xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 3a8960711f4319f9b894ea2453c89065ee1b3a10)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Datto Inc. All rights reserved.
32  * Copyright (c) 2021, Klara Inc.
33  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66 
67 /*
68  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
69  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70  * part of the spa_embedded_log_class.  The metaslab with the most free space
71  * in each vdev is selected for this purpose when the pool is opened (or a
72  * vdev is added).  See vdev_metaslab_init().
73  *
74  * Log blocks can be allocated from the following locations.  Each one is tried
75  * in order until the allocation succeeds:
76  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77  * 2. embedded slog metaslabs (spa_embedded_log_class)
78  * 3. other metaslabs in normal vdevs (spa_normal_class)
79  *
80  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81  * than this number of metaslabs in the vdev.  This ensures that we don't set
82  * aside an unreasonable amount of space for the ZIL.  If set to less than
83  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85  */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87 
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90 
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93 
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96 
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99 
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102 
103 int vdev_validate_skip = B_FALSE;
104 
105 /*
106  * Since the DTL space map of a vdev is not expected to have a lot of
107  * entries, we default its block size to 4K.
108  */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110 
111 /*
112  * Rate limit slow IO (delay) events to this many per second.
113  */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115 
116 /*
117  * Rate limit deadman "hung IO" events to this many per second.
118  */
119 static unsigned int zfs_deadman_events_per_second = 1;
120 
121 /*
122  * Rate limit direct write IO verify failures to this many per scond.
123  */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125 
126 /*
127  * Rate limit checksum events after this many checksum errors per second.
128  */
129 static unsigned int zfs_checksum_events_per_second = 20;
130 
131 /*
132  * Ignore errors during scrub/resilver.  Allows to work around resilver
133  * upon import when there are pool errors.
134  */
135 static int zfs_scan_ignore_errors = 0;
136 
137 /*
138  * vdev-wide space maps that have lots of entries written to them at
139  * the end of each transaction can benefit from a higher I/O bandwidth
140  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141  */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143 
144 /*
145  * Tunable parameter for debugging or performance analysis. Setting this
146  * will cause pool corruption on power loss if a volatile out-of-order
147  * write cache is enabled.
148  */
149 int zfs_nocacheflush = 0;
150 
151 /*
152  * Maximum and minimum ashift values that can be automatically set based on
153  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
154  * is higher than the maximum value, it is intentionally limited here to not
155  * excessively impact pool space efficiency.  Higher ashift values may still
156  * be forced by vdev logical ashift or by user via ashift property, but won't
157  * be set automatically as a performance optimization.
158  */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161 
162 /*
163  * VDEV checksum verification for Direct I/O writes. This is neccessary for
164  * Linux, because anonymous pages can not be placed under write protection
165  * during Direct I/O writes.
166  */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172 
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 	va_list adx;
177 	char buf[256];
178 
179 	va_start(adx, fmt);
180 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 	va_end(adx);
182 
183 	if (vd->vdev_path != NULL) {
184 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 		    vd->vdev_path, buf);
186 	} else {
187 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 		    vd->vdev_ops->vdev_op_type,
189 		    (u_longlong_t)vd->vdev_id,
190 		    (u_longlong_t)vd->vdev_guid, buf);
191 	}
192 }
193 
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 	char state[20];
198 
199 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 		    (u_longlong_t)vd->vdev_id,
202 		    vd->vdev_ops->vdev_op_type);
203 		return;
204 	}
205 
206 	switch (vd->vdev_state) {
207 	case VDEV_STATE_UNKNOWN:
208 		(void) snprintf(state, sizeof (state), "unknown");
209 		break;
210 	case VDEV_STATE_CLOSED:
211 		(void) snprintf(state, sizeof (state), "closed");
212 		break;
213 	case VDEV_STATE_OFFLINE:
214 		(void) snprintf(state, sizeof (state), "offline");
215 		break;
216 	case VDEV_STATE_REMOVED:
217 		(void) snprintf(state, sizeof (state), "removed");
218 		break;
219 	case VDEV_STATE_CANT_OPEN:
220 		(void) snprintf(state, sizeof (state), "can't open");
221 		break;
222 	case VDEV_STATE_FAULTED:
223 		(void) snprintf(state, sizeof (state), "faulted");
224 		break;
225 	case VDEV_STATE_DEGRADED:
226 		(void) snprintf(state, sizeof (state), "degraded");
227 		break;
228 	case VDEV_STATE_HEALTHY:
229 		(void) snprintf(state, sizeof (state), "healthy");
230 		break;
231 	default:
232 		(void) snprintf(state, sizeof (state), "<state %u>",
233 		    (uint_t)vd->vdev_state);
234 	}
235 
236 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 	    vd->vdev_islog ? " (log)" : "",
239 	    (u_longlong_t)vd->vdev_guid,
240 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
241 
242 	for (uint64_t i = 0; i < vd->vdev_children; i++)
243 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245 
246 /*
247  * Virtual device management.
248  */
249 
250 static vdev_ops_t *const vdev_ops_table[] = {
251 	&vdev_root_ops,
252 	&vdev_raidz_ops,
253 	&vdev_draid_ops,
254 	&vdev_draid_spare_ops,
255 	&vdev_mirror_ops,
256 	&vdev_replacing_ops,
257 	&vdev_spare_ops,
258 	&vdev_disk_ops,
259 	&vdev_file_ops,
260 	&vdev_missing_ops,
261 	&vdev_hole_ops,
262 	&vdev_indirect_ops,
263 	NULL
264 };
265 
266 /*
267  * Given a vdev type, return the appropriate ops vector.
268  */
269 static vdev_ops_t *
vdev_getops(const char * type)270 vdev_getops(const char *type)
271 {
272 	vdev_ops_t *ops, *const *opspp;
273 
274 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
275 		if (strcmp(ops->vdev_op_type, type) == 0)
276 			break;
277 
278 	return (ops);
279 }
280 
281 /*
282  * Given a vdev and a metaslab class, find which metaslab group we're
283  * interested in. All vdevs may belong to two different metaslab classes.
284  * Dedicated slog devices use only the primary metaslab group, rather than a
285  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
286  */
287 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
289 {
290 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
291 	    vd->vdev_log_mg != NULL)
292 		return (vd->vdev_log_mg);
293 	else
294 		return (vd->vdev_mg);
295 }
296 
297 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
299     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
300 {
301 	(void) vd, (void) remain_rs;
302 
303 	physical_rs->rs_start = logical_rs->rs_start;
304 	physical_rs->rs_end = logical_rs->rs_end;
305 }
306 
307 /*
308  * Derive the enumerated allocation bias from string input.
309  * String origin is either the per-vdev zap or zpool(8).
310  */
311 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)312 vdev_derive_alloc_bias(const char *bias)
313 {
314 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
315 
316 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
317 		alloc_bias = VDEV_BIAS_LOG;
318 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
319 		alloc_bias = VDEV_BIAS_SPECIAL;
320 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
321 		alloc_bias = VDEV_BIAS_DEDUP;
322 
323 	return (alloc_bias);
324 }
325 
326 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)327 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
328 {
329 	ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
330 	uint64_t csize, psize = asize;
331 	for (int c = 0; c < vd->vdev_children; c++) {
332 		csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
333 		psize = MIN(psize, csize);
334 	}
335 
336 	return (psize);
337 }
338 
339 /*
340  * Default asize function: return the MAX of psize with the asize of
341  * all children.  This is what's used by anything other than RAID-Z.
342  */
343 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)344 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
345 {
346 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
347 	uint64_t csize;
348 
349 	for (int c = 0; c < vd->vdev_children; c++) {
350 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
351 		asize = MAX(asize, csize);
352 	}
353 
354 	return (asize);
355 }
356 
357 uint64_t
vdev_default_min_asize(vdev_t * vd)358 vdev_default_min_asize(vdev_t *vd)
359 {
360 	return (vd->vdev_min_asize);
361 }
362 
363 /*
364  * Get the minimum allocatable size. We define the allocatable size as
365  * the vdev's asize rounded to the nearest metaslab. This allows us to
366  * replace or attach devices which don't have the same physical size but
367  * can still satisfy the same number of allocations.
368  */
369 uint64_t
vdev_get_min_asize(vdev_t * vd)370 vdev_get_min_asize(vdev_t *vd)
371 {
372 	vdev_t *pvd = vd->vdev_parent;
373 
374 	/*
375 	 * If our parent is NULL (inactive spare or cache) or is the root,
376 	 * just return our own asize.
377 	 */
378 	if (pvd == NULL)
379 		return (vd->vdev_asize);
380 
381 	/*
382 	 * The top-level vdev just returns the allocatable size rounded
383 	 * to the nearest metaslab.
384 	 */
385 	if (vd == vd->vdev_top)
386 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
387 		    uint64_t));
388 
389 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
390 }
391 
392 void
vdev_set_min_asize(vdev_t * vd)393 vdev_set_min_asize(vdev_t *vd)
394 {
395 	vd->vdev_min_asize = vdev_get_min_asize(vd);
396 
397 	for (int c = 0; c < vd->vdev_children; c++)
398 		vdev_set_min_asize(vd->vdev_child[c]);
399 }
400 
401 /*
402  * Get the minimal allocation size for the top-level vdev.
403  */
404 uint64_t
vdev_get_min_alloc(vdev_t * vd)405 vdev_get_min_alloc(vdev_t *vd)
406 {
407 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
408 
409 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
410 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
411 
412 	return (min_alloc);
413 }
414 
415 /*
416  * Get the parity level for a top-level vdev.
417  */
418 uint64_t
vdev_get_nparity(vdev_t * vd)419 vdev_get_nparity(vdev_t *vd)
420 {
421 	uint64_t nparity = 0;
422 
423 	if (vd->vdev_ops->vdev_op_nparity != NULL)
424 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
425 
426 	return (nparity);
427 }
428 
429 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)430 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
431 {
432 	spa_t *spa = vd->vdev_spa;
433 	objset_t *mos = spa->spa_meta_objset;
434 	uint64_t objid;
435 	int err;
436 
437 	if (vd->vdev_root_zap != 0) {
438 		objid = vd->vdev_root_zap;
439 	} else if (vd->vdev_top_zap != 0) {
440 		objid = vd->vdev_top_zap;
441 	} else if (vd->vdev_leaf_zap != 0) {
442 		objid = vd->vdev_leaf_zap;
443 	} else {
444 		return (EINVAL);
445 	}
446 
447 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
448 	    sizeof (uint64_t), 1, value);
449 
450 	if (err == ENOENT)
451 		*value = vdev_prop_default_numeric(prop);
452 
453 	return (err);
454 }
455 
456 /*
457  * Get the number of data disks for a top-level vdev.
458  */
459 uint64_t
vdev_get_ndisks(vdev_t * vd)460 vdev_get_ndisks(vdev_t *vd)
461 {
462 	uint64_t ndisks = 1;
463 
464 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
465 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
466 
467 	return (ndisks);
468 }
469 
470 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)471 vdev_lookup_top(spa_t *spa, uint64_t vdev)
472 {
473 	vdev_t *rvd = spa->spa_root_vdev;
474 
475 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
476 
477 	if (vdev < rvd->vdev_children) {
478 		ASSERT(rvd->vdev_child[vdev] != NULL);
479 		return (rvd->vdev_child[vdev]);
480 	}
481 
482 	return (NULL);
483 }
484 
485 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)486 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
487 {
488 	vdev_t *mvd;
489 
490 	if (vd->vdev_guid == guid)
491 		return (vd);
492 
493 	for (int c = 0; c < vd->vdev_children; c++)
494 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
495 		    NULL)
496 			return (mvd);
497 
498 	return (NULL);
499 }
500 
501 static int
vdev_count_leaves_impl(vdev_t * vd)502 vdev_count_leaves_impl(vdev_t *vd)
503 {
504 	int n = 0;
505 
506 	if (vd->vdev_ops->vdev_op_leaf)
507 		return (1);
508 
509 	for (int c = 0; c < vd->vdev_children; c++)
510 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
511 
512 	return (n);
513 }
514 
515 int
vdev_count_leaves(spa_t * spa)516 vdev_count_leaves(spa_t *spa)
517 {
518 	int rc;
519 
520 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
521 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
522 	spa_config_exit(spa, SCL_VDEV, FTAG);
523 
524 	return (rc);
525 }
526 
527 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)528 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
529 {
530 	size_t oldsize, newsize;
531 	uint64_t id = cvd->vdev_id;
532 	vdev_t **newchild;
533 
534 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
535 	ASSERT(cvd->vdev_parent == NULL);
536 
537 	cvd->vdev_parent = pvd;
538 
539 	if (pvd == NULL)
540 		return;
541 
542 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
543 
544 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
545 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
546 	newsize = pvd->vdev_children * sizeof (vdev_t *);
547 
548 	newchild = kmem_alloc(newsize, KM_SLEEP);
549 	if (pvd->vdev_child != NULL) {
550 		memcpy(newchild, pvd->vdev_child, oldsize);
551 		kmem_free(pvd->vdev_child, oldsize);
552 	}
553 
554 	pvd->vdev_child = newchild;
555 	pvd->vdev_child[id] = cvd;
556 	pvd->vdev_nonrot &= cvd->vdev_nonrot;
557 
558 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
559 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
560 
561 	/*
562 	 * Walk up all ancestors to update guid sum.
563 	 */
564 	for (; pvd != NULL; pvd = pvd->vdev_parent)
565 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
566 
567 	if (cvd->vdev_ops->vdev_op_leaf) {
568 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
569 		cvd->vdev_spa->spa_leaf_list_gen++;
570 	}
571 }
572 
573 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)574 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
575 {
576 	int c;
577 	uint_t id = cvd->vdev_id;
578 
579 	ASSERT(cvd->vdev_parent == pvd);
580 
581 	if (pvd == NULL)
582 		return;
583 
584 	ASSERT(id < pvd->vdev_children);
585 	ASSERT(pvd->vdev_child[id] == cvd);
586 
587 	pvd->vdev_child[id] = NULL;
588 	cvd->vdev_parent = NULL;
589 
590 	for (c = 0; c < pvd->vdev_children; c++)
591 		if (pvd->vdev_child[c])
592 			break;
593 
594 	if (c == pvd->vdev_children) {
595 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
596 		pvd->vdev_child = NULL;
597 		pvd->vdev_children = 0;
598 	}
599 
600 	if (cvd->vdev_ops->vdev_op_leaf) {
601 		spa_t *spa = cvd->vdev_spa;
602 		list_remove(&spa->spa_leaf_list, cvd);
603 		spa->spa_leaf_list_gen++;
604 	}
605 
606 	/*
607 	 * Walk up all ancestors to update guid sum.
608 	 */
609 	for (; pvd != NULL; pvd = pvd->vdev_parent)
610 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
611 }
612 
613 /*
614  * Remove any holes in the child array.
615  */
616 void
vdev_compact_children(vdev_t * pvd)617 vdev_compact_children(vdev_t *pvd)
618 {
619 	vdev_t **newchild, *cvd;
620 	int oldc = pvd->vdev_children;
621 	int newc;
622 
623 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
624 
625 	if (oldc == 0)
626 		return;
627 
628 	for (int c = newc = 0; c < oldc; c++)
629 		if (pvd->vdev_child[c])
630 			newc++;
631 
632 	if (newc > 0) {
633 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
634 
635 		for (int c = newc = 0; c < oldc; c++) {
636 			if ((cvd = pvd->vdev_child[c]) != NULL) {
637 				newchild[newc] = cvd;
638 				cvd->vdev_id = newc++;
639 			}
640 		}
641 	} else {
642 		newchild = NULL;
643 	}
644 
645 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
646 	pvd->vdev_child = newchild;
647 	pvd->vdev_children = newc;
648 }
649 
650 /*
651  * Allocate and minimally initialize a vdev_t.
652  */
653 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)654 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
655 {
656 	vdev_t *vd;
657 	vdev_indirect_config_t *vic;
658 
659 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
660 	vic = &vd->vdev_indirect_config;
661 
662 	if (spa->spa_root_vdev == NULL) {
663 		ASSERT(ops == &vdev_root_ops);
664 		spa->spa_root_vdev = vd;
665 		spa->spa_load_guid = spa_generate_load_guid();
666 	}
667 
668 	if (guid == 0 && ops != &vdev_hole_ops) {
669 		if (spa->spa_root_vdev == vd) {
670 			/*
671 			 * The root vdev's guid will also be the pool guid,
672 			 * which must be unique among all pools.
673 			 */
674 			guid = spa_generate_guid(NULL);
675 		} else {
676 			/*
677 			 * Any other vdev's guid must be unique within the pool.
678 			 */
679 			guid = spa_generate_guid(spa);
680 		}
681 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
682 	}
683 
684 	vd->vdev_spa = spa;
685 	vd->vdev_id = id;
686 	vd->vdev_guid = guid;
687 	vd->vdev_guid_sum = guid;
688 	vd->vdev_ops = ops;
689 	vd->vdev_state = VDEV_STATE_CLOSED;
690 	vd->vdev_ishole = (ops == &vdev_hole_ops);
691 	vic->vic_prev_indirect_vdev = UINT64_MAX;
692 
693 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
694 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
695 	vd->vdev_obsolete_segments = zfs_range_tree_create(NULL,
696 	    ZFS_RANGE_SEG64, NULL, 0, 0);
697 
698 	/*
699 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
700 	 * and checksum events so that we don't overwhelm ZED with thousands
701 	 * of events when a disk is acting up.
702 	 */
703 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
704 	    1);
705 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
706 	    1);
707 	zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
708 	    &zfs_dio_write_verify_events_per_second, 1);
709 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
710 	    &zfs_checksum_events_per_second, 1);
711 
712 	/*
713 	 * Default Thresholds for tuning ZED
714 	 */
715 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
716 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
717 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
718 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
719 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
720 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
721 
722 	list_link_init(&vd->vdev_config_dirty_node);
723 	list_link_init(&vd->vdev_state_dirty_node);
724 	list_link_init(&vd->vdev_initialize_node);
725 	list_link_init(&vd->vdev_leaf_node);
726 	list_link_init(&vd->vdev_trim_node);
727 
728 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
729 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
730 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
731 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
732 
733 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
734 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
735 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
736 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
737 
738 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
739 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
740 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
741 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
742 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
743 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
744 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
745 
746 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
747 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
748 
749 	for (int t = 0; t < DTL_TYPES; t++) {
750 		vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
751 		    NULL, 0, 0);
752 	}
753 
754 	txg_list_create(&vd->vdev_ms_list, spa,
755 	    offsetof(struct metaslab, ms_txg_node));
756 	txg_list_create(&vd->vdev_dtl_list, spa,
757 	    offsetof(struct vdev, vdev_dtl_node));
758 	vd->vdev_stat.vs_timestamp = gethrtime();
759 	vdev_queue_init(vd);
760 
761 	return (vd);
762 }
763 
764 /*
765  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
766  * creating a new vdev or loading an existing one - the behavior is slightly
767  * different for each case.
768  */
769 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)770 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
771     int alloctype)
772 {
773 	vdev_ops_t *ops;
774 	const char *type;
775 	uint64_t guid = 0, islog;
776 	vdev_t *vd;
777 	vdev_indirect_config_t *vic;
778 	const char *tmp = NULL;
779 	int rc;
780 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
781 	boolean_t top_level = (parent && !parent->vdev_parent);
782 
783 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
784 
785 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
786 		return (SET_ERROR(EINVAL));
787 
788 	if ((ops = vdev_getops(type)) == NULL)
789 		return (SET_ERROR(EINVAL));
790 
791 	/*
792 	 * If this is a load, get the vdev guid from the nvlist.
793 	 * Otherwise, vdev_alloc_common() will generate one for us.
794 	 */
795 	if (alloctype == VDEV_ALLOC_LOAD) {
796 		uint64_t label_id;
797 
798 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
799 		    label_id != id)
800 			return (SET_ERROR(EINVAL));
801 
802 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
803 			return (SET_ERROR(EINVAL));
804 	} else if (alloctype == VDEV_ALLOC_SPARE) {
805 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
806 			return (SET_ERROR(EINVAL));
807 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
808 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
809 			return (SET_ERROR(EINVAL));
810 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
811 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
812 			return (SET_ERROR(EINVAL));
813 	}
814 
815 	/*
816 	 * The first allocated vdev must be of type 'root'.
817 	 */
818 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
819 		return (SET_ERROR(EINVAL));
820 
821 	/*
822 	 * Determine whether we're a log vdev.
823 	 */
824 	islog = 0;
825 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
826 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
827 		return (SET_ERROR(ENOTSUP));
828 
829 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
830 		return (SET_ERROR(ENOTSUP));
831 
832 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
833 		const char *bias;
834 
835 		/*
836 		 * If creating a top-level vdev, check for allocation
837 		 * classes input.
838 		 */
839 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
840 		    &bias) == 0) {
841 			alloc_bias = vdev_derive_alloc_bias(bias);
842 
843 			/* spa_vdev_add() expects feature to be enabled */
844 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
845 			    !spa_feature_is_enabled(spa,
846 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
847 				return (SET_ERROR(ENOTSUP));
848 			}
849 		}
850 
851 		/* spa_vdev_add() expects feature to be enabled */
852 		if (ops == &vdev_draid_ops &&
853 		    spa->spa_load_state != SPA_LOAD_CREATE &&
854 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
855 			return (SET_ERROR(ENOTSUP));
856 		}
857 	}
858 
859 	/*
860 	 * Initialize the vdev specific data.  This is done before calling
861 	 * vdev_alloc_common() since it may fail and this simplifies the
862 	 * error reporting and cleanup code paths.
863 	 */
864 	void *tsd = NULL;
865 	if (ops->vdev_op_init != NULL) {
866 		rc = ops->vdev_op_init(spa, nv, &tsd);
867 		if (rc != 0) {
868 			return (rc);
869 		}
870 	}
871 
872 	vd = vdev_alloc_common(spa, id, guid, ops);
873 	vd->vdev_tsd = tsd;
874 	vd->vdev_islog = islog;
875 
876 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
877 		vd->vdev_alloc_bias = alloc_bias;
878 
879 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
880 		vd->vdev_path = spa_strdup(tmp);
881 
882 	/*
883 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
884 	 * fault on a vdev and want it to persist across imports (like with
885 	 * zpool offline -f).
886 	 */
887 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
888 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
889 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
890 		vd->vdev_faulted = 1;
891 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
892 	}
893 
894 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
895 		vd->vdev_devid = spa_strdup(tmp);
896 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
897 		vd->vdev_physpath = spa_strdup(tmp);
898 
899 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
900 	    &tmp) == 0)
901 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
902 
903 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
904 		vd->vdev_fru = spa_strdup(tmp);
905 
906 	/*
907 	 * Set the whole_disk property.  If it's not specified, leave the value
908 	 * as -1.
909 	 */
910 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
911 	    &vd->vdev_wholedisk) != 0)
912 		vd->vdev_wholedisk = -1ULL;
913 
914 	vic = &vd->vdev_indirect_config;
915 
916 	ASSERT0(vic->vic_mapping_object);
917 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
918 	    &vic->vic_mapping_object);
919 	ASSERT0(vic->vic_births_object);
920 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
921 	    &vic->vic_births_object);
922 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
923 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
924 	    &vic->vic_prev_indirect_vdev);
925 
926 	/*
927 	 * Look for the 'not present' flag.  This will only be set if the device
928 	 * was not present at the time of import.
929 	 */
930 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
931 	    &vd->vdev_not_present);
932 
933 	/*
934 	 * Get the alignment requirement. Ignore pool ashift for vdev
935 	 * attach case.
936 	 */
937 	if (alloctype != VDEV_ALLOC_ATTACH) {
938 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
939 		    &vd->vdev_ashift);
940 	} else {
941 		vd->vdev_attaching = B_TRUE;
942 	}
943 
944 	/*
945 	 * Retrieve the vdev creation time.
946 	 */
947 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
948 	    &vd->vdev_crtxg);
949 
950 	if (vd->vdev_ops == &vdev_root_ops &&
951 	    (alloctype == VDEV_ALLOC_LOAD ||
952 	    alloctype == VDEV_ALLOC_SPLIT ||
953 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
954 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
955 		    &vd->vdev_root_zap);
956 	}
957 
958 	/*
959 	 * If we're a top-level vdev, try to load the allocation parameters.
960 	 */
961 	if (top_level &&
962 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
963 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
964 		    &vd->vdev_ms_array);
965 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
966 		    &vd->vdev_ms_shift);
967 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
968 		    &vd->vdev_asize);
969 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
970 		    &vd->vdev_noalloc);
971 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
972 		    &vd->vdev_removing);
973 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
974 		    &vd->vdev_top_zap);
975 		vd->vdev_rz_expanding = nvlist_exists(nv,
976 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
977 	} else {
978 		ASSERT0(vd->vdev_top_zap);
979 	}
980 
981 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
982 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
983 		    alloctype == VDEV_ALLOC_ADD ||
984 		    alloctype == VDEV_ALLOC_SPLIT ||
985 		    alloctype == VDEV_ALLOC_ROOTPOOL);
986 		/* Note: metaslab_group_create() is now deferred */
987 	}
988 
989 	if (vd->vdev_ops->vdev_op_leaf &&
990 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
991 		(void) nvlist_lookup_uint64(nv,
992 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
993 	} else {
994 		ASSERT0(vd->vdev_leaf_zap);
995 	}
996 
997 	/*
998 	 * If we're a leaf vdev, try to load the DTL object and other state.
