1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2014, 2019 by Delphix. All rights reserved.
18 * Copyright 2019 Joyent, Inc.
19 */
20
21 #include <sys/zfs_context.h>
22 #include <sys/spa.h>
23 #include <sys/spa_impl.h>
24 #include <sys/vdev_impl.h>
25 #include <sys/fs/zfs.h>
26 #include <sys/zio.h>
27 #include <sys/zio_checksum.h>
28 #include <sys/metaslab.h>
29 #include <sys/refcount.h>
30 #include <sys/dmu.h>
31 #include <sys/vdev_indirect_mapping.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/zap.h>
35 #include <sys/abd.h>
36 #include <sys/zthr.h>
37
38 /*
39 * An indirect vdev corresponds to a vdev that has been removed. Since
40 * we cannot rewrite block pointers of snapshots, etc., we keep a
41 * mapping from old location on the removed device to the new location
42 * on another device in the pool and use this mapping whenever we need
43 * to access the DVA. Unfortunately, this mapping did not respect
44 * logical block boundaries when it was first created, and so a DVA on
45 * this indirect vdev may be "split" into multiple sections that each
46 * map to a different location. As a consequence, not all DVAs can be
47 * translated to an equivalent new DVA. Instead we must provide a
48 * "vdev_remap" operation that executes a callback on each contiguous
49 * segment of the new location. This function is used in multiple ways:
50 *
51 * - i/os to this vdev use the callback to determine where the
52 * data is now located, and issue child i/os for each segment's new
53 * location.
54 *
55 * - frees and claims to this vdev use the callback to free or claim
56 * each mapped segment. (Note that we don't actually need to claim
57 * log blocks on indirect vdevs, because we don't allocate to
58 * removing vdevs. However, zdb uses zio_claim() for its leak
59 * detection.)
60 */
61
62 /*
63 * "Big theory statement" for how we mark blocks obsolete.
64 *
65 * When a block on an indirect vdev is freed or remapped, a section of
66 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
67 * keep track of how much of each mapping entry is obsolete. When
68 * an entry becomes completely obsolete, we can remove it, thus reducing
69 * the memory used by the mapping. The complete picture of obsolescence
70 * is given by the following data structures, described below:
71 * - the entry-specific obsolete count
72 * - the vdev-specific obsolete spacemap
73 * - the pool-specific obsolete bpobj
74 *
75 * == On disk data structures used ==
76 *
77 * We track the obsolete space for the pool using several objects. Each
78 * of these objects is created on demand and freed when no longer
79 * needed, and is assumed to be empty if it does not exist.
80 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
81 *
82 * - Each vic_mapping_object (associated with an indirect vdev) can
83 * have a vimp_counts_object. This is an array of uint32_t's
84 * with the same number of entries as the vic_mapping_object. When
85 * the mapping is condensed, entries from the vic_obsolete_sm_object
86 * (see below) are folded into the counts. Therefore, each
87 * obsolete_counts entry tells us the number of bytes in the
88 * corresponding mapping entry that were not referenced when the
89 * mapping was last condensed.
90 *
91 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
92 * This is a space map containing an alloc entry for every DVA that
93 * has been obsoleted since the last time this indirect vdev was
94 * condensed. We use this object in order to improve performance
95 * when marking a DVA as obsolete. Instead of modifying an arbitrary
96 * offset of the vimp_counts_object, we only need to append an entry
97 * to the end of this object. When a DVA becomes obsolete, it is
98 * added to the obsolete space map. This happens when the DVA is
99 * freed, remapped and not referenced by a snapshot, or the last
100 * snapshot referencing it is destroyed.
101 *
102 * - Each dataset can have a ds_remap_deadlist object. This is a
103 * deadlist object containing all blocks that were remapped in this
104 * dataset but referenced in a previous snapshot. Blocks can *only*
105 * appear on this list if they were remapped (dsl_dataset_block_remapped);
106 * blocks that were killed in a head dataset are put on the normal
107 * ds_deadlist and marked obsolete when they are freed.
108 *
109 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
110 * in the pool that need to be marked obsolete. When a snapshot is
111 * destroyed, we move some of the ds_remap_deadlist to the obsolete
112 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
113 * asynchronously process the obsolete bpobj, moving its entries to
114 * the specific vdevs' obsolete space maps.
115 *
116 * == Summary of how we mark blocks as obsolete ==
117 *
118 * - When freeing a block: if any DVA is on an indirect vdev, append to
119 * vic_obsolete_sm_object.
120 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
121 * references; otherwise append to vic_obsolete_sm_object).
122 * - When freeing a snapshot: move parts of ds_remap_deadlist to
123 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
124 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
125 * individual vdev's vic_obsolete_sm_object.
126 */
127
128 /*
129 * "Big theory statement" for how we condense indirect vdevs.
130 *
131 * Condensing an indirect vdev's mapping is the process of determining
132 * the precise counts of obsolete space for each mapping entry (by
133 * integrating the obsolete spacemap into the obsolete counts) and
134 * writing out a new mapping that contains only referenced entries.
135 *
136 * We condense a vdev when we expect the mapping to shrink (see
137 * vdev_indirect_should_condense()), but only perform one condense at a
138 * time to limit the memory usage. In addition, we use a separate
139 * open-context thread (spa_condense_indirect_thread) to incrementally
140 * create the new mapping object in a way that minimizes the impact on
141 * the rest of the system.
142 *
143 * == Generating a new mapping ==
144 *
145 * To generate a new mapping, we follow these steps:
146 *
147 * 1. Save the old obsolete space map and create a new mapping object
148 * (see spa_condense_indirect_start_sync()). This initializes the
149 * spa_condensing_indirect_phys with the "previous obsolete space map",
150 * which is now read only. Newly obsolete DVAs will be added to a
151 * new (initially empty) obsolete space map, and will not be
152 * considered as part of this condense operation.
153 *
154 * 2. Construct in memory the precise counts of obsolete space for each
155 * mapping entry, by incorporating the obsolete space map into the
156 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
157 *
158 * 3. Iterate through each mapping entry, writing to the new mapping any
159 * entries that are not completely obsolete (i.e. which don't have
160 * obsolete count == mapping length). (See
161 * spa_condense_indirect_generate_new_mapping().)
162 *
163 * 4. Destroy the old mapping object and switch over to the new one
164 * (spa_condense_indirect_complete_sync).
165 *
166 * == Restarting from failure ==
167 *
168 * To restart the condense when we import/open the pool, we must start
169 * at the 2nd step above: reconstruct the precise counts in memory,
170 * based on the space map + counts. Then in the 3rd step, we start
171 * iterating where we left off: at vimp_max_offset of the new mapping
172 * object.
173 */
174
175 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
176
177 /*
178 * Condense if at least this percent of the bytes in the mapping is
179 * obsolete. With the default of 25%, the amount of space mapped
180 * will be reduced to 1% of its original size after at most 16
181 * condenses. Higher values will condense less often (causing less
182 * i/o); lower values will reduce the mapping size more quickly.
183 */
184 int zfs_indirect_condense_obsolete_pct = 25;
185
186 /*
187 * Condense if the obsolete space map takes up more than this amount of
188 * space on disk (logically). This limits the amount of disk space
189 * consumed by the obsolete space map; the default of 1GB is small enough
190 * that we typically don't mind "wasting" it.
191 */
192 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
193
194 /*
195 * Don't bother condensing if the mapping uses less than this amount of
196 * memory. The default of 128KB is considered a "trivial" amount of
197 * memory and not worth reducing.
198 */
199 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
200
201 /*
202 * This is used by the test suite so that it can ensure that certain
203 * actions happen while in the middle of a condense (which might otherwise
204 * complete too quickly). If used to reduce the performance impact of
205 * condensing in production, a maximum value of 1 should be sufficient.
