1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_draid.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/abd.h>
40 #include <sys/fs/zfs.h>
41
42 /*
43 * Vdev mirror kstats
44 */
45 static kstat_t *mirror_ksp = NULL;
46
47 typedef struct mirror_stats {
48 kstat_named_t vdev_mirror_stat_rotating_linear;
49 kstat_named_t vdev_mirror_stat_rotating_offset;
50 kstat_named_t vdev_mirror_stat_rotating_seek;
51 kstat_named_t vdev_mirror_stat_non_rotating_linear;
52 kstat_named_t vdev_mirror_stat_non_rotating_seek;
53
54 kstat_named_t vdev_mirror_stat_preferred_found;
55 kstat_named_t vdev_mirror_stat_preferred_not_found;
56 } mirror_stats_t;
57
58 static mirror_stats_t mirror_stats = {
59 /* New I/O follows directly the last I/O */
60 { "rotating_linear", KSTAT_DATA_UINT64 },
61 /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
62 { "rotating_offset", KSTAT_DATA_UINT64 },
63 /* New I/O requires random seek */
64 { "rotating_seek", KSTAT_DATA_UINT64 },
65 /* New I/O follows directly the last I/O (nonrot) */
66 { "non_rotating_linear", KSTAT_DATA_UINT64 },
67 /* New I/O requires random seek (nonrot) */
68 { "non_rotating_seek", KSTAT_DATA_UINT64 },
69 /* Preferred child vdev found */
70 { "preferred_found", KSTAT_DATA_UINT64 },
71 /* Preferred child vdev not found or equal load */
72 { "preferred_not_found", KSTAT_DATA_UINT64 },
73
74 };
75
76 #define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64)
77 #define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val)
78 #define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1)
79
80 void
vdev_mirror_stat_init(void)81 vdev_mirror_stat_init(void)
82 {
83 mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
84 "misc", KSTAT_TYPE_NAMED,
85 sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
86 if (mirror_ksp != NULL) {
87 mirror_ksp->ks_data = &mirror_stats;
88 kstat_install(mirror_ksp);
89 }
90 }
91
92 void
vdev_mirror_stat_fini(void)93 vdev_mirror_stat_fini(void)
94 {
95 if (mirror_ksp != NULL) {
96 kstat_delete(mirror_ksp);
97 mirror_ksp = NULL;
98 }
99 }
100
101 /*
102 * Virtual device vector for mirroring.
103 */
104 typedef struct mirror_child {
105 vdev_t *mc_vd;
106 abd_t *mc_abd;
107 uint64_t mc_offset;
108 int mc_error;
109 int mc_load;
110 uint8_t mc_tried;
111 uint8_t mc_skipped;
112 uint8_t mc_speculative;
113 uint8_t mc_rebuilding;
114 } mirror_child_t;
115
116 typedef struct mirror_map {
117 int *mm_preferred;
118 int mm_preferred_cnt;
119 int mm_children;
120 boolean_t mm_resilvering;
121 boolean_t mm_rebuilding;
122 boolean_t mm_root;
123 mirror_child_t mm_child[];
124 } mirror_map_t;
125
126 static const int vdev_mirror_shift = 21;
127
128 /*
129 * The load configuration settings below are tuned by default for
130 * the case where all devices are of the same rotational type.
131 *
132 * If there is a mixture of rotating and non-rotating media, setting
133 * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
134 * as it will direct more reads to the non-rotating vdevs which are more likely
135 * to have a higher performance.
