1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26 * Copyright 2023 RackTop Systems, Inc.
27 */
28
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39
40 /*
41 * TRIM is a feature which is used to notify a SSD that some previously
42 * written space is no longer allocated by the pool. This is useful because
43 * writes to a SSD must be performed to blocks which have first been erased.
44 * Ensuring the SSD always has a supply of erased blocks for new writes
45 * helps prevent the performance from deteriorating.
46 *
47 * There are two supported TRIM methods; manual and automatic.
48 *
49 * Manual TRIM:
50 *
51 * A manual TRIM is initiated by running the 'zpool trim' command. A single
52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53 * managing that vdev TRIM process. This involves iterating over all the
54 * metaslabs, calculating the unallocated space ranges, and then issuing the
55 * required TRIM I/Os.
56 *
57 * While a metaslab is being actively trimmed it is not eligible to perform
58 * new allocations. After traversing all of the metaslabs the thread is
59 * terminated. Finally, both the requested options and current progress of
60 * the TRIM are regularly written to the pool. This allows the TRIM to be
61 * suspended and resumed as needed.
62 *
63 * Automatic TRIM:
64 *
65 * An automatic TRIM is enabled by setting the 'autotrim' pool property
66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each
67 * top-level (not leaf) vdev in the pool. These threads perform the same
68 * core TRIM process as a manual TRIM, but with a few key differences.
69 *
70 * 1) Automatic TRIM happens continuously in the background and operates
71 * solely on recently freed blocks (ms_trim not ms_allocatable).
72 *
73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has
74 * the benefit of simplifying the threading model, it makes it easier
75 * to coordinate administrative commands, and it ensures only a single
76 * metaslab is disabled at a time. Unlike manual TRIM, this means each
77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78 * children.
79 *
80 * 3) There is no automatic TRIM progress information stored on disk, nor
81 * is it reported by 'zpool status'.
82 *
83 * While the automatic TRIM process is highly effective it is more likely
84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to
85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86 * TRIM and are skipped. This means small amounts of freed space may not
87 * be automatically trimmed.
88 *
89 * Furthermore, devices with attached hot spares and devices being actively
90 * replaced are skipped. This is done to avoid adding additional stress to
91 * a potentially unhealthy device and to minimize the required rebuild time.
92 *
93 * For this reason it may be beneficial to occasionally manually TRIM a pool
94 * even when automatic TRIM is enabled.
95 */
96
97 /*
98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99 */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101
102 /*
103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104 */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106
107 /*
108 * Skip uninitialized metaslabs during the TRIM process. This option is
109 * useful for pools constructed from large thinly-provisioned devices where
110 * TRIM operations are slow. As a pool ages an increasing fraction of
111 * the pools metaslabs will be initialized progressively degrading the
112 * usefulness of this option. This setting is stored when starting a
113 * manual TRIM and will persist for the duration of the requested TRIM.
114 */
115 unsigned int zfs_trim_metaslab_skip = 0;
116
117 /*
118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of
119 * concurrent TRIM I/Os issued to the device is controlled by the
120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121 */
122 static unsigned int zfs_trim_queue_limit = 10;
123
124 /*
125 * The minimum number of transaction groups between automatic trims of a
126 * metaslab. This setting represents a trade-off between issuing more
127 * efficient TRIM operations, by allowing them to be aggregated longer,
128 * and issuing them promptly so the trimmed space is available. Note
129 * that this value is a minimum; metaslabs can be trimmed less frequently
130 * when there are a large number of ranges which need to be trimmed.
131 *
132 * Increasing this value will allow frees to be aggregated for a longer
133 * time. This can result is larger TRIM operations, and increased memory
134 * usage in order to track the ranges to be trimmed. Decreasing this value
135 * has the opposite effect. The default value of 32 was determined though
136 * testing to be a reasonable compromise.
137 */
138 static unsigned int zfs_trim_txg_batch = 32;
139
140 /*
141 * The trim_args are a control structure which describe how a leaf vdev
142 * should be trimmed. The core elements are the vdev, the metaslab being
143 * trimmed and a range tree containing the extents to TRIM. All provided
144 * ranges must be within the metaslab.
