1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2019, Datto Inc. All rights reserved.
32 * Copyright (c) 2021, Klara Inc.
33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66
67 /*
68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70 * part of the spa_embedded_log_class. The metaslab with the most free space
71 * in each vdev is selected for this purpose when the pool is opened (or a
72 * vdev is added). See vdev_metaslab_init().
73 *
74 * Log blocks can be allocated from the following locations. Each one is tried
75 * in order until the allocation succeeds:
76 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77 * 2. embedded slog metaslabs (spa_embedded_log_class)
78 * 3. other metaslabs in normal vdevs (spa_normal_class)
79 *
80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81 * than this number of metaslabs in the vdev. This ensures that we don't set
82 * aside an unreasonable amount of space for the ZIL. If set to less than
83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85 */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102
103 int vdev_validate_skip = B_FALSE;
104
105 /*
106 * Since the DTL space map of a vdev is not expected to have a lot of
107 * entries, we default its block size to 4K.
108 */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110
111 /*
112 * Rate limit slow IO (delay) events to this many per second.
113 */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115
116 /*
117 * Rate limit deadman "hung IO" events to this many per second.
118 */
119 static unsigned int zfs_deadman_events_per_second = 1;
120
121 /*
122 * Rate limit direct write IO verify failures to this many per scond.
123 */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125
126 /*
127 * Rate limit checksum events after this many checksum errors per second.
128 */
129 static unsigned int zfs_checksum_events_per_second = 20;
130
131 /*
132 * Ignore errors during scrub/resilver. Allows to work around resilver
133 * upon import when there are pool errors.
134 */
135 static int zfs_scan_ignore_errors = 0;
136
137 /*
138 * vdev-wide space maps that have lots of entries written to them at
139 * the end of each transaction can benefit from a higher I/O bandwidth
140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141 */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143
144 /*
145 * Tunable parameter for debugging or performance analysis. Setting this
146 * will cause pool corruption on power loss if a volatile out-of-order
147 * write cache is enabled.
148 */
149 int zfs_nocacheflush = 0;
150
151 /*
152 * Maximum and minimum ashift values that can be automatically set based on
153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
154 * is higher than the maximum value, it is intentionally limited here to not
155 * excessively impact pool space efficiency. Higher ashift values may still
156 * be forced by vdev logical ashift or by user via ashift property, but won't
157 * be set automatically as a performance optimization.
158 */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161
162 /*
163 * VDEV checksum verification for Direct I/O writes. This is neccessary for
164 * Linux, because anonymous pages can not be placed under write protection
165 * during Direct I/O writes.
166 */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 va_list adx;
177 char buf[256];
178
179 va_start(adx, fmt);
180 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 va_end(adx);
182
183 if (vd->vdev_path != NULL) {
184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 vd->vdev_path, buf);
186 } else {
187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 vd->vdev_ops->vdev_op_type,
189 (u_longlong_t)vd->vdev_id,
190 (u_longlong_t)vd->vdev_guid, buf);
191 }
192 }
193
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 char state[20];
198
199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 (u_longlong_t)vd->vdev_id,
202 vd->vdev_ops->vdev_op_type);
203 return;
204 }
205
206 switch (vd->vdev_state) {
207 case VDEV_STATE_UNKNOWN:
208 (void) snprintf(state, sizeof (state), "unknown");
209 break;
210 case VDEV_STATE_CLOSED:
211 (void) snprintf(state, sizeof (state), "closed");
212 break;
213 case VDEV_STATE_OFFLINE:
214 (void) snprintf(state, sizeof (state), "offline");
215 break;
216 case VDEV_STATE_REMOVED:
217 (void) snprintf(state, sizeof (state), "removed");
218 break;
219 case VDEV_STATE_CANT_OPEN:
220 (void) snprintf(state, sizeof (state), "can't open");
221 break;
222 case VDEV_STATE_FAULTED:
223 (void) snprintf(state, sizeof (state), "faulted");
224 break;
225 case VDEV_STATE_DEGRADED:
226 (void) snprintf(state, sizeof (state), "degraded");
227 break;
228 case VDEV_STATE_HEALTHY:
229 (void) snprintf(state, sizeof (state), "healthy");
230 break;
231 default:
232 (void) snprintf(state, sizeof (state), "<state %u>",
233 (uint_t)vd->vdev_state);
234 }
235
236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 vd->vdev_islog ? " (log)" : "",
239 (u_longlong_t)vd->vdev_guid,
240 vd->vdev_path ? vd->vdev_path : "N/A", state);
241
242 for (uint64_t i = 0; i < vd->vdev_children; i++)
243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245
246 /*
247 * Virtual device management.
248 */
249
250 static vdev_ops_t *const vdev_ops_table[] = {
251 &vdev_root_ops,
252 &vdev_raidz_ops,
253 &vdev_draid_ops,
254 &vdev_draid_spare_ops,
255 &vdev_mirror_ops,
256 &vdev_replacing_ops,
257 &vdev_spare_ops,
258 &vdev_disk_ops,
259 &vdev_file_ops,
260 &vdev_missing_ops,
261 &vdev_hole_ops,
262 &vdev_indirect_ops,
263 NULL
264 };
265
266 /*
267 * Given a vdev type, return the appropriate ops vector.
268 */
269 static vdev_ops_t *
vdev_getops(const char * type)270 vdev_getops(const char *type)
271 {
272 vdev_ops_t *ops, *const *opspp;
273
274 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
275 if (strcmp(ops->vdev_op_type, type) == 0)
276 break;
277
278 return (ops);
279 }
280
281 /*
282 * Given a vdev and a metaslab class, find which metaslab group we're
283 * interested in. All vdevs may belong to two different metaslab classes.
284 * Dedicated slog devices use only the primary metaslab group, rather than a
285 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
286 */
287 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
289 {
290 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
291 vd->vdev_log_mg != NULL)
292 return (vd->vdev_log_mg);
293 else
294 return (vd->vdev_mg);
295 }
296
297 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
299 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
300 {
301 (void) vd, (void) remain_rs;
302
303 physical_rs->rs_start = logical_rs->rs_start;
304 physical_rs->rs_end = logical_rs->rs_end;
305 }
306
307 /*
308 * Derive the enumerated allocation bias from string input.
309 * String origin is either the per-vdev zap or zpool(8).
310 */
311 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)312 vdev_derive_alloc_bias(const char *bias)
313 {
314 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
315
316 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
317 alloc_bias = VDEV_BIAS_LOG;
318 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
319 alloc_bias = VDEV_BIAS_SPECIAL;
320 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
321 alloc_bias = VDEV_BIAS_DEDUP;
322
323 return (alloc_bias);
324 }
325
326 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)327 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
328 {
329 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
330 uint64_t csize, psize = asize;
331 for (int c = 0; c < vd->vdev_children; c++) {
332 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
333 psize = MIN(psize, csize);
334 }
335
336 return (psize);
337 }
338
339 /*
340 * Default asize function: return the MAX of psize with the asize of
341 * all children. This is what's used by anything other than RAID-Z.
342 */
343 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)344 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
345 {
346 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
347 uint64_t csize;
348
349 for (int c = 0; c < vd->vdev_children; c++) {
350 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
351 asize = MAX(asize, csize);
352 }
353
354 return (asize);
355 }
356
357 uint64_t
vdev_default_min_asize(vdev_t * vd)358 vdev_default_min_asize(vdev_t *vd)
359 {
360 return (vd->vdev_min_asize);
361 }
362
363 /*
364 * Get the minimum allocatable size. We define the allocatable size as
365 * the vdev's asize rounded to the nearest metaslab. This allows us to
366 * replace or attach devices which don't have the same physical size but
367 * can still satisfy the same number of allocations.
368 */
369 uint64_t
vdev_get_min_asize(vdev_t * vd)370 vdev_get_min_asize(vdev_t *vd)
371 {
372 vdev_t *pvd = vd->vdev_parent;
373
374 /*
375 * If our parent is NULL (inactive spare or cache) or is the root,
376 * just return our own asize.
377 */
378 if (pvd == NULL)
379 return (vd->vdev_asize);
380
381 /*
382 * The top-level vdev just returns the allocatable size rounded
383 * to the nearest metaslab.
384 */
385 if (vd == vd->vdev_top)
386 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
387 uint64_t));
388
389 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
390 }
391
392 void
vdev_set_min_asize(vdev_t * vd)393 vdev_set_min_asize(vdev_t *vd)
394 {
395 vd->vdev_min_asize = vdev_get_min_asize(vd);
396
397 for (int c = 0; c < vd->vdev_children; c++)
398 vdev_set_min_asize(vd->vdev_child[c]);
399 }
400
401 /*
402 * Get the minimal allocation size for the top-level vdev.
403 */
404 uint64_t
vdev_get_min_alloc(vdev_t * vd)405 vdev_get_min_alloc(vdev_t *vd)
406 {
407 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
408
409 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
410 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
411
412 return (min_alloc);
413 }
414
415 /*
416 * Get the parity level for a top-level vdev.
417 */
418 uint64_t
vdev_get_nparity(vdev_t * vd)419 vdev_get_nparity(vdev_t *vd)
420 {
421 uint64_t nparity = 0;
422
423 if (vd->vdev_ops->vdev_op_nparity != NULL)
424 nparity = vd->vdev_ops->vdev_op_nparity(vd);
425
426 return (nparity);
427 }
428
429 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)430 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
431 {
432 spa_t *spa = vd->vdev_spa;
433 objset_t *mos = spa->spa_meta_objset;
434 uint64_t objid;
435 int err;
436
437 if (vd->vdev_root_zap != 0) {
438 objid = vd->vdev_root_zap;
439 } else if (vd->vdev_top_zap != 0) {
440 objid = vd->vdev_top_zap;
441 } else if (vd->vdev_leaf_zap != 0) {
442 objid = vd->vdev_leaf_zap;
443 } else {
444 return (EINVAL);
445 }
446
447 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
448 sizeof (uint64_t), 1, value);
449
450 if (err == ENOENT)
451 *value = vdev_prop_default_numeric(prop);
452
453 return (err);
454 }
455
456 /*
457 * Get the number of data disks for a top-level vdev.
458 */
459 uint64_t
vdev_get_ndisks(vdev_t * vd)460 vdev_get_ndisks(vdev_t *vd)
461 {
462 uint64_t ndisks = 1;
463
464 if (vd->vdev_ops->vdev_op_ndisks != NULL)
465 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
466
467 return (ndisks);
468 }
469
470 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)471 vdev_lookup_top(spa_t *spa, uint64_t vdev)
472 {
473 vdev_t *rvd = spa->spa_root_vdev;
474
475 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
476
477 if (vdev < rvd->vdev_children) {
478 ASSERT(rvd->vdev_child[vdev] != NULL);
479 return (rvd->vdev_child[vdev]);
480 }
481
482 return (NULL);
483 }
484
485 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)486 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
487 {
488 vdev_t *mvd;
489
490 if (vd->vdev_guid == guid)
491 return (vd);
492
493 for (int c = 0; c < vd->vdev_children; c++)
494 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
495 NULL)
496 return (mvd);
497
498 return (NULL);
499 }
500
501 static int
vdev_count_leaves_impl(vdev_t * vd)502 vdev_count_leaves_impl(vdev_t *vd)
503 {
504 int n = 0;
505
506 if (vd->vdev_ops->vdev_op_leaf)
507 return (1);
508
509 for (int c = 0; c < vd->vdev_children; c++)
510 n += vdev_count_leaves_impl(vd->vdev_child[c]);
511
512 return (n);
513 }
514
515 int
vdev_count_leaves(spa_t * spa)516 vdev_count_leaves(spa_t *spa)
517 {
518 int rc;
519
520 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
521 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
522 spa_config_exit(spa, SCL_VDEV, FTAG);
523
524 return (rc);
525 }
526
527 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)528 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
529 {
530 size_t oldsize, newsize;
531 uint64_t id = cvd->vdev_id;
532 vdev_t **newchild;
533
534 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
535 ASSERT(cvd->vdev_parent == NULL);
536
537 cvd->vdev_parent = pvd;
538
539 if (pvd == NULL)
540 return;
541
542 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
543
544 oldsize = pvd->vdev_children * sizeof (vdev_t *);
545 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
546 newsize = pvd->vdev_children * sizeof (vdev_t *);
547
548 newchild = kmem_alloc(newsize, KM_SLEEP);
549 if (pvd->vdev_child != NULL) {
550 memcpy(newchild, pvd->vdev_child, oldsize);
551 kmem_free(pvd->vdev_child, oldsize);
552 }
553
554 pvd->vdev_child = newchild;
555 pvd->vdev_child[id] = cvd;
556 pvd->vdev_nonrot &= cvd->vdev_nonrot;
557
558 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
559 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
560
561 /*
562 * Walk up all ancestors to update guid sum.
563 */
564 for (; pvd != NULL; pvd = pvd->vdev_parent)
565 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
566
567 if (cvd->vdev_ops->vdev_op_leaf) {
568 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
569 cvd->vdev_spa->spa_leaf_list_gen++;
570 }
571 }
572
573 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)574 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
575 {
576 int c;
577 uint_t id = cvd->vdev_id;
578
579 ASSERT(cvd->vdev_parent == pvd);
580
581 if (pvd == NULL)
582 return;
583
584 ASSERT(id < pvd->vdev_children);
585 ASSERT(pvd->vdev_child[id] == cvd);
586
587 pvd->vdev_child[id] = NULL;
588 cvd->vdev_parent = NULL;
589
590 for (c = 0; c < pvd->vdev_children; c++)
591 if (pvd->vdev_child[c])
592 break;
593
594 if (c == pvd->vdev_children) {
595 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
596 pvd->vdev_child = NULL;
597 pvd->vdev_children = 0;
598 }
599
600 if (cvd->vdev_ops->vdev_op_leaf) {
601 spa_t *spa = cvd->vdev_spa;
602 list_remove(&spa->spa_leaf_list, cvd);
603 spa->spa_leaf_list_gen++;
604 }
605
606 /*
607 * Walk up all ancestors to update guid sum.
608 */
609 for (; pvd != NULL; pvd = pvd->vdev_parent)
610 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
611 }
612
613 /*
614 * Remove any holes in the child array.
615 */
616 void
vdev_compact_children(vdev_t * pvd)617 vdev_compact_children(vdev_t *pvd)
618 {
619 vdev_t **newchild, *cvd;
620 int oldc = pvd->vdev_children;
621 int newc;
622
623 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
624
625 if (oldc == 0)
626 return;
627
628 for (int c = newc = 0; c < oldc; c++)
629 if (pvd->vdev_child[c])
630 newc++;
631
632 if (newc > 0) {
633 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
634
635 for (int c = newc = 0; c < oldc; c++) {
636 if ((cvd = pvd->vdev_child[c]) != NULL) {
637 newchild[newc] = cvd;
638 cvd->vdev_id = newc++;
639 }
640 }
641 } else {
642 newchild = NULL;
643 }
644
645 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
646 pvd->vdev_child = newchild;
647 pvd->vdev_children = newc;
648 }
649
650 /*
651 * Allocate and minimally initialize a vdev_t.
652 */
653 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)654 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
655 {
656 vdev_t *vd;
657 vdev_indirect_config_t *vic;
658
659 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
660 vic = &vd->vdev_indirect_config;
661
662 if (spa->spa_root_vdev == NULL) {
663 ASSERT(ops == &vdev_root_ops);
664 spa->spa_root_vdev = vd;
665 spa->spa_load_guid = spa_generate_load_guid();
666 }
667
668 if (guid == 0 && ops != &vdev_hole_ops) {
669 if (spa->spa_root_vdev == vd) {
670 /*
671 * The root vdev's guid will also be the pool guid,
672 * which must be unique among all pools.
673 */
674 guid = spa_generate_guid(NULL);
675 } else {
676 /*
677 * Any other vdev's guid must be unique within the pool.
678 */
679 guid = spa_generate_guid(spa);
680 }
681 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
682 }
683
684 vd->vdev_spa = spa;
685 vd->vdev_id = id;
686 vd->vdev_guid = guid;
687 vd->vdev_guid_sum = guid;
688 vd->vdev_ops = ops;
689 vd->vdev_state = VDEV_STATE_CLOSED;
690 vd->vdev_ishole = (ops == &vdev_hole_ops);
691 vic->vic_prev_indirect_vdev = UINT64_MAX;
692
693 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
694 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
695 vd->vdev_obsolete_segments = zfs_range_tree_create(NULL,
696 ZFS_RANGE_SEG64, NULL, 0, 0);
697
698 /*
699 * Initialize rate limit structs for events. We rate limit ZIO delay
700 * and checksum events so that we don't overwhelm ZED with thousands
701 * of events when a disk is acting up.
702 */
703 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
704 1);
705 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
706 1);
707 zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
708 &zfs_dio_write_verify_events_per_second, 1);
709 zfs_ratelimit_init(&vd->vdev_checksum_rl,
710 &zfs_checksum_events_per_second, 1);
711
712 /*
713 * Default Thresholds for tuning ZED
714 */
715 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
716 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
717 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
718 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
719 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
720 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
721
722 list_link_init(&vd->vdev_config_dirty_node);
723 list_link_init(&vd->vdev_state_dirty_node);
724 list_link_init(&vd->vdev_initialize_node);
725 list_link_init(&vd->vdev_leaf_node);
726 list_link_init(&vd->vdev_trim_node);
727
728 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
729 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
730 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
731 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
732
733 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
734 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
735 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
736 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
737
738 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
739 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
740 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
741 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
742 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
743 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
744 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
745
746 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
747 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
748
749 for (int t = 0; t < DTL_TYPES; t++) {
750 vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
751 NULL, 0, 0);
752 }
753
754 txg_list_create(&vd->vdev_ms_list, spa,
755 offsetof(struct metaslab, ms_txg_node));
756 txg_list_create(&vd->vdev_dtl_list, spa,
757 offsetof(struct vdev, vdev_dtl_node));
758 vd->vdev_stat.vs_timestamp = gethrtime();
759 vdev_queue_init(vd);
760
761 return (vd);
762 }
763
764 /*
765 * Allocate a new vdev. The 'alloctype' is used to control whether we are
766 * creating a new vdev or loading an existing one - the behavior is slightly
767 * different for each case.
768 */
769 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)770 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
771 int alloctype)
772 {
773 vdev_ops_t *ops;
774 const char *type;
775 uint64_t guid = 0, islog;
776 vdev_t *vd;
777 vdev_indirect_config_t *vic;
778 const char *tmp = NULL;
779 int rc;
780 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
781 boolean_t top_level = (parent && !parent->vdev_parent);
782
783 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
784
785 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
786 return (SET_ERROR(EINVAL));
787
788 if ((ops = vdev_getops(type)) == NULL)
789 return (SET_ERROR(EINVAL));
790
791 /*
792 * If this is a load, get the vdev guid from the nvlist.
793 * Otherwise, vdev_alloc_common() will generate one for us.
794 */
795 if (alloctype == VDEV_ALLOC_LOAD) {
796 uint64_t label_id;
797
798 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
799 label_id != id)
800 return (SET_ERROR(EINVAL));
801
802 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
803 return (SET_ERROR(EINVAL));
804 } else if (alloctype == VDEV_ALLOC_SPARE) {
805 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
806 return (SET_ERROR(EINVAL));
807 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
808 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
809 return (SET_ERROR(EINVAL));
810 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
811 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
812 return (SET_ERROR(EINVAL));
813 }
814
815 /*
816 * The first allocated vdev must be of type 'root'.
817 */
818 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
819 return (SET_ERROR(EINVAL));
820
821 /*
822 * Determine whether we're a log vdev.
823 */
824 islog = 0;
825 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
826 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
827 return (SET_ERROR(ENOTSUP));
828
829 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
830 return (SET_ERROR(ENOTSUP));
831
832 if (top_level && alloctype == VDEV_ALLOC_ADD) {
833 const char *bias;
834
835 /*
836 * If creating a top-level vdev, check for allocation
837 * classes input.
838 */
839 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
840 &bias) == 0) {
841 alloc_bias = vdev_derive_alloc_bias(bias);
842
843 /* spa_vdev_add() expects feature to be enabled */
844 if (spa->spa_load_state != SPA_LOAD_CREATE &&
845 !spa_feature_is_enabled(spa,
846 SPA_FEATURE_ALLOCATION_CLASSES)) {
847 return (SET_ERROR(ENOTSUP));
848 }
849 }
850
851 /* spa_vdev_add() expects feature to be enabled */
852 if (ops == &vdev_draid_ops &&
853 spa->spa_load_state != SPA_LOAD_CREATE &&
854 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
855 return (SET_ERROR(ENOTSUP));
856 }
857 }
858
859 /*
860 * Initialize the vdev specific data. This is done before calling
861 * vdev_alloc_common() since it may fail and this simplifies the
862 * error reporting and cleanup code paths.
863 */
864 void *tsd = NULL;
865 if (ops->vdev_op_init != NULL) {
866 rc = ops->vdev_op_init(spa, nv, &tsd);
867 if (rc != 0) {
868 return (rc);
869 }
870 }
871
872 vd = vdev_alloc_common(spa, id, guid, ops);
873 vd->vdev_tsd = tsd;
874 vd->vdev_islog = islog;
875
876 if (top_level && alloc_bias != VDEV_BIAS_NONE)
877 vd->vdev_alloc_bias = alloc_bias;
878
879 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
880 vd->vdev_path = spa_strdup(tmp);
881
882 /*
883 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
884 * fault on a vdev and want it to persist across imports (like with
885 * zpool offline -f).
886 */
887 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
888 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
889 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
890 vd->vdev_faulted = 1;
891 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
892 }
893
894 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
895 vd->vdev_devid = spa_strdup(tmp);
896 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
897 vd->vdev_physpath = spa_strdup(tmp);
898
899 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
900 &tmp) == 0)
901 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
902
903 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
904 vd->vdev_fru = spa_strdup(tmp);
905
906 /*
907 * Set the whole_disk property. If it's not specified, leave the value
908 * as -1.
909 */
910 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
911 &vd->vdev_wholedisk) != 0)
912 vd->vdev_wholedisk = -1ULL;
913
914 vic = &vd->vdev_indirect_config;
915
916 ASSERT0(vic->vic_mapping_object);
917 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
918 &vic->vic_mapping_object);
919 ASSERT0(vic->vic_births_object);
920 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
921 &vic->vic_births_object);
922 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
924 &vic->vic_prev_indirect_vdev);
925
926 /*
927 * Look for the 'not present' flag. This will only be set if the device
928 * was not present at the time of import.
929 */
930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
931 &vd->vdev_not_present);
932
933 /*
934 * Get the alignment requirement. Ignore pool ashift for vdev
935 * attach case.
936 */
937 if (alloctype != VDEV_ALLOC_ATTACH) {
938 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
939 &vd->vdev_ashift);
940 } else {
941 vd->vdev_attaching = B_TRUE;
942 }
943
944 /*
945 * Retrieve the vdev creation time.
946 */
947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
948 &vd->vdev_crtxg);
949
950 if (vd->vdev_ops == &vdev_root_ops &&
951 (alloctype == VDEV_ALLOC_LOAD ||
952 alloctype == VDEV_ALLOC_SPLIT ||
953 alloctype == VDEV_ALLOC_ROOTPOOL)) {
954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
955 &vd->vdev_root_zap);
956 }
957
958 /*
959 * If we're a top-level vdev, try to load the allocation parameters.
960 */
961 if (top_level &&
962 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
963 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
964 &vd->vdev_ms_array);
965 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
966 &vd->vdev_ms_shift);
967 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
968 &vd->vdev_asize);
969 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
970 &vd->vdev_noalloc);
971 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
972 &vd->vdev_removing);
973 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
974 &vd->vdev_top_zap);
975 vd->vdev_rz_expanding = nvlist_exists(nv,
976 ZPOOL_CONFIG_RAIDZ_EXPANDING);
977 } else {
978 ASSERT0(vd->vdev_top_zap);
979 }
980
981 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
982 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
983 alloctype == VDEV_ALLOC_ADD ||
984 alloctype == VDEV_ALLOC_SPLIT ||
985 alloctype == VDEV_ALLOC_ROOTPOOL);
986 /* Note: metaslab_group_create() is now deferred */
987 }
988
989 if (vd->vdev_ops->vdev_op_leaf &&
990 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
991 (void) nvlist_lookup_uint64(nv,
992 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
993 } else {
994 ASSERT0(vd->vdev_leaf_zap);
995 }
996
997 /*
998 * If we're a leaf vdev, try to load the DTL object and other state.