999 	 */
1000 
1001 	if (vd->vdev_ops->vdev_op_leaf &&
1002 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1003 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
1004 		if (alloctype == VDEV_ALLOC_LOAD) {
1005 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1006 			    &vd->vdev_dtl_object);
1007 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1008 			    &vd->vdev_unspare);
1009 		}
1010 
1011 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1012 			uint64_t spare = 0;
1013 
1014 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1015 			    &spare) == 0 && spare)
1016 				spa_spare_add(vd);
1017 		}
1018 
1019 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1020 		    &vd->vdev_offline);
1021 
1022 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1023 		    &vd->vdev_resilver_txg);
1024 
1025 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1026 		    &vd->vdev_rebuild_txg);
1027 
1028 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1029 			vdev_defer_resilver(vd);
1030 
1031 		/*
1032 		 * In general, when importing a pool we want to ignore the
1033 		 * persistent fault state, as the diagnosis made on another
1034 		 * system may not be valid in the current context.  The only
1035 		 * exception is if we forced a vdev to a persistently faulted
1036 		 * state with 'zpool offline -f'.  The persistent fault will
1037 		 * remain across imports until cleared.
1038 		 *
1039 		 * Local vdevs will remain in the faulted state.
1040 		 */
1041 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1042 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1043 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1044 			    &vd->vdev_faulted);
1045 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1046 			    &vd->vdev_degraded);
1047 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1048 			    &vd->vdev_removed);
1049 
1050 			if (vd->vdev_faulted || vd->vdev_degraded) {
1051 				const char *aux;
1052 
1053 				vd->vdev_label_aux =
1054 				    VDEV_AUX_ERR_EXCEEDED;
1055 				if (nvlist_lookup_string(nv,
1056 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1057 				    strcmp(aux, "external") == 0)
1058 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1059 				else
1060 					vd->vdev_faulted = 0ULL;
1061 			}
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * Add ourselves to the parent's list of children.
1067 	 */
1068 	vdev_add_child(parent, vd);
1069 
1070 	*vdp = vd;
1071 
1072 	return (0);
1073 }
1074 
1075 void
vdev_free(vdev_t * vd)1076 vdev_free(vdev_t *vd)
1077 {
1078 	spa_t *spa = vd->vdev_spa;
1079 
1080 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1081 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1082 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1083 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1084 
1085 	/*
1086 	 * Scan queues are normally destroyed at the end of a scan. If the
1087 	 * queue exists here, that implies the vdev is being removed while
1088 	 * the scan is still running.
1089 	 */
1090 	if (vd->vdev_scan_io_queue != NULL) {
1091 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1092 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1093 		vd->vdev_scan_io_queue = NULL;
1094 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1095 	}
1096 
1097 	/*
1098 	 * vdev_free() implies closing the vdev first.  This is simpler than
1099 	 * trying to ensure complicated semantics for all callers.
1100 	 */
1101 	vdev_close(vd);
1102 
1103 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1104 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1105 
1106 	/*
1107 	 * Free all children.
1108 	 */
1109 	for (int c = 0; c < vd->vdev_children; c++)
1110 		vdev_free(vd->vdev_child[c]);
1111 
1112 	ASSERT(vd->vdev_child == NULL);
1113 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1114 
1115 	if (vd->vdev_ops->vdev_op_fini != NULL)
1116 		vd->vdev_ops->vdev_op_fini(vd);
1117 
1118 	/*
1119 	 * Discard allocation state.
1120 	 */
1121 	if (vd->vdev_mg != NULL) {
1122 		vdev_metaslab_fini(vd);
1123 		metaslab_group_destroy(vd->vdev_mg);
1124 		vd->vdev_mg = NULL;
1125 	}
1126 	if (vd->vdev_log_mg != NULL) {
1127 		ASSERT0(vd->vdev_ms_count);
1128 		metaslab_group_destroy(vd->vdev_log_mg);
1129 		vd->vdev_log_mg = NULL;
1130 	}
1131 
1132 	ASSERT0(vd->vdev_stat.vs_space);
1133 	ASSERT0(vd->vdev_stat.vs_dspace);
1134 	ASSERT0(vd->vdev_stat.vs_alloc);
1135 
1136 	/*
1137 	 * Remove this vdev from its parent's child list.
1138 	 */
1139 	vdev_remove_child(vd->vdev_parent, vd);
1140 
1141 	ASSERT(vd->vdev_parent == NULL);
1142 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1143 
1144 	/*
1145 	 * Clean up vdev structure.
1146 	 */
1147 	vdev_queue_fini(vd);
1148 
1149 	if (vd->vdev_path)
1150 		spa_strfree(vd->vdev_path);
1151 	if (vd->vdev_devid)
1152 		spa_strfree(vd->vdev_devid);
1153 	if (vd->vdev_physpath)
1154 		spa_strfree(vd->vdev_physpath);
1155 
1156 	if (vd->vdev_enc_sysfs_path)
1157 		spa_strfree(vd->vdev_enc_sysfs_path);
1158 
1159 	if (vd->vdev_fru)
1160 		spa_strfree(vd->vdev_fru);
1161 
1162 	if (vd->vdev_isspare)
1163 		spa_spare_remove(vd);
1164 	if (vd->vdev_isl2cache)
1165 		spa_l2cache_remove(vd);
1166 
1167 	txg_list_destroy(&vd->vdev_ms_list);
1168 	txg_list_destroy(&vd->vdev_dtl_list);
1169 
1170 	mutex_enter(&vd->vdev_dtl_lock);
1171 	space_map_close(vd->vdev_dtl_sm);
1172 	for (int t = 0; t < DTL_TYPES; t++) {
1173 		zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1174 		zfs_range_tree_destroy(vd->vdev_dtl[t]);
1175 	}
1176 	mutex_exit(&vd->vdev_dtl_lock);
1177 
1178 	EQUIV(vd->vdev_indirect_births != NULL,
1179 	    vd->vdev_indirect_mapping != NULL);
1180 	if (vd->vdev_indirect_births != NULL) {
1181 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1182 		vdev_indirect_births_close(vd->vdev_indirect_births);
1183 	}
1184 
1185 	if (vd->vdev_obsolete_sm != NULL) {
1186 		ASSERT(vd->vdev_removing ||
1187 		    vd->vdev_ops == &vdev_indirect_ops);
1188 		space_map_close(vd->vdev_obsolete_sm);
1189 		vd->vdev_obsolete_sm = NULL;
1190 	}
1191 	zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1192 	rw_destroy(&vd->vdev_indirect_rwlock);
1193 	mutex_destroy(&vd->vdev_obsolete_lock);
1194 
1195 	mutex_destroy(&vd->vdev_dtl_lock);
1196 	mutex_destroy(&vd->vdev_stat_lock);
1197 	mutex_destroy(&vd->vdev_probe_lock);
1198 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1199 
1200 	mutex_destroy(&vd->vdev_initialize_lock);
1201 	mutex_destroy(&vd->vdev_initialize_io_lock);
1202 	cv_destroy(&vd->vdev_initialize_io_cv);
1203 	cv_destroy(&vd->vdev_initialize_cv);
1204 
1205 	mutex_destroy(&vd->vdev_trim_lock);
1206 	mutex_destroy(&vd->vdev_autotrim_lock);
1207 	mutex_destroy(&vd->vdev_trim_io_lock);
1208 	cv_destroy(&vd->vdev_trim_cv);
1209 	cv_destroy(&vd->vdev_autotrim_cv);
1210 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1211 	cv_destroy(&vd->vdev_trim_io_cv);
1212 
1213 	mutex_destroy(&vd->vdev_rebuild_lock);
1214 	cv_destroy(&vd->vdev_rebuild_cv);
1215 
1216 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1217 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1218 	zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1219 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1220 
1221 	if (vd == spa->spa_root_vdev)
1222 		spa->spa_root_vdev = NULL;
1223 
1224 	kmem_free(vd, sizeof (vdev_t));
1225 }
1226 
1227 /*
1228  * Transfer top-level vdev state from svd to tvd.
1229  */
1230 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1231 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1232 {
1233 	spa_t *spa = svd->vdev_spa;
1234 	metaslab_t *msp;
1235 	vdev_t *vd;
1236 	int t;
1237 
1238 	ASSERT(tvd == tvd->vdev_top);
1239 
1240 	tvd->vdev_ms_array = svd->vdev_ms_array;
1241 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1242 	tvd->vdev_ms_count = svd->vdev_ms_count;
1243 	tvd->vdev_top_zap = svd->vdev_top_zap;
1244 
1245 	svd->vdev_ms_array = 0;
1246 	svd->vdev_ms_shift = 0;
1247 	svd->vdev_ms_count = 0;
1248 	svd->vdev_top_zap = 0;
1249 
1250 	if (tvd->vdev_mg)
1251 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1252 	if (tvd->vdev_log_mg)
1253 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1254 	tvd->vdev_mg = svd->vdev_mg;
1255 	tvd->vdev_log_mg = svd->vdev_log_mg;
1256 	tvd->vdev_ms = svd->vdev_ms;
1257 
1258 	svd->vdev_mg = NULL;
1259 	svd->vdev_log_mg = NULL;
1260 	svd->vdev_ms = NULL;
1261 
1262 	if (tvd->vdev_mg != NULL)
1263 		tvd->vdev_mg->mg_vd = tvd;
1264 	if (tvd->vdev_log_mg != NULL)
1265 		tvd->vdev_log_mg->mg_vd = tvd;
1266 
1267 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1268 	svd->vdev_checkpoint_sm = NULL;
1269 
1270 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1271 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1272 
1273 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1274 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1275 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1276 
1277 	svd->vdev_stat.vs_alloc = 0;
1278 	svd->vdev_stat.vs_space = 0;
1279 	svd->vdev_stat.vs_dspace = 0;
1280 
1281 	/*
1282 	 * State which may be set on a top-level vdev that's in the
1283 	 * process of being removed.
1284 	 */
1285 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1286 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1287 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1288 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1289 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1290 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1291 	ASSERT0(tvd->vdev_noalloc);
1292 	ASSERT0(tvd->vdev_removing);
1293 	ASSERT0(tvd->vdev_rebuilding);
1294 	tvd->vdev_noalloc = svd->vdev_noalloc;
1295 	tvd->vdev_removing = svd->vdev_removing;
1296 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1297 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1298 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1299 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1300 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1301 	zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1302 	    &tvd->vdev_obsolete_segments);
1303 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1304 	svd->vdev_indirect_config.vic_mapping_object = 0;
1305 	svd->vdev_indirect_config.vic_births_object = 0;
1306 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1307 	svd->vdev_indirect_mapping = NULL;
1308 	svd->vdev_indirect_births = NULL;
1309 	svd->vdev_obsolete_sm = NULL;
1310 	svd->vdev_noalloc = 0;
1311 	svd->vdev_removing = 0;
1312 	svd->vdev_rebuilding = 0;
1313 
1314 	for (t = 0; t < TXG_SIZE; t++) {
1315 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1316 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1317 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1318 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1319 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1320 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1321 	}
1322 
1323 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1324 		vdev_config_clean(svd);
1325 		vdev_config_dirty(tvd);
1326 	}
1327 
1328 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1329 		vdev_state_clean(svd);
1330 		vdev_state_dirty(tvd);
1331 	}
1332 
1333 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1334 	svd->vdev_deflate_ratio = 0;
1335 
1336 	tvd->vdev_islog = svd->vdev_islog;
1337 	svd->vdev_islog = 0;
1338 
1339 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1340 }
1341 
1342 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1343 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1344 {
1345 	if (vd == NULL)
1346 		return;
1347 
1348 	vd->vdev_top = tvd;
1349 
1350 	for (int c = 0; c < vd->vdev_children; c++)
1351 		vdev_top_update(tvd, vd->vdev_child[c]);
1352 }
1353 
1354 /*
1355  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1356  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1357  */
1358 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1359 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1360 {
1361 	spa_t *spa = cvd->vdev_spa;
1362 	vdev_t *pvd = cvd->vdev_parent;
1363 	vdev_t *mvd;
1364 
1365 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1366 
1367 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1368 
1369 	mvd->vdev_asize = cvd->vdev_asize;
1370 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1371 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1372 	mvd->vdev_psize = cvd->vdev_psize;
1373 	mvd->vdev_ashift = cvd->vdev_ashift;
1374 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1375 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1376 	mvd->vdev_state = cvd->vdev_state;
1377 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1378 	mvd->vdev_nonrot = cvd->vdev_nonrot;
1379 
1380 	vdev_remove_child(pvd, cvd);
1381 	vdev_add_child(pvd, mvd);
1382 	cvd->vdev_id = mvd->vdev_children;
1383 	vdev_add_child(mvd, cvd);
1384 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1385 
1386 	if (mvd == mvd->vdev_top)
1387 		vdev_top_transfer(cvd, mvd);
1388 
1389 	return (mvd);
1390 }
1391 
1392 /*
1393  * Remove a 1-way mirror/replacing vdev from the tree.
1394  */
1395 void
vdev_remove_parent(vdev_t * cvd)1396 vdev_remove_parent(vdev_t *cvd)
1397 {
1398 	vdev_t *mvd = cvd->vdev_parent;
1399 	vdev_t *pvd = mvd->vdev_parent;
1400 
1401 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1402 
1403 	ASSERT(mvd->vdev_children == 1);
1404 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1405 	    mvd->vdev_ops == &vdev_replacing_ops ||
1406 	    mvd->vdev_ops == &vdev_spare_ops);
1407 	cvd->vdev_ashift = mvd->vdev_ashift;
1408 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1409 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1410 	vdev_remove_child(mvd, cvd);
1411 	vdev_remove_child(pvd, mvd);
1412 
1413 	/*
1414 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1415 	 * Otherwise, we could have detached an offline device, and when we
1416 	 * go to import the pool we'll think we have two top-level vdevs,
1417 	 * instead of a different version of the same top-level vdev.
1418 	 */
1419 	if (mvd->vdev_top == mvd) {
1420 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1421 		cvd->vdev_orig_guid = cvd->vdev_guid;
1422 		cvd->vdev_guid += guid_delta;
1423 		cvd->vdev_guid_sum += guid_delta;
1424 
1425 		/*
1426 		 * If pool not set for autoexpand, we need to also preserve
1427 		 * mvd's asize to prevent automatic expansion of cvd.
1428 		 * Otherwise if we are adjusting the mirror by attaching and
1429 		 * detaching children of non-uniform sizes, the mirror could
1430 		 * autoexpand, unexpectedly requiring larger devices to
1431 		 * re-establish the mirror.
1432 		 */
1433 		if (!cvd->vdev_spa->spa_autoexpand)
1434 			cvd->vdev_asize = mvd->vdev_asize;
1435 	}
1436 	cvd->vdev_id = mvd->vdev_id;
1437 	vdev_add_child(pvd, cvd);
1438 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1439 
1440 	if (cvd == cvd->vdev_top)
1441 		vdev_top_transfer(mvd, cvd);
1442 
1443 	ASSERT(mvd->vdev_children == 0);
1444 	vdev_free(mvd);
1445 }
1446 
1447 /*
1448  * Choose GCD for spa_gcd_alloc.
1449  */
1450 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1451 vdev_gcd(uint64_t a, uint64_t b)
1452 {
1453 	while (b != 0) {
1454 		uint64_t t = b;
1455 		b = a % b;
1456 		a = t;
1457 	}
1458 	return (a);
1459 }
1460 
1461 /*
1462  * Set spa_min_alloc and spa_gcd_alloc.
1463  */
1464 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1465 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1466 {
1467 	if (min_alloc < spa->spa_min_alloc)
1468 		spa->spa_min_alloc = min_alloc;
1469 	if (spa->spa_gcd_alloc == INT_MAX) {
1470 		spa->spa_gcd_alloc = min_alloc;
1471 	} else {
1472 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1473 		    spa->spa_gcd_alloc);
1474 	}
1475 }
1476 
1477 void
vdev_metaslab_group_create(vdev_t * vd)1478 vdev_metaslab_group_create(vdev_t *vd)
1479 {
1480 	spa_t *spa = vd->vdev_spa;
1481 
1482 	/*
1483 	 * metaslab_group_create was delayed until allocation bias was available
1484 	 */
1485 	if (vd->vdev_mg == NULL) {
1486 		metaslab_class_t *mc;
1487 
1488 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1489 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1490 
1491 		ASSERT3U(vd->vdev_islog, ==,
1492 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1493 
1494 		switch (vd->vdev_alloc_bias) {
1495 		case VDEV_BIAS_LOG:
1496 			mc = spa_log_class(spa);
1497 			break;
1498 		case VDEV_BIAS_SPECIAL:
1499 			mc = spa_special_class(spa);
1500 			break;
1501 		case VDEV_BIAS_DEDUP:
1502 			mc = spa_dedup_class(spa);
1503 			break;
1504 		default:
1505 			mc = spa_normal_class(spa);
1506 		}
1507 
1508 		vd->vdev_mg = metaslab_group_create(mc, vd);
1509 
1510 		if (!vd->vdev_islog) {
1511 			vd->vdev_log_mg = metaslab_group_create(
1512 			    spa_embedded_log_class(spa), vd);
1513 		}
1514 
1515 		/*
1516 		 * The spa ashift min/max only apply for the normal metaslab
1517 		 * class. Class destination is late binding so ashift boundary
1518 		 * setting had to wait until now.
1519 		 */
1520 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1521 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1522 			if (vd->vdev_ashift > spa->spa_max_ashift)
1523 				spa->spa_max_ashift = vd->vdev_ashift;
1524 			if (vd->vdev_ashift < spa->spa_min_ashift)
1525 				spa->spa_min_ashift = vd->vdev_ashift;
1526 
1527 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1528 			vdev_spa_set_alloc(spa, min_alloc);
1529 		}
1530 	}
1531 }
1532 
1533 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1534 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1535 {
1536 	spa_t *spa = vd->vdev_spa;
1537 
1538 	if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1539 		return;
1540 
1541 	uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1542 	uint64_t dspace = spa_deflate(spa) ?
1543 	    vdev_deflated_space(vd, raw_space) : raw_space;
1544 	if (add) {
1545 		spa->spa_nonallocating_dspace += dspace;
1546 	} else {
1547 		ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1548 		spa->spa_nonallocating_dspace -= dspace;
1549 	}
1550 }
1551 
1552 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1553 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1554 {
1555 	spa_t *spa = vd->vdev_spa;
1556 	uint64_t oldc = vd->vdev_ms_count;
1557 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1558 	metaslab_t **mspp;
1559 	int error;
1560 	boolean_t expanding = (oldc != 0);
1561 
1562 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1563 
1564 	/*
1565 	 * This vdev is not being allocated from yet or is a hole.
1566 	 */
1567 	if (vd->vdev_ms_shift == 0)
1568 		return (0);
1569 
1570 	ASSERT(!vd->vdev_ishole);
1571 
1572 	ASSERT(oldc <= newc);
1573 
1574 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1575 
1576 	if (expanding) {
1577 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1578 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1579 	}
1580 
1581 	vd->vdev_ms = mspp;
1582 	vd->vdev_ms_count = newc;
1583 
1584 	/*
1585 	 * Weighting algorithms can depend on the number of metaslabs in the
1586 	 * vdev. In order to ensure that all weights are correct at all times,
1587 	 * we need to recalculate here.
1588 	 */
1589 	for (uint64_t m = 0; m < oldc; m++) {
1590 		metaslab_t *msp = vd->vdev_ms[m];
1591 		mutex_enter(&msp->ms_lock);
1592 		metaslab_recalculate_weight_and_sort(msp);
1593 		mutex_exit(&msp->ms_lock);
1594 	}
1595 
1596 	for (uint64_t m = oldc; m < newc; m++) {
1597 		uint64_t object = 0;
1598 		/*
1599 		 * vdev_ms_array may be 0 if we are creating the "fake"
1600 		 * metaslabs for an indirect vdev for zdb's leak detection.
1601 		 * See zdb_leak_init().
1602 		 */
1603 		if (txg == 0 && vd->vdev_ms_array != 0) {
1604 			error = dmu_read(spa->spa_meta_objset,
1605 			    vd->vdev_ms_array,
1606 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1607 			    DMU_READ_PREFETCH);
1608 			if (error != 0) {
1609 				vdev_dbgmsg(vd, "unable to read the metaslab "
1610 				    "array [error=%d]", error);
1611 				return (error);
1612 			}
1613 		}
1614 
1615 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1616 		    &(vd->vdev_ms[m]));
1617 		if (error != 0) {
1618 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1619 			    error);
1620 			return (error);
1621 		}
1622 	}
1623 
1624 	/*
1625 	 * Find the emptiest metaslab on the vdev and mark it for use for
1626 	 * embedded slog by moving it from the regular to the log metaslab
1627 	 * group.
1628 	 */
1629 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1630 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1631 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1632 		uint64_t slog_msid = 0;
1633 		uint64_t smallest = UINT64_MAX;
1634 
1635 		/*
1636 		 * Note, we only search the new metaslabs, because the old
1637 		 * (pre-existing) ones may be active (e.g. have non-empty
1638 		 * range_tree's), and we don't move them to the new
1639 		 * metaslab_t.
1640 		 */
1641 		for (uint64_t m = oldc; m < newc; m++) {
1642 			uint64_t alloc =
1643 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1644 			if (alloc < smallest) {
1645 				slog_msid = m;
1646 				smallest = alloc;
1647 			}
1648 		}
1649 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1650 		/*
1651 		 * The metaslab was marked as dirty at the end of
1652 		 * metaslab_init(). Remove it from the dirty list so that we
1653 		 * can uninitialize and reinitialize it to the new class.
1654 		 */
1655 		if (txg != 0) {
1656 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1657 			    slog_ms, txg);
1658 		}
1659 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1660 		metaslab_fini(slog_ms);
1661 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1662 		    &vd->vdev_ms[slog_msid]));
1663 	}
1664 
1665 	if (txg == 0)
1666 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1667 
1668 	/*
1669 	 * If the vdev is marked as non-allocating then don't
1670 	 * activate the metaslabs since we want to ensure that
1671 	 * no allocations are performed on this device.
1672 	 */
1673 	if (vd->vdev_noalloc) {
1674 		/* track non-allocating vdev space */
1675 		vdev_update_nonallocating_space(vd, B_TRUE);
1676 	} else if (!expanding) {
1677 		metaslab_group_activate(vd->vdev_mg);
1678 		if (vd->vdev_log_mg != NULL)
1679 			metaslab_group_activate(vd->vdev_log_mg);
1680 	}
1681 
1682 	if (txg == 0)
1683 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1684 
1685 	return (0);
1686 }
1687 
1688 void
vdev_metaslab_fini(vdev_t * vd)1689 vdev_metaslab_fini(vdev_t *vd)
1690 {
1691 	if (vd->vdev_checkpoint_sm != NULL) {
1692 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1693 		    SPA_FEATURE_POOL_CHECKPOINT));
1694 		space_map_close(vd->vdev_checkpoint_sm);
1695 		/*
1696 		 * Even though we close the space map, we need to set its
1697 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1698 		 * may be called multiple times for certain operations
1699 		 * (i.e. when destroying a pool) so we need to ensure that
1700 		 * this clause never executes twice. This logic is similar
1701 		 * to the one used for the vdev_ms clause below.
1702 		 */
1703 		vd->vdev_checkpoint_sm = NULL;
1704 	}
1705 
1706 	if (vd->vdev_ms != NULL) {
1707 		metaslab_group_t *mg = vd->vdev_mg;
1708 
1709 		metaslab_group_passivate(mg);
1710 		if (vd->vdev_log_mg != NULL) {
1711 			ASSERT(!vd->vdev_islog);
1712 			metaslab_group_passivate(vd->vdev_log_mg);
1713 		}
1714 
1715 		uint64_t count = vd->vdev_ms_count;
1716 		for (uint64_t m = 0; m < count; m++) {
1717 			metaslab_t *msp = vd->vdev_ms[m];
1718 			if (msp != NULL)
1719 				metaslab_fini(msp);
1720 		}
1721 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1722 		vd->vdev_ms = NULL;
1723 		vd->vdev_ms_count = 0;
1724 
1725 		for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1726 			ASSERT0(mg->mg_histogram[i]);
1727 			if (vd->vdev_log_mg != NULL)
1728 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1729 		}
1730 	}
1731 	ASSERT0(vd->vdev_ms_count);
1732 }
1733 
1734 typedef struct vdev_probe_stats {
1735 	boolean_t	vps_readable;
1736 	boolean_t	vps_writeable;
1737 	boolean_t	vps_zio_done_probe;
1738 	int		vps_flags;
1739 } vdev_probe_stats_t;
1740 
1741 static void
vdev_probe_done(zio_t * zio)1742 vdev_probe_done(zio_t *zio)
1743 {
1744 	spa_t *spa = zio->io_spa;
1745 	vdev_t *vd = zio->io_vd;
1746 	vdev_probe_stats_t *vps = zio->io_private;
1747 
1748 	ASSERT(vd->vdev_probe_zio != NULL);
1749 
1750 	if (zio->io_type == ZIO_TYPE_READ) {
1751 		if (zio->io_error == 0)
1752 			vps->vps_readable = 1;
1753 		if (zio->io_error == 0 && spa_writeable(spa)) {
1754 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1755 			    zio->io_offset, zio->io_size, zio->io_abd,
1756 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1757 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1758 		} else {
1759 			abd_free(zio->io_abd);
1760 		}
1761 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1762 		if (zio->io_error == 0)
1763 			vps->vps_writeable = 1;
1764 		abd_free(zio->io_abd);
1765 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1766 		zio_t *pio;
1767 		zio_link_t *zl;
1768 
1769 		vd->vdev_cant_read |= !vps->vps_readable;
1770 		vd->vdev_cant_write |= !vps->vps_writeable;
1771 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1772 		    vd->vdev_cant_read, vd->vdev_cant_write);
1773 
1774 		if (vdev_readable(vd) &&
1775 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1776 			zio->io_error = 0;
1777 		} else {
1778 			ASSERT(zio->io_error != 0);
1779 			vdev_dbgmsg(vd, "failed probe");
1780 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1781 			    spa, vd, NULL, NULL, 0);
1782 			zio->io_error = SET_ERROR(ENXIO);
1783 
1784 			/*
1785 			 * If this probe was initiated from zio pipeline, then
1786 			 * change the state in a spa_async_request. Probes that
1787 			 * were initiated from a vdev_open can change the state
1788 			 * as part of the open call.