145 */
146 typedef struct trim_args {
147 /*
148 * These fields are set by the caller of vdev_trim_ranges().
149 */
150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */
151 metaslab_t *trim_msp; /* Disabled metaslab */
152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */
153 trim_type_t trim_type; /* Manual or auto TRIM */
154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */
155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */
156 enum trim_flag trim_flags; /* TRIM flags (secure) */
157
158 /*
159 * These fields are updated by vdev_trim_ranges().
160 */
161 hrtime_t trim_start_time; /* Start time */
162 uint64_t trim_bytes_done; /* Bytes trimmed */
163 } trim_args_t;
164
165 /*
166 * Determines whether a vdev_trim_thread() should be stopped.
167 */
168 static boolean_t
vdev_trim_should_stop(vdev_t * vd)169 vdev_trim_should_stop(vdev_t *vd)
170 {
171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172 vd->vdev_detached || vd->vdev_top->vdev_removing ||
173 vd->vdev_top->vdev_rz_expanding);
174 }
175
176 /*
177 * Determines whether a vdev_autotrim_thread() should be stopped.
178 */
179 static boolean_t
vdev_autotrim_should_stop(vdev_t * tvd)180 vdev_autotrim_should_stop(vdev_t *tvd)
181 {
182 return (tvd->vdev_autotrim_exit_wanted ||
183 !vdev_writeable(tvd) || tvd->vdev_removing ||
184 tvd->vdev_rz_expanding ||
185 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186 }
187
188 /*
189 * Wait for given number of kicks, return true if the wait is aborted due to
190 * vdev_autotrim_exit_wanted.
191 */
192 static boolean_t
vdev_autotrim_wait_kick(vdev_t * vd,int num_of_kick)193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194 {
195 mutex_enter(&vd->vdev_autotrim_lock);
196 for (int i = 0; i < num_of_kick; i++) {
197 if (vd->vdev_autotrim_exit_wanted)
198 break;
199 cv_wait_idle(&vd->vdev_autotrim_kick_cv,
200 &vd->vdev_autotrim_lock);
201 }
202 boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
203 mutex_exit(&vd->vdev_autotrim_lock);
204
205 return (exit_wanted);
206 }
207
208 /*
209 * The sync task for updating the on-disk state of a manual TRIM. This
210 * is scheduled by vdev_trim_change_state().
211 */
212 static void
vdev_trim_zap_update_sync(void * arg,dmu_tx_t * tx)213 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
214 {
215 /*
216 * We pass in the guid instead of the vdev_t since the vdev may
217 * have been freed prior to the sync task being processed. This
218 * happens when a vdev is detached as we call spa_config_vdev_exit(),
219 * stop the trimming thread, schedule the sync task, and free
220 * the vdev. Later when the scheduled sync task is invoked, it would
221 * find that the vdev has been freed.
222 */
223 uint64_t guid = *(uint64_t *)arg;
224 uint64_t txg = dmu_tx_get_txg(tx);
225 kmem_free(arg, sizeof (uint64_t));
226
227 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
228 if (vd == NULL || vd->vdev_top->vdev_removing ||
229 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
230 return;
231
232 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
233 vd->vdev_trim_offset[txg & TXG_MASK] = 0;
234
235 VERIFY3U(vd->vdev_leaf_zap, !=, 0);
236
237 objset_t *mos = vd->vdev_spa->spa_meta_objset;
238
239 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
240
241 if (vd->vdev_trim_last_offset == UINT64_MAX)
242 last_offset = 0;
243
244 vd->vdev_trim_last_offset = last_offset;
245 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
246 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
247 sizeof (last_offset), 1, &last_offset, tx));
248 }
249
250 if (vd->vdev_trim_action_time > 0) {
251 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
252 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
253 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
254 1, &val, tx));
255 }
256
257 if (vd->vdev_trim_rate > 0) {
258 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
259
260 if (rate == UINT64_MAX)
261 rate = 0;
262
263 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
264 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
265 }
266
267 uint64_t partial = vd->vdev_trim_partial;
268 if (partial == UINT64_MAX)
269 partial = 0;
270
271 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
272 sizeof (partial), 1, &partial, tx));
273
274 uint64_t secure = vd->vdev_trim_secure;
275 if (secure == UINT64_MAX)
276 secure = 0;
277
278 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
279 sizeof (secure), 1, &secure, tx));
280
281
282 uint64_t trim_state = vd->vdev_trim_state;
283 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
284 sizeof (trim_state), 1, &trim_state, tx));
285 }
286
287 /*
288 * Update the on-disk state of a manual TRIM. This is called to request
289 * that a TRIM be started/suspended/canceled, or to change one of the
290 * TRIM options (partial, secure, rate).
