xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_draid.c (revision dd32d6b29d49838c99d38ba30846ade210b2e6f7)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2018 Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2025, Klara, Inc.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/vdev_draid.h>
33 #include <sys/vdev_raidz.h>
34 #include <sys/vdev_rebuild.h>
35 #include <sys/abd.h>
36 #include <sys/zio.h>
37 #include <sys/nvpair.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <zfs_fletcher.h>
42 
43 #ifdef ZFS_DEBUG
44 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_draid_io_verify() */
45 #endif
46 
47 /*
48  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
49  * comprised of multiple raidz redundancy groups which are spread over the
50  * dRAID children. To ensure an even distribution, and avoid hot spots, a
51  * permutation mapping is applied to the order of the dRAID children.
52  * This mixing effectively distributes the parity columns evenly over all
53  * of the disks in the dRAID.
54  *
55  * This is beneficial because it means when resilvering all of the disks
56  * can participate thereby increasing the available IOPs and bandwidth.
57  * Furthermore, by reserving a small fraction of each child's total capacity
58  * virtual distributed spare disks can be created. These spares similarly
59  * benefit from the performance gains of spanning all of the children. The
60  * consequence of which is that resilvering to a distributed spare can
61  * substantially reduce the time required to restore full parity to pool
62  * with a failed disks.
63  *
64  * === dRAID group layout ===
65  *
66  * First, let's define a "row" in the configuration to be a 16M chunk from
67  * each physical drive at the same offset. This is the minimum allowable
68  * size since it must be possible to store a full 16M block when there is
69  * only a single data column. Next, we define a "group" to be a set of
70  * sequential disks containing both the parity and data columns. We allow
71  * groups to span multiple rows in order to align any group size to any
72  * number of physical drives. Finally, a "slice" is comprised of the rows
73  * which contain the target number of groups. The permutation mappings
74  * are applied in a round robin fashion to each slice.
75  *
76  * Given D+P drives in a group (including parity drives) and C-S physical
77  * drives (not including the spare drives), we can distribute the groups
78  * across R rows without remainder by selecting the least common multiple
79  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
80  *
81  * In the example below, there are C=14 physical drives in the configuration
82  * with S=2 drives worth of spare capacity. Each group has a width of 9
83  * which includes D=8 data and P=1 parity drive. There are 4 groups and
84  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
85  * size is 576M (144M * 4). When allocating from a dRAID each group is
86  * filled before moving on to the next as show in slice0 below.
87  *
88  *             data disks (8 data + 1 parity)          spares (2)
89  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
91  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
92  *  |  |              group 0              |  group 1..|       |
93  *  |  +-----------------------------------+-----------+-------|
94  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
95  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
96  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
97  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
98  *  s  +-----------------------+-----------------------+-------+
99  *  l  |       ..group 1       |        group 2..      |       |
100  *  i  +-----------------------+-----------------------+-------+
101  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
102  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
103  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
104  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
105  *  |  +-----------+-----------+-----------------------+-------+
106  *  |  |..group 2  |            group 3                |       |
107  *  |  +-----------+-----------+-----------------------+-------+
108  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
109  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
110  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
111  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
112  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
114  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
115  *  l  |              group 4              |  group 5..|       | row 3
116  *  i  +-----------------------+-----------+-----------+-------|
117  *  c  |       ..group 5       |        group 6..      |       | row 4
118  *  e  +-----------+-----------+-----------------------+-------+
119  *  1  |..group 6  |            group 7                |       | row 5
120  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
122  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
123  *  l  |              group 8              |  group 9..|       | row 6
124  *  i  +-----------------------------------------------+-------|
125  *  c  |       ..group 9       |        group 10..     |       | row 7
126  *  e  +-----------------------+-----------------------+-------+
127  *  2  |..group 10 |            group 11               |       | row 8
128  *     +-----------+-----------------------------------+-------+
129  *
130  * This layout has several advantages over requiring that each row contain
131  * a whole number of groups.
132  *
133  * 1. The group count is not a relevant parameter when defining a dRAID
134  *    layout. Only the group width is needed, and *all* groups will have
135  *    the desired size.
136  *
137  * 2. All possible group widths (<= physical disk count) can be supported.
138  *
139  * 3. The logic within vdev_draid.c is simplified when the group width is
140  *    the same for all groups (although some of the logic around computing
141  *    permutation numbers and drive offsets is more complicated).
142  *
143  * N.B. The following array describes all valid dRAID permutation maps.
144  * Each row is used to generate a permutation map for a different number
145  * of children from a unique seed. The seeds were generated and carefully
146  * evaluated by the 'draid' utility in order to provide balanced mappings.
147  * In addition to the seed a checksum of the in-memory mapping is stored
148  * for verification.
149  *
150  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
151  * with a given permutation map) is the ratio of the amounts of I/O that will
152  * be sent to the least and most busy disks when resilvering. The average
153  * imbalance ratio (of a given number of disks and permutation map) is the
154  * average of the ratios of all possible single and double disk failures.
155  *
156  * In order to achieve a low imbalance ratio the number of permutations in
157  * the mapping must be significantly larger than the number of children.
158  * For dRAID the number of permutations has been limited to 512 to minimize
159  * the map size. This does result in a gradually increasing imbalance ratio
160  * as seen in the table below. Increasing the number of permutations for
161  * larger child counts would reduce the imbalance ratio. However, in practice
162  * when there are a large number of children each child is responsible for
163  * fewer total IOs so it's less of a concern.
164  *
165  * Note these values are hard coded and must never be changed.  Existing
166  * pools depend on the same mapping always being generated in order to
167  * read and write from the correct locations.  Any change would make
168  * existing pools completely inaccessible.
169  */
170 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
171 	{   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },	/* 1.000 */
172 	{   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },	/* 1.000 */
173 	{   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },	/* 1.000 */
174 	{   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },	/* 1.010 */
175 	{   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },	/* 1.031 */
176 	{   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },	/* 1.043 */
177 	{   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },	/* 1.059 */
178 	{   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },	/* 1.056 */
179 	{  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },	/* 1.072 */
180 	{  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },	/* 1.083 */
181 	{  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },	/* 1.097 */
182 	{  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },	/* 1.100 */
183 	{  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },	/* 1.121 */
184 	{  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },	/* 1.103 */
185 	{  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },	/* 1.111 */
186 	{  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },	/* 1.133 */
187 	{  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },	/* 1.131 */
188 	{  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },	/* 1.130 */
189 	{  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },	/* 1.141 */
190 	{  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },	/* 1.139 */
191 	{  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },	/* 1.150 */
192 	{  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },	/* 1.174 */
193 	{  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },	/* 1.168 */
194 	{  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },	/* 1.180 */
195 	{  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },	/* 1.226 */
196 	{  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },	/* 1.228 */
197 	{  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },	/* 1.217 */
198 	{  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },	/* 1.239 */
199 	{  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },	/* 1.238 */
200 	{  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },	/* 1.273 */
201 	{  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },	/* 1.191 */
202 	{  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },	/* 1.199 */
203 	{  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },	/* 1.195 */
204 	{  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },	/* 1.201 */
205 	{  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },	/* 1.194 */
206 	{  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },	/* 1.237 */
207 	{  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },	/* 1.242 */
208 	{  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },	/* 1.231 */
209 	{  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },	/* 1.233 */
210 	{  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },	/* 1.271 */
211 	{  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },	/* 1.263 */
212 	{  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },	/* 1.270 */
213 	{  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },	/* 1.281 */
214 	{  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },	/* 1.282 */
215 	{  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },	/* 1.286 */
216 	{  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },	/* 1.329 */
217 	{  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },	/* 1.286 */
218 	{  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },	/* 1.322 */
219 	{  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },	/* 1.335 */
220 	{  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },	/* 1.305 */
221 	{  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },	/* 1.330 */
222 	{  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },	/* 1.365 */
223 	{  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },	/* 1.334 */
224 	{  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },	/* 1.364 */
225 	{  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },	/* 1.374 */
226 	{  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },	/* 1.363 */
227 	{  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },	/* 1.401 */
228 	{  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },	/* 1.392 */
229 	{  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },	/* 1.360 */
230 	{  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },	/* 1.396 */
231 	{  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },	/* 1.453 */
232 	{  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },	/* 1.437 */
233 	{  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },	/* 1.402 */
234 	{  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },	/* 1.459 */
235 	{  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },	/* 1.423 */
236 	{  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },	/* 1.447 */
237 	{  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },	/* 1.450 */
238 	{  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },	/* 1.455 */
239 	{  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },	/* 1.463 */
240 	{  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },	/* 1.463 */
241 	{  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },	/* 1.452 */
242 	{  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },	/* 1.498 */
243 	{  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },	/* 1.526 */
244 	{  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },	/* 1.491 */
245 	{  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },	/* 1.470 */
246 	{  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },	/* 1.527 */
247 	{  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },	/* 1.509 */
248 	{  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },	/* 1.569 */
249 	{  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },	/* 1.555 */
250 	{  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },	/* 1.509 */
251 	{  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },	/* 1.596 */
252 	{  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },	/* 1.568 */
253 	{  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },	/* 1.541 */
254 	{  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },	/* 1.623 */
255 	{  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },	/* 1.620 */
256 	{  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },	/* 1.597 */
257 	{  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },	/* 1.575 */
258 	{  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },	/* 1.627 */
259 	{  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },	/* 1.596 */
260 	{  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },	/* 1.622 */
261 	{  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },	/* 1.695 */
262 	{  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },	/* 1.605 */
263 	{  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },	/* 1.625 */
264 	{  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },	/* 1.687 */
265 	{  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },	/* 1.621 */
266 	{  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },	/* 1.699 */
267 	{  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },	/* 1.688 */
268 	{  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },	/* 1.642 */
269 	{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },	/* 1.683 */
270 	{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },	/* 1.755 */
271 	{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },	/* 1.692 */
272 	{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },	/* 1.747 */
273 	{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },	/* 1.751 */
274 	{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },	/* 1.751 */
275 	{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },	/* 1.726 */
276 	{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },	/* 1.788 */
277 	{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },	/* 1.740 */
278 	{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },	/* 1.780 */
279 	{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },	/* 1.836 */
280 	{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },	/* 1.778 */
281 	{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },	/* 1.831 */
282 	{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },	/* 1.825 */
283 	{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },	/* 1.826 */
284 	{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },	/* 1.843 */
285 	{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },	/* 1.826 */
286 	{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },	/* 1.803 */
287 	{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },	/* 1.857 */
288 	{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },	/* 1.877 */
289 	{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },	/* 1.849 */
290 	{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },	/* 1.867 */
291 	{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },	/* 1.978 */
292 	{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },	/* 1.947 */
293 	{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },	/* 1.865 */
294 	{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },	/* 1.881 */
295 	{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },	/* 1.882 */
296 	{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },	/* 1.867 */
297 	{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },	/* 1.972 */
298 	{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },	/* 1.896 */
299 	{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },	/* 1.965 */
300 	{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },	/* 1.963 */
301 	{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },	/* 1.925 */
302 	{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },	/* 1.862 */
303 	{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },	/* 2.042 */
304 	{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },	/* 1.935 */
305 	{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },	/* 2.005 */
306 	{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },	/* 2.041 */
307 	{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },	/* 1.997 */
308 	{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },	/* 1.996 */
309 	{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },	/* 2.053 */
310 	{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },	/* 1.971 */
311 	{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },	/* 2.018 */
312 	{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },	/* 1.961 */
313 	{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },	/* 2.046 */
314 	{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },	/* 1.968 */
315 	{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },	/* 2.143 */
316 	{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },	/* 2.064 */
317 	{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },	/* 2.023 */
318 	{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },	/* 2.136 */
319 	{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },	/* 2.063 */
320 	{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },	/* 1.974 */
321 	{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },	/* 2.210 */
322 	{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },	/* 2.006 */
323 	{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },	/* 2.193 */
324 	{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },	/* 2.163 */
325 	{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },	/* 2.046 */
326 	{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },	/* 2.084 */
327 	{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },	/* 2.264 */
328 	{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },	/* 2.074 */
329 	{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },	/* 2.282 */
330 	{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },	/* 2.148 */
331 	{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },	/* 2.355 */
332 	{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },	/* 2.164 */
333 	{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },	/* 2.393 */
334 	{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },	/* 2.178 */
335 	{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },	/* 2.334 */
336 	{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },	/* 2.266 */
337 	{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },	/* 2.304 */
338 	{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },	/* 2.218 */
339 	{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },	/* 2.377 */
340 	{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },	/* 2.155 */
341 	{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },	/* 2.404 */
342 	{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },	/* 2.205 */
343 	{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },	/* 2.359 */
344 	{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },	/* 2.158 */
345 	{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },	/* 2.614 */
346 	{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },	/* 2.239 */
347 	{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },	/* 2.493 */
348 	{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },	/* 2.327 */
349 	{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },	/* 2.231 */
350 	{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },	/* 2.237 */
351 	{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },	/* 2.691 */
352 	{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },	/* 2.170 */
353 	{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },	/* 2.600 */
354 	{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },	/* 2.391 */
355 	{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },	/* 2.677 */
356 	{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },	/* 2.410 */
357 	{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },	/* 2.776 */
358 	{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },	/* 2.266 */
359 	{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },	/* 2.717 */
360 	{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },	/* 2.474 */
361 	{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },	/* 2.673 */
362 	{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },	/* 2.420 */
363 	{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },	/* 2.898 */
364 	{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },	/* 2.363 */
365 	{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },	/* 2.747 */
366 	{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },	/* 2.531 */
367 	{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },	/* 2.707 */
368 	{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },	/* 2.315 */
369 	{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },	/* 3.012 */
370 	{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },	/* 2.378 */
371 	{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },	/* 2.969 */
372 	{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },	/* 2.594 */
373 	{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },	/* 2.763 */
374 	{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },	/* 2.457 */
375 	{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },	/* 3.057 */
376 	{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },	/* 2.590 */
377 	{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },	/* 3.047 */
378 	{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },	/* 2.676 */
379 	{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },	/* 2.993 */
380 	{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },	/* 2.457 */
381 	{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },	/* 3.182 */
382 	{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },	/* 2.563 */
383 	{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },	/* 3.025 */
384 	{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },	/* 2.730 */
385 	{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },	/* 3.036 */
386 	{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },	/* 2.722 */
387 	{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },	/* 3.356 */
388 	{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },	/* 2.697 */
389 	{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },	/* 2.979 */
390 	{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },	/* 2.858 */
391 	{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },	/* 3.258 */
392 	{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },	/* 2.693 */
393 	{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },	/* 3.259 */
394 	{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },	/* 2.733 */
395 	{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },	/* 3.235 */
396 	{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },	/* 2.983 */
397 	{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },	/* 3.308 */
398 	{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },	/* 2.715 */
399 	{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },	/* 3.540 */
400 	{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },	/* 2.779 */
401 	{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },	/* 3.084 */
402 	{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },	/* 2.987 */
403 	{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },	/* 3.341 */
404 	{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },	/* 2.793 */
405 	{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },	/* 3.518 */
406 	{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },	/* 2.962 */
407 	{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },	/* 3.196 */
408 	{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },	/* 2.914 */
409 	{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },	/* 3.408 */
410 	{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },	/* 2.903 */
411 	{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },	/* 3.778 */
412 	{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },	/* 3.026 */
413 	{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },	/* 3.347 */
414 	{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },	/* 3.212 */
415 	{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },	/* 3.482 */
416 	{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },	/* 3.146 */
417 	{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },	/* 3.626 */
418 	{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },	/* 2.952 */
419 	{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },	/* 3.463 */
420 	{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },	/* 3.131 */
421 	{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },	/* 3.538 */
422 	{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },	/* 2.974 */
423 	{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },	/* 3.843 */
424 	{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },	/* 3.088 */
425 };
426 
427 /*
428  * Verify the map is valid. Each device index must appear exactly
429  * once in every row, and the permutation array checksum must match.
