error = EROFS;
6131 break;
6132 }
6133 if (nvpair_value_string(elem, &strval) != 0) {
6134 error = EINVAL;
6135 break;
6136 }
6137 /* New path must start with /dev/ */
6138 if (strncmp(strval, "/dev/", 5)) {
6139 error = EINVAL;
6140 break;
6141 }
6142 error = spa_vdev_setpath(spa, vdev_guid, strval);
6143 break;
6144 case VDEV_PROP_ALLOCATING:
6145 if (nvpair_value_uint64(elem, &intval) != 0) {
6146 error = EINVAL;
6147 break;
6148 }
6149 if (intval != vd->vdev_noalloc)
6150 break;
6151 if (intval == 0)
6152 error = spa_vdev_noalloc(spa, vdev_guid);
6153 else
6154 error = spa_vdev_alloc(spa, vdev_guid);
6155 break;
6156 case VDEV_PROP_FAILFAST:
6157 if (nvpair_value_uint64(elem, &intval) != 0) {
6158 error = EINVAL;
6159 break;
6160 }
6161 vd->vdev_failfast = intval & 1;
6162 break;
6163 case VDEV_PROP_SIT_OUT:
6164 /* Only expose this for a draid or raidz leaf */
6165 if (!vd->vdev_ops->vdev_op_leaf ||
6166 vd->vdev_top == NULL ||
6167 (vd->vdev_top->vdev_ops != &vdev_raidz_ops &&
6168 vd->vdev_top->vdev_ops != &vdev_draid_ops)) {
6169 error = ENOTSUP;
6170 break;
6171 }
6172 if (nvpair_value_uint64(elem, &intval) != 0) {
6173 error = EINVAL;
6174 break;
6175 }
6176 if (intval == 1) {
6177 vdev_t *ancestor = vd;
6178 while (ancestor->vdev_parent != vd->vdev_top)
6179 ancestor = ancestor->vdev_parent;
6180 vdev_t *pvd = vd->vdev_top;
6181 uint_t sitouts = 0;
6182 for (int i = 0; i < pvd->vdev_children; i++) {
6183 if (pvd->vdev_child[i] == ancestor)
6184 continue;
6185 if (vdev_sit_out_reads(
6186 pvd->vdev_child[i], 0)) {
6187 sitouts++;
6188 }
6189 }
6190 if (sitouts >= vdev_get_nparity(pvd)) {
6191 error = ZFS_ERR_TOO_MANY_SITOUTS;
6192 break;
6193 }
6194 if (error == 0)
6195 vdev_raidz_sit_child(vd,
6196 INT64_MAX - gethrestime_sec());
6197 } else {
6198 vdev_raidz_unsit_child(vd);
6199 }
6200 break;
6201 case VDEV_PROP_AUTOSIT:
6202 if (vd->vdev_ops != &vdev_raidz_ops &&
6203 vd->vdev_ops != &vdev_draid_ops) {
6204 error = ENOTSUP;
6205 break;
6206 }
6207 if (nvpair_value_uint64(elem, &intval) != 0) {
6208 error = EINVAL;
6209 break;
6210 }
6211 vd->vdev_autosit = intval == 1;
6212 break;
6213 case VDEV_PROP_CHECKSUM_N:
6214 if (nvpair_value_uint64(elem, &intval) != 0) {
6215 error = EINVAL;
6216 break;
6217 }
6218 vd->vdev_checksum_n = intval;
6219 break;
6220 case VDEV_PROP_CHECKSUM_T:
6221 if (nvpair_value_uint64(elem, &intval) != 0) {
6222 error = EINVAL;
6223 break;
6224 }
6225 vd->vdev_checksum_t = intval;
6226 break;
6227 case VDEV_PROP_IO_N:
6228 if (nvpair_value_uint64(elem, &intval) != 0) {
6229 error = EINVAL;
6230 break;
6231 }
6232 vd->vdev_io_n = intval;
6233 break;
6234 case VDEV_PROP_IO_T:
6235 if (nvpair_value_uint64(elem, &intval) != 0) {
6236 error = EINVAL;
6237 break;
6238 }
6239 vd->vdev_io_t = intval;
6240 break;
6241 case VDEV_PROP_SLOW_IO_EVENTS:
6242 if (nvpair_value_uint64(elem, &intval) != 0) {
6243 error = EINVAL;
6244 break;
6245 }
6246 vd->vdev_slow_io_events = intval != 0;
6247 break;
6248 case VDEV_PROP_SLOW_IO_N:
6249 if (nvpair_value_uint64(elem, &intval) != 0) {