999 */
1000
1001 if (vd->vdev_ops->vdev_op_leaf &&
1002 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1003 alloctype == VDEV_ALLOC_ROOTPOOL)) {
1004 if (alloctype == VDEV_ALLOC_LOAD) {
1005 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1006 &vd->vdev_dtl_object);
1007 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1008 &vd->vdev_unspare);
1009 }
1010
1011 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1012 uint64_t spare = 0;
1013
1014 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1015 &spare) == 0 && spare)
1016 spa_spare_add(vd);
1017 }
1018
1019 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1020 &vd->vdev_offline);
1021
1022 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1023 &vd->vdev_resilver_txg);
1024
1025 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1026 &vd->vdev_rebuild_txg);
1027
1028 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1029 vdev_defer_resilver(vd);
1030
1031 /*
1032 * In general, when importing a pool we want to ignore the
1033 * persistent fault state, as the diagnosis made on another
1034 * system may not be valid in the current context. The only
1035 * exception is if we forced a vdev to a persistently faulted
1036 * state with 'zpool offline -f'. The persistent fault will
1037 * remain across imports until cleared.
1038 *
1039 * Local vdevs will remain in the faulted state.
1040 */
1041 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1042 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1043 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1044 &vd->vdev_faulted);
1045 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1046 &vd->vdev_degraded);
1047 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1048 &vd->vdev_removed);
1049
1050 if (vd->vdev_faulted || vd->vdev_degraded) {
1051 const char *aux;
1052
1053 vd->vdev_label_aux =
1054 VDEV_AUX_ERR_EXCEEDED;
1055 if (nvlist_lookup_string(nv,
1056 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1057 strcmp(aux, "external") == 0)
1058 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1059 else
1060 vd->vdev_faulted = 0ULL;
1061 }
1062 }
1063 }
1064
1065 /*
1066 * Add ourselves to the parent's list of children.
1067 */
1068 vdev_add_child(parent, vd);
1069
1070 *vdp = vd;
1071
1072 return (0);
1073 }
1074
1075 void
vdev_free(vdev_t * vd)1076 vdev_free(vdev_t *vd)
1077 {
1078 spa_t *spa = vd->vdev_spa;
1079
1080 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1081 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1082 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1083 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1084
1085 /*
1086 * Scan queues are normally destroyed at the end of a scan. If the
1087 * queue exists here, that implies the vdev is being removed while
1088 * the scan is still running.
1089 */
1090 if (vd->vdev_scan_io_queue != NULL) {
1091 mutex_enter(&vd->vdev_scan_io_queue_lock);
1092 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1093 vd->vdev_scan_io_queue = NULL;
1094 mutex_exit(&vd->vdev_scan_io_queue_lock);
1095 }
1096
1097 /*
1098 * vdev_free() implies closing the vdev first. This is simpler than
1099 * trying to ensure complicated semantics for all callers.
1100 */
1101 vdev_close(vd);
1102
1103 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1104 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1105
1106 /*
1107 * Free all children.
1108 */
1109 for (int c = 0; c < vd->vdev_children; c++)
1110 vdev_free(vd->vdev_child[c]);
1111
1112 ASSERT(vd->vdev_child == NULL);
1113 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1114
1115 if (vd->vdev_ops->vdev_op_fini != NULL)
1116 vd->vdev_ops->vdev_op_fini(vd);
1117
1118 /*
1119 * Discard allocation state.
1120 */
1121 if (vd->vdev_mg != NULL) {
1122 vdev_metaslab_fini(vd);
1123 metaslab_group_destroy(vd->vdev_mg);
1124 vd->vdev_mg = NULL;
1125 }
1126 if (vd->vdev_log_mg != NULL) {
1127 ASSERT0(vd->vdev_ms_count);
1128 metaslab_group_destroy(vd->vdev_log_mg);
1129 vd->vdev_log_mg = NULL;
1130 }
1131
1132 ASSERT0(vd->vdev_stat.vs_space);
1133 ASSERT0(vd->vdev_stat.vs_dspace);
1134 ASSERT0(vd->vdev_stat.vs_alloc);
1135
1136 /*
1137 * Remove this vdev from its parent's child list.
1138 */
1139 vdev_remove_child(vd->vdev_parent, vd);
1140
1141 ASSERT(vd->vdev_parent == NULL);
1142 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1143
1144 /*
1145 * Clean up vdev structure.
1146 */
1147 vdev_queue_fini(vd);
1148
1149 if (vd->vdev_path)
1150 spa_strfree(vd->vdev_path);
1151 if (vd->vdev_devid)
1152 spa_strfree(vd->vdev_devid);
1153 if (vd->vdev_physpath)
1154 spa_strfree(vd->vdev_physpath);
1155
1156 if (vd->vdev_enc_sysfs_path)
1157 spa_strfree(vd->vdev_enc_sysfs_path);
1158
1159 if (vd->vdev_fru)
1160 spa_strfree(vd->vdev_fru);
1161
1162 if (vd->vdev_isspare)
1163 spa_spare_remove(vd);
1164 if (vd->vdev_isl2cache)
1165 spa_l2cache_remove(vd);
1166
1167 txg_list_destroy(&vd->vdev_ms_list);
1168 txg_list_destroy(&vd->vdev_dtl_list);
1169
1170 mutex_enter(&vd->vdev_dtl_lock);
1171 space_map_close(vd->vdev_dtl_sm);
1172 for (int t = 0; t < DTL_TYPES; t++) {
1173 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1174 zfs_range_tree_destroy(vd->vdev_dtl[t]);
1175 }
1176 mutex_exit(&vd->vdev_dtl_lock);
1177
1178 EQUIV(vd->vdev_indirect_births != NULL,
1179 vd->vdev_indirect_mapping != NULL);
1180 if (vd->vdev_indirect_births != NULL) {
1181 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1182 vdev_indirect_births_close(vd->vdev_indirect_births);
1183 }
1184
1185 if (vd->vdev_obsolete_sm != NULL) {
1186 ASSERT(vd->vdev_removing ||
1187 vd->vdev_ops == &vdev_indirect_ops);
1188 space_map_close(vd->vdev_obsolete_sm);
1189 vd->vdev_obsolete_sm = NULL;
1190 }
1191 zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1192 rw_destroy(&vd->vdev_indirect_rwlock);
1193 mutex_destroy(&vd->vdev_obsolete_lock);
1194
1195 mutex_destroy(&vd->vdev_dtl_lock);
1196 mutex_destroy(&vd->vdev_stat_lock);
1197 mutex_destroy(&vd->vdev_probe_lock);
1198 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1199
1200 mutex_destroy(&vd->vdev_initialize_lock);
1201 mutex_destroy(&vd->vdev_initialize_io_lock);
1202 cv_destroy(&vd->vdev_initialize_io_cv);
1203 cv_destroy(&vd->vdev_initialize_cv);
1204
1205 mutex_destroy(&vd->vdev_trim_lock);
1206 mutex_destroy(&vd->vdev_autotrim_lock);
1207 mutex_destroy(&vd->vdev_trim_io_lock);
1208 cv_destroy(&vd->vdev_trim_cv);
1209 cv_destroy(&vd->vdev_autotrim_cv);
1210 cv_destroy(&vd->vdev_autotrim_kick_cv);
1211 cv_destroy(&vd->vdev_trim_io_cv);
1212
1213 mutex_destroy(&vd->vdev_rebuild_lock);
1214 cv_destroy(&vd->vdev_rebuild_cv);
1215
1216 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1217 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1218 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1219 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1220
1221 if (vd == spa->spa_root_vdev)
1222 spa->spa_root_vdev = NULL;
1223
1224 kmem_free(vd, sizeof (vdev_t));
1225 }
1226
1227 /*
1228 * Transfer top-level vdev state from svd to tvd.
1229 */
1230 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1231 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1232 {
1233 spa_t *spa = svd->vdev_spa;
1234 metaslab_t *msp;
1235 vdev_t *vd;
1236 int t;
1237
1238 ASSERT(tvd == tvd->vdev_top);
1239
1240 tvd->vdev_ms_array = svd->vdev_ms_array;
1241 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1242 tvd->vdev_ms_count = svd->vdev_ms_count;
1243 tvd->vdev_top_zap = svd->vdev_top_zap;
1244
1245 svd->vdev_ms_array = 0;
1246 svd->vdev_ms_shift = 0;
1247 svd->vdev_ms_count = 0;
1248 svd->vdev_top_zap = 0;
1249
1250 if (tvd->vdev_mg)
1251 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1252 if (tvd->vdev_log_mg)
1253 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1254 tvd->vdev_mg = svd->vdev_mg;
1255 tvd->vdev_log_mg = svd->vdev_log_mg;
1256 tvd->vdev_ms = svd->vdev_ms;
1257
1258 svd->vdev_mg = NULL;
1259 svd->vdev_log_mg = NULL;
1260 svd->vdev_ms = NULL;
1261
1262 if (tvd->vdev_mg != NULL)
1263 tvd->vdev_mg->mg_vd = tvd;
1264 if (tvd->vdev_log_mg != NULL)
1265 tvd->vdev_log_mg->mg_vd = tvd;
1266
1267 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1268 svd->vdev_checkpoint_sm = NULL;
1269
1270 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1271 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1272
1273 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1274 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1275 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1276
1277 svd->vdev_stat.vs_alloc = 0;
1278 svd->vdev_stat.vs_space = 0;
1279 svd->vdev_stat.vs_dspace = 0;
1280
1281 /*
1282 * State which may be set on a top-level vdev that's in the
1283 * process of being removed.
1284 */
1285 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1286 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1287 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1288 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1289 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1290 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1291 ASSERT0(tvd->vdev_noalloc);
1292 ASSERT0(tvd->vdev_removing);
1293 ASSERT0(tvd->vdev_rebuilding);
1294 tvd->vdev_noalloc = svd->vdev_noalloc;
1295 tvd->vdev_removing = svd->vdev_removing;
1296 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1297 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1298 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1299 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1300 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1301 zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1302 &tvd->vdev_obsolete_segments);
1303 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1304 svd->vdev_indirect_config.vic_mapping_object = 0;
1305 svd->vdev_indirect_config.vic_births_object = 0;
1306 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1307 svd->vdev_indirect_mapping = NULL;
1308 svd->vdev_indirect_births = NULL;
1309 svd->vdev_obsolete_sm = NULL;
1310 svd->vdev_noalloc = 0;
1311 svd->vdev_removing = 0;
1312 svd->vdev_rebuilding = 0;
1313
1314 for (t = 0; t < TXG_SIZE; t++) {
1315 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1316 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1317 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1318 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1319 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1320 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1321 }
1322
1323 if (list_link_active(&svd->vdev_config_dirty_node)) {
1324 vdev_config_clean(svd);
1325 vdev_config_dirty(tvd);
1326 }
1327
1328 if (list_link_active(&svd->vdev_state_dirty_node)) {
1329 vdev_state_clean(svd);
1330 vdev_state_dirty(tvd);
1331 }
1332
1333 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1334 svd->vdev_deflate_ratio = 0;
1335
1336 tvd->vdev_islog = svd->vdev_islog;
1337 svd->vdev_islog = 0;
1338
1339 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1340 }
1341
1342 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1343 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1344 {
1345 if (vd == NULL)
1346 return;
1347
1348 vd->vdev_top = tvd;
1349
1350 for (int c = 0; c < vd->vdev_children; c++)
1351 vdev_top_update(tvd, vd->vdev_child[c]);
1352 }
1353
1354 /*
1355 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1356 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1357 */
1358 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1359 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1360 {
1361 spa_t *spa = cvd->vdev_spa;
1362 vdev_t *pvd = cvd->vdev_parent;
1363 vdev_t *mvd;
1364
1365 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1366
1367 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1368
1369 mvd->vdev_asize = cvd->vdev_asize;
1370 mvd->vdev_min_asize = cvd->vdev_min_asize;
1371 mvd->vdev_max_asize = cvd->vdev_max_asize;
1372 mvd->vdev_psize = cvd->vdev_psize;
1373 mvd->vdev_ashift = cvd->vdev_ashift;
1374 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1375 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1376 mvd->vdev_state = cvd->vdev_state;
1377 mvd->vdev_crtxg = cvd->vdev_crtxg;
1378 mvd->vdev_nonrot = cvd->vdev_nonrot;
1379
1380 vdev_remove_child(pvd, cvd);
1381 vdev_add_child(pvd, mvd);
1382 cvd->vdev_id = mvd->vdev_children;
1383 vdev_add_child(mvd, cvd);
1384 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1385
1386 if (mvd == mvd->vdev_top)
1387 vdev_top_transfer(cvd, mvd);
1388
1389 return (mvd);
1390 }
1391
1392 /*
1393 * Remove a 1-way mirror/replacing vdev from the tree.
1394 */
1395 void
vdev_remove_parent(vdev_t * cvd)1396 vdev_remove_parent(vdev_t *cvd)
1397 {
1398 vdev_t *mvd = cvd->vdev_parent;
1399 vdev_t *pvd = mvd->vdev_parent;
1400
1401 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1402
1403 ASSERT(mvd->vdev_children == 1);
1404 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1405 mvd->vdev_ops == &vdev_replacing_ops ||
1406 mvd->vdev_ops == &vdev_spare_ops);
1407 cvd->vdev_ashift = mvd->vdev_ashift;
1408 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1409 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1410 vdev_remove_child(mvd, cvd);
1411 vdev_remove_child(pvd, mvd);
1412
1413 /*
1414 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1415 * Otherwise, we could have detached an offline device, and when we
1416 * go to import the pool we'll think we have two top-level vdevs,
1417 * instead of a different version of the same top-level vdev.
1418 */
1419 if (mvd->vdev_top == mvd) {
1420 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1421 cvd->vdev_orig_guid = cvd->vdev_guid;
1422 cvd->vdev_guid += guid_delta;
1423 cvd->vdev_guid_sum += guid_delta;
1424
1425 /*
1426 * If pool not set for autoexpand, we need to also preserve
1427 * mvd's asize to prevent automatic expansion of cvd.
1428 * Otherwise if we are adjusting the mirror by attaching and
1429 * detaching children of non-uniform sizes, the mirror could
1430 * autoexpand, unexpectedly requiring larger devices to
1431 * re-establish the mirror.
1432 */
1433 if (!cvd->vdev_spa->spa_autoexpand)
1434 cvd->vdev_asize = mvd->vdev_asize;
1435 }
1436 cvd->vdev_id = mvd->vdev_id;
1437 vdev_add_child(pvd, cvd);
1438 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1439
1440 if (cvd == cvd->vdev_top)
1441 vdev_top_transfer(mvd, cvd);
1442
1443 ASSERT(mvd->vdev_children == 0);
1444 vdev_free(mvd);
1445 }
1446
1447 /*
1448 * Choose GCD for spa_gcd_alloc.
1449 */
1450 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1451 vdev_gcd(uint64_t a, uint64_t b)
1452 {
1453 while (b != 0) {
1454 uint64_t t = b;
1455 b = a % b;
1456 a = t;
1457 }
1458 return (a);
1459 }
1460
1461 /*
1462 * Set spa_min_alloc and spa_gcd_alloc.
1463 */
1464 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1465 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1466 {
1467 if (min_alloc < spa->spa_min_alloc)
1468 spa->spa_min_alloc = min_alloc;
1469 if (spa->spa_gcd_alloc == INT_MAX) {
1470 spa->spa_gcd_alloc = min_alloc;
1471 } else {
1472 spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1473 spa->spa_gcd_alloc);
1474 }
1475 }
1476
1477 void
vdev_metaslab_group_create(vdev_t * vd)1478 vdev_metaslab_group_create(vdev_t *vd)
1479 {
1480 spa_t *spa = vd->vdev_spa;
1481
1482 /*
1483 * metaslab_group_create was delayed until allocation bias was available
1484 */
1485 if (vd->vdev_mg == NULL) {
1486 metaslab_class_t *mc;
1487
1488 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1489 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1490
1491 ASSERT3U(vd->vdev_islog, ==,
1492 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1493
1494 switch (vd->vdev_alloc_bias) {
1495 case VDEV_BIAS_LOG:
1496 mc = spa_log_class(spa);
1497 break;
1498 case VDEV_BIAS_SPECIAL:
1499 mc = spa_special_class(spa);
1500 break;
1501 case VDEV_BIAS_DEDUP:
1502 mc = spa_dedup_class(spa);
1503 break;
1504 default:
1505 mc = spa_normal_class(spa);
1506 }
1507
1508 vd->vdev_mg = metaslab_group_create(mc, vd);
1509
1510 if (!vd->vdev_islog) {
1511 vd->vdev_log_mg = metaslab_group_create(
1512 spa_embedded_log_class(spa), vd);
1513 }
1514
1515 /*
1516 * The spa ashift min/max only apply for the normal metaslab
1517 * class. Class destination is late binding so ashift boundary
1518 * setting had to wait until now.
1519 */
1520 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1521 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1522 if (vd->vdev_ashift > spa->spa_max_ashift)
1523 spa->spa_max_ashift = vd->vdev_ashift;
1524 if (vd->vdev_ashift < spa->spa_min_ashift)
1525 spa->spa_min_ashift = vd->vdev_ashift;
1526
1527 uint64_t min_alloc = vdev_get_min_alloc(vd);
1528 vdev_spa_set_alloc(spa, min_alloc);
1529 }
1530 }
1531 }
1532
1533 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1534 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1535 {
1536 spa_t *spa = vd->vdev_spa;
1537
1538 if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1539 return;
1540
1541 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1542 uint64_t dspace = spa_deflate(spa) ?
1543 vdev_deflated_space(vd, raw_space) : raw_space;
1544 if (add) {
1545 spa->spa_nonallocating_dspace += dspace;
1546 } else {
1547 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1548 spa->spa_nonallocating_dspace -= dspace;
1549 }
1550 }
1551
1552 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1553 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1554 {
1555 spa_t *spa = vd->vdev_spa;
1556 uint64_t oldc = vd->vdev_ms_count;
1557 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1558 metaslab_t **mspp;
1559 int error;
1560 boolean_t expanding = (oldc != 0);
1561
1562 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1563
1564 /*
1565 * This vdev is not being allocated from yet or is a hole.
1566 */
1567 if (vd->vdev_ms_shift == 0)
1568 return (0);
1569
1570 ASSERT(!vd->vdev_ishole);
1571
1572 ASSERT(oldc <= newc);
1573
1574 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1575
1576 if (expanding) {
1577 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1578 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1579 }
1580
1581 vd->vdev_ms = mspp;
1582 vd->vdev_ms_count = newc;
1583
1584 /*
1585 * Weighting algorithms can depend on the number of metaslabs in the
1586 * vdev. In order to ensure that all weights are correct at all times,
1587 * we need to recalculate here.
1588 */
1589 for (uint64_t m = 0; m < oldc; m++) {
1590 metaslab_t *msp = vd->vdev_ms[m];
1591 mutex_enter(&msp->ms_lock);
1592 metaslab_recalculate_weight_and_sort(msp);
1593 mutex_exit(&msp->ms_lock);
1594 }
1595
1596 for (uint64_t m = oldc; m < newc; m++) {
1597 uint64_t object = 0;
1598 /*
1599 * vdev_ms_array may be 0 if we are creating the "fake"
1600 * metaslabs for an indirect vdev for zdb's leak detection.
1601 * See zdb_leak_init().
1602 */
1603 if (txg == 0 && vd->vdev_ms_array != 0) {
1604 error = dmu_read(spa->spa_meta_objset,
1605 vd->vdev_ms_array,
1606 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1607 DMU_READ_PREFETCH);
1608 if (error != 0) {
1609 vdev_dbgmsg(vd, "unable to read the metaslab "
1610 "array [error=%d]", error);
1611 return (error);
1612 }
1613 }
1614
1615 error = metaslab_init(vd->vdev_mg, m, object, txg,
1616 &(vd->vdev_ms[m]));
1617 if (error != 0) {
1618 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1619 error);
1620 return (error);
1621 }
1622 }
1623
1624 /*
1625 * Find the emptiest metaslab on the vdev and mark it for use for
1626 * embedded slog by moving it from the regular to the log metaslab
1627 * group.
1628 */
1629 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1630 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1631 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1632 uint64_t slog_msid = 0;
1633 uint64_t smallest = UINT64_MAX;
1634
1635 /*
1636 * Note, we only search the new metaslabs, because the old
1637 * (pre-existing) ones may be active (e.g. have non-empty
1638 * range_tree's), and we don't move them to the new
1639 * metaslab_t.
1640 */
1641 for (uint64_t m = oldc; m < newc; m++) {
1642 uint64_t alloc =
1643 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1644 if (alloc < smallest) {
1645 slog_msid = m;
1646 smallest = alloc;
1647 }
1648 }
1649 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1650 /*
1651 * The metaslab was marked as dirty at the end of
1652 * metaslab_init(). Remove it from the dirty list so that we
1653 * can uninitialize and reinitialize it to the new class.
1654 */
1655 if (txg != 0) {
1656 (void) txg_list_remove_this(&vd->vdev_ms_list,
1657 slog_ms, txg);
1658 }
1659 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1660 metaslab_fini(slog_ms);
1661 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1662 &vd->vdev_ms[slog_msid]));
1663 }
1664
1665 if (txg == 0)
1666 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1667
1668 /*
1669 * If the vdev is marked as non-allocating then don't
1670 * activate the metaslabs since we want to ensure that
1671 * no allocations are performed on this device.
1672 */
1673 if (vd->vdev_noalloc) {
1674 /* track non-allocating vdev space */
1675 vdev_update_nonallocating_space(vd, B_TRUE);
1676 } else if (!expanding) {
1677 metaslab_group_activate(vd->vdev_mg);
1678 if (vd->vdev_log_mg != NULL)
1679 metaslab_group_activate(vd->vdev_log_mg);
1680 }
1681
1682 if (txg == 0)
1683 spa_config_exit(spa, SCL_ALLOC, FTAG);
1684
1685 return (0);
1686 }
1687
1688 void
vdev_metaslab_fini(vdev_t * vd)1689 vdev_metaslab_fini(vdev_t *vd)
1690 {
1691 if (vd->vdev_checkpoint_sm != NULL) {
1692 ASSERT(spa_feature_is_active(vd->vdev_spa,
1693 SPA_FEATURE_POOL_CHECKPOINT));
1694 space_map_close(vd->vdev_checkpoint_sm);
1695 /*
1696 * Even though we close the space map, we need to set its
1697 * pointer to NULL. The reason is that vdev_metaslab_fini()
1698 * may be called multiple times for certain operations
1699 * (i.e. when destroying a pool) so we need to ensure that
1700 * this clause never executes twice. This logic is similar
1701 * to the one used for the vdev_ms clause below.
1702 */
1703 vd->vdev_checkpoint_sm = NULL;
1704 }
1705
1706 if (vd->vdev_ms != NULL) {
1707 metaslab_group_t *mg = vd->vdev_mg;
1708
1709 metaslab_group_passivate(mg);
1710 if (vd->vdev_log_mg != NULL) {
1711 ASSERT(!vd->vdev_islog);
1712 metaslab_group_passivate(vd->vdev_log_mg);
1713 }
1714
1715 uint64_t count = vd->vdev_ms_count;
1716 for (uint64_t m = 0; m < count; m++) {
1717 metaslab_t *msp = vd->vdev_ms[m];
1718 if (msp != NULL)
1719 metaslab_fini(msp);
1720 }
1721 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1722 vd->vdev_ms = NULL;
1723 vd->vdev_ms_count = 0;
1724
1725 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1726 ASSERT0(mg->mg_histogram[i]);
1727 if (vd->vdev_log_mg != NULL)
1728 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1729 }
1730 }
1731 ASSERT0(vd->vdev_ms_count);
1732 }
1733
1734 typedef struct vdev_probe_stats {
1735 boolean_t vps_readable;
1736 boolean_t vps_writeable;
1737 boolean_t vps_zio_done_probe;
1738 int vps_flags;
1739 } vdev_probe_stats_t;
1740
1741 static void
vdev_probe_done(zio_t * zio)1742 vdev_probe_done(zio_t *zio)
1743 {
1744 spa_t *spa = zio->io_spa;
1745 vdev_t *vd = zio->io_vd;
1746 vdev_probe_stats_t *vps = zio->io_private;
1747
1748 ASSERT(vd->vdev_probe_zio != NULL);
1749
1750 if (zio->io_type == ZIO_TYPE_READ) {
1751 if (zio->io_error == 0)
1752 vps->vps_readable = 1;
1753 if (zio->io_error == 0 && spa_writeable(spa)) {
1754 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1755 zio->io_offset, zio->io_size, zio->io_abd,
1756 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1757 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1758 } else {
1759 abd_free(zio->io_abd);
1760 }
1761 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1762 if (zio->io_error == 0)
1763 vps->vps_writeable = 1;
1764 abd_free(zio->io_abd);
1765 } else if (zio->io_type == ZIO_TYPE_NULL) {
1766 zio_t *pio;
1767 zio_link_t *zl;
1768
1769 vd->vdev_cant_read |= !vps->vps_readable;
1770 vd->vdev_cant_write |= !vps->vps_writeable;
1771 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1772 vd->vdev_cant_read, vd->vdev_cant_write);
1773
1774 if (vdev_readable(vd) &&
1775 (vdev_writeable(vd) || !spa_writeable(spa))) {
1776 zio->io_error = 0;
1777 } else {
1778 ASSERT(zio->io_error != 0);
1779 vdev_dbgmsg(vd, "failed probe");
1780 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1781 spa, vd, NULL, NULL, 0);
1782 zio->io_error = SET_ERROR(ENXIO);
1783
1784 /*
1785 * If this probe was initiated from zio pipeline, then
1786 * change the state in a spa_async_request. Probes that
1787 * were initiated from a vdev_open can change the state
1788 * as part of the open call.