206 */
207 int zfs_condense_indirect_commit_entry_delay_ticks = 0;
208
209 /*
210 * If an indirect split block contains more than this many possible unique
211 * combinations when being reconstructed, consider it too computationally
212 * expensive to check them all. Instead, try at most 100 randomly-selected
213 * combinations each time the block is accessed. This allows all segment
214 * copies to participate fairly in the reconstruction when all combinations
215 * cannot be checked and prevents repeated use of one bad copy.
216 */
217 int zfs_reconstruct_indirect_combinations_max = 256;
218
219
220 /*
221 * Enable to simulate damaged segments and validate reconstruction.
222 * Used by ztest
223 */
224 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
225
226 /*
227 * The indirect_child_t represents the vdev that we will read from, when we
228 * need to read all copies of the data (e.g. for scrub or reconstruction).
229 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
230 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
231 * ic_vdev is a child of the mirror.
232 */
233 typedef struct indirect_child {
234 abd_t *ic_data;
235 vdev_t *ic_vdev;
236
237 /*
238 * ic_duplicate is NULL when the ic_data contents are unique, when it
239 * is determined to be a duplicate it references the primary child.
240 */
241 struct indirect_child *ic_duplicate;
242 list_node_t ic_node; /* node on is_unique_child */
243 } indirect_child_t;
244
245 /*
246 * The indirect_split_t represents one mapped segment of an i/o to the
247 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
248 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
249 * For split blocks, there will be several of these.
250 */
251 typedef struct indirect_split {
252 list_node_t is_node; /* link on iv_splits */
253
254 /*
255 * is_split_offset is the offset into the i/o.
256 * This is the sum of the previous splits' is_size's.
257 */
258 uint64_t is_split_offset;
259
260 vdev_t *is_vdev; /* top-level vdev */
261 uint64_t is_target_offset; /* offset on is_vdev */
262 uint64_t is_size;
263 int is_children; /* number of entries in is_child[] */
264 int is_unique_children; /* number of entries in is_unique_child */
265 list_t is_unique_child;
266
267 /*
268 * is_good_child is the child that we are currently using to
269 * attempt reconstruction.
270 */
271 indirect_child_t *is_good_child;
272
273 indirect_child_t is_child[1]; /* variable-length */
274 } indirect_split_t;
275
276 /*
277 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
278 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
279 */
280 typedef struct indirect_vsd {
281 boolean_t iv_split_block;
282 boolean_t iv_reconstruct;
283 uint64_t iv_unique_combinations;
284 uint64_t iv_attempts;
285 uint64_t iv_attempts_max;
286
287 list_t iv_splits; /* list of indirect_split_t's */
288 } indirect_vsd_t;
289
290 static void
vdev_indirect_map_free(zio_t * zio)291 vdev_indirect_map_free(zio_t *zio)
292 {
293 indirect_vsd_t *iv = zio->io_vsd;
294
295 indirect_split_t *is;
296 while ((is = list_head(&iv->iv_splits)) != NULL) {
297 for (int c = 0; c < is->is_children; c++) {
298 indirect_child_t *ic = &is->is_child[c];
299 if (ic->ic_data != NULL)
300 abd_free(ic->ic_data);
301 }
302 list_remove(&iv->iv_splits, is);
303
304 indirect_child_t *ic;
305 while ((ic = list_head(&is->is_unique_child)) != NULL)
306 list_remove(&is->is_unique_child, ic);
307
308 list_destroy(&is->is_unique_child);
309
310 kmem_free(is,
311 offsetof(indirect_split_t, is_child[is->is_children]));
312 }
313 kmem_free(iv, sizeof (*iv));
314 }
315
316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
317 vdev_indirect_map_free,
318 zio_vsd_default_cksum_report
319 };
320 /*
321 * Mark the given offset and size as being obsolete.
322 */
323 void
vdev_indirect_mark_obsolete(vdev_t * vd,uint64_t offset,uint64_t size)324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
325 {
326 spa_t *spa = vd->vdev_spa;
327
328 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330 ASSERT(size > 0);
331 VERIFY(vdev_indirect_mapping_entry_for_offset(
332 vd->vdev_indirect_mapping, offset) != NULL);
333
334 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335 mutex_enter(&vd->vdev_obsolete_lock);
336 range_tree_add(vd->vdev_obsolete_segments, offset, size);
337 mutex_exit(&vd->vdev_obsolete_lock);
338 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
339 }
340 }
341
342 /*
343 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344 * wrapper is provided because the DMU does not know about vdev_t's and
345 * cannot directly call vdev_indirect_mark_obsolete.
346 */
347 void
spa_vdev_indirect_mark_obsolete(spa_t * spa,uint64_t vdev_id,uint64_t offset,uint64_t size,dmu_tx_t * tx)348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349 uint64_t size, dmu_tx_t *tx)
350 {
351 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352 ASSERT(dmu_tx_is_syncing(tx));
353
354 /* The DMU can only remap indirect vdevs. */
355 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
356 vdev_indirect_mark_obsolete(vd, offset, size);
357 }
358
359 static spa_condensing_indirect_t *
spa_condensing_indirect_create(spa_t * spa)360 spa_condensing_indirect_create(spa_t *spa)
361 {
362 spa_condensing_indirect_phys_t *scip =
363 &spa->spa_condensing_indirect_phys;
364 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365 objset_t *mos = spa->spa_meta_objset;
366
367 for (int i = 0; i < TXG_SIZE; i++) {
368 list_create(&sci->sci_new_mapping_entries[i],
369 sizeof (vdev_indirect_mapping_entry_t),
370 offsetof(vdev_indirect_mapping_entry_t, vime_node));
371 }
372
373 sci->sci_new_mapping =
374 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375
376 return (sci);
377 }
378
379 static void
spa_condensing_indirect_destroy(spa_condensing_indirect_t * sci)380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381 {
382 for (int i = 0; i < TXG_SIZE; i++)
383 list_destroy(&sci->sci_new_mapping_entries[i]);
384
385 if (sci->sci_new_mapping != NULL)
386 vdev_indirect_mapping_close(sci->sci_new_mapping);
387
388 kmem_free(sci, sizeof (*sci));
389 }
390
391 boolean_t
vdev_indirect_should_condense(vdev_t * vd)392 vdev_indirect_should_condense(vdev_t *vd)
393 {
394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395 spa_t *spa = vd->vdev_spa;
396
397 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398
399 if (!zfs_condense_indirect_vdevs_enable)
400 return (B_FALSE);
401
402 /*
403 * We can only condense one indirect vdev at a time.
404 */
405 if (spa->spa_condensing_indirect != NULL)
406 return (B_FALSE);
407
408 if (spa_shutting_down(spa))
409 return (B_FALSE);
410
411 /*
412 * The mapping object size must not change while we are
413 * condensing, so we can only condense indirect vdevs
414 * (not vdevs that are still in the middle of being removed).
415 */
416 if (vd->vdev_ops != &vdev_indirect_ops)
417 return (B_FALSE);
418
419 /*
420 * If nothing new has been marked obsolete, there is no
421 * point in condensing.
422 */
423 if (vd->vdev_obsolete_sm == NULL) {
424 ASSERT0(vdev_obsolete_sm_object(vd));
425 return (B_FALSE);
426 }
427
428 ASSERT(vd->vdev_obsolete_sm != NULL);
429
430 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
431 space_map_object(vd->vdev_obsolete_sm));
432
433 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
434 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
435 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
436 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
437
438 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
439
440 /*
441 * If a high percentage of the bytes that are mapped have become
442 * obsolete, condense (unless the mapping is already small enough).
443 * This has a good chance of reducing the amount of memory used
444 * by the mapping.