1789 			 * Skip fault injection if this vdev is already removed
1790 			 * or a removal is pending.
1791 			 */
1792 			if (vps->vps_zio_done_probe &&
1793 			    !vd->vdev_remove_wanted && !vd->vdev_removed) {
1794 				vd->vdev_fault_wanted = B_TRUE;
1795 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1796 			}
1797 		}
1798 
1799 		mutex_enter(&vd->vdev_probe_lock);
1800 		ASSERT(vd->vdev_probe_zio == zio);
1801 		vd->vdev_probe_zio = NULL;
1802 		mutex_exit(&vd->vdev_probe_lock);
1803 
1804 		zl = NULL;
1805 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1806 			if (!vdev_accessible(vd, pio))
1807 				pio->io_error = SET_ERROR(ENXIO);
1808 
1809 		kmem_free(vps, sizeof (*vps));
1810 	}
1811 }
1812 
1813 /*
1814  * Determine whether this device is accessible.
1815  *
1816  * Read and write to several known locations: the pad regions of each
1817  * vdev label but the first, which we leave alone in case it contains
1818  * a VTOC.
1819  */
1820 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1821 vdev_probe(vdev_t *vd, zio_t *zio)
1822 {
1823 	spa_t *spa = vd->vdev_spa;
1824 	vdev_probe_stats_t *vps = NULL;
1825 	zio_t *pio;
1826 
1827 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1828 
1829 	/*
1830 	 * Don't probe the probe.
1831 	 */
1832 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1833 		return (NULL);
1834 
1835 	/*
1836 	 * To prevent 'probe storms' when a device fails, we create
1837 	 * just one probe i/o at a time.  All zios that want to probe
1838 	 * this vdev will become parents of the probe io.
1839 	 */
1840 	mutex_enter(&vd->vdev_probe_lock);
1841 
1842 	if ((pio = vd->vdev_probe_zio) == NULL) {
1843 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1844 
1845 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1846 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1847 		vps->vps_zio_done_probe = (zio != NULL);
1848 
1849 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1850 			/*
1851 			 * vdev_cant_read and vdev_cant_write can only
1852 			 * transition from TRUE to FALSE when we have the
1853 			 * SCL_ZIO lock as writer; otherwise they can only
1854 			 * transition from FALSE to TRUE.  This ensures that
1855 			 * any zio looking at these values can assume that
1856 			 * failures persist for the life of the I/O.  That's
1857 			 * important because when a device has intermittent
1858 			 * connectivity problems, we want to ensure that
1859 			 * they're ascribed to the device (ENXIO) and not
1860 			 * the zio (EIO).
1861 			 *
1862 			 * Since we hold SCL_ZIO as writer here, clear both
1863 			 * values so the probe can reevaluate from first
1864 			 * principles.
1865 			 */
1866 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1867 			vd->vdev_cant_read = B_FALSE;
1868 			vd->vdev_cant_write = B_FALSE;
1869 		}
1870 
1871 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1872 		    vdev_probe_done, vps,
1873 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1874 	}
1875 
1876 	if (zio != NULL)
1877 		zio_add_child(zio, pio);
1878 
1879 	mutex_exit(&vd->vdev_probe_lock);
1880 
1881 	if (vps == NULL) {
1882 		ASSERT(zio != NULL);
1883 		return (NULL);
1884 	}
1885 
1886 	for (int l = 1; l < VDEV_LABELS; l++) {
1887 		zio_nowait(zio_read_phys(pio, vd,
1888 		    vdev_label_offset(vd->vdev_psize, l,
1889 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1890 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1891 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1892 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1893 	}
1894 
1895 	if (zio == NULL)
1896 		return (pio);
1897 
1898 	zio_nowait(pio);
1899 	return (NULL);
1900 }
1901 
1902 static void
vdev_load_child(void * arg)1903 vdev_load_child(void *arg)
1904 {
1905 	vdev_t *vd = arg;
1906 
1907 	vd->vdev_load_error = vdev_load(vd);
1908 }
1909 
1910 static void
vdev_open_child(void * arg)1911 vdev_open_child(void *arg)
1912 {
1913 	vdev_t *vd = arg;
1914 
1915 	vd->vdev_open_thread = curthread;
1916 	vd->vdev_open_error = vdev_open(vd);
1917 	vd->vdev_open_thread = NULL;
1918 }
1919 
1920 static boolean_t
vdev_uses_zvols(vdev_t * vd)1921 vdev_uses_zvols(vdev_t *vd)
1922 {
1923 #ifdef _KERNEL
1924 	if (zvol_is_zvol(vd->vdev_path))
1925 		return (B_TRUE);
1926 #endif
1927 
1928 	for (int c = 0; c < vd->vdev_children; c++)
1929 		if (vdev_uses_zvols(vd->vdev_child[c]))
1930 			return (B_TRUE);
1931 
1932 	return (B_FALSE);
1933 }
1934 
1935 /*
1936  * Returns B_TRUE if the passed child should be opened.
1937  */
1938 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1939 vdev_default_open_children_func(vdev_t *vd)
1940 {
1941 	(void) vd;
1942 	return (B_TRUE);
1943 }
1944 
1945 /*
1946  * Open the requested child vdevs.  If any of the leaf vdevs are using
1947  * a ZFS volume then do the opens in a single thread.  This avoids a
1948  * deadlock when the current thread is holding the spa_namespace_lock.
1949  */
1950 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1951 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1952 {
1953 	int children = vd->vdev_children;
1954 
1955 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1956 	    children, children, TASKQ_PREPOPULATE);
1957 	vd->vdev_nonrot = B_TRUE;
1958 
1959 	for (int c = 0; c < children; c++) {
1960 		vdev_t *cvd = vd->vdev_child[c];
1961 
1962 		if (open_func(cvd) == B_FALSE)
1963 			continue;
1964 
1965 		if (tq == NULL || vdev_uses_zvols(vd)) {
1966 			cvd->vdev_open_error = vdev_open(cvd);
1967 		} else {
1968 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1969 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1970 		}
1971 	}
1972 
1973 	if (tq != NULL)
1974 		taskq_wait(tq);
1975 	for (int c = 0; c < children; c++) {
1976 		vdev_t *cvd = vd->vdev_child[c];
1977 
1978 		if (open_func(cvd) == B_FALSE ||
1979 		    cvd->vdev_state <= VDEV_STATE_FAULTED)
1980 			continue;
1981 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1982 	}
1983 
1984 	if (tq != NULL)
1985 		taskq_destroy(tq);
1986 }
1987 
1988 /*
1989  * Open all child vdevs.
1990  */
1991 void
vdev_open_children(vdev_t * vd)1992 vdev_open_children(vdev_t *vd)
1993 {
1994 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1995 }
1996 
1997 /*
1998  * Conditionally open a subset of child vdevs.
1999  */
2000 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2001 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2002 {
2003 	vdev_open_children_impl(vd, open_func);
2004 }
2005 
2006 /*
2007  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
2008  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
2009  * changed, this algorithm can not change, otherwise it would inconsistently
2010  * account for existing bp's.  We also hard-code txg 0 for the same reason
2011  * since expanded RAIDZ vdevs can use a different asize for different birth
2012  * txg's.
2013  */
2014 static void
vdev_set_deflate_ratio(vdev_t * vd)2015 vdev_set_deflate_ratio(vdev_t *vd)
2016 {
2017 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2018 		vd->vdev_deflate_ratio = (1 << 17) /
2019 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2020 		    SPA_MINBLOCKSHIFT);
2021 	}
2022 }
2023 
2024 /*
2025  * Choose the best of two ashifts, preferring one between logical ashift
2026  * (absolute minimum) and administrator defined maximum, otherwise take
2027  * the biggest of the two.
2028  */
2029 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2030 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2031 {
2032 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2033 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
2034 			return (a);
2035 		else
2036 			return (MAX(a, b));
2037 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2038 		return (MAX(a, b));
2039 	return (b);
2040 }
2041 
2042 /*
2043  * Maximize performance by inflating the configured ashift for top level
2044  * vdevs to be as close to the physical ashift as possible while maintaining
2045  * administrator defined limits and ensuring it doesn't go below the
2046  * logical ashift.
2047  */
2048 static void
vdev_ashift_optimize(vdev_t * vd)2049 vdev_ashift_optimize(vdev_t *vd)
2050 {
2051 	ASSERT(vd == vd->vdev_top);
2052 
2053 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2054 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2055 		vd->vdev_ashift = MIN(
2056 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2057 		    MAX(zfs_vdev_min_auto_ashift,
2058 		    vd->vdev_physical_ashift));
2059 	} else {
2060 		/*
2061 		 * If the logical and physical ashifts are the same, then
2062 		 * we ensure that the top-level vdev's ashift is not smaller
2063 		 * than our minimum ashift value. For the unusual case
2064 		 * where logical ashift > physical ashift, we can't cap
2065 		 * the calculated ashift based on max ashift as that
2066 		 * would cause failures.
2067 		 * We still check if we need to increase it to match
2068 		 * the min ashift.
2069 		 */
2070 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2071 		    vd->vdev_ashift);
2072 	}
2073 }
2074 
2075 /*
2076  * Prepare a virtual device for access.
2077  */
2078 int
vdev_open(vdev_t * vd)2079 vdev_open(vdev_t *vd)
2080 {
2081 	spa_t *spa = vd->vdev_spa;
2082 	int error;
2083 	uint64_t osize = 0;
2084 	uint64_t max_osize = 0;
2085 	uint64_t asize, max_asize, psize;
2086 	uint64_t logical_ashift = 0;
2087 	uint64_t physical_ashift = 0;
2088 
2089 	ASSERT(vd->vdev_open_thread == curthread ||
2090 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2091 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2092 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2093 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2094 
2095 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2096 	vd->vdev_cant_read = B_FALSE;
2097 	vd->vdev_cant_write = B_FALSE;
2098 	vd->vdev_fault_wanted = B_FALSE;
2099 	vd->vdev_remove_wanted = B_FALSE;
2100 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2101 
2102 	/*
2103 	 * If this vdev is not removed, check its fault status.  If it's
2104 	 * faulted, bail out of the open.
2105 	 */
2106 	if (!vd->vdev_removed && vd->vdev_faulted) {
2107 		ASSERT(vd->vdev_children == 0);
2108 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2109 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2110 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2111 		    vd->vdev_label_aux);
2112 		return (SET_ERROR(ENXIO));
2113 	} else if (vd->vdev_offline) {
2114 		ASSERT(vd->vdev_children == 0);
2115 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2116 		return (SET_ERROR(ENXIO));
2117 	}
2118 
2119 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2120 	    &logical_ashift, &physical_ashift);
2121 
2122 	/* Keep the device in removed state if unplugged */
2123 	if (error == ENOENT && vd->vdev_removed) {
2124 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2125 		    VDEV_AUX_NONE);
2126 		return (error);
2127 	}
2128 
2129 	/*
2130 	 * Physical volume size should never be larger than its max size, unless
2131 	 * the disk has shrunk while we were reading it or the device is buggy
2132 	 * or damaged: either way it's not safe for use, bail out of the open.
2133 	 */
2134 	if (osize > max_osize) {
2135 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2136 		    VDEV_AUX_OPEN_FAILED);
2137 		return (SET_ERROR(ENXIO));
2138 	}
2139 
2140 	/*
2141 	 * Reset the vdev_reopening flag so that we actually close
2142 	 * the vdev on error.
2143 	 */
2144 	vd->vdev_reopening = B_FALSE;
2145 	if (zio_injection_enabled && error == 0)
2146 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2147 
2148 	if (error) {
2149 		if (vd->vdev_removed &&
2150 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2151 			vd->vdev_removed = B_FALSE;
2152 
2153 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2154 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2155 			    vd->vdev_stat.vs_aux);
2156 		} else {
2157 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2158 			    vd->vdev_stat.vs_aux);
2159 		}
2160 		return (error);
2161 	}
2162 
2163 	vd->vdev_removed = B_FALSE;
2164 
2165 	/*
2166 	 * Recheck the faulted flag now that we have confirmed that
2167 	 * the vdev is accessible.  If we're faulted, bail.
2168 	 */
2169 	if (vd->vdev_faulted) {
2170 		ASSERT(vd->vdev_children == 0);
2171 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2172 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2173 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2174 		    vd->vdev_label_aux);
2175 		return (SET_ERROR(ENXIO));
2176 	}
2177 
2178 	if (vd->vdev_degraded) {
2179 		ASSERT(vd->vdev_children == 0);
2180 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2181 		    VDEV_AUX_ERR_EXCEEDED);
2182 	} else {
2183 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2184 	}
2185 
2186 	/*
2187 	 * For hole or missing vdevs we just return success.
2188 	 */
2189 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2190 		return (0);
2191 
2192 	for (int c = 0; c < vd->vdev_children; c++) {
2193 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2194 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2195 			    VDEV_AUX_NONE);
2196 			break;
2197 		}
2198 	}
2199 
2200 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2201 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2202 
2203 	if (vd->vdev_children == 0) {
2204 		if (osize < SPA_MINDEVSIZE) {
2205 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2206 			    VDEV_AUX_TOO_SMALL);
2207 			return (SET_ERROR(EOVERFLOW));
2208 		}
2209 		psize = osize;
2210 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2211 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2212 		    VDEV_LABEL_END_SIZE);
2213 	} else {
2214 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2215 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2216 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2217 			    VDEV_AUX_TOO_SMALL);
2218 			return (SET_ERROR(EOVERFLOW));
2219 		}
2220 		psize = 0;
2221 		asize = osize;
2222 		max_asize = max_osize;
2223 	}
2224 
2225 	/*
2226 	 * If the vdev was expanded, record this so that we can re-create the
2227 	 * uberblock rings in labels {2,3}, during the next sync.
2228 	 */
2229 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2230 		vd->vdev_copy_uberblocks = B_TRUE;
2231 
2232 	vd->vdev_psize = psize;
2233 
2234 	/*
2235 	 * Make sure the allocatable size hasn't shrunk too much.
2236 	 */
2237 	if (asize < vd->vdev_min_asize) {
2238 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2239 		    VDEV_AUX_BAD_LABEL);
2240 		return (SET_ERROR(EINVAL));
2241 	}
2242 
2243 	/*
2244 	 * We can always set the logical/physical ashift members since
2245 	 * their values are only used to calculate the vdev_ashift when
2246 	 * the device is first added to the config. These values should
2247 	 * not be used for anything else since they may change whenever
2248 	 * the device is reopened and we don't store them in the label.
2249 	 */
2250 	vd->vdev_physical_ashift =
2251 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2252 	vd->vdev_logical_ashift = MAX(logical_ashift,
2253 	    vd->vdev_logical_ashift);
2254 
2255 	if (vd->vdev_asize == 0) {
2256 		/*
2257 		 * This is the first-ever open, so use the computed values.
2258 		 * For compatibility, a different ashift can be requested.
2259 		 */
2260 		vd->vdev_asize = asize;
2261 		vd->vdev_max_asize = max_asize;
2262 
2263 		/*
2264 		 * If the vdev_ashift was not overridden at creation time
2265 		 * (0) or the override value is impossible for the device,
2266 		 * then set it the logical ashift and optimize the ashift.
2267 		 */
2268 		if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2269 			vd->vdev_ashift = vd->vdev_logical_ashift;
2270 
2271 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2272 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2273 				    VDEV_AUX_ASHIFT_TOO_BIG);
2274 				return (SET_ERROR(EDOM));
2275 			}
2276 
2277 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2278 				vdev_ashift_optimize(vd);
2279 			vd->vdev_attaching = B_FALSE;
2280 		}
2281 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2282 		    vd->vdev_ashift > ASHIFT_MAX)) {
2283 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284 			    VDEV_AUX_BAD_ASHIFT);
2285 			return (SET_ERROR(EDOM));
2286 		}
2287 	} else {
2288 		/*
2289 		 * Make sure the alignment required hasn't increased.
2290 		 */
2291 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2292 		    vd->vdev_ops->vdev_op_leaf) {
2293 			(void) zfs_ereport_post(
2294 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2295 			    spa, vd, NULL, NULL, 0);
2296 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2297 			    VDEV_AUX_BAD_LABEL);
2298 			return (SET_ERROR(EDOM));
2299 		}
2300 		vd->vdev_max_asize = max_asize;
2301 	}
2302 
2303 	/*
2304 	 * If all children are healthy we update asize if either:
2305 	 * The asize has increased, due to a device expansion caused by dynamic
2306 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2307 	 * making the additional space available.
2308 	 *
2309 	 * The asize has decreased, due to a device shrink usually caused by a
2310 	 * vdev replace with a smaller device. This ensures that calculations
2311 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2312 	 * to do this as we've already validated that asize is greater than
2313 	 * vdev_min_asize.
2314 	 */
2315 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2316 	    ((asize > vd->vdev_asize &&
2317 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2318 	    (asize < vd->vdev_asize)))
2319 		vd->vdev_asize = asize;
2320 
2321 	vdev_set_min_asize(vd);
2322 
2323 	/*
2324 	 * Ensure we can issue some IO before declaring the
2325 	 * vdev open for business.
2326 	 */
2327 	if (vd->vdev_ops->vdev_op_leaf &&
2328 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2329 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2330 		    VDEV_AUX_ERR_EXCEEDED);
2331 		return (error);
2332 	}
2333 
2334 	/*
2335 	 * Track the minimum allocation size.
2336 	 */
2337 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2338 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2339 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2340 		vdev_spa_set_alloc(spa, min_alloc);
2341 	}
2342 
2343 	/*
2344 	 * If this is a leaf vdev, assess whether a resilver is needed.
2345 	 * But don't do this if we are doing a reopen for a scrub, since
2346 	 * this would just restart the scrub we are already doing.
2347 	 */
2348 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2349 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2350 
2351 	return (0);
2352 }
2353 
2354 static void
vdev_validate_child(void * arg)2355 vdev_validate_child(void *arg)
2356 {
2357 	vdev_t *vd = arg;
2358 
2359 	vd->vdev_validate_thread = curthread;
2360 	vd->vdev_validate_error = vdev_validate(vd);
2361 	vd->vdev_validate_thread = NULL;
2362 }
2363 
2364 /*
2365  * Called once the vdevs are all opened, this routine validates the label
2366  * contents. This needs to be done before vdev_load() so that we don't
2367  * inadvertently do repair I/Os to the wrong device.
2368  *
2369  * This function will only return failure if one of the vdevs indicates that it
2370  * has since been destroyed or exported.  This is only possible if
2371  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2372  * will be updated but the function will return 0.
2373  */
2374 int
vdev_validate(vdev_t * vd)2375 vdev_validate(vdev_t *vd)
2376 {
2377 	spa_t *spa = vd->vdev_spa;
2378 	taskq_t *tq = NULL;
2379 	nvlist_t *label;
2380 	uint64_t guid = 0, aux_guid = 0, top_guid;
2381 	uint64_t state;
2382 	nvlist_t *nvl;
2383 	uint64_t txg;
2384 	int children = vd->vdev_children;
2385 
2386 	if (vdev_validate_skip)
2387 		return (0);
2388 
2389 	if (children > 0) {
2390 		tq = taskq_create("vdev_validate", children, minclsyspri,
2391 		    children, children, TASKQ_PREPOPULATE);
2392 	}
2393 
2394 	for (uint64_t c = 0; c < children; c++) {
2395 		vdev_t *cvd = vd->vdev_child[c];
2396 
2397 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2398 			vdev_validate_child(cvd);
2399 		} else {
2400 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2401 			    TQ_SLEEP) != TASKQID_INVALID);
2402 		}
2403 	}
2404 	if (tq != NULL) {
2405 		taskq_wait(tq);
2406 		taskq_destroy(tq);
2407 	}
2408 	for (int c = 0; c < children; c++) {
2409 		int error = vd->vdev_child[c]->vdev_validate_error;
2410 
2411 		if (error != 0)
2412 			return (SET_ERROR(EBADF));
2413 	}
2414 
2415 
2416 	/*
2417 	 * If the device has already failed, or was marked offline, don't do
2418 	 * any further validation.  Otherwise, label I/O will fail and we will
2419 	 * overwrite the previous state.
2420 	 */
2421 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2422 		return (0);
2423 
2424 	/*
2425 	 * If we are performing an extreme rewind, we allow for a label that
2426 	 * was modified at a point after the current txg.
2427 	 * If config lock is not held do not check for the txg. spa_sync could
2428 	 * be updating the vdev's label before updating spa_last_synced_txg.
2429 	 */
2430 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2431 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2432 		txg = UINT64_MAX;
2433 	else
2434 		txg = spa_last_synced_txg(spa);
2435 
2436 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2437 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2438 		    VDEV_AUX_BAD_LABEL);
2439 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2440 		    "txg %llu", (u_longlong_t)txg);
2441 		return (0);
2442 	}
2443 
2444 	/*
2445 	 * Determine if this vdev has been split off into another
2446 	 * pool.  If so, then refuse to open it.
2447 	 */
2448 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2449 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2450 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2451 		    VDEV_AUX_SPLIT_POOL);
2452 		nvlist_free(label);
2453 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2454 		return (0);
2455 	}
2456 
2457 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2458 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2459 		    VDEV_AUX_CORRUPT_DATA);
2460 		nvlist_free(label);
2461 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2462 		    ZPOOL_CONFIG_POOL_GUID);
2463 		return (0);
2464 	}
2465 
2466 	/*
2467 	 * If config is not trusted then ignore the spa guid check. This is
2468 	 * necessary because if the machine crashed during a re-guid the new
2469 	 * guid might have been written to all of the vdev labels, but not the
2470 	 * cached config. The check will be performed again once we have the
2471 	 * trusted config from the MOS.
2472 	 */
2473 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2474 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2475 		    VDEV_AUX_CORRUPT_DATA);
2476 		nvlist_free(label);
2477 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2478 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2479 		    (u_longlong_t)spa_guid(spa));
2480 		return (0);
2481 	}
2482 
2483 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2484 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2485 	    &aux_guid) != 0)
2486 		aux_guid = 0;
2487 
2488 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2489 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2490 		    VDEV_AUX_CORRUPT_DATA);
2491 		nvlist_free(label);
2492 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2493 		    ZPOOL_CONFIG_GUID);
2494 		return (0);
2495 	}
2496 
2497 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2498 	    != 0) {
2499 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2500 		    VDEV_AUX_CORRUPT_DATA);
2501 		nvlist_free(label);
2502 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2503 		    ZPOOL_CONFIG_TOP_GUID);
2504 		return (0);
2505 	}
2506 
2507 	/*
2508 	 * If this vdev just became a top-level vdev because its sibling was
2509 	 * detached, it will have adopted the parent's vdev guid -- but the
2510 	 * label may or may not be on disk yet. Fortunately, either version
2511 	 * of the label will have the same top guid, so if we're a top-level
2512 	 * vdev, we can safely compare to that instead.
2513 	 * However, if the config comes from a cachefile that failed to update
2514 	 * after the detach, a top-level vdev will appear as a non top-level
2515 	 * vdev in the config. Also relax the constraints if we perform an
2516 	 * extreme rewind.
2517 	 *
2518 	 * If we split this vdev off instead, then we also check the
2519 	 * original pool's guid. We don't want to consider the vdev
2520 	 * corrupt if it is partway through a split operation.
2521 	 */
2522 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2523 		boolean_t mismatch = B_FALSE;
2524 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2525 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2526 				mismatch = B_TRUE;
2527 		} else {
2528 			if (vd->vdev_guid != top_guid &&
2529 			    vd->vdev_top->vdev_guid != guid)
2530 				mismatch = B_TRUE;
2531 		}
2532 
2533 		if (mismatch) {
2534 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2535 			    VDEV_AUX_CORRUPT_DATA);
2536 			nvlist_free(label);
2537 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2538 			    "doesn't match label guid");
2539 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2540 			    (u_longlong_t)vd->vdev_guid,
2541 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2542 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2543 			    "aux_guid %llu", (u_longlong_t)guid,
2544 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2545 			return (0);
2546 		}
2547 	}
2548 
2549 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2550 	    &state) != 0) {
2551 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2552 		    VDEV_AUX_CORRUPT_DATA);
2553 		nvlist_free(label);
2554 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2555 		    ZPOOL_CONFIG_POOL_STATE);
2556 		return (0);
2557 	}
2558 
2559 	nvlist_free(label);
2560 
2561 	/*
2562 	 * If this is a verbatim import, no need to check the
2563 	 * state of the pool.
2564 	 */
2565 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2566 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2567 	    state != POOL_STATE_ACTIVE) {
2568 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2569 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2570 		return (SET_ERROR(EBADF));
2571 	}
2572 
2573 	/*
2574 	 * If we were able to open and validate a vdev that was
2575 	 * previously marked permanently unavailable, clear that state
2576 	 * now.