1789 * Skip fault injection if this vdev is already removed
1790 * or a removal is pending.
1791 */
1792 if (vps->vps_zio_done_probe &&
1793 !vd->vdev_remove_wanted && !vd->vdev_removed) {
1794 vd->vdev_fault_wanted = B_TRUE;
1795 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1796 }
1797 }
1798
1799 mutex_enter(&vd->vdev_probe_lock);
1800 ASSERT(vd->vdev_probe_zio == zio);
1801 vd->vdev_probe_zio = NULL;
1802 mutex_exit(&vd->vdev_probe_lock);
1803
1804 zl = NULL;
1805 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1806 if (!vdev_accessible(vd, pio))
1807 pio->io_error = SET_ERROR(ENXIO);
1808
1809 kmem_free(vps, sizeof (*vps));
1810 }
1811 }
1812
1813 /*
1814 * Determine whether this device is accessible.
1815 *
1816 * Read and write to several known locations: the pad regions of each
1817 * vdev label but the first, which we leave alone in case it contains
1818 * a VTOC.
1819 */
1820 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1821 vdev_probe(vdev_t *vd, zio_t *zio)
1822 {
1823 spa_t *spa = vd->vdev_spa;
1824 vdev_probe_stats_t *vps = NULL;
1825 zio_t *pio;
1826
1827 ASSERT(vd->vdev_ops->vdev_op_leaf);
1828
1829 /*
1830 * Don't probe the probe.
1831 */
1832 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1833 return (NULL);
1834
1835 /*
1836 * To prevent 'probe storms' when a device fails, we create
1837 * just one probe i/o at a time. All zios that want to probe
1838 * this vdev will become parents of the probe io.
1839 */
1840 mutex_enter(&vd->vdev_probe_lock);
1841
1842 if ((pio = vd->vdev_probe_zio) == NULL) {
1843 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1844
1845 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1846 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1847 vps->vps_zio_done_probe = (zio != NULL);
1848
1849 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1850 /*
1851 * vdev_cant_read and vdev_cant_write can only
1852 * transition from TRUE to FALSE when we have the
1853 * SCL_ZIO lock as writer; otherwise they can only
1854 * transition from FALSE to TRUE. This ensures that
1855 * any zio looking at these values can assume that
1856 * failures persist for the life of the I/O. That's
1857 * important because when a device has intermittent
1858 * connectivity problems, we want to ensure that
1859 * they're ascribed to the device (ENXIO) and not
1860 * the zio (EIO).
1861 *
1862 * Since we hold SCL_ZIO as writer here, clear both
1863 * values so the probe can reevaluate from first
1864 * principles.
1865 */
1866 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1867 vd->vdev_cant_read = B_FALSE;
1868 vd->vdev_cant_write = B_FALSE;
1869 }
1870
1871 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1872 vdev_probe_done, vps,
1873 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1874 }
1875
1876 if (zio != NULL)
1877 zio_add_child(zio, pio);
1878
1879 mutex_exit(&vd->vdev_probe_lock);
1880
1881 if (vps == NULL) {
1882 ASSERT(zio != NULL);
1883 return (NULL);
1884 }
1885
1886 for (int l = 1; l < VDEV_LABELS; l++) {
1887 zio_nowait(zio_read_phys(pio, vd,
1888 vdev_label_offset(vd->vdev_psize, l,
1889 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1890 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1891 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1892 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1893 }
1894
1895 if (zio == NULL)
1896 return (pio);
1897
1898 zio_nowait(pio);
1899 return (NULL);
1900 }
1901
1902 static void
vdev_load_child(void * arg)1903 vdev_load_child(void *arg)
1904 {
1905 vdev_t *vd = arg;
1906
1907 vd->vdev_load_error = vdev_load(vd);
1908 }
1909
1910 static void
vdev_open_child(void * arg)1911 vdev_open_child(void *arg)
1912 {
1913 vdev_t *vd = arg;
1914
1915 vd->vdev_open_thread = curthread;
1916 vd->vdev_open_error = vdev_open(vd);
1917 vd->vdev_open_thread = NULL;
1918 }
1919
1920 static boolean_t
vdev_uses_zvols(vdev_t * vd)1921 vdev_uses_zvols(vdev_t *vd)
1922 {
1923 #ifdef _KERNEL
1924 if (zvol_is_zvol(vd->vdev_path))
1925 return (B_TRUE);
1926 #endif
1927
1928 for (int c = 0; c < vd->vdev_children; c++)
1929 if (vdev_uses_zvols(vd->vdev_child[c]))
1930 return (B_TRUE);
1931
1932 return (B_FALSE);
1933 }
1934
1935 /*
1936 * Returns B_TRUE if the passed child should be opened.
1937 */
1938 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1939 vdev_default_open_children_func(vdev_t *vd)
1940 {
1941 (void) vd;
1942 return (B_TRUE);
1943 }
1944
1945 /*
1946 * Open the requested child vdevs. If any of the leaf vdevs are using
1947 * a ZFS volume then do the opens in a single thread. This avoids a
1948 * deadlock when the current thread is holding the spa_namespace_lock.
1949 */
1950 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1951 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1952 {
1953 int children = vd->vdev_children;
1954
1955 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1956 children, children, TASKQ_PREPOPULATE);
1957 vd->vdev_nonrot = B_TRUE;
1958
1959 for (int c = 0; c < children; c++) {
1960 vdev_t *cvd = vd->vdev_child[c];
1961
1962 if (open_func(cvd) == B_FALSE)
1963 continue;
1964
1965 if (tq == NULL || vdev_uses_zvols(vd)) {
1966 cvd->vdev_open_error = vdev_open(cvd);
1967 } else {
1968 VERIFY(taskq_dispatch(tq, vdev_open_child,
1969 cvd, TQ_SLEEP) != TASKQID_INVALID);
1970 }
1971 }
1972
1973 if (tq != NULL)
1974 taskq_wait(tq);
1975 for (int c = 0; c < children; c++) {
1976 vdev_t *cvd = vd->vdev_child[c];
1977
1978 if (open_func(cvd) == B_FALSE ||
1979 cvd->vdev_state <= VDEV_STATE_FAULTED)
1980 continue;
1981 vd->vdev_nonrot &= cvd->vdev_nonrot;
1982 }
1983
1984 if (tq != NULL)
1985 taskq_destroy(tq);
1986 }
1987
1988 /*
1989 * Open all child vdevs.
1990 */
1991 void
vdev_open_children(vdev_t * vd)1992 vdev_open_children(vdev_t *vd)
1993 {
1994 vdev_open_children_impl(vd, vdev_default_open_children_func);
1995 }
1996
1997 /*
1998 * Conditionally open a subset of child vdevs.
1999 */
2000 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2001 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2002 {
2003 vdev_open_children_impl(vd, open_func);
2004 }
2005
2006 /*
2007 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
2008 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
2009 * changed, this algorithm can not change, otherwise it would inconsistently
2010 * account for existing bp's. We also hard-code txg 0 for the same reason
2011 * since expanded RAIDZ vdevs can use a different asize for different birth
2012 * txg's.
2013 */
2014 static void
vdev_set_deflate_ratio(vdev_t * vd)2015 vdev_set_deflate_ratio(vdev_t *vd)
2016 {
2017 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2018 vd->vdev_deflate_ratio = (1 << 17) /
2019 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2020 SPA_MINBLOCKSHIFT);
2021 }
2022 }
2023
2024 /*
2025 * Choose the best of two ashifts, preferring one between logical ashift
2026 * (absolute minimum) and administrator defined maximum, otherwise take
2027 * the biggest of the two.
2028 */
2029 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2030 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2031 {
2032 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2033 if (b <= logical || b > zfs_vdev_max_auto_ashift)
2034 return (a);
2035 else
2036 return (MAX(a, b));
2037 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2038 return (MAX(a, b));
2039 return (b);
2040 }
2041
2042 /*
2043 * Maximize performance by inflating the configured ashift for top level
2044 * vdevs to be as close to the physical ashift as possible while maintaining
2045 * administrator defined limits and ensuring it doesn't go below the
2046 * logical ashift.
2047 */
2048 static void
vdev_ashift_optimize(vdev_t * vd)2049 vdev_ashift_optimize(vdev_t *vd)
2050 {
2051 ASSERT(vd == vd->vdev_top);
2052
2053 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2054 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2055 vd->vdev_ashift = MIN(
2056 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2057 MAX(zfs_vdev_min_auto_ashift,
2058 vd->vdev_physical_ashift));
2059 } else {
2060 /*
2061 * If the logical and physical ashifts are the same, then
2062 * we ensure that the top-level vdev's ashift is not smaller
2063 * than our minimum ashift value. For the unusual case
2064 * where logical ashift > physical ashift, we can't cap
2065 * the calculated ashift based on max ashift as that
2066 * would cause failures.
2067 * We still check if we need to increase it to match
2068 * the min ashift.
2069 */
2070 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2071 vd->vdev_ashift);
2072 }
2073 }
2074
2075 /*
2076 * Prepare a virtual device for access.
2077 */
2078 int
vdev_open(vdev_t * vd)2079 vdev_open(vdev_t *vd)
2080 {
2081 spa_t *spa = vd->vdev_spa;
2082 int error;
2083 uint64_t osize = 0;
2084 uint64_t max_osize = 0;
2085 uint64_t asize, max_asize, psize;
2086 uint64_t logical_ashift = 0;
2087 uint64_t physical_ashift = 0;
2088
2089 ASSERT(vd->vdev_open_thread == curthread ||
2090 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2091 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2092 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2093 vd->vdev_state == VDEV_STATE_OFFLINE);
2094
2095 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2096 vd->vdev_cant_read = B_FALSE;
2097 vd->vdev_cant_write = B_FALSE;
2098 vd->vdev_fault_wanted = B_FALSE;
2099 vd->vdev_remove_wanted = B_FALSE;
2100 vd->vdev_min_asize = vdev_get_min_asize(vd);
2101
2102 /*
2103 * If this vdev is not removed, check its fault status. If it's
2104 * faulted, bail out of the open.
2105 */
2106 if (!vd->vdev_removed && vd->vdev_faulted) {
2107 ASSERT(vd->vdev_children == 0);
2108 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2109 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2110 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2111 vd->vdev_label_aux);
2112 return (SET_ERROR(ENXIO));
2113 } else if (vd->vdev_offline) {
2114 ASSERT(vd->vdev_children == 0);
2115 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2116 return (SET_ERROR(ENXIO));
2117 }
2118
2119 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2120 &logical_ashift, &physical_ashift);
2121
2122 /* Keep the device in removed state if unplugged */
2123 if (error == ENOENT && vd->vdev_removed) {
2124 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2125 VDEV_AUX_NONE);
2126 return (error);
2127 }
2128
2129 /*
2130 * Physical volume size should never be larger than its max size, unless
2131 * the disk has shrunk while we were reading it or the device is buggy
2132 * or damaged: either way it's not safe for use, bail out of the open.
2133 */
2134 if (osize > max_osize) {
2135 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2136 VDEV_AUX_OPEN_FAILED);
2137 return (SET_ERROR(ENXIO));
2138 }
2139
2140 /*
2141 * Reset the vdev_reopening flag so that we actually close
2142 * the vdev on error.
2143 */
2144 vd->vdev_reopening = B_FALSE;
2145 if (zio_injection_enabled && error == 0)
2146 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2147
2148 if (error) {
2149 if (vd->vdev_removed &&
2150 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2151 vd->vdev_removed = B_FALSE;
2152
2153 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2154 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2155 vd->vdev_stat.vs_aux);
2156 } else {
2157 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2158 vd->vdev_stat.vs_aux);
2159 }
2160 return (error);
2161 }
2162
2163 vd->vdev_removed = B_FALSE;
2164
2165 /*
2166 * Recheck the faulted flag now that we have confirmed that
2167 * the vdev is accessible. If we're faulted, bail.
2168 */
2169 if (vd->vdev_faulted) {
2170 ASSERT(vd->vdev_children == 0);
2171 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2172 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2173 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2174 vd->vdev_label_aux);
2175 return (SET_ERROR(ENXIO));
2176 }
2177
2178 if (vd->vdev_degraded) {
2179 ASSERT(vd->vdev_children == 0);
2180 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2181 VDEV_AUX_ERR_EXCEEDED);
2182 } else {
2183 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2184 }
2185
2186 /*
2187 * For hole or missing vdevs we just return success.
2188 */
2189 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2190 return (0);
2191
2192 for (int c = 0; c < vd->vdev_children; c++) {
2193 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2194 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2195 VDEV_AUX_NONE);
2196 break;
2197 }
2198 }
2199
2200 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2201 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2202
2203 if (vd->vdev_children == 0) {
2204 if (osize < SPA_MINDEVSIZE) {
2205 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2206 VDEV_AUX_TOO_SMALL);
2207 return (SET_ERROR(EOVERFLOW));
2208 }
2209 psize = osize;
2210 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2211 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2212 VDEV_LABEL_END_SIZE);
2213 } else {
2214 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2215 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2216 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2217 VDEV_AUX_TOO_SMALL);
2218 return (SET_ERROR(EOVERFLOW));
2219 }
2220 psize = 0;
2221 asize = osize;
2222 max_asize = max_osize;
2223 }
2224
2225 /*
2226 * If the vdev was expanded, record this so that we can re-create the
2227 * uberblock rings in labels {2,3}, during the next sync.
2228 */
2229 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2230 vd->vdev_copy_uberblocks = B_TRUE;
2231
2232 vd->vdev_psize = psize;
2233
2234 /*
2235 * Make sure the allocatable size hasn't shrunk too much.
2236 */
2237 if (asize < vd->vdev_min_asize) {
2238 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2239 VDEV_AUX_BAD_LABEL);
2240 return (SET_ERROR(EINVAL));
2241 }
2242
2243 /*
2244 * We can always set the logical/physical ashift members since
2245 * their values are only used to calculate the vdev_ashift when
2246 * the device is first added to the config. These values should
2247 * not be used for anything else since they may change whenever
2248 * the device is reopened and we don't store them in the label.
2249 */
2250 vd->vdev_physical_ashift =
2251 MAX(physical_ashift, vd->vdev_physical_ashift);
2252 vd->vdev_logical_ashift = MAX(logical_ashift,
2253 vd->vdev_logical_ashift);
2254
2255 if (vd->vdev_asize == 0) {
2256 /*
2257 * This is the first-ever open, so use the computed values.
2258 * For compatibility, a different ashift can be requested.
2259 */
2260 vd->vdev_asize = asize;
2261 vd->vdev_max_asize = max_asize;
2262
2263 /*
2264 * If the vdev_ashift was not overridden at creation time
2265 * (0) or the override value is impossible for the device,
2266 * then set it the logical ashift and optimize the ashift.
2267 */
2268 if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2269 vd->vdev_ashift = vd->vdev_logical_ashift;
2270
2271 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2272 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2273 VDEV_AUX_ASHIFT_TOO_BIG);
2274 return (SET_ERROR(EDOM));
2275 }
2276
2277 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2278 vdev_ashift_optimize(vd);
2279 vd->vdev_attaching = B_FALSE;
2280 }
2281 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2282 vd->vdev_ashift > ASHIFT_MAX)) {
2283 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284 VDEV_AUX_BAD_ASHIFT);
2285 return (SET_ERROR(EDOM));
2286 }
2287 } else {
2288 /*
2289 * Make sure the alignment required hasn't increased.
2290 */
2291 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2292 vd->vdev_ops->vdev_op_leaf) {
2293 (void) zfs_ereport_post(
2294 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2295 spa, vd, NULL, NULL, 0);
2296 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2297 VDEV_AUX_BAD_LABEL);
2298 return (SET_ERROR(EDOM));
2299 }
2300 vd->vdev_max_asize = max_asize;
2301 }
2302
2303 /*
2304 * If all children are healthy we update asize if either:
2305 * The asize has increased, due to a device expansion caused by dynamic
2306 * LUN growth or vdev replacement, and automatic expansion is enabled;
2307 * making the additional space available.
2308 *
2309 * The asize has decreased, due to a device shrink usually caused by a
2310 * vdev replace with a smaller device. This ensures that calculations
2311 * based of max_asize and asize e.g. esize are always valid. It's safe
2312 * to do this as we've already validated that asize is greater than
2313 * vdev_min_asize.
2314 */
2315 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2316 ((asize > vd->vdev_asize &&
2317 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2318 (asize < vd->vdev_asize)))
2319 vd->vdev_asize = asize;
2320
2321 vdev_set_min_asize(vd);
2322
2323 /*
2324 * Ensure we can issue some IO before declaring the
2325 * vdev open for business.
2326 */
2327 if (vd->vdev_ops->vdev_op_leaf &&
2328 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2329 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2330 VDEV_AUX_ERR_EXCEEDED);
2331 return (error);
2332 }
2333
2334 /*
2335 * Track the minimum allocation size.
2336 */
2337 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2338 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2339 uint64_t min_alloc = vdev_get_min_alloc(vd);
2340 vdev_spa_set_alloc(spa, min_alloc);
2341 }
2342
2343 /*
2344 * If this is a leaf vdev, assess whether a resilver is needed.
2345 * But don't do this if we are doing a reopen for a scrub, since
2346 * this would just restart the scrub we are already doing.
2347 */
2348 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2349 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2350
2351 return (0);
2352 }
2353
2354 static void
vdev_validate_child(void * arg)2355 vdev_validate_child(void *arg)
2356 {
2357 vdev_t *vd = arg;
2358
2359 vd->vdev_validate_thread = curthread;
2360 vd->vdev_validate_error = vdev_validate(vd);
2361 vd->vdev_validate_thread = NULL;
2362 }
2363
2364 /*
2365 * Called once the vdevs are all opened, this routine validates the label
2366 * contents. This needs to be done before vdev_load() so that we don't
2367 * inadvertently do repair I/Os to the wrong device.
2368 *
2369 * This function will only return failure if one of the vdevs indicates that it
2370 * has since been destroyed or exported. This is only possible if
2371 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2372 * will be updated but the function will return 0.
2373 */
2374 int
vdev_validate(vdev_t * vd)2375 vdev_validate(vdev_t *vd)
2376 {
2377 spa_t *spa = vd->vdev_spa;
2378 taskq_t *tq = NULL;
2379 nvlist_t *label;
2380 uint64_t guid = 0, aux_guid = 0, top_guid;
2381 uint64_t state;
2382 nvlist_t *nvl;
2383 uint64_t txg;
2384 int children = vd->vdev_children;
2385
2386 if (vdev_validate_skip)
2387 return (0);
2388
2389 if (children > 0) {
2390 tq = taskq_create("vdev_validate", children, minclsyspri,
2391 children, children, TASKQ_PREPOPULATE);
2392 }
2393
2394 for (uint64_t c = 0; c < children; c++) {
2395 vdev_t *cvd = vd->vdev_child[c];
2396
2397 if (tq == NULL || vdev_uses_zvols(cvd)) {
2398 vdev_validate_child(cvd);
2399 } else {
2400 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2401 TQ_SLEEP) != TASKQID_INVALID);
2402 }
2403 }
2404 if (tq != NULL) {
2405 taskq_wait(tq);
2406 taskq_destroy(tq);
2407 }
2408 for (int c = 0; c < children; c++) {
2409 int error = vd->vdev_child[c]->vdev_validate_error;
2410
2411 if (error != 0)
2412 return (SET_ERROR(EBADF));
2413 }
2414
2415
2416 /*
2417 * If the device has already failed, or was marked offline, don't do
2418 * any further validation. Otherwise, label I/O will fail and we will
2419 * overwrite the previous state.
2420 */
2421 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2422 return (0);
2423
2424 /*
2425 * If we are performing an extreme rewind, we allow for a label that
2426 * was modified at a point after the current txg.
2427 * If config lock is not held do not check for the txg. spa_sync could
2428 * be updating the vdev's label before updating spa_last_synced_txg.
2429 */
2430 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2431 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2432 txg = UINT64_MAX;
2433 else
2434 txg = spa_last_synced_txg(spa);
2435
2436 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2438 VDEV_AUX_BAD_LABEL);
2439 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2440 "txg %llu", (u_longlong_t)txg);
2441 return (0);
2442 }
2443
2444 /*
2445 * Determine if this vdev has been split off into another
2446 * pool. If so, then refuse to open it.
2447 */
2448 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2449 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2450 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2451 VDEV_AUX_SPLIT_POOL);
2452 nvlist_free(label);
2453 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2454 return (0);
2455 }
2456
2457 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2458 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2459 VDEV_AUX_CORRUPT_DATA);
2460 nvlist_free(label);
2461 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2462 ZPOOL_CONFIG_POOL_GUID);
2463 return (0);
2464 }
2465
2466 /*
2467 * If config is not trusted then ignore the spa guid check. This is
2468 * necessary because if the machine crashed during a re-guid the new
2469 * guid might have been written to all of the vdev labels, but not the
2470 * cached config. The check will be performed again once we have the
2471 * trusted config from the MOS.
2472 */
2473 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2474 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2475 VDEV_AUX_CORRUPT_DATA);
2476 nvlist_free(label);
2477 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2478 "match config (%llu != %llu)", (u_longlong_t)guid,
2479 (u_longlong_t)spa_guid(spa));
2480 return (0);
2481 }
2482
2483 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2484 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2485 &aux_guid) != 0)
2486 aux_guid = 0;
2487
2488 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2489 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2490 VDEV_AUX_CORRUPT_DATA);
2491 nvlist_free(label);
2492 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2493 ZPOOL_CONFIG_GUID);
2494 return (0);
2495 }
2496
2497 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2498 != 0) {
2499 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2500 VDEV_AUX_CORRUPT_DATA);
2501 nvlist_free(label);
2502 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2503 ZPOOL_CONFIG_TOP_GUID);
2504 return (0);
2505 }
2506
2507 /*
2508 * If this vdev just became a top-level vdev because its sibling was
2509 * detached, it will have adopted the parent's vdev guid -- but the
2510 * label may or may not be on disk yet. Fortunately, either version
2511 * of the label will have the same top guid, so if we're a top-level
2512 * vdev, we can safely compare to that instead.
2513 * However, if the config comes from a cachefile that failed to update
2514 * after the detach, a top-level vdev will appear as a non top-level
2515 * vdev in the config. Also relax the constraints if we perform an
2516 * extreme rewind.
2517 *
2518 * If we split this vdev off instead, then we also check the
2519 * original pool's guid. We don't want to consider the vdev
2520 * corrupt if it is partway through a split operation.
2521 */
2522 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2523 boolean_t mismatch = B_FALSE;
2524 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2525 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2526 mismatch = B_TRUE;
2527 } else {
2528 if (vd->vdev_guid != top_guid &&
2529 vd->vdev_top->vdev_guid != guid)
2530 mismatch = B_TRUE;
2531 }
2532
2533 if (mismatch) {
2534 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2535 VDEV_AUX_CORRUPT_DATA);
2536 nvlist_free(label);
2537 vdev_dbgmsg(vd, "vdev_validate: config guid "
2538 "doesn't match label guid");
2539 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2540 (u_longlong_t)vd->vdev_guid,
2541 (u_longlong_t)vd->vdev_top->vdev_guid);
2542 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2543 "aux_guid %llu", (u_longlong_t)guid,
2544 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2545 return (0);
2546 }
2547 }
2548
2549 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2550 &state) != 0) {
2551 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2552 VDEV_AUX_CORRUPT_DATA);
2553 nvlist_free(label);
2554 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2555 ZPOOL_CONFIG_POOL_STATE);
2556 return (0);
2557 }
2558
2559 nvlist_free(label);
2560
2561 /*
2562 * If this is a verbatim import, no need to check the
2563 * state of the pool.
2564 */
2565 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2566 spa_load_state(spa) == SPA_LOAD_OPEN &&
2567 state != POOL_STATE_ACTIVE) {
2568 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2569 "for spa %s", (u_longlong_t)state, spa->spa_name);
2570 return (SET_ERROR(EBADF));
2571 }
2572
2573 /*
2574 * If we were able to open and validate a vdev that was
2575 * previously marked permanently unavailable, clear that state
2576 * now.