430  */
431 static int
verify_perms(uint8_t * perms,uint64_t children,uint64_t nperms,uint64_t checksum)432 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
433     uint64_t checksum)
434 {
435 	int countssz = sizeof (uint16_t) * children;
436 	uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
437 
438 	for (int i = 0; i < nperms; i++) {
439 		for (int j = 0; j < children; j++) {
440 			uint8_t val = perms[(i * children) + j];
441 
442 			if (val >= children || counts[val] != i) {
443 				kmem_free(counts, countssz);
444 				return (EINVAL);
445 			}
446 
447 			counts[val]++;
448 		}
449 	}
450 
451 	if (checksum != 0) {
452 		int permssz = sizeof (uint8_t) * children * nperms;
453 		zio_cksum_t cksum;
454 
455 		fletcher_4_native_varsize(perms, permssz, &cksum);
456 
457 		if (checksum != cksum.zc_word[0]) {
458 			kmem_free(counts, countssz);
459 			return (ECKSUM);
460 		}
461 	}
462 
463 	kmem_free(counts, countssz);
464 
465 	return (0);
466 }
467 
468 /*
469  * Generate the permutation array for the draid_map_t.  These maps control
470  * the placement of all data in a dRAID.  Therefore it's critical that the
471  * seed always generates the same mapping.  We provide our own pseudo-random
472  * number generator for this purpose.
473  */
474 int
vdev_draid_generate_perms(const draid_map_t * map,uint8_t ** permsp)475 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
476 {
477 	VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
478 	VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
479 	VERIFY3U(map->dm_seed, !=, 0);
480 	VERIFY3U(map->dm_nperms, !=, 0);
481 	VERIFY0P(map->dm_perms);
482 
483 #ifdef _KERNEL
484 	/*
485 	 * The kernel code always provides both a map_seed and checksum.
486 	 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
487 	 * a zero checksum when generating new candidate maps.
488 	 */
489 	VERIFY3U(map->dm_checksum, !=, 0);
490 #endif
491 	uint64_t children = map->dm_children;
492 	uint64_t nperms = map->dm_nperms;
493 	int rowsz = sizeof (uint8_t) * children;
494 	int permssz = rowsz * nperms;
495 	uint8_t *perms;
496 
497 	/* Allocate the permutation array */
498 	perms = vmem_alloc(permssz, KM_SLEEP);
499 
500 	/* Setup an initial row with a known pattern */
501 	uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
502 	for (int i = 0; i < children; i++)
503 		initial_row[i] = i;
504 
505 	uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
506 	uint8_t *current_row, *previous_row = initial_row;
507 
508 	/*
509 	 * Perform a Fisher-Yates shuffle of each row using the previous
510 	 * row as the starting point.  An initial_row with known pattern
511 	 * is used as the input for the first row.
512 	 */
513 	for (int i = 0; i < nperms; i++) {
514 		current_row = &perms[i * children];
515 		memcpy(current_row, previous_row, rowsz);
516 
517 		for (int j = children - 1; j > 0; j--) {
518 			uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
519 			uint8_t val = current_row[j];
520 			current_row[j] = current_row[k];
521 			current_row[k] = val;
522 		}
523 
524 		previous_row = current_row;
525 	}
526 
527 	kmem_free(initial_row, rowsz);
528 
529 	int error = verify_perms(perms, children, nperms, map->dm_checksum);
530 	if (error) {
531 		vmem_free(perms, permssz);
532 		return (error);
533 	}
534 
535 	*permsp = perms;
536 
537 	return (0);
538 }
539 
540 /*
541  * Lookup the fixed draid_map_t for the requested number of children.
542  */
543 int
vdev_draid_lookup_map(uint64_t children,const draid_map_t ** mapp)544 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
545 {
546 	for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) {
547 		if (draid_maps[i].dm_children == children) {
548 			*mapp = &draid_maps[i];
549 			return (0);
550 		}
551 	}
552 
553 	return (ENOENT);
554 }
555 
556 /*
557  * Lookup the permutation array and iteration id for the provided offset.
558  */
559 static void
vdev_draid_get_perm(vdev_draid_config_t * vdc,uint64_t pindex,uint8_t ** base,uint64_t * iter)560 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
561     uint8_t **base, uint64_t *iter)
562 {
563 	uint64_t ncols = vdc->vdc_children;
564 	uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
565 
566 	*base = vdc->vdc_perms + (poff / ncols) * ncols;
567 	*iter = poff % ncols;
568 }
569 
570 static inline uint64_t
vdev_draid_permute_id(vdev_draid_config_t * vdc,uint8_t * base,uint64_t iter,uint64_t index)571 vdev_draid_permute_id(vdev_draid_config_t *vdc,
572     uint8_t *base, uint64_t iter, uint64_t index)
573 {
574 	return ((base[index] + iter) % vdc->vdc_children);
575 }
576 
577 /*
578  * Return the asize which is the psize rounded up to a full group width.
579  * i.e. vdev_draid_psize_to_asize().
580  */
581 static uint64_t
vdev_draid_psize_to_asize(vdev_t * vd,uint64_t psize,uint64_t txg)582 vdev_draid_psize_to_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
583 {
584 	(void) txg;
585 	vdev_draid_config_t *vdc = vd->vdev_tsd;
586 	uint64_t ashift = vd->vdev_ashift;
587 
588 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
589 
590 	uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
591 	uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
592 
593 	ASSERT3U(asize, !=, 0);
594 	ASSERT0(asize % (vdc->vdc_groupwidth));
595 
596 	return (asize);
597 }
598 
599 /*
600  * Deflate the asize to the psize, this includes stripping parity.
601  */
602 uint64_t
vdev_draid_asize_to_psize(vdev_t * vd,uint64_t asize,uint64_t txg)603 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
604 {
605 	(void) txg;
606 	vdev_draid_config_t *vdc = vd->vdev_tsd;
607 
608 	ASSERT0(asize % vdc->vdc_groupwidth);
609 
610 	return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
611 }
612 
613 /*
614  * Convert a logical offset to the corresponding group number.
615  */
616 static uint64_t
vdev_draid_offset_to_group(vdev_t * vd,uint64_t offset)617 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
618 {
619 	vdev_draid_config_t *vdc = vd->vdev_tsd;
620 
621 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
622 
623 	return (offset / vdc->vdc_groupsz);
624 }
625 
626 /*
627  * Convert a group number to the logical starting offset for that group.
628  */
629 static uint64_t
vdev_draid_group_to_offset(vdev_t * vd,uint64_t group)630 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
631 {
632 	vdev_draid_config_t *vdc = vd->vdev_tsd;
633 
634 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
635 
636 	return (group * vdc->vdc_groupsz);
637 }
638 
639 /*
640  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
641  * is calculated over all the columns, including empty zero filled sectors,
642  * and each is written to disk.  While only the data columns are needed for
643  * a normal read, all of the columns are required for reconstruction when
644  * performing a sequential resilver.
645  *
646  * For "big columns" it's sufficient to map the correct range of the zio ABD.
647  * Partial columns require allocating a gang ABD in order to zero fill the
648  * empty sectors.  When the column is empty a zero filled sector must be
649  * mapped.  In all cases the data ABDs must be the same size as the parity
650  * ABDs (e.g. rc->rc_size == parity_size).
651  */
652 static void
vdev_draid_map_alloc_write(zio_t * zio,uint64_t abd_offset,raidz_row_t * rr)653 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
654 {
655 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
656 	uint64_t parity_size = rr->rr_col[0].rc_size;
657 	uint64_t abd_off = abd_offset;
658 
659 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
660 	ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
661 
662 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
663 		raidz_col_t *rc = &rr->rr_col[c];
664 
665 		if (rc->rc_size == 0) {
666 			/* empty data column (small write), add a skip sector */
667 			ASSERT3U(skip_size, ==, parity_size);
668 			rc->rc_abd = abd_get_zeros(skip_size);
669 		} else if (rc->rc_size == parity_size) {
670 			/* this is a "big column" */
671 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
672 			    zio->io_abd, abd_off, rc->rc_size);
673 		} else {
674 			/* short data column, add a skip sector */
675 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
676 			rc->rc_abd = abd_alloc_gang();
677 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
678 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
679 			abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
680 			    B_TRUE);
681 		}
682 
683 		ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
684 
685 		abd_off += rc->rc_size;
686 		rc->rc_size = parity_size;
687 	}
688 
689 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
690 }
691 
692 /*
693  * Scrub/resilver reads.  In order to store the contents of the skip sectors
694  * an additional ABD is allocated.  The columns are handled in the same way
695  * as a full stripe write except instead of using the zero ABD the newly
696  * allocated skip ABD is used to back the skip sectors.  In all cases the
697  * data ABD must be the same size as the parity ABDs.