2577 	 */
2578 	if (vd->vdev_not_present)
2579 		vd->vdev_not_present = 0;
2580 
2581 	return (0);
2582 }
2583 
2584 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2585 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2586 {
2587 	if (svd != NULL && *dvd != NULL) {
2588 		if (strcmp(svd, *dvd) != 0) {
2589 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2590 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2591 			    *dvd, svd);
2592 			spa_strfree(*dvd);
2593 			*dvd = spa_strdup(svd);
2594 		}
2595 	} else if (svd != NULL) {
2596 		*dvd = spa_strdup(svd);
2597 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2598 		    (u_longlong_t)guid, *dvd);
2599 	}
2600 }
2601 
2602 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2603 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2604 {
2605 	char *old, *new;
2606 
2607 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2608 	    dvd->vdev_guid);
2609 
2610 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2611 	    dvd->vdev_guid);
2612 
2613 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2614 	    &dvd->vdev_physpath, dvd->vdev_guid);
2615 
2616 	/*
2617 	 * Our enclosure sysfs path may have changed between imports
2618 	 */
2619 	old = dvd->vdev_enc_sysfs_path;
2620 	new = svd->vdev_enc_sysfs_path;
2621 	if ((old != NULL && new == NULL) ||
2622 	    (old == NULL && new != NULL) ||
2623 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2624 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2625 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2626 		    old, new);
2627 
2628 		if (dvd->vdev_enc_sysfs_path)
2629 			spa_strfree(dvd->vdev_enc_sysfs_path);
2630 
2631 		if (svd->vdev_enc_sysfs_path) {
2632 			dvd->vdev_enc_sysfs_path = spa_strdup(
2633 			    svd->vdev_enc_sysfs_path);
2634 		} else {
2635 			dvd->vdev_enc_sysfs_path = NULL;
2636 		}
2637 	}
2638 }
2639 
2640 /*
2641  * Recursively copy vdev paths from one vdev to another. Source and destination
2642  * vdev trees must have same geometry otherwise return error. Intended to copy
2643  * paths from userland config into MOS config.
2644  */
2645 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2646 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2647 {
2648 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2649 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2650 	    (dvd->vdev_ops == &vdev_indirect_ops))
2651 		return (0);
2652 
2653 	if (svd->vdev_ops != dvd->vdev_ops) {
2654 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2655 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2656 		return (SET_ERROR(EINVAL));
2657 	}
2658 
2659 	if (svd->vdev_guid != dvd->vdev_guid) {
2660 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2661 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2662 		    (u_longlong_t)dvd->vdev_guid);
2663 		return (SET_ERROR(EINVAL));
2664 	}
2665 
2666 	if (svd->vdev_children != dvd->vdev_children) {
2667 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2668 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2669 		    (u_longlong_t)dvd->vdev_children);
2670 		return (SET_ERROR(EINVAL));
2671 	}
2672 
2673 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2674 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2675 		    dvd->vdev_child[i]);
2676 		if (error != 0)
2677 			return (error);
2678 	}
2679 
2680 	if (svd->vdev_ops->vdev_op_leaf)
2681 		vdev_copy_path_impl(svd, dvd);
2682 
2683 	return (0);
2684 }
2685 
2686 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2687 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2688 {
2689 	ASSERT(stvd->vdev_top == stvd);
2690 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2691 
2692 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2693 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2694 	}
2695 
2696 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2697 		return;
2698 
2699 	/*
2700 	 * The idea here is that while a vdev can shift positions within
2701 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2702 	 * step outside of it.
2703 	 */
2704 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2705 
2706 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2707 		return;
2708 
2709 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2710 
2711 	vdev_copy_path_impl(vd, dvd);
2712 }
2713 
2714 /*
2715  * Recursively copy vdev paths from one root vdev to another. Source and
2716  * destination vdev trees may differ in geometry. For each destination leaf
2717  * vdev, search a vdev with the same guid and top vdev id in the source.
2718  * Intended to copy paths from userland config into MOS config.
2719  */
2720 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2721 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2722 {
2723 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2724 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2725 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2726 
2727 	for (uint64_t i = 0; i < children; i++) {
2728 		vdev_copy_path_search(srvd->vdev_child[i],
2729 		    drvd->vdev_child[i]);
2730 	}
2731 }
2732 
2733 /*
2734  * Close a virtual device.
2735  */
2736 void
vdev_close(vdev_t * vd)2737 vdev_close(vdev_t *vd)
2738 {
2739 	vdev_t *pvd = vd->vdev_parent;
2740 	spa_t *spa __maybe_unused = vd->vdev_spa;
2741 
2742 	ASSERT(vd != NULL);
2743 	ASSERT(vd->vdev_open_thread == curthread ||
2744 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2745 
2746 	/*
2747 	 * If our parent is reopening, then we are as well, unless we are
2748 	 * going offline.
2749 	 */
2750 	if (pvd != NULL && pvd->vdev_reopening)
2751 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2752 
2753 	vd->vdev_ops->vdev_op_close(vd);
2754 
2755 	/*
2756 	 * We record the previous state before we close it, so that if we are
2757 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2758 	 * it's still faulted.
2759 	 */
2760 	vd->vdev_prevstate = vd->vdev_state;
2761 
2762 	if (vd->vdev_offline)
2763 		vd->vdev_state = VDEV_STATE_OFFLINE;
2764 	else
2765 		vd->vdev_state = VDEV_STATE_CLOSED;
2766 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2767 }
2768 
2769 void
vdev_hold(vdev_t * vd)2770 vdev_hold(vdev_t *vd)
2771 {
2772 	spa_t *spa = vd->vdev_spa;
2773 
2774 	ASSERT(spa_is_root(spa));
2775 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2776 		return;
2777 
2778 	for (int c = 0; c < vd->vdev_children; c++)
2779 		vdev_hold(vd->vdev_child[c]);
2780 
2781 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2782 		vd->vdev_ops->vdev_op_hold(vd);
2783 }
2784 
2785 void
vdev_rele(vdev_t * vd)2786 vdev_rele(vdev_t *vd)
2787 {
2788 	ASSERT(spa_is_root(vd->vdev_spa));
2789 	for (int c = 0; c < vd->vdev_children; c++)
2790 		vdev_rele(vd->vdev_child[c]);
2791 
2792 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2793 		vd->vdev_ops->vdev_op_rele(vd);
2794 }
2795 
2796 /*
2797  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2798  * reopen leaf vdevs which had previously been opened as they might deadlock
2799  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2800  * If the leaf has never been opened then open it, as usual.
2801  */
2802 void
vdev_reopen(vdev_t * vd)2803 vdev_reopen(vdev_t *vd)
2804 {
2805 	spa_t *spa = vd->vdev_spa;
2806 
2807 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2808 
2809 	/* set the reopening flag unless we're taking the vdev offline */
2810 	vd->vdev_reopening = !vd->vdev_offline;
2811 	vdev_close(vd);
2812 	(void) vdev_open(vd);
2813 
2814 	/*
2815 	 * Call vdev_validate() here to make sure we have the same device.
2816 	 * Otherwise, a device with an invalid label could be successfully
2817 	 * opened in response to vdev_reopen().
2818 	 */
2819 	if (vd->vdev_aux) {
2820 		(void) vdev_validate_aux(vd);
2821 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2822 		    vd->vdev_aux == &spa->spa_l2cache) {
2823 			/*
2824 			 * In case the vdev is present we should evict all ARC
2825 			 * buffers and pointers to log blocks and reclaim their
2826 			 * space before restoring its contents to L2ARC.
2827 			 */
2828 			if (l2arc_vdev_present(vd)) {
2829 				l2arc_rebuild_vdev(vd, B_TRUE);
2830 			} else {
2831 				l2arc_add_vdev(spa, vd);
2832 			}
2833 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2834 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2835 		}
2836 	} else {
2837 		(void) vdev_validate(vd);
2838 	}
2839 
2840 	/*
2841 	 * Recheck if resilver is still needed and cancel any
2842 	 * scheduled resilver if resilver is unneeded.
2843 	 */
2844 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2845 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2846 		mutex_enter(&spa->spa_async_lock);
2847 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2848 		mutex_exit(&spa->spa_async_lock);
2849 	}
2850 
2851 	/*
2852 	 * Reassess parent vdev's health.
2853 	 */
2854 	vdev_propagate_state(vd);
2855 }
2856 
2857 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2858 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2859 {
2860 	int error;
2861 
2862 	/*
2863 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2864 	 * For a create, however, we want to fail the request if
2865 	 * there are any components we can't open.
2866 	 */
2867 	error = vdev_open(vd);
2868 
2869 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2870 		vdev_close(vd);
2871 		return (error ? error : SET_ERROR(ENXIO));
2872 	}
2873 
2874 	/*
2875 	 * Recursively load DTLs and initialize all labels.
2876 	 */
2877 	if ((error = vdev_dtl_load(vd)) != 0 ||
2878 	    (error = vdev_label_init(vd, txg, isreplacing ?
2879 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2880 		vdev_close(vd);
2881 		return (error);
2882 	}
2883 
2884 	return (0);
2885 }
2886 
2887 void
vdev_metaslab_set_size(vdev_t * vd)2888 vdev_metaslab_set_size(vdev_t *vd)
2889 {
2890 	uint64_t asize = vd->vdev_asize;
2891 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2892 	uint64_t ms_shift;
2893 
2894 	/*
2895 	 * There are two dimensions to the metaslab sizing calculation:
2896 	 * the size of the metaslab and the count of metaslabs per vdev.
2897 	 *
2898 	 * The default values used below are a good balance between memory
2899 	 * usage (larger metaslab size means more memory needed for loaded
2900 	 * metaslabs; more metaslabs means more memory needed for the
2901 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2902 	 * longer to load), and metaslab sync time (more metaslabs means
2903 	 * more time spent syncing all of them).
2904 	 *
2905 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2906 	 * The range of the dimensions are as follows:
2907 	 *
2908 	 *	2^29 <= ms_size  <= 2^34
2909 	 *	  16 <= ms_count <= 131,072
2910 	 *
2911 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2912 	 * at least 512MB (2^29) to minimize fragmentation effects when
2913 	 * testing with smaller devices.  However, the count constraint
2914 	 * of at least 16 metaslabs will override this minimum size goal.
2915 	 *
2916 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2917 	 * size of 16GB.  However, we will cap the total count to 2^17
2918 	 * metaslabs to keep our memory footprint in check and let the
2919 	 * metaslab size grow from there if that limit is hit.
2920 	 *
2921 	 * The net effect of applying above constrains is summarized below.
2922 	 *
2923 	 *   vdev size       metaslab count
2924 	 *  --------------|-----------------
2925 	 *      < 8GB        ~16
2926 	 *  8GB   - 100GB   one per 512MB
2927 	 *  100GB - 3TB     ~200
2928 	 *  3TB   - 2PB     one per 16GB
2929 	 *      > 2PB       ~131,072
2930 	 *  --------------------------------
2931 	 *
2932 	 *  Finally, note that all of the above calculate the initial
2933 	 *  number of metaslabs. Expanding a top-level vdev will result
2934 	 *  in additional metaslabs being allocated making it possible
2935 	 *  to exceed the zfs_vdev_ms_count_limit.
2936 	 */
2937 
2938 	if (ms_count < zfs_vdev_min_ms_count)
2939 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2940 	else if (ms_count > zfs_vdev_default_ms_count)
2941 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2942 	else
2943 		ms_shift = zfs_vdev_default_ms_shift;
2944 
2945 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2946 		ms_shift = SPA_MAXBLOCKSHIFT;
2947 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2948 		ms_shift = zfs_vdev_max_ms_shift;
2949 		/* cap the total count to constrain memory footprint */
2950 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2951 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2952 	}
2953 
2954 	vd->vdev_ms_shift = ms_shift;
2955 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2956 }
2957 
2958 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2959 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2960 {
2961 	ASSERT(vd == vd->vdev_top);
2962 	/* indirect vdevs don't have metaslabs or dtls */
2963 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2964 	ASSERT(ISP2(flags));
2965 	ASSERT(spa_writeable(vd->vdev_spa));
2966 
2967 	if (flags & VDD_METASLAB)
2968 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2969 
2970 	if (flags & VDD_DTL)
2971 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2972 
2973 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2974 }
2975 
2976 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2977 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2978 {
2979 	for (int c = 0; c < vd->vdev_children; c++)
2980 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2981 
2982 	if (vd->vdev_ops->vdev_op_leaf)
2983 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2984 }
2985 
2986 /*
2987  * DTLs.
2988  *
2989  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2990  * the vdev has less than perfect replication.  There are four kinds of DTL:
2991  *
2992  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2993  *
2994  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2995  *
2996  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2997  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2998  *	txgs that was scrubbed.
2999  *
3000  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3001  *	persistent errors or just some device being offline.
3002  *	Unlike the other three, the DTL_OUTAGE map is not generally
3003  *	maintained; it's only computed when needed, typically to
3004  *	determine whether a device can be detached.
3005  *
3006  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3007  * either has the data or it doesn't.
3008  *
3009  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3010  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3011  * if any child is less than fully replicated, then so is its parent.
3012  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3013  * comprising only those txgs which appear in 'maxfaults' or more children;
3014  * those are the txgs we don't have enough replication to read.  For example,
3015  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3016  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3017  * two child DTL_MISSING maps.
3018  *
3019  * It should be clear from the above that to compute the DTLs and outage maps
3020  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3021  * Therefore, that is all we keep on disk.  When loading the pool, or after
3022  * a configuration change, we generate all other DTLs from first principles.
3023  */
3024 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3025 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3026 {
3027 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3028 
3029 	ASSERT(t < DTL_TYPES);
3030 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3031 	ASSERT(spa_writeable(vd->vdev_spa));
3032 
3033 	mutex_enter(&vd->vdev_dtl_lock);
3034 	if (!zfs_range_tree_contains(rt, txg, size))
3035 		zfs_range_tree_add(rt, txg, size);
3036 	mutex_exit(&vd->vdev_dtl_lock);
3037 }
3038 
3039 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3040 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3041 {
3042 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3043 	boolean_t dirty = B_FALSE;
3044 
3045 	ASSERT(t < DTL_TYPES);
3046 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3047 
3048 	/*
3049 	 * While we are loading the pool, the DTLs have not been loaded yet.
3050 	 * This isn't a problem but it can result in devices being tried
3051 	 * which are known to not have the data.  In which case, the import
3052 	 * is relying on the checksum to ensure that we get the right data.
3053 	 * Note that while importing we are only reading the MOS, which is
3054 	 * always checksummed.
3055 	 */
3056 	mutex_enter(&vd->vdev_dtl_lock);
3057 	if (!zfs_range_tree_is_empty(rt))
3058 		dirty = zfs_range_tree_contains(rt, txg, size);
3059 	mutex_exit(&vd->vdev_dtl_lock);
3060 
3061 	return (dirty);
3062 }
3063 
3064 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3065 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3066 {
3067 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3068 	boolean_t empty;
3069 
3070 	mutex_enter(&vd->vdev_dtl_lock);
3071 	empty = zfs_range_tree_is_empty(rt);
3072 	mutex_exit(&vd->vdev_dtl_lock);
3073 
3074 	return (empty);
3075 }
3076 
3077 /*
3078  * Check if the txg falls within the range which must be
3079  * resilvered.  DVAs outside this range can always be skipped.
3080  */
3081 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3082 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3083     uint64_t phys_birth)
3084 {
3085 	(void) dva, (void) psize;
3086 
3087 	/* Set by sequential resilver. */
3088 	if (phys_birth == TXG_UNKNOWN)
3089 		return (B_TRUE);
3090 
3091 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3092 }
3093 
3094 /*
3095  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3096  */
3097 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3098 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3099     uint64_t phys_birth)
3100 {
3101 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3102 
3103 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3104 	    vd->vdev_ops->vdev_op_leaf)
3105 		return (B_TRUE);
3106 
3107 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3108 	    phys_birth));
3109 }
3110 
3111 /*
3112  * Returns the lowest txg in the DTL range.
3113  */
3114 static uint64_t
vdev_dtl_min(vdev_t * vd)3115 vdev_dtl_min(vdev_t *vd)
3116 {
3117 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3118 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3119 	ASSERT0(vd->vdev_children);
3120 
3121 	return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3122 }
3123 
3124 /*
3125  * Returns the highest txg in the DTL.
3126  */
3127 static uint64_t
vdev_dtl_max(vdev_t * vd)3128 vdev_dtl_max(vdev_t *vd)
3129 {
3130 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3131 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3132 	ASSERT0(vd->vdev_children);
3133 
3134 	return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3135 }
3136 
3137 /*
3138  * Determine if a resilvering vdev should remove any DTL entries from
3139  * its range. If the vdev was resilvering for the entire duration of the
3140  * scan then it should excise that range from its DTLs. Otherwise, this
3141  * vdev is considered partially resilvered and should leave its DTL
3142  * entries intact. The comment in vdev_dtl_reassess() describes how we
3143  * excise the DTLs.
3144  */
3145 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3146 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3147 {
3148 	ASSERT0(vd->vdev_children);
3149 
3150 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3151 		return (B_FALSE);
3152 
3153 	if (vd->vdev_resilver_deferred)
3154 		return (B_FALSE);
3155 
3156 	if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3157 		return (B_TRUE);
3158 
3159 	if (rebuild_done) {
3160 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3161 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3162 
3163 		/* Rebuild not initiated by attach */
3164 		if (vd->vdev_rebuild_txg == 0)
3165 			return (B_TRUE);
3166 
3167 		/*
3168 		 * When a rebuild completes without error then all missing data
3169 		 * up to the rebuild max txg has been reconstructed and the DTL
3170 		 * is eligible for excision.
3171 		 */
3172 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3173 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3174 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3175 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3176 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3177 			return (B_TRUE);
3178 		}
3179 	} else {
3180 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3181 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3182 
3183 		/* Resilver not initiated by attach */
3184 		if (vd->vdev_resilver_txg == 0)
3185 			return (B_TRUE);
3186 
3187 		/*
3188 		 * When a resilver is initiated the scan will assign the
3189 		 * scn_max_txg value to the highest txg value that exists
3190 		 * in all DTLs. If this device's max DTL is not part of this
3191 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3192 		 * then it is not eligible for excision.
3193 		 */
3194 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3195 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3196 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3197 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3198 			return (B_TRUE);
3199 		}
3200 	}
3201 
3202 	return (B_FALSE);
3203 }
3204 
3205 /*
3206  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3207  * write operations will be issued to the pool.
3208  */
3209 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3210 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3211     boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3212 {
3213 	spa_t *spa = vd->vdev_spa;
3214 	avl_tree_t reftree;
3215 	int minref;
3216 
3217 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3218 
3219 	for (int c = 0; c < vd->vdev_children; c++)
3220 		vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3221 		    scrub_txg, scrub_done, rebuild_done, faulting);
3222 
3223 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3224 		return;
3225 
3226 	if (vd->vdev_ops->vdev_op_leaf) {
3227 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3228 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3229 		boolean_t check_excise = B_FALSE;
3230 		boolean_t wasempty = B_TRUE;
3231 
3232 		mutex_enter(&vd->vdev_dtl_lock);
3233 
3234 		/*
3235 		 * If requested, pretend the scan or rebuild completed cleanly.
3236 		 */
3237 		if (zfs_scan_ignore_errors) {
3238 			if (scn != NULL)
3239 				scn->scn_phys.scn_errors = 0;
3240 			if (vr != NULL)
3241 				vr->vr_rebuild_phys.vrp_errors = 0;
3242 		}
3243 
3244 		if (scrub_txg != 0 &&
3245 		    !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3246 			wasempty = B_FALSE;
3247 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3248 			    "dtl:%llu/%llu errors:%llu",
3249 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3250 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3251 			    (u_longlong_t)vdev_dtl_min(vd),
3252 			    (u_longlong_t)vdev_dtl_max(vd),
3253 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3254 		}
3255 
3256 		/*
3257 		 * If we've completed a scrub/resilver or a rebuild cleanly
3258 		 * then determine if this vdev should remove any DTLs. We
3259 		 * only want to excise regions on vdevs that were available
3260 		 * during the entire duration of this scan.
3261 		 */
3262 		if (rebuild_done &&
3263 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3264 			check_excise = B_TRUE;
3265 		} else {
3266 			if (spa->spa_scrub_started ||
3267 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3268 				check_excise = B_TRUE;
3269 			}
3270 		}
3271 
3272 		if (scrub_txg && check_excise &&
3273 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3274 			/*
3275 			 * We completed a scrub, resilver or rebuild up to
3276 			 * scrub_txg.  If we did it without rebooting, then
3277 			 * the scrub dtl will be valid, so excise the old
3278 			 * region and fold in the scrub dtl.  Otherwise,
3279 			 * leave the dtl as-is if there was an error.
3280 			 *
3281 			 * There's little trick here: to excise the beginning
3282 			 * of the DTL_MISSING map, we put it into a reference
3283 			 * tree and then add a segment with refcnt -1 that
3284 			 * covers the range [0, scrub_txg).  This means
3285 			 * that each txg in that range has refcnt -1 or 0.
3286 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3287 			 * entries in the range [0, scrub_txg) will have a
3288 			 * positive refcnt -- either 1 or 2.  We then convert
3289 			 * the reference tree into the new DTL_MISSING map.
3290 			 */
3291 			space_reftree_create(&reftree);
3292 			space_reftree_add_map(&reftree,
3293 			    vd->vdev_dtl[DTL_MISSING], 1);
3294 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3295 			space_reftree_add_map(&reftree,
3296 			    vd->vdev_dtl[DTL_SCRUB], 2);
3297 			space_reftree_generate_map(&reftree,
3298 			    vd->vdev_dtl[DTL_MISSING], 1);
3299 			space_reftree_destroy(&reftree);
3300 
3301 			if (!zfs_range_tree_is_empty(
3302 			    vd->vdev_dtl[DTL_MISSING])) {
3303 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3304 				    (u_longlong_t)vdev_dtl_min(vd),
3305 				    (u_longlong_t)vdev_dtl_max(vd));
3306 			} else if (!wasempty) {
3307 				zfs_dbgmsg("DTL_MISSING is now empty");
3308 			}
3309 		}
3310 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3311 		zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3312 		    zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3313 		if (scrub_done)
3314 			zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3315 			    NULL);
3316 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3317 
3318 		/*
3319 		 * For the faulting case, treat members of a replacing vdev
3320 		 * as if they are not available. It's more likely than not that
3321 		 * a vdev in a replacing vdev could encounter read errors so
3322 		 * treat it as not being able to contribute.
3323 		 */
3324 		if (!vdev_readable(vd) ||
3325 		    (faulting && vd->vdev_parent != NULL &&
3326 		    vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3327 			zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3328 		} else {
3329 			zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3330 			    zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3331 		}
3332 
3333 		/*
3334 		 * If the vdev was resilvering or rebuilding and no longer
3335 		 * has any DTLs then reset the appropriate flag and dirty
3336 		 * the top level so that we persist the change.
3337 		 */
3338 		if (txg != 0 &&
3339 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3340 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3341 			if (vd->vdev_rebuild_txg != 0) {
3342 				vd->vdev_rebuild_txg = 0;
3343 				vdev_config_dirty(vd->vdev_top);
3344 			} else if (vd->vdev_resilver_txg != 0) {
3345 				vd->vdev_resilver_txg = 0;
3346 				vdev_config_dirty(vd->vdev_top);
3347 			}
3348 		}
3349 
3350 		mutex_exit(&vd->vdev_dtl_lock);
3351 
3352 		if (txg != 0)
3353 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3354 	} else {
3355 		mutex_enter(&vd->vdev_dtl_lock);
3356 		for (int t = 0; t < DTL_TYPES; t++) {
3357 			/* account for child's outage in parent's missing map */
3358 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3359 			if (t == DTL_SCRUB) {
3360 				/* leaf vdevs only */
3361 				continue;
3362 			}
3363 			if (t == DTL_PARTIAL) {
3364 				/* i.e. non-zero */
3365 				minref = 1;
3366 			} else if (vdev_get_nparity(vd) != 0) {
3367 				/* RAIDZ, DRAID */
3368 				minref = vdev_get_nparity(vd) + 1;
3369 			} else {
3370 				/* any kind of mirror */
3371 				minref = vd->vdev_children;
3372 			}
3373 			space_reftree_create(&reftree);
3374 			for (int c = 0; c < vd->vdev_children; c++) {
3375 				vdev_t *cvd = vd->vdev_child[c];
3376 				mutex_enter(&cvd->vdev_dtl_lock);
3377 				space_reftree_add_map(&reftree,
3378 				    cvd->vdev_dtl[s], 1);
3379 				mutex_exit(&cvd->vdev_dtl_lock);
3380 			}
3381 			space_reftree_generate_map(&reftree,
3382 			    vd->vdev_dtl[t], minref);
3383 			space_reftree_destroy(&reftree);
3384 		}
3385 		mutex_exit(&vd->vdev_dtl_lock);
3386 	}
3387 
3388 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3389 		raidz_dtl_reassessed(vd);
3390 	}
3391 }
3392 
3393 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3394 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3395     boolean_t scrub_done, boolean_t rebuild_done)
3396 {
3397 	return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3398 	    rebuild_done, B_FALSE));
3399 }
3400 
3401 /*
3402  * Iterate over all the vdevs except spare, and post kobj events
3403  */
3404 void
vdev_post_kobj_evt(vdev_t * vd)3405 vdev_post_kobj_evt(vdev_t *vd)
3406 {
3407 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3408 	    vd->vdev_kobj_flag == B_FALSE) {
3409 		vd->vdev_kobj_flag = B_TRUE;
3410 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3411 	}
3412 
3413 	for (int c = 0; c < vd->vdev_children; c++)
3414 		vdev_post_kobj_evt(vd->vdev_child[c]);
3415 }
3416 
3417 /*
3418  * Iterate over all the vdevs except spare, and clear kobj events
3419  */
3420 void
vdev_clear_kobj_evt(vdev_t * vd)3421 vdev_clear_kobj_evt(vdev_t *vd)
3422 {
3423 	vd->vdev_kobj_flag = B_FALSE;
3424 
3425 	for (int c = 0; c < vd->vdev_children; c++)
3426 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3427 }
3428 
3429 int
vdev_dtl_load(vdev_t * vd)3430 vdev_dtl_load(vdev_t *vd)
3431 {
3432 	spa_t *spa = vd->vdev_spa;
3433 	objset_t *mos = spa->spa_meta_objset;
3434 	zfs_range_tree_t *rt;
3435 	int error = 0;
3436 
3437 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3438 		ASSERT(vdev_is_concrete(vd));
3439 
3440 		/*
3441 		 * If the dtl cannot be sync'd there is no need to open it.