2577 */
2578 if (vd->vdev_not_present)
2579 vd->vdev_not_present = 0;
2580
2581 return (0);
2582 }
2583
2584 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2585 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2586 {
2587 if (svd != NULL && *dvd != NULL) {
2588 if (strcmp(svd, *dvd) != 0) {
2589 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2590 "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2591 *dvd, svd);
2592 spa_strfree(*dvd);
2593 *dvd = spa_strdup(svd);
2594 }
2595 } else if (svd != NULL) {
2596 *dvd = spa_strdup(svd);
2597 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2598 (u_longlong_t)guid, *dvd);
2599 }
2600 }
2601
2602 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2603 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2604 {
2605 char *old, *new;
2606
2607 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2608 dvd->vdev_guid);
2609
2610 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2611 dvd->vdev_guid);
2612
2613 vdev_update_path("vdev_physpath", svd->vdev_physpath,
2614 &dvd->vdev_physpath, dvd->vdev_guid);
2615
2616 /*
2617 * Our enclosure sysfs path may have changed between imports
2618 */
2619 old = dvd->vdev_enc_sysfs_path;
2620 new = svd->vdev_enc_sysfs_path;
2621 if ((old != NULL && new == NULL) ||
2622 (old == NULL && new != NULL) ||
2623 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2624 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2625 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2626 old, new);
2627
2628 if (dvd->vdev_enc_sysfs_path)
2629 spa_strfree(dvd->vdev_enc_sysfs_path);
2630
2631 if (svd->vdev_enc_sysfs_path) {
2632 dvd->vdev_enc_sysfs_path = spa_strdup(
2633 svd->vdev_enc_sysfs_path);
2634 } else {
2635 dvd->vdev_enc_sysfs_path = NULL;
2636 }
2637 }
2638 }
2639
2640 /*
2641 * Recursively copy vdev paths from one vdev to another. Source and destination
2642 * vdev trees must have same geometry otherwise return error. Intended to copy
2643 * paths from userland config into MOS config.
2644 */
2645 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2646 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2647 {
2648 if ((svd->vdev_ops == &vdev_missing_ops) ||
2649 (svd->vdev_ishole && dvd->vdev_ishole) ||
2650 (dvd->vdev_ops == &vdev_indirect_ops))
2651 return (0);
2652
2653 if (svd->vdev_ops != dvd->vdev_ops) {
2654 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2655 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2656 return (SET_ERROR(EINVAL));
2657 }
2658
2659 if (svd->vdev_guid != dvd->vdev_guid) {
2660 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2661 "%llu)", (u_longlong_t)svd->vdev_guid,
2662 (u_longlong_t)dvd->vdev_guid);
2663 return (SET_ERROR(EINVAL));
2664 }
2665
2666 if (svd->vdev_children != dvd->vdev_children) {
2667 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2668 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2669 (u_longlong_t)dvd->vdev_children);
2670 return (SET_ERROR(EINVAL));
2671 }
2672
2673 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2674 int error = vdev_copy_path_strict(svd->vdev_child[i],
2675 dvd->vdev_child[i]);
2676 if (error != 0)
2677 return (error);
2678 }
2679
2680 if (svd->vdev_ops->vdev_op_leaf)
2681 vdev_copy_path_impl(svd, dvd);
2682
2683 return (0);
2684 }
2685
2686 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2687 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2688 {
2689 ASSERT(stvd->vdev_top == stvd);
2690 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2691
2692 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2693 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2694 }
2695
2696 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2697 return;
2698
2699 /*
2700 * The idea here is that while a vdev can shift positions within
2701 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2702 * step outside of it.
2703 */
2704 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2705
2706 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2707 return;
2708
2709 ASSERT(vd->vdev_ops->vdev_op_leaf);
2710
2711 vdev_copy_path_impl(vd, dvd);
2712 }
2713
2714 /*
2715 * Recursively copy vdev paths from one root vdev to another. Source and
2716 * destination vdev trees may differ in geometry. For each destination leaf
2717 * vdev, search a vdev with the same guid and top vdev id in the source.
2718 * Intended to copy paths from userland config into MOS config.
2719 */
2720 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2721 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2722 {
2723 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2724 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2725 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2726
2727 for (uint64_t i = 0; i < children; i++) {
2728 vdev_copy_path_search(srvd->vdev_child[i],
2729 drvd->vdev_child[i]);
2730 }
2731 }
2732
2733 /*
2734 * Close a virtual device.
2735 */
2736 void
vdev_close(vdev_t * vd)2737 vdev_close(vdev_t *vd)
2738 {
2739 vdev_t *pvd = vd->vdev_parent;
2740 spa_t *spa __maybe_unused = vd->vdev_spa;
2741
2742 ASSERT(vd != NULL);
2743 ASSERT(vd->vdev_open_thread == curthread ||
2744 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2745
2746 /*
2747 * If our parent is reopening, then we are as well, unless we are
2748 * going offline.
2749 */
2750 if (pvd != NULL && pvd->vdev_reopening)
2751 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2752
2753 vd->vdev_ops->vdev_op_close(vd);
2754
2755 /*
2756 * We record the previous state before we close it, so that if we are
2757 * doing a reopen(), we don't generate FMA ereports if we notice that
2758 * it's still faulted.
2759 */
2760 vd->vdev_prevstate = vd->vdev_state;
2761
2762 if (vd->vdev_offline)
2763 vd->vdev_state = VDEV_STATE_OFFLINE;
2764 else
2765 vd->vdev_state = VDEV_STATE_CLOSED;
2766 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2767 }
2768
2769 void
vdev_hold(vdev_t * vd)2770 vdev_hold(vdev_t *vd)
2771 {
2772 spa_t *spa = vd->vdev_spa;
2773
2774 ASSERT(spa_is_root(spa));
2775 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2776 return;
2777
2778 for (int c = 0; c < vd->vdev_children; c++)
2779 vdev_hold(vd->vdev_child[c]);
2780
2781 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2782 vd->vdev_ops->vdev_op_hold(vd);
2783 }
2784
2785 void
vdev_rele(vdev_t * vd)2786 vdev_rele(vdev_t *vd)
2787 {
2788 ASSERT(spa_is_root(vd->vdev_spa));
2789 for (int c = 0; c < vd->vdev_children; c++)
2790 vdev_rele(vd->vdev_child[c]);
2791
2792 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2793 vd->vdev_ops->vdev_op_rele(vd);
2794 }
2795
2796 /*
2797 * Reopen all interior vdevs and any unopened leaves. We don't actually
2798 * reopen leaf vdevs which had previously been opened as they might deadlock
2799 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2800 * If the leaf has never been opened then open it, as usual.
2801 */
2802 void
vdev_reopen(vdev_t * vd)2803 vdev_reopen(vdev_t *vd)
2804 {
2805 spa_t *spa = vd->vdev_spa;
2806
2807 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2808
2809 /* set the reopening flag unless we're taking the vdev offline */
2810 vd->vdev_reopening = !vd->vdev_offline;
2811 vdev_close(vd);
2812 (void) vdev_open(vd);
2813
2814 /*
2815 * Call vdev_validate() here to make sure we have the same device.
2816 * Otherwise, a device with an invalid label could be successfully
2817 * opened in response to vdev_reopen().
2818 */
2819 if (vd->vdev_aux) {
2820 (void) vdev_validate_aux(vd);
2821 if (vdev_readable(vd) && vdev_writeable(vd) &&
2822 vd->vdev_aux == &spa->spa_l2cache) {
2823 /*
2824 * In case the vdev is present we should evict all ARC
2825 * buffers and pointers to log blocks and reclaim their
2826 * space before restoring its contents to L2ARC.
2827 */
2828 if (l2arc_vdev_present(vd)) {
2829 l2arc_rebuild_vdev(vd, B_TRUE);
2830 } else {
2831 l2arc_add_vdev(spa, vd);
2832 }
2833 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2834 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2835 }
2836 } else {
2837 (void) vdev_validate(vd);
2838 }
2839
2840 /*
2841 * Recheck if resilver is still needed and cancel any
2842 * scheduled resilver if resilver is unneeded.
2843 */
2844 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2845 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2846 mutex_enter(&spa->spa_async_lock);
2847 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2848 mutex_exit(&spa->spa_async_lock);
2849 }
2850
2851 /*
2852 * Reassess parent vdev's health.
2853 */
2854 vdev_propagate_state(vd);
2855 }
2856
2857 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2858 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2859 {
2860 int error;
2861
2862 /*
2863 * Normally, partial opens (e.g. of a mirror) are allowed.
2864 * For a create, however, we want to fail the request if
2865 * there are any components we can't open.
2866 */
2867 error = vdev_open(vd);
2868
2869 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2870 vdev_close(vd);
2871 return (error ? error : SET_ERROR(ENXIO));
2872 }
2873
2874 /*
2875 * Recursively load DTLs and initialize all labels.
2876 */
2877 if ((error = vdev_dtl_load(vd)) != 0 ||
2878 (error = vdev_label_init(vd, txg, isreplacing ?
2879 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2880 vdev_close(vd);
2881 return (error);
2882 }
2883
2884 return (0);
2885 }
2886
2887 void
vdev_metaslab_set_size(vdev_t * vd)2888 vdev_metaslab_set_size(vdev_t *vd)
2889 {
2890 uint64_t asize = vd->vdev_asize;
2891 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2892 uint64_t ms_shift;
2893
2894 /*
2895 * There are two dimensions to the metaslab sizing calculation:
2896 * the size of the metaslab and the count of metaslabs per vdev.
2897 *
2898 * The default values used below are a good balance between memory
2899 * usage (larger metaslab size means more memory needed for loaded
2900 * metaslabs; more metaslabs means more memory needed for the
2901 * metaslab_t structs), metaslab load time (larger metaslabs take
2902 * longer to load), and metaslab sync time (more metaslabs means
2903 * more time spent syncing all of them).
2904 *
2905 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2906 * The range of the dimensions are as follows:
2907 *
2908 * 2^29 <= ms_size <= 2^34
2909 * 16 <= ms_count <= 131,072
2910 *
2911 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2912 * at least 512MB (2^29) to minimize fragmentation effects when
2913 * testing with smaller devices. However, the count constraint
2914 * of at least 16 metaslabs will override this minimum size goal.
2915 *
2916 * On the upper end of vdev sizes, we aim for a maximum metaslab
2917 * size of 16GB. However, we will cap the total count to 2^17
2918 * metaslabs to keep our memory footprint in check and let the
2919 * metaslab size grow from there if that limit is hit.
2920 *
2921 * The net effect of applying above constrains is summarized below.
2922 *
2923 * vdev size metaslab count
2924 * --------------|-----------------
2925 * < 8GB ~16
2926 * 8GB - 100GB one per 512MB
2927 * 100GB - 3TB ~200
2928 * 3TB - 2PB one per 16GB
2929 * > 2PB ~131,072
2930 * --------------------------------
2931 *
2932 * Finally, note that all of the above calculate the initial
2933 * number of metaslabs. Expanding a top-level vdev will result
2934 * in additional metaslabs being allocated making it possible
2935 * to exceed the zfs_vdev_ms_count_limit.
2936 */
2937
2938 if (ms_count < zfs_vdev_min_ms_count)
2939 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2940 else if (ms_count > zfs_vdev_default_ms_count)
2941 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2942 else
2943 ms_shift = zfs_vdev_default_ms_shift;
2944
2945 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2946 ms_shift = SPA_MAXBLOCKSHIFT;
2947 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2948 ms_shift = zfs_vdev_max_ms_shift;
2949 /* cap the total count to constrain memory footprint */
2950 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2951 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2952 }
2953
2954 vd->vdev_ms_shift = ms_shift;
2955 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2956 }
2957
2958 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2959 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2960 {
2961 ASSERT(vd == vd->vdev_top);
2962 /* indirect vdevs don't have metaslabs or dtls */
2963 ASSERT(vdev_is_concrete(vd) || flags == 0);
2964 ASSERT(ISP2(flags));
2965 ASSERT(spa_writeable(vd->vdev_spa));
2966
2967 if (flags & VDD_METASLAB)
2968 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2969
2970 if (flags & VDD_DTL)
2971 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2972
2973 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2974 }
2975
2976 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2977 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2978 {
2979 for (int c = 0; c < vd->vdev_children; c++)
2980 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2981
2982 if (vd->vdev_ops->vdev_op_leaf)
2983 vdev_dirty(vd->vdev_top, flags, vd, txg);
2984 }
2985
2986 /*
2987 * DTLs.
2988 *
2989 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2990 * the vdev has less than perfect replication. There are four kinds of DTL:
2991 *
2992 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2993 *
2994 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2995 *
2996 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2997 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2998 * txgs that was scrubbed.
2999 *
3000 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3001 * persistent errors or just some device being offline.
3002 * Unlike the other three, the DTL_OUTAGE map is not generally
3003 * maintained; it's only computed when needed, typically to
3004 * determine whether a device can be detached.
3005 *
3006 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3007 * either has the data or it doesn't.
3008 *
3009 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3010 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3011 * if any child is less than fully replicated, then so is its parent.
3012 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3013 * comprising only those txgs which appear in 'maxfaults' or more children;
3014 * those are the txgs we don't have enough replication to read. For example,
3015 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3016 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3017 * two child DTL_MISSING maps.
3018 *
3019 * It should be clear from the above that to compute the DTLs and outage maps
3020 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3021 * Therefore, that is all we keep on disk. When loading the pool, or after
3022 * a configuration change, we generate all other DTLs from first principles.
3023 */
3024 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3025 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3026 {
3027 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3028
3029 ASSERT(t < DTL_TYPES);
3030 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3031 ASSERT(spa_writeable(vd->vdev_spa));
3032
3033 mutex_enter(&vd->vdev_dtl_lock);
3034 if (!zfs_range_tree_contains(rt, txg, size))
3035 zfs_range_tree_add(rt, txg, size);
3036 mutex_exit(&vd->vdev_dtl_lock);
3037 }
3038
3039 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3040 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3041 {
3042 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3043 boolean_t dirty = B_FALSE;
3044
3045 ASSERT(t < DTL_TYPES);
3046 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3047
3048 /*
3049 * While we are loading the pool, the DTLs have not been loaded yet.
3050 * This isn't a problem but it can result in devices being tried
3051 * which are known to not have the data. In which case, the import
3052 * is relying on the checksum to ensure that we get the right data.
3053 * Note that while importing we are only reading the MOS, which is
3054 * always checksummed.
3055 */
3056 mutex_enter(&vd->vdev_dtl_lock);
3057 if (!zfs_range_tree_is_empty(rt))
3058 dirty = zfs_range_tree_contains(rt, txg, size);
3059 mutex_exit(&vd->vdev_dtl_lock);
3060
3061 return (dirty);
3062 }
3063
3064 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3065 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3066 {
3067 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3068 boolean_t empty;
3069
3070 mutex_enter(&vd->vdev_dtl_lock);
3071 empty = zfs_range_tree_is_empty(rt);
3072 mutex_exit(&vd->vdev_dtl_lock);
3073
3074 return (empty);
3075 }
3076
3077 /*
3078 * Check if the txg falls within the range which must be
3079 * resilvered. DVAs outside this range can always be skipped.
3080 */
3081 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3082 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3083 uint64_t phys_birth)
3084 {
3085 (void) dva, (void) psize;
3086
3087 /* Set by sequential resilver. */
3088 if (phys_birth == TXG_UNKNOWN)
3089 return (B_TRUE);
3090
3091 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3092 }
3093
3094 /*
3095 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3096 */
3097 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3098 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3099 uint64_t phys_birth)
3100 {
3101 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3102
3103 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3104 vd->vdev_ops->vdev_op_leaf)
3105 return (B_TRUE);
3106
3107 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3108 phys_birth));
3109 }
3110
3111 /*
3112 * Returns the lowest txg in the DTL range.
3113 */
3114 static uint64_t
vdev_dtl_min(vdev_t * vd)3115 vdev_dtl_min(vdev_t *vd)
3116 {
3117 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3118 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3119 ASSERT0(vd->vdev_children);
3120
3121 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3122 }
3123
3124 /*
3125 * Returns the highest txg in the DTL.
3126 */
3127 static uint64_t
vdev_dtl_max(vdev_t * vd)3128 vdev_dtl_max(vdev_t *vd)
3129 {
3130 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3131 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3132 ASSERT0(vd->vdev_children);
3133
3134 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3135 }
3136
3137 /*
3138 * Determine if a resilvering vdev should remove any DTL entries from
3139 * its range. If the vdev was resilvering for the entire duration of the
3140 * scan then it should excise that range from its DTLs. Otherwise, this
3141 * vdev is considered partially resilvered and should leave its DTL
3142 * entries intact. The comment in vdev_dtl_reassess() describes how we
3143 * excise the DTLs.
3144 */
3145 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3146 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3147 {
3148 ASSERT0(vd->vdev_children);
3149
3150 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3151 return (B_FALSE);
3152
3153 if (vd->vdev_resilver_deferred)
3154 return (B_FALSE);
3155
3156 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3157 return (B_TRUE);
3158
3159 if (rebuild_done) {
3160 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3161 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3162
3163 /* Rebuild not initiated by attach */
3164 if (vd->vdev_rebuild_txg == 0)
3165 return (B_TRUE);
3166
3167 /*
3168 * When a rebuild completes without error then all missing data
3169 * up to the rebuild max txg has been reconstructed and the DTL
3170 * is eligible for excision.
3171 */
3172 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3173 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3174 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3175 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3176 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3177 return (B_TRUE);
3178 }
3179 } else {
3180 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3181 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3182
3183 /* Resilver not initiated by attach */
3184 if (vd->vdev_resilver_txg == 0)
3185 return (B_TRUE);
3186
3187 /*
3188 * When a resilver is initiated the scan will assign the
3189 * scn_max_txg value to the highest txg value that exists
3190 * in all DTLs. If this device's max DTL is not part of this
3191 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3192 * then it is not eligible for excision.
3193 */
3194 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3195 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3196 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3197 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3198 return (B_TRUE);
3199 }
3200 }
3201
3202 return (B_FALSE);
3203 }
3204
3205 /*
3206 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3207 * write operations will be issued to the pool.
3208 */
3209 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3210 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3211 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3212 {
3213 spa_t *spa = vd->vdev_spa;
3214 avl_tree_t reftree;
3215 int minref;
3216
3217 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3218
3219 for (int c = 0; c < vd->vdev_children; c++)
3220 vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3221 scrub_txg, scrub_done, rebuild_done, faulting);
3222
3223 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3224 return;
3225
3226 if (vd->vdev_ops->vdev_op_leaf) {
3227 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3228 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3229 boolean_t check_excise = B_FALSE;
3230 boolean_t wasempty = B_TRUE;
3231
3232 mutex_enter(&vd->vdev_dtl_lock);
3233
3234 /*
3235 * If requested, pretend the scan or rebuild completed cleanly.
3236 */
3237 if (zfs_scan_ignore_errors) {
3238 if (scn != NULL)
3239 scn->scn_phys.scn_errors = 0;
3240 if (vr != NULL)
3241 vr->vr_rebuild_phys.vrp_errors = 0;
3242 }
3243
3244 if (scrub_txg != 0 &&
3245 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3246 wasempty = B_FALSE;
3247 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3248 "dtl:%llu/%llu errors:%llu",
3249 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3250 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3251 (u_longlong_t)vdev_dtl_min(vd),
3252 (u_longlong_t)vdev_dtl_max(vd),
3253 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3254 }
3255
3256 /*
3257 * If we've completed a scrub/resilver or a rebuild cleanly
3258 * then determine if this vdev should remove any DTLs. We
3259 * only want to excise regions on vdevs that were available
3260 * during the entire duration of this scan.
3261 */
3262 if (rebuild_done &&
3263 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3264 check_excise = B_TRUE;
3265 } else {
3266 if (spa->spa_scrub_started ||
3267 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3268 check_excise = B_TRUE;
3269 }
3270 }
3271
3272 if (scrub_txg && check_excise &&
3273 vdev_dtl_should_excise(vd, rebuild_done)) {
3274 /*
3275 * We completed a scrub, resilver or rebuild up to
3276 * scrub_txg. If we did it without rebooting, then
3277 * the scrub dtl will be valid, so excise the old
3278 * region and fold in the scrub dtl. Otherwise,
3279 * leave the dtl as-is if there was an error.
3280 *
3281 * There's little trick here: to excise the beginning
3282 * of the DTL_MISSING map, we put it into a reference
3283 * tree and then add a segment with refcnt -1 that
3284 * covers the range [0, scrub_txg). This means
3285 * that each txg in that range has refcnt -1 or 0.
3286 * We then add DTL_SCRUB with a refcnt of 2, so that
3287 * entries in the range [0, scrub_txg) will have a
3288 * positive refcnt -- either 1 or 2. We then convert
3289 * the reference tree into the new DTL_MISSING map.
3290 */
3291 space_reftree_create(&reftree);
3292 space_reftree_add_map(&reftree,
3293 vd->vdev_dtl[DTL_MISSING], 1);
3294 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3295 space_reftree_add_map(&reftree,
3296 vd->vdev_dtl[DTL_SCRUB], 2);
3297 space_reftree_generate_map(&reftree,
3298 vd->vdev_dtl[DTL_MISSING], 1);
3299 space_reftree_destroy(&reftree);
3300
3301 if (!zfs_range_tree_is_empty(
3302 vd->vdev_dtl[DTL_MISSING])) {
3303 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3304 (u_longlong_t)vdev_dtl_min(vd),
3305 (u_longlong_t)vdev_dtl_max(vd));
3306 } else if (!wasempty) {
3307 zfs_dbgmsg("DTL_MISSING is now empty");
3308 }
3309 }
3310 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3311 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3312 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3313 if (scrub_done)
3314 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3315 NULL);
3316 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3317
3318 /*
3319 * For the faulting case, treat members of a replacing vdev
3320 * as if they are not available. It's more likely than not that
3321 * a vdev in a replacing vdev could encounter read errors so
3322 * treat it as not being able to contribute.
3323 */
3324 if (!vdev_readable(vd) ||
3325 (faulting && vd->vdev_parent != NULL &&
3326 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3327 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3328 } else {
3329 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3330 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3331 }
3332
3333 /*
3334 * If the vdev was resilvering or rebuilding and no longer
3335 * has any DTLs then reset the appropriate flag and dirty
3336 * the top level so that we persist the change.
3337 */
3338 if (txg != 0 &&
3339 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3340 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3341 if (vd->vdev_rebuild_txg != 0) {
3342 vd->vdev_rebuild_txg = 0;
3343 vdev_config_dirty(vd->vdev_top);
3344 } else if (vd->vdev_resilver_txg != 0) {
3345 vd->vdev_resilver_txg = 0;
3346 vdev_config_dirty(vd->vdev_top);
3347 }
3348 }
3349
3350 mutex_exit(&vd->vdev_dtl_lock);
3351
3352 if (txg != 0)
3353 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3354 } else {
3355 mutex_enter(&vd->vdev_dtl_lock);
3356 for (int t = 0; t < DTL_TYPES; t++) {
3357 /* account for child's outage in parent's missing map */
3358 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3359 if (t == DTL_SCRUB) {
3360 /* leaf vdevs only */
3361 continue;
3362 }
3363 if (t == DTL_PARTIAL) {
3364 /* i.e. non-zero */
3365 minref = 1;
3366 } else if (vdev_get_nparity(vd) != 0) {
3367 /* RAIDZ, DRAID */
3368 minref = vdev_get_nparity(vd) + 1;
3369 } else {
3370 /* any kind of mirror */
3371 minref = vd->vdev_children;
3372 }
3373 space_reftree_create(&reftree);
3374 for (int c = 0; c < vd->vdev_children; c++) {
3375 vdev_t *cvd = vd->vdev_child[c];
3376 mutex_enter(&cvd->vdev_dtl_lock);
3377 space_reftree_add_map(&reftree,
3378 cvd->vdev_dtl[s], 1);
3379 mutex_exit(&cvd->vdev_dtl_lock);
3380 }
3381 space_reftree_generate_map(&reftree,
3382 vd->vdev_dtl[t], minref);
3383 space_reftree_destroy(&reftree);
3384 }
3385 mutex_exit(&vd->vdev_dtl_lock);
3386 }
3387
3388 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3389 raidz_dtl_reassessed(vd);
3390 }
3391 }
3392
3393 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3394 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3395 boolean_t scrub_done, boolean_t rebuild_done)
3396 {
3397 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3398 rebuild_done, B_FALSE));
3399 }
3400
3401 /*
3402 * Iterate over all the vdevs except spare, and post kobj events
3403 */
3404 void
vdev_post_kobj_evt(vdev_t * vd)3405 vdev_post_kobj_evt(vdev_t *vd)
3406 {
3407 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3408 vd->vdev_kobj_flag == B_FALSE) {
3409 vd->vdev_kobj_flag = B_TRUE;
3410 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3411 }
3412
3413 for (int c = 0; c < vd->vdev_children; c++)
3414 vdev_post_kobj_evt(vd->vdev_child[c]);
3415 }
3416
3417 /*
3418 * Iterate over all the vdevs except spare, and clear kobj events
3419 */
3420 void
vdev_clear_kobj_evt(vdev_t * vd)3421 vdev_clear_kobj_evt(vdev_t *vd)
3422 {
3423 vd->vdev_kobj_flag = B_FALSE;
3424
3425 for (int c = 0; c < vd->vdev_children; c++)
3426 vdev_clear_kobj_evt(vd->vdev_child[c]);
3427 }
3428
3429 int
vdev_dtl_load(vdev_t * vd)3430 vdev_dtl_load(vdev_t *vd)
3431 {
3432 spa_t *spa = vd->vdev_spa;
3433 objset_t *mos = spa->spa_meta_objset;
3434 zfs_range_tree_t *rt;
3435 int error = 0;
3436
3437 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3438 ASSERT(vdev_is_concrete(vd));
3439
3440 /*
3441 * If the dtl cannot be sync'd there is no need to open it.