136 */
137
138 /* Rotating media load calculation configuration. */
139 static int zfs_vdev_mirror_rotating_inc = 0;
140 static int zfs_vdev_mirror_rotating_seek_inc = 5;
141 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
142
143 /* Non-rotating media load calculation configuration. */
144 static int zfs_vdev_mirror_non_rotating_inc = 0;
145 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
146
147 static inline size_t
vdev_mirror_map_size(int children)148 vdev_mirror_map_size(int children)
149 {
150 return (offsetof(mirror_map_t, mm_child[children]) +
151 sizeof (int) * children);
152 }
153
154 static inline mirror_map_t *
vdev_mirror_map_alloc(int children,boolean_t resilvering,boolean_t root)155 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
156 {
157 mirror_map_t *mm;
158
159 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
160 mm->mm_children = children;
161 mm->mm_resilvering = resilvering;
162 mm->mm_root = root;
163 mm->mm_preferred = (int *)((uintptr_t)mm +
164 offsetof(mirror_map_t, mm_child[children]));
165
166 return (mm);
167 }
168
169 static void
vdev_mirror_map_free(zio_t * zio)170 vdev_mirror_map_free(zio_t *zio)
171 {
172 mirror_map_t *mm = zio->io_vsd;
173
174 kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
175 }
176
177 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
178 .vsd_free = vdev_mirror_map_free,
179 };
180
181 static int
vdev_mirror_load(mirror_map_t * mm,vdev_t * vd,uint64_t zio_offset)182 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
183 {
184 uint64_t last_offset;
185 int64_t offset_diff;
186 int load;
187
188 /* All DVAs have equal weight at the root. */
189 if (mm->mm_root)
190 return (INT_MAX);
191
192 /*
193 * We don't return INT_MAX if the device is resilvering i.e.
194 * vdev_resilver_txg != 0 as when tested performance was slightly
195 * worse overall when resilvering with compared to without.
196 */
197
198 /* Fix zio_offset for leaf vdevs */
199 if (vd->vdev_ops->vdev_op_leaf)
200 zio_offset += VDEV_LABEL_START_SIZE;
201
202 /* Standard load based on pending queue length. */
203 load = vdev_queue_length(vd);
204 last_offset = vdev_queue_last_offset(vd);
205
206 if (vd->vdev_nonrot) {
207 /* Non-rotating media. */
208 if (last_offset == zio_offset) {
209 MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
210 return (load + zfs_vdev_mirror_non_rotating_inc);
211 }
212
213 /*
214 * Apply a seek penalty even for non-rotating devices as
215 * sequential I/O's can be aggregated into fewer operations on
216 * the device, thus avoiding unnecessary per-command overhead
217 * and boosting performance.
218 */
219 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
220 return (load + zfs_vdev_mirror_non_rotating_seek_inc);
221 }
222
223 /* Rotating media I/O's which directly follow the last I/O. */
224 if (last_offset == zio_offset) {
225 MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
226 return (load + zfs_vdev_mirror_rotating_inc);
227 }
228
229 /*
230 * Apply half the seek increment to I/O's within seek offset
231 * of the last I/O issued to this vdev as they should incur less
232 * of a seek increment.
233 */
234 offset_diff = (int64_t)(last_offset - zio_offset);
235 if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
236 MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
237 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
238 }
239
240 /* Apply the full seek increment to all other I/O's. */
241 MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
242 return (load + zfs_vdev_mirror_rotating_seek_inc);
243 }
244
245 static boolean_t
vdev_mirror_rebuilding(vdev_t * vd)246 vdev_mirror_rebuilding(vdev_t *vd)
247 {
248 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
249 return (B_TRUE);
250
251 for (int i = 0; i < vd->vdev_children; i++) {
252 if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
253 return (B_TRUE);
254 }
255 }
256
257 return (B_FALSE);
258 }
259
260 /*
261 * Avoid inlining the function to keep vdev_mirror_io_start(), which
262 * is this functions only caller, as small as possible on the stack.
263 */
264 noinline static mirror_map_t *
vdev_mirror_map_init(zio_t * zio)265 vdev_mirror_map_init(zio_t *zio)
266 {
267 mirror_map_t *mm = NULL;
268 mirror_child_t *mc;
269 vdev_t *vd = zio->io_vd;
270 int c;
271
272 if (vd == NULL) {
273 dva_t *dva = zio->io_bp->blk_dva;
274 spa_t *spa = zio->io_spa;
275 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
276 dva_t dva_copy[SPA_DVAS_PER_BP];
277
278 /*
279 * The sequential scrub code sorts and issues all DVAs
280 * of a bp separately. Each of these IOs includes all
281 * original DVA copies so that repairs can be performed
282 * in the event of an error, but we only actually want
283 * to check the first DVA since the others will be
284 * checked by their respective sorted IOs. Only if we
285 * hit an error will we try all DVAs upon retrying.
286 *
287 * Note: This check is safe even if the user switches
288 * from a legacy scrub to a sequential one in the middle
289 * of processing, since scn_is_sorted isn't updated until
290 * all outstanding IOs from the previous scrub pass
291 * complete.