291 */
292 static void
vdev_trim_change_state(vdev_t * vd,vdev_trim_state_t new_state,uint64_t rate,boolean_t partial,boolean_t secure)293 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
294 uint64_t rate, boolean_t partial, boolean_t secure)
295 {
296 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
297 spa_t *spa = vd->vdev_spa;
298
299 if (new_state == vd->vdev_trim_state)
300 return;
301
302 /*
303 * Copy the vd's guid, this will be freed by the sync task.
304 */
305 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
306 *guid = vd->vdev_guid;
307
308 /*
309 * If we're suspending, then preserve the original start time.
310 */
311 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
312 vd->vdev_trim_action_time = gethrestime_sec();
313 }
314
315 /*
316 * If we're activating, then preserve the requested rate and trim
317 * method. Setting the last offset and rate to UINT64_MAX is used
318 * as a sentinel to indicate they should be reset to default values.
319 */
320 if (new_state == VDEV_TRIM_ACTIVE) {
321 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
322 vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
323 vd->vdev_trim_last_offset = UINT64_MAX;
324 vd->vdev_trim_rate = UINT64_MAX;
325 vd->vdev_trim_partial = UINT64_MAX;
326 vd->vdev_trim_secure = UINT64_MAX;
327 }
328
329 if (rate != 0)
330 vd->vdev_trim_rate = rate;
331
332 if (partial != 0)
333 vd->vdev_trim_partial = partial;
334
335 if (secure != 0)
336 vd->vdev_trim_secure = secure;
337 }
338
339 vdev_trim_state_t old_state = vd->vdev_trim_state;
340 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
341 vd->vdev_trim_state = new_state;
342
343 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
344 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
345 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
346 guid, tx);
347
348 switch (new_state) {
349 case VDEV_TRIM_ACTIVE:
350 spa_event_notify(spa, vd, NULL,
351 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
352 spa_history_log_internal(spa, "trim", tx,
353 "vdev=%s activated", vd->vdev_path);
354 break;
355 case VDEV_TRIM_SUSPENDED:
356 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
357 spa_history_log_internal(spa, "trim", tx,
358 "vdev=%s suspended", vd->vdev_path);
359 break;
360 case VDEV_TRIM_CANCELED:
361 if (old_state == VDEV_TRIM_ACTIVE ||
362 old_state == VDEV_TRIM_SUSPENDED) {
363 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
364 spa_history_log_internal(spa, "trim", tx,
365 "vdev=%s canceled", vd->vdev_path);
366 }
367 break;
368 case VDEV_TRIM_COMPLETE:
369 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
370 spa_history_log_internal(spa, "trim", tx,
371 "vdev=%s complete", vd->vdev_path);
372 break;
373 default:
374 panic("invalid state %llu", (unsigned long long)new_state);
375 }
376
377 dmu_tx_commit(tx);
378
379 if (new_state != VDEV_TRIM_ACTIVE)
380 spa_notify_waiters(spa);
381 }
382
383 /*
384 * The zio_done_func_t done callback for each manual TRIM issued. It is
385 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
386 * and limiting the number of in flight TRIM I/Os.
387 */
388 static void
vdev_trim_cb(zio_t * zio)389 vdev_trim_cb(zio_t *zio)
390 {
391 vdev_t *vd = zio->io_vd;
392
393 mutex_enter(&vd->vdev_trim_io_lock);
394 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
395 /*
396 * The I/O failed because the vdev was unavailable; roll the
397 * last offset back. (This works because spa_sync waits on
398 * spa_txg_zio before it runs sync tasks.)