3442 */
3443 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3444 return (0);
3445
3446 error = space_map_open(&vd->vdev_dtl_sm, mos,
3447 vd->vdev_dtl_object, 0, -1ULL, 0);
3448 if (error)
3449 return (error);
3450 ASSERT(vd->vdev_dtl_sm != NULL);
3451
3452 rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3453 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3454 if (error == 0) {
3455 mutex_enter(&vd->vdev_dtl_lock);
3456 zfs_range_tree_walk(rt, zfs_range_tree_add,
3457 vd->vdev_dtl[DTL_MISSING]);
3458 mutex_exit(&vd->vdev_dtl_lock);
3459 }
3460
3461 zfs_range_tree_vacate(rt, NULL, NULL);
3462 zfs_range_tree_destroy(rt);
3463
3464 return (error);
3465 }
3466
3467 for (int c = 0; c < vd->vdev_children; c++) {
3468 error = vdev_dtl_load(vd->vdev_child[c]);
3469 if (error != 0)
3470 break;
3471 }
3472
3473 return (error);
3474 }
3475
3476 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3477 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3478 {
3479 spa_t *spa = vd->vdev_spa;
3480 objset_t *mos = spa->spa_meta_objset;
3481 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3482 const char *string;
3483
3484 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3485
3486 string =
3487 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3488 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3489 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3490
3491 ASSERT(string != NULL);
3492 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3493 1, strlen(string) + 1, string, tx));
3494
3495 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3496 spa_activate_allocation_classes(spa, tx);
3497 }
3498 }
3499
3500 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3501 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3502 {
3503 spa_t *spa = vd->vdev_spa;
3504
3505 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3506 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3507 zapobj, tx));
3508 }
3509
3510 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3511 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3512 {
3513 spa_t *spa = vd->vdev_spa;
3514 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3515 DMU_OT_NONE, 0, tx);
3516
3517 ASSERT(zap != 0);
3518 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3519 zap, tx));
3520
3521 return (zap);
3522 }
3523
3524 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3525 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3526 {
3527 if (vd->vdev_ops != &vdev_hole_ops &&
3528 vd->vdev_ops != &vdev_missing_ops &&
3529 vd->vdev_ops != &vdev_root_ops &&
3530 !vd->vdev_top->vdev_removing) {
3531 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3532 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3533 }
3534 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3535 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3536 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3537 vdev_zap_allocation_data(vd, tx);
3538 }
3539 }
3540 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3541 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3542 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3543 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3544 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3545 }
3546
3547 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3548 vdev_construct_zaps(vd->vdev_child[i], tx);
3549 }
3550 }
3551
3552 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3553 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3554 {
3555 spa_t *spa = vd->vdev_spa;
3556 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3557 objset_t *mos = spa->spa_meta_objset;
3558 zfs_range_tree_t *rtsync;
3559 dmu_tx_t *tx;
3560 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3561
3562 ASSERT(vdev_is_concrete(vd));
3563 ASSERT(vd->vdev_ops->vdev_op_leaf);
3564
3565 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3566
3567 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3568 mutex_enter(&vd->vdev_dtl_lock);
3569 space_map_free(vd->vdev_dtl_sm, tx);
3570 space_map_close(vd->vdev_dtl_sm);
3571 vd->vdev_dtl_sm = NULL;
3572 mutex_exit(&vd->vdev_dtl_lock);
3573
3574 /*
3575 * We only destroy the leaf ZAP for detached leaves or for
3576 * removed log devices. Removed data devices handle leaf ZAP
3577 * cleanup later, once cancellation is no longer possible.
3578 */
3579 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3580 vd->vdev_top->vdev_islog)) {
3581 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3582 vd->vdev_leaf_zap = 0;
3583 }
3584
3585 dmu_tx_commit(tx);
3586 return;
3587 }
3588
3589 if (vd->vdev_dtl_sm == NULL) {
3590 uint64_t new_object;
3591
3592 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3593 VERIFY3U(new_object, !=, 0);
3594
3595 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3596 0, -1ULL, 0));
3597 ASSERT(vd->vdev_dtl_sm != NULL);
3598 }
3599
3600 rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3601
3602 mutex_enter(&vd->vdev_dtl_lock);
3603 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3604 mutex_exit(&vd->vdev_dtl_lock);
3605
3606 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3607 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3608 zfs_range_tree_vacate(rtsync, NULL, NULL);
3609
3610 zfs_range_tree_destroy(rtsync);
3611
3612 /*
3613 * If the object for the space map has changed then dirty
3614 * the top level so that we update the config.
3615 */
3616 if (object != space_map_object(vd->vdev_dtl_sm)) {
3617 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3618 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3619 (u_longlong_t)object,
3620 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3621 vdev_config_dirty(vd->vdev_top);
3622 }
3623
3624 dmu_tx_commit(tx);
3625 }
3626
3627 /*
3628 * Determine whether the specified vdev can be
3629 * - offlined
3630 * - detached
3631 * - removed
3632 * - faulted
3633 * without losing data.
3634 */
3635 boolean_t
vdev_dtl_required(vdev_t * vd)3636 vdev_dtl_required(vdev_t *vd)
3637 {
3638 spa_t *spa = vd->vdev_spa;
3639 vdev_t *tvd = vd->vdev_top;
3640 uint8_t cant_read = vd->vdev_cant_read;
3641 boolean_t required;
3642 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3643
3644 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3645
3646 if (vd == spa->spa_root_vdev || vd == tvd)
3647 return (B_TRUE);
3648
3649 /*
3650 * Temporarily mark the device as unreadable, and then determine
3651 * whether this results in any DTL outages in the top-level vdev.
3652 * If not, we can safely offline/detach/remove the device.
3653 */
3654 vd->vdev_cant_read = B_TRUE;
3655 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3656 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3657 vd->vdev_cant_read = cant_read;
3658 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3659
3660 if (!required && zio_injection_enabled) {
3661 required = !!zio_handle_device_injection(vd, NULL,
3662 SET_ERROR(ECHILD));
3663 }
3664
3665 return (required);
3666 }
3667
3668 /*
3669 * Determine if resilver is needed, and if so the txg range.
3670 */
3671 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3672 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3673 {
3674 boolean_t needed = B_FALSE;
3675 uint64_t thismin = UINT64_MAX;
3676 uint64_t thismax = 0;
3677
3678 if (vd->vdev_children == 0) {
3679 mutex_enter(&vd->vdev_dtl_lock);
3680 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3681 vdev_writeable(vd)) {
3682
3683 thismin = vdev_dtl_min(vd);
3684 thismax = vdev_dtl_max(vd);
3685 needed = B_TRUE;
3686 }
3687 mutex_exit(&vd->vdev_dtl_lock);
3688 } else {
3689 for (int c = 0; c < vd->vdev_children; c++) {
3690 vdev_t *cvd = vd->vdev_child[c];
3691 uint64_t cmin, cmax;
3692
3693 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3694 thismin = MIN(thismin, cmin);
3695 thismax = MAX(thismax, cmax);
3696 needed = B_TRUE;
3697 }
3698 }
3699 }
3700
3701 if (needed && minp) {
3702 *minp = thismin;
3703 *maxp = thismax;
3704 }
3705 return (needed);
3706 }
3707
3708 /*
3709 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3710 * will contain either the checkpoint spacemap object or zero if none exists.
3711 * All other errors are returned to the caller.
3712 */
3713 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3714 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3715 {
3716 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3717
3718 if (vd->vdev_top_zap == 0) {
3719 *sm_obj = 0;
3720 return (0);
3721 }
3722
3723 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3724 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3725 if (error == ENOENT) {
3726 *sm_obj = 0;
3727 error = 0;
3728 }
3729
3730 return (error);
3731 }
3732
3733 int
vdev_load(vdev_t * vd)3734 vdev_load(vdev_t *vd)
3735 {
3736 int children = vd->vdev_children;
3737 int error = 0;
3738 taskq_t *tq = NULL;
3739
3740 /*
3741 * It's only worthwhile to use the taskq for the root vdev, because the
3742 * slow part is metaslab_init, and that only happens for top-level
3743 * vdevs.
3744 */
3745 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3746 tq = taskq_create("vdev_load", children, minclsyspri,
3747 children, children, TASKQ_PREPOPULATE);
3748 }
3749
3750 /*
3751 * Recursively load all children.
3752 */
3753 for (int c = 0; c < vd->vdev_children; c++) {
3754 vdev_t *cvd = vd->vdev_child[c];
3755
3756 if (tq == NULL || vdev_uses_zvols(cvd)) {
3757 cvd->vdev_load_error = vdev_load(cvd);
3758 } else {
3759 VERIFY(taskq_dispatch(tq, vdev_load_child,
3760 cvd, TQ_SLEEP) != TASKQID_INVALID);
3761 }
3762 }
3763
3764 if (tq != NULL) {
3765 taskq_wait(tq);
3766 taskq_destroy(tq);
3767 }
3768
3769 for (int c = 0; c < vd->vdev_children; c++) {
3770 int error = vd->vdev_child[c]->vdev_load_error;
3771
3772 if (error != 0)
3773 return (error);
3774 }
3775
3776 vdev_set_deflate_ratio(vd);
3777
3778 if (vd->vdev_ops == &vdev_raidz_ops) {
3779 error = vdev_raidz_load(vd);
3780 if (error != 0)
3781 return (error);
3782 }
3783
3784 /*
3785 * On spa_load path, grab the allocation bias from our zap
3786 */
3787 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3788 spa_t *spa = vd->vdev_spa;
3789 char bias_str[64];
3790
3791 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3792 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3793 bias_str);
3794 if (error == 0) {
3795 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3796 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3797 } else if (error != ENOENT) {
3798 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3799 VDEV_AUX_CORRUPT_DATA);
3800 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3801 "failed [error=%d]",
3802 (u_longlong_t)vd->vdev_top_zap, error);
3803 return (error);
3804 }
3805 }
3806
3807 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3808 spa_t *spa = vd->vdev_spa;
3809 uint64_t failfast;
3810
3811 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3812 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3813 1, &failfast);
3814 if (error == 0) {
3815 vd->vdev_failfast = failfast & 1;
3816 } else if (error == ENOENT) {
3817 vd->vdev_failfast = vdev_prop_default_numeric(
3818 VDEV_PROP_FAILFAST);
3819 } else {
3820 vdev_dbgmsg(vd,
3821 "vdev_load: zap_lookup(top_zap=%llu) "
3822 "failed [error=%d]",
3823 (u_longlong_t)vd->vdev_top_zap, error);
3824 }
3825 }
3826
3827 /*
3828 * Load any rebuild state from the top-level vdev zap.
3829 */
3830 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3831 error = vdev_rebuild_load(vd);
3832 if (error && error != ENOTSUP) {
3833 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3834 VDEV_AUX_CORRUPT_DATA);
3835 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3836 "failed [error=%d]", error);
3837 return (error);
3838 }
3839 }
3840
3841 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3842 uint64_t zapobj;
3843
3844 if (vd->vdev_top_zap != 0)
3845 zapobj = vd->vdev_top_zap;
3846 else
3847 zapobj = vd->vdev_leaf_zap;
3848
3849 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3850 &vd->vdev_checksum_n);
3851 if (error && error != ENOENT)
3852 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3853 "failed [error=%d]", (u_longlong_t)zapobj, error);
3854
3855 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3856 &vd->vdev_checksum_t);
3857 if (error && error != ENOENT)
3858 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3859 "failed [error=%d]", (u_longlong_t)zapobj, error);
3860
3861 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3862 &vd->vdev_io_n);
3863 if (error && error != ENOENT)
3864 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3865 "failed [error=%d]", (u_longlong_t)zapobj, error);
3866
3867 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3868 &vd->vdev_io_t);
3869 if (error && error != ENOENT)
3870 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3871 "failed [error=%d]", (u_longlong_t)zapobj, error);
3872
3873 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3874 &vd->vdev_slow_io_n);
3875 if (error && error != ENOENT)
3876 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3877 "failed [error=%d]", (u_longlong_t)zapobj, error);
3878
3879 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3880 &vd->vdev_slow_io_t);
3881 if (error && error != ENOENT)
3882 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3883 "failed [error=%d]", (u_longlong_t)zapobj, error);
3884 }
3885
3886 /*
3887 * If this is a top-level vdev, initialize its metaslabs.
3888 */
3889 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3890 vdev_metaslab_group_create(vd);
3891
3892 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3893 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3894 VDEV_AUX_CORRUPT_DATA);
3895 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3896 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3897 (u_longlong_t)vd->vdev_asize);
3898 return (SET_ERROR(ENXIO));
3899 }
3900
3901 error = vdev_metaslab_init(vd, 0);
3902 if (error != 0) {
3903 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3904 "[error=%d]", error);
3905 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3906 VDEV_AUX_CORRUPT_DATA);
3907 return (error);
3908 }
3909
3910 uint64_t checkpoint_sm_obj;
3911 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3912 if (error == 0 && checkpoint_sm_obj != 0) {
3913 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3914 ASSERT(vd->vdev_asize != 0);
3915 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3916
3917 error = space_map_open(&vd->vdev_checkpoint_sm,
3918 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3919 vd->vdev_ashift);
3920 if (error != 0) {
3921 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3922 "failed for checkpoint spacemap (obj %llu) "
3923 "[error=%d]",
3924 (u_longlong_t)checkpoint_sm_obj, error);
3925 return (error);
3926 }
3927 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3928
3929 /*
3930 * Since the checkpoint_sm contains free entries
3931 * exclusively we can use space_map_allocated() to
3932 * indicate the cumulative checkpointed space that
3933 * has been freed.
3934 */
3935 vd->vdev_stat.vs_checkpoint_space =
3936 -space_map_allocated(vd->vdev_checkpoint_sm);
3937 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3938 vd->vdev_stat.vs_checkpoint_space;
3939 } else if (error != 0) {
3940 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3941 "checkpoint space map object from vdev ZAP "
3942 "[error=%d]", error);
3943 return (error);
3944 }
3945 }
3946
3947 /*
3948 * If this is a leaf vdev, load its DTL.
3949 */
3950 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3951 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3952 VDEV_AUX_CORRUPT_DATA);
3953 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3954 "[error=%d]", error);
3955 return (error);
3956 }
3957
3958 uint64_t obsolete_sm_object;
3959 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3960 if (error == 0 && obsolete_sm_object != 0) {
3961 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3962 ASSERT(vd->vdev_asize != 0);
3963 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3964
3965 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3966 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3967 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3968 VDEV_AUX_CORRUPT_DATA);
3969 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3970 "obsolete spacemap (obj %llu) [error=%d]",
3971 (u_longlong_t)obsolete_sm_object, error);
3972 return (error);
3973 }
3974 } else if (error != 0) {
3975 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3976 "space map object from vdev ZAP [error=%d]", error);
3977 return (error);
3978 }
3979
3980 return (0);
3981 }
3982
3983 /*
3984 * The special vdev case is used for hot spares and l2cache devices. Its
3985 * sole purpose it to set the vdev state for the associated vdev. To do this,
3986 * we make sure that we can open the underlying device, then try to read the
3987 * label, and make sure that the label is sane and that it hasn't been
3988 * repurposed to another pool.
3989 */
3990 int
vdev_validate_aux(vdev_t * vd)3991 vdev_validate_aux(vdev_t *vd)
3992 {
3993 nvlist_t *label;
3994 uint64_t guid, version;
3995 uint64_t state;
3996
3997 if (!vdev_readable(vd))
3998 return (0);
3999
4000 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4001 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4002 VDEV_AUX_CORRUPT_DATA);
4003 return (-1);
4004 }
4005
4006 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4007 !SPA_VERSION_IS_SUPPORTED(version) ||
4008 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4009 guid != vd->vdev_guid ||
4010 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4011 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4012 VDEV_AUX_CORRUPT_DATA);
4013 nvlist_free(label);
4014 return (-1);
4015 }
4016
4017 /*
4018 * We don't actually check the pool state here. If it's in fact in
4019 * use by another pool, we update this fact on the fly when requested.
4020 */
4021 nvlist_free(label);
4022 return (0);
4023 }
4024
4025 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4026 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4027 {
4028 objset_t *mos = spa_meta_objset(vd->vdev_spa);
4029
4030 if (vd->vdev_top_zap == 0)
4031 return;
4032
4033 uint64_t object = 0;
4034 int err = zap_lookup(mos, vd->vdev_top_zap,
4035 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4036 if (err == ENOENT)
4037 return;
4038 VERIFY0(err);
4039
4040 VERIFY0(dmu_object_free(mos, object, tx));
4041 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4042 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4043 }
4044
4045 /*
4046 * Free the objects used to store this vdev's spacemaps, and the array
4047 * that points to them.
4048 */
4049 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4050 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4051 {
4052 if (vd->vdev_ms_array == 0)
4053 return;
4054
4055 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4056 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4057 size_t array_bytes = array_count * sizeof (uint64_t);
4058 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4059 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4060 array_bytes, smobj_array, 0));
4061
4062 for (uint64_t i = 0; i < array_count; i++) {
4063 uint64_t smobj = smobj_array[i];
4064 if (smobj == 0)
4065 continue;
4066
4067 space_map_free_obj(mos, smobj, tx);
4068 }
4069
4070 kmem_free(smobj_array, array_bytes);
4071 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4072 vdev_destroy_ms_flush_data(vd, tx);
4073 vd->vdev_ms_array = 0;
4074 }
4075
4076 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4077 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4078 {
4079 spa_t *spa = vd->vdev_spa;
4080
4081 ASSERT(vd->vdev_islog);
4082 ASSERT(vd == vd->vdev_top);
4083 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4084
4085 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4086
4087 vdev_destroy_spacemaps(vd, tx);
4088 if (vd->vdev_top_zap != 0) {
4089 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4090 vd->vdev_top_zap = 0;
4091 }
4092
4093 dmu_tx_commit(tx);
4094 }
4095
4096 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4097 vdev_sync_done(vdev_t *vd, uint64_t txg)
4098 {
4099 metaslab_t *msp;
4100 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4101
4102 ASSERT(vdev_is_concrete(vd));
4103
4104 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4105 != NULL)
4106 metaslab_sync_done(msp, txg);
4107
4108 if (reassess) {
4109 metaslab_sync_reassess(vd->vdev_mg);
4110 if (vd->vdev_log_mg != NULL)
4111 metaslab_sync_reassess(vd->vdev_log_mg);
4112 }
4113 }
4114
4115 void
vdev_sync(vdev_t * vd,uint64_t txg)4116 vdev_sync(vdev_t *vd, uint64_t txg)
4117 {
4118 spa_t *spa = vd->vdev_spa;
4119 vdev_t *lvd;
4120 metaslab_t *msp;
4121
4122 ASSERT3U(txg, ==, spa->spa_syncing_txg);
4123 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4124 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4125 ASSERT(vd->vdev_removing ||
4126 vd->vdev_ops == &vdev_indirect_ops);
4127
4128 vdev_indirect_sync_obsolete(vd, tx);
4129
4130 /*
4131 * If the vdev is indirect, it can't have dirty
4132 * metaslabs or DTLs.
4133 */
4134 if (vd->vdev_ops == &vdev_indirect_ops) {
4135 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4136 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4137 dmu_tx_commit(tx);
4138 return;
4139 }
4140 }
4141
4142 ASSERT(vdev_is_concrete(vd));
4143
4144 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4145 !vd->vdev_removing) {
4146 ASSERT(vd == vd->vdev_top);
4147 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4148 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4149 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4150 ASSERT(vd->vdev_ms_array != 0);
4151 vdev_config_dirty(vd);
4152 }
4153
4154 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4155 metaslab_sync(msp, txg);
4156 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4157 }
4158
4159 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4160 vdev_dtl_sync(lvd, txg);
4161
4162 /*
4163 * If this is an empty log device being removed, destroy the
4164 * metadata associated with it.
4165 */
4166 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4167 vdev_remove_empty_log(vd, txg);
4168
4169 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4170 dmu_tx_commit(tx);
4171 }
4172 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4173 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4174 {
4175 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4176 }
4177
4178 /*
4179 * Return the amount of space that should be (or was) allocated for the given
4180 * psize (compressed block size) in the given TXG. Note that for expanded
4181 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4182 * vdev_raidz_psize_to_asize().
4183 */
4184 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4185 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4186 {
4187 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4188 }
4189
4190 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4191 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4192 {
4193 return (vdev_psize_to_asize_txg(vd, psize, 0));
4194 }
4195
4196 /*
4197 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4198 * not be opened, and no I/O is attempted.
4199 */
4200 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4201 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4202 {
4203 vdev_t *vd, *tvd;
4204
4205 spa_vdev_state_enter(spa, SCL_NONE);
4206
4207 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4208 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4209
4210 if (!vd->vdev_ops->vdev_op_leaf)
4211 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4212
4213 tvd = vd->vdev_top;
4214
4215 /*
4216 * If user did a 'zpool offline -f' then make the fault persist across
4217 * reboots.
4218 */
4219 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4220 /*
4221 * There are two kinds of forced faults: temporary and
4222 * persistent. Temporary faults go away at pool import, while
4223 * persistent faults stay set. Both types of faults can be
4224 * cleared with a zpool clear.
4225 *
4226 * We tell if a vdev is persistently faulted by looking at the
4227 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4228 * import then it's a persistent fault. Otherwise, it's
4229 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4230 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4231 * tells vdev_config_generate() (which gets run later) to set
4232 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4233 */
4234 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4235 vd->vdev_tmpoffline = B_FALSE;
4236 aux = VDEV_AUX_EXTERNAL;
4237 } else {
4238 vd->vdev_tmpoffline = B_TRUE;
4239 }
4240
4241 /*
4242 * We don't directly use the aux state here, but if we do a
4243 * vdev_reopen(), we need this value to be present to remember why we
4244 * were faulted.
4245 */
4246 vd->vdev_label_aux = aux;
4247
4248 /*
4249 * Faulted state takes precedence over degraded.
4250 */
4251 vd->vdev_delayed_close = B_FALSE;
4252 vd->vdev_faulted = 1ULL;
4253 vd->vdev_degraded = 0ULL;
4254 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4255
4256 /*
4257 * If this device has the only valid copy of the data, then
4258 * back off and simply mark the vdev as degraded instead.
4259 */
4260 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4261 vd->vdev_degraded = 1ULL;
4262 vd->vdev_faulted = 0ULL;
4263
4264 /*
4265 * If we reopen the device and it's not dead, only then do we
4266 * mark it degraded.
4267 */
4268 vdev_reopen(tvd);
4269
4270 if (vdev_readable(vd))
4271 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4272 }
4273
4274 return (spa_vdev_state_exit(spa, vd, 0));
4275 }
4276
4277 /*
4278 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4279 * user that something is wrong. The vdev continues to operate as normal as far
4280 * as I/O is concerned.
4281 */
4282 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4283 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4284 {
4285 vdev_t *vd;
4286
4287 spa_vdev_state_enter(spa, SCL_NONE);
4288
4289 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4290 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4291
4292 if (!vd->vdev_ops->vdev_op_leaf)
4293 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4294
4295 /*
4296 * If the vdev is already faulted, then don't do anything.
4297 */
4298 if (vd->vdev_faulted || vd->vdev_degraded)
4299 return (spa_vdev_state_exit(spa, NULL, 0));
4300
4301 vd->vdev_degraded = 1ULL;
4302 if (!vdev_is_dead(vd))
4303 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4304 aux);
4305
4306 return (spa_vdev_state_exit(spa, vd, 0));
4307 }
4308
4309 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4310 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4311 {
4312 vdev_t *vd;
4313
4314 spa_vdev_state_enter(spa, SCL_NONE);
4315
4316 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4317 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4318
4319 /*
4320 * If the vdev is already removed, or expanding which can trigger
4321 * repartition add/remove events, then don't do anything.
4322 */
4323 if (vd->vdev_removed || vd->vdev_expanding)
4324 return (spa_vdev_state_exit(spa, NULL, 0));
4325
4326 /*
4327 * Confirm the vdev has been removed, otherwise don't do anything.
4328 */
4329 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4330 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4331
4332 vd->vdev_remove_wanted = B_TRUE;
4333 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4334
4335 return (spa_vdev_state_exit(spa, vd, 0));
4336 }
4337
4338
4339 /*
4340 * Online the given vdev.
4341 *
4342 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4343 * spare device should be detached when the device finishes resilvering.
4344 * Second, the online should be treated like a 'test' online case, so no FMA
4345 * events are generated if the device fails to open.