292 */
293 if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
294 !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
295 dsl_scan_scrubbing(spa->spa_dsl_pool) &&
296 scn->scn_is_sorted) {
297 c = 1;
298 } else {
299 c = BP_GET_NDVAS(zio->io_bp);
300 }
301
302 /*
303 * If the pool cannot be written to, then infer that some
304 * DVAs might be invalid or point to vdevs that do not exist.
305 * We skip them.
306 */
307 if (!spa_writeable(spa)) {
308 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
309 int j = 0;
310 for (int i = 0; i < c; i++) {
311 if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
312 dva_copy[j++] = dva[i];
313 }
314 if (j == 0) {
315 zio->io_vsd = NULL;
316 zio->io_error = ENXIO;
317 return (NULL);
318 }
319 if (j < c) {
320 dva = dva_copy;
321 c = j;
322 }
323 }
324
325 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
326 for (c = 0; c < mm->mm_children; c++) {
327 mc = &mm->mm_child[c];
328
329 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
330 mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
331 if (mc->mc_vd == NULL) {
332 kmem_free(mm, vdev_mirror_map_size(
333 mm->mm_children));
334 zio->io_vsd = NULL;
335 zio->io_error = ENXIO;
336 return (NULL);
337 }
338 }
339 } else {
340 /*
341 * If we are resilvering, then we should handle scrub reads
342 * differently; we shouldn't issue them to the resilvering
343 * device because it might not have those blocks.
344 *
345 * We are resilvering iff:
346 * 1) We are a replacing vdev (ie our name is "replacing-1" or
347 * "spare-1" or something like that), and
348 * 2) The pool is currently being resilvered.
349 *
350 * We cannot simply check vd->vdev_resilver_txg, because it's
351 * not set in this path.
352 *
353 * Nor can we just check our vdev_ops; there are cases (such as
354 * when a user types "zpool replace pool odev spare_dev" and
355 * spare_dev is in the spare list, or when a spare device is
356 * automatically used to replace a DEGRADED device) when
357 * resilvering is complete but both the original vdev and the
358 * spare vdev remain in the pool. That behavior is intentional.
359 * It helps implement the policy that a spare should be
360 * automatically removed from the pool after the user replaces
361 * the device that originally failed.
362 *
363 * If a spa load is in progress, then spa_dsl_pool may be
364 * uninitialized. But we shouldn't be resilvering during a spa
365 * load anyway.
366 */
367 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
368 vd->vdev_ops == &vdev_spare_ops) &&
369 spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
370 dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
371 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
372 B_FALSE);
373 for (c = 0; c < mm->mm_children; c++) {
374 mc = &mm->mm_child[c];
375 mc->mc_vd = vd->vdev_child[c];
376 mc->mc_offset = zio->io_offset;
377
378 if (vdev_mirror_rebuilding(mc->mc_vd))
379 mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
380 }
381 }
382
383 return (mm);
384 }
385
386 static int
vdev_mirror_open(vdev_t * vd,uint64_t * asize,uint64_t * max_asize,uint64_t * logical_ashift,uint64_t * physical_ashift)387 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
388 uint64_t *logical_ashift, uint64_t *physical_ashift)
389 {
390 int numerrors = 0;
391 int lasterror = 0;
392
393 if (vd->vdev_children == 0) {
394 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
395 return (SET_ERROR(EINVAL));
396 }
397
398 vdev_open_children(vd);
399
400 for (int c = 0; c < vd->vdev_children; c++) {
401 vdev_t *cvd = vd->vdev_child[c];
402
403 if (cvd->vdev_open_error) {
404 lasterror = cvd->vdev_open_error;
405 numerrors++;
406 continue;
407 }
408
409 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
410 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
411 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
412 }
413 for (int c = 0; c < vd->vdev_children; c++) {
414 vdev_t *cvd = vd->vdev_child[c];
415
416 if (cvd->vdev_open_error)
417 continue;
418 *physical_ashift = vdev_best_ashift(*logical_ashift,
419 *physical_ashift, cvd->vdev_physical_ashift);
420 }
421
422 if (numerrors == vd->vdev_children) {
423 if (vdev_children_are_offline(vd))
424 vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
425 else
426 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
427 return (lasterror);
428 }
429
430 return (0);
431 }
432
433 static void
vdev_mirror_close(vdev_t * vd)434 vdev_mirror_close(vdev_t *vd)
435 {
436 for (int c = 0; c < vd->vdev_children; c++)
437 vdev_close(vd->vdev_child[c]);
438 }
439
440 static void
vdev_mirror_child_done(zio_t * zio)441 vdev_mirror_child_done(zio_t *zio)
442 {
443 mirror_child_t *mc = zio->io_private;
444
445 mc->mc_error = zio->io_error;
446 mc->mc_tried = 1;
447 mc->mc_skipped = 0;
448 }
449
450 /*
451 * Check the other, lower-index DVAs to see if they're on the same
452 * vdev as the child we picked. If they are, use them since they
453 * are likely to have been allocated from the primary metaslab in
454 * use at the time, and hence are more likely to have locality with
455 * single-copy data.