3442 		 */
3443 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3444 			return (0);
3445 
3446 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3447 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3448 		if (error)
3449 			return (error);
3450 		ASSERT(vd->vdev_dtl_sm != NULL);
3451 
3452 		rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3453 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3454 		if (error == 0) {
3455 			mutex_enter(&vd->vdev_dtl_lock);
3456 			zfs_range_tree_walk(rt, zfs_range_tree_add,
3457 			    vd->vdev_dtl[DTL_MISSING]);
3458 			mutex_exit(&vd->vdev_dtl_lock);
3459 		}
3460 
3461 		zfs_range_tree_vacate(rt, NULL, NULL);
3462 		zfs_range_tree_destroy(rt);
3463 
3464 		return (error);
3465 	}
3466 
3467 	for (int c = 0; c < vd->vdev_children; c++) {
3468 		error = vdev_dtl_load(vd->vdev_child[c]);
3469 		if (error != 0)
3470 			break;
3471 	}
3472 
3473 	return (error);
3474 }
3475 
3476 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3477 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3478 {
3479 	spa_t *spa = vd->vdev_spa;
3480 	objset_t *mos = spa->spa_meta_objset;
3481 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3482 	const char *string;
3483 
3484 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3485 
3486 	string =
3487 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3488 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3489 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3490 
3491 	ASSERT(string != NULL);
3492 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3493 	    1, strlen(string) + 1, string, tx));
3494 
3495 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3496 		spa_activate_allocation_classes(spa, tx);
3497 	}
3498 }
3499 
3500 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3501 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3502 {
3503 	spa_t *spa = vd->vdev_spa;
3504 
3505 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3506 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3507 	    zapobj, tx));
3508 }
3509 
3510 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3511 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3512 {
3513 	spa_t *spa = vd->vdev_spa;
3514 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3515 	    DMU_OT_NONE, 0, tx);
3516 
3517 	ASSERT(zap != 0);
3518 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3519 	    zap, tx));
3520 
3521 	return (zap);
3522 }
3523 
3524 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3525 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3526 {
3527 	if (vd->vdev_ops != &vdev_hole_ops &&
3528 	    vd->vdev_ops != &vdev_missing_ops &&
3529 	    vd->vdev_ops != &vdev_root_ops &&
3530 	    !vd->vdev_top->vdev_removing) {
3531 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3532 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3533 		}
3534 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3535 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3536 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3537 				vdev_zap_allocation_data(vd, tx);
3538 		}
3539 	}
3540 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3541 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3542 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3543 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3544 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3545 	}
3546 
3547 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3548 		vdev_construct_zaps(vd->vdev_child[i], tx);
3549 	}
3550 }
3551 
3552 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3553 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3554 {
3555 	spa_t *spa = vd->vdev_spa;
3556 	zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3557 	objset_t *mos = spa->spa_meta_objset;
3558 	zfs_range_tree_t *rtsync;
3559 	dmu_tx_t *tx;
3560 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3561 
3562 	ASSERT(vdev_is_concrete(vd));
3563 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3564 
3565 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3566 
3567 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3568 		mutex_enter(&vd->vdev_dtl_lock);
3569 		space_map_free(vd->vdev_dtl_sm, tx);
3570 		space_map_close(vd->vdev_dtl_sm);
3571 		vd->vdev_dtl_sm = NULL;
3572 		mutex_exit(&vd->vdev_dtl_lock);
3573 
3574 		/*
3575 		 * We only destroy the leaf ZAP for detached leaves or for
3576 		 * removed log devices. Removed data devices handle leaf ZAP
3577 		 * cleanup later, once cancellation is no longer possible.
3578 		 */
3579 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3580 		    vd->vdev_top->vdev_islog)) {
3581 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3582 			vd->vdev_leaf_zap = 0;
3583 		}
3584 
3585 		dmu_tx_commit(tx);
3586 		return;
3587 	}
3588 
3589 	if (vd->vdev_dtl_sm == NULL) {
3590 		uint64_t new_object;
3591 
3592 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3593 		VERIFY3U(new_object, !=, 0);
3594 
3595 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3596 		    0, -1ULL, 0));
3597 		ASSERT(vd->vdev_dtl_sm != NULL);
3598 	}
3599 
3600 	rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3601 
3602 	mutex_enter(&vd->vdev_dtl_lock);
3603 	zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3604 	mutex_exit(&vd->vdev_dtl_lock);
3605 
3606 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3607 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3608 	zfs_range_tree_vacate(rtsync, NULL, NULL);
3609 
3610 	zfs_range_tree_destroy(rtsync);
3611 
3612 	/*
3613 	 * If the object for the space map has changed then dirty
3614 	 * the top level so that we update the config.
3615 	 */
3616 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3617 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3618 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3619 		    (u_longlong_t)object,
3620 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3621 		vdev_config_dirty(vd->vdev_top);
3622 	}
3623 
3624 	dmu_tx_commit(tx);
3625 }
3626 
3627 /*
3628  * Determine whether the specified vdev can be
3629  * - offlined
3630  * - detached
3631  * - removed
3632  * - faulted
3633  * without losing data.
3634  */
3635 boolean_t
vdev_dtl_required(vdev_t * vd)3636 vdev_dtl_required(vdev_t *vd)
3637 {
3638 	spa_t *spa = vd->vdev_spa;
3639 	vdev_t *tvd = vd->vdev_top;
3640 	uint8_t cant_read = vd->vdev_cant_read;
3641 	boolean_t required;
3642 	boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3643 
3644 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3645 
3646 	if (vd == spa->spa_root_vdev || vd == tvd)
3647 		return (B_TRUE);
3648 
3649 	/*
3650 	 * Temporarily mark the device as unreadable, and then determine
3651 	 * whether this results in any DTL outages in the top-level vdev.
3652 	 * If not, we can safely offline/detach/remove the device.
3653 	 */
3654 	vd->vdev_cant_read = B_TRUE;
3655 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3656 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3657 	vd->vdev_cant_read = cant_read;
3658 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3659 
3660 	if (!required && zio_injection_enabled) {
3661 		required = !!zio_handle_device_injection(vd, NULL,
3662 		    SET_ERROR(ECHILD));
3663 	}
3664 
3665 	return (required);
3666 }
3667 
3668 /*
3669  * Determine if resilver is needed, and if so the txg range.
3670  */
3671 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3672 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3673 {
3674 	boolean_t needed = B_FALSE;
3675 	uint64_t thismin = UINT64_MAX;
3676 	uint64_t thismax = 0;
3677 
3678 	if (vd->vdev_children == 0) {
3679 		mutex_enter(&vd->vdev_dtl_lock);
3680 		if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3681 		    vdev_writeable(vd)) {
3682 
3683 			thismin = vdev_dtl_min(vd);
3684 			thismax = vdev_dtl_max(vd);
3685 			needed = B_TRUE;
3686 		}
3687 		mutex_exit(&vd->vdev_dtl_lock);
3688 	} else {
3689 		for (int c = 0; c < vd->vdev_children; c++) {
3690 			vdev_t *cvd = vd->vdev_child[c];
3691 			uint64_t cmin, cmax;
3692 
3693 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3694 				thismin = MIN(thismin, cmin);
3695 				thismax = MAX(thismax, cmax);
3696 				needed = B_TRUE;
3697 			}
3698 		}
3699 	}
3700 
3701 	if (needed && minp) {
3702 		*minp = thismin;
3703 		*maxp = thismax;
3704 	}
3705 	return (needed);
3706 }
3707 
3708 /*
3709  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3710  * will contain either the checkpoint spacemap object or zero if none exists.
3711  * All other errors are returned to the caller.
3712  */
3713 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3714 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3715 {
3716 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3717 
3718 	if (vd->vdev_top_zap == 0) {
3719 		*sm_obj = 0;
3720 		return (0);
3721 	}
3722 
3723 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3724 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3725 	if (error == ENOENT) {
3726 		*sm_obj = 0;
3727 		error = 0;
3728 	}
3729 
3730 	return (error);
3731 }
3732 
3733 int
vdev_load(vdev_t * vd)3734 vdev_load(vdev_t *vd)
3735 {
3736 	int children = vd->vdev_children;
3737 	int error = 0;
3738 	taskq_t *tq = NULL;
3739 
3740 	/*
3741 	 * It's only worthwhile to use the taskq for the root vdev, because the
3742 	 * slow part is metaslab_init, and that only happens for top-level
3743 	 * vdevs.
3744 	 */
3745 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3746 		tq = taskq_create("vdev_load", children, minclsyspri,
3747 		    children, children, TASKQ_PREPOPULATE);
3748 	}
3749 
3750 	/*
3751 	 * Recursively load all children.
3752 	 */
3753 	for (int c = 0; c < vd->vdev_children; c++) {
3754 		vdev_t *cvd = vd->vdev_child[c];
3755 
3756 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3757 			cvd->vdev_load_error = vdev_load(cvd);
3758 		} else {
3759 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3760 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3761 		}
3762 	}
3763 
3764 	if (tq != NULL) {
3765 		taskq_wait(tq);
3766 		taskq_destroy(tq);
3767 	}
3768 
3769 	for (int c = 0; c < vd->vdev_children; c++) {
3770 		int error = vd->vdev_child[c]->vdev_load_error;
3771 
3772 		if (error != 0)
3773 			return (error);
3774 	}
3775 
3776 	vdev_set_deflate_ratio(vd);
3777 
3778 	if (vd->vdev_ops == &vdev_raidz_ops) {
3779 		error = vdev_raidz_load(vd);
3780 		if (error != 0)
3781 			return (error);
3782 	}
3783 
3784 	/*
3785 	 * On spa_load path, grab the allocation bias from our zap
3786 	 */
3787 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3788 		spa_t *spa = vd->vdev_spa;
3789 		char bias_str[64];
3790 
3791 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3792 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3793 		    bias_str);
3794 		if (error == 0) {
3795 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3796 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3797 		} else if (error != ENOENT) {
3798 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3799 			    VDEV_AUX_CORRUPT_DATA);
3800 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3801 			    "failed [error=%d]",
3802 			    (u_longlong_t)vd->vdev_top_zap, error);
3803 			return (error);
3804 		}
3805 	}
3806 
3807 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3808 		spa_t *spa = vd->vdev_spa;
3809 		uint64_t failfast;
3810 
3811 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3812 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3813 		    1, &failfast);
3814 		if (error == 0) {
3815 			vd->vdev_failfast = failfast & 1;
3816 		} else if (error == ENOENT) {
3817 			vd->vdev_failfast = vdev_prop_default_numeric(
3818 			    VDEV_PROP_FAILFAST);
3819 		} else {
3820 			vdev_dbgmsg(vd,
3821 			    "vdev_load: zap_lookup(top_zap=%llu) "
3822 			    "failed [error=%d]",
3823 			    (u_longlong_t)vd->vdev_top_zap, error);
3824 		}
3825 	}
3826 
3827 	/*
3828 	 * Load any rebuild state from the top-level vdev zap.
3829 	 */
3830 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3831 		error = vdev_rebuild_load(vd);
3832 		if (error && error != ENOTSUP) {
3833 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3834 			    VDEV_AUX_CORRUPT_DATA);
3835 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3836 			    "failed [error=%d]", error);
3837 			return (error);
3838 		}
3839 	}
3840 
3841 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3842 		uint64_t zapobj;
3843 
3844 		if (vd->vdev_top_zap != 0)
3845 			zapobj = vd->vdev_top_zap;
3846 		else
3847 			zapobj = vd->vdev_leaf_zap;
3848 
3849 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3850 		    &vd->vdev_checksum_n);
3851 		if (error && error != ENOENT)
3852 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3853 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3854 
3855 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3856 		    &vd->vdev_checksum_t);
3857 		if (error && error != ENOENT)
3858 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3859 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3860 
3861 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3862 		    &vd->vdev_io_n);
3863 		if (error && error != ENOENT)
3864 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3865 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3866 
3867 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3868 		    &vd->vdev_io_t);
3869 		if (error && error != ENOENT)
3870 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3871 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3872 
3873 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3874 		    &vd->vdev_slow_io_n);
3875 		if (error && error != ENOENT)
3876 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3877 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3878 
3879 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3880 		    &vd->vdev_slow_io_t);
3881 		if (error && error != ENOENT)
3882 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3883 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3884 	}
3885 
3886 	/*
3887 	 * If this is a top-level vdev, initialize its metaslabs.
3888 	 */
3889 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3890 		vdev_metaslab_group_create(vd);
3891 
3892 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3893 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3894 			    VDEV_AUX_CORRUPT_DATA);
3895 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3896 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3897 			    (u_longlong_t)vd->vdev_asize);
3898 			return (SET_ERROR(ENXIO));
3899 		}
3900 
3901 		error = vdev_metaslab_init(vd, 0);
3902 		if (error != 0) {
3903 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3904 			    "[error=%d]", error);
3905 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3906 			    VDEV_AUX_CORRUPT_DATA);
3907 			return (error);
3908 		}
3909 
3910 		uint64_t checkpoint_sm_obj;
3911 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3912 		if (error == 0 && checkpoint_sm_obj != 0) {
3913 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3914 			ASSERT(vd->vdev_asize != 0);
3915 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3916 
3917 			error = space_map_open(&vd->vdev_checkpoint_sm,
3918 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3919 			    vd->vdev_ashift);
3920 			if (error != 0) {
3921 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3922 				    "failed for checkpoint spacemap (obj %llu) "
3923 				    "[error=%d]",
3924 				    (u_longlong_t)checkpoint_sm_obj, error);
3925 				return (error);
3926 			}
3927 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3928 
3929 			/*
3930 			 * Since the checkpoint_sm contains free entries
3931 			 * exclusively we can use space_map_allocated() to
3932 			 * indicate the cumulative checkpointed space that
3933 			 * has been freed.
3934 			 */
3935 			vd->vdev_stat.vs_checkpoint_space =
3936 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3937 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3938 			    vd->vdev_stat.vs_checkpoint_space;
3939 		} else if (error != 0) {
3940 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3941 			    "checkpoint space map object from vdev ZAP "
3942 			    "[error=%d]", error);
3943 			return (error);
3944 		}
3945 	}
3946 
3947 	/*
3948 	 * If this is a leaf vdev, load its DTL.
3949 	 */
3950 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3951 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3952 		    VDEV_AUX_CORRUPT_DATA);
3953 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3954 		    "[error=%d]", error);
3955 		return (error);
3956 	}
3957 
3958 	uint64_t obsolete_sm_object;
3959 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3960 	if (error == 0 && obsolete_sm_object != 0) {
3961 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3962 		ASSERT(vd->vdev_asize != 0);
3963 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3964 
3965 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3966 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3967 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3968 			    VDEV_AUX_CORRUPT_DATA);
3969 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3970 			    "obsolete spacemap (obj %llu) [error=%d]",
3971 			    (u_longlong_t)obsolete_sm_object, error);
3972 			return (error);
3973 		}
3974 	} else if (error != 0) {
3975 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3976 		    "space map object from vdev ZAP [error=%d]", error);
3977 		return (error);
3978 	}
3979 
3980 	return (0);
3981 }
3982 
3983 /*
3984  * The special vdev case is used for hot spares and l2cache devices.  Its
3985  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3986  * we make sure that we can open the underlying device, then try to read the
3987  * label, and make sure that the label is sane and that it hasn't been
3988  * repurposed to another pool.
3989  */
3990 int
vdev_validate_aux(vdev_t * vd)3991 vdev_validate_aux(vdev_t *vd)
3992 {
3993 	nvlist_t *label;
3994 	uint64_t guid, version;
3995 	uint64_t state;
3996 
3997 	if (!vdev_readable(vd))
3998 		return (0);
3999 
4000 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4001 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4002 		    VDEV_AUX_CORRUPT_DATA);
4003 		return (-1);
4004 	}
4005 
4006 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4007 	    !SPA_VERSION_IS_SUPPORTED(version) ||
4008 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4009 	    guid != vd->vdev_guid ||
4010 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4011 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4012 		    VDEV_AUX_CORRUPT_DATA);
4013 		nvlist_free(label);
4014 		return (-1);
4015 	}
4016 
4017 	/*
4018 	 * We don't actually check the pool state here.  If it's in fact in
4019 	 * use by another pool, we update this fact on the fly when requested.
4020 	 */
4021 	nvlist_free(label);
4022 	return (0);
4023 }
4024 
4025 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4026 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4027 {
4028 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
4029 
4030 	if (vd->vdev_top_zap == 0)
4031 		return;
4032 
4033 	uint64_t object = 0;
4034 	int err = zap_lookup(mos, vd->vdev_top_zap,
4035 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4036 	if (err == ENOENT)
4037 		return;
4038 	VERIFY0(err);
4039 
4040 	VERIFY0(dmu_object_free(mos, object, tx));
4041 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4042 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4043 }
4044 
4045 /*
4046  * Free the objects used to store this vdev's spacemaps, and the array
4047  * that points to them.
4048  */
4049 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4050 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4051 {
4052 	if (vd->vdev_ms_array == 0)
4053 		return;
4054 
4055 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
4056 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4057 	size_t array_bytes = array_count * sizeof (uint64_t);
4058 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4059 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4060 	    array_bytes, smobj_array, 0));
4061 
4062 	for (uint64_t i = 0; i < array_count; i++) {
4063 		uint64_t smobj = smobj_array[i];
4064 		if (smobj == 0)
4065 			continue;
4066 
4067 		space_map_free_obj(mos, smobj, tx);
4068 	}
4069 
4070 	kmem_free(smobj_array, array_bytes);
4071 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4072 	vdev_destroy_ms_flush_data(vd, tx);
4073 	vd->vdev_ms_array = 0;
4074 }
4075 
4076 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4077 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4078 {
4079 	spa_t *spa = vd->vdev_spa;
4080 
4081 	ASSERT(vd->vdev_islog);
4082 	ASSERT(vd == vd->vdev_top);
4083 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
4084 
4085 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4086 
4087 	vdev_destroy_spacemaps(vd, tx);
4088 	if (vd->vdev_top_zap != 0) {
4089 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4090 		vd->vdev_top_zap = 0;
4091 	}
4092 
4093 	dmu_tx_commit(tx);
4094 }
4095 
4096 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4097 vdev_sync_done(vdev_t *vd, uint64_t txg)
4098 {
4099 	metaslab_t *msp;
4100 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4101 
4102 	ASSERT(vdev_is_concrete(vd));
4103 
4104 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4105 	    != NULL)
4106 		metaslab_sync_done(msp, txg);
4107 
4108 	if (reassess) {
4109 		metaslab_sync_reassess(vd->vdev_mg);
4110 		if (vd->vdev_log_mg != NULL)
4111 			metaslab_sync_reassess(vd->vdev_log_mg);
4112 	}
4113 }
4114 
4115 void
vdev_sync(vdev_t * vd,uint64_t txg)4116 vdev_sync(vdev_t *vd, uint64_t txg)
4117 {
4118 	spa_t *spa = vd->vdev_spa;
4119 	vdev_t *lvd;
4120 	metaslab_t *msp;
4121 
4122 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4123 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4124 	if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4125 		ASSERT(vd->vdev_removing ||
4126 		    vd->vdev_ops == &vdev_indirect_ops);
4127 
4128 		vdev_indirect_sync_obsolete(vd, tx);
4129 
4130 		/*
4131 		 * If the vdev is indirect, it can't have dirty
4132 		 * metaslabs or DTLs.
4133 		 */
4134 		if (vd->vdev_ops == &vdev_indirect_ops) {
4135 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4136 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4137 			dmu_tx_commit(tx);
4138 			return;
4139 		}
4140 	}
4141 
4142 	ASSERT(vdev_is_concrete(vd));
4143 
4144 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4145 	    !vd->vdev_removing) {
4146 		ASSERT(vd == vd->vdev_top);
4147 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4148 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4149 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4150 		ASSERT(vd->vdev_ms_array != 0);
4151 		vdev_config_dirty(vd);
4152 	}
4153 
4154 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4155 		metaslab_sync(msp, txg);
4156 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4157 	}
4158 
4159 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4160 		vdev_dtl_sync(lvd, txg);
4161 
4162 	/*
4163 	 * If this is an empty log device being removed, destroy the
4164 	 * metadata associated with it.
4165 	 */
4166 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4167 		vdev_remove_empty_log(vd, txg);
4168 
4169 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4170 	dmu_tx_commit(tx);
4171 }
4172 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4173 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4174 {
4175 	return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4176 }
4177 
4178 /*
4179  * Return the amount of space that should be (or was) allocated for the given
4180  * psize (compressed block size) in the given TXG. Note that for expanded
4181  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4182  * vdev_raidz_psize_to_asize().
4183  */
4184 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4185 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4186 {
4187 	return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4188 }
4189 
4190 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4191 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4192 {
4193 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4194 }
4195 
4196 /*
4197  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4198  * not be opened, and no I/O is attempted.
4199  */
4200 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4201 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4202 {
4203 	vdev_t *vd, *tvd;
4204 
4205 	spa_vdev_state_enter(spa, SCL_NONE);
4206 
4207 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4208 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4209 
4210 	if (!vd->vdev_ops->vdev_op_leaf)
4211 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4212 
4213 	tvd = vd->vdev_top;
4214 
4215 	/*
4216 	 * If user did a 'zpool offline -f' then make the fault persist across
4217 	 * reboots.
4218 	 */
4219 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4220 		/*
4221 		 * There are two kinds of forced faults: temporary and
4222 		 * persistent.  Temporary faults go away at pool import, while
4223 		 * persistent faults stay set.  Both types of faults can be
4224 		 * cleared with a zpool clear.
4225 		 *
4226 		 * We tell if a vdev is persistently faulted by looking at the
4227 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4228 		 * import then it's a persistent fault.  Otherwise, it's
4229 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4230 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4231 		 * tells vdev_config_generate() (which gets run later) to set
4232 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4233 		 */
4234 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4235 		vd->vdev_tmpoffline = B_FALSE;
4236 		aux = VDEV_AUX_EXTERNAL;
4237 	} else {
4238 		vd->vdev_tmpoffline = B_TRUE;
4239 	}
4240 
4241 	/*
4242 	 * We don't directly use the aux state here, but if we do a
4243 	 * vdev_reopen(), we need this value to be present to remember why we
4244 	 * were faulted.
4245 	 */
4246 	vd->vdev_label_aux = aux;
4247 
4248 	/*
4249 	 * Faulted state takes precedence over degraded.
4250 	 */
4251 	vd->vdev_delayed_close = B_FALSE;
4252 	vd->vdev_faulted = 1ULL;
4253 	vd->vdev_degraded = 0ULL;
4254 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4255 
4256 	/*
4257 	 * If this device has the only valid copy of the data, then
4258 	 * back off and simply mark the vdev as degraded instead.
4259 	 */
4260 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4261 		vd->vdev_degraded = 1ULL;
4262 		vd->vdev_faulted = 0ULL;
4263 
4264 		/*
4265 		 * If we reopen the device and it's not dead, only then do we
4266 		 * mark it degraded.
4267 		 */
4268 		vdev_reopen(tvd);
4269 
4270 		if (vdev_readable(vd))
4271 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4272 	}
4273 
4274 	return (spa_vdev_state_exit(spa, vd, 0));
4275 }
4276 
4277 /*
4278  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4279  * user that something is wrong.  The vdev continues to operate as normal as far
4280  * as I/O is concerned.
4281  */
4282 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4283 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4284 {
4285 	vdev_t *vd;
4286 
4287 	spa_vdev_state_enter(spa, SCL_NONE);
4288 
4289 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4290 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4291 
4292 	if (!vd->vdev_ops->vdev_op_leaf)
4293 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4294 
4295 	/*
4296 	 * If the vdev is already faulted, then don't do anything.
4297 	 */
4298 	if (vd->vdev_faulted || vd->vdev_degraded)
4299 		return (spa_vdev_state_exit(spa, NULL, 0));
4300 
4301 	vd->vdev_degraded = 1ULL;
4302 	if (!vdev_is_dead(vd))
4303 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4304 		    aux);
4305 
4306 	return (spa_vdev_state_exit(spa, vd, 0));
4307 }
4308 
4309 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4310 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4311 {
4312 	vdev_t *vd;
4313 
4314 	spa_vdev_state_enter(spa, SCL_NONE);
4315 
4316 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4317 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4318 
4319 	/*
4320 	 * If the vdev is already removed, or expanding which can trigger
4321 	 * repartition add/remove events, then don't do anything.
4322 	 */
4323 	if (vd->vdev_removed || vd->vdev_expanding)
4324 		return (spa_vdev_state_exit(spa, NULL, 0));
4325 
4326 	/*
4327 	 * Confirm the vdev has been removed, otherwise don't do anything.
4328 	 */
4329 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4330 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4331 
4332 	vd->vdev_remove_wanted = B_TRUE;
4333 	spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4334 
4335 	return (spa_vdev_state_exit(spa, vd, 0));
4336 }
4337 
4338 
4339 /*
4340  * Online the given vdev.
4341  *
4342  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4343  * spare device should be detached when the device finishes resilvering.
4344  * Second, the online should be treated like a 'test' online case, so no FMA
4345  * events are generated if the device fails to open.