4346 */
4347 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4348 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4349 {
4350 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4351 boolean_t wasoffline;
4352 vdev_state_t oldstate;
4353
4354 spa_vdev_state_enter(spa, SCL_NONE);
4355
4356 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4357 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4358
4359 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4360 oldstate = vd->vdev_state;
4361
4362 tvd = vd->vdev_top;
4363 vd->vdev_offline = B_FALSE;
4364 vd->vdev_tmpoffline = B_FALSE;
4365 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4366 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4367
4368 /* XXX - L2ARC 1.0 does not support expansion */
4369 if (!vd->vdev_aux) {
4370 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4371 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4372 spa->spa_autoexpand);
4373 vd->vdev_expansion_time = gethrestime_sec();
4374 }
4375
4376 vdev_reopen(tvd);
4377 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4378
4379 if (!vd->vdev_aux) {
4380 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4381 pvd->vdev_expanding = B_FALSE;
4382 }
4383
4384 if (newstate)
4385 *newstate = vd->vdev_state;
4386 if ((flags & ZFS_ONLINE_UNSPARE) &&
4387 !vdev_is_dead(vd) && vd->vdev_parent &&
4388 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4389 vd->vdev_parent->vdev_child[0] == vd)
4390 vd->vdev_unspare = B_TRUE;
4391
4392 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4393
4394 /* XXX - L2ARC 1.0 does not support expansion */
4395 if (vd->vdev_aux)
4396 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4397 spa->spa_ccw_fail_time = 0;
4398 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4399 }
4400
4401 /* Restart initializing if necessary */
4402 mutex_enter(&vd->vdev_initialize_lock);
4403 if (vdev_writeable(vd) &&
4404 vd->vdev_initialize_thread == NULL &&
4405 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4406 (void) vdev_initialize(vd);
4407 }
4408 mutex_exit(&vd->vdev_initialize_lock);
4409
4410 /*
4411 * Restart trimming if necessary. We do not restart trimming for cache
4412 * devices here. This is triggered by l2arc_rebuild_vdev()
4413 * asynchronously for the whole device or in l2arc_evict() as it evicts
4414 * space for upcoming writes.
4415 */
4416 mutex_enter(&vd->vdev_trim_lock);
4417 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4418 vd->vdev_trim_thread == NULL &&
4419 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4420 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4421 vd->vdev_trim_secure);
4422 }
4423 mutex_exit(&vd->vdev_trim_lock);
4424
4425 if (wasoffline ||
4426 (oldstate < VDEV_STATE_DEGRADED &&
4427 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4428 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4429
4430 /*
4431 * Asynchronously detach spare vdev if resilver or
4432 * rebuild is not required
4433 */
4434 if (vd->vdev_unspare &&
4435 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4436 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4437 !vdev_rebuild_active(tvd))
4438 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4439 }
4440 return (spa_vdev_state_exit(spa, vd, 0));
4441 }
4442
4443 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4444 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4445 {
4446 vdev_t *vd, *tvd;
4447 int error = 0;
4448 uint64_t generation;
4449 metaslab_group_t *mg;
4450
4451 top:
4452 spa_vdev_state_enter(spa, SCL_ALLOC);
4453
4454 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4455 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4456
4457 if (!vd->vdev_ops->vdev_op_leaf)
4458 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4459
4460 if (vd->vdev_ops == &vdev_draid_spare_ops)
4461 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4462
4463 tvd = vd->vdev_top;
4464 mg = tvd->vdev_mg;
4465 generation = spa->spa_config_generation + 1;
4466
4467 /*
4468 * If the device isn't already offline, try to offline it.
4469 */
4470 if (!vd->vdev_offline) {
4471 /*
4472 * If this device has the only valid copy of some data,
4473 * don't allow it to be offlined. Log devices are always
4474 * expendable.
4475 */
4476 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4477 vdev_dtl_required(vd))
4478 return (spa_vdev_state_exit(spa, NULL,
4479 SET_ERROR(EBUSY)));
4480
4481 /*
4482 * If the top-level is a slog and it has had allocations
4483 * then proceed. We check that the vdev's metaslab group
4484 * is not NULL since it's possible that we may have just
4485 * added this vdev but not yet initialized its metaslabs.
4486 */
4487 if (tvd->vdev_islog && mg != NULL) {
4488 /*
4489 * Prevent any future allocations.
4490 */
4491 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4492 metaslab_group_passivate(mg);
4493 (void) spa_vdev_state_exit(spa, vd, 0);
4494
4495 error = spa_reset_logs(spa);
4496
4497 /*
4498 * If the log device was successfully reset but has
4499 * checkpointed data, do not offline it.
4500 */
4501 if (error == 0 &&
4502 tvd->vdev_checkpoint_sm != NULL) {
4503 ASSERT3U(space_map_allocated(
4504 tvd->vdev_checkpoint_sm), !=, 0);
4505 error = ZFS_ERR_CHECKPOINT_EXISTS;
4506 }
4507
4508 spa_vdev_state_enter(spa, SCL_ALLOC);
4509
4510 /*
4511 * Check to see if the config has changed.
4512 */
4513 if (error || generation != spa->spa_config_generation) {
4514 metaslab_group_activate(mg);
4515 if (error)
4516 return (spa_vdev_state_exit(spa,
4517 vd, error));
4518 (void) spa_vdev_state_exit(spa, vd, 0);
4519 goto top;
4520 }
4521 ASSERT0(tvd->vdev_stat.vs_alloc);
4522 }
4523
4524 /*
4525 * Offline this device and reopen its top-level vdev.
4526 * If the top-level vdev is a log device then just offline
4527 * it. Otherwise, if this action results in the top-level
4528 * vdev becoming unusable, undo it and fail the request.
4529 */
4530 vd->vdev_offline = B_TRUE;
4531 vdev_reopen(tvd);
4532
4533 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4534 vdev_is_dead(tvd)) {
4535 vd->vdev_offline = B_FALSE;
4536 vdev_reopen(tvd);
4537 return (spa_vdev_state_exit(spa, NULL,
4538 SET_ERROR(EBUSY)));
4539 }
4540
4541 /*
4542 * Add the device back into the metaslab rotor so that
4543 * once we online the device it's open for business.
4544 */
4545 if (tvd->vdev_islog && mg != NULL)
4546 metaslab_group_activate(mg);
4547 }
4548
4549 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4550
4551 return (spa_vdev_state_exit(spa, vd, 0));
4552 }
4553
4554 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4555 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4556 {
4557 int error;
4558
4559 mutex_enter(&spa->spa_vdev_top_lock);
4560 error = vdev_offline_locked(spa, guid, flags);
4561 mutex_exit(&spa->spa_vdev_top_lock);
4562
4563 return (error);
4564 }
4565
4566 /*
4567 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4568 * vdev_offline(), we assume the spa config is locked. We also clear all
4569 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4570 */
4571 void
vdev_clear(spa_t * spa,vdev_t * vd)4572 vdev_clear(spa_t *spa, vdev_t *vd)
4573 {
4574 vdev_t *rvd = spa->spa_root_vdev;
4575
4576 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4577
4578 if (vd == NULL)
4579 vd = rvd;
4580
4581 vd->vdev_stat.vs_read_errors = 0;
4582 vd->vdev_stat.vs_write_errors = 0;
4583 vd->vdev_stat.vs_checksum_errors = 0;
4584 vd->vdev_stat.vs_dio_verify_errors = 0;
4585 vd->vdev_stat.vs_slow_ios = 0;
4586
4587 for (int c = 0; c < vd->vdev_children; c++)
4588 vdev_clear(spa, vd->vdev_child[c]);
4589
4590 /*
4591 * It makes no sense to "clear" an indirect or removed vdev.
4592 */
4593 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4594 return;
4595
4596 /*
4597 * If we're in the FAULTED state or have experienced failed I/O, then
4598 * clear the persistent state and attempt to reopen the device. We
4599 * also mark the vdev config dirty, so that the new faulted state is
4600 * written out to disk.
4601 */
4602 if (vd->vdev_faulted || vd->vdev_degraded ||
4603 !vdev_readable(vd) || !vdev_writeable(vd)) {
4604 /*
4605 * When reopening in response to a clear event, it may be due to
4606 * a fmadm repair request. In this case, if the device is
4607 * still broken, we want to still post the ereport again.
4608 */
4609 vd->vdev_forcefault = B_TRUE;
4610
4611 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4612 vd->vdev_cant_read = B_FALSE;
4613 vd->vdev_cant_write = B_FALSE;
4614 vd->vdev_stat.vs_aux = 0;
4615
4616 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4617
4618 vd->vdev_forcefault = B_FALSE;
4619
4620 if (vd != rvd && vdev_writeable(vd->vdev_top))
4621 vdev_state_dirty(vd->vdev_top);
4622
4623 /* If a resilver isn't required, check if vdevs can be culled */
4624 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4625 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4626 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4627 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4628
4629 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4630 }
4631
4632 /*
4633 * When clearing a FMA-diagnosed fault, we always want to
4634 * unspare the device, as we assume that the original spare was
4635 * done in response to the FMA fault.
4636 */
4637 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4638 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4639 vd->vdev_parent->vdev_child[0] == vd)
4640 vd->vdev_unspare = B_TRUE;
4641
4642 /* Clear recent error events cache (i.e. duplicate events tracking) */
4643 zfs_ereport_clear(spa, vd);
4644 }
4645
4646 boolean_t
vdev_is_dead(vdev_t * vd)4647 vdev_is_dead(vdev_t *vd)
4648 {
4649 /*
4650 * Holes and missing devices are always considered "dead".
4651 * This simplifies the code since we don't have to check for
4652 * these types of devices in the various code paths.
4653 * Instead we rely on the fact that we skip over dead devices
4654 * before issuing I/O to them.
4655 */
4656 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4657 vd->vdev_ops == &vdev_hole_ops ||
4658 vd->vdev_ops == &vdev_missing_ops);
4659 }
4660
4661 boolean_t
vdev_readable(vdev_t * vd)4662 vdev_readable(vdev_t *vd)
4663 {
4664 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4665 }
4666
4667 boolean_t
vdev_writeable(vdev_t * vd)4668 vdev_writeable(vdev_t *vd)
4669 {
4670 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4671 vdev_is_concrete(vd));
4672 }
4673
4674 boolean_t
vdev_allocatable(vdev_t * vd)4675 vdev_allocatable(vdev_t *vd)
4676 {
4677 uint64_t state = vd->vdev_state;
4678
4679 /*
4680 * We currently allow allocations from vdevs which may be in the
4681 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4682 * fails to reopen then we'll catch it later when we're holding
4683 * the proper locks. Note that we have to get the vdev state
4684 * in a local variable because although it changes atomically,
4685 * we're asking two separate questions about it.
4686 */
4687 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4688 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4689 vd->vdev_mg->mg_initialized);
4690 }
4691
4692 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4693 vdev_accessible(vdev_t *vd, zio_t *zio)
4694 {
4695 ASSERT(zio->io_vd == vd);
4696
4697 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4698 return (B_FALSE);
4699
4700 if (zio->io_type == ZIO_TYPE_READ)
4701 return (!vd->vdev_cant_read);
4702
4703 if (zio->io_type == ZIO_TYPE_WRITE)
4704 return (!vd->vdev_cant_write);
4705
4706 return (B_TRUE);
4707 }
4708
4709 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4710 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4711 {
4712 /*
4713 * Exclude the dRAID spare when aggregating to avoid double counting
4714 * the ops and bytes. These IOs are counted by the physical leaves.
4715 */
4716 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4717 return;
4718
4719 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4720 vs->vs_ops[t] += cvs->vs_ops[t];
4721 vs->vs_bytes[t] += cvs->vs_bytes[t];
4722 }
4723
4724 cvs->vs_scan_removing = cvd->vdev_removing;
4725 }
4726
4727 /*
4728 * Get extended stats
4729 */
4730 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4731 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4732 {
4733 (void) cvd;
4734
4735 int t, b;
4736 for (t = 0; t < ZIO_TYPES; t++) {
4737 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4738 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4739
4740 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4741 vsx->vsx_total_histo[t][b] +=
4742 cvsx->vsx_total_histo[t][b];
4743 }
4744 }
4745
4746 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4747 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4748 vsx->vsx_queue_histo[t][b] +=
4749 cvsx->vsx_queue_histo[t][b];
4750 }
4751 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4752 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4753
4754 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4755 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4756
4757 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4758 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4759 }
4760
4761 }
4762
4763 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4764 vdev_is_spacemap_addressable(vdev_t *vd)
4765 {
4766 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4767 return (B_TRUE);
4768
4769 /*
4770 * If double-word space map entries are not enabled we assume
4771 * 47 bits of the space map entry are dedicated to the entry's
4772 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4773 * to calculate the maximum address that can be described by a
4774 * space map entry for the given device.
4775 */
4776 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4777
4778 if (shift >= 63) /* detect potential overflow */
4779 return (B_TRUE);
4780
4781 return (vd->vdev_asize < (1ULL << shift));
4782 }
4783
4784 /*
4785 * Get statistics for the given vdev.
4786 */
4787 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4788 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4789 {
4790 int t;
4791 /*
4792 * If we're getting stats on the root vdev, aggregate the I/O counts
4793 * over all top-level vdevs (i.e. the direct children of the root).
4794 */
4795 if (!vd->vdev_ops->vdev_op_leaf) {
4796 if (vs) {
4797 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4798 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4799 }
4800 if (vsx)
4801 memset(vsx, 0, sizeof (*vsx));
4802
4803 for (int c = 0; c < vd->vdev_children; c++) {
4804 vdev_t *cvd = vd->vdev_child[c];
4805 vdev_stat_t *cvs = &cvd->vdev_stat;
4806 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4807
4808 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4809 if (vs)
4810 vdev_get_child_stat(cvd, vs, cvs);
4811 if (vsx)
4812 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4813 }
4814 } else {
4815 /*
4816 * We're a leaf. Just copy our ZIO active queue stats in. The
4817 * other leaf stats are updated in vdev_stat_update().
4818 */
4819 if (!vsx)
4820 return;
4821
4822 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4823
4824 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4825 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4826 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4827 }
4828 }
4829 }
4830
4831 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4832 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4833 {
4834 vdev_t *tvd = vd->vdev_top;
4835 mutex_enter(&vd->vdev_stat_lock);
4836 if (vs) {
4837 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4838 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4839 vs->vs_state = vd->vdev_state;
4840 vs->vs_rsize = vdev_get_min_asize(vd);
4841
4842 if (vd->vdev_ops->vdev_op_leaf) {
4843 vs->vs_pspace = vd->vdev_psize;
4844 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4845 VDEV_LABEL_END_SIZE;
4846 /*
4847 * Report initializing progress. Since we don't
4848 * have the initializing locks held, this is only
4849 * an estimate (although a fairly accurate one).
4850 */
4851 vs->vs_initialize_bytes_done =
4852 vd->vdev_initialize_bytes_done;
4853 vs->vs_initialize_bytes_est =
4854 vd->vdev_initialize_bytes_est;
4855 vs->vs_initialize_state = vd->vdev_initialize_state;
4856 vs->vs_initialize_action_time =
4857 vd->vdev_initialize_action_time;
4858
4859 /*
4860 * Report manual TRIM progress. Since we don't have
4861 * the manual TRIM locks held, this is only an
4862 * estimate (although fairly accurate one).
4863 */
4864 vs->vs_trim_notsup = !vd->vdev_has_trim;
4865 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4866 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4867 vs->vs_trim_state = vd->vdev_trim_state;
4868 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4869
4870 /* Set when there is a deferred resilver. */
4871 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4872 }
4873
4874 /*
4875 * Report expandable space on top-level, non-auxiliary devices
4876 * only. The expandable space is reported in terms of metaslab
4877 * sized units since that determines how much space the pool
4878 * can expand.
4879 */
4880 if (vd->vdev_aux == NULL && tvd != NULL) {
4881 vs->vs_esize = P2ALIGN_TYPED(
4882 vd->vdev_max_asize - vd->vdev_asize,
4883 1ULL << tvd->vdev_ms_shift, uint64_t);
4884 }
4885
4886 vs->vs_configured_ashift = vd->vdev_top != NULL
4887 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4888 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4889 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4890 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4891 else
4892 vs->vs_physical_ashift = 0;
4893
4894 /*
4895 * Report fragmentation and rebuild progress for top-level,
4896 * non-auxiliary, concrete devices.
4897 */
4898 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4899 vdev_is_concrete(vd)) {
4900 /*
4901 * The vdev fragmentation rating doesn't take into
4902 * account the embedded slog metaslab (vdev_log_mg).
4903 * Since it's only one metaslab, it would have a tiny
4904 * impact on the overall fragmentation.
4905 */
4906 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4907 vd->vdev_mg->mg_fragmentation : 0;
4908 }
4909 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4910 tvd ? tvd->vdev_noalloc : 0);
4911 }
4912
4913 vdev_get_stats_ex_impl(vd, vs, vsx);
4914 mutex_exit(&vd->vdev_stat_lock);
4915 }
4916
4917 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4918 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4919 {
4920 return (vdev_get_stats_ex(vd, vs, NULL));
4921 }
4922
4923 void
vdev_clear_stats(vdev_t * vd)4924 vdev_clear_stats(vdev_t *vd)
4925 {
4926 mutex_enter(&vd->vdev_stat_lock);
4927 vd->vdev_stat.vs_space = 0;
4928 vd->vdev_stat.vs_dspace = 0;
4929 vd->vdev_stat.vs_alloc = 0;
4930 mutex_exit(&vd->vdev_stat_lock);
4931 }
4932
4933 void
vdev_scan_stat_init(vdev_t * vd)4934 vdev_scan_stat_init(vdev_t *vd)
4935 {
4936 vdev_stat_t *vs = &vd->vdev_stat;
4937
4938 for (int c = 0; c < vd->vdev_children; c++)
4939 vdev_scan_stat_init(vd->vdev_child[c]);
4940
4941 mutex_enter(&vd->vdev_stat_lock);
4942 vs->vs_scan_processed = 0;
4943 mutex_exit(&vd->vdev_stat_lock);
4944 }
4945
4946 void
vdev_stat_update(zio_t * zio,uint64_t psize)4947 vdev_stat_update(zio_t *zio, uint64_t psize)
4948 {
4949 spa_t *spa = zio->io_spa;
4950 vdev_t *rvd = spa->spa_root_vdev;
4951 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4952 vdev_t *pvd;
4953 uint64_t txg = zio->io_txg;
4954 /* Suppress ASAN false positive */
4955 #ifdef __SANITIZE_ADDRESS__
4956 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4957 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4958 #else
4959 vdev_stat_t *vs = &vd->vdev_stat;
4960 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4961 #endif
4962 zio_type_t type = zio->io_type;
4963 int flags = zio->io_flags;
4964
4965 /*
4966 * If this i/o is a gang leader, it didn't do any actual work.
4967 */
4968 if (zio->io_gang_tree)
4969 return;
4970
4971 if (zio->io_error == 0) {
4972 /*
4973 * If this is a root i/o, don't count it -- we've already
4974 * counted the top-level vdevs, and vdev_get_stats() will
4975 * aggregate them when asked. This reduces contention on
4976 * the root vdev_stat_lock and implicitly handles blocks
4977 * that compress away to holes, for which there is no i/o.
4978 * (Holes never create vdev children, so all the counters
4979 * remain zero, which is what we want.)
4980 *
4981 * Note: this only applies to successful i/o (io_error == 0)
4982 * because unlike i/o counts, errors are not additive.
4983 * When reading a ditto block, for example, failure of
4984 * one top-level vdev does not imply a root-level error.
4985 */
4986 if (vd == rvd)
4987 return;
4988
4989 ASSERT(vd == zio->io_vd);
4990
4991 if (flags & ZIO_FLAG_IO_BYPASS)
4992 return;
4993
4994 mutex_enter(&vd->vdev_stat_lock);
4995
4996 if (flags & ZIO_FLAG_IO_REPAIR) {
4997 /*
4998 * Repair is the result of a resilver issued by the
4999 * scan thread (spa_sync).
5000 */
5001 if (flags & ZIO_FLAG_SCAN_THREAD) {
5002 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5003 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5004 uint64_t *processed = &scn_phys->scn_processed;
5005
5006 if (vd->vdev_ops->vdev_op_leaf)
5007 atomic_add_64(processed, psize);
5008 vs->vs_scan_processed += psize;
5009 }
5010
5011 /*
5012 * Repair is the result of a rebuild issued by the
5013 * rebuild thread (vdev_rebuild_thread). To avoid
5014 * double counting repaired bytes the virtual dRAID
5015 * spare vdev is excluded from the processed bytes.
5016 */
5017 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5018 vdev_t *tvd = vd->vdev_top;
5019 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5020 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5021 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5022
5023 if (vd->vdev_ops->vdev_op_leaf &&
5024 vd->vdev_ops != &vdev_draid_spare_ops) {
5025 atomic_add_64(rebuilt, psize);
5026 }
5027 vs->vs_rebuild_processed += psize;
5028 }
5029
5030 if (flags & ZIO_FLAG_SELF_HEAL)
5031 vs->vs_self_healed += psize;
5032 }
5033
5034 /*
5035 * The bytes/ops/histograms are recorded at the leaf level and
5036 * aggregated into the higher level vdevs in vdev_get_stats().
5037 */
5038 if (vd->vdev_ops->vdev_op_leaf &&
5039 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5040 zio_type_t vs_type = type;
5041 zio_priority_t priority = zio->io_priority;
5042
5043 /*
5044 * TRIM ops and bytes are reported to user space as
5045 * ZIO_TYPE_FLUSH. This is done to preserve the
5046 * vdev_stat_t structure layout for user space.
5047 */
5048 if (type == ZIO_TYPE_TRIM)
5049 vs_type = ZIO_TYPE_FLUSH;
5050
5051 /*
5052 * Solely for the purposes of 'zpool iostat -lqrw'
5053 * reporting use the priority to categorize the IO.
5054 * Only the following are reported to user space:
5055 *
5056 * ZIO_PRIORITY_SYNC_READ,
5057 * ZIO_PRIORITY_SYNC_WRITE,
5058 * ZIO_PRIORITY_ASYNC_READ,
5059 * ZIO_PRIORITY_ASYNC_WRITE,
5060 * ZIO_PRIORITY_SCRUB,
5061 * ZIO_PRIORITY_TRIM,
5062 * ZIO_PRIORITY_REBUILD.
5063 */
5064 if (priority == ZIO_PRIORITY_INITIALIZING) {
5065 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5066 priority = ZIO_PRIORITY_ASYNC_WRITE;
5067 } else if (priority == ZIO_PRIORITY_REMOVAL) {
5068 priority = ((type == ZIO_TYPE_WRITE) ?
5069 ZIO_PRIORITY_ASYNC_WRITE :
5070 ZIO_PRIORITY_ASYNC_READ);
5071 }
5072
5073 vs->vs_ops[vs_type]++;
5074 vs->vs_bytes[vs_type] += psize;
5075
5076 if (flags & ZIO_FLAG_DELEGATED) {
5077 vsx->vsx_agg_histo[priority]
5078 [RQ_HISTO(zio->io_size)]++;
5079 } else {
5080 vsx->vsx_ind_histo[priority]
5081 [RQ_HISTO(zio->io_size)]++;
5082 }
5083
5084 if (zio->io_delta && zio->io_delay) {
5085 vsx->vsx_queue_histo[priority]
5086 [L_HISTO(zio->io_delta - zio->io_delay)]++;
5087 vsx->vsx_disk_histo[type]
5088 [L_HISTO(zio->io_delay)]++;
5089 vsx->vsx_total_histo[type]
5090 [L_HISTO(zio->io_delta)]++;
5091 }
5092 }
5093
5094 mutex_exit(&vd->vdev_stat_lock);
5095 return;
5096 }
5097
5098 if (flags & ZIO_FLAG_SPECULATIVE)
5099 return;
5100
5101 /*
5102 * If this is an I/O error that is going to be retried, then ignore the
5103 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5104 * hard errors, when in reality they can happen for any number of
5105 * innocuous reasons (bus resets, MPxIO link failure, etc).
5106 */
5107 if (zio->io_error == EIO &&
5108 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5109 return;
5110
5111 /*
5112 * Intent logs writes won't propagate their error to the root
5113 * I/O so don't mark these types of failures as pool-level
5114 * errors.
5115 */
5116 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5117 return;
5118
5119 if (type == ZIO_TYPE_WRITE && txg != 0 &&
5120 (!(flags & ZIO_FLAG_IO_REPAIR) ||
5121 (flags & ZIO_FLAG_SCAN_THREAD) ||
5122 spa->spa_claiming)) {
5123 /*
5124 * This is either a normal write (not a repair), or it's
5125 * a repair induced by the scrub thread, or it's a repair
5126 * made by zil_claim() during spa_load() in the first txg.