456 */
457 static int
vdev_mirror_dva_select(zio_t * zio,int p)458 vdev_mirror_dva_select(zio_t *zio, int p)
459 {
460 dva_t *dva = zio->io_bp->blk_dva;
461 mirror_map_t *mm = zio->io_vsd;
462 int preferred;
463 int c;
464
465 preferred = mm->mm_preferred[p];
466 for (p--; p >= 0; p--) {
467 c = mm->mm_preferred[p];
468 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
469 preferred = c;
470 }
471 return (preferred);
472 }
473
474 static int
vdev_mirror_preferred_child_randomize(zio_t * zio)475 vdev_mirror_preferred_child_randomize(zio_t *zio)
476 {
477 mirror_map_t *mm = zio->io_vsd;
478 int p;
479
480 if (mm->mm_root) {
481 p = random_in_range(mm->mm_preferred_cnt);
482 return (vdev_mirror_dva_select(zio, p));
483 }
484
485 /*
486 * To ensure we don't always favour the first matching vdev,
487 * which could lead to wear leveling issues on SSD's, we
488 * use the I/O offset as a pseudo random seed into the vdevs
489 * which have the lowest load.
490 */
491 p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
492 return (mm->mm_preferred[p]);
493 }
494
495 static boolean_t
vdev_mirror_child_readable(mirror_child_t * mc)496 vdev_mirror_child_readable(mirror_child_t *mc)
497 {
498 vdev_t *vd = mc->mc_vd;
499
500 if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
501 return (vdev_draid_readable(vd, mc->mc_offset));
502 else
503 return (vdev_readable(vd));
504 }
505
506 static boolean_t
vdev_mirror_child_missing(mirror_child_t * mc,uint64_t txg,uint64_t size)507 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
508 {
509 vdev_t *vd = mc->mc_vd;
510
511 if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
512 return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
513 else
514 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
515 }
516
517 /*
518 * Try to find a vdev whose DTL doesn't contain the block we want to read
519 * preferring vdevs based on determined load. If we can't, try the read on
520 * any vdev we haven't already tried.
521 *
522 * Distributed spares are an exception to the above load rule. They are
523 * always preferred in order to detect gaps in the distributed spare which
524 * are created when another disk in the dRAID fails. In order to restore
525 * redundancy those gaps must be read to trigger the required repair IO.
526 */
527 static int
vdev_mirror_child_select(zio_t * zio)528 vdev_mirror_child_select(zio_t *zio)
529 {
530 mirror_map_t *mm = zio->io_vsd;
531 uint64_t txg = zio->io_txg;
532 int c, lowest_load;
533
534 ASSERT(zio->io_bp == NULL || BP_GET_BIRTH(zio->io_bp) == txg);
535
536 lowest_load = INT_MAX;
537 mm->mm_preferred_cnt = 0;
538 for (c = 0; c < mm->mm_children; c++) {
539 mirror_child_t *mc;
540
541 mc = &mm->mm_child[c];
542 if (mc->mc_tried || mc->mc_skipped)
543 continue;
544
545 if (mc->mc_vd == NULL ||
546 !vdev_mirror_child_readable(mc)) {
547 mc->mc_error = SET_ERROR(ENXIO);
548 mc->mc_tried = 1; /* don't even try */
549 mc->mc_skipped = 1;
550 continue;
551 }
552
553 if (vdev_mirror_child_missing(mc, txg, 1)) {
554 mc->mc_error = SET_ERROR(ESTALE);
555 mc->mc_skipped = 1;
556 mc->mc_speculative = 1;
557 continue;
558 }
559
560 if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
561 mm->mm_preferred[0] = c;
562 mm->mm_preferred_cnt = 1;
563 break;
564 }
565
566 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
567 if (mc->mc_load > lowest_load)
568 continue;
569
570 if (mc->mc_load < lowest_load) {
571 lowest_load = mc->mc_load;
572 mm->mm_preferred_cnt = 0;
573 }
574 mm->mm_preferred[mm->mm_preferred_cnt] = c;
575 mm->mm_preferred_cnt++;
576 }
577
578 if (mm->mm_preferred_cnt == 1) {
579 MIRROR_BUMP(vdev_mirror_stat_preferred_found);
580 return (mm->mm_preferred[0]);
581 }
582
583 if (mm->mm_preferred_cnt > 1) {
584 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
585 return (vdev_mirror_preferred_child_randomize(zio));
586 }
587
588 /*
589 * Every device is either missing or has this txg in its DTL.