445 */
446 if (bytes_obsolete * 100 / bytes_mapped >=
447 zfs_indirect_condense_obsolete_pct &&
448 mapping_size > zfs_condense_min_mapping_bytes) {
449 zfs_dbgmsg("should condense vdev %llu because obsolete "
450 "spacemap covers %d%% of %lluMB mapping",
451 (u_longlong_t)vd->vdev_id,
452 (int)(bytes_obsolete * 100 / bytes_mapped),
453 (u_longlong_t)bytes_mapped / 1024 / 1024);
454 return (B_TRUE);
455 }
456
457 /*
458 * If the obsolete space map takes up too much space on disk,
459 * condense in order to free up this disk space.
460 */
461 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
462 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
463 "length %lluMB >= max size %lluMB",
464 (u_longlong_t)vd->vdev_id,
465 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
466 (u_longlong_t)zfs_condense_max_obsolete_bytes /
467 1024 / 1024);
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472 }
473
474 /*
475 * This sync task completes (finishes) a condense, deleting the old
476 * mapping and replacing it with the new one.
477 */
478 static void
spa_condense_indirect_complete_sync(void * arg,dmu_tx_t * tx)479 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
480 {
481 spa_condensing_indirect_t *sci = arg;
482 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
483 spa_condensing_indirect_phys_t *scip =
484 &spa->spa_condensing_indirect_phys;
485 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
486 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
487 objset_t *mos = spa->spa_meta_objset;
488 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
489 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
490 uint64_t new_count =
491 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
492
493 ASSERT(dmu_tx_is_syncing(tx));
494 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
495 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
496 for (int i = 0; i < TXG_SIZE; i++) {
497 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
498 }
499 ASSERT(vic->vic_mapping_object != 0);
500 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
501 ASSERT(scip->scip_next_mapping_object != 0);
502 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
503
504 /*
505 * Reset vdev_indirect_mapping to refer to the new object.
506 */
507 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
508 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
509 vd->vdev_indirect_mapping = sci->sci_new_mapping;
510 rw_exit(&vd->vdev_indirect_rwlock);
511
512 sci->sci_new_mapping = NULL;
513 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
514 vic->vic_mapping_object = scip->scip_next_mapping_object;
515 scip->scip_next_mapping_object = 0;
516
517 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
518 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
519 scip->scip_prev_obsolete_sm_object = 0;
520
521 scip->scip_vdev = 0;
522
523 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
524 DMU_POOL_CONDENSING_INDIRECT, tx));
525 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
526 spa->spa_condensing_indirect = NULL;
527
528 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
529 "new mapping object %llu has %llu entries "
530 "(was %llu entries)",
531 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
532 new_count, old_count);
533
534 vdev_config_dirty(spa->spa_root_vdev);
535 }
536
537 /*
538 * This sync task appends entries to the new mapping object.
539 */
540 static void
spa_condense_indirect_commit_sync(void * arg,dmu_tx_t * tx)541 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
542 {
543 spa_condensing_indirect_t *sci = arg;
544 uint64_t txg = dmu_tx_get_txg(tx);
545 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
546
547 ASSERT(dmu_tx_is_syncing(tx));
548 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
549
550 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
551 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
552 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
553 }
554
555 /*
556 * Open-context function to add one entry to the new mapping. The new
557 * entry will be remembered and written from syncing context.
558 */
559 static void
spa_condense_indirect_commit_entry(spa_t * spa,vdev_indirect_mapping_entry_phys_t * vimep,uint32_t count)560 spa_condense_indirect_commit_entry(spa_t *spa,
561 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
562 {
563 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
564
565 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
566
567 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
568 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
569 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
570 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
571
572 /*
573 * If we are the first entry committed this txg, kick off the sync
574 * task to write to the MOS on our behalf.
575 */
576 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
577 dsl_sync_task_nowait(dmu_tx_pool(tx),
578 spa_condense_indirect_commit_sync, sci,
579 0, ZFS_SPACE_CHECK_NONE, tx);
580 }
581
582 vdev_indirect_mapping_entry_t *vime =
583 kmem_alloc(sizeof (*vime), KM_SLEEP);
584 vime->vime_mapping = *vimep;
585 vime->vime_obsolete_count = count;
586 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
587
588 dmu_tx_commit(tx);
589 }
590
591 static void
spa_condense_indirect_generate_new_mapping(vdev_t * vd,uint32_t * obsolete_counts,uint64_t start_index,zthr_t * zthr)592 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
593 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
594 {
595 spa_t *spa = vd->vdev_spa;
596 uint64_t mapi = start_index;
597 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
598 uint64_t old_num_entries =
599 vdev_indirect_mapping_num_entries(old_mapping);
600
601 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
602 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
603
604 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
605 (u_longlong_t)vd->vdev_id,
606 (u_longlong_t)mapi);
607
608 while (mapi < old_num_entries) {
609
610 if (zthr_iscancelled(zthr)) {
611 zfs_dbgmsg("pausing condense of vdev %llu "
612 "at index %llu", (u_longlong_t)vd->vdev_id,
613 (u_longlong_t)mapi);
614 break;
615 }
616
617 vdev_indirect_mapping_entry_phys_t *entry =
618 &old_mapping->vim_entries[mapi];
619 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
620 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
621 if (obsolete_counts[mapi] < entry_size) {
622 spa_condense_indirect_commit_entry(spa, entry,
623 obsolete_counts[mapi]);
624
625 /*
626 * This delay may be requested for testing, debugging,
627 * or performance reasons.
628 */
629 delay(zfs_condense_indirect_commit_entry_delay_ticks);
630 }
631
632 mapi++;
633 }
634 }
635
636 /* ARGSUSED */
637 static boolean_t
spa_condense_indirect_thread_check(void * arg,zthr_t * zthr)638 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
639 {
640 spa_t *spa = arg;
641
642 return (spa->spa_condensing_indirect != NULL);
643 }
644
645 /* ARGSUSED */
646 static void
spa_condense_indirect_thread(void * arg,zthr_t * zthr)647 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
648 {
649 spa_t *spa = arg;
650 vdev_t *vd;
651
652 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
653 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
654 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
655 ASSERT3P(vd, !=, NULL);
656 spa_config_exit(spa, SCL_VDEV, FTAG);
657
658 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
659 spa_condensing_indirect_phys_t *scip =
660 &spa->spa_condensing_indirect_phys;
661 uint32_t *counts;
662 uint64_t start_index;
663 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
664 space_map_t *prev_obsolete_sm = NULL;
665
666 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
667 ASSERT(scip->scip_next_mapping_object != 0);
668 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
669 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
670
671 for (int i = 0; i < TXG_SIZE; i++) {
672 /*
673 * The list must start out empty in order for the
674 * _commit_sync() sync task to be properly registered
675 * on the first call to _commit_entry(); so it's wise
676 * to double check and ensure we actually are starting
677 * with empty lists.
678 */
679 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
680 }
681
682 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
683 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
684 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
685 if (prev_obsolete_sm != NULL) {
686 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
687 counts, prev_obsolete_sm);
688 }
689 space_map_close(prev_obsolete_sm);
690
691 /*
692 * Generate new mapping. Determine what index to continue from
693 * based on the max offset that we've already written in the
694 * new mapping.
695 */
696 uint64_t max_offset =
697 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
698 if (max_offset == 0) {
699 /* We haven't written anything to the new mapping yet. */
700 start_index = 0;
701 } else {
702 /*
703 * Pick up from where we left off. _entry_for_offset()
704 * returns a pointer into the vim_entries array. If
705 * max_offset is greater than any of the mappings
706 * contained in the table NULL will be returned and
707 * that indicates we've exhausted our iteration of the
708 * old_mapping.