698  */
699 static void
vdev_draid_map_alloc_scrub(zio_t * zio,uint64_t abd_offset,raidz_row_t * rr)700 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
701 {
702 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
703 	uint64_t parity_size = rr->rr_col[0].rc_size;
704 	uint64_t abd_off = abd_offset;
705 	uint64_t skip_off = 0;
706 
707 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
708 	ASSERT0P(rr->rr_abd_empty);
709 
710 	if (rr->rr_nempty > 0) {
711 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
712 		    B_FALSE);
713 	}
714 
715 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
716 		raidz_col_t *rc = &rr->rr_col[c];
717 
718 		if (rc->rc_size == 0) {
719 			/* empty data column (small read), add a skip sector */
720 			ASSERT3U(skip_size, ==, parity_size);
721 			ASSERT3U(rr->rr_nempty, !=, 0);
722 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
723 			    skip_off, skip_size);
724 			skip_off += skip_size;
725 		} else if (rc->rc_size == parity_size) {
726 			/* this is a "big column" */
727 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
728 			    zio->io_abd, abd_off, rc->rc_size);
729 		} else {
730 			/* short data column, add a skip sector */
731 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
732 			ASSERT3U(rr->rr_nempty, !=, 0);
733 			rc->rc_abd = abd_alloc_gang();
734 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
735 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
736 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
737 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
738 			skip_off += skip_size;
739 		}
740 
741 		uint64_t abd_size = abd_get_size(rc->rc_abd);
742 		ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
743 
744 		/*
745 		 * Increase rc_size so the skip ABD is included in subsequent
746 		 * parity calculations.
747 		 */
748 		abd_off += rc->rc_size;
749 		rc->rc_size = abd_size;
750 	}
751 
752 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
753 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
754 }
755 
756 /*
757  * Normal reads.  In this common case only the columns containing data
758  * are read in to the zio ABDs.  Neither the parity columns or empty skip
759  * sectors are read unless the checksum fails verification.  In which case
760  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
761  * the raid map in order to allow reconstruction using the parity data and
762  * skip sectors.
763  */
764 static void
vdev_draid_map_alloc_read(zio_t * zio,uint64_t abd_offset,raidz_row_t * rr)765 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
766 {
767 	uint64_t abd_off = abd_offset;
768 
769 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
770 
771 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
772 		raidz_col_t *rc = &rr->rr_col[c];
773 
774 		if (rc->rc_size > 0) {
775 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
776 			    zio->io_abd, abd_off, rc->rc_size);
777 			abd_off += rc->rc_size;
778 		}
779 	}
780 
781 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
782 }
783 
784 /*
785  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
786  * difference is that an ABD is allocated to back skip sectors so they may
787  * be read in to memory, verified, and repaired if needed.
788  */
789 void
vdev_draid_map_alloc_empty(zio_t * zio,raidz_row_t * rr)790 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
791 {
792 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
793 	uint64_t parity_size = rr->rr_col[0].rc_size;
794 	uint64_t skip_off = 0;
795 
796 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
797 	ASSERT0P(rr->rr_abd_empty);
798 
799 	if (rr->rr_nempty > 0) {
800 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
801 		    B_FALSE);
802 	}
803 
804 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
805 		raidz_col_t *rc = &rr->rr_col[c];
806 
807 		if (rc->rc_size == 0) {
808 			/* empty data column (small read), add a skip sector */
809 			ASSERT3U(skip_size, ==, parity_size);
810 			ASSERT3U(rr->rr_nempty, !=, 0);
811 			ASSERT0P(rc->rc_abd);
812 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
813 			    skip_off, skip_size);
814 			skip_off += skip_size;
815 		} else if (rc->rc_size == parity_size) {
816 			/* this is a "big column", nothing to add */
817 			ASSERT3P(rc->rc_abd, !=, NULL);
818 		} else {
819 			/*
820 			 * short data column, add a skip sector and clear
821 			 * rc_tried to force the entire column to be re-read
822 			 * thereby including the missing skip sector data
823 			 * which is needed for reconstruction.
824 			 */
825 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
826 			ASSERT3U(rr->rr_nempty, !=, 0);
827 			ASSERT3P(rc->rc_abd, !=, NULL);
828 			ASSERT(!abd_is_gang(rc->rc_abd));
829 			abd_t *read_abd = rc->rc_abd;
830 			rc->rc_abd = abd_alloc_gang();
831 			abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
832 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
833 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
834 			skip_off += skip_size;
835 			rc->rc_tried = 0;
836 		}
837 
838 		/*
839 		 * Increase rc_size so the empty ABD is included in subsequent
840 		 * parity calculations.
841 		 */
842 		rc->rc_size = parity_size;
843 	}
844 
845 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
846 }
847 
848 /*
849  * Verify that all empty sectors are zero filled before using them to
850  * calculate parity.  Otherwise, silent corruption in an empty sector will
851  * result in bad parity being generated.  That bad parity will then be
852  * considered authoritative and overwrite the good parity on disk.  This
853  * is possible because the checksum is only calculated over the data,
854  * thus it cannot be used to detect damage in empty sectors.
855  */
856 int
vdev_draid_map_verify_empty(zio_t * zio,raidz_row_t * rr)857 vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
858 {
859 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
860 	uint64_t parity_size = rr->rr_col[0].rc_size;
861 	uint64_t skip_off = parity_size - skip_size;
862 	uint64_t empty_off = 0;
863 	int ret = 0;
864 
865 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
866 	ASSERT3P(rr->rr_abd_empty, !=, NULL);
867 	ASSERT3U(rr->rr_bigcols, >, 0);
868 
869 	void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
870 
871 	for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
872 		raidz_col_t *rc = &rr->rr_col[c];
873 
874 		ASSERT3P(rc->rc_abd, !=, NULL);
875 		ASSERT3U(rc->rc_size, ==, parity_size);
876 
877 		if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
878 		    skip_size) != 0) {
879 			vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
880 			abd_zero_off(rc->rc_abd, skip_off, skip_size);
881 			rc->rc_error = SET_ERROR(ECKSUM);
882 			ret++;
883 		}
884 
885 		empty_off += skip_size;
886 	}
887 
888 	ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
889 
890 	kmem_free(zero_buf, skip_size);
891 
892 	return (ret);
893 }
894 
895 /*
896  * Given a logical address within a dRAID configuration, return the physical
897  * address on the first drive in the group that this address maps to
898  * (at position 'start' in permutation number 'perm').
899  */
900 static uint64_t
vdev_draid_logical_to_physical(vdev_t * vd,uint64_t logical_offset,uint64_t * perm,uint64_t * start)901 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
902     uint64_t *perm, uint64_t *start)
903 {
904 	vdev_draid_config_t *vdc = vd->vdev_tsd;
905 
906 	/* b is the dRAID (parent) sector offset. */
907 	uint64_t ashift = vd->vdev_top->vdev_ashift;
908 	uint64_t b_offset = logical_offset >> ashift;
909 
910 	/*
911 	 * The height of a row in units of the vdev's minimum sector size.
912 	 * This is the amount of data written to each disk of each group
913 	 * in a given permutation.
914 	 */
915 	uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
916 
917 	/*
918 	 * We cycle through a disk permutation every groupsz * ngroups chunk
919 	 * of address space. Note that ngroups * groupsz must be a multiple
920 	 * of the number of data drives (ndisks) in order to guarantee
921 	 * alignment. So, for example, if our row height is 16MB, our group
922 	 * size is 10, and there are 13 data drives in the draid, then ngroups
923 	 * will be 13, we will change permutation every 2.08GB and each
924 	 * disk will have 160MB of data per chunk.
925 	 */
926 	uint64_t groupwidth = vdc->vdc_groupwidth;
927 	uint64_t ngroups = vdc->vdc_ngroups;
928 	uint64_t ndisks = vdc->vdc_ndisks;
929 
930 	/*
931 	 * groupstart is where the group this IO will land in "starts" in
932 	 * the permutation array.
933 	 */
934 	uint64_t group = logical_offset / vdc->vdc_groupsz;
935 	uint64_t groupstart = (group * groupwidth) % ndisks;
936 	ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
937 	*start = groupstart;
938 
939 	/* b_offset is the sector offset within a group chunk */
940 	b_offset = b_offset % (rowheight_sectors * groupwidth);
941 	ASSERT0(b_offset % groupwidth);
942 
943 	/*
944 	 * Find the starting byte offset on each child vdev:
945 	 * - within a permutation there are ngroups groups spread over the
946 	 *   rows, where each row covers a slice portion of the disk
947 	 * - each permutation has (groupwidth * ngroups) / ndisks rows
948 	 * - so each permutation covers rows * slice portion of the disk
949 	 * - so we need to find the row where this IO group target begins
950 	 */
951 	*perm = group / ngroups;
952 	uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
953 	    (((group % ngroups) * groupwidth) / ndisks);
954 
955 	return (((rowheight_sectors * row) +
956 	    (b_offset / groupwidth)) << ashift);
957 }
958 
959 static uint64_t
vdev_draid_map_alloc_row(zio_t * zio,raidz_row_t ** rrp,uint64_t io_offset,uint64_t abd_offset,uint64_t abd_size)960 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
961     uint64_t abd_offset, uint64_t abd_size)
962 {
963 	vdev_t *vd = zio->io_vd;
964 	vdev_draid_config_t *vdc = vd->vdev_tsd;
965 	uint64_t ashift = vd->vdev_top->vdev_ashift;
966 	uint64_t io_size = abd_size;
967 	uint64_t io_asize = vdev_draid_psize_to_asize(vd, io_size, 0);
968 	uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
969 	uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
970 
971 	/*
972 	 * Limit the io_size to the space remaining in the group.  A second
973 	 * row in the raidz_map_t is created for the remainder.
974 	 */
975 	if (io_offset + io_asize > start_offset) {
976 		io_size = vdev_draid_asize_to_psize(vd,
977 		    start_offset - io_offset, 0);
978 	}
979 
980 	/*
981 	 * At most a block may span the logical end of one group and the start
982 	 * of the next group. Therefore, at the end of a group the io_size must
983 	 * span the group width evenly and the remainder must be aligned to the
984 	 * start of the next group.
985 	 */
986 	IMPLY(abd_offset == 0 && io_size < zio->io_size,
987 	    (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
988 	IMPLY(abd_offset != 0,
989 	    vdev_draid_group_to_offset(vd, group) == io_offset);
990 
991 	/* Lookup starting byte offset on each child vdev */
992 	uint64_t groupstart, perm;
993 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
994 	    io_offset, &perm, &groupstart);
995 
996 	/*
997 	 * If there is less than groupwidth drives available after the group
998 	 * start, the group is going to wrap onto the next row. 'wrap' is the
999 	 * group disk number that starts on the next row.
1000 	 */
1001 	uint64_t ndisks = vdc->vdc_ndisks;
1002 	uint64_t groupwidth = vdc->vdc_groupwidth;
1003 	uint64_t wrap = groupwidth;
1004 
1005 	if (groupstart + groupwidth > ndisks)
1006 		wrap = ndisks - groupstart;
1007 
1008 	/* The io size in units of the vdev's minimum sector size. */
1009 	const uint64_t psize = io_size >> ashift;
1010 
1011 	/*
1012 	 * "Quotient": The number of data sectors for this stripe on all but
1013 	 * the "big column" child vdevs that also contain "remainder" data.
1014 	 */
1015 	uint64_t q = psize / vdc->vdc_ndata;
1016 
1017 	/*
1018 	 * "Remainder": The number of partial stripe data sectors in this I/O.
1019 	 * This will add a sector to some, but not all, child vdevs.