590 * Look for any child we haven't already tried before giving up.
591 */
592 for (c = 0; c < mm->mm_children; c++) {
593 if (!mm->mm_child[c].mc_tried)
594 return (c);
595 }
596
597 /*
598 * Every child failed. There's no place left to look.
599 */
600 return (-1);
601 }
602
603 static void
vdev_mirror_io_start(zio_t * zio)604 vdev_mirror_io_start(zio_t *zio)
605 {
606 mirror_map_t *mm;
607 mirror_child_t *mc;
608 int c, children;
609
610 mm = vdev_mirror_map_init(zio);
611 zio->io_vsd = mm;
612 zio->io_vsd_ops = &vdev_mirror_vsd_ops;
613
614 if (mm == NULL) {
615 ASSERT(!spa_trust_config(zio->io_spa));
616 ASSERT(zio->io_type == ZIO_TYPE_READ);
617 zio_execute(zio);
618 return;
619 }
620
621 if (zio->io_type == ZIO_TYPE_READ) {
622 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
623 /*
624 * For scrubbing reads we need to issue reads to all
625 * children. One child can reuse parent buffer, but
626 * for others we have to allocate separate ones to
627 * verify checksums if io_bp is non-NULL, or compare
628 * them in vdev_mirror_io_done() otherwise.
629 */
630 boolean_t first = B_TRUE;
631 for (c = 0; c < mm->mm_children; c++) {
632 mc = &mm->mm_child[c];
633
634 /* Don't issue ZIOs to offline children */
635 if (!vdev_mirror_child_readable(mc)) {
636 mc->mc_error = SET_ERROR(ENXIO);
637 mc->mc_tried = 1;
638 mc->mc_skipped = 1;
639 continue;
640 }
641
642 mc->mc_abd = first ? zio->io_abd :
643 abd_alloc_sametype(zio->io_abd,
644 zio->io_size);
645 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
646 mc->mc_vd, mc->mc_offset, mc->mc_abd,
647 zio->io_size, zio->io_type,
648 zio->io_priority, 0,
649 vdev_mirror_child_done, mc));
650 first = B_FALSE;
651 }
652 zio_execute(zio);
653 return;
654 }
655 /*
656 * For normal reads just pick one child.
657 */
658 c = vdev_mirror_child_select(zio);
659 children = (c >= 0);
660 } else {
661 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
662
663 /*
664 * Writes go to all children.
665 */
666 c = 0;
667 children = mm->mm_children;
668 }
669
670 while (children--) {
671 mc = &mm->mm_child[c];
672 c++;
673
674 /*
675 * When sequentially resilvering only issue write repair
676 * IOs to the vdev which is being rebuilt since performance
677 * is limited by the slowest child. This is an issue for
678 * faster replacement devices such as distributed spares.