709 */
710
711 vdev_indirect_mapping_entry_phys_t *entry =
712 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
713 max_offset);
714
715 if (entry == NULL) {
716 /*
717 * We've already written the whole new mapping.
718 * This special value will cause us to skip the
719 * generate_new_mapping step and just do the sync
720 * task to complete the condense.
721 */
722 start_index = UINT64_MAX;
723 } else {
724 start_index = entry - old_mapping->vim_entries;
725 ASSERT3U(start_index, <,
726 vdev_indirect_mapping_num_entries(old_mapping));
727 }
728 }
729
730 spa_condense_indirect_generate_new_mapping(vd, counts,
731 start_index, zthr);
732
733 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
734
735 /*
736 * If the zthr has received a cancellation signal while running
737 * in generate_new_mapping() or at any point after that, then bail
738 * early. We don't want to complete the condense if the spa is
739 * shutting down.
740 */
741 if (zthr_iscancelled(zthr))
742 return;
743
744 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
745 spa_condense_indirect_complete_sync, sci, 0,
746 ZFS_SPACE_CHECK_EXTRA_RESERVED));
747 }
748
749 /*
750 * Sync task to begin the condensing process.
751 */
752 void
spa_condense_indirect_start_sync(vdev_t * vd,dmu_tx_t * tx)753 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
754 {
755 spa_t *spa = vd->vdev_spa;
756 spa_condensing_indirect_phys_t *scip =
757 &spa->spa_condensing_indirect_phys;
758
759 ASSERT0(scip->scip_next_mapping_object);
760 ASSERT0(scip->scip_prev_obsolete_sm_object);
761 ASSERT0(scip->scip_vdev);
762 ASSERT(dmu_tx_is_syncing(tx));
763 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
764 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
765 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
766
767 uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
768 ASSERT(obsolete_sm_obj != 0);
769
770 scip->scip_vdev = vd->vdev_id;
771 scip->scip_next_mapping_object =
772 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
773
774 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
775
776 /*
777 * We don't need to allocate a new space map object, since
778 * vdev_indirect_sync_obsolete will allocate one when needed.
779 */
780 space_map_close(vd->vdev_obsolete_sm);
781 vd->vdev_obsolete_sm = NULL;
782 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
783 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
784
785 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
786 DMU_POOL_DIRECTORY_OBJECT,
787 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
788 sizeof (*scip) / sizeof (uint64_t), scip, tx));
789
790 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
791 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
792
793 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
794 "posm=%llu nm=%llu",
795 vd->vdev_id, dmu_tx_get_txg(tx),
796 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
797 (u_longlong_t)scip->scip_next_mapping_object);
798
799 zthr_wakeup(spa->spa_condense_zthr);
800 }
801
802 /*
803 * Sync to the given vdev's obsolete space map any segments that are no longer
804 * referenced as of the given txg.
805 *
806 * If the obsolete space map doesn't exist yet, create and open it.
807 */
808 void
vdev_indirect_sync_obsolete(vdev_t * vd,dmu_tx_t * tx)809 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
810 {
811 spa_t *spa = vd->vdev_spa;
812 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
813
814 ASSERT3U(vic->vic_mapping_object, !=, 0);
815 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
816 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
817 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
818
819 if (vdev_obsolete_sm_object(vd) == 0) {
820 uint64_t obsolete_sm_object =
821 space_map_alloc(spa->spa_meta_objset,
822 zfs_vdev_standard_sm_blksz, tx);
823
824 ASSERT(vd->vdev_top_zap != 0);
825 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
826 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
827 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
828 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
829
830 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
831 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
832 spa->spa_meta_objset, obsolete_sm_object,
833 0, vd->vdev_asize, 0));
834 }
835
836 ASSERT(vd->vdev_obsolete_sm != NULL);
837 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
838 space_map_object(vd->vdev_obsolete_sm));
839
840 space_map_write(vd->vdev_obsolete_sm,
841 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
842 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
843 }
844
845 int
spa_condense_init(spa_t * spa)846 spa_condense_init(spa_t *spa)
847 {
848 int error = zap_lookup(spa->spa_meta_objset,
849 DMU_POOL_DIRECTORY_OBJECT,
850 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
851 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
852 &spa->spa_condensing_indirect_phys);
853 if (error == 0) {
854 if (spa_writeable(spa)) {
855 spa->spa_condensing_indirect =
856 spa_condensing_indirect_create(spa);
857 }
858 return (0);
859 } else if (error == ENOENT) {
860 return (0);
861 } else {
862 return (error);
863 }
864 }
865
866 void
spa_condense_fini(spa_t * spa)867 spa_condense_fini(spa_t *spa)
868 {
869 if (spa->spa_condensing_indirect != NULL) {
870 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
871 spa->spa_condensing_indirect = NULL;
872 }
873 }
874
875 void
spa_start_indirect_condensing_thread(spa_t * spa)876 spa_start_indirect_condensing_thread(spa_t *spa)
877 {
878 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
879 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
880 spa_condense_indirect_thread, spa);
881 }
882
883 /*
884 * Gets the obsolete spacemap object from the vdev's ZAP.
885 * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
886 * exist yet.
887 */
888 int
vdev_obsolete_sm_object(vdev_t * vd)889 vdev_obsolete_sm_object(vdev_t *vd)
890 {
891 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
892 if (vd->vdev_top_zap == 0) {
893 return (0);
894 }
895
896 uint64_t sm_obj = 0;
897 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
898 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
899
900 ASSERT(err == 0 || err == ENOENT);
901
902 return (sm_obj);
903 }
904
905 boolean_t
vdev_obsolete_counts_are_precise(vdev_t * vd)906 vdev_obsolete_counts_are_precise(vdev_t *vd)
907 {
908 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
909 if (vd->vdev_top_zap == 0) {
910 return (B_FALSE);
911 }
912
913 uint64_t val = 0;
914 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
915 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
916
917 ASSERT(err == 0 || err == ENOENT);
918
919 return (val != 0);
920 }
921
922 /* ARGSUSED */
923 static void
vdev_indirect_close(vdev_t * vd)924 vdev_indirect_close(vdev_t *vd)
925 {
926 }
927
928 /* ARGSUSED */
929 static int
vdev_indirect_open(vdev_t * vd,uint64_t * psize,uint64_t * max_psize,uint64_t * ashift)930 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
931 uint64_t *ashift)
932 {
933 *psize = *max_psize = vd->vdev_asize +
934 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
935 *ashift = vd->vdev_ashift;
936 return (0);
937 }
938
939 typedef struct remap_segment {
940 vdev_t *rs_vd;
941 uint64_t rs_offset;
942 uint64_t rs_asize;
943 uint64_t rs_split_offset;
944 list_node_t rs_node;
945 } remap_segment_t;
946
947 remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)948 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
949 {
950 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
951 rs->rs_vd = vd;
952 rs->rs_offset = offset;
953 rs->rs_asize = asize;
954 rs->rs_split_offset = split_offset;
955 return (rs);
956 }
957
958 /*
959 * Given an indirect vdev and an extent on that vdev, it duplicates the
960 * physical entries of the indirect mapping that correspond to the extent
961 * to a new array and returns a pointer to it. In addition, copied_entries
962 * is populated with the number of mapping entries that were duplicated.
963 *
964 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
965 * This ensures that the mapping won't change due to condensing as we
966 * copy over its contents.
967 *
968 * Finally, since we are doing an allocation, it is up to the caller to
969 * free the array allocated in this function.