1020 	 */
1021 	uint64_t r = psize - q * vdc->vdc_ndata;
1022 
1023 	/* The number of "big columns" - those which contain remainder data. */
1024 	uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
1025 	ASSERT3U(bc, <, groupwidth);
1026 
1027 	/* The total number of data and parity sectors for this I/O. */
1028 	uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
1029 
1030 	ASSERT3U(vdc->vdc_nparity, >, 0);
1031 
1032 	raidz_row_t *rr = vdev_raidz_row_alloc(groupwidth, zio);
1033 	rr->rr_bigcols = bc;
1034 	rr->rr_firstdatacol = vdc->vdc_nparity;
1035 #ifdef ZFS_DEBUG
1036 	rr->rr_offset = io_offset;
1037 	rr->rr_size = io_size;
1038 #endif
1039 	*rrp = rr;
1040 
1041 	uint8_t *base;
1042 	uint64_t iter, asize = 0;
1043 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1044 	for (uint64_t i = 0; i < groupwidth; i++) {
1045 		raidz_col_t *rc = &rr->rr_col[i];
1046 		uint64_t c = (groupstart + i) % ndisks;
1047 
1048 		/* increment the offset if we wrap to the next row */
1049 		if (i == wrap)
1050 			physical_offset += VDEV_DRAID_ROWHEIGHT;
1051 
1052 		rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1053 		rc->rc_offset = physical_offset;
1054 
1055 		if (q == 0 && i >= bc)
1056 			rc->rc_size = 0;
1057 		else if (i < bc)
1058 			rc->rc_size = (q + 1) << ashift;
1059 		else
1060 			rc->rc_size = q << ashift;
1061 
1062 		asize += rc->rc_size;
1063 	}
1064 
1065 	ASSERT3U(asize, ==, tot << ashift);
1066 	rr->rr_nempty = roundup(tot, groupwidth) - tot;
1067 	IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1068 
1069 	/* Allocate buffers for the parity columns */
1070 	for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1071 		raidz_col_t *rc = &rr->rr_col[c];
1072 		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1073 	}
1074 
1075 	/*
1076 	 * Map buffers for data columns and allocate/map buffers for skip
1077 	 * sectors.  There are three distinct cases for dRAID which are
1078 	 * required to support sequential rebuild.
1079 	 */
1080 	if (zio->io_type == ZIO_TYPE_WRITE) {
1081 		vdev_draid_map_alloc_write(zio, abd_offset, rr);
1082 	} else if ((rr->rr_nempty > 0) &&
1083 	    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1084 		vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1085 	} else {
1086 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1087 		vdev_draid_map_alloc_read(zio, abd_offset, rr);
1088 	}
1089 
1090 	return (io_size);
1091 }
1092 
1093 /*
1094  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1095  * calculations for dRAID are identical to raidz however there are a few
1096  * differences in the layout.
1097  *
1098  * - dRAID always allocates a full stripe width. Any extra sectors due
1099  *   this padding are zero filled and written to disk. They will be read
1100  *   back during a scrub or repair operation since they are included in
1101  *   the parity calculation. This property enables sequential resilvering.
1102  *
1103  * - When the block at the logical offset spans redundancy groups then two
1104  *   rows are allocated in the raidz_map_t. One row resides at the end of
1105  *   the first group and the other at the start of the following group.
1106  */
1107 static raidz_map_t *
vdev_draid_map_alloc(zio_t * zio)1108 vdev_draid_map_alloc(zio_t *zio)
1109 {
1110 	raidz_row_t *rr[2];
1111 	uint64_t abd_offset = 0;
1112 	uint64_t abd_size = zio->io_size;
1113 	uint64_t io_offset = zio->io_offset;
1114 	uint64_t size;
1115 	int nrows = 1;
1116 
1117 	size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1118 	    abd_offset, abd_size);
1119 	if (size < abd_size) {
1120 		vdev_t *vd = zio->io_vd;
1121 
1122 		io_offset += vdev_draid_psize_to_asize(vd, size, 0);
1123 		abd_offset += size;
1124 		abd_size -= size;
1125 		nrows++;
1126 
1127 		ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1128 		    vd, vdev_draid_offset_to_group(vd, io_offset)));
1129 		ASSERT3U(abd_offset, <, zio->io_size);
1130 		ASSERT3U(abd_size, !=, 0);
1131 
1132 		size = vdev_draid_map_alloc_row(zio, &rr[1],
1133 		    io_offset, abd_offset, abd_size);
1134 		VERIFY3U(size, ==, abd_size);
1135 	}
1136 
1137 	raidz_map_t *rm;
1138 	rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1139 	rm->rm_ops = vdev_raidz_math_get_ops();
1140 	rm->rm_nrows = nrows;
1141 	rm->rm_row[0] = rr[0];
1142 	if (nrows == 2)
1143 		rm->rm_row[1] = rr[1];
1144 	return (rm);
1145 }
1146 
1147 /*
1148  * Given an offset into a dRAID return the next group width aligned offset
1149  * which can be used to start an allocation.
1150  */
1151 static uint64_t
vdev_draid_get_astart(vdev_t * vd,const uint64_t start)1152 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1153 {
1154 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1155 
1156 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1157 
1158 	return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1159 }
1160 
1161 /*
1162  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1163  * rounded down to the last full slice.  So each child must provide at least
1164  * 1 / (children - nspares) of its asize.
1165  */
1166 static uint64_t
vdev_draid_min_asize(vdev_t * vd)1167 vdev_draid_min_asize(vdev_t *vd)
1168 {
1169 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1170 
1171 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1172 
1173 	return (VDEV_DRAID_REFLOW_RESERVE +
1174 	    (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1175 }
1176 
1177 /*
1178  * When using dRAID the minimum allocation size is determined by the number
1179  * of data disks in the redundancy group.  Full stripes are always used.
1180  */
1181 static uint64_t
vdev_draid_min_alloc(vdev_t * vd)1182 vdev_draid_min_alloc(vdev_t *vd)
1183 {
1184 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1185 
1186 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1187 
1188 	return (vdc->vdc_ndata << vd->vdev_ashift);
1189 }
1190 
1191 /*
1192  * Returns true if the txg range does not exist on any leaf vdev.
1193  *
1194  * A dRAID spare does not fit into the DTL model. While it has child vdevs
1195  * there is no redundancy among them, and the effective child vdev is
1196  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1197  * fly by replacing a dRAID spare with the child vdev under the offset.
1198  * Note that it is a recursive process because the child vdev can be
1199  * another dRAID spare and so on.
1200  */
1201 boolean_t
vdev_draid_missing(vdev_t * vd,uint64_t physical_offset,uint64_t txg,uint64_t size)1202 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1203     uint64_t size)
1204 {
1205 	if (vd->vdev_ops == &vdev_spare_ops ||
1206 	    vd->vdev_ops == &vdev_replacing_ops) {
1207 		/*
1208 		 * Check all of the readable children, if any child
1209 		 * contains the txg range the data it is not missing.
1210 		 */
1211 		for (int c = 0; c < vd->vdev_children; c++) {
1212 			vdev_t *cvd = vd->vdev_child[c];
1213 
1214 			if (!vdev_readable(cvd))
1215 				continue;
1216 
1217 			if (!vdev_draid_missing(cvd, physical_offset,
1218 			    txg, size))
1219 				return (B_FALSE);
1220 		}
1221 
1222 		return (B_TRUE);
1223 	}
1224 
1225 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1226 		/*
1227 		 * When sequentially resilvering we don't have a proper
1228 		 * txg range so instead we must presume all txgs are
1229 		 * missing on this vdev until the resilver completes.
1230 		 */
1231 		if (vd->vdev_rebuild_txg != 0)
1232 			return (B_TRUE);
1233 
1234 		/*
1235 		 * DTL_MISSING is set for all prior txgs when a resilver
1236 		 * is started in spa_vdev_attach().
1237 		 */
1238 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1239 			return (B_TRUE);
1240 
1241 		/*
1242 		 * Consult the DTL on the relevant vdev. Either a vdev
1243 		 * leaf or spare/replace mirror child may be returned so
1244 		 * we must recursively call vdev_draid_missing_impl().
1245 		 */
1246 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1247 		if (vd == NULL)
1248 			return (B_TRUE);
1249 
1250 		return (vdev_draid_missing(vd, physical_offset,
1251 		    txg, size));
1252 	}
1253 
1254 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1255 }
1256 
1257 /*
1258  * Returns true if the txg is only partially replicated on the leaf vdevs.
1259  */
1260 static boolean_t
vdev_draid_partial(vdev_t * vd,uint64_t physical_offset,uint64_t txg,uint64_t size)1261 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1262     uint64_t size)
1263 {
1264 	if (vd->vdev_ops == &vdev_spare_ops ||
1265 	    vd->vdev_ops == &vdev_replacing_ops) {
1266 		/*
1267 		 * Check all of the readable children, if any child is
1268 		 * missing the txg range then it is partially replicated.
1269 		 */
1270 		for (int c = 0; c < vd->vdev_children; c++) {
1271 			vdev_t *cvd = vd->vdev_child[c];
1272 
1273 			if (!vdev_readable(cvd))
1274 				continue;
1275 
1276 			if (vdev_draid_partial(cvd, physical_offset, txg, size))
1277 				return (B_TRUE);
1278 		}
1279 
1280 		return (B_FALSE);
1281 	}
1282 
1283 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1284 		/*
1285 		 * When sequentially resilvering we don't have a proper
1286 		 * txg range so instead we must presume all txgs are
1287 		 * missing on this vdev until the resilver completes.
1288 		 */
1289 		if (vd->vdev_rebuild_txg != 0)
1290 			return (B_TRUE);
1291 
1292 		/*
1293 		 * DTL_MISSING is set for all prior txgs when a resilver
1294 		 * is started in spa_vdev_attach().
1295 		 */
1296 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1297 			return (B_TRUE);
1298 
1299 		/*
1300 		 * Consult the DTL on the relevant vdev. Either a vdev
1301 		 * leaf or spare/replace mirror child may be returned so
1302 		 * we must recursively call vdev_draid_missing_impl().
1303 		 */
1304 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1305 		if (vd == NULL)
1306 			return (B_TRUE);
1307 
1308 		return (vdev_draid_partial(vd, physical_offset, txg, size));
1309 	}
1310 
1311 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1312 }
1313 
1314 /*
1315  * Determine if the vdev is readable at the given offset.
1316  */
1317 boolean_t
vdev_draid_readable(vdev_t * vd,uint64_t physical_offset)1318 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1319 {
1320 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1321 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1322 		if (vd == NULL)
1323 			return (B_FALSE);
1324 	}
1325 
1326 	if (vd->vdev_ops == &vdev_spare_ops ||
1327 	    vd->vdev_ops == &vdev_replacing_ops) {
1328 
1329 		for (int c = 0; c < vd->vdev_children; c++) {
1330 			vdev_t *cvd = vd->vdev_child[c];
1331 
1332 			if (!vdev_readable(cvd))
1333 				continue;
1334 
1335 			if (vdev_draid_readable(cvd, physical_offset))
1336 				return (B_TRUE);
1337 		}
1338 
1339 		return (B_FALSE);
1340 	}
1341 
1342 	return (vdev_readable(vd));
1343 }
1344 
1345 /*
1346  * Returns the first distributed spare found under the provided vdev tree.
1347  */
1348 static vdev_t *
vdev_draid_find_spare(vdev_t * vd)1349 vdev_draid_find_spare(vdev_t *vd)
1350 {
1351 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1352 		return (vd);
1353 
1354 	for (int c = 0; c < vd->vdev_children; c++) {
1355 		vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1356 		if (svd != NULL)
1357 			return (svd);
1358 	}
1359 
1360 	return (NULL);
1361 }
1362 
1363 /*
1364  * Returns B_TRUE if the passed in vdev is currently "faulted".
1365  * Faulted, in this context, means that the vdev represents a
1366  * replacing or sparing vdev tree.
1367  */
1368 static boolean_t
vdev_draid_faulted(vdev_t * vd,uint64_t physical_offset)1369 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1370 {
1371 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1372 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1373 		if (vd == NULL)
1374 			return (B_FALSE);
1375 
1376 		/*
1377 		 * After resolving the distributed spare to a leaf vdev
1378 		 * check the parent to determine if it's "faulted".
1379 		 */
1380 		vd = vd->vdev_parent;
1381 	}
1382 
1383 	return (vd->vdev_ops == &vdev_replacing_ops ||
1384 	    vd->vdev_ops == &vdev_spare_ops);
1385 }
1386 
1387 /*
1388  * Determine if the dRAID block at the logical offset is degraded.
1389  * Used by sequential resilver.
1390  */
1391 static boolean_t
vdev_draid_group_degraded(vdev_t * vd,uint64_t offset)1392 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1393 {
1394 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1395 
1396 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1397 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1398 
1399 	uint64_t groupstart, perm;
1400 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1401 	    offset, &perm, &groupstart);
1402 
1403 	uint8_t *base;
1404 	uint64_t iter;
1405 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1406 
1407 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1408 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1409 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1410 		vdev_t *cvd = vd->vdev_child[cid];
1411 
1412 		/* Group contains a faulted vdev. */
1413 		if (vdev_draid_faulted(cvd, physical_offset))
1414 			return (B_TRUE);
1415 
1416 		/*
1417 		 * Always check groups with active distributed spares
1418 		 * because any vdev failure in the pool will affect them.