679 */
680 if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
681 (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
682 !(zio->io_flags & ZIO_FLAG_SCRUB) &&
683 mm->mm_rebuilding && !mc->mc_rebuilding) {
684 continue;
685 }
686
687 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
688 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
689 zio->io_type, zio->io_priority, 0,
690 vdev_mirror_child_done, mc));
691 }
692
693 zio_execute(zio);
694 }
695
696 static int
vdev_mirror_worst_error(mirror_map_t * mm)697 vdev_mirror_worst_error(mirror_map_t *mm)
698 {
699 int error[2] = { 0, 0 };
700
701 for (int c = 0; c < mm->mm_children; c++) {
702 mirror_child_t *mc = &mm->mm_child[c];
703 int s = mc->mc_speculative;
704 error[s] = zio_worst_error(error[s], mc->mc_error);
705 }
706
707 return (error[0] ? error[0] : error[1]);
708 }
709
710 static void
vdev_mirror_io_done(zio_t * zio)711 vdev_mirror_io_done(zio_t *zio)
712 {
713 mirror_map_t *mm = zio->io_vsd;
714 mirror_child_t *mc;
715 int c;
716 int good_copies = 0;
717 int unexpected_errors = 0;
718 int last_good_copy = -1;
719
720 if (mm == NULL)
721 return;
722
723 for (c = 0; c < mm->mm_children; c++) {
724 mc = &mm->mm_child[c];
725
726 if (mc->mc_error) {
727 if (!mc->mc_skipped)
728 unexpected_errors++;
729 } else if (mc->mc_tried) {
730 last_good_copy = c;
731 good_copies++;
732 }
733 }
734
735 if (zio->io_type == ZIO_TYPE_WRITE) {
736 /*
737 * XXX -- for now, treat partial writes as success.
738 *
739 * Now that we support write reallocation, it would be better
740 * to treat partial failure as real failure unless there are
741 * no non-degraded top-level vdevs left, and not update DTLs
742 * if we intend to reallocate.
743 */
744 if (good_copies != mm->mm_children) {
745 /*
746 * Always require at least one good copy.
747 *
748 * For ditto blocks (io_vd == NULL), require
749 * all copies to be good.
750 *
751 * XXX -- for replacing vdevs, there's no great answer.
752 * If the old device is really dead, we may not even
753 * be able to access it -- so we only want to
754 * require good writes to the new device. But if
755 * the new device turns out to be flaky, we want
756 * to be able to detach it -- which requires all
757 * writes to the old device to have succeeded.
758 */
759 if (good_copies == 0 || zio->io_vd == NULL)
760 zio->io_error = vdev_mirror_worst_error(mm);
761 }
762 return;
763 }
764
765 ASSERT(zio->io_type == ZIO_TYPE_READ);
766
767 /*
768 * Any Direct I/O read that has a checksum error must be treated as
769 * suspicious as the contents of the buffer could be getting
770 * manipulated while the I/O is taking place. The checksum verify error
771 * will be reported to the top-level Mirror VDEV.
772 *
773 * There will be no attampt at reading any additional data copies. If
774 * the buffer is still being manipulated while attempting to read from
775 * another child, there exists a possibly that the checksum could be
776 * verified as valid. However, the buffer contents could again get
777 * manipulated after verifying the checksum. This would lead to bad data
778 * being written out during self healing.
779 */
780 if ((zio->io_flags & ZIO_FLAG_DIO_READ) &&
781 (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
782 zio_dio_chksum_verify_error_report(zio);
783 zio->io_error = vdev_mirror_worst_error(mm);
784 ASSERT3U(zio->io_error, ==, ECKSUM);
785 return;
786 }
787
788 /*
789 * If we don't have a good copy yet, keep trying other children.
790 */
791 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
792 ASSERT(c >= 0 && c < mm->mm_children);
793 mc = &mm->mm_child[c];
794 zio_vdev_io_redone(zio);
795 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
796 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
797 ZIO_TYPE_READ, zio->io_priority, 0,
798 vdev_mirror_child_done, mc));
799 return;
800 }
801
802 if (zio->io_flags & ZIO_FLAG_SCRUB && !mm->mm_resilvering) {
803 abd_t *best_abd = NULL;
804 if (last_good_copy >= 0)
805 best_abd = mm->mm_child[last_good_copy].mc_abd;
806
807 /*
808 * If we're scrubbing but don't have a BP available (because
809 * this vdev is under a raidz or draid vdev) then the best we
810 * can do is compare all of the copies read. If they're not
811 * identical then return a checksum error and the most likely
812 * correct data. The raidz code will issue a repair I/O if
813 * possible.