970 */
971 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)972 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
973 uint64_t asize, uint64_t *copied_entries)
974 {
975 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
976 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
977 uint64_t entries = 0;
978
979 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
980
981 vdev_indirect_mapping_entry_phys_t *first_mapping =
982 vdev_indirect_mapping_entry_for_offset(vim, offset);
983 ASSERT3P(first_mapping, !=, NULL);
984
985 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
986 while (asize > 0) {
987 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
988
989 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
990 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
991
992 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
993 uint64_t inner_size = MIN(asize, size - inner_offset);
994
995 offset += inner_size;
996 asize -= inner_size;
997 entries++;
998 m++;
999 }
1000
1001 size_t copy_length = entries * sizeof (*first_mapping);
1002 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1003 bcopy(first_mapping, duplicate_mappings, copy_length);
1004 *copied_entries = entries;
1005
1006 return (duplicate_mappings);
1007 }
1008
1009 /*
1010 * Goes through the relevant indirect mappings until it hits a concrete vdev
1011 * and issues the callback. On the way to the concrete vdev, if any other
1012 * indirect vdevs are encountered, then the callback will also be called on
1013 * each of those indirect vdevs. For example, if the segment is mapped to
1014 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1015 * mapped to segment B on concrete vdev 2, then the callback will be called on
1016 * both vdev 1 and vdev 2.
1017 *
1018 * While the callback passed to vdev_indirect_remap() is called on every vdev
1019 * the function encounters, certain callbacks only care about concrete vdevs.
1020 * These types of callbacks should return immediately and explicitly when they
1021 * are called on an indirect vdev.
1022 *
1023 * Because there is a possibility that a DVA section in the indirect device
1024 * has been split into multiple sections in our mapping, we keep track
1025 * of the relevant contiguous segments of the new location (remap_segment_t)
1026 * in a stack. This way we can call the callback for each of the new sections
1027 * created by a single section of the indirect device. Note though, that in
1028 * this scenario the callbacks in each split block won't occur in-order in
1029 * terms of offset, so callers should not make any assumptions about that.
1030 *
1031 * For callbacks that don't handle split blocks and immediately return when
1032 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1033 * assume that its callback will be applied from the first indirect vdev
1034 * encountered to the last one and then the concrete vdev, in that order.
1035 */
1036 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void (* func)(uint64_t,vdev_t *,uint64_t,uint64_t,void *),void * arg)1037 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1038 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1039 {
1040 list_t stack;
1041 spa_t *spa = vd->vdev_spa;
1042
1043 list_create(&stack, sizeof (remap_segment_t),
1044 offsetof(remap_segment_t, rs_node));
1045
1046 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1047 rs != NULL; rs = list_remove_head(&stack)) {
1048 vdev_t *v = rs->rs_vd;
1049 uint64_t num_entries = 0;
1050
1051 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1052 ASSERT(rs->rs_asize > 0);
1053
1054 /*
1055 * Note: As this function can be called from open context
1056 * (e.g. zio_read()), we need the following rwlock to
1057 * prevent the mapping from being changed by condensing.
1058 *
1059 * So we grab the lock and we make a copy of the entries
1060 * that are relevant to the extent that we are working on.
1061 * Once that is done, we drop the lock and iterate over
1062 * our copy of the mapping. Once we are done with the with
1063 * the remap segment and we free it, we also free our copy
1064 * of the indirect mapping entries that are relevant to it.
1065 *
1066 * This way we don't need to wait until the function is
1067 * finished with a segment, to condense it. In addition, we
1068 * don't need a recursive rwlock for the case that a call to
1069 * vdev_indirect_remap() needs to call itself (through the
1070 * codepath of its callback) for the same vdev in the middle
1071 * of its execution.
1072 */
1073 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1074 vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
1075 ASSERT3P(vim, !=, NULL);
1076
1077 vdev_indirect_mapping_entry_phys_t *mapping =
1078 vdev_indirect_mapping_duplicate_adjacent_entries(v,
1079 rs->rs_offset, rs->rs_asize, &num_entries);
1080 ASSERT3P(mapping, !=, NULL);
1081 ASSERT3U(num_entries, >, 0);
1082 rw_exit(&v->vdev_indirect_rwlock);
1083
1084 for (uint64_t i = 0; i < num_entries; i++) {
1085 /*
1086 * Note: the vdev_indirect_mapping can not change
1087 * while we are running. It only changes while the
1088 * removal is in progress, and then only from syncing
1089 * context. While a removal is in progress, this
1090 * function is only called for frees, which also only
1091 * happen from syncing context.
1092 */
1093 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1094
1095 ASSERT3P(m, !=, NULL);
1096 ASSERT3U(rs->rs_asize, >, 0);
1097
1098 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1099 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1100 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1101
1102 ASSERT3U(rs->rs_offset, >=,
1103 DVA_MAPPING_GET_SRC_OFFSET(m));
1104 ASSERT3U(rs->rs_offset, <,
1105 DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1106 ASSERT3U(dst_vdev, !=, v->vdev_id);
1107
1108 uint64_t inner_offset = rs->rs_offset -
1109 DVA_MAPPING_GET_SRC_OFFSET(m);
1110 uint64_t inner_size =
1111 MIN(rs->rs_asize, size - inner_offset);
1112
1113 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1114 ASSERT3P(dst_v, !=, NULL);
1115
1116 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1117 list_insert_head(&stack,
1118 rs_alloc(dst_v, dst_offset + inner_offset,
1119 inner_size, rs->rs_split_offset));
1120
1121 }
1122
1123 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1124 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1125 /*
1126 * Note: This clause exists only solely for
1127 * testing purposes. We use it to ensure that
1128 * split blocks work and that the callbacks
1129 * using them yield the same result if issued
1130 * in reverse order.
1131 */
1132 uint64_t inner_half = inner_size / 2;
1133
1134 func(rs->rs_split_offset + inner_half, dst_v,
1135 dst_offset + inner_offset + inner_half,
1136 inner_half, arg);
1137
1138 func(rs->rs_split_offset, dst_v,
1139 dst_offset + inner_offset,
1140 inner_half, arg);
1141 } else {
1142 func(rs->rs_split_offset, dst_v,
1143 dst_offset + inner_offset,
1144 inner_size, arg);
1145 }
1146
1147 rs->rs_offset += inner_size;
1148 rs->rs_asize -= inner_size;
1149 rs->rs_split_offset += inner_size;
1150 }
1151 VERIFY0(rs->rs_asize);
1152
1153 kmem_free(mapping, num_entries * sizeof (*mapping));
1154 kmem_free(rs, sizeof (remap_segment_t));
1155 }
1156 list_destroy(&stack);
1157 }
1158
1159 static void
vdev_indirect_child_io_done(zio_t * zio)1160 vdev_indirect_child_io_done(zio_t *zio)
1161 {
1162 zio_t *pio = zio->io_private;
1163
1164 mutex_enter(&pio->io_lock);
1165 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1166 mutex_exit(&pio->io_lock);
1167
1168 abd_put(zio->io_abd);
1169 }
1170
1171 /*
1172 * This is a callback for vdev_indirect_remap() which allocates an
1173 * indirect_split_t for each split segment and adds it to iv_splits.
1174 */
1175 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)1176 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1177 uint64_t size, void *arg)
1178 {
1179 zio_t *zio = arg;
1180 indirect_vsd_t *iv = zio->io_vsd;
1181
1182 ASSERT3P(vd, !=, NULL);
1183
1184 if (vd->vdev_ops == &vdev_indirect_ops)
1185 return;
1186
1187 int n = 1;
1188 if (vd->vdev_ops == &vdev_mirror_ops)
1189 n = vd->vdev_children;
1190
1191 indirect_split_t *is =
1192 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1193
1194 is->is_children = n;
1195 is->is_size = size;
1196 is->is_split_offset = split_offset;
1197 is->is_target_offset = offset;
1198 is->is_vdev = vd;
1199 list_create(&is->is_unique_child, sizeof (indirect_child_t),
1200 offsetof(indirect_child_t, ic_node));
1201
1202 /*
1203 * Note that we only consider multiple copies of the data for
1204 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1205 * though they use the same ops as mirror, because there's only one
1206 * "good" copy under the replacing/spare.