4346  */
4347 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4348 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4349 {
4350 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4351 	boolean_t wasoffline;
4352 	vdev_state_t oldstate;
4353 
4354 	spa_vdev_state_enter(spa, SCL_NONE);
4355 
4356 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4357 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4358 
4359 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4360 	oldstate = vd->vdev_state;
4361 
4362 	tvd = vd->vdev_top;
4363 	vd->vdev_offline = B_FALSE;
4364 	vd->vdev_tmpoffline = B_FALSE;
4365 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4366 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4367 
4368 	/* XXX - L2ARC 1.0 does not support expansion */
4369 	if (!vd->vdev_aux) {
4370 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4371 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4372 			    spa->spa_autoexpand);
4373 		vd->vdev_expansion_time = gethrestime_sec();
4374 	}
4375 
4376 	vdev_reopen(tvd);
4377 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4378 
4379 	if (!vd->vdev_aux) {
4380 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4381 			pvd->vdev_expanding = B_FALSE;
4382 	}
4383 
4384 	if (newstate)
4385 		*newstate = vd->vdev_state;
4386 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4387 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4388 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4389 	    vd->vdev_parent->vdev_child[0] == vd)
4390 		vd->vdev_unspare = B_TRUE;
4391 
4392 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4393 
4394 		/* XXX - L2ARC 1.0 does not support expansion */
4395 		if (vd->vdev_aux)
4396 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4397 		spa->spa_ccw_fail_time = 0;
4398 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4399 	}
4400 
4401 	/* Restart initializing if necessary */
4402 	mutex_enter(&vd->vdev_initialize_lock);
4403 	if (vdev_writeable(vd) &&
4404 	    vd->vdev_initialize_thread == NULL &&
4405 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4406 		(void) vdev_initialize(vd);
4407 	}
4408 	mutex_exit(&vd->vdev_initialize_lock);
4409 
4410 	/*
4411 	 * Restart trimming if necessary. We do not restart trimming for cache
4412 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4413 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4414 	 * space for upcoming writes.
4415 	 */
4416 	mutex_enter(&vd->vdev_trim_lock);
4417 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4418 	    vd->vdev_trim_thread == NULL &&
4419 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4420 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4421 		    vd->vdev_trim_secure);
4422 	}
4423 	mutex_exit(&vd->vdev_trim_lock);
4424 
4425 	if (wasoffline ||
4426 	    (oldstate < VDEV_STATE_DEGRADED &&
4427 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4428 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4429 
4430 		/*
4431 		 * Asynchronously detach spare vdev if resilver or
4432 		 * rebuild is not required
4433 		 */
4434 		if (vd->vdev_unspare &&
4435 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4436 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4437 		    !vdev_rebuild_active(tvd))
4438 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4439 	}
4440 	return (spa_vdev_state_exit(spa, vd, 0));
4441 }
4442 
4443 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4444 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4445 {
4446 	vdev_t *vd, *tvd;
4447 	int error = 0;
4448 	uint64_t generation;
4449 	metaslab_group_t *mg;
4450 
4451 top:
4452 	spa_vdev_state_enter(spa, SCL_ALLOC);
4453 
4454 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4455 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4456 
4457 	if (!vd->vdev_ops->vdev_op_leaf)
4458 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4459 
4460 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4461 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4462 
4463 	tvd = vd->vdev_top;
4464 	mg = tvd->vdev_mg;
4465 	generation = spa->spa_config_generation + 1;
4466 
4467 	/*
4468 	 * If the device isn't already offline, try to offline it.
4469 	 */
4470 	if (!vd->vdev_offline) {
4471 		/*
4472 		 * If this device has the only valid copy of some data,
4473 		 * don't allow it to be offlined. Log devices are always
4474 		 * expendable.
4475 		 */
4476 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4477 		    vdev_dtl_required(vd))
4478 			return (spa_vdev_state_exit(spa, NULL,
4479 			    SET_ERROR(EBUSY)));
4480 
4481 		/*
4482 		 * If the top-level is a slog and it has had allocations
4483 		 * then proceed.  We check that the vdev's metaslab group
4484 		 * is not NULL since it's possible that we may have just
4485 		 * added this vdev but not yet initialized its metaslabs.
4486 		 */
4487 		if (tvd->vdev_islog && mg != NULL) {
4488 			/*
4489 			 * Prevent any future allocations.
4490 			 */
4491 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4492 			metaslab_group_passivate(mg);
4493 			(void) spa_vdev_state_exit(spa, vd, 0);
4494 
4495 			error = spa_reset_logs(spa);
4496 
4497 			/*
4498 			 * If the log device was successfully reset but has
4499 			 * checkpointed data, do not offline it.
4500 			 */
4501 			if (error == 0 &&
4502 			    tvd->vdev_checkpoint_sm != NULL) {
4503 				ASSERT3U(space_map_allocated(
4504 				    tvd->vdev_checkpoint_sm), !=, 0);
4505 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4506 			}
4507 
4508 			spa_vdev_state_enter(spa, SCL_ALLOC);
4509 
4510 			/*
4511 			 * Check to see if the config has changed.
4512 			 */
4513 			if (error || generation != spa->spa_config_generation) {
4514 				metaslab_group_activate(mg);
4515 				if (error)
4516 					return (spa_vdev_state_exit(spa,
4517 					    vd, error));
4518 				(void) spa_vdev_state_exit(spa, vd, 0);
4519 				goto top;
4520 			}
4521 			ASSERT0(tvd->vdev_stat.vs_alloc);
4522 		}
4523 
4524 		/*
4525 		 * Offline this device and reopen its top-level vdev.
4526 		 * If the top-level vdev is a log device then just offline
4527 		 * it. Otherwise, if this action results in the top-level
4528 		 * vdev becoming unusable, undo it and fail the request.
4529 		 */
4530 		vd->vdev_offline = B_TRUE;
4531 		vdev_reopen(tvd);
4532 
4533 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4534 		    vdev_is_dead(tvd)) {
4535 			vd->vdev_offline = B_FALSE;
4536 			vdev_reopen(tvd);
4537 			return (spa_vdev_state_exit(spa, NULL,
4538 			    SET_ERROR(EBUSY)));
4539 		}
4540 
4541 		/*
4542 		 * Add the device back into the metaslab rotor so that
4543 		 * once we online the device it's open for business.
4544 		 */
4545 		if (tvd->vdev_islog && mg != NULL)
4546 			metaslab_group_activate(mg);
4547 	}
4548 
4549 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4550 
4551 	return (spa_vdev_state_exit(spa, vd, 0));
4552 }
4553 
4554 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4555 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4556 {
4557 	int error;
4558 
4559 	mutex_enter(&spa->spa_vdev_top_lock);
4560 	error = vdev_offline_locked(spa, guid, flags);
4561 	mutex_exit(&spa->spa_vdev_top_lock);
4562 
4563 	return (error);
4564 }
4565 
4566 /*
4567  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4568  * vdev_offline(), we assume the spa config is locked.  We also clear all
4569  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4570  */
4571 void
vdev_clear(spa_t * spa,vdev_t * vd)4572 vdev_clear(spa_t *spa, vdev_t *vd)
4573 {
4574 	vdev_t *rvd = spa->spa_root_vdev;
4575 
4576 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4577 
4578 	if (vd == NULL)
4579 		vd = rvd;
4580 
4581 	vd->vdev_stat.vs_read_errors = 0;
4582 	vd->vdev_stat.vs_write_errors = 0;
4583 	vd->vdev_stat.vs_checksum_errors = 0;
4584 	vd->vdev_stat.vs_dio_verify_errors = 0;
4585 	vd->vdev_stat.vs_slow_ios = 0;
4586 
4587 	for (int c = 0; c < vd->vdev_children; c++)
4588 		vdev_clear(spa, vd->vdev_child[c]);
4589 
4590 	/*
4591 	 * It makes no sense to "clear" an indirect  or removed vdev.
4592 	 */
4593 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4594 		return;
4595 
4596 	/*
4597 	 * If we're in the FAULTED state or have experienced failed I/O, then
4598 	 * clear the persistent state and attempt to reopen the device.  We
4599 	 * also mark the vdev config dirty, so that the new faulted state is
4600 	 * written out to disk.
4601 	 */
4602 	if (vd->vdev_faulted || vd->vdev_degraded ||
4603 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4604 		/*
4605 		 * When reopening in response to a clear event, it may be due to
4606 		 * a fmadm repair request.  In this case, if the device is
4607 		 * still broken, we want to still post the ereport again.
4608 		 */
4609 		vd->vdev_forcefault = B_TRUE;
4610 
4611 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4612 		vd->vdev_cant_read = B_FALSE;
4613 		vd->vdev_cant_write = B_FALSE;
4614 		vd->vdev_stat.vs_aux = 0;
4615 
4616 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4617 
4618 		vd->vdev_forcefault = B_FALSE;
4619 
4620 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4621 			vdev_state_dirty(vd->vdev_top);
4622 
4623 		/* If a resilver isn't required, check if vdevs can be culled */
4624 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4625 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4626 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4627 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4628 
4629 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4630 	}
4631 
4632 	/*
4633 	 * When clearing a FMA-diagnosed fault, we always want to
4634 	 * unspare the device, as we assume that the original spare was
4635 	 * done in response to the FMA fault.
4636 	 */
4637 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4638 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4639 	    vd->vdev_parent->vdev_child[0] == vd)
4640 		vd->vdev_unspare = B_TRUE;
4641 
4642 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4643 	zfs_ereport_clear(spa, vd);
4644 }
4645 
4646 boolean_t
vdev_is_dead(vdev_t * vd)4647 vdev_is_dead(vdev_t *vd)
4648 {
4649 	/*
4650 	 * Holes and missing devices are always considered "dead".
4651 	 * This simplifies the code since we don't have to check for
4652 	 * these types of devices in the various code paths.
4653 	 * Instead we rely on the fact that we skip over dead devices
4654 	 * before issuing I/O to them.
4655 	 */
4656 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4657 	    vd->vdev_ops == &vdev_hole_ops ||
4658 	    vd->vdev_ops == &vdev_missing_ops);
4659 }
4660 
4661 boolean_t
vdev_readable(vdev_t * vd)4662 vdev_readable(vdev_t *vd)
4663 {
4664 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4665 }
4666 
4667 boolean_t
vdev_writeable(vdev_t * vd)4668 vdev_writeable(vdev_t *vd)
4669 {
4670 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4671 	    vdev_is_concrete(vd));
4672 }
4673 
4674 boolean_t
vdev_allocatable(vdev_t * vd)4675 vdev_allocatable(vdev_t *vd)
4676 {
4677 	uint64_t state = vd->vdev_state;
4678 
4679 	/*
4680 	 * We currently allow allocations from vdevs which may be in the
4681 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4682 	 * fails to reopen then we'll catch it later when we're holding
4683 	 * the proper locks.  Note that we have to get the vdev state
4684 	 * in a local variable because although it changes atomically,
4685 	 * we're asking two separate questions about it.
4686 	 */
4687 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4688 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4689 	    vd->vdev_mg->mg_initialized);
4690 }
4691 
4692 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4693 vdev_accessible(vdev_t *vd, zio_t *zio)
4694 {
4695 	ASSERT(zio->io_vd == vd);
4696 
4697 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4698 		return (B_FALSE);
4699 
4700 	if (zio->io_type == ZIO_TYPE_READ)
4701 		return (!vd->vdev_cant_read);
4702 
4703 	if (zio->io_type == ZIO_TYPE_WRITE)
4704 		return (!vd->vdev_cant_write);
4705 
4706 	return (B_TRUE);
4707 }
4708 
4709 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4710 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4711 {
4712 	/*
4713 	 * Exclude the dRAID spare when aggregating to avoid double counting
4714 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4715 	 */
4716 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4717 		return;
4718 
4719 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4720 		vs->vs_ops[t] += cvs->vs_ops[t];
4721 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4722 	}
4723 
4724 	cvs->vs_scan_removing = cvd->vdev_removing;
4725 }
4726 
4727 /*
4728  * Get extended stats
4729  */
4730 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4731 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4732 {
4733 	(void) cvd;
4734 
4735 	int t, b;
4736 	for (t = 0; t < ZIO_TYPES; t++) {
4737 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4738 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4739 
4740 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4741 			vsx->vsx_total_histo[t][b] +=
4742 			    cvsx->vsx_total_histo[t][b];
4743 		}
4744 	}
4745 
4746 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4747 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4748 			vsx->vsx_queue_histo[t][b] +=
4749 			    cvsx->vsx_queue_histo[t][b];
4750 		}
4751 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4752 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4753 
4754 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4755 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4756 
4757 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4758 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4759 	}
4760 
4761 }
4762 
4763 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4764 vdev_is_spacemap_addressable(vdev_t *vd)
4765 {
4766 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4767 		return (B_TRUE);
4768 
4769 	/*
4770 	 * If double-word space map entries are not enabled we assume
4771 	 * 47 bits of the space map entry are dedicated to the entry's
4772 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4773 	 * to calculate the maximum address that can be described by a
4774 	 * space map entry for the given device.
4775 	 */
4776 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4777 
4778 	if (shift >= 63) /* detect potential overflow */
4779 		return (B_TRUE);
4780 
4781 	return (vd->vdev_asize < (1ULL << shift));
4782 }
4783 
4784 /*
4785  * Get statistics for the given vdev.
4786  */
4787 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4788 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4789 {
4790 	int t;
4791 	/*
4792 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4793 	 * over all top-level vdevs (i.e. the direct children of the root).
4794 	 */
4795 	if (!vd->vdev_ops->vdev_op_leaf) {
4796 		if (vs) {
4797 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4798 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4799 		}
4800 		if (vsx)
4801 			memset(vsx, 0, sizeof (*vsx));
4802 
4803 		for (int c = 0; c < vd->vdev_children; c++) {
4804 			vdev_t *cvd = vd->vdev_child[c];
4805 			vdev_stat_t *cvs = &cvd->vdev_stat;
4806 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4807 
4808 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4809 			if (vs)
4810 				vdev_get_child_stat(cvd, vs, cvs);
4811 			if (vsx)
4812 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4813 		}
4814 	} else {
4815 		/*
4816 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4817 		 * other leaf stats are updated in vdev_stat_update().
4818 		 */
4819 		if (!vsx)
4820 			return;
4821 
4822 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4823 
4824 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4825 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4826 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4827 		}
4828 	}
4829 }
4830 
4831 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4832 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4833 {
4834 	vdev_t *tvd = vd->vdev_top;
4835 	mutex_enter(&vd->vdev_stat_lock);
4836 	if (vs) {
4837 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4838 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4839 		vs->vs_state = vd->vdev_state;
4840 		vs->vs_rsize = vdev_get_min_asize(vd);
4841 
4842 		if (vd->vdev_ops->vdev_op_leaf) {
4843 			vs->vs_pspace = vd->vdev_psize;
4844 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4845 			    VDEV_LABEL_END_SIZE;
4846 			/*
4847 			 * Report initializing progress. Since we don't
4848 			 * have the initializing locks held, this is only
4849 			 * an estimate (although a fairly accurate one).
4850 			 */
4851 			vs->vs_initialize_bytes_done =
4852 			    vd->vdev_initialize_bytes_done;
4853 			vs->vs_initialize_bytes_est =
4854 			    vd->vdev_initialize_bytes_est;
4855 			vs->vs_initialize_state = vd->vdev_initialize_state;
4856 			vs->vs_initialize_action_time =
4857 			    vd->vdev_initialize_action_time;
4858 
4859 			/*
4860 			 * Report manual TRIM progress. Since we don't have
4861 			 * the manual TRIM locks held, this is only an
4862 			 * estimate (although fairly accurate one).
4863 			 */
4864 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4865 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4866 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4867 			vs->vs_trim_state = vd->vdev_trim_state;
4868 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4869 
4870 			/* Set when there is a deferred resilver. */
4871 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4872 		}
4873 
4874 		/*
4875 		 * Report expandable space on top-level, non-auxiliary devices
4876 		 * only. The expandable space is reported in terms of metaslab
4877 		 * sized units since that determines how much space the pool
4878 		 * can expand.
4879 		 */
4880 		if (vd->vdev_aux == NULL && tvd != NULL) {
4881 			vs->vs_esize = P2ALIGN_TYPED(
4882 			    vd->vdev_max_asize - vd->vdev_asize,
4883 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4884 		}
4885 
4886 		vs->vs_configured_ashift = vd->vdev_top != NULL
4887 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4888 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4889 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4890 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4891 		else
4892 			vs->vs_physical_ashift = 0;
4893 
4894 		/*
4895 		 * Report fragmentation and rebuild progress for top-level,
4896 		 * non-auxiliary, concrete devices.
4897 		 */
4898 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4899 		    vdev_is_concrete(vd)) {
4900 			/*
4901 			 * The vdev fragmentation rating doesn't take into
4902 			 * account the embedded slog metaslab (vdev_log_mg).
4903 			 * Since it's only one metaslab, it would have a tiny
4904 			 * impact on the overall fragmentation.
4905 			 */
4906 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4907 			    vd->vdev_mg->mg_fragmentation : 0;
4908 		}
4909 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4910 		    tvd ? tvd->vdev_noalloc : 0);
4911 	}
4912 
4913 	vdev_get_stats_ex_impl(vd, vs, vsx);
4914 	mutex_exit(&vd->vdev_stat_lock);
4915 }
4916 
4917 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4918 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4919 {
4920 	return (vdev_get_stats_ex(vd, vs, NULL));
4921 }
4922 
4923 void
vdev_clear_stats(vdev_t * vd)4924 vdev_clear_stats(vdev_t *vd)
4925 {
4926 	mutex_enter(&vd->vdev_stat_lock);
4927 	vd->vdev_stat.vs_space = 0;
4928 	vd->vdev_stat.vs_dspace = 0;
4929 	vd->vdev_stat.vs_alloc = 0;
4930 	mutex_exit(&vd->vdev_stat_lock);
4931 }
4932 
4933 void
vdev_scan_stat_init(vdev_t * vd)4934 vdev_scan_stat_init(vdev_t *vd)
4935 {
4936 	vdev_stat_t *vs = &vd->vdev_stat;
4937 
4938 	for (int c = 0; c < vd->vdev_children; c++)
4939 		vdev_scan_stat_init(vd->vdev_child[c]);
4940 
4941 	mutex_enter(&vd->vdev_stat_lock);
4942 	vs->vs_scan_processed = 0;
4943 	mutex_exit(&vd->vdev_stat_lock);
4944 }
4945 
4946 void
vdev_stat_update(zio_t * zio,uint64_t psize)4947 vdev_stat_update(zio_t *zio, uint64_t psize)
4948 {
4949 	spa_t *spa = zio->io_spa;
4950 	vdev_t *rvd = spa->spa_root_vdev;
4951 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4952 	vdev_t *pvd;
4953 	uint64_t txg = zio->io_txg;
4954 /* Suppress ASAN false positive */
4955 #ifdef __SANITIZE_ADDRESS__
4956 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4957 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4958 #else
4959 	vdev_stat_t *vs = &vd->vdev_stat;
4960 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4961 #endif
4962 	zio_type_t type = zio->io_type;
4963 	int flags = zio->io_flags;
4964 
4965 	/*
4966 	 * If this i/o is a gang leader, it didn't do any actual work.
4967 	 */
4968 	if (zio->io_gang_tree)
4969 		return;
4970 
4971 	if (zio->io_error == 0) {
4972 		/*
4973 		 * If this is a root i/o, don't count it -- we've already
4974 		 * counted the top-level vdevs, and vdev_get_stats() will
4975 		 * aggregate them when asked.  This reduces contention on
4976 		 * the root vdev_stat_lock and implicitly handles blocks
4977 		 * that compress away to holes, for which there is no i/o.
4978 		 * (Holes never create vdev children, so all the counters
4979 		 * remain zero, which is what we want.)
4980 		 *
4981 		 * Note: this only applies to successful i/o (io_error == 0)
4982 		 * because unlike i/o counts, errors are not additive.
4983 		 * When reading a ditto block, for example, failure of
4984 		 * one top-level vdev does not imply a root-level error.
4985 		 */
4986 		if (vd == rvd)
4987 			return;
4988 
4989 		ASSERT(vd == zio->io_vd);
4990 
4991 		if (flags & ZIO_FLAG_IO_BYPASS)
4992 			return;
4993 
4994 		mutex_enter(&vd->vdev_stat_lock);
4995 
4996 		if (flags & ZIO_FLAG_IO_REPAIR) {
4997 			/*
4998 			 * Repair is the result of a resilver issued by the
4999 			 * scan thread (spa_sync).
5000 			 */
5001 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5002 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5003 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5004 				uint64_t *processed = &scn_phys->scn_processed;
5005 
5006 				if (vd->vdev_ops->vdev_op_leaf)
5007 					atomic_add_64(processed, psize);
5008 				vs->vs_scan_processed += psize;
5009 			}
5010 
5011 			/*
5012 			 * Repair is the result of a rebuild issued by the
5013 			 * rebuild thread (vdev_rebuild_thread).  To avoid
5014 			 * double counting repaired bytes the virtual dRAID
5015 			 * spare vdev is excluded from the processed bytes.
5016 			 */
5017 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5018 				vdev_t *tvd = vd->vdev_top;
5019 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5020 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5021 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5022 
5023 				if (vd->vdev_ops->vdev_op_leaf &&
5024 				    vd->vdev_ops != &vdev_draid_spare_ops) {
5025 					atomic_add_64(rebuilt, psize);
5026 				}
5027 				vs->vs_rebuild_processed += psize;
5028 			}
5029 
5030 			if (flags & ZIO_FLAG_SELF_HEAL)
5031 				vs->vs_self_healed += psize;
5032 		}
5033 
5034 		/*
5035 		 * The bytes/ops/histograms are recorded at the leaf level and
5036 		 * aggregated into the higher level vdevs in vdev_get_stats().
5037 		 */
5038 		if (vd->vdev_ops->vdev_op_leaf &&
5039 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5040 			zio_type_t vs_type = type;
5041 			zio_priority_t priority = zio->io_priority;
5042 
5043 			/*
5044 			 * TRIM ops and bytes are reported to user space as
5045 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
5046 			 * vdev_stat_t structure layout for user space.
5047 			 */
5048 			if (type == ZIO_TYPE_TRIM)
5049 				vs_type = ZIO_TYPE_FLUSH;
5050 
5051 			/*
5052 			 * Solely for the purposes of 'zpool iostat -lqrw'
5053 			 * reporting use the priority to categorize the IO.
5054 			 * Only the following are reported to user space:
5055 			 *
5056 			 *   ZIO_PRIORITY_SYNC_READ,
5057 			 *   ZIO_PRIORITY_SYNC_WRITE,
5058 			 *   ZIO_PRIORITY_ASYNC_READ,
5059 			 *   ZIO_PRIORITY_ASYNC_WRITE,
5060 			 *   ZIO_PRIORITY_SCRUB,
5061 			 *   ZIO_PRIORITY_TRIM,
5062 			 *   ZIO_PRIORITY_REBUILD.
5063 			 */
5064 			if (priority == ZIO_PRIORITY_INITIALIZING) {
5065 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5066 				priority = ZIO_PRIORITY_ASYNC_WRITE;
5067 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
5068 				priority = ((type == ZIO_TYPE_WRITE) ?
5069 				    ZIO_PRIORITY_ASYNC_WRITE :
5070 				    ZIO_PRIORITY_ASYNC_READ);
5071 			}
5072 
5073 			vs->vs_ops[vs_type]++;
5074 			vs->vs_bytes[vs_type] += psize;
5075 
5076 			if (flags & ZIO_FLAG_DELEGATED) {
5077 				vsx->vsx_agg_histo[priority]
5078 				    [RQ_HISTO(zio->io_size)]++;
5079 			} else {
5080 				vsx->vsx_ind_histo[priority]
5081 				    [RQ_HISTO(zio->io_size)]++;
5082 			}
5083 
5084 			if (zio->io_delta && zio->io_delay) {
5085 				vsx->vsx_queue_histo[priority]
5086 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
5087 				vsx->vsx_disk_histo[type]
5088 				    [L_HISTO(zio->io_delay)]++;
5089 				vsx->vsx_total_histo[type]
5090 				    [L_HISTO(zio->io_delta)]++;
5091 			}
5092 		}
5093 
5094 		mutex_exit(&vd->vdev_stat_lock);
5095 		return;
5096 	}
5097 
5098 	if (flags & ZIO_FLAG_SPECULATIVE)
5099 		return;
5100 
5101 	/*
5102 	 * If this is an I/O error that is going to be retried, then ignore the
5103 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
5104 	 * hard errors, when in reality they can happen for any number of
5105 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
5106 	 */
5107 	if (zio->io_error == EIO &&
5108 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5109 		return;
5110 
5111 	/*
5112 	 * Intent logs writes won't propagate their error to the root
5113 	 * I/O so don't mark these types of failures as pool-level
5114 	 * errors.
5115 	 */
5116 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5117 		return;
5118 
5119 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5120 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5121 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5122 	    spa->spa_claiming)) {
5123 		/*
5124 		 * This is either a normal write (not a repair), or it's
5125 		 * a repair induced by the scrub thread, or it's a repair
5126 		 * made by zil_claim() during spa_load() in the first txg.
5127 		 * In the normal case, we commit the DTL change in the same
5128 		 * txg as the block was born.  In the scrub-induced repair
5129 		 * case, we know that scrubs run in first-pass syncing context,
5130 		 * so we commit the DTL change in spa_syncing_txg(spa).
5131 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5132 		 *
5133 		 * We currently do not make DTL entries for failed spontaneous
5134 		 * self-healing writes triggered by normal (non-scrubbing)
5135 		 * reads, because we have no transactional context in which to
5136 		 * do so -- and it's not clear that it'd be desirable anyway.