6250 error = EINVAL;
6251 break;
6252 }
6253 vd->vdev_slow_io_n = intval;
6254 break;
6255 case VDEV_PROP_SLOW_IO_T:
6256 if (nvpair_value_uint64(elem, &intval) != 0) {
6257 error = EINVAL;
6258 break;
6259 }
6260 vd->vdev_slow_io_t = intval;
6261 break;
6262 default:
6263 /* Most processing is done in vdev_props_set_sync */
6264 break;
6265 }
6266 end:
6267 if (error != 0) {
6268 intval = error;
6269 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6270 return (error);
6271 }
6272 }
6273
6274 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6275 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6276 }
6277
6278 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6279 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6280 {
6281 spa_t *spa = vd->vdev_spa;
6282 objset_t *mos = spa->spa_meta_objset;
6283 int err = 0;
6284 uint64_t objid;
6285 uint64_t vdev_guid;
6286 nvpair_t *elem = NULL;
6287 nvlist_t *nvprops = NULL;
6288 uint64_t intval = 0;
6289 boolean_t boolval = 0;
6290 char *strval = NULL;
6291 const char *propname = NULL;
6292 vdev_prop_t prop;
6293
6294 ASSERT(vd != NULL);
6295 ASSERT(mos != NULL);
6296
6297 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6298 &vdev_guid) != 0)
6299 return (SET_ERROR(EINVAL));
6300
6301 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6302
6303 if (vdev_prop_get_objid(vd, &objid) != 0)
6304 return (SET_ERROR(EINVAL));
6305 ASSERT(objid != 0);
6306
6307 mutex_enter(&spa->spa_props_lock);
6308
6309 if (nvprops != NULL) {
6310 char namebuf[64] = { 0 };
6311
6312 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6313 intval = 0;
6314 strval = NULL;
6315 propname = nvpair_name(elem);
6316 prop = vdev_name_to_prop(propname);
6317 zprop_source_t src = ZPROP_SRC_DEFAULT;
6318 uint64_t integer_size, num_integers;
6319
6320 switch (prop) {
6321 /* Special Read-only Properties */
6322 case VDEV_PROP_NAME:
6323 strval = vdev_name(vd, namebuf,
6324 sizeof (namebuf));
6325 if (strval == NULL)
6326 continue;
6327 vdev_prop_add_list(outnvl, propname, strval, 0,
6328 ZPROP_SRC_NONE);
6329 continue;
6330 case VDEV_PROP_CAPACITY:
6331 /* percent used */
6332 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6333 (vd->vdev_stat.vs_alloc * 100 /
6334 vd->vdev_stat.vs_dspace);
6335 vdev_prop_add_list(outnvl, propname, NULL,
6336 intval, ZPROP_SRC_NONE);
6337 continue;
6338 case VDEV_PROP_STATE:
6339 vdev_prop_add_list(outnvl, propname, NULL,
6340 vd->vdev_state, ZPROP_SRC_NONE);
6341 continue;
6342 case VDEV_PROP_GUID:
6343 vdev_prop_add_list(outnvl, propname, NULL,
6344 vd->vdev_guid, ZPROP_SRC_NONE);
6345 continue;
6346 case VDEV_PROP_ASIZE:
6347 vdev_prop_add_list(outnvl, propname, NULL,
6348 vd->vdev_asize, ZPROP_SRC_NONE);
6349 continue;
6350 case VDEV_PROP_PSIZE:
6351 vdev_prop_add_list(outnvl, propname, NULL,
6352 vd->vdev_psize, ZPROP_SRC_NONE);
6353 continue;
6354 case VDEV_PROP_ASHIFT:
6355 vdev_prop_add_list(outnvl, propname, NULL,
6356 vd->vdev_ashift, ZPROP_SRC_NONE);
6357 continue;
6358 case VDEV_PROP_SIZE:
6359 vdev_prop_add_list(outnvl, propname, NULL,
6360 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6361 continue;
6362 case VDEV_PROP_FREE:
6363 vdev_prop_add_list(outnvl, propname, NULL,
6364 vd->vdev_stat.vs_dspace -
6365 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6366 continue;
6367 case VDEV_PROP_ALLOCATED:
6368 vdev_prop_add_list(outnvl, propname, NULL,
6369 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6370 continue;
6371 case VDEV_PROP_EXPANDSZ:
6372 vdev_prop_add_list(outnvl, propname, NULL,
6373 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6374 continue;
6375 case VDEV_PROP_FRAGMENTATION:
6376 vdev_prop_add_list(outnvl, propname, NULL,
6377 vd->vdev_stat.vs_fragmentation,
6378 ZPROP_SRC_NONE);
6379 continue;
6380 case VDEV_PROP_PARITY:
6381 vdev_prop_add_list(outnvl, propname, NULL,
6382 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6383 continue;
6384 case VDEV_PROP_PATH:
6385 if (vd->vdev_path == NULL)
6386 continue;
6387 vdev_prop_add_list(outnvl, propname,
6388 vd->vdev_path, 0, ZPROP_SRC_NONE);
6389 continue;
6390 case VDEV_PROP_DEVID:
6391 if (vd->vdev_devid == NULL)
6392 continue;
6393 vdev_prop_add_list(outnvl, propname,
6394 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6395 continue;
6396 case VDEV_PROP_PHYS_PATH:
6397 if (vd->vdev_physpath == NULL)
6398 continue;
6399 vdev_prop_add_list(outnvl, propname,
6400 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6401 continue;
6402 case VDEV_PROP_ENC_PATH:
6403 if (vd->vdev_enc_sysfs_path == NULL)
6404 continue;
6405 vdev_prop_add_list(outnvl, propname,
6406 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6407 continue;
6408 case VDEV_PROP_FRU:
6409 if (vd->vdev_fru == NULL)
6410 continue;
6411 vdev_prop_add_list(outnvl, propname,
6412 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6413 continue;
6414 case VDEV_PROP_PARENT:
6415 if (vd->vdev_parent != NULL) {
6416 strval = vdev_name(vd->vdev_parent,
6417 namebuf, sizeof (namebuf));
6418 vdev_prop_add_list(outnvl, propname,
6419 strval, 0, ZPROP_SRC_NONE);
6420 }
6421 continue;
6422 case VDEV_PROP_CHILDREN:
6423 if (vd->vdev_children > 0)
6424 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6425 KM_SLEEP);
6426 for (uint64_t i = 0; i < vd->vdev_children;
6427 i++) {
6428 const char *vname;
6429
6430 vname = vdev_name(vd->vdev_child[i],
6431 namebuf, sizeof (namebuf));
6432 if (vname == NULL)
6433 vname = "(unknown)";
6434 if (strlen(strval) > 0)
6435 strlcat(strval, ",",
6436 ZAP_MAXVALUELEN);
6437 strlcat(strval, vname, ZAP_MAXVALUELEN);
6438 }
6439 if (strval != NULL) {
6440 vdev_prop_add_list(outnvl, propname,
6441 strval, 0, ZPROP_SRC_NONE);
6442 kmem_free(strval, ZAP_MAXVALUELEN);
6443 }
6444 continue;
6445 case VDEV_PROP_NUMCHILDREN:
6446 vdev_prop_add_list(outnvl, propname, NULL,
6447 vd->vdev_children, ZPROP_SRC_NONE);
6448 continue;
6449 case VDEV_PROP_READ_ERRORS:
6450 vdev_prop_add_list(outnvl, propname, NULL,
6451 vd->vdev_stat.vs_read_errors,
6452 ZPROP_SRC_NONE);
6453 continue;
6454 case VDEV_PROP_WRITE_ERRORS:
6455 vdev_prop_add_list(outnvl, propname, NULL,
6456 vd->vdev_stat.vs_write_errors,
6457 ZPROP_SRC_NONE);
6458 continue;
6459 case VDEV_PROP_CHECKSUM_ERRORS:
6460 vdev_prop_add_list(outnvl, propname, NULL,
6461 vd->vdev_stat.vs_checksum_errors,
6462 ZPROP_SRC_NONE);
6463 continue;
6464 case VDEV_PROP_INITIALIZE_ERRORS:
6465 vdev_prop_add_list(outnvl, propname, NULL,
6466 vd->vdev_stat.vs_initialize_errors,
6467 ZPROP_SRC_NONE);
6468 continue;
6469 case VDEV_PROP_TRIM_ERRORS:
6470 vdev_prop_add_list(outnvl, propname, NULL,
6471 vd->vdev_stat.vs_trim_errors,
6472 ZPROP_SRC_NONE);
6473 continue;
6474 case VDEV_PROP_SLOW_IOS:
6475 vdev_prop_add_list(outnvl, propname, NULL,
6476 vd->vdev_stat.vs_slow_ios,
6477 ZPROP_SRC_NONE);
6478 continue;
6479 case VDEV_PROP_OPS_NULL:
6480 vdev_prop_add_list(outnvl, propname, NULL,
6481 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6482 ZPROP_SRC_NONE);
6483 continue;
6484 case VDEV_PROP_OPS_READ:
6485 vdev_prop_add_list(outnvl, propname, NULL,
6486 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6487 ZPROP_SRC_NONE);
6488 continue;
6489 case VDEV_PROP_OPS_WRITE:
6490 vdev_prop_add_list(outnvl, propname, NULL,
6491 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6492 ZPROP_SRC_NONE);
6493 continue;
6494 case VDEV_PROP_OPS_FREE:
6495 vdev_prop_add_list(outnvl, propname, NULL,
6496 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6497 ZPROP_SRC_NONE);
6498 continue;
6499 case VDEV_PROP_OPS_CLAIM:
6500 vdev_prop_add_list(outnvl, propname, NULL,
6501 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6502 ZPROP_SRC_NONE);
6503 continue;
6504 case VDEV_PROP_OPS_TRIM:
6505 /*
6506 * TRIM ops and bytes are reported to user
6507 * space as ZIO_TYPE_FLUSH. This is done to
6508 * preserve the vdev_stat_t structure layout
6509 * for user space.
6510 */
6511 vdev_prop_add_list(outnvl, propname, NULL,
6512 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6513 ZPROP_SRC_NONE);
6514 continue;
6515 case VDEV_PROP_BYTES_NULL:
6516 vdev_prop_add_list(outnvl, propname, NULL,
6517 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6518 ZPROP_SRC_NONE);
6519 continue;
6520 case VDEV_PROP_BYTES_READ:
6521 vdev_prop_add_list(outnvl, propname, NULL,
6522 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6523 ZPROP_SRC_NONE);
6524 continue;
6525 case VDEV_PROP_BYTES_WRITE:
6526 vdev_prop_add_list(outnvl, propname, NULL,
6527 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6528 ZPROP_SRC_NONE);
6529 continue;
6530 case VDEV_PROP_BYTES_FREE:
6531 vdev_prop_add_list(outnvl, propname, NULL,
6532 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6533 ZPROP_SRC_NONE);
6534 continue;
6535 case VDEV_PROP_BYTES_CLAIM:
6536 vdev_prop_add_list(outnvl, propname, NULL,
6537 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6538 ZPROP_SRC_NONE);
6539 continue;
6540 case VDEV_PROP_BYTES_TRIM:
6541 /*
6542 * TRIM ops and bytes are reported to user
6543 * space as ZIO_TYPE_FLUSH. This is done to
6544 * preserve the vdev_stat_t structure layout
6545 * for user space.