814 */
815 if (zio->io_bp == NULL) {
816 ASSERT(zio->io_vd->vdev_ops == &vdev_replacing_ops ||
817 zio->io_vd->vdev_ops == &vdev_spare_ops);
818
819 abd_t *pref_abd = NULL;
820 for (c = 0; c < last_good_copy; c++) {
821 mc = &mm->mm_child[c];
822 if (mc->mc_error || !mc->mc_tried)
823 continue;
824
825 if (abd_cmp(mc->mc_abd, best_abd) != 0)
826 zio->io_error = SET_ERROR(ECKSUM);
827
828 /*
829 * The distributed spare is always prefered
830 * by vdev_mirror_child_select() so it's
831 * considered to be the best candidate.
832 */
833 if (pref_abd == NULL &&
834 mc->mc_vd->vdev_ops ==
835 &vdev_draid_spare_ops)
836 pref_abd = mc->mc_abd;
837
838 /*
839 * In the absence of a preferred copy, use
840 * the parent pointer to avoid a memory copy.
841 */
842 if (mc->mc_abd == zio->io_abd)
843 best_abd = mc->mc_abd;
844 }
845 if (pref_abd)
846 best_abd = pref_abd;
847 } else {
848
849 /*
850 * If we have a BP available, then checksums are
851 * already verified and we just need a buffer
852 * with valid data, preferring parent one to
853 * avoid a memory copy.
854 */
855 for (c = 0; c < last_good_copy; c++) {
856 mc = &mm->mm_child[c];
857 if (mc->mc_error || !mc->mc_tried)
858 continue;
859 if (mc->mc_abd == zio->io_abd) {
860 best_abd = mc->mc_abd;
861 break;
862 }
863 }
864 }
865
866 if (best_abd && best_abd != zio->io_abd)
867 abd_copy(zio->io_abd, best_abd, zio->io_size);
868 for (c = 0; c < mm->mm_children; c++) {
869 mc = &mm->mm_child[c];
870 if (mc->mc_abd != zio->io_abd)
871 abd_free(mc->mc_abd);
872 mc->mc_abd = NULL;
873 }
874 }
875
876 if (good_copies == 0) {
877 zio->io_error = vdev_mirror_worst_error(mm);
878 ASSERT(zio->io_error != 0);
879 }
880
881 if (good_copies && spa_writeable(zio->io_spa) &&
882 (unexpected_errors ||
883 (zio->io_flags & ZIO_FLAG_RESILVER) ||
884 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
885 /*
886 * Use the good data we have in hand to repair damaged children.
887 */
888 for (c = 0; c < mm->mm_children; c++) {
889 /*
890 * Don't rewrite known good children.
891 * Not only is it unnecessary, it could
892 * actually be harmful: if the system lost
893 * power while rewriting the only good copy,
894 * there would be no good copies left!
895 */
896 mc = &mm->mm_child[c];
897
898 if (mc->mc_error == 0) {
899 vdev_ops_t *ops = mc->mc_vd->vdev_ops;
900
901 if (mc->mc_tried)
902 continue;
903 /*
904 * We didn't try this child. We need to
905 * repair it if:
906 * 1. it's a scrub (in which case we have
907 * tried everything that was healthy)
908 * - or -
909 * 2. it's an indirect or distributed spare
910 * vdev (in which case it could point to any
911 * other vdev, which might have a bad DTL)
912 * - or -
913 * 3. the DTL indicates that this data is
914 * missing from this vdev
915 */
916 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
917 ops != &vdev_indirect_ops &&
918 ops != &vdev_draid_spare_ops &&
919 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
920 zio->io_txg, 1))
921 continue;
922 mc->mc_error = SET_ERROR(ESTALE);
923 }
924
925 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
926 mc->mc_vd, mc->mc_offset,
927 zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
928 zio->io_priority == ZIO_PRIORITY_REBUILD ?
929 ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
930 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
931 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
932 }
933 }
934 }
935
936 static void
vdev_mirror_state_change(vdev_t * vd,int faulted,int degraded)937 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
938 {
939 if (faulted == vd->vdev_children) {
940 if (vdev_children_are_offline(vd)) {
941 vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
942 VDEV_AUX_CHILDREN_OFFLINE);
943 } else {
944 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
945 VDEV_AUX_NO_REPLICAS);
946 }
947 } else if (degraded + faulted != 0) {
948 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
949 } else {
950 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
951 }
952 }
953
954 /*
955 * Return the maximum asize for a rebuild zio in the provided range.