5137 		 */
5138 		if (vd->vdev_ops->vdev_op_leaf) {
5139 			uint64_t commit_txg = txg;
5140 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5141 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5142 				ASSERT(spa_sync_pass(spa) == 1);
5143 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5144 				commit_txg = spa_syncing_txg(spa);
5145 			} else if (spa->spa_claiming) {
5146 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5147 				commit_txg = spa_first_txg(spa);
5148 			}
5149 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5150 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5151 				return;
5152 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5153 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5154 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5155 		}
5156 		if (vd != rvd)
5157 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5158 	}
5159 }
5160 
5161 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5162 vdev_deflated_space(vdev_t *vd, int64_t space)
5163 {
5164 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5165 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5166 
5167 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5168 }
5169 
5170 /*
5171  * Update the in-core space usage stats for this vdev, its metaslab class,
5172  * and the root vdev.
5173  */
5174 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5175 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5176     int64_t space_delta)
5177 {
5178 	(void) defer_delta;
5179 	int64_t dspace_delta;
5180 	spa_t *spa = vd->vdev_spa;
5181 	vdev_t *rvd = spa->spa_root_vdev;
5182 
5183 	ASSERT(vd == vd->vdev_top);
5184 
5185 	/*
5186 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5187 	 * factor.  We must calculate this here and not at the root vdev
5188 	 * because the root vdev's psize-to-asize is simply the max of its
5189 	 * children's, thus not accurate enough for us.
5190 	 */
5191 	dspace_delta = vdev_deflated_space(vd, space_delta);
5192 
5193 	mutex_enter(&vd->vdev_stat_lock);
5194 	/* ensure we won't underflow */
5195 	if (alloc_delta < 0) {
5196 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5197 	}
5198 
5199 	vd->vdev_stat.vs_alloc += alloc_delta;
5200 	vd->vdev_stat.vs_space += space_delta;
5201 	vd->vdev_stat.vs_dspace += dspace_delta;
5202 	mutex_exit(&vd->vdev_stat_lock);
5203 
5204 	/* every class but log contributes to root space stats */
5205 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5206 		ASSERT(!vd->vdev_isl2cache);
5207 		mutex_enter(&rvd->vdev_stat_lock);
5208 		rvd->vdev_stat.vs_alloc += alloc_delta;
5209 		rvd->vdev_stat.vs_space += space_delta;
5210 		rvd->vdev_stat.vs_dspace += dspace_delta;
5211 		mutex_exit(&rvd->vdev_stat_lock);
5212 	}
5213 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5214 }
5215 
5216 /*
5217  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5218  * so that it will be written out next time the vdev configuration is synced.
5219  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5220  */
5221 void
vdev_config_dirty(vdev_t * vd)5222 vdev_config_dirty(vdev_t *vd)
5223 {
5224 	spa_t *spa = vd->vdev_spa;
5225 	vdev_t *rvd = spa->spa_root_vdev;
5226 	int c;
5227 
5228 	ASSERT(spa_writeable(spa));
5229 
5230 	/*
5231 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5232 	 * update the vdev config manually and set the sync flag.
5233 	 */
5234 	if (vd->vdev_aux != NULL) {
5235 		spa_aux_vdev_t *sav = vd->vdev_aux;
5236 		nvlist_t **aux;
5237 		uint_t naux;
5238 
5239 		for (c = 0; c < sav->sav_count; c++) {
5240 			if (sav->sav_vdevs[c] == vd)
5241 				break;
5242 		}
5243 
5244 		if (c == sav->sav_count) {
5245 			/*
5246 			 * We're being removed.  There's nothing more to do.
5247 			 */
5248 			ASSERT(sav->sav_sync == B_TRUE);
5249 			return;
5250 		}
5251 
5252 		sav->sav_sync = B_TRUE;
5253 
5254 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5255 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5256 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5257 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5258 		}
5259 
5260 		ASSERT(c < naux);
5261 
5262 		/*
5263 		 * Setting the nvlist in the middle if the array is a little
5264 		 * sketchy, but it will work.
5265 		 */
5266 		nvlist_free(aux[c]);
5267 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5268 
5269 		return;
5270 	}
5271 
5272 	/*
5273 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5274 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5275 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5276 	 * so this is sufficient to ensure mutual exclusion.
5277 	 */
5278 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5279 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5280 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5281 
5282 	if (vd == rvd) {
5283 		for (c = 0; c < rvd->vdev_children; c++)
5284 			vdev_config_dirty(rvd->vdev_child[c]);
5285 	} else {
5286 		ASSERT(vd == vd->vdev_top);
5287 
5288 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5289 		    vdev_is_concrete(vd)) {
5290 			list_insert_head(&spa->spa_config_dirty_list, vd);
5291 		}
5292 	}
5293 }
5294 
5295 void
vdev_config_clean(vdev_t * vd)5296 vdev_config_clean(vdev_t *vd)
5297 {
5298 	spa_t *spa = vd->vdev_spa;
5299 
5300 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5301 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5302 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5303 
5304 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5305 	list_remove(&spa->spa_config_dirty_list, vd);
5306 }
5307 
5308 /*
5309  * Mark a top-level vdev's state as dirty, so that the next pass of
5310  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5311  * the state changes from larger config changes because they require
5312  * much less locking, and are often needed for administrative actions.
5313  */
5314 void
vdev_state_dirty(vdev_t * vd)5315 vdev_state_dirty(vdev_t *vd)
5316 {
5317 	spa_t *spa = vd->vdev_spa;
5318 
5319 	ASSERT(spa_writeable(spa));
5320 	ASSERT(vd == vd->vdev_top);
5321 
5322 	/*
5323 	 * The state list is protected by the SCL_STATE lock.  The caller
5324 	 * must either hold SCL_STATE as writer, or must be the sync thread
5325 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5326 	 * so this is sufficient to ensure mutual exclusion.
5327 	 */
5328 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5329 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5330 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5331 
5332 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5333 	    vdev_is_concrete(vd))
5334 		list_insert_head(&spa->spa_state_dirty_list, vd);
5335 }
5336 
5337 void
vdev_state_clean(vdev_t * vd)5338 vdev_state_clean(vdev_t *vd)
5339 {
5340 	spa_t *spa = vd->vdev_spa;
5341 
5342 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5343 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5344 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5345 
5346 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5347 	list_remove(&spa->spa_state_dirty_list, vd);
5348 }
5349 
5350 /*
5351  * Propagate vdev state up from children to parent.
5352  */
5353 void
vdev_propagate_state(vdev_t * vd)5354 vdev_propagate_state(vdev_t *vd)
5355 {
5356 	spa_t *spa = vd->vdev_spa;
5357 	vdev_t *rvd = spa->spa_root_vdev;
5358 	int degraded = 0, faulted = 0;
5359 	int corrupted = 0;
5360 	vdev_t *child;
5361 
5362 	if (vd->vdev_children > 0) {
5363 		for (int c = 0; c < vd->vdev_children; c++) {
5364 			child = vd->vdev_child[c];
5365 
5366 			/*
5367 			 * Don't factor holes or indirect vdevs into the
5368 			 * decision.
5369 			 */
5370 			if (!vdev_is_concrete(child))
5371 				continue;
5372 
5373 			if (!vdev_readable(child) ||
5374 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5375 				/*
5376 				 * Root special: if there is a top-level log
5377 				 * device, treat the root vdev as if it were
5378 				 * degraded.
5379 				 */
5380 				if (child->vdev_islog && vd == rvd)
5381 					degraded++;
5382 				else
5383 					faulted++;
5384 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5385 				degraded++;
5386 			}
5387 
5388 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5389 				corrupted++;
5390 		}
5391 
5392 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5393 
5394 		/*
5395 		 * Root special: if there is a top-level vdev that cannot be
5396 		 * opened due to corrupted metadata, then propagate the root
5397 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5398 		 * replicas'.
5399 		 */
5400 		if (corrupted && vd == rvd &&
5401 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5402 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5403 			    VDEV_AUX_CORRUPT_DATA);
5404 	}
5405 
5406 	if (vd->vdev_parent)
5407 		vdev_propagate_state(vd->vdev_parent);
5408 }
5409 
5410 /*
5411  * Set a vdev's state.  If this is during an open, we don't update the parent
5412  * state, because we're in the process of opening children depth-first.
5413  * Otherwise, we propagate the change to the parent.
5414  *
5415  * If this routine places a device in a faulted state, an appropriate ereport is
5416  * generated.
5417  */
5418 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5419 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5420 {
5421 	uint64_t save_state;
5422 	spa_t *spa = vd->vdev_spa;
5423 
5424 	if (state == vd->vdev_state) {
5425 		/*
5426 		 * Since vdev_offline() code path is already in an offline
5427 		 * state we can miss a statechange event to OFFLINE. Check
5428 		 * the previous state to catch this condition.
5429 		 */
5430 		if (vd->vdev_ops->vdev_op_leaf &&
5431 		    (state == VDEV_STATE_OFFLINE) &&
5432 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5433 			/* post an offline state change */
5434 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5435 		}
5436 		vd->vdev_stat.vs_aux = aux;
5437 		return;
5438 	}
5439 
5440 	save_state = vd->vdev_state;
5441 
5442 	vd->vdev_state = state;
5443 	vd->vdev_stat.vs_aux = aux;
5444 
5445 	/*
5446 	 * If we are setting the vdev state to anything but an open state, then
5447 	 * always close the underlying device unless the device has requested
5448 	 * a delayed close (i.e. we're about to remove or fault the device).
5449 	 * Otherwise, we keep accessible but invalid devices open forever.
5450 	 * We don't call vdev_close() itself, because that implies some extra
5451 	 * checks (offline, etc) that we don't want here.  This is limited to
5452 	 * leaf devices, because otherwise closing the device will affect other
5453 	 * children.
5454 	 */
5455 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5456 	    vd->vdev_ops->vdev_op_leaf)
5457 		vd->vdev_ops->vdev_op_close(vd);
5458 
5459 	if (vd->vdev_removed &&
5460 	    state == VDEV_STATE_CANT_OPEN &&
5461 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5462 		/*
5463 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5464 		 * device was previously marked removed and someone attempted to
5465 		 * reopen it.  If this failed due to a nonexistent device, then
5466 		 * keep the device in the REMOVED state.  We also let this be if
5467 		 * it is one of our special test online cases, which is only
5468 		 * attempting to online the device and shouldn't generate an FMA
5469 		 * fault.
5470 		 */
5471 		vd->vdev_state = VDEV_STATE_REMOVED;
5472 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5473 	} else if (state == VDEV_STATE_REMOVED) {
5474 		vd->vdev_removed = B_TRUE;
5475 	} else if (state == VDEV_STATE_CANT_OPEN) {
5476 		/*
5477 		 * If we fail to open a vdev during an import or recovery, we
5478 		 * mark it as "not available", which signifies that it was
5479 		 * never there to begin with.  Failure to open such a device
5480 		 * is not considered an error.
5481 		 */
5482 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5483 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5484 		    vd->vdev_ops->vdev_op_leaf)
5485 			vd->vdev_not_present = 1;
5486 
5487 		/*
5488 		 * Post the appropriate ereport.  If the 'prevstate' field is
5489 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5490 		 * that this is part of a vdev_reopen().  In this case, we don't
5491 		 * want to post the ereport if the device was already in the
5492 		 * CANT_OPEN state beforehand.
5493 		 *
5494 		 * If the 'checkremove' flag is set, then this is an attempt to
5495 		 * online the device in response to an insertion event.  If we
5496 		 * hit this case, then we have detected an insertion event for a
5497 		 * faulted or offline device that wasn't in the removed state.
5498 		 * In this scenario, we don't post an ereport because we are
5499 		 * about to replace the device, or attempt an online with
5500 		 * vdev_forcefault, which will generate the fault for us.
5501 		 */
5502 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5503 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5504 		    vd != spa->spa_root_vdev) {
5505 			const char *class;
5506 
5507 			switch (aux) {
5508 			case VDEV_AUX_OPEN_FAILED:
5509 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5510 				break;
5511 			case VDEV_AUX_CORRUPT_DATA:
5512 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5513 				break;
5514 			case VDEV_AUX_NO_REPLICAS:
5515 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5516 				break;
5517 			case VDEV_AUX_BAD_GUID_SUM:
5518 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5519 				break;
5520 			case VDEV_AUX_TOO_SMALL:
5521 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5522 				break;
5523 			case VDEV_AUX_BAD_LABEL:
5524 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5525 				break;
5526 			case VDEV_AUX_BAD_ASHIFT:
5527 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5528 				break;
5529 			default:
5530 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5531 			}
5532 
5533 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5534 			    save_state);
5535 		}
5536 
5537 		/* Erase any notion of persistent removed state */
5538 		vd->vdev_removed = B_FALSE;
5539 	} else {
5540 		vd->vdev_removed = B_FALSE;
5541 	}
5542 
5543 	/*
5544 	 * Notify ZED of any significant state-change on a leaf vdev.
5545 	 *
5546 	 */
5547 	if (vd->vdev_ops->vdev_op_leaf) {
5548 		/* preserve original state from a vdev_reopen() */
5549 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5550 		    (vd->vdev_prevstate != vd->vdev_state) &&
5551 		    (save_state <= VDEV_STATE_CLOSED))
5552 			save_state = vd->vdev_prevstate;
5553 
5554 		/* filter out state change due to initial vdev_open */
5555 		if (save_state > VDEV_STATE_CLOSED)
5556 			zfs_post_state_change(spa, vd, save_state);
5557 	}
5558 
5559 	if (!isopen && vd->vdev_parent)
5560 		vdev_propagate_state(vd->vdev_parent);
5561 }
5562 
5563 boolean_t
vdev_children_are_offline(vdev_t * vd)5564 vdev_children_are_offline(vdev_t *vd)
5565 {
5566 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5567 
5568 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5569 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5570 			return (B_FALSE);
5571 	}
5572 
5573 	return (B_TRUE);
5574 }
5575 
5576 /*
5577  * Check the vdev configuration to ensure that it's capable of supporting
5578  * a root pool. We do not support partial configuration.
5579  */
5580 boolean_t
vdev_is_bootable(vdev_t * vd)5581 vdev_is_bootable(vdev_t *vd)
5582 {
5583 	if (!vd->vdev_ops->vdev_op_leaf) {
5584 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5585 
5586 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5587 			return (B_FALSE);
5588 	}
5589 
5590 	for (int c = 0; c < vd->vdev_children; c++) {
5591 		if (!vdev_is_bootable(vd->vdev_child[c]))
5592 			return (B_FALSE);
5593 	}
5594 	return (B_TRUE);
5595 }
5596 
5597 boolean_t
vdev_is_concrete(vdev_t * vd)5598 vdev_is_concrete(vdev_t *vd)
5599 {
5600 	vdev_ops_t *ops = vd->vdev_ops;
5601 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5602 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5603 		return (B_FALSE);
5604 	} else {
5605 		return (B_TRUE);
5606 	}
5607 }
5608 
5609 /*
5610  * Determine if a log device has valid content.  If the vdev was
5611  * removed or faulted in the MOS config then we know that
5612  * the content on the log device has already been written to the pool.
5613  */
5614 boolean_t
vdev_log_state_valid(vdev_t * vd)5615 vdev_log_state_valid(vdev_t *vd)
5616 {
5617 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5618 	    !vd->vdev_removed)
5619 		return (B_TRUE);
5620 
5621 	for (int c = 0; c < vd->vdev_children; c++)
5622 		if (vdev_log_state_valid(vd->vdev_child[c]))
5623 			return (B_TRUE);
5624 
5625 	return (B_FALSE);
5626 }
5627 
5628 /*
5629  * Expand a vdev if possible.
5630  */
5631 void
vdev_expand(vdev_t * vd,uint64_t txg)5632 vdev_expand(vdev_t *vd, uint64_t txg)
5633 {
5634 	ASSERT(vd->vdev_top == vd);
5635 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5636 	ASSERT(vdev_is_concrete(vd));
5637 
5638 	vdev_set_deflate_ratio(vd);
5639 
5640 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5641 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5642 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5643 	    vdev_is_concrete(vd)) {
5644 		vdev_metaslab_group_create(vd);
5645 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5646 		vdev_config_dirty(vd);
5647 	}
5648 }
5649 
5650 /*
5651  * Split a vdev.
5652  */
5653 void
vdev_split(vdev_t * vd)5654 vdev_split(vdev_t *vd)
5655 {
5656 	vdev_t *cvd, *pvd = vd->vdev_parent;
5657 
5658 	VERIFY3U(pvd->vdev_children, >, 1);
5659 
5660 	vdev_remove_child(pvd, vd);
5661 	vdev_compact_children(pvd);
5662 
5663 	ASSERT3P(pvd->vdev_child, !=, NULL);
5664 
5665 	cvd = pvd->vdev_child[0];
5666 	if (pvd->vdev_children == 1) {
5667 		vdev_remove_parent(cvd);
5668 		cvd->vdev_splitting = B_TRUE;
5669 	}
5670 	vdev_propagate_state(cvd);
5671 }
5672 
5673 void
vdev_deadman(vdev_t * vd,const char * tag)5674 vdev_deadman(vdev_t *vd, const char *tag)
5675 {
5676 	for (int c = 0; c < vd->vdev_children; c++) {
5677 		vdev_t *cvd = vd->vdev_child[c];
5678 
5679 		vdev_deadman(cvd, tag);
5680 	}
5681 
5682 	if (vd->vdev_ops->vdev_op_leaf) {
5683 		vdev_queue_t *vq = &vd->vdev_queue;
5684 
5685 		mutex_enter(&vq->vq_lock);
5686 		if (vq->vq_active > 0) {
5687 			spa_t *spa = vd->vdev_spa;
5688 			zio_t *fio;
5689 			uint64_t delta;
5690 
5691 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5692 			    vd->vdev_path, vq->vq_active);
5693 
5694 			/*
5695 			 * Look at the head of all the pending queues,
5696 			 * if any I/O has been outstanding for longer than
5697 			 * the spa_deadman_synctime invoke the deadman logic.
5698 			 */
5699 			fio = list_head(&vq->vq_active_list);
5700 			delta = gethrtime() - fio->io_timestamp;
5701 			if (delta > spa_deadman_synctime(spa))
5702 				zio_deadman(fio, tag);
5703 		}
5704 		mutex_exit(&vq->vq_lock);
5705 	}
5706 }
5707 
5708 void
vdev_defer_resilver(vdev_t * vd)5709 vdev_defer_resilver(vdev_t *vd)
5710 {
5711 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5712 
5713 	vd->vdev_resilver_deferred = B_TRUE;
5714 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5715 }
5716 
5717 /*
5718  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5719  * B_TRUE if we have devices that need to be resilvered and are available to
5720  * accept resilver I/Os.
5721  */
5722 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5723 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5724 {
5725 	boolean_t resilver_needed = B_FALSE;
5726 	spa_t *spa = vd->vdev_spa;
5727 
5728 	for (int c = 0; c < vd->vdev_children; c++) {
5729 		vdev_t *cvd = vd->vdev_child[c];
5730 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5731 	}
5732 
5733 	if (vd == spa->spa_root_vdev &&
5734 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5735 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5736 		vdev_config_dirty(vd);
5737 		spa->spa_resilver_deferred = B_FALSE;
5738 		return (resilver_needed);
5739 	}
5740 
5741 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5742 	    !vd->vdev_ops->vdev_op_leaf)
5743 		return (resilver_needed);
5744 
5745 	vd->vdev_resilver_deferred = B_FALSE;
5746 
5747 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5748 	    vdev_resilver_needed(vd, NULL, NULL));
5749 }
5750 
5751 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5752 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5753 {
5754 	return (rs->rs_start == rs->rs_end);
5755 }
5756 
5757 /*
5758  * Translate a logical range to the first contiguous physical range for the
5759  * specified vdev_t.  This function is initially called with a leaf vdev and
5760  * will walk each parent vdev until it reaches a top-level vdev. Once the
5761  * top-level is reached the physical range is initialized and the recursive
5762  * function begins to unwind. As it unwinds it calls the parent's vdev
5763  * specific translation function to do the real conversion.
5764  */
5765 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5766 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5767     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5768 {
5769 	/*
5770 	 * Walk up the vdev tree
5771 	 */
5772 	if (vd != vd->vdev_top) {
5773 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5774 		    remain_rs);
5775 	} else {
5776 		/*
5777 		 * We've reached the top-level vdev, initialize the physical
5778 		 * range to the logical range and set an empty remaining
5779 		 * range then start to unwind.
5780 		 */
5781 		physical_rs->rs_start = logical_rs->rs_start;
5782 		physical_rs->rs_end = logical_rs->rs_end;
5783 
5784 		remain_rs->rs_start = logical_rs->rs_start;
5785 		remain_rs->rs_end = logical_rs->rs_start;
5786 
5787 		return;
5788 	}
5789 
5790 	vdev_t *pvd = vd->vdev_parent;
5791 	ASSERT3P(pvd, !=, NULL);
5792 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5793 
5794 	/*
5795 	 * As this recursive function unwinds, translate the logical
5796 	 * range into its physical and any remaining components by calling
5797 	 * the vdev specific translate function.
5798 	 */
5799 	zfs_range_seg64_t intermediate = { 0 };
5800 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5801 
5802 	physical_rs->rs_start = intermediate.rs_start;
5803 	physical_rs->rs_end = intermediate.rs_end;
5804 }
5805 
5806 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5807 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5808     vdev_xlate_func_t *func, void *arg)
5809 {
5810 	zfs_range_seg64_t iter_rs = *logical_rs;
5811 	zfs_range_seg64_t physical_rs;
5812 	zfs_range_seg64_t remain_rs;
5813 
5814 	while (!vdev_xlate_is_empty(&iter_rs)) {
5815 
5816 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5817 
5818 		/*
5819 		 * With raidz and dRAID, it's possible that the logical range
5820 		 * does not live on this leaf vdev. Only when there is a non-
5821 		 * zero physical size call the provided function.
5822 		 */
5823 		if (!vdev_xlate_is_empty(&physical_rs))
5824 			func(arg, &physical_rs);
5825 
5826 		iter_rs = remain_rs;
5827 	}
5828 }
5829 
5830 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5831 vdev_name(vdev_t *vd, char *buf, int buflen)
5832 {
5833 	if (vd->vdev_path == NULL) {
5834 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5835 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5836 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5837 			snprintf(buf, buflen, "%s-%llu",
5838 			    vd->vdev_ops->vdev_op_type,
5839 			    (u_longlong_t)vd->vdev_id);
5840 		}
5841 	} else {
5842 		strlcpy(buf, vd->vdev_path, buflen);
5843 	}
5844 	return (buf);
5845 }
5846 
5847 /*
5848  * Look at the vdev tree and determine whether any devices are currently being
5849  * replaced.
5850  */
5851 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5852 vdev_replace_in_progress(vdev_t *vdev)
5853 {
5854 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5855 
5856 	if (vdev->vdev_ops == &vdev_replacing_ops)
5857 		return (B_TRUE);
5858 
5859 	/*
5860 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5861 	 * it has exactly two children, and the second, the hot spare, has
5862 	 * finished being resilvered.
5863 	 */
5864 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5865 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5866 		return (B_TRUE);
5867 
5868 	for (int i = 0; i < vdev->vdev_children; i++) {
5869 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5870 			return (B_TRUE);
5871 	}
5872 
5873 	return (B_FALSE);
5874 }
5875 
5876 /*
5877  * Add a (source=src, propname=propval) list to an nvlist.
5878  */
5879 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5880 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5881     uint64_t intval, zprop_source_t src)
5882 {
5883 	nvlist_t *propval;
5884 
5885 	propval = fnvlist_alloc();
5886 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5887 
5888 	if (strval != NULL)
5889 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5890 	else
5891 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5892 
5893 	fnvlist_add_nvlist(nvl, propname, propval);
5894 	nvlist_free(propval);
5895 }
5896 
5897 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5898 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5899 {
5900 	vdev_t *vd;
5901 	nvlist_t *nvp = arg;
5902 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5903 	objset_t *mos = spa->spa_meta_objset;
5904 	nvpair_t *elem = NULL;
5905 	uint64_t vdev_guid;
5906 	uint64_t objid;
5907 	nvlist_t *nvprops;
5908 
5909 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5910 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5911 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5912 
5913 	/* this vdev could get removed while waiting for this sync task */
5914 	if (vd == NULL)
5915 		return;
5916 
5917 	/*
5918 	 * Set vdev property values in the vdev props mos object.