1419 		 */
1420 		if (vdev_draid_find_spare(cvd) != NULL)
1421 			return (B_TRUE);
1422 	}
1423 
1424 	return (B_FALSE);
1425 }
1426 
1427 /*
1428  * Determine if the txg is missing.  Used by healing resilver.
1429  */
1430 static boolean_t
vdev_draid_group_missing(vdev_t * vd,uint64_t offset,uint64_t txg,uint64_t size)1431 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1432     uint64_t size)
1433 {
1434 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1435 
1436 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1437 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1438 
1439 	uint64_t groupstart, perm;
1440 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1441 	    offset, &perm, &groupstart);
1442 
1443 	uint8_t *base;
1444 	uint64_t iter;
1445 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1446 
1447 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1448 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1449 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1450 		vdev_t *cvd = vd->vdev_child[cid];
1451 
1452 		/* Transaction group is known to be partially replicated. */
1453 		if (vdev_draid_partial(cvd, physical_offset, txg, size))
1454 			return (B_TRUE);
1455 
1456 		/*
1457 		 * Always check groups with active distributed spares
1458 		 * because any vdev failure in the pool will affect them.
1459 		 */
1460 		if (vdev_draid_find_spare(cvd) != NULL)
1461 			return (B_TRUE);
1462 	}
1463 
1464 	return (B_FALSE);
1465 }
1466 
1467 /*
1468  * Find the smallest child asize and largest sector size to calculate the
1469  * available capacity.  Distributed spares are ignored since their capacity
1470  * is also based of the minimum child size in the top-level dRAID.
1471  */
1472 static void
vdev_draid_calculate_asize(vdev_t * vd,uint64_t * asizep,uint64_t * max_asizep,uint64_t * logical_ashiftp,uint64_t * physical_ashiftp)1473 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1474     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1475 {
1476 	uint64_t logical_ashift = 0, physical_ashift = 0;
1477 	uint64_t asize = 0, max_asize = 0;
1478 
1479 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1480 
1481 	for (int c = 0; c < vd->vdev_children; c++) {
1482 		vdev_t *cvd = vd->vdev_child[c];
1483 
1484 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1485 			continue;
1486 
1487 		asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1488 		max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1489 		logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1490 	}
1491 	for (int c = 0; c < vd->vdev_children; c++) {
1492 		vdev_t *cvd = vd->vdev_child[c];
1493 
1494 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1495 			continue;
1496 		physical_ashift = vdev_best_ashift(logical_ashift,
1497 		    physical_ashift, cvd->vdev_physical_ashift);
1498 	}
1499 
1500 	*asizep = asize;
1501 	*max_asizep = max_asize;
1502 	*logical_ashiftp = logical_ashift;
1503 	*physical_ashiftp = physical_ashift;
1504 }
1505 
1506 /*
1507  * Open spare vdevs.
1508  */
1509 static boolean_t
vdev_draid_open_spares(vdev_t * vd)1510 vdev_draid_open_spares(vdev_t *vd)
1511 {
1512 	return (vd->vdev_ops == &vdev_draid_spare_ops ||
1513 	    vd->vdev_ops == &vdev_replacing_ops ||
1514 	    vd->vdev_ops == &vdev_spare_ops);
1515 }
1516 
1517 /*
1518  * Open all children, excluding spares.
1519  */
1520 static boolean_t
vdev_draid_open_children(vdev_t * vd)1521 vdev_draid_open_children(vdev_t *vd)
1522 {
1523 	return (!vdev_draid_open_spares(vd));
1524 }
1525 
1526 /*
1527  * Open a top-level dRAID vdev.
1528  */
1529 static int
vdev_draid_open(vdev_t * vd,uint64_t * asize,uint64_t * max_asize,uint64_t * logical_ashift,uint64_t * physical_ashift)1530 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1531     uint64_t *logical_ashift, uint64_t *physical_ashift)
1532 {
1533 	vdev_draid_config_t *vdc =  vd->vdev_tsd;
1534 	uint64_t nparity = vdc->vdc_nparity;
1535 	int open_errors = 0;
1536 
1537 	if (nparity > VDEV_DRAID_MAXPARITY ||
1538 	    vd->vdev_children < nparity + 1) {
1539 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1540 		return (SET_ERROR(EINVAL));
1541 	}
1542 
1543 	/*
1544 	 * First open the normal children then the distributed spares.  This
1545 	 * ordering is important to ensure the distributed spares calculate
1546 	 * the correct psize in the event that the dRAID vdevs were expanded.
1547 	 */
1548 	vdev_open_children_subset(vd, vdev_draid_open_children);
1549 	vdev_open_children_subset(vd, vdev_draid_open_spares);
1550 
1551 	/* Verify enough of the children are available to continue. */
1552 	for (int c = 0; c < vd->vdev_children; c++) {
1553 		if (vd->vdev_child[c]->vdev_open_error != 0) {
1554 			if ((++open_errors) > nparity) {
1555 				vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1556 				return (SET_ERROR(ENXIO));
1557 			}
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Allocatable capacity is the sum of the space on all children less
1563 	 * the number of distributed spares rounded down to last full row
1564 	 * and then to the last full group. An additional 32MB of scratch
1565 	 * space is reserved at the end of each child for use by the dRAID
1566 	 * expansion feature.
1567 	 */
1568 	uint64_t child_asize, child_max_asize;
1569 	vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1570 	    logical_ashift, physical_ashift);
1571 
1572 	/*
1573 	 * Should be unreachable since the minimum child size is 64MB, but
1574 	 * we want to make sure an underflow absolutely cannot occur here.
1575 	 */
1576 	if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1577 	    child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1578 		return (SET_ERROR(ENXIO));
1579 	}
1580 
1581 	child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1582 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1583 	child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1584 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1585 
1586 	*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1587 	    vdc->vdc_groupsz);
1588 	*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1589 	    vdc->vdc_groupsz);
1590 
1591 	return (0);
1592 }
1593 
1594 /*
1595  * Close a top-level dRAID vdev.
1596  */
1597 static void
vdev_draid_close(vdev_t * vd)1598 vdev_draid_close(vdev_t *vd)
1599 {
1600 	for (int c = 0; c < vd->vdev_children; c++) {
1601 		if (vd->vdev_child[c] != NULL)
1602 			vdev_close(vd->vdev_child[c]);
1603 	}
1604 }
1605 
1606 /*
1607  * Return the maximum asize for a rebuild zio in the provided range
1608  * given the following constraints.  A dRAID chunks may not:
1609  *
1610  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1611  * - Span dRAID redundancy groups.
1612  */
1613 static uint64_t
vdev_draid_rebuild_asize(vdev_t * vd,uint64_t start,uint64_t asize,uint64_t max_segment)1614 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1615     uint64_t max_segment)
1616 {
1617 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1618 
1619 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1620 
1621 	uint64_t ashift = vd->vdev_ashift;
1622 	uint64_t ndata = vdc->vdc_ndata;
1623 	uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1624 	    SPA_MAXBLOCKSIZE);
1625 
1626 	ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1627 	ASSERT0(asize % (vdc->vdc_groupwidth << ashift));
1628 
1629 	/* Chunks must evenly span all data columns in the group. */
1630 	psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1631 	uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1632 
1633 	/* Reduce the chunk size to the group space remaining. */
1634 	uint64_t group = vdev_draid_offset_to_group(vd, start);
1635 	uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1636 	chunk_size = MIN(chunk_size, left);
1637 
1638 	ASSERT0(chunk_size % (vdc->vdc_groupwidth << ashift));
1639 	ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1640 	    vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1641 
1642 	return (chunk_size);
1643 }
1644 
1645 /*
1646  * Align the start of the metaslab to the group width and slightly reduce
1647  * its size to a multiple of the group width.  Since full stripe writes are
1648  * required by dRAID this space is unallocable.  Furthermore, aligning the
1649  * metaslab start is important for vdev initialize and TRIM which both operate
1650  * on metaslab boundaries which vdev_xlate() expects to be aligned.
1651  */
1652 static void
vdev_draid_metaslab_init(vdev_t * vd,uint64_t * ms_start,uint64_t * ms_size)1653 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1654 {
1655 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1656 
1657 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1658 
1659 	uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1660 	uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1661 	uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1662 
1663 	*ms_start = astart;
1664 	*ms_size = asize;
1665 
1666 	ASSERT0(*ms_start % sz);
1667 	ASSERT0(*ms_size % sz);
1668 }
1669 
1670 /*
1671  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1672  * this the existing array must be freed and reallocated with the additional
1673  * entries.
1674  */
1675 int
vdev_draid_spare_create(nvlist_t * nvroot,vdev_t * vd,uint64_t * ndraidp,uint64_t next_vdev_id)1676 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1677     uint64_t next_vdev_id)
1678 {
1679 	uint64_t draid_nspares = 0;
1680 	uint64_t ndraid = 0;
1681 	int error;
1682 
1683 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1684 		vdev_t *cvd = vd->vdev_child[i];
1685 
1686 		if (cvd->vdev_ops == &vdev_draid_ops) {
1687 			vdev_draid_config_t *vdc = cvd->vdev_tsd;
1688 			draid_nspares += vdc->vdc_nspares;
1689 			ndraid++;
1690 		}
1691 	}
1692 
1693 	if (draid_nspares == 0) {
1694 		*ndraidp = ndraid;
1695 		return (0);
1696 	}
1697 
1698 	nvlist_t **old_spares, **new_spares;
1699 	uint_t old_nspares;
1700 	error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1701 	    &old_spares, &old_nspares);
1702 	if (error)
1703 		old_nspares = 0;
1704 
1705 	/* Allocate memory and copy of the existing spares. */
1706 	new_spares = kmem_alloc(sizeof (nvlist_t *) *
1707 	    (draid_nspares + old_nspares), KM_SLEEP);
1708 	for (uint_t i = 0; i < old_nspares; i++)
1709 		new_spares[i] = fnvlist_dup(old_spares[i]);
1710 
1711 	/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1712 	uint64_t n = old_nspares;
1713 	for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1714 		vdev_t *cvd = vd->vdev_child[vdev_id];
1715 		char path[64];
1716 
1717 		if (cvd->vdev_ops != &vdev_draid_ops)
1718 			continue;
1719 
1720 		vdev_draid_config_t *vdc = cvd->vdev_tsd;
1721 		uint64_t nspares = vdc->vdc_nspares;
1722 		uint64_t nparity = vdc->vdc_nparity;
1723 
1724 		for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1725 			memset(path, 0, sizeof (path));
1726 			(void) snprintf(path, sizeof (path) - 1,
1727 			    "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1728 			    (u_longlong_t)nparity,
1729 			    (u_longlong_t)next_vdev_id + vdev_id,
1730 			    (u_longlong_t)spare_id);
1731 
1732 			nvlist_t *spare = fnvlist_alloc();
1733 			fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1734 			fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1735 			    VDEV_TYPE_DRAID_SPARE);
1736 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1737 			    cvd->vdev_guid);
1738 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1739 			    spare_id);
1740 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1741 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1742 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1743 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1744 			    cvd->vdev_ashift);
1745 
1746 			new_spares[n] = spare;
1747 			n++;
1748 		}
1749 	}
1750 
1751 	if (n > 0) {
1752 		(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1753 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1754 		    (const nvlist_t **)new_spares, n);
1755 	}
1756 
1757 	for (int i = 0; i < n; i++)
1758 		nvlist_free(new_spares[i]);
1759 
1760 	kmem_free(new_spares, sizeof (*new_spares) * n);
1761 	*ndraidp = ndraid;
1762 
1763 	return (0);
1764 }
1765 
1766 /*
1767  * Determine if any portion of the provided block resides on a child vdev
1768  * with a dirty DTL and therefore needs to be resilvered.
1769  */
1770 static boolean_t
vdev_draid_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)1771 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1772     uint64_t phys_birth)
1773 {
1774 	uint64_t offset = DVA_GET_OFFSET(dva);
1775 	uint64_t asize = vdev_draid_psize_to_asize(vd, psize, 0);
1776 
1777 	if (phys_birth == TXG_UNKNOWN) {
1778 		/*
1779 		 * Sequential resilver.  There is no meaningful phys_birth
1780 		 * for this block, we can only determine if block resides
1781 		 * in a degraded group in which case it must be resilvered.
1782 		 */
1783 		ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1784 		    vdev_draid_offset_to_group(vd, offset + asize - 1));
1785 
1786 		return (vdev_draid_group_degraded(vd, offset));
1787 	} else {
1788 		/*
1789 		 * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1790 		 * as are blocks in non-degraded groups.