1207 */
1208 if (vd->vdev_ops == &vdev_mirror_ops) {
1209 for (int i = 0; i < n; i++) {
1210 is->is_child[i].ic_vdev = vd->vdev_child[i];
1211 list_link_init(&is->is_child[i].ic_node);
1212 }
1213 } else {
1214 is->is_child[0].ic_vdev = vd;
1215 }
1216
1217 list_insert_tail(&iv->iv_splits, is);
1218 }
1219
1220 static void
vdev_indirect_read_split_done(zio_t * zio)1221 vdev_indirect_read_split_done(zio_t *zio)
1222 {
1223 indirect_child_t *ic = zio->io_private;
1224
1225 if (zio->io_error != 0) {
1226 /*
1227 * Clear ic_data to indicate that we do not have data for this
1228 * child.
1229 */
1230 abd_free(ic->ic_data);
1231 ic->ic_data = NULL;
1232 }
1233 }
1234
1235 /*
1236 * Issue reads for all copies (mirror children) of all splits.
1237 */
1238 static void
vdev_indirect_read_all(zio_t * zio)1239 vdev_indirect_read_all(zio_t *zio)
1240 {
1241 indirect_vsd_t *iv = zio->io_vsd;
1242
1243 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1244
1245 for (indirect_split_t *is = list_head(&iv->iv_splits);
1246 is != NULL; is = list_next(&iv->iv_splits, is)) {
1247 for (int i = 0; i < is->is_children; i++) {
1248 indirect_child_t *ic = &is->is_child[i];
1249
1250 if (!vdev_readable(ic->ic_vdev))
1251 continue;
1252
1253 /*
1254 * Note, we may read from a child whose DTL
1255 * indicates that the data may not be present here.
1256 * While this might result in a few i/os that will
1257 * likely return incorrect data, it simplifies the
1258 * code since we can treat scrub and resilver
1259 * identically. (The incorrect data will be
1260 * detected and ignored when we verify the
1261 * checksum.)
1262 */
1263
1264 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1265 is->is_size);
1266 ic->ic_duplicate = NULL;
1267
1268 zio_nowait(zio_vdev_child_io(zio, NULL,
1269 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1270 is->is_size, zio->io_type, zio->io_priority, 0,
1271 vdev_indirect_read_split_done, ic));
1272 }
1273 }
1274 iv->iv_reconstruct = B_TRUE;
1275 }
1276
1277 static void
vdev_indirect_io_start(zio_t * zio)1278 vdev_indirect_io_start(zio_t *zio)
1279 {
1280 spa_t *spa = zio->io_spa;
1281 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1282 list_create(&iv->iv_splits,
1283 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1284
1285 zio->io_vsd = iv;
1286 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1287
1288 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1289 if (zio->io_type != ZIO_TYPE_READ) {
1290 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1291 /*
1292 * Note: this code can handle other kinds of writes,
1293 * but we don't expect them.
1294 */
1295 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1296 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1297 }
1298
1299 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1300 vdev_indirect_gather_splits, zio);
1301
1302 indirect_split_t *first = list_head(&iv->iv_splits);
1303 if (first->is_size == zio->io_size) {
1304 /*
1305 * This is not a split block; we are pointing to the entire
1306 * data, which will checksum the same as the original data.
1307 * Pass the BP down so that the child i/o can verify the
1308 * checksum, and try a different location if available
1309 * (e.g. on a mirror).
1310 *
1311 * While this special case could be handled the same as the
1312 * general (split block) case, doing it this way ensures
1313 * that the vast majority of blocks on indirect vdevs
1314 * (which are not split) are handled identically to blocks
1315 * on non-indirect vdevs. This allows us to be less strict
1316 * about performance in the general (but rare) case.
1317 */
1318 ASSERT0(first->is_split_offset);
1319 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1320 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1321 first->is_vdev, first->is_target_offset,
1322 abd_get_offset(zio->io_abd, 0),
1323 zio->io_size, zio->io_type, zio->io_priority, 0,
1324 vdev_indirect_child_io_done, zio));
1325 } else {
1326 iv->iv_split_block = B_TRUE;
1327 if (zio->io_type == ZIO_TYPE_READ &&
1328 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1329 /*
1330 * Read all copies. Note that for simplicity,
1331 * we don't bother consulting the DTL in the
1332 * resilver case.
1333 */
1334 vdev_indirect_read_all(zio);
1335 } else {
1336 /*
1337 * If this is a read zio, we read one copy of each
1338 * split segment, from the top-level vdev. Since
1339 * we don't know the checksum of each split
1340 * individually, the child zio can't ensure that
1341 * we get the right data. E.g. if it's a mirror,
1342 * it will just read from a random (healthy) leaf
1343 * vdev. We have to verify the checksum in
1344 * vdev_indirect_io_done().
1345 *
1346 * For write zios, the vdev code will ensure we write
1347 * to all children.
1348 */
1349 for (indirect_split_t *is = list_head(&iv->iv_splits);
1350 is != NULL; is = list_next(&iv->iv_splits, is)) {
1351 zio_nowait(zio_vdev_child_io(zio, NULL,
1352 is->is_vdev, is->is_target_offset,
1353 abd_get_offset(zio->io_abd,
1354 is->is_split_offset),
1355 is->is_size, zio->io_type,
1356 zio->io_priority, 0,
1357 vdev_indirect_child_io_done, zio));
1358 }
1359 }
1360 }
1361
1362 zio_execute(zio);
1363 }
1364
1365 /*
1366 * Report a checksum error for a child.
1367 */
1368 static void
vdev_indirect_checksum_error(zio_t * zio,indirect_split_t * is,indirect_child_t * ic)1369 vdev_indirect_checksum_error(zio_t *zio,
1370 indirect_split_t *is, indirect_child_t *ic)
1371 {
1372 vdev_t *vd = ic->ic_vdev;
1373
1374 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1375 return;
1376
1377 mutex_enter(&vd->vdev_stat_lock);
1378 vd->vdev_stat.vs_checksum_errors++;
1379 mutex_exit(&vd->vdev_stat_lock);
1380
1381 zio_bad_cksum_t zbc = { 0 };
1382 abd_t *bad_abd = ic->ic_data;
1383 abd_t *good_abd = is->is_good_child->ic_data;
1384 (void) zfs_ereport_post_checksum(zio->io_spa, vd, &zio->io_bookmark,
1385 zio, is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1386 }
1387
1388 /*
1389 * Issue repair i/os for any incorrect copies. We do this by comparing
1390 * each split segment's correct data (is_good_child's ic_data) with each
1391 * other copy of the data. If they differ, then we overwrite the bad data
1392 * with the good copy. Note that we do this without regard for the DTL's,
1393 * which simplifies this code and also issues the optimal number of writes
1394 * (based on which copies actually read bad data, as opposed to which we
1395 * think might be wrong). For the same reason, we always use
1396 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1397 */
1398 static void
vdev_indirect_repair(zio_t * zio)1399 vdev_indirect_repair(zio_t *zio)
1400 {
1401 indirect_vsd_t *iv = zio->io_vsd;
1402
1403 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1404
1405 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1406 flags |= ZIO_FLAG_SELF_HEAL;
1407
1408 if (!spa_writeable(zio->io_spa))
1409 return;
1410
1411 for (indirect_split_t *is = list_head(&iv->iv_splits);
1412 is != NULL; is = list_next(&iv->iv_splits, is)) {
1413 for (int c = 0; c < is->is_children; c++) {
1414 indirect_child_t *ic = &is->is_child[c];
1415 if (ic == is->is_good_child)
1416 continue;
1417 if (ic->ic_data == NULL)
1418 continue;
1419 if (ic->ic_duplicate == is->is_good_child)
1420 continue;
1421
1422 zio_nowait(zio_vdev_child_io(zio, NULL,
1423 ic->ic_vdev, is->is_target_offset,
1424 is->is_good_child->ic_data, is->is_size,
1425 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1426 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1427 NULL, NULL));
1428
1429 vdev_indirect_checksum_error(zio, is, ic);
1430 }
1431 }
1432 }
1433
1434 /*
1435 * Report checksum errors on all children that we read from.