956 */
957 static uint64_t
vdev_mirror_rebuild_asize(vdev_t * vd,uint64_t start,uint64_t asize,uint64_t max_segment)958 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
959 uint64_t max_segment)
960 {
961 (void) start;
962
963 uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
964 SPA_MAXBLOCKSIZE);
965
966 return (MIN(asize, vdev_psize_to_asize(vd, psize)));
967 }
968
969 vdev_ops_t vdev_mirror_ops = {
970 .vdev_op_init = NULL,
971 .vdev_op_fini = NULL,
972 .vdev_op_open = vdev_mirror_open,
973 .vdev_op_close = vdev_mirror_close,
974 .vdev_op_asize = vdev_default_asize,
975 .vdev_op_min_asize = vdev_default_min_asize,
976 .vdev_op_min_alloc = NULL,
977 .vdev_op_io_start = vdev_mirror_io_start,
978 .vdev_op_io_done = vdev_mirror_io_done,
979 .vdev_op_state_change = vdev_mirror_state_change,
980 .vdev_op_need_resilver = vdev_default_need_resilver,
981 .vdev_op_hold = NULL,
982 .vdev_op_rele = NULL,
983 .vdev_op_remap = NULL,
984 .vdev_op_xlate = vdev_default_xlate,
985 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
986 .vdev_op_metaslab_init = NULL,
987 .vdev_op_config_generate = NULL,
988 .vdev_op_nparity = NULL,
989 .vdev_op_ndisks = NULL,
990 .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
991 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
992 };
993
994 vdev_ops_t vdev_replacing_ops = {
995 .vdev_op_init = NULL,
996 .vdev_op_fini = NULL,
997 .vdev_op_open = vdev_mirror_open,
998 .vdev_op_close = vdev_mirror_close,
999 .vdev_op_asize = vdev_default_asize,
1000 .vdev_op_min_asize = vdev_default_min_asize,
1001 .vdev_op_min_alloc = NULL,
1002 .vdev_op_io_start = vdev_mirror_io_start,
1003 .vdev_op_io_done = vdev_mirror_io_done,
1004 .vdev_op_state_change = vdev_mirror_state_change,
1005 .vdev_op_need_resilver = vdev_default_need_resilver,
1006 .vdev_op_hold = NULL,
1007 .vdev_op_rele = NULL,
1008 .vdev_op_remap = NULL,
1009 .vdev_op_xlate = vdev_default_xlate,
1010 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
1011 .vdev_op_metaslab_init = NULL,
1012 .vdev_op_config_generate = NULL,
1013 .vdev_op_nparity = NULL,
1014 .vdev_op_ndisks = NULL,
1015 .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
1016 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
1017 };
1018
1019 vdev_ops_t vdev_spare_ops = {
1020 .vdev_op_init = NULL,
1021 .vdev_op_fini = NULL,
1022 .vdev_op_open = vdev_mirror_open,
1023 .vdev_op_close = vdev_mirror_close,
1024 .vdev_op_asize = vdev_default_asize,
1025 .vdev_op_min_asize = vdev_default_min_asize,
1026 .vdev_op_min_alloc = NULL,
1027 .vdev_op_io_start = vdev_mirror_io_start,
1028 .vdev_op_io_done = vdev_mirror_io_done,
1029 .vdev_op_state_change = vdev_mirror_state_change,
1030 .vdev_op_need_resilver = vdev_default_need_resilver,
1031 .vdev_op_hold = NULL,
1032 .vdev_op_rele = NULL,
1033 .vdev_op_remap = NULL,
1034 .vdev_op_xlate = vdev_default_xlate,
1035 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
1036 .vdev_op_metaslab_init = NULL,
1037 .vdev_op_config_generate = NULL,
1038 .vdev_op_nparity = NULL,
1039 .vdev_op_ndisks = NULL,
1040 .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
1041 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
1042 };
1043
1044 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
1045 "Rotating media load increment for non-seeking I/Os");
1046
1047 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT,
1048 ZMOD_RW, "Rotating media load increment for seeking I/Os");
1049
1050 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT,
1051 ZMOD_RW,
1052 "Offset in bytes from the last I/O which triggers "
1053 "a reduced rotating media seek increment");
1054
1055 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT,
1056 ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os");
1057
1058 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT,
1059 ZMOD_RW, "Non-rotating media load increment for seeking I/Os");
1060