1791 		 */
1792 		if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1793 			return (B_FALSE);
1794 
1795 		if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1796 			return (B_TRUE);
1797 
1798 		/* The block may span groups in which case check both. */
1799 		if (vdev_draid_offset_to_group(vd, offset) !=
1800 		    vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1801 			if (vdev_draid_group_missing(vd,
1802 			    offset + asize, phys_birth, 1))
1803 				return (B_TRUE);
1804 		}
1805 
1806 		return (B_FALSE);
1807 	}
1808 }
1809 
1810 static boolean_t
vdev_draid_rebuilding(vdev_t * vd)1811 vdev_draid_rebuilding(vdev_t *vd)
1812 {
1813 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1814 		return (B_TRUE);
1815 
1816 	for (int i = 0; i < vd->vdev_children; i++) {
1817 		if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1818 			return (B_TRUE);
1819 		}
1820 	}
1821 
1822 	return (B_FALSE);
1823 }
1824 
1825 static void
vdev_draid_io_verify(vdev_t * vd,raidz_row_t * rr,int col)1826 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1827 {
1828 #ifdef ZFS_DEBUG
1829 	zfs_range_seg64_t logical_rs, physical_rs, remain_rs;
1830 	logical_rs.rs_start = rr->rr_offset;
1831 	logical_rs.rs_end = logical_rs.rs_start +
1832 	    vdev_draid_psize_to_asize(vd, rr->rr_size, 0);
1833 
1834 	raidz_col_t *rc = &rr->rr_col[col];
1835 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1836 
1837 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1838 	ASSERT(vdev_xlate_is_empty(&remain_rs));
1839 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1840 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1841 	ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1842 #endif
1843 }
1844 
1845 /*
1846  * For write operations:
1847  * 1. Generate the parity data
1848  * 2. Create child zio write operations to each column's vdev, for both
1849  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1850  *    if a skip sector needs to be added to a column.
1851  */
1852 static void
vdev_draid_io_start_write(zio_t * zio,raidz_row_t * rr)1853 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1854 {
1855 	vdev_t *vd = zio->io_vd;
1856 	raidz_map_t *rm = zio->io_vsd;
1857 
1858 	vdev_raidz_generate_parity_row(rm, rr);
1859 
1860 	for (int c = 0; c < rr->rr_cols; c++) {
1861 		raidz_col_t *rc = &rr->rr_col[c];
1862 
1863 		/*
1864 		 * Empty columns are zero filled and included in the parity
1865 		 * calculation and therefore must be written.
1866 		 */
1867 		ASSERT3U(rc->rc_size, !=, 0);
1868 
1869 		/* Verify physical to logical translation */
1870 		vdev_draid_io_verify(vd, rr, c);
1871 
1872 		zio_nowait(zio_vdev_child_io(zio, NULL,
1873 		    vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1874 		    rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1875 		    0, vdev_raidz_child_done, rc));
1876 	}
1877 }
1878 
1879 /*
1880  * For read operations:
1881  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1882  *    mapping for the read based on the zio->io_flags.  There are two
1883  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1884  * 2. Create the zio read operations.  This will include all parity
1885  *    columns and skip sectors for a scrub/resilver.
1886  */
1887 static void
vdev_draid_io_start_read(zio_t * zio,raidz_row_t * rr)1888 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1889 {
1890 	vdev_t *vd = zio->io_vd;
1891 
1892 	/* Sequential rebuild must do IO at redundancy group boundary. */
1893 	IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1894 
1895 	/*
1896 	 * Iterate over the columns in reverse order so that we hit the parity
1897 	 * last.  Any errors along the way will force us to read the parity.
1898 	 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1899 	 * have been allocated to store them and rc->rc_size is increased.
1900 	 */
1901 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1902 		raidz_col_t *rc = &rr->rr_col[c];
1903 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1904 
1905 		if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1906 			if (c >= rr->rr_firstdatacol)
1907 				rr->rr_missingdata++;
1908 			else
1909 				rr->rr_missingparity++;
1910 			rc->rc_error = SET_ERROR(ENXIO);
1911 			rc->rc_tried = 1;
1912 			rc->rc_skipped = 1;
1913 			continue;
1914 		}
1915 
1916 		if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1917 			if (c >= rr->rr_firstdatacol)
1918 				rr->rr_missingdata++;
1919 			else
1920 				rr->rr_missingparity++;
1921 			rc->rc_error = SET_ERROR(ESTALE);
1922 			rc->rc_skipped = 1;
1923 			continue;
1924 		}
1925 
1926 		/*
1927 		 * Empty columns may be read during vdev_draid_io_done().
1928 		 * Only skip them after the readable and missing checks
1929 		 * verify they are available.
1930 		 */
1931 		if (rc->rc_size == 0) {
1932 			rc->rc_skipped = 1;
1933 			continue;
1934 		}
1935 
1936 		if (zio->io_flags & ZIO_FLAG_RESILVER) {
1937 			vdev_t *svd;
1938 
1939 			/*
1940 			 * Sequential rebuilds need to always consider the data
1941 			 * on the child being rebuilt to be stale.  This is
1942 			 * important when all columns are available to aid
1943 			 * known reconstruction in identifing which columns
1944 			 * contain incorrect data.
1945 			 *
1946 			 * Furthermore, all repairs need to be constrained to
1947 			 * the devices being rebuilt because without a checksum
1948 			 * we cannot verify the data is actually correct and
1949 			 * performing an incorrect repair could result in
1950 			 * locking in damage and making the data unrecoverable.
1951 			 */
1952 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
1953 				if (vdev_draid_rebuilding(cvd)) {
1954 					if (c >= rr->rr_firstdatacol)
1955 						rr->rr_missingdata++;
1956 					else
1957 						rr->rr_missingparity++;
1958 					rc->rc_error = SET_ERROR(ESTALE);
1959 					rc->rc_skipped = 1;
1960 					rc->rc_allow_repair = 1;
1961 					continue;
1962 				} else {
1963 					rc->rc_allow_repair = 0;
1964 				}
1965 			} else {
1966 				rc->rc_allow_repair = 1;
1967 			}
1968 
1969 			/*
1970 			 * If this child is a distributed spare then the
1971 			 * offset might reside on the vdev being replaced.
1972 			 * In which case this data must be written to the
1973 			 * new device.  Failure to do so would result in
1974 			 * checksum errors when the old device is detached
1975 			 * and the pool is scrubbed.
1976 			 */
1977 			if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1978 				svd = vdev_draid_spare_get_child(svd,
1979 				    rc->rc_offset);
1980 				if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1981 				    svd->vdev_ops == &vdev_replacing_ops)) {
1982 					rc->rc_force_repair = 1;
1983 
1984 					if (vdev_draid_rebuilding(svd))
1985 						rc->rc_allow_repair = 1;
1986 				}
1987 			}
1988 
1989 			/*
1990 			 * Always issue a repair IO to this child when its
1991 			 * a spare or replacing vdev with an active rebuild.
1992 			 */
1993 			if ((cvd->vdev_ops == &vdev_spare_ops ||
1994 			    cvd->vdev_ops == &vdev_replacing_ops) &&
1995 			    vdev_draid_rebuilding(cvd)) {
1996 				rc->rc_force_repair = 1;
1997 				rc->rc_allow_repair = 1;
1998 			}
1999 		}
2000 
2001 		if (vdev_sit_out_reads(cvd, zio->io_flags)) {
2002 			rr->rr_outlier_cnt++;
2003 			ASSERT0(rc->rc_latency_outlier);
2004 			rc->rc_latency_outlier = 1;
2005 		}
2006 	}
2007 
2008 	/*
2009 	 * When the row contains a latency outlier and sufficient parity
2010 	 * exists to reconstruct the column data, then skip reading the
2011 	 * known slow child vdev as a performance optimization.
2012 	 */
2013 	if (rr->rr_outlier_cnt > 0 &&
2014 	    (rr->rr_firstdatacol - rr->rr_missingparity) >=
2015 	    (rr->rr_missingdata + 1)) {
2016 
2017 		for (int c = rr->rr_cols - 1; c >= rr->rr_firstdatacol; c--) {
2018 			raidz_col_t *rc = &rr->rr_col[c];
2019 
2020 			if (rc->rc_error == 0 && rc->rc_latency_outlier) {
2021 				rr->rr_missingdata++;
2022 				rc->rc_error = SET_ERROR(EAGAIN);
2023 				rc->rc_skipped = 1;
2024 				break;
2025 			}
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * Either a parity or data column is missing this means a repair
2031 	 * may be attempted by vdev_draid_io_done().  Expand the raid map
2032 	 * to read in empty columns which are needed along with the parity
2033 	 * during reconstruction.
2034 	 */
2035 	if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
2036 	    rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
2037 		vdev_draid_map_alloc_empty(zio, rr);
2038 	}
2039 
2040 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
2041 		raidz_col_t *rc = &rr->rr_col[c];
2042 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2043 
2044 		if (rc->rc_error || rc->rc_size == 0)
2045 			continue;
2046 
2047 		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2048 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2049 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2050 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2051 			    zio->io_type, zio->io_priority, 0,
2052 			    vdev_raidz_child_done, rc));
2053 		}
2054 	}
2055 }
2056 
2057 /*
2058  * Start an IO operation to a dRAID vdev.
2059  */
2060 static void
vdev_draid_io_start(zio_t * zio)2061 vdev_draid_io_start(zio_t *zio)
2062 {
2063 	vdev_t *vd __maybe_unused = zio->io_vd;
2064 
2065 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2066 	ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
2067 
2068 	raidz_map_t *rm = vdev_draid_map_alloc(zio);
2069 	zio->io_vsd = rm;
2070 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2071 
2072 	if (zio->io_type == ZIO_TYPE_WRITE) {
2073 		for (int i = 0; i < rm->rm_nrows; i++) {
2074 			vdev_draid_io_start_write(zio, rm->rm_row[i]);
2075 		}
2076 	} else {
2077 		ASSERT(zio->io_type == ZIO_TYPE_READ);
2078 
2079 		for (int i = 0; i < rm->rm_nrows; i++) {
2080 			vdev_draid_io_start_read(zio, rm->rm_row[i]);
2081 		}
2082 	}
2083 
2084 	zio_execute(zio);
2085 }
2086 
2087 /*
2088  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
2089  * to dRAID since the layout is fully described by the raidz_map_t.
2090  */
2091 static void
vdev_draid_io_done(zio_t * zio)2092 vdev_draid_io_done(zio_t *zio)
2093 {
2094 	vdev_raidz_io_done(zio);
2095 }
2096 
2097 static void
vdev_draid_state_change(vdev_t * vd,int faulted,int degraded)2098 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
2099 {
2100 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2101 	ASSERT(vd->vdev_ops == &vdev_draid_ops);
2102 
2103 	if (faulted > vdc->vdc_nparity)
2104 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2105 		    VDEV_AUX_NO_REPLICAS);
2106 	else if (degraded + faulted != 0)
2107 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2108 	else
2109 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2110 }
2111 
2112 static void
vdev_draid_xlate(vdev_t * cvd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)2113 vdev_draid_xlate(vdev_t *cvd, const zfs_range_seg64_t *logical_rs,
2114     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
2115 {
2116 	vdev_t *raidvd = cvd->vdev_parent;
2117 	ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2118 
2119 	vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2120 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2121 
2122 	/* Make sure the offsets are block-aligned */
2123 	ASSERT0(logical_rs->rs_start % (1 << ashift));
2124 	ASSERT0(logical_rs->rs_end % (1 << ashift));
2125 
2126 	uint64_t logical_start = logical_rs->rs_start;
2127 	uint64_t logical_end = logical_rs->rs_end;
2128 
2129 	/*
2130 	 * Unaligned ranges must be skipped. All metaslabs are correctly
2131 	 * aligned so this should not happen, but this case is handled in
2132 	 * case it's needed by future callers.
2133 	 */
2134 	uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2135 	if (astart != logical_start) {
2136 		physical_rs->rs_start = logical_start;
2137 		physical_rs->rs_end = logical_start;
2138 		remain_rs->rs_start = MIN(astart, logical_end);
2139 		remain_rs->rs_end = logical_end;
2140 		return;
2141 	}
2142 
2143 	/*
2144 	 * Unlike with mirrors and raidz a dRAID logical range can map
2145 	 * to multiple non-contiguous physical ranges. This is handled by
2146 	 * limiting the size of the logical range to a single group and
2147 	 * setting the remain argument such that it describes the remaining
2148 	 * unmapped logical range. This is stricter than absolutely
2149 	 * necessary but helps simplify the logic below.