6546 */
6547 vdev_prop_add_list(outnvl, propname, NULL,
6548 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6549 ZPROP_SRC_NONE);
6550 continue;
6551 case VDEV_PROP_REMOVING:
6552 vdev_prop_add_list(outnvl, propname, NULL,
6553 vd->vdev_removing, ZPROP_SRC_NONE);
6554 continue;
6555 case VDEV_PROP_RAIDZ_EXPANDING:
6556 /* Only expose this for raidz */
6557 if (vd->vdev_ops == &vdev_raidz_ops) {
6558 vdev_prop_add_list(outnvl, propname,
6559 NULL, vd->vdev_rz_expanding,
6560 ZPROP_SRC_NONE);
6561 }
6562 continue;
6563 case VDEV_PROP_SIT_OUT:
6564 /* Only expose this for a draid or raidz leaf */
6565 if (vd->vdev_ops->vdev_op_leaf &&
6566 vd->vdev_top != NULL &&
6567 (vd->vdev_top->vdev_ops ==
6568 &vdev_raidz_ops ||
6569 vd->vdev_top->vdev_ops ==
6570 &vdev_draid_ops)) {
6571 vdev_prop_add_list(outnvl, propname,
6572 NULL, vdev_sit_out_reads(vd, 0),
6573 ZPROP_SRC_NONE);
6574 }
6575 continue;
6576 case VDEV_PROP_TRIM_SUPPORT:
6577 /* only valid for leaf vdevs */
6578 if (vd->vdev_ops->vdev_op_leaf) {
6579 vdev_prop_add_list(outnvl, propname,
6580 NULL, vd->vdev_has_trim,
6581 ZPROP_SRC_NONE);
6582 }
6583 continue;
6584 /* Numeric Properites */
6585 case VDEV_PROP_ALLOCATING:
6586 /* Leaf vdevs cannot have this property */
6587 if (vd->vdev_mg == NULL &&
6588 vd->vdev_top != NULL) {
6589 src = ZPROP_SRC_NONE;
6590 intval = ZPROP_BOOLEAN_NA;
6591 } else {
6592 err = vdev_prop_get_int(vd, prop,
6593 &intval);
6594 if (err && err != ENOENT)
6595 break;
6596
6597 if (intval ==
6598 vdev_prop_default_numeric(prop))
6599 src = ZPROP_SRC_DEFAULT;
6600 else
6601 src = ZPROP_SRC_LOCAL;
6602 }
6603
6604 vdev_prop_add_list(outnvl, propname, NULL,
6605 intval, src);
6606 break;
6607 case VDEV_PROP_FAILFAST:
6608 src = ZPROP_SRC_LOCAL;
6609 strval = NULL;
6610
6611 err = zap_lookup(mos, objid, nvpair_name(elem),
6612 sizeof (uint64_t), 1, &intval);
6613 if (err == ENOENT) {
6614 intval = vdev_prop_default_numeric(
6615 prop);
6616 err = 0;
6617 } else if (err) {
6618 break;
6619 }
6620 if (intval == vdev_prop_default_numeric(prop))
6621 src = ZPROP_SRC_DEFAULT;
6622
6623 vdev_prop_add_list(outnvl, propname, strval,
6624 intval, src);
6625 break;
6626 case VDEV_PROP_AUTOSIT:
6627 /* Only raidz vdevs cannot have this property */
6628 if (vd->vdev_ops != &vdev_raidz_ops &&
6629 vd->vdev_ops != &vdev_draid_ops) {
6630 src = ZPROP_SRC_NONE;
6631 intval = ZPROP_BOOLEAN_NA;
6632 } else {
6633 err = vdev_prop_get_int(vd, prop,
6634 &intval);
6635 if (err && err != ENOENT)
6636 break;
6637
6638 if (intval ==
6639 vdev_prop_default_numeric(prop))
6640 src = ZPROP_SRC_DEFAULT;
6641 else
6642 src = ZPROP_SRC_LOCAL;
6643 }
6644
6645 vdev_prop_add_list(outnvl, propname, NULL,
6646 intval, src);
6647 break;
6648
6649 case VDEV_PROP_SLOW_IO_EVENTS:
6650 err = vdev_prop_get_bool(vd, prop, &boolval);
6651 if (err && err != ENOENT)
6652 break;
6653
6654 src = ZPROP_SRC_LOCAL;
6655 if (boolval == vdev_prop_default_numeric(prop))
6656 src = ZPROP_SRC_DEFAULT;
6657
6658 vdev_prop_add_list(outnvl, propname, NULL,
6659 boolval, src);
6660 break;
6661 case VDEV_PROP_CHECKSUM_N:
6662 case VDEV_PROP_CHECKSUM_T:
6663 case VDEV_PROP_IO_N:
6664 case VDEV_PROP_IO_T:
6665 case VDEV_PROP_SLOW_IO_N:
6666 case VDEV_PROP_SLOW_IO_T:
6667 err = vdev_prop_get_int(vd, prop, &intval);
6668 if (err && err != ENOENT)
6669 break;
6670
6671 if (intval == vdev_prop_default_numeric(prop))
6672 src = ZPROP_SRC_DEFAULT;
6673 else
6674 src = ZPROP_SRC_LOCAL;
6675
6676 vdev_prop_add_list(outnvl, propname, NULL,
6677 intval, src);
6678 break;
6679 /* Text Properties */
6680 case VDEV_PROP_COMMENT:
6681 /* Exists in the ZAP below */
6682 /* FALLTHRU */
6683 case VDEV_PROP_USERPROP:
6684 /* User Properites */
6685 src = ZPROP_SRC_LOCAL;
6686
6687 err = zap_length(mos, objid, nvpair_name(elem),
6688 &integer_size, &num_integers);
6689 if (err)
6690 break;
6691
6692 switch (integer_size) {
6693 case 8:
6694 /* User properties cannot be integers */
6695 err = EINVAL;
6696 break;
6697 case 1:
6698 /* string property */
6699 strval = kmem_alloc(num_integers,
6700 KM_SLEEP);
6701 err = zap_lookup(mos, objid,
6702 nvpair_name(elem), 1,
6703 num_integers, strval);
6704 if (err) {
6705 kmem_free(strval,
6706 num_integers);
6707 break;
6708 }
6709 vdev_prop_add_list(outnvl, propname,
6710 strval, 0, src);
6711 kmem_free(strval, num_integers);
6712 break;
6713 }
6714 break;
6715 default:
6716 err = ENOENT;
6717 break;
6718 }
6719 if (err)
6720 break;
6721 }
6722 } else {
6723 /*
6724 * Get all properties from the MOS vdev property object.