1436 */
1437 static void
vdev_indirect_all_checksum_errors(zio_t * zio)1438 vdev_indirect_all_checksum_errors(zio_t *zio)
1439 {
1440 indirect_vsd_t *iv = zio->io_vsd;
1441
1442 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1443 return;
1444
1445 for (indirect_split_t *is = list_head(&iv->iv_splits);
1446 is != NULL; is = list_next(&iv->iv_splits, is)) {
1447 for (int c = 0; c < is->is_children; c++) {
1448 indirect_child_t *ic = &is->is_child[c];
1449
1450 if (ic->ic_data == NULL)
1451 continue;
1452
1453 vdev_t *vd = ic->ic_vdev;
1454
1455 mutex_enter(&vd->vdev_stat_lock);
1456 vd->vdev_stat.vs_checksum_errors++;
1457 mutex_exit(&vd->vdev_stat_lock);
1458
1459 (void) zfs_ereport_post_checksum(zio->io_spa, vd,
1460 &zio->io_bookmark, zio, is->is_target_offset,
1461 is->is_size, NULL, NULL, NULL);
1462 }
1463 }
1464 }
1465
1466 /*
1467 * Copy data from all the splits to a main zio then validate the checksum.
1468 * If then checksum is successfully validated return success.
1469 */
1470 static int
vdev_indirect_splits_checksum_validate(indirect_vsd_t * iv,zio_t * zio)1471 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1472 {
1473 zio_bad_cksum_t zbc;
1474
1475 for (indirect_split_t *is = list_head(&iv->iv_splits);
1476 is != NULL; is = list_next(&iv->iv_splits, is)) {
1477
1478 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1479 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1480
1481 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1482 is->is_split_offset, 0, is->is_size);
1483 }
1484
1485 return (zio_checksum_error(zio, &zbc));
1486 }
1487
1488 /*
1489 * There are relatively few possible combinations making it feasible to
1490 * deterministically check them all. We do this by setting the good_child
1491 * to the next unique split version. If we reach the end of the list then
1492 * "carry over" to the next unique split version (like counting in base
1493 * is_unique_children, but each digit can have a different base).
1494 */
1495 static int
vdev_indirect_splits_enumerate_all(indirect_vsd_t * iv,zio_t * zio)1496 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1497 {
1498 boolean_t more = B_TRUE;
1499
1500 iv->iv_attempts = 0;
1501
1502 for (indirect_split_t *is = list_head(&iv->iv_splits);
1503 is != NULL; is = list_next(&iv->iv_splits, is))
1504 is->is_good_child = list_head(&is->is_unique_child);
1505
1506 while (more == B_TRUE) {
1507 iv->iv_attempts++;
1508 more = B_FALSE;
1509
1510 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1511 return (0);
1512
1513 for (indirect_split_t *is = list_head(&iv->iv_splits);
1514 is != NULL; is = list_next(&iv->iv_splits, is)) {
1515 is->is_good_child = list_next(&is->is_unique_child,
1516 is->is_good_child);
1517 if (is->is_good_child != NULL) {
1518 more = B_TRUE;
1519 break;
1520 }
1521
1522 is->is_good_child = list_head(&is->is_unique_child);
1523 }
1524 }
1525
1526 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1527
1528 return (SET_ERROR(ECKSUM));
1529 }
1530
1531 /*
1532 * There are too many combinations to try all of them in a reasonable amount
1533 * of time. So try a fixed number of random combinations from the unique
1534 * split versions, after which we'll consider the block unrecoverable.
1535 */
1536 static int
vdev_indirect_splits_enumerate_randomly(indirect_vsd_t * iv,zio_t * zio)1537 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1538 {
1539 iv->iv_attempts = 0;
1540
1541 while (iv->iv_attempts < iv->iv_attempts_max) {
1542 iv->iv_attempts++;
1543
1544 for (indirect_split_t *is = list_head(&iv->iv_splits);
1545 is != NULL; is = list_next(&iv->iv_splits, is)) {
1546 indirect_child_t *ic = list_head(&is->is_unique_child);
1547 int children = is->is_unique_children;
1548
1549 for (int i = spa_get_random(children); i > 0; i--)
1550 ic = list_next(&is->is_unique_child, ic);
1551
1552 ASSERT3P(ic, !=, NULL);
1553 is->is_good_child = ic;
1554 }
1555
1556 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1557 return (0);
1558 }
1559
1560 return (SET_ERROR(ECKSUM));
1561 }
1562
1563 /*
1564 * This is a validation function for reconstruction. It randomly selects
1565 * a good combination, if one can be found, and then it intentionally
1566 * damages all other segment copes by zeroing them. This forces the
1567 * reconstruction algorithm to locate the one remaining known good copy.
1568 */
1569 static int
vdev_indirect_splits_damage(indirect_vsd_t * iv,zio_t * zio)1570 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1571 {
1572 /* Presume all the copies are unique for initial selection. */
1573 for (indirect_split_t *is = list_head(&iv->iv_splits);
1574 is != NULL; is = list_next(&iv->iv_splits, is)) {
1575 is->is_unique_children = 0;
1576
1577 for (int i = 0; i < is->is_children; i++) {
1578 indirect_child_t *ic = &is->is_child[i];
1579 if (ic->ic_data != NULL) {
1580 is->is_unique_children++;
1581 list_insert_tail(&is->is_unique_child, ic);
1582 }
1583 }
1584 }
1585
1586 /*
1587 * Set each is_good_child to a randomly-selected child which
1588 * is known to contain validated data.
1589 */
1590 int error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1591 if (error)
1592 goto out;
1593
1594 /*
1595 * Damage all but the known good copy by zeroing it. This will
1596 * result in two or less unique copies per indirect_child_t.
1597 * Both may need to be checked in order to reconstruct the block.
1598 * Set iv->iv_attempts_max such that all unique combinations will
1599 * enumerated, but limit the damage to at most 16 indirect splits.
1600 */
1601 iv->iv_attempts_max = 1;
1602
1603 for (indirect_split_t *is = list_head(&iv->iv_splits);
1604 is != NULL; is = list_next(&iv->iv_splits, is)) {
1605 for (int c = 0; c < is->is_children; c++) {
1606 indirect_child_t *ic = &is->is_child[c];
1607
1608 if (ic == is->is_good_child)
1609 continue;
1610 if (ic->ic_data == NULL)
1611 continue;
1612
1613 abd_zero(ic->ic_data, ic->ic_data->abd_size);
1614 }
1615
1616 iv->iv_attempts_max *= 2;
1617 if (iv->iv_attempts_max > (1ULL << 16)) {
1618 iv->iv_attempts_max = UINT64_MAX;
1619 break;
1620 }
1621 }
1622
1623 out:
1624 /* Empty the unique children lists so they can be reconstructed. */
1625 for (indirect_split_t *is = list_head(&iv->iv_splits);
1626 is != NULL; is = list_next(&iv->iv_splits, is)) {
1627 indirect_child_t *ic;
1628 while ((ic = list_head(&is->is_unique_child)) != NULL)
1629 list_remove(&is->is_unique_child, ic);
1630
1631 is->is_unique_children = 0;
1632 }
1633
1634 return (error);
1635 }
1636
1637 /*
1638 * This function is called when we have read all copies of the data and need
1639 * to try to find a combination of copies that gives us the right checksum.