2150 	 */
2151 	uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2152 	uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2153 	if (logical_end > nextstart)
2154 		logical_end = nextstart;
2155 
2156 	/* Find the starting offset for each vdev in the group */
2157 	uint64_t perm, groupstart;
2158 	uint64_t start = vdev_draid_logical_to_physical(raidvd,
2159 	    logical_start, &perm, &groupstart);
2160 	uint64_t end = start;
2161 
2162 	uint8_t *base;
2163 	uint64_t iter, id;
2164 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2165 
2166 	/*
2167 	 * Check if the passed child falls within the group.  If it does
2168 	 * update the start and end to reflect the physical range.
2169 	 * Otherwise, leave them unmodified which will result in an empty
2170 	 * (zero-length) physical range being returned.
2171 	 */
2172 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2173 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2174 
2175 		if (c == 0 && i != 0) {
2176 			/* the group wrapped, increment the start */
2177 			start += VDEV_DRAID_ROWHEIGHT;
2178 			end = start;
2179 		}
2180 
2181 		id = vdev_draid_permute_id(vdc, base, iter, c);
2182 		if (id == cvd->vdev_id) {
2183 			uint64_t b_size = (logical_end >> ashift) -
2184 			    (logical_start >> ashift);
2185 			ASSERT3U(b_size, >, 0);
2186 			end = start + ((((b_size - 1) /
2187 			    vdc->vdc_groupwidth) + 1) << ashift);
2188 			break;
2189 		}
2190 	}
2191 	physical_rs->rs_start = start;
2192 	physical_rs->rs_end = end;
2193 
2194 	/*
2195 	 * Only top-level vdevs are allowed to set remain_rs because
2196 	 * when .vdev_op_xlate() is called for their children the full
2197 	 * logical range is not provided by vdev_xlate().
2198 	 */
2199 	remain_rs->rs_start = logical_end;
2200 	remain_rs->rs_end = logical_rs->rs_end;
2201 
2202 	ASSERT3U(physical_rs->rs_start, <=, logical_start);
2203 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2204 	    logical_end - logical_start);
2205 }
2206 
2207 /*
2208  * Add dRAID specific fields to the config nvlist.
2209  */
2210 static void
vdev_draid_config_generate(vdev_t * vd,nvlist_t * nv)2211 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2212 {
2213 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2214 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2215 
2216 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2217 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2218 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2219 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2220 }
2221 
2222 /*
2223  * Initialize private dRAID specific fields from the nvlist.
2224  */
2225 static int
vdev_draid_init(spa_t * spa,nvlist_t * nv,void ** tsd)2226 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2227 {
2228 	(void) spa;
2229 	uint64_t ndata, nparity, nspares, ngroups;
2230 	int error;
2231 
2232 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2233 		return (SET_ERROR(EINVAL));
2234 
2235 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2236 	    nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2237 		return (SET_ERROR(EINVAL));
2238 	}
2239 
2240 	uint_t children;
2241 	nvlist_t **child;
2242 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2243 	    &child, &children) != 0 || children == 0 ||
2244 	    children > VDEV_DRAID_MAX_CHILDREN) {
2245 		return (SET_ERROR(EINVAL));
2246 	}
2247 
2248 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2249 	    nspares > 100 || nspares > (children - (ndata + nparity))) {
2250 		return (SET_ERROR(EINVAL));
2251 	}
2252 
2253 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2254 	    ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2255 		return (SET_ERROR(EINVAL));
2256 	}
2257 
2258 	/*
2259 	 * Validate the minimum number of children exist per group for the
2260 	 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2261 	 */
2262 	if (children < (ndata + nparity + nspares))
2263 		return (SET_ERROR(EINVAL));
2264 
2265 	/*
2266 	 * Create the dRAID configuration using the pool nvlist configuration
2267 	 * and the fixed mapping for the correct number of children.
2268 	 */
2269 	vdev_draid_config_t *vdc;
2270 	const draid_map_t *map;
2271 
2272 	error = vdev_draid_lookup_map(children, &map);
2273 	if (error)
2274 		return (SET_ERROR(EINVAL));
2275 
2276 	vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2277 	vdc->vdc_ndata = ndata;
2278 	vdc->vdc_nparity = nparity;
2279 	vdc->vdc_nspares = nspares;
2280 	vdc->vdc_children = children;
2281 	vdc->vdc_ngroups = ngroups;
2282 	vdc->vdc_nperms = map->dm_nperms;
2283 
2284 	error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2285 	if (error) {
2286 		kmem_free(vdc, sizeof (*vdc));
2287 		return (SET_ERROR(EINVAL));
2288 	}
2289 
2290 	/*
2291 	 * Derived constants.
2292 	 */
2293 	vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2294 	vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2295 	vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2296 	vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2297 	    vdc->vdc_ndisks;
2298 
2299 	ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2300 	ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2301 	ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2302 	ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2303 	ASSERT0(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT);
2304 	ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2305 	    vdc->vdc_ndisks, ==, 0);
2306 
2307 	*tsd = vdc;
2308 
2309 	return (0);
2310 }
2311 
2312 static void
vdev_draid_fini(vdev_t * vd)2313 vdev_draid_fini(vdev_t *vd)
2314 {
2315 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2316 
2317 	vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2318 	    vdc->vdc_children * vdc->vdc_nperms);
2319 	kmem_free(vdc, sizeof (*vdc));
2320 }
2321 
2322 static uint64_t
vdev_draid_nparity(vdev_t * vd)2323 vdev_draid_nparity(vdev_t *vd)
2324 {
2325 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2326 
2327 	return (vdc->vdc_nparity);
2328 }
2329 
2330 static uint64_t
vdev_draid_ndisks(vdev_t * vd)2331 vdev_draid_ndisks(vdev_t *vd)
2332 {
2333 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2334 
2335 	return (vdc->vdc_ndisks);
2336 }
2337 
2338 vdev_ops_t vdev_draid_ops = {
2339 	.vdev_op_init = vdev_draid_init,
2340 	.vdev_op_fini = vdev_draid_fini,
2341 	.vdev_op_open = vdev_draid_open,
2342 	.vdev_op_close = vdev_draid_close,
2343 	.vdev_op_psize_to_asize = vdev_draid_psize_to_asize,
2344 	.vdev_op_asize_to_psize = vdev_draid_asize_to_psize,
2345 	.vdev_op_min_asize = vdev_draid_min_asize,
2346 	.vdev_op_min_alloc = vdev_draid_min_alloc,
2347 	.vdev_op_io_start = vdev_draid_io_start,
2348 	.vdev_op_io_done = vdev_draid_io_done,
2349 	.vdev_op_state_change = vdev_draid_state_change,
2350 	.vdev_op_need_resilver = vdev_draid_need_resilver,
2351 	.vdev_op_hold = NULL,
2352 	.vdev_op_rele = NULL,
2353 	.vdev_op_remap = NULL,
2354 	.vdev_op_xlate = vdev_draid_xlate,
2355 	.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2356 	.vdev_op_metaslab_init = vdev_draid_metaslab_init,
2357 	.vdev_op_config_generate = vdev_draid_config_generate,
2358 	.vdev_op_nparity = vdev_draid_nparity,
2359 	.vdev_op_ndisks = vdev_draid_ndisks,
2360 	.vdev_op_type = VDEV_TYPE_DRAID,
2361 	.vdev_op_leaf = B_FALSE,
2362 };
2363 
2364 
2365 /*
2366  * A dRAID distributed spare is a virtual leaf vdev which is included in the
2367  * parent dRAID configuration.  The last N columns of the dRAID permutation
2368  * table are used to determine on which dRAID children a specific offset
2369  * should be written.  These spare leaf vdevs can only be used to replace
2370  * faulted children in the same dRAID configuration.
2371  */
2372 
2373 /*
2374  * Distributed spare state.  All fields are set when the distributed spare is
2375  * first opened and are immutable.
2376  */
2377 typedef struct {
2378 	vdev_t *vds_draid_vdev;		/* top-level parent dRAID vdev */
2379 	uint64_t vds_top_guid;		/* top-level parent dRAID guid */
2380 	uint64_t vds_spare_id;		/* spare id (0 - vdc->vdc_nspares-1) */
2381 } vdev_draid_spare_t;
2382 
2383 /*
2384  * Returns the parent dRAID vdev to which the distributed spare belongs.
2385  * This may be safely called even when the vdev is not open.
2386  */
2387 vdev_t *
vdev_draid_spare_get_parent(vdev_t * vd)2388 vdev_draid_spare_get_parent(vdev_t *vd)
2389 {
2390 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2391 
2392 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2393 
2394 	if (vds->vds_draid_vdev != NULL)
2395 		return (vds->vds_draid_vdev);
2396 
2397 	return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2398 	    vds->vds_top_guid));
2399 }
2400 
2401 /*
2402  * A dRAID space is active when it's the child of a vdev using the
2403  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2404  */
2405 static boolean_t
vdev_draid_spare_is_active(vdev_t * vd)2406 vdev_draid_spare_is_active(vdev_t *vd)
2407 {
2408 	vdev_t *pvd = vd->vdev_parent;
2409 
2410 	if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2411 	    pvd->vdev_ops == &vdev_replacing_ops ||
2412 	    pvd->vdev_ops == &vdev_draid_ops)) {
2413 		return (B_TRUE);
2414 	} else {
2415 		return (B_FALSE);
2416 	}
2417 }
2418 
2419 /*
2420  * Given a dRAID distribute spare vdev, returns the physical child vdev
2421  * on which the provided offset resides.  This may involve recursing through
2422  * multiple layers of distributed spares.  Note that offset is relative to
2423  * this vdev.
2424  */
2425 vdev_t *
vdev_draid_spare_get_child(vdev_t * vd,uint64_t physical_offset)2426 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2427 {
2428 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2429 
2430 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2431 
2432 	/* The vdev is closed */
2433 	if (vds->vds_draid_vdev == NULL)
2434 		return (NULL);
2435 
2436 	vdev_t *tvd = vds->vds_draid_vdev;
2437 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2438 
2439 	ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2440 	ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2441 
2442 	uint8_t *base;
2443 	uint64_t iter;
2444 	uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2445 
2446 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2447 
2448 	uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2449 	    (tvd->vdev_children - 1) - vds->vds_spare_id);
2450 	vdev_t *cvd = tvd->vdev_child[cid];
2451 
2452 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
2453 		return (vdev_draid_spare_get_child(cvd, physical_offset));
2454 
2455 	return (cvd);
2456 }
2457 
2458 static void
vdev_draid_spare_close(vdev_t * vd)2459 vdev_draid_spare_close(vdev_t *vd)
2460 {
2461 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2462 	vds->vds_draid_vdev = NULL;
2463 }
2464 
2465 /*
2466  * Opening a dRAID spare device is done by looking up the associated dRAID
2467  * top-level vdev guid from the spare configuration.
2468  */
2469 static int
vdev_draid_spare_open(vdev_t * vd,uint64_t * psize,uint64_t * max_psize,uint64_t * logical_ashift,uint64_t * physical_ashift)2470 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2471     uint64_t *logical_ashift, uint64_t *physical_ashift)
2472 {
2473 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2474 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2475 	uint64_t asize, max_asize;
2476 
2477 	vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2478 	if (tvd == NULL) {
2479 		/*
2480 		 * When spa_vdev_add() is labeling new spares the
2481 		 * associated dRAID is not attached to the root vdev
2482 		 * nor does this spare have a parent.  Simulate a valid
2483 		 * device in order to allow the label to be initialized
2484 		 * and the distributed spare added to the configuration.
2485 		 */
2486 		if (vd->vdev_parent == NULL) {
2487 			*psize = *max_psize = SPA_MINDEVSIZE;
2488 			*logical_ashift = *physical_ashift = ASHIFT_MIN;
2489 			return (0);
2490 		}
2491 
2492 		return (SET_ERROR(EINVAL));
2493 	}
2494 
2495 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2496 	if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2497 		return (SET_ERROR(EINVAL));
2498 
2499 	if (vds->vds_spare_id >= vdc->vdc_nspares)
2500 		return (SET_ERROR(EINVAL));
2501 
2502 	/*
2503 	 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2504 	 * because the caller may be vdev_draid_open() in which case the
2505 	 * values are stale as they haven't yet been updated by vdev_open().