5919 	 */
5920 	if (vd->vdev_root_zap != 0) {
5921 		objid = vd->vdev_root_zap;
5922 	} else if (vd->vdev_top_zap != 0) {
5923 		objid = vd->vdev_top_zap;
5924 	} else if (vd->vdev_leaf_zap != 0) {
5925 		objid = vd->vdev_leaf_zap;
5926 	} else {
5927 		panic("unexpected vdev type");
5928 	}
5929 
5930 	mutex_enter(&spa->spa_props_lock);
5931 
5932 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5933 		uint64_t intval;
5934 		const char *strval;
5935 		vdev_prop_t prop;
5936 		const char *propname = nvpair_name(elem);
5937 		zprop_type_t proptype;
5938 
5939 		switch (prop = vdev_name_to_prop(propname)) {
5940 		case VDEV_PROP_USERPROP:
5941 			if (vdev_prop_user(propname)) {
5942 				strval = fnvpair_value_string(elem);
5943 				if (strlen(strval) == 0) {
5944 					/* remove the property if value == "" */
5945 					(void) zap_remove(mos, objid, propname,
5946 					    tx);
5947 				} else {
5948 					VERIFY0(zap_update(mos, objid, propname,
5949 					    1, strlen(strval) + 1, strval, tx));
5950 				}
5951 				spa_history_log_internal(spa, "vdev set", tx,
5952 				    "vdev_guid=%llu: %s=%s",
5953 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5954 				    strval);
5955 			}
5956 			break;
5957 		default:
5958 			/* normalize the property name */
5959 			propname = vdev_prop_to_name(prop);
5960 			proptype = vdev_prop_get_type(prop);
5961 
5962 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5963 				ASSERT(proptype == PROP_TYPE_STRING);
5964 				strval = fnvpair_value_string(elem);
5965 				VERIFY0(zap_update(mos, objid, propname,
5966 				    1, strlen(strval) + 1, strval, tx));
5967 				spa_history_log_internal(spa, "vdev set", tx,
5968 				    "vdev_guid=%llu: %s=%s",
5969 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5970 				    strval);
5971 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5972 				intval = fnvpair_value_uint64(elem);
5973 
5974 				if (proptype == PROP_TYPE_INDEX) {
5975 					const char *unused;
5976 					VERIFY0(vdev_prop_index_to_string(
5977 					    prop, intval, &unused));
5978 				}
5979 				VERIFY0(zap_update(mos, objid, propname,
5980 				    sizeof (uint64_t), 1, &intval, tx));
5981 				spa_history_log_internal(spa, "vdev set", tx,
5982 				    "vdev_guid=%llu: %s=%lld",
5983 				    (u_longlong_t)vdev_guid,
5984 				    nvpair_name(elem), (longlong_t)intval);
5985 			} else {
5986 				panic("invalid vdev property type %u",
5987 				    nvpair_type(elem));
5988 			}
5989 		}
5990 
5991 	}
5992 
5993 	mutex_exit(&spa->spa_props_lock);
5994 }
5995 
5996 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)5997 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5998 {
5999 	spa_t *spa = vd->vdev_spa;
6000 	nvpair_t *elem = NULL;
6001 	uint64_t vdev_guid;
6002 	nvlist_t *nvprops;
6003 	int error = 0;
6004 
6005 	ASSERT(vd != NULL);
6006 
6007 	/* Check that vdev has a zap we can use */
6008 	if (vd->vdev_root_zap == 0 &&
6009 	    vd->vdev_top_zap == 0 &&
6010 	    vd->vdev_leaf_zap == 0)
6011 		return (SET_ERROR(EINVAL));
6012 
6013 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6014 	    &vdev_guid) != 0)
6015 		return (SET_ERROR(EINVAL));
6016 
6017 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6018 	    &nvprops) != 0)
6019 		return (SET_ERROR(EINVAL));
6020 
6021 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6022 		return (SET_ERROR(EINVAL));
6023 
6024 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6025 		const char *propname = nvpair_name(elem);
6026 		vdev_prop_t prop = vdev_name_to_prop(propname);
6027 		uint64_t intval = 0;
6028 		const char *strval = NULL;
6029 
6030 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6031 			error = EINVAL;
6032 			goto end;
6033 		}
6034 
6035 		if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6036 			error = EROFS;
6037 			goto end;
6038 		}
6039 
6040 		/* Special Processing */
6041 		switch (prop) {
6042 		case VDEV_PROP_PATH:
6043 			if (vd->vdev_path == NULL) {
6044 				error = EROFS;
6045 				break;
6046 			}
6047 			if (nvpair_value_string(elem, &strval) != 0) {
6048 				error = EINVAL;
6049 				break;
6050 			}
6051 			/* New path must start with /dev/ */
6052 			if (strncmp(strval, "/dev/", 5)) {
6053 				error = EINVAL;
6054 				break;
6055 			}
6056 			error = spa_vdev_setpath(spa, vdev_guid, strval);
6057 			break;
6058 		case VDEV_PROP_ALLOCATING:
6059 			if (nvpair_value_uint64(elem, &intval) != 0) {
6060 				error = EINVAL;
6061 				break;
6062 			}
6063 			if (intval != vd->vdev_noalloc)
6064 				break;
6065 			if (intval == 0)
6066 				error = spa_vdev_noalloc(spa, vdev_guid);
6067 			else
6068 				error = spa_vdev_alloc(spa, vdev_guid);
6069 			break;
6070 		case VDEV_PROP_FAILFAST:
6071 			if (nvpair_value_uint64(elem, &intval) != 0) {
6072 				error = EINVAL;
6073 				break;
6074 			}
6075 			vd->vdev_failfast = intval & 1;
6076 			break;
6077 		case VDEV_PROP_CHECKSUM_N:
6078 			if (nvpair_value_uint64(elem, &intval) != 0) {
6079 				error = EINVAL;
6080 				break;
6081 			}
6082 			vd->vdev_checksum_n = intval;
6083 			break;
6084 		case VDEV_PROP_CHECKSUM_T:
6085 			if (nvpair_value_uint64(elem, &intval) != 0) {
6086 				error = EINVAL;
6087 				break;
6088 			}
6089 			vd->vdev_checksum_t = intval;
6090 			break;
6091 		case VDEV_PROP_IO_N:
6092 			if (nvpair_value_uint64(elem, &intval) != 0) {
6093 				error = EINVAL;
6094 				break;
6095 			}
6096 			vd->vdev_io_n = intval;
6097 			break;
6098 		case VDEV_PROP_IO_T:
6099 			if (nvpair_value_uint64(elem, &intval) != 0) {
6100 				error = EINVAL;
6101 				break;
6102 			}
6103 			vd->vdev_io_t = intval;
6104 			break;
6105 		case VDEV_PROP_SLOW_IO_N:
6106 			if (nvpair_value_uint64(elem, &intval) != 0) {
6107 				error = EINVAL;
6108 				break;
6109 			}
6110 			vd->vdev_slow_io_n = intval;
6111 			break;
6112 		case VDEV_PROP_SLOW_IO_T:
6113 			if (nvpair_value_uint64(elem, &intval) != 0) {
6114 				error = EINVAL;
6115 				break;
6116 			}
6117 			vd->vdev_slow_io_t = intval;
6118 			break;
6119 		default:
6120 			/* Most processing is done in vdev_props_set_sync */
6121 			break;
6122 		}
6123 end:
6124 		if (error != 0) {
6125 			intval = error;
6126 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6127 			return (error);
6128 		}
6129 	}
6130 
6131 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6132 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6133 }
6134 
6135 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6136 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6137 {
6138 	spa_t *spa = vd->vdev_spa;
6139 	objset_t *mos = spa->spa_meta_objset;
6140 	int err = 0;
6141 	uint64_t objid;
6142 	uint64_t vdev_guid;
6143 	nvpair_t *elem = NULL;
6144 	nvlist_t *nvprops = NULL;
6145 	uint64_t intval = 0;
6146 	char *strval = NULL;
6147 	const char *propname = NULL;
6148 	vdev_prop_t prop;
6149 
6150 	ASSERT(vd != NULL);
6151 	ASSERT(mos != NULL);
6152 
6153 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6154 	    &vdev_guid) != 0)
6155 		return (SET_ERROR(EINVAL));
6156 
6157 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6158 
6159 	if (vd->vdev_root_zap != 0) {
6160 		objid = vd->vdev_root_zap;
6161 	} else if (vd->vdev_top_zap != 0) {
6162 		objid = vd->vdev_top_zap;
6163 	} else if (vd->vdev_leaf_zap != 0) {
6164 		objid = vd->vdev_leaf_zap;
6165 	} else {
6166 		return (SET_ERROR(EINVAL));
6167 	}
6168 	ASSERT(objid != 0);
6169 
6170 	mutex_enter(&spa->spa_props_lock);
6171 
6172 	if (nvprops != NULL) {
6173 		char namebuf[64] = { 0 };
6174 
6175 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6176 			intval = 0;
6177 			strval = NULL;
6178 			propname = nvpair_name(elem);
6179 			prop = vdev_name_to_prop(propname);
6180 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6181 			uint64_t integer_size, num_integers;
6182 
6183 			switch (prop) {
6184 			/* Special Read-only Properties */
6185 			case VDEV_PROP_NAME:
6186 				strval = vdev_name(vd, namebuf,
6187 				    sizeof (namebuf));
6188 				if (strval == NULL)
6189 					continue;
6190 				vdev_prop_add_list(outnvl, propname, strval, 0,
6191 				    ZPROP_SRC_NONE);
6192 				continue;
6193 			case VDEV_PROP_CAPACITY:
6194 				/* percent used */
6195 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6196 				    (vd->vdev_stat.vs_alloc * 100 /
6197 				    vd->vdev_stat.vs_dspace);
6198 				vdev_prop_add_list(outnvl, propname, NULL,
6199 				    intval, ZPROP_SRC_NONE);
6200 				continue;
6201 			case VDEV_PROP_STATE:
6202 				vdev_prop_add_list(outnvl, propname, NULL,
6203 				    vd->vdev_state, ZPROP_SRC_NONE);
6204 				continue;
6205 			case VDEV_PROP_GUID:
6206 				vdev_prop_add_list(outnvl, propname, NULL,
6207 				    vd->vdev_guid, ZPROP_SRC_NONE);
6208 				continue;
6209 			case VDEV_PROP_ASIZE:
6210 				vdev_prop_add_list(outnvl, propname, NULL,
6211 				    vd->vdev_asize, ZPROP_SRC_NONE);
6212 				continue;
6213 			case VDEV_PROP_PSIZE:
6214 				vdev_prop_add_list(outnvl, propname, NULL,
6215 				    vd->vdev_psize, ZPROP_SRC_NONE);
6216 				continue;
6217 			case VDEV_PROP_ASHIFT:
6218 				vdev_prop_add_list(outnvl, propname, NULL,
6219 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6220 				continue;
6221 			case VDEV_PROP_SIZE:
6222 				vdev_prop_add_list(outnvl, propname, NULL,
6223 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6224 				continue;
6225 			case VDEV_PROP_FREE:
6226 				vdev_prop_add_list(outnvl, propname, NULL,
6227 				    vd->vdev_stat.vs_dspace -
6228 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6229 				continue;
6230 			case VDEV_PROP_ALLOCATED:
6231 				vdev_prop_add_list(outnvl, propname, NULL,
6232 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6233 				continue;
6234 			case VDEV_PROP_EXPANDSZ:
6235 				vdev_prop_add_list(outnvl, propname, NULL,
6236 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6237 				continue;
6238 			case VDEV_PROP_FRAGMENTATION:
6239 				vdev_prop_add_list(outnvl, propname, NULL,
6240 				    vd->vdev_stat.vs_fragmentation,
6241 				    ZPROP_SRC_NONE);
6242 				continue;
6243 			case VDEV_PROP_PARITY:
6244 				vdev_prop_add_list(outnvl, propname, NULL,
6245 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6246 				continue;
6247 			case VDEV_PROP_PATH:
6248 				if (vd->vdev_path == NULL)
6249 					continue;
6250 				vdev_prop_add_list(outnvl, propname,
6251 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6252 				continue;
6253 			case VDEV_PROP_DEVID:
6254 				if (vd->vdev_devid == NULL)
6255 					continue;
6256 				vdev_prop_add_list(outnvl, propname,
6257 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6258 				continue;
6259 			case VDEV_PROP_PHYS_PATH:
6260 				if (vd->vdev_physpath == NULL)
6261 					continue;
6262 				vdev_prop_add_list(outnvl, propname,
6263 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6264 				continue;
6265 			case VDEV_PROP_ENC_PATH:
6266 				if (vd->vdev_enc_sysfs_path == NULL)
6267 					continue;
6268 				vdev_prop_add_list(outnvl, propname,
6269 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6270 				continue;
6271 			case VDEV_PROP_FRU:
6272 				if (vd->vdev_fru == NULL)
6273 					continue;
6274 				vdev_prop_add_list(outnvl, propname,
6275 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6276 				continue;
6277 			case VDEV_PROP_PARENT:
6278 				if (vd->vdev_parent != NULL) {
6279 					strval = vdev_name(vd->vdev_parent,
6280 					    namebuf, sizeof (namebuf));
6281 					vdev_prop_add_list(outnvl, propname,
6282 					    strval, 0, ZPROP_SRC_NONE);
6283 				}
6284 				continue;
6285 			case VDEV_PROP_CHILDREN:
6286 				if (vd->vdev_children > 0)
6287 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6288 					    KM_SLEEP);
6289 				for (uint64_t i = 0; i < vd->vdev_children;
6290 				    i++) {
6291 					const char *vname;
6292 
6293 					vname = vdev_name(vd->vdev_child[i],
6294 					    namebuf, sizeof (namebuf));
6295 					if (vname == NULL)
6296 						vname = "(unknown)";
6297 					if (strlen(strval) > 0)
6298 						strlcat(strval, ",",
6299 						    ZAP_MAXVALUELEN);
6300 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6301 				}
6302 				if (strval != NULL) {
6303 					vdev_prop_add_list(outnvl, propname,
6304 					    strval, 0, ZPROP_SRC_NONE);
6305 					kmem_free(strval, ZAP_MAXVALUELEN);
6306 				}
6307 				continue;
6308 			case VDEV_PROP_NUMCHILDREN:
6309 				vdev_prop_add_list(outnvl, propname, NULL,
6310 				    vd->vdev_children, ZPROP_SRC_NONE);
6311 				continue;
6312 			case VDEV_PROP_READ_ERRORS:
6313 				vdev_prop_add_list(outnvl, propname, NULL,
6314 				    vd->vdev_stat.vs_read_errors,
6315 				    ZPROP_SRC_NONE);
6316 				continue;
6317 			case VDEV_PROP_WRITE_ERRORS:
6318 				vdev_prop_add_list(outnvl, propname, NULL,
6319 				    vd->vdev_stat.vs_write_errors,
6320 				    ZPROP_SRC_NONE);
6321 				continue;
6322 			case VDEV_PROP_CHECKSUM_ERRORS:
6323 				vdev_prop_add_list(outnvl, propname, NULL,
6324 				    vd->vdev_stat.vs_checksum_errors,
6325 				    ZPROP_SRC_NONE);
6326 				continue;
6327 			case VDEV_PROP_INITIALIZE_ERRORS:
6328 				vdev_prop_add_list(outnvl, propname, NULL,
6329 				    vd->vdev_stat.vs_initialize_errors,
6330 				    ZPROP_SRC_NONE);
6331 				continue;
6332 			case VDEV_PROP_TRIM_ERRORS:
6333 				vdev_prop_add_list(outnvl, propname, NULL,
6334 				    vd->vdev_stat.vs_trim_errors,
6335 				    ZPROP_SRC_NONE);
6336 				continue;
6337 			case VDEV_PROP_SLOW_IOS:
6338 				vdev_prop_add_list(outnvl, propname, NULL,
6339 				    vd->vdev_stat.vs_slow_ios,
6340 				    ZPROP_SRC_NONE);
6341 				continue;
6342 			case VDEV_PROP_OPS_NULL:
6343 				vdev_prop_add_list(outnvl, propname, NULL,
6344 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6345 				    ZPROP_SRC_NONE);
6346 				continue;
6347 			case VDEV_PROP_OPS_READ:
6348 				vdev_prop_add_list(outnvl, propname, NULL,
6349 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6350 				    ZPROP_SRC_NONE);
6351 				continue;
6352 			case VDEV_PROP_OPS_WRITE:
6353 				vdev_prop_add_list(outnvl, propname, NULL,
6354 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6355 				    ZPROP_SRC_NONE);
6356 				continue;
6357 			case VDEV_PROP_OPS_FREE:
6358 				vdev_prop_add_list(outnvl, propname, NULL,
6359 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6360 				    ZPROP_SRC_NONE);
6361 				continue;
6362 			case VDEV_PROP_OPS_CLAIM:
6363 				vdev_prop_add_list(outnvl, propname, NULL,
6364 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6365 				    ZPROP_SRC_NONE);
6366 				continue;
6367 			case VDEV_PROP_OPS_TRIM:
6368 				/*
6369 				 * TRIM ops and bytes are reported to user
6370 				 * space as ZIO_TYPE_FLUSH.  This is done to
6371 				 * preserve the vdev_stat_t structure layout
6372 				 * for user space.
6373 				 */
6374 				vdev_prop_add_list(outnvl, propname, NULL,
6375 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6376 				    ZPROP_SRC_NONE);
6377 				continue;
6378 			case VDEV_PROP_BYTES_NULL:
6379 				vdev_prop_add_list(outnvl, propname, NULL,
6380 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6381 				    ZPROP_SRC_NONE);
6382 				continue;
6383 			case VDEV_PROP_BYTES_READ:
6384 				vdev_prop_add_list(outnvl, propname, NULL,
6385 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6386 				    ZPROP_SRC_NONE);
6387 				continue;
6388 			case VDEV_PROP_BYTES_WRITE:
6389 				vdev_prop_add_list(outnvl, propname, NULL,
6390 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6391 				    ZPROP_SRC_NONE);
6392 				continue;
6393 			case VDEV_PROP_BYTES_FREE:
6394 				vdev_prop_add_list(outnvl, propname, NULL,
6395 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6396 				    ZPROP_SRC_NONE);
6397 				continue;
6398 			case VDEV_PROP_BYTES_CLAIM:
6399 				vdev_prop_add_list(outnvl, propname, NULL,
6400 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6401 				    ZPROP_SRC_NONE);
6402 				continue;
6403 			case VDEV_PROP_BYTES_TRIM:
6404 				/*
6405 				 * TRIM ops and bytes are reported to user
6406 				 * space as ZIO_TYPE_FLUSH.  This is done to
6407 				 * preserve the vdev_stat_t structure layout
6408 				 * for user space.
6409 				 */
6410 				vdev_prop_add_list(outnvl, propname, NULL,
6411 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6412 				    ZPROP_SRC_NONE);
6413 				continue;
6414 			case VDEV_PROP_REMOVING:
6415 				vdev_prop_add_list(outnvl, propname, NULL,
6416 				    vd->vdev_removing, ZPROP_SRC_NONE);
6417 				continue;
6418 			case VDEV_PROP_RAIDZ_EXPANDING:
6419 				/* Only expose this for raidz */
6420 				if (vd->vdev_ops == &vdev_raidz_ops) {
6421 					vdev_prop_add_list(outnvl, propname,
6422 					    NULL, vd->vdev_rz_expanding,
6423 					    ZPROP_SRC_NONE);
6424 				}
6425 				continue;
6426 			case VDEV_PROP_TRIM_SUPPORT:
6427 				/* only valid for leaf vdevs */
6428 				if (vd->vdev_ops->vdev_op_leaf) {
6429 					vdev_prop_add_list(outnvl, propname,
6430 					    NULL, vd->vdev_has_trim,
6431 					    ZPROP_SRC_NONE);
6432 				}
6433 				continue;
6434 			/* Numeric Properites */
6435 			case VDEV_PROP_ALLOCATING:
6436 				/* Leaf vdevs cannot have this property */
6437 				if (vd->vdev_mg == NULL &&
6438 				    vd->vdev_top != NULL) {
6439 					src = ZPROP_SRC_NONE;
6440 					intval = ZPROP_BOOLEAN_NA;
6441 				} else {
6442 					err = vdev_prop_get_int(vd, prop,
6443 					    &intval);
6444 					if (err && err != ENOENT)
6445 						break;
6446 
6447 					if (intval ==
6448 					    vdev_prop_default_numeric(prop))
6449 						src = ZPROP_SRC_DEFAULT;
6450 					else
6451 						src = ZPROP_SRC_LOCAL;
6452 				}
6453 
6454 				vdev_prop_add_list(outnvl, propname, NULL,
6455 				    intval, src);
6456 				break;
6457 			case VDEV_PROP_FAILFAST:
6458 				src = ZPROP_SRC_LOCAL;
6459 				strval = NULL;
6460 
6461 				err = zap_lookup(mos, objid, nvpair_name(elem),
6462 				    sizeof (uint64_t), 1, &intval);
6463 				if (err == ENOENT) {
6464 					intval = vdev_prop_default_numeric(
6465 					    prop);
6466 					err = 0;
6467 				} else if (err) {
6468 					break;
6469 				}
6470 				if (intval == vdev_prop_default_numeric(prop))
6471 					src = ZPROP_SRC_DEFAULT;
6472 
6473 				vdev_prop_add_list(outnvl, propname, strval,
6474 				    intval, src);
6475 				break;
6476 			case VDEV_PROP_CHECKSUM_N:
6477 			case VDEV_PROP_CHECKSUM_T:
6478 			case VDEV_PROP_IO_N:
6479 			case VDEV_PROP_IO_T:
6480 			case VDEV_PROP_SLOW_IO_N:
6481 			case VDEV_PROP_SLOW_IO_T:
6482 				err = vdev_prop_get_int(vd, prop, &intval);
6483 				if (err && err != ENOENT)
6484 					break;
6485 
6486 				if (intval == vdev_prop_default_numeric(prop))
6487 					src = ZPROP_SRC_DEFAULT;
6488 				else
6489 					src = ZPROP_SRC_LOCAL;
6490 
6491 				vdev_prop_add_list(outnvl, propname, NULL,
6492 				    intval, src);
6493 				break;
6494 			/* Text Properties */
6495 			case VDEV_PROP_COMMENT:
6496 				/* Exists in the ZAP below */
6497 				/* FALLTHRU */
6498 			case VDEV_PROP_USERPROP:
6499 				/* User Properites */
6500 				src = ZPROP_SRC_LOCAL;
6501 
6502 				err = zap_length(mos, objid, nvpair_name(elem),
6503 				    &integer_size, &num_integers);
6504 				if (err)
6505 					break;
6506 
6507 				switch (integer_size) {
6508 				case 8:
6509 					/* User properties cannot be integers */
6510 					err = EINVAL;
6511 					break;
6512 				case 1:
6513 					/* string property */
6514 					strval = kmem_alloc(num_integers,
6515 					    KM_SLEEP);
6516 					err = zap_lookup(mos, objid,
6517 					    nvpair_name(elem), 1,
6518 					    num_integers, strval);
6519 					if (err) {
6520 						kmem_free(strval,
6521 						    num_integers);
6522 						break;
6523 					}
6524 					vdev_prop_add_list(outnvl, propname,
6525 					    strval, 0, src);
6526 					kmem_free(strval, num_integers);
6527 					break;
6528 				}
6529 				break;
6530 			default:
6531 				err = ENOENT;
6532 				break;
6533 			}
6534 			if (err)
6535 				break;
6536 		}
6537 	} else {
6538 		/*
6539 		 * Get all properties from the MOS vdev property object.
6540 		 */
6541 		zap_cursor_t zc;
6542 		zap_attribute_t *za = zap_attribute_alloc();
6543 		for (zap_cursor_init(&zc, mos, objid);
6544 		    (err = zap_cursor_retrieve(&zc, za)) == 0;
6545 		    zap_cursor_advance(&zc)) {
6546 			intval = 0;
6547 			strval = NULL;
6548 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6549 			propname = za->za_name;
6550 
6551 			switch (za->za_integer_length) {
6552 			case 8:
6553 				/* We do not allow integer user properties */
6554 				/* This is likely an internal value */
6555 				break;
6556 			case 1:
6557 				/* string property */
6558 				strval = kmem_alloc(za->za_num_integers,
6559 				    KM_SLEEP);
6560 				err = zap_lookup(mos, objid, za->za_name, 1,
6561 				    za->za_num_integers, strval);
6562 				if (err) {
6563 					kmem_free(strval, za->za_num_integers);
6564 					break;
6565 				}
6566 				vdev_prop_add_list(outnvl, propname, strval, 0,
6567 				    src);
6568 				kmem_free(strval, za->za_num_integers);
6569 				break;
6570 
6571 			default:
6572 				break;
6573 			}
6574 		}
6575 		zap_cursor_fini(&zc);
6576 		zap_attribute_free(za);
6577 	}
6578 
6579 	mutex_exit(&spa->spa_props_lock);
6580 	if (err && err != ENOENT) {
6581 		return (err);
6582 	}
6583 
6584 	return (0);
6585 }
6586 
6587 EXPORT_SYMBOL(vdev_fault);
6588 EXPORT_SYMBOL(vdev_degrade);
6589 EXPORT_SYMBOL(vdev_online);
6590 EXPORT_SYMBOL(vdev_offline);
6591 EXPORT_SYMBOL(vdev_clear);
6592 
6593 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6594 	"Target number of metaslabs per top-level vdev");
6595 
6596 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6597 	"Default lower limit for metaslab size");
6598 
6599 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6600 	"Default upper limit for metaslab size");
6601 
6602 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6603 	"Minimum number of metaslabs per top-level vdev");
6604 
6605 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6606 	"Practical upper limit of total metaslabs per top-level vdev");
6607 
6608 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6609 	"Rate limit slow IO (delay) events to this many per second");
6610 
6611 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6612 	"Rate limit hung IO (deadman) events to this many per second");
6613 
6614 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6615 	"Rate Direct I/O write verify events to this many per second");
6616 
6617 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6618 	"Direct I/O writes will perform for checksum verification before "
6619 	"commiting write");
6620 
6621 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6622 	"Rate limit checksum events to this many checksum errors per second "
6623 	"(do not set below ZED threshold).");
6624 
6625 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6626 	"Ignore errors during resilver/scrub");
6627 
6628 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6629 	"Bypass vdev_validate()");
6630 
6631 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6632 	"Disable cache flushes");
6633 
6634 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6635 	"Minimum number of metaslabs required to dedicate one for log blocks");
6636 
6637 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6638 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6639 	"Minimum ashift used when creating new top-level vdevs");
6640 
6641 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6642 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6643 	"Maximum ashift used when optimizing for logical -> physical sector "
6644 	"size on new top-level vdevs");
6645 
6646 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6647 		param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6648 		"RAIDZ implementation");
6649