1640 *
1641 * If we pointed to any mirror vdevs, this effectively does the job of the
1642 * mirror. The mirror vdev code can't do its own job because we don't know
1643 * the checksum of each split segment individually.
1644 *
1645 * We have to try every unique combination of copies of split segments, until
1646 * we find one that checksums correctly. Duplicate segment copies are first
1647 * identified and latter skipped during reconstruction. This optimization
1648 * reduces the search space and ensures that of the remaining combinations
1649 * at most one is correct.
1650 *
1651 * When the total number of combinations is small they can all be checked.
1652 * For example, if we have 3 segments in the split, and each points to a
1653 * 2-way mirror with unique copies, we will have the following pieces of data:
1654 *
1655 * | mirror child
1656 * split | [0] [1]
1657 * ======|=====================
1658 * A | data_A_0 data_A_1
1659 * B | data_B_0 data_B_1
1660 * C | data_C_0 data_C_1
1661 *
1662 * We will try the following (mirror children)^(number of splits) (2^3=8)
1663 * combinations, which is similar to bitwise-little-endian counting in
1664 * binary. In general each "digit" corresponds to a split segment, and the
1665 * base of each digit is is_children, which can be different for each
1666 * digit.
1667 *
1668 * "low bit" "high bit"
1669 * v v
1670 * data_A_0 data_B_0 data_C_0
1671 * data_A_1 data_B_0 data_C_0
1672 * data_A_0 data_B_1 data_C_0
1673 * data_A_1 data_B_1 data_C_0
1674 * data_A_0 data_B_0 data_C_1
1675 * data_A_1 data_B_0 data_C_1
1676 * data_A_0 data_B_1 data_C_1
1677 * data_A_1 data_B_1 data_C_1
1678 *
1679 * Note that the split segments may be on the same or different top-level
1680 * vdevs. In either case, we may need to try lots of combinations (see
1681 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror
1682 * has small silent errors on all of its children, we can still reconstruct
1683 * the correct data, as long as those errors are at sufficiently-separated
1684 * offsets (specifically, separated by the largest block size - default of
1685 * 128KB, but up to 16MB).
1686 */
1687 static void
vdev_indirect_reconstruct_io_done(zio_t * zio)1688 vdev_indirect_reconstruct_io_done(zio_t *zio)
1689 {
1690 indirect_vsd_t *iv = zio->io_vsd;
1691 boolean_t known_good = B_FALSE;
1692 int error;
1693
1694 iv->iv_unique_combinations = 1;
1695 iv->iv_attempts_max = UINT64_MAX;
1696
1697 if (zfs_reconstruct_indirect_combinations_max > 0)
1698 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1699
1700 /*
1701 * If nonzero, every 1/x blocks will be damaged, in order to validate
1702 * reconstruction when there are split segments with damaged copies.
1703 * Known_good will TRUE when reconstruction is known to be possible.
1704 */
1705 if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1706 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1707 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1708
1709 /*
1710 * Determine the unique children for a split segment and add them
1711 * to the is_unique_child list. By restricting reconstruction
1712 * to these children, only unique combinations will be considered.
1713 * This can vastly reduce the search space when there are a large
1714 * number of indirect splits.
1715 */
1716 for (indirect_split_t *is = list_head(&iv->iv_splits);
1717 is != NULL; is = list_next(&iv->iv_splits, is)) {
1718 is->is_unique_children = 0;
1719
1720 for (int i = 0; i < is->is_children; i++) {
1721 indirect_child_t *ic_i = &is->is_child[i];
1722
1723 if (ic_i->ic_data == NULL ||
1724 ic_i->ic_duplicate != NULL)
1725 continue;
1726
1727 for (int j = i + 1; j < is->is_children; j++) {
1728 indirect_child_t *ic_j = &is->is_child[j];
1729
1730 if (ic_j->ic_data == NULL ||
1731 ic_j->ic_duplicate != NULL)
1732 continue;
1733
1734 if (abd_cmp(ic_i->ic_data, ic_j->ic_data,
1735 is->is_size) == 0) {
1736 ic_j->ic_duplicate = ic_i;
1737 }
1738 }
1739
1740 is->is_unique_children++;
1741 list_insert_tail(&is->is_unique_child, ic_i);
1742 }
1743
1744 /* Reconstruction is impossible, no valid children */
1745 EQUIV(list_is_empty(&is->is_unique_child),
1746 is->is_unique_children == 0);
1747 if (list_is_empty(&is->is_unique_child)) {
1748 zio->io_error = EIO;
1749 vdev_indirect_all_checksum_errors(zio);
1750 zio_checksum_verified(zio);
1751 return;
1752 }
1753
1754 iv->iv_unique_combinations *= is->is_unique_children;
1755 }
1756
1757 if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1758 error = vdev_indirect_splits_enumerate_all(iv, zio);
1759 else
1760 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1761
1762 if (error != 0) {
1763 /* All attempted combinations failed. */
1764 ASSERT3B(known_good, ==, B_FALSE);
1765 zio->io_error = error;
1766 vdev_indirect_all_checksum_errors(zio);
1767 } else {
1768 /*
1769 * The checksum has been successfully validated. Issue
1770 * repair I/Os to any copies of splits which don't match
1771 * the validated version.
1772 */
1773 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1774 vdev_indirect_repair(zio);
1775 zio_checksum_verified(zio);
1776 }
1777 }
1778
1779 static void
vdev_indirect_io_done(zio_t * zio)1780 vdev_indirect_io_done(zio_t *zio)
1781 {
1782 indirect_vsd_t *iv = zio->io_vsd;
1783
1784 if (iv->iv_reconstruct) {
1785 /*
1786 * We have read all copies of the data (e.g. from mirrors),
1787 * either because this was a scrub/resilver, or because the
1788 * one-copy read didn't checksum correctly.
1789 */
1790 vdev_indirect_reconstruct_io_done(zio);
1791 return;
1792 }
1793
1794 if (!iv->iv_split_block) {
1795 /*
1796 * This was not a split block, so we passed the BP down,
1797 * and the checksum was handled by the (one) child zio.
1798 */
1799 return;
1800 }
1801
1802 zio_bad_cksum_t zbc;
1803 int ret = zio_checksum_error(zio, &zbc);
1804 if (ret == 0) {
1805 zio_checksum_verified(zio);
1806 return;
1807 }
1808
1809 /*
1810 * The checksum didn't match. Read all copies of all splits, and
1811 * then we will try to reconstruct. The next time
1812 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1813 */
1814 vdev_indirect_read_all(zio);
1815
1816 zio_vdev_io_redone(zio);
1817 }
1818
1819 vdev_ops_t vdev_indirect_ops = {
1820 .vdev_op_open = vdev_indirect_open,
1821 .vdev_op_close = vdev_indirect_close,
1822 .vdev_op_asize = vdev_default_asize,
1823 .vdev_op_io_start = vdev_indirect_io_start,
1824 .vdev_op_io_done = vdev_indirect_io_done,
1825 .vdev_op_state_change = NULL,
1826 .vdev_op_need_resilver = NULL,
1827 .vdev_op_hold = NULL,
1828 .vdev_op_rele = NULL,
1829 .vdev_op_remap = vdev_indirect_remap,
1830 .vdev_op_xlate = NULL,
1831 .vdev_op_dumpio = NULL,
1832 .vdev_op_type = VDEV_TYPE_INDIRECT, /* name of this vdev type */
1833 .vdev_op_leaf = B_FALSE /* leaf vdev */
1834 };
1835