2506 	 * To avoid this always recalculate the dRAID asize and max_asize.
2507 	 */
2508 	vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2509 	    logical_ashift, physical_ashift);
2510 
2511 	*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2512 	*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2513 
2514 	vds->vds_draid_vdev = tvd;
2515 	vd->vdev_nonrot = tvd->vdev_nonrot;
2516 
2517 	return (0);
2518 }
2519 
2520 /*
2521  * Completed distributed spare IO.  Store the result in the parent zio
2522  * as if it had performed the operation itself.  Only the first error is
2523  * preserved if there are multiple errors.
2524  */
2525 static void
vdev_draid_spare_child_done(zio_t * zio)2526 vdev_draid_spare_child_done(zio_t *zio)
2527 {
2528 	zio_t *pio = zio->io_private;
2529 
2530 	/*
2531 	 * IOs are issued to non-writable vdevs in order to keep their
2532 	 * DTLs accurate.  However, we don't want to propagate the
2533 	 * error in to the distributed spare's DTL.  When resilvering
2534 	 * vdev_draid_need_resilver() will consult the relevant DTL
2535 	 * to determine if the data is missing and must be repaired.
2536 	 */
2537 	if (!vdev_writeable(zio->io_vd))
2538 		return;
2539 
2540 	if (pio->io_error == 0)
2541 		pio->io_error = zio->io_error;
2542 }
2543 
2544 /*
2545  * Returns a valid label nvlist for the distributed spare vdev.  This is
2546  * used to bypass the IO pipeline to avoid the complexity of constructing
2547  * a complete label with valid checksum to return when read.
2548  */
2549 nvlist_t *
vdev_draid_read_config_spare(vdev_t * vd)2550 vdev_draid_read_config_spare(vdev_t *vd)
2551 {
2552 	spa_t *spa = vd->vdev_spa;
2553 	spa_aux_vdev_t *sav = &spa->spa_spares;
2554 	uint64_t guid = vd->vdev_guid;
2555 
2556 	nvlist_t *nv = fnvlist_alloc();
2557 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2558 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2559 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2560 	fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2561 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2562 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2563 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2564 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2565 	    vdev_draid_spare_is_active(vd) ?
2566 	    POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2567 
2568 	/* Set the vdev guid based on the vdev list in sav_count. */
2569 	for (int i = 0; i < sav->sav_count; i++) {
2570 		if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2571 		    strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2572 			guid = sav->sav_vdevs[i]->vdev_guid;
2573 			break;
2574 		}
2575 	}
2576 
2577 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2578 
2579 	return (nv);
2580 }
2581 
2582 /*
2583  * Handle any flush requested of the distributed spare. All children must be
2584  * flushed.
2585  */
2586 static int
vdev_draid_spare_flush(zio_t * zio)2587 vdev_draid_spare_flush(zio_t *zio)
2588 {
2589 	vdev_t *vd = zio->io_vd;
2590 	int error = 0;
2591 
2592 	for (int c = 0; c < vd->vdev_children; c++) {
2593 		zio_nowait(zio_vdev_child_io(zio, NULL,
2594 		    vd->vdev_child[c], zio->io_offset, zio->io_abd,
2595 		    zio->io_size, zio->io_type, zio->io_priority, 0,
2596 		    vdev_draid_spare_child_done, zio));
2597 	}
2598 
2599 	return (error);
2600 }
2601 
2602 /*
2603  * Initiate an IO to the distributed spare.  For normal IOs this entails using
2604  * the zio->io_offset and permutation table to calculate which child dRAID vdev
2605  * is responsible for the data.  Then passing along the zio to that child to
2606  * perform the actual IO.  The label ranges are not stored on disk and require
2607  * some special handling which is described below.
2608  */
2609 static void
vdev_draid_spare_io_start(zio_t * zio)2610 vdev_draid_spare_io_start(zio_t *zio)
2611 {
2612 	vdev_t *cvd = NULL, *vd = zio->io_vd;
2613 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2614 	uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2615 
2616 	/*
2617 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2618 	 * Nothing to be done here but return failure.
2619 	 */
2620 	if (vds == NULL) {
2621 		zio->io_error = ENXIO;
2622 		zio_interrupt(zio);
2623 		return;
2624 	}
2625 
2626 	switch (zio->io_type) {
2627 	case ZIO_TYPE_FLUSH:
2628 		zio->io_error = vdev_draid_spare_flush(zio);
2629 		break;
2630 
2631 	case ZIO_TYPE_WRITE:
2632 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2633 			/*
2634 			 * Accept probe IOs and config writers to simulate the
2635 			 * existence of an on disk label.  vdev_label_sync(),
2636 			 * vdev_uberblock_sync() and vdev_copy_uberblocks()
2637 			 * skip the distributed spares.  This only leaves
2638 			 * vdev_label_init() which is allowed to succeed to
2639 			 * avoid adding special cases the function.
2640 			 */
2641 			if (zio->io_flags & ZIO_FLAG_PROBE ||
2642 			    zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2643 				zio->io_error = 0;
2644 			} else {
2645 				zio->io_error = SET_ERROR(EIO);
2646 			}
2647 		} else {
2648 			cvd = vdev_draid_spare_get_child(vd, offset);
2649 
2650 			if (cvd == NULL) {
2651 				zio->io_error = SET_ERROR(ENXIO);
2652 			} else {
2653 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2654 				    offset, zio->io_abd, zio->io_size,
2655 				    zio->io_type, zio->io_priority, 0,
2656 				    vdev_draid_spare_child_done, zio));
2657 			}
2658 		}
2659 		break;
2660 
2661 	case ZIO_TYPE_READ:
2662 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2663 			/*
2664 			 * Accept probe IOs to simulate the existence of a
2665 			 * label.  vdev_label_read_config() bypasses the
2666 			 * pipeline to read the label configuration and
2667 			 * vdev_uberblock_load() skips distributed spares
2668 			 * when attempting to locate the best uberblock.
2669 			 */
2670 			if (zio->io_flags & ZIO_FLAG_PROBE) {
2671 				zio->io_error = 0;
2672 			} else {
2673 				zio->io_error = SET_ERROR(EIO);
2674 			}
2675 		} else {
2676 			cvd = vdev_draid_spare_get_child(vd, offset);
2677 
2678 			if (cvd == NULL || !vdev_readable(cvd)) {
2679 				zio->io_error = SET_ERROR(ENXIO);
2680 			} else {
2681 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2682 				    offset, zio->io_abd, zio->io_size,
2683 				    zio->io_type, zio->io_priority, 0,
2684 				    vdev_draid_spare_child_done, zio));
2685 			}
2686 		}
2687 		break;
2688 
2689 	case ZIO_TYPE_TRIM:
2690 		/* The vdev label ranges are never trimmed */
2691 		ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2692 
2693 		cvd = vdev_draid_spare_get_child(vd, offset);
2694 
2695 		if (cvd == NULL || !cvd->vdev_has_trim) {
2696 			zio->io_error = SET_ERROR(ENXIO);
2697 		} else {
2698 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2699 			    offset, zio->io_abd, zio->io_size,
2700 			    zio->io_type, zio->io_priority, 0,
2701 			    vdev_draid_spare_child_done, zio));
2702 		}
2703 		break;
2704 
2705 	default:
2706 		zio->io_error = SET_ERROR(ENOTSUP);
2707 		break;
2708 	}
2709 
2710 	zio_execute(zio);
2711 }
2712 
2713 static void
vdev_draid_spare_io_done(zio_t * zio)2714 vdev_draid_spare_io_done(zio_t *zio)
2715 {
2716 	(void) zio;
2717 }
2718 
2719 /*
2720  * Lookup the full spare config in spa->spa_spares.sav_config and
2721  * return the top_guid and spare_id for the named spare.
2722  */
2723 static int
vdev_draid_spare_lookup(spa_t * spa,nvlist_t * nv,uint64_t * top_guidp,uint64_t * spare_idp)2724 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2725     uint64_t *spare_idp)
2726 {
2727 	nvlist_t **spares;
2728 	uint_t nspares;
2729 	int error;
2730 
2731 	if ((spa->spa_spares.sav_config == NULL) ||
2732 	    (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2733 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2734 		return (SET_ERROR(ENOENT));
2735 	}
2736 
2737 	const char *spare_name;
2738 	error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2739 	if (error != 0)
2740 		return (SET_ERROR(EINVAL));
2741 
2742 	for (int i = 0; i < nspares; i++) {
2743 		nvlist_t *spare = spares[i];
2744 		uint64_t top_guid, spare_id;
2745 		const char *type, *path;
2746 
2747 		/* Skip non-distributed spares */
2748 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2749 		if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2750 			continue;
2751 
2752 		/* Skip spares with the wrong name */
2753 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2754 		if (error != 0 || strcmp(path, spare_name) != 0)
2755 			continue;
2756 
2757 		/* Found the matching spare */
2758 		error = nvlist_lookup_uint64(spare,
2759 		    ZPOOL_CONFIG_TOP_GUID, &top_guid);
2760 		if (error == 0) {
2761 			error = nvlist_lookup_uint64(spare,
2762 			    ZPOOL_CONFIG_SPARE_ID, &spare_id);
2763 		}
2764 
2765 		if (error != 0) {
2766 			return (SET_ERROR(EINVAL));
2767 		} else {
2768 			*top_guidp = top_guid;
2769 			*spare_idp = spare_id;
2770 			return (0);
2771 		}
2772 	}
2773 
2774 	return (SET_ERROR(ENOENT));
2775 }
2776 
2777 /*
2778  * Initialize private dRAID spare specific fields from the nvlist.
2779  */
2780 static int
vdev_draid_spare_init(spa_t * spa,nvlist_t * nv,void ** tsd)2781 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2782 {
2783 	vdev_draid_spare_t *vds;
2784 	uint64_t top_guid = 0;
2785 	uint64_t spare_id;
2786 
2787 	/*
2788 	 * In the normal case check the list of spares stored in the spa
2789 	 * to lookup the top_guid and spare_id for provided spare config.
2790 	 * When creating a new pool or adding vdevs the spare list is not
2791 	 * yet populated and the values are provided in the passed config.
2792 	 */
2793 	if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2794 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2795 		    &top_guid) != 0)
2796 			return (SET_ERROR(EINVAL));
2797 
2798 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2799 		    &spare_id) != 0)
2800 			return (SET_ERROR(EINVAL));
2801 	}
2802 
2803 	vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2804 	vds->vds_draid_vdev = NULL;
2805 	vds->vds_top_guid = top_guid;
2806 	vds->vds_spare_id = spare_id;
2807 
2808 	*tsd = vds;
2809 
2810 	return (0);
2811 }
2812 
2813 static void
vdev_draid_spare_fini(vdev_t * vd)2814 vdev_draid_spare_fini(vdev_t *vd)
2815 {
2816 	kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2817 }
2818 
2819 static void
vdev_draid_spare_config_generate(vdev_t * vd,nvlist_t * nv)2820 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2821 {
2822 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2823 
2824 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2825 
2826 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2827 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2828 }
2829 
2830 vdev_ops_t vdev_draid_spare_ops = {
2831 	.vdev_op_init = vdev_draid_spare_init,
2832 	.vdev_op_fini = vdev_draid_spare_fini,
2833 	.vdev_op_open = vdev_draid_spare_open,
2834 	.vdev_op_close = vdev_draid_spare_close,
2835 	.vdev_op_psize_to_asize = vdev_default_asize,
2836 	.vdev_op_asize_to_psize = vdev_default_psize,
2837 	.vdev_op_min_asize = vdev_default_min_asize,
2838 	.vdev_op_min_alloc = NULL,
2839 	.vdev_op_io_start = vdev_draid_spare_io_start,
2840 	.vdev_op_io_done = vdev_draid_spare_io_done,
2841 	.vdev_op_state_change = NULL,
2842 	.vdev_op_need_resilver = NULL,
2843 	.vdev_op_hold = NULL,
2844 	.vdev_op_rele = NULL,
2845 	.vdev_op_remap = NULL,
2846 	.vdev_op_xlate = vdev_default_xlate,
2847 	.vdev_op_rebuild_asize = NULL,
2848 	.vdev_op_metaslab_init = NULL,
2849 	.vdev_op_config_generate = vdev_draid_spare_config_generate,
2850 	.vdev_op_nparity = NULL,
2851 	.vdev_op_ndisks = NULL,
2852 	.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2853 	.vdev_op_leaf = B_TRUE,
2854 };
2855