5127 * In the normal case, we commit the DTL change in the same
5128 * txg as the block was born. In the scrub-induced repair
5129 * case, we know that scrubs run in first-pass syncing context,
5130 * so we commit the DTL change in spa_syncing_txg(spa).
5131 * In the zil_claim() case, we commit in spa_first_txg(spa).
5132 *
5133 * We currently do not make DTL entries for failed spontaneous
5134 * self-healing writes triggered by normal (non-scrubbing)
5135 * reads, because we have no transactional context in which to
5136 * do so -- and it's not clear that it'd be desirable anyway.
5137 */
5138 if (vd->vdev_ops->vdev_op_leaf) {
5139 uint64_t commit_txg = txg;
5140 if (flags & ZIO_FLAG_SCAN_THREAD) {
5141 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5142 ASSERT(spa_sync_pass(spa) == 1);
5143 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5144 commit_txg = spa_syncing_txg(spa);
5145 } else if (spa->spa_claiming) {
5146 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5147 commit_txg = spa_first_txg(spa);
5148 }
5149 ASSERT(commit_txg >= spa_syncing_txg(spa));
5150 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5151 return;
5152 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5153 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5154 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5155 }
5156 if (vd != rvd)
5157 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5158 }
5159 }
5160
5161 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5162 vdev_deflated_space(vdev_t *vd, int64_t space)
5163 {
5164 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5165 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5166
5167 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5168 }
5169
5170 /*
5171 * Update the in-core space usage stats for this vdev, its metaslab class,
5172 * and the root vdev.
5173 */
5174 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5175 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5176 int64_t space_delta)
5177 {
5178 (void) defer_delta;
5179 int64_t dspace_delta;
5180 spa_t *spa = vd->vdev_spa;
5181 vdev_t *rvd = spa->spa_root_vdev;
5182
5183 ASSERT(vd == vd->vdev_top);
5184
5185 /*
5186 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5187 * factor. We must calculate this here and not at the root vdev
5188 * because the root vdev's psize-to-asize is simply the max of its
5189 * children's, thus not accurate enough for us.
5190 */
5191 dspace_delta = vdev_deflated_space(vd, space_delta);
5192
5193 mutex_enter(&vd->vdev_stat_lock);
5194 /* ensure we won't underflow */
5195 if (alloc_delta < 0) {
5196 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5197 }
5198
5199 vd->vdev_stat.vs_alloc += alloc_delta;
5200 vd->vdev_stat.vs_space += space_delta;
5201 vd->vdev_stat.vs_dspace += dspace_delta;
5202 mutex_exit(&vd->vdev_stat_lock);
5203
5204 /* every class but log contributes to root space stats */
5205 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5206 ASSERT(!vd->vdev_isl2cache);
5207 mutex_enter(&rvd->vdev_stat_lock);
5208 rvd->vdev_stat.vs_alloc += alloc_delta;
5209 rvd->vdev_stat.vs_space += space_delta;
5210 rvd->vdev_stat.vs_dspace += dspace_delta;
5211 mutex_exit(&rvd->vdev_stat_lock);
5212 }
5213 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5214 }
5215
5216 /*
5217 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5218 * so that it will be written out next time the vdev configuration is synced.
5219 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5220 */
5221 void
vdev_config_dirty(vdev_t * vd)5222 vdev_config_dirty(vdev_t *vd)
5223 {
5224 spa_t *spa = vd->vdev_spa;
5225 vdev_t *rvd = spa->spa_root_vdev;
5226 int c;
5227
5228 ASSERT(spa_writeable(spa));
5229
5230 /*
5231 * If this is an aux vdev (as with l2cache and spare devices), then we
5232 * update the vdev config manually and set the sync flag.
5233 */
5234 if (vd->vdev_aux != NULL) {
5235 spa_aux_vdev_t *sav = vd->vdev_aux;
5236 nvlist_t **aux;
5237 uint_t naux;
5238
5239 for (c = 0; c < sav->sav_count; c++) {
5240 if (sav->sav_vdevs[c] == vd)
5241 break;
5242 }
5243
5244 if (c == sav->sav_count) {
5245 /*
5246 * We're being removed. There's nothing more to do.
5247 */
5248 ASSERT(sav->sav_sync == B_TRUE);
5249 return;
5250 }
5251
5252 sav->sav_sync = B_TRUE;
5253
5254 if (nvlist_lookup_nvlist_array(sav->sav_config,
5255 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5256 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5257 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5258 }
5259
5260 ASSERT(c < naux);
5261
5262 /*
5263 * Setting the nvlist in the middle if the array is a little
5264 * sketchy, but it will work.
5265 */
5266 nvlist_free(aux[c]);
5267 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5268
5269 return;
5270 }
5271
5272 /*
5273 * The dirty list is protected by the SCL_CONFIG lock. The caller
5274 * must either hold SCL_CONFIG as writer, or must be the sync thread
5275 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5276 * so this is sufficient to ensure mutual exclusion.
5277 */
5278 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5279 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5280 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5281
5282 if (vd == rvd) {
5283 for (c = 0; c < rvd->vdev_children; c++)
5284 vdev_config_dirty(rvd->vdev_child[c]);
5285 } else {
5286 ASSERT(vd == vd->vdev_top);
5287
5288 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5289 vdev_is_concrete(vd)) {
5290 list_insert_head(&spa->spa_config_dirty_list, vd);
5291 }
5292 }
5293 }
5294
5295 void
vdev_config_clean(vdev_t * vd)5296 vdev_config_clean(vdev_t *vd)
5297 {
5298 spa_t *spa = vd->vdev_spa;
5299
5300 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5301 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5302 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5303
5304 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5305 list_remove(&spa->spa_config_dirty_list, vd);
5306 }
5307
5308 /*
5309 * Mark a top-level vdev's state as dirty, so that the next pass of
5310 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5311 * the state changes from larger config changes because they require
5312 * much less locking, and are often needed for administrative actions.
5313 */
5314 void
vdev_state_dirty(vdev_t * vd)5315 vdev_state_dirty(vdev_t *vd)
5316 {
5317 spa_t *spa = vd->vdev_spa;
5318
5319 ASSERT(spa_writeable(spa));
5320 ASSERT(vd == vd->vdev_top);
5321
5322 /*
5323 * The state list is protected by the SCL_STATE lock. The caller
5324 * must either hold SCL_STATE as writer, or must be the sync thread
5325 * (which holds SCL_STATE as reader). There's only one sync thread,
5326 * so this is sufficient to ensure mutual exclusion.
5327 */
5328 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5329 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5330 spa_config_held(spa, SCL_STATE, RW_READER)));
5331
5332 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5333 vdev_is_concrete(vd))
5334 list_insert_head(&spa->spa_state_dirty_list, vd);
5335 }
5336
5337 void
vdev_state_clean(vdev_t * vd)5338 vdev_state_clean(vdev_t *vd)
5339 {
5340 spa_t *spa = vd->vdev_spa;
5341
5342 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5343 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5344 spa_config_held(spa, SCL_STATE, RW_READER)));
5345
5346 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5347 list_remove(&spa->spa_state_dirty_list, vd);
5348 }
5349
5350 /*
5351 * Propagate vdev state up from children to parent.
5352 */
5353 void
vdev_propagate_state(vdev_t * vd)5354 vdev_propagate_state(vdev_t *vd)
5355 {
5356 spa_t *spa = vd->vdev_spa;
5357 vdev_t *rvd = spa->spa_root_vdev;
5358 int degraded = 0, faulted = 0;
5359 int corrupted = 0;
5360 vdev_t *child;
5361
5362 if (vd->vdev_children > 0) {
5363 for (int c = 0; c < vd->vdev_children; c++) {
5364 child = vd->vdev_child[c];
5365
5366 /*
5367 * Don't factor holes or indirect vdevs into the
5368 * decision.
5369 */
5370 if (!vdev_is_concrete(child))
5371 continue;
5372
5373 if (!vdev_readable(child) ||
5374 (!vdev_writeable(child) && spa_writeable(spa))) {
5375 /*
5376 * Root special: if there is a top-level log
5377 * device, treat the root vdev as if it were
5378 * degraded.
5379 */
5380 if (child->vdev_islog && vd == rvd)
5381 degraded++;
5382 else
5383 faulted++;
5384 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5385 degraded++;
5386 }
5387
5388 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5389 corrupted++;
5390 }
5391
5392 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5393
5394 /*
5395 * Root special: if there is a top-level vdev that cannot be
5396 * opened due to corrupted metadata, then propagate the root
5397 * vdev's aux state as 'corrupt' rather than 'insufficient
5398 * replicas'.
5399 */
5400 if (corrupted && vd == rvd &&
5401 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5402 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5403 VDEV_AUX_CORRUPT_DATA);
5404 }
5405
5406 if (vd->vdev_parent)
5407 vdev_propagate_state(vd->vdev_parent);
5408 }
5409
5410 /*
5411 * Set a vdev's state. If this is during an open, we don't update the parent
5412 * state, because we're in the process of opening children depth-first.
5413 * Otherwise, we propagate the change to the parent.
5414 *
5415 * If this routine places a device in a faulted state, an appropriate ereport is
5416 * generated.
5417 */
5418 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5419 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5420 {
5421 uint64_t save_state;
5422 spa_t *spa = vd->vdev_spa;
5423
5424 if (state == vd->vdev_state) {
5425 /*
5426 * Since vdev_offline() code path is already in an offline
5427 * state we can miss a statechange event to OFFLINE. Check
5428 * the previous state to catch this condition.
5429 */
5430 if (vd->vdev_ops->vdev_op_leaf &&
5431 (state == VDEV_STATE_OFFLINE) &&
5432 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5433 /* post an offline state change */
5434 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5435 }
5436 vd->vdev_stat.vs_aux = aux;
5437 return;
5438 }
5439
5440 save_state = vd->vdev_state;
5441
5442 vd->vdev_state = state;
5443 vd->vdev_stat.vs_aux = aux;
5444
5445 /*
5446 * If we are setting the vdev state to anything but an open state, then
5447 * always close the underlying device unless the device has requested
5448 * a delayed close (i.e. we're about to remove or fault the device).
5449 * Otherwise, we keep accessible but invalid devices open forever.
5450 * We don't call vdev_close() itself, because that implies some extra
5451 * checks (offline, etc) that we don't want here. This is limited to
5452 * leaf devices, because otherwise closing the device will affect other
5453 * children.
5454 */
5455 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5456 vd->vdev_ops->vdev_op_leaf)
5457 vd->vdev_ops->vdev_op_close(vd);
5458
5459 if (vd->vdev_removed &&
5460 state == VDEV_STATE_CANT_OPEN &&
5461 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5462 /*
5463 * If the previous state is set to VDEV_STATE_REMOVED, then this
5464 * device was previously marked removed and someone attempted to
5465 * reopen it. If this failed due to a nonexistent device, then
5466 * keep the device in the REMOVED state. We also let this be if
5467 * it is one of our special test online cases, which is only
5468 * attempting to online the device and shouldn't generate an FMA
5469 * fault.
5470 */
5471 vd->vdev_state = VDEV_STATE_REMOVED;
5472 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5473 } else if (state == VDEV_STATE_REMOVED) {
5474 vd->vdev_removed = B_TRUE;
5475 } else if (state == VDEV_STATE_CANT_OPEN) {
5476 /*
5477 * If we fail to open a vdev during an import or recovery, we
5478 * mark it as "not available", which signifies that it was
5479 * never there to begin with. Failure to open such a device
5480 * is not considered an error.
5481 */
5482 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5483 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5484 vd->vdev_ops->vdev_op_leaf)
5485 vd->vdev_not_present = 1;
5486
5487 /*
5488 * Post the appropriate ereport. If the 'prevstate' field is
5489 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5490 * that this is part of a vdev_reopen(). In this case, we don't
5491 * want to post the ereport if the device was already in the
5492 * CANT_OPEN state beforehand.
5493 *
5494 * If the 'checkremove' flag is set, then this is an attempt to
5495 * online the device in response to an insertion event. If we
5496 * hit this case, then we have detected an insertion event for a
5497 * faulted or offline device that wasn't in the removed state.
5498 * In this scenario, we don't post an ereport because we are
5499 * about to replace the device, or attempt an online with
5500 * vdev_forcefault, which will generate the fault for us.
5501 */
5502 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5503 !vd->vdev_not_present && !vd->vdev_checkremove &&
5504 vd != spa->spa_root_vdev) {
5505 const char *class;
5506
5507 switch (aux) {
5508 case VDEV_AUX_OPEN_FAILED:
5509 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5510 break;
5511 case VDEV_AUX_CORRUPT_DATA:
5512 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5513 break;
5514 case VDEV_AUX_NO_REPLICAS:
5515 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5516 break;
5517 case VDEV_AUX_BAD_GUID_SUM:
5518 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5519 break;
5520 case VDEV_AUX_TOO_SMALL:
5521 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5522 break;
5523 case VDEV_AUX_BAD_LABEL:
5524 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5525 break;
5526 case VDEV_AUX_BAD_ASHIFT:
5527 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5528 break;
5529 default:
5530 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5531 }
5532
5533 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5534 save_state);
5535 }
5536
5537 /* Erase any notion of persistent removed state */
5538 vd->vdev_removed = B_FALSE;
5539 } else {
5540 vd->vdev_removed = B_FALSE;
5541 }
5542
5543 /*
5544 * Notify ZED of any significant state-change on a leaf vdev.
5545 *
5546 */
5547 if (vd->vdev_ops->vdev_op_leaf) {
5548 /* preserve original state from a vdev_reopen() */
5549 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5550 (vd->vdev_prevstate != vd->vdev_state) &&
5551 (save_state <= VDEV_STATE_CLOSED))
5552 save_state = vd->vdev_prevstate;
5553
5554 /* filter out state change due to initial vdev_open */
5555 if (save_state > VDEV_STATE_CLOSED)
5556 zfs_post_state_change(spa, vd, save_state);
5557 }
5558
5559 if (!isopen && vd->vdev_parent)
5560 vdev_propagate_state(vd->vdev_parent);
5561 }
5562
5563 boolean_t
vdev_children_are_offline(vdev_t * vd)5564 vdev_children_are_offline(vdev_t *vd)
5565 {
5566 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5567
5568 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5569 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5570 return (B_FALSE);
5571 }
5572
5573 return (B_TRUE);
5574 }
5575
5576 /*
5577 * Check the vdev configuration to ensure that it's capable of supporting
5578 * a root pool. We do not support partial configuration.
5579 */
5580 boolean_t
vdev_is_bootable(vdev_t * vd)5581 vdev_is_bootable(vdev_t *vd)
5582 {
5583 if (!vd->vdev_ops->vdev_op_leaf) {
5584 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5585
5586 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5587 return (B_FALSE);
5588 }
5589
5590 for (int c = 0; c < vd->vdev_children; c++) {
5591 if (!vdev_is_bootable(vd->vdev_child[c]))
5592 return (B_FALSE);
5593 }
5594 return (B_TRUE);
5595 }
5596
5597 boolean_t
vdev_is_concrete(vdev_t * vd)5598 vdev_is_concrete(vdev_t *vd)
5599 {
5600 vdev_ops_t *ops = vd->vdev_ops;
5601 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5602 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5603 return (B_FALSE);
5604 } else {
5605 return (B_TRUE);
5606 }
5607 }
5608
5609 /*
5610 * Determine if a log device has valid content. If the vdev was
5611 * removed or faulted in the MOS config then we know that
5612 * the content on the log device has already been written to the pool.
5613 */
5614 boolean_t
vdev_log_state_valid(vdev_t * vd)5615 vdev_log_state_valid(vdev_t *vd)
5616 {
5617 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5618 !vd->vdev_removed)
5619 return (B_TRUE);
5620
5621 for (int c = 0; c < vd->vdev_children; c++)
5622 if (vdev_log_state_valid(vd->vdev_child[c]))
5623 return (B_TRUE);
5624
5625 return (B_FALSE);
5626 }
5627
5628 /*
5629 * Expand a vdev if possible.
5630 */
5631 void
vdev_expand(vdev_t * vd,uint64_t txg)5632 vdev_expand(vdev_t *vd, uint64_t txg)
5633 {
5634 ASSERT(vd->vdev_top == vd);
5635 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5636 ASSERT(vdev_is_concrete(vd));
5637
5638 vdev_set_deflate_ratio(vd);
5639
5640 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5641 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5642 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5643 vdev_is_concrete(vd)) {
5644 vdev_metaslab_group_create(vd);
5645 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5646 vdev_config_dirty(vd);
5647 }
5648 }
5649
5650 /*
5651 * Split a vdev.
5652 */
5653 void
vdev_split(vdev_t * vd)5654 vdev_split(vdev_t *vd)
5655 {
5656 vdev_t *cvd, *pvd = vd->vdev_parent;
5657
5658 VERIFY3U(pvd->vdev_children, >, 1);
5659
5660 vdev_remove_child(pvd, vd);
5661 vdev_compact_children(pvd);
5662
5663 ASSERT3P(pvd->vdev_child, !=, NULL);
5664
5665 cvd = pvd->vdev_child[0];
5666 if (pvd->vdev_children == 1) {
5667 vdev_remove_parent(cvd);
5668 cvd->vdev_splitting = B_TRUE;
5669 }
5670 vdev_propagate_state(cvd);
5671 }
5672
5673 void
vdev_deadman(vdev_t * vd,const char * tag)5674 vdev_deadman(vdev_t *vd, const char *tag)
5675 {
5676 for (int c = 0; c < vd->vdev_children; c++) {
5677 vdev_t *cvd = vd->vdev_child[c];
5678
5679 vdev_deadman(cvd, tag);
5680 }
5681
5682 if (vd->vdev_ops->vdev_op_leaf) {
5683 vdev_queue_t *vq = &vd->vdev_queue;
5684
5685 mutex_enter(&vq->vq_lock);
5686 if (vq->vq_active > 0) {
5687 spa_t *spa = vd->vdev_spa;
5688 zio_t *fio;
5689 uint64_t delta;
5690
5691 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5692 vd->vdev_path, vq->vq_active);
5693
5694 /*
5695 * Look at the head of all the pending queues,
5696 * if any I/O has been outstanding for longer than
5697 * the spa_deadman_synctime invoke the deadman logic.
5698 */
5699 fio = list_head(&vq->vq_active_list);
5700 delta = gethrtime() - fio->io_timestamp;
5701 if (delta > spa_deadman_synctime(spa))
5702 zio_deadman(fio, tag);
5703 }
5704 mutex_exit(&vq->vq_lock);
5705 }
5706 }
5707
5708 void
vdev_defer_resilver(vdev_t * vd)5709 vdev_defer_resilver(vdev_t *vd)
5710 {
5711 ASSERT(vd->vdev_ops->vdev_op_leaf);
5712
5713 vd->vdev_resilver_deferred = B_TRUE;
5714 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5715 }
5716
5717 /*
5718 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5719 * B_TRUE if we have devices that need to be resilvered and are available to
5720 * accept resilver I/Os.
5721 */
5722 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5723 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5724 {
5725 boolean_t resilver_needed = B_FALSE;
5726 spa_t *spa = vd->vdev_spa;
5727
5728 for (int c = 0; c < vd->vdev_children; c++) {
5729 vdev_t *cvd = vd->vdev_child[c];
5730 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5731 }
5732
5733 if (vd == spa->spa_root_vdev &&
5734 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5735 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5736 vdev_config_dirty(vd);
5737 spa->spa_resilver_deferred = B_FALSE;
5738 return (resilver_needed);
5739 }
5740
5741 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5742 !vd->vdev_ops->vdev_op_leaf)
5743 return (resilver_needed);
5744
5745 vd->vdev_resilver_deferred = B_FALSE;
5746
5747 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5748 vdev_resilver_needed(vd, NULL, NULL));
5749 }
5750
5751 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5752 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5753 {
5754 return (rs->rs_start == rs->rs_end);
5755 }
5756
5757 /*
5758 * Translate a logical range to the first contiguous physical range for the
5759 * specified vdev_t. This function is initially called with a leaf vdev and
5760 * will walk each parent vdev until it reaches a top-level vdev. Once the
5761 * top-level is reached the physical range is initialized and the recursive
5762 * function begins to unwind. As it unwinds it calls the parent's vdev
5763 * specific translation function to do the real conversion.
5764 */
5765 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5766 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5767 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5768 {
5769 /*
5770 * Walk up the vdev tree
5771 */
5772 if (vd != vd->vdev_top) {
5773 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5774 remain_rs);
5775 } else {
5776 /*
5777 * We've reached the top-level vdev, initialize the physical
5778 * range to the logical range and set an empty remaining
5779 * range then start to unwind.
5780 */
5781 physical_rs->rs_start = logical_rs->rs_start;
5782 physical_rs->rs_end = logical_rs->rs_end;
5783
5784 remain_rs->rs_start = logical_rs->rs_start;
5785 remain_rs->rs_end = logical_rs->rs_start;
5786
5787 return;
5788 }
5789
5790 vdev_t *pvd = vd->vdev_parent;
5791 ASSERT3P(pvd, !=, NULL);
5792 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5793
5794 /*
5795 * As this recursive function unwinds, translate the logical
5796 * range into its physical and any remaining components by calling
5797 * the vdev specific translate function.
5798 */
5799 zfs_range_seg64_t intermediate = { 0 };
5800 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5801
5802 physical_rs->rs_start = intermediate.rs_start;
5803 physical_rs->rs_end = intermediate.rs_end;
5804 }
5805
5806 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5807 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5808 vdev_xlate_func_t *func, void *arg)
5809 {
5810 zfs_range_seg64_t iter_rs = *logical_rs;
5811 zfs_range_seg64_t physical_rs;
5812 zfs_range_seg64_t remain_rs;
5813
5814 while (!vdev_xlate_is_empty(&iter_rs)) {
5815
5816 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5817
5818 /*
5819 * With raidz and dRAID, it's possible that the logical range
5820 * does not live on this leaf vdev. Only when there is a non-
5821 * zero physical size call the provided function.
5822 */
5823 if (!vdev_xlate_is_empty(&physical_rs))
5824 func(arg, &physical_rs);
5825
5826 iter_rs = remain_rs;
5827 }
5828 }
5829
5830 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5831 vdev_name(vdev_t *vd, char *buf, int buflen)
5832 {
5833 if (vd->vdev_path == NULL) {
5834 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5835 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5836 } else if (!vd->vdev_ops->vdev_op_leaf) {
5837 snprintf(buf, buflen, "%s-%llu",
5838 vd->vdev_ops->vdev_op_type,
5839 (u_longlong_t)vd->vdev_id);
5840 }
5841 } else {
5842 strlcpy(buf, vd->vdev_path, buflen);
5843 }
5844 return (buf);
5845 }
5846
5847 /*
5848 * Look at the vdev tree and determine whether any devices are currently being
5849 * replaced.
5850 */
5851 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5852 vdev_replace_in_progress(vdev_t *vdev)
5853 {
5854 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5855
5856 if (vdev->vdev_ops == &vdev_replacing_ops)
5857 return (B_TRUE);
5858
5859 /*
5860 * A 'spare' vdev indicates that we have a replace in progress, unless
5861 * it has exactly two children, and the second, the hot spare, has
5862 * finished being resilvered.
5863 */
5864 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5865 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5866 return (B_TRUE);
5867
5868 for (int i = 0; i < vdev->vdev_children; i++) {
5869 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5870 return (B_TRUE);
5871 }
5872
5873 return (B_FALSE);
5874 }
5875
5876 /*
5877 * Add a (source=src, propname=propval) list to an nvlist.
5878 */
5879 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5880 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5881 uint64_t intval, zprop_source_t src)
5882 {
5883 nvlist_t *propval;
5884
5885 propval = fnvlist_alloc();
5886 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5887
5888 if (strval != NULL)
5889 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5890 else
5891 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5892
5893 fnvlist_add_nvlist(nvl, propname, propval);
5894 nvlist_free(propval);
5895 }
5896
5897 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5898 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5899 {
5900 vdev_t *vd;
5901 nvlist_t *nvp = arg;
5902 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5903 objset_t *mos = spa->spa_meta_objset;
5904 nvpair_t *elem = NULL;
5905 uint64_t vdev_guid;
5906 uint64_t objid;
5907 nvlist_t *nvprops;
5908
5909 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5910 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5911 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5912
5913 /* this vdev could get removed while waiting for this sync task */
5914 if (vd == NULL)
5915 return;
5916
5917 /*
5918 * Set vdev property values in the vdev props mos object.