6725 */
6726 zap_cursor_t zc;
6727 zap_attribute_t *za = zap_attribute_alloc();
6728 for (zap_cursor_init(&zc, mos, objid);
6729 (err = zap_cursor_retrieve(&zc, za)) == 0;
6730 zap_cursor_advance(&zc)) {
6731 intval = 0;
6732 strval = NULL;
6733 zprop_source_t src = ZPROP_SRC_DEFAULT;
6734 propname = za->za_name;
6735
6736 switch (za->za_integer_length) {
6737 case 8:
6738 /* We do not allow integer user properties */
6739 /* This is likely an internal value */
6740 break;
6741 case 1:
6742 /* string property */
6743 strval = kmem_alloc(za->za_num_integers,
6744 KM_SLEEP);
6745 err = zap_lookup(mos, objid, za->za_name, 1,
6746 za->za_num_integers, strval);
6747 if (err) {
6748 kmem_free(strval, za->za_num_integers);
6749 break;
6750 }
6751 vdev_prop_add_list(outnvl, propname, strval, 0,
6752 src);
6753 kmem_free(strval, za->za_num_integers);
6754 break;
6755
6756 default:
6757 break;
6758 }
6759 }
6760 zap_cursor_fini(&zc);
6761 zap_attribute_free(za);
6762 }
6763
6764 mutex_exit(&spa->spa_props_lock);
6765 if (err && err != ENOENT) {
6766 return (err);
6767 }
6768
6769 return (0);
6770 }
6771
6772 EXPORT_SYMBOL(vdev_fault);
6773 EXPORT_SYMBOL(vdev_degrade);
6774 EXPORT_SYMBOL(vdev_online);
6775 EXPORT_SYMBOL(vdev_offline);
6776 EXPORT_SYMBOL(vdev_clear);
6777
6778 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6779 "Target number of metaslabs per top-level vdev");
6780
6781 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6782 "Default lower limit for metaslab size");
6783
6784 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6785 "Default upper limit for metaslab size");
6786
6787 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6788 "Minimum number of metaslabs per top-level vdev");
6789
6790 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6791 "Practical upper limit of total metaslabs per top-level vdev");
6792
6793 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6794 "Rate limit slow IO (delay) events to this many per second");
6795
6796 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6797 "Rate limit hung IO (deadman) events to this many per second");
6798
6799 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6800 "Rate Direct I/O write verify events to this many per second");
6801
6802 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6803 "Direct I/O writes will perform for checksum verification before "
6804 "commiting write");
6805
6806 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6807 "Rate limit checksum events to this many checksum errors per second "
6808 "(do not set below ZED threshold).");
6809
6810 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6811 "Ignore errors during resilver/scrub");
6812
6813 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6814 "Bypass vdev_validate()");
6815
6816 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6817 "Disable cache flushes");
6818
6819 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6820 "Minimum number of metaslabs required to dedicate one for log blocks");
6821
6822 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6823 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6824 "Minimum ashift used when creating new top-level vdevs");
6825
6826 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6827 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6828 "Maximum ashift used when optimizing for logical -> physical sector "
6829 "size on new top-level vdevs");
6830
6831 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6832 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6833 "RAIDZ implementation");
6834