5919 */
5920 if (vd->vdev_root_zap != 0) {
5921 objid = vd->vdev_root_zap;
5922 } else if (vd->vdev_top_zap != 0) {
5923 objid = vd->vdev_top_zap;
5924 } else if (vd->vdev_leaf_zap != 0) {
5925 objid = vd->vdev_leaf_zap;
5926 } else {
5927 panic("unexpected vdev type");
5928 }
5929
5930 mutex_enter(&spa->spa_props_lock);
5931
5932 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5933 uint64_t intval;
5934 const char *strval;
5935 vdev_prop_t prop;
5936 const char *propname = nvpair_name(elem);
5937 zprop_type_t proptype;
5938
5939 switch (prop = vdev_name_to_prop(propname)) {
5940 case VDEV_PROP_USERPROP:
5941 if (vdev_prop_user(propname)) {
5942 strval = fnvpair_value_string(elem);
5943 if (strlen(strval) == 0) {
5944 /* remove the property if value == "" */
5945 (void) zap_remove(mos, objid, propname,
5946 tx);
5947 } else {
5948 VERIFY0(zap_update(mos, objid, propname,
5949 1, strlen(strval) + 1, strval, tx));
5950 }
5951 spa_history_log_internal(spa, "vdev set", tx,
5952 "vdev_guid=%llu: %s=%s",
5953 (u_longlong_t)vdev_guid, nvpair_name(elem),
5954 strval);
5955 }
5956 break;
5957 default:
5958 /* normalize the property name */
5959 propname = vdev_prop_to_name(prop);
5960 proptype = vdev_prop_get_type(prop);
5961
5962 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5963 ASSERT(proptype == PROP_TYPE_STRING);
5964 strval = fnvpair_value_string(elem);
5965 VERIFY0(zap_update(mos, objid, propname,
5966 1, strlen(strval) + 1, strval, tx));
5967 spa_history_log_internal(spa, "vdev set", tx,
5968 "vdev_guid=%llu: %s=%s",
5969 (u_longlong_t)vdev_guid, nvpair_name(elem),
5970 strval);
5971 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5972 intval = fnvpair_value_uint64(elem);
5973
5974 if (proptype == PROP_TYPE_INDEX) {
5975 const char *unused;
5976 VERIFY0(vdev_prop_index_to_string(
5977 prop, intval, &unused));
5978 }
5979 VERIFY0(zap_update(mos, objid, propname,
5980 sizeof (uint64_t), 1, &intval, tx));
5981 spa_history_log_internal(spa, "vdev set", tx,
5982 "vdev_guid=%llu: %s=%lld",
5983 (u_longlong_t)vdev_guid,
5984 nvpair_name(elem), (longlong_t)intval);
5985 } else {
5986 panic("invalid vdev property type %u",
5987 nvpair_type(elem));
5988 }
5989 }
5990
5991 }
5992
5993 mutex_exit(&spa->spa_props_lock);
5994 }
5995
5996 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)5997 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5998 {
5999 spa_t *spa = vd->vdev_spa;
6000 nvpair_t *elem = NULL;
6001 uint64_t vdev_guid;
6002 nvlist_t *nvprops;
6003 int error = 0;
6004
6005 ASSERT(vd != NULL);
6006
6007 /* Check that vdev has a zap we can use */
6008 if (vd->vdev_root_zap == 0 &&
6009 vd->vdev_top_zap == 0 &&
6010 vd->vdev_leaf_zap == 0)
6011 return (SET_ERROR(EINVAL));
6012
6013 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6014 &vdev_guid) != 0)
6015 return (SET_ERROR(EINVAL));
6016
6017 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6018 &nvprops) != 0)
6019 return (SET_ERROR(EINVAL));
6020
6021 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6022 return (SET_ERROR(EINVAL));
6023
6024 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6025 const char *propname = nvpair_name(elem);
6026 vdev_prop_t prop = vdev_name_to_prop(propname);
6027 uint64_t intval = 0;
6028 const char *strval = NULL;
6029
6030 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6031 error = EINVAL;
6032 goto end;
6033 }
6034
6035 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6036 error = EROFS;
6037 goto end;
6038 }
6039
6040 /* Special Processing */
6041 switch (prop) {
6042 case VDEV_PROP_PATH:
6043 if (vd->vdev_path == NULL) {
6044 error = EROFS;
6045 break;
6046 }
6047 if (nvpair_value_string(elem, &strval) != 0) {
6048 error = EINVAL;
6049 break;
6050 }
6051 /* New path must start with /dev/ */
6052 if (strncmp(strval, "/dev/", 5)) {
6053 error = EINVAL;
6054 break;
6055 }
6056 error = spa_vdev_setpath(spa, vdev_guid, strval);
6057 break;
6058 case VDEV_PROP_ALLOCATING:
6059 if (nvpair_value_uint64(elem, &intval) != 0) {
6060 error = EINVAL;
6061 break;
6062 }
6063 if (intval != vd->vdev_noalloc)
6064 break;
6065 if (intval == 0)
6066 error = spa_vdev_noalloc(spa, vdev_guid);
6067 else
6068 error = spa_vdev_alloc(spa, vdev_guid);
6069 break;
6070 case VDEV_PROP_FAILFAST:
6071 if (nvpair_value_uint64(elem, &intval) != 0) {
6072 error = EINVAL;
6073 break;
6074 }
6075 vd->vdev_failfast = intval & 1;
6076 break;
6077 case VDEV_PROP_CHECKSUM_N:
6078 if (nvpair_value_uint64(elem, &intval) != 0) {
6079 error = EINVAL;
6080 break;
6081 }
6082 vd->vdev_checksum_n = intval;
6083 break;
6084 case VDEV_PROP_CHECKSUM_T:
6085 if (nvpair_value_uint64(elem, &intval) != 0) {
6086 error = EINVAL;
6087 break;
6088 }
6089 vd->vdev_checksum_t = intval;
6090 break;
6091 case VDEV_PROP_IO_N:
6092 if (nvpair_value_uint64(elem, &intval) != 0) {
6093 error = EINVAL;
6094 break;
6095 }
6096 vd->vdev_io_n = intval;
6097 break;
6098 case VDEV_PROP_IO_T:
6099 if (nvpair_value_uint64(elem, &intval) != 0) {
6100 error = EINVAL;
6101 break;
6102 }
6103 vd->vdev_io_t = intval;
6104 break;
6105 case VDEV_PROP_SLOW_IO_N:
6106 if (nvpair_value_uint64(elem, &intval) != 0) {
6107 error = EINVAL;
6108 break;
6109 }
6110 vd->vdev_slow_io_n = intval;
6111 break;
6112 case VDEV_PROP_SLOW_IO_T:
6113 if (nvpair_value_uint64(elem, &intval) != 0) {
6114 error = EINVAL;
6115 break;
6116 }
6117 vd->vdev_slow_io_t = intval;
6118 break;
6119 default:
6120 /* Most processing is done in vdev_props_set_sync */
6121 break;
6122 }
6123 end:
6124 if (error != 0) {
6125 intval = error;
6126 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6127 return (error);
6128 }
6129 }
6130
6131 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6132 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6133 }
6134
6135 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6136 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6137 {
6138 spa_t *spa = vd->vdev_spa;
6139 objset_t *mos = spa->spa_meta_objset;
6140 int err = 0;
6141 uint64_t objid;
6142 uint64_t vdev_guid;
6143 nvpair_t *elem = NULL;
6144 nvlist_t *nvprops = NULL;
6145 uint64_t intval = 0;
6146 char *strval = NULL;
6147 const char *propname = NULL;
6148 vdev_prop_t prop;
6149
6150 ASSERT(vd != NULL);
6151 ASSERT(mos != NULL);
6152
6153 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6154 &vdev_guid) != 0)
6155 return (SET_ERROR(EINVAL));
6156
6157 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6158
6159 if (vd->vdev_root_zap != 0) {
6160 objid = vd->vdev_root_zap;
6161 } else if (vd->vdev_top_zap != 0) {
6162 objid = vd->vdev_top_zap;
6163 } else if (vd->vdev_leaf_zap != 0) {
6164 objid = vd->vdev_leaf_zap;
6165 } else {
6166 return (SET_ERROR(EINVAL));
6167 }
6168 ASSERT(objid != 0);
6169
6170 mutex_enter(&spa->spa_props_lock);
6171
6172 if (nvprops != NULL) {
6173 char namebuf[64] = { 0 };
6174
6175 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6176 intval = 0;
6177 strval = NULL;
6178 propname = nvpair_name(elem);
6179 prop = vdev_name_to_prop(propname);
6180 zprop_source_t src = ZPROP_SRC_DEFAULT;
6181 uint64_t integer_size, num_integers;
6182
6183 switch (prop) {
6184 /* Special Read-only Properties */
6185 case VDEV_PROP_NAME:
6186 strval = vdev_name(vd, namebuf,
6187 sizeof (namebuf));
6188 if (strval == NULL)
6189 continue;
6190 vdev_prop_add_list(outnvl, propname, strval, 0,
6191 ZPROP_SRC_NONE);
6192 continue;
6193 case VDEV_PROP_CAPACITY:
6194 /* percent used */
6195 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6196 (vd->vdev_stat.vs_alloc * 100 /
6197 vd->vdev_stat.vs_dspace);
6198 vdev_prop_add_list(outnvl, propname, NULL,
6199 intval, ZPROP_SRC_NONE);
6200 continue;
6201 case VDEV_PROP_STATE:
6202 vdev_prop_add_list(outnvl, propname, NULL,
6203 vd->vdev_state, ZPROP_SRC_NONE);
6204 continue;
6205 case VDEV_PROP_GUID:
6206 vdev_prop_add_list(outnvl, propname, NULL,
6207 vd->vdev_guid, ZPROP_SRC_NONE);
6208 continue;
6209 case VDEV_PROP_ASIZE:
6210 vdev_prop_add_list(outnvl, propname, NULL,
6211 vd->vdev_asize, ZPROP_SRC_NONE);
6212 continue;
6213 case VDEV_PROP_PSIZE:
6214 vdev_prop_add_list(outnvl, propname, NULL,
6215 vd->vdev_psize, ZPROP_SRC_NONE);
6216 continue;
6217 case VDEV_PROP_ASHIFT:
6218 vdev_prop_add_list(outnvl, propname, NULL,
6219 vd->vdev_ashift, ZPROP_SRC_NONE);
6220 continue;
6221 case VDEV_PROP_SIZE:
6222 vdev_prop_add_list(outnvl, propname, NULL,
6223 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6224 continue;
6225 case VDEV_PROP_FREE:
6226 vdev_prop_add_list(outnvl, propname, NULL,
6227 vd->vdev_stat.vs_dspace -
6228 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6229 continue;
6230 case VDEV_PROP_ALLOCATED:
6231 vdev_prop_add_list(outnvl, propname, NULL,
6232 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6233 continue;
6234 case VDEV_PROP_EXPANDSZ:
6235 vdev_prop_add_list(outnvl, propname, NULL,
6236 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6237 continue;
6238 case VDEV_PROP_FRAGMENTATION:
6239 vdev_prop_add_list(outnvl, propname, NULL,
6240 vd->vdev_stat.vs_fragmentation,
6241 ZPROP_SRC_NONE);
6242 continue;
6243 case VDEV_PROP_PARITY:
6244 vdev_prop_add_list(outnvl, propname, NULL,
6245 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6246 continue;
6247 case VDEV_PROP_PATH:
6248 if (vd->vdev_path == NULL)
6249 continue;
6250 vdev_prop_add_list(outnvl, propname,
6251 vd->vdev_path, 0, ZPROP_SRC_NONE);
6252 continue;
6253 case VDEV_PROP_DEVID:
6254 if (vd->vdev_devid == NULL)
6255 continue;
6256 vdev_prop_add_list(outnvl, propname,
6257 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6258 continue;
6259 case VDEV_PROP_PHYS_PATH:
6260 if (vd->vdev_physpath == NULL)
6261 continue;
6262 vdev_prop_add_list(outnvl, propname,
6263 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6264 continue;
6265 case VDEV_PROP_ENC_PATH:
6266 if (vd->vdev_enc_sysfs_path == NULL)
6267 continue;
6268 vdev_prop_add_list(outnvl, propname,
6269 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6270 continue;
6271 case VDEV_PROP_FRU:
6272 if (vd->vdev_fru == NULL)
6273 continue;
6274 vdev_prop_add_list(outnvl, propname,
6275 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6276 continue;
6277 case VDEV_PROP_PARENT:
6278 if (vd->vdev_parent != NULL) {
6279 strval = vdev_name(vd->vdev_parent,
6280 namebuf, sizeof (namebuf));
6281 vdev_prop_add_list(outnvl, propname,
6282 strval, 0, ZPROP_SRC_NONE);
6283 }
6284 continue;
6285 case VDEV_PROP_CHILDREN:
6286 if (vd->vdev_children > 0)
6287 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6288 KM_SLEEP);
6289 for (uint64_t i = 0; i < vd->vdev_children;
6290 i++) {
6291 const char *vname;
6292
6293 vname = vdev_name(vd->vdev_child[i],
6294 namebuf, sizeof (namebuf));
6295 if (vname == NULL)
6296 vname = "(unknown)";
6297 if (strlen(strval) > 0)
6298 strlcat(strval, ",",
6299 ZAP_MAXVALUELEN);
6300 strlcat(strval, vname, ZAP_MAXVALUELEN);
6301 }
6302 if (strval != NULL) {
6303 vdev_prop_add_list(outnvl, propname,
6304 strval, 0, ZPROP_SRC_NONE);
6305 kmem_free(strval, ZAP_MAXVALUELEN);
6306 }
6307 continue;
6308 case VDEV_PROP_NUMCHILDREN:
6309 vdev_prop_add_list(outnvl, propname, NULL,
6310 vd->vdev_children, ZPROP_SRC_NONE);
6311 continue;
6312 case VDEV_PROP_READ_ERRORS:
6313 vdev_prop_add_list(outnvl, propname, NULL,
6314 vd->vdev_stat.vs_read_errors,
6315 ZPROP_SRC_NONE);
6316 continue;
6317 case VDEV_PROP_WRITE_ERRORS:
6318 vdev_prop_add_list(outnvl, propname, NULL,
6319 vd->vdev_stat.vs_write_errors,
6320 ZPROP_SRC_NONE);
6321 continue;
6322 case VDEV_PROP_CHECKSUM_ERRORS:
6323 vdev_prop_add_list(outnvl, propname, NULL,
6324 vd->vdev_stat.vs_checksum_errors,
6325 ZPROP_SRC_NONE);
6326 continue;
6327 case VDEV_PROP_INITIALIZE_ERRORS:
6328 vdev_prop_add_list(outnvl, propname, NULL,
6329 vd->vdev_stat.vs_initialize_errors,
6330 ZPROP_SRC_NONE);
6331 continue;
6332 case VDEV_PROP_TRIM_ERRORS:
6333 vdev_prop_add_list(outnvl, propname, NULL,
6334 vd->vdev_stat.vs_trim_errors,
6335 ZPROP_SRC_NONE);
6336 continue;
6337 case VDEV_PROP_SLOW_IOS:
6338 vdev_prop_add_list(outnvl, propname, NULL,
6339 vd->vdev_stat.vs_slow_ios,
6340 ZPROP_SRC_NONE);
6341 continue;
6342 case VDEV_PROP_OPS_NULL:
6343 vdev_prop_add_list(outnvl, propname, NULL,
6344 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6345 ZPROP_SRC_NONE);
6346 continue;
6347 case VDEV_PROP_OPS_READ:
6348 vdev_prop_add_list(outnvl, propname, NULL,
6349 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6350 ZPROP_SRC_NONE);
6351 continue;
6352 case VDEV_PROP_OPS_WRITE:
6353 vdev_prop_add_list(outnvl, propname, NULL,
6354 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6355 ZPROP_SRC_NONE);
6356 continue;
6357 case VDEV_PROP_OPS_FREE:
6358 vdev_prop_add_list(outnvl, propname, NULL,
6359 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6360 ZPROP_SRC_NONE);
6361 continue;
6362 case VDEV_PROP_OPS_CLAIM:
6363 vdev_prop_add_list(outnvl, propname, NULL,
6364 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6365 ZPROP_SRC_NONE);
6366 continue;
6367 case VDEV_PROP_OPS_TRIM:
6368 /*
6369 * TRIM ops and bytes are reported to user
6370 * space as ZIO_TYPE_FLUSH. This is done to
6371 * preserve the vdev_stat_t structure layout
6372 * for user space.
6373 */
6374 vdev_prop_add_list(outnvl, propname, NULL,
6375 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6376 ZPROP_SRC_NONE);
6377 continue;
6378 case VDEV_PROP_BYTES_NULL:
6379 vdev_prop_add_list(outnvl, propname, NULL,
6380 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6381 ZPROP_SRC_NONE);
6382 continue;
6383 case VDEV_PROP_BYTES_READ:
6384 vdev_prop_add_list(outnvl, propname, NULL,
6385 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6386 ZPROP_SRC_NONE);
6387 continue;
6388 case VDEV_PROP_BYTES_WRITE:
6389 vdev_prop_add_list(outnvl, propname, NULL,
6390 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6391 ZPROP_SRC_NONE);
6392 continue;
6393 case VDEV_PROP_BYTES_FREE:
6394 vdev_prop_add_list(outnvl, propname, NULL,
6395 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6396 ZPROP_SRC_NONE);
6397 continue;
6398 case VDEV_PROP_BYTES_CLAIM:
6399 vdev_prop_add_list(outnvl, propname, NULL,
6400 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6401 ZPROP_SRC_NONE);
6402 continue;
6403 case VDEV_PROP_BYTES_TRIM:
6404 /*
6405 * TRIM ops and bytes are reported to user
6406 * space as ZIO_TYPE_FLUSH. This is done to
6407 * preserve the vdev_stat_t structure layout
6408 * for user space.
6409 */
6410 vdev_prop_add_list(outnvl, propname, NULL,
6411 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6412 ZPROP_SRC_NONE);
6413 continue;
6414 case VDEV_PROP_REMOVING:
6415 vdev_prop_add_list(outnvl, propname, NULL,
6416 vd->vdev_removing, ZPROP_SRC_NONE);
6417 continue;
6418 case VDEV_PROP_RAIDZ_EXPANDING:
6419 /* Only expose this for raidz */
6420 if (vd->vdev_ops == &vdev_raidz_ops) {
6421 vdev_prop_add_list(outnvl, propname,
6422 NULL, vd->vdev_rz_expanding,
6423 ZPROP_SRC_NONE);
6424 }
6425 continue;
6426 case VDEV_PROP_TRIM_SUPPORT:
6427 /* only valid for leaf vdevs */
6428 if (vd->vdev_ops->vdev_op_leaf) {
6429 vdev_prop_add_list(outnvl, propname,
6430 NULL, vd->vdev_has_trim,
6431 ZPROP_SRC_NONE);
6432 }
6433 continue;
6434 /* Numeric Properites */
6435 case VDEV_PROP_ALLOCATING:
6436 /* Leaf vdevs cannot have this property */
6437 if (vd->vdev_mg == NULL &&
6438 vd->vdev_top != NULL) {
6439 src = ZPROP_SRC_NONE;
6440 intval = ZPROP_BOOLEAN_NA;
6441 } else {
6442 err = vdev_prop_get_int(vd, prop,
6443 &intval);
6444 if (err && err != ENOENT)
6445 break;
6446
6447 if (intval ==
6448 vdev_prop_default_numeric(prop))
6449 src = ZPROP_SRC_DEFAULT;
6450 else
6451 src = ZPROP_SRC_LOCAL;
6452 }
6453
6454 vdev_prop_add_list(outnvl, propname, NULL,
6455 intval, src);
6456 break;
6457 case VDEV_PROP_FAILFAST:
6458 src = ZPROP_SRC_LOCAL;
6459 strval = NULL;
6460
6461 err = zap_lookup(mos, objid, nvpair_name(elem),
6462 sizeof (uint64_t), 1, &intval);
6463 if (err == ENOENT) {
6464 intval = vdev_prop_default_numeric(
6465 prop);
6466 err = 0;
6467 } else if (err) {
6468 break;
6469 }
6470 if (intval == vdev_prop_default_numeric(prop))
6471 src = ZPROP_SRC_DEFAULT;
6472
6473 vdev_prop_add_list(outnvl, propname, strval,
6474 intval, src);
6475 break;
6476 case VDEV_PROP_CHECKSUM_N:
6477 case VDEV_PROP_CHECKSUM_T:
6478 case VDEV_PROP_IO_N:
6479 case VDEV_PROP_IO_T:
6480 case VDEV_PROP_SLOW_IO_N:
6481 case VDEV_PROP_SLOW_IO_T:
6482 err = vdev_prop_get_int(vd, prop, &intval);
6483 if (err && err != ENOENT)
6484 break;
6485
6486 if (intval == vdev_prop_default_numeric(prop))
6487 src = ZPROP_SRC_DEFAULT;
6488 else
6489 src = ZPROP_SRC_LOCAL;
6490
6491 vdev_prop_add_list(outnvl, propname, NULL,
6492 intval, src);
6493 break;
6494 /* Text Properties */
6495 case VDEV_PROP_COMMENT:
6496 /* Exists in the ZAP below */
6497 /* FALLTHRU */
6498 case VDEV_PROP_USERPROP:
6499 /* User Properites */
6500 src = ZPROP_SRC_LOCAL;
6501
6502 err = zap_length(mos, objid, nvpair_name(elem),
6503 &integer_size, &num_integers);
6504 if (err)
6505 break;
6506
6507 switch (integer_size) {
6508 case 8:
6509 /* User properties cannot be integers */
6510 err = EINVAL;
6511 break;
6512 case 1:
6513 /* string property */
6514 strval = kmem_alloc(num_integers,
6515 KM_SLEEP);
6516 err = zap_lookup(mos, objid,
6517 nvpair_name(elem), 1,
6518 num_integers, strval);
6519 if (err) {
6520 kmem_free(strval,
6521 num_integers);
6522 break;
6523 }
6524 vdev_prop_add_list(outnvl, propname,
6525 strval, 0, src);
6526 kmem_free(strval, num_integers);
6527 break;
6528 }
6529 break;
6530 default:
6531 err = ENOENT;
6532 break;
6533 }
6534 if (err)
6535 break;
6536 }
6537 } else {
6538 /*
6539 * Get all properties from the MOS vdev property object.
6540 */
6541 zap_cursor_t zc;
6542 zap_attribute_t *za = zap_attribute_alloc();
6543 for (zap_cursor_init(&zc, mos, objid);
6544 (err = zap_cursor_retrieve(&zc, za)) == 0;
6545 zap_cursor_advance(&zc)) {
6546 intval = 0;
6547 strval = NULL;
6548 zprop_source_t src = ZPROP_SRC_DEFAULT;
6549 propname = za->za_name;
6550
6551 switch (za->za_integer_length) {
6552 case 8:
6553 /* We do not allow integer user properties */
6554 /* This is likely an internal value */
6555 break;
6556 case 1:
6557 /* string property */
6558 strval = kmem_alloc(za->za_num_integers,
6559 KM_SLEEP);
6560 err = zap_lookup(mos, objid, za->za_name, 1,
6561 za->za_num_integers, strval);
6562 if (err) {
6563 kmem_free(strval, za->za_num_integers);
6564 break;
6565 }
6566 vdev_prop_add_list(outnvl, propname, strval, 0,
6567 src);
6568 kmem_free(strval, za->za_num_integers);
6569 break;
6570
6571 default:
6572 break;
6573 }
6574 }
6575 zap_cursor_fini(&zc);
6576 zap_attribute_free(za);
6577 }
6578
6579 mutex_exit(&spa->spa_props_lock);
6580 if (err && err != ENOENT) {
6581 return (err);
6582 }
6583
6584 return (0);
6585 }
6586
6587 EXPORT_SYMBOL(vdev_fault);
6588 EXPORT_SYMBOL(vdev_degrade);
6589 EXPORT_SYMBOL(vdev_online);
6590 EXPORT_SYMBOL(vdev_offline);
6591 EXPORT_SYMBOL(vdev_clear);
6592
6593 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6594 "Target number of metaslabs per top-level vdev");
6595
6596 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6597 "Default lower limit for metaslab size");
6598
6599 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6600 "Default upper limit for metaslab size");
6601
6602 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6603 "Minimum number of metaslabs per top-level vdev");
6604
6605 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6606 "Practical upper limit of total metaslabs per top-level vdev");
6607
6608 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6609 "Rate limit slow IO (delay) events to this many per second");
6610
6611 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6612 "Rate limit hung IO (deadman) events to this many per second");
6613
6614 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6615 "Rate Direct I/O write verify events to this many per second");
6616
6617 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6618 "Direct I/O writes will perform for checksum verification before "
6619 "commiting write");
6620
6621 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6622 "Rate limit checksum events to this many checksum errors per second "
6623 "(do not set below ZED threshold).");
6624
6625 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6626 "Ignore errors during resilver/scrub");
6627
6628 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6629 "Bypass vdev_validate()");
6630
6631 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6632 "Disable cache flushes");
6633
6634 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6635 "Minimum number of metaslabs required to dedicate one for log blocks");
6636
6637 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6638 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6639 "Minimum ashift used when creating new top-level vdevs");
6640
6641 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6642 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6643 "Maximum ashift used when optimizing for logical -> physical sector "
6644 "size on new top-level vdevs");
6645
6646 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6647 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6648 "RAIDZ implementation");
6649