399 */
400 uint64_t *offset =
401 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
402 *offset = MIN(*offset, zio->io_offset);
403 } else {
404 if (zio->io_error != 0) {
405 vd->vdev_stat.vs_trim_errors++;
406 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
407 0, 0, 0, 0, 1, zio->io_orig_size);
408 } else {
409 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
410 1, zio->io_orig_size, 0, 0, 0, 0);
411 }
412
413 vd->vdev_trim_bytes_done += zio->io_orig_size;
414 }
415
416 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
417 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
418 cv_broadcast(&vd->vdev_trim_io_cv);
419 mutex_exit(&vd->vdev_trim_io_lock);
420
421 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
422 }
423
424 /*
425 * The zio_done_func_t done callback for each automatic TRIM issued. It
426 * is responsible for updating the TRIM stats and limiting the number of
427 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are
428 * never reissued on failure.
429 */
430 static void
vdev_autotrim_cb(zio_t * zio)431 vdev_autotrim_cb(zio_t *zio)
432 {
433 vdev_t *vd = zio->io_vd;
434
435 mutex_enter(&vd->vdev_trim_io_lock);
436
437 if (zio->io_error != 0) {
438 vd->vdev_stat.vs_trim_errors++;
439 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
440 0, 0, 0, 0, 1, zio->io_orig_size);
441 } else {
442 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
443 1, zio->io_orig_size, 0, 0, 0, 0);
444 }
445
446 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
447 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
448 cv_broadcast(&vd->vdev_trim_io_cv);
449 mutex_exit(&vd->vdev_trim_io_lock);
450
451 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
452 }
453
454 /*
455 * The zio_done_func_t done callback for each TRIM issued via
456 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
457 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best
458 * effort and are never reissued on failure.
459 */
460 static void
vdev_trim_simple_cb(zio_t * zio)461 vdev_trim_simple_cb(zio_t *zio)
462 {
463 vdev_t *vd = zio->io_vd;
464
465 mutex_enter(&vd->vdev_trim_io_lock);
466
467 if (zio->io_error != 0) {
468 vd->vdev_stat.vs_trim_errors++;
469 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
470 0, 0, 0, 0, 1, zio->io_orig_size);
471 } else {
472 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
473 1, zio->io_orig_size, 0, 0, 0, 0);
474 }
475
476 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
477 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
478 cv_broadcast(&vd->vdev_trim_io_cv);
479 mutex_exit(&vd->vdev_trim_io_lock);
480
481 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
482 }
483 /*
484 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
485 */
486 static uint64_t
vdev_trim_calculate_rate(trim_args_t * ta)487 vdev_trim_calculate_rate(trim_args_t *ta)
488 {
489 return (ta->trim_bytes_done * 1000 /
490 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
491 }
492
493 /*
494 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
495 * and number of concurrent TRIM I/Os.
496 */
497 static int
vdev_trim_range(trim_args_t * ta,uint64_t start,uint64_t size)498 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
499 {
500 vdev_t *vd = ta->trim_vdev;
501 spa_t *spa = vd->vdev_spa;
502 void *cb;
503
504 mutex_enter(&vd->vdev_trim_io_lock);
505
506 /*
507 * Limit manual TRIM I/Os to the requested rate. This does not
508 * apply to automatic TRIM since no per vdev rate can be specified.
509 */
510 if (ta->trim_type == TRIM_TYPE_MANUAL) {
511 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
512 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
513 cv_timedwait_idle(&vd->vdev_trim_io_cv,
514 &vd->vdev_trim_io_lock, ddi_get_lbolt() +
515 MSEC_TO_TICK(10));
516 }
517 }
518 ta->trim_bytes_done += size;
519
520 /* Limit in flight trimming I/Os */
521 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
522 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
523 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
524 }
525 vd->vdev_trim_inflight[ta->trim_type]++;
526 mutex_exit(&vd->vdev_trim_io_lock);
527
528 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
529 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
530 uint64_t txg = dmu_tx_get_txg(tx);
531
532 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
533 mutex_enter(&vd->vdev_trim_lock);
534
535 if (ta->trim_type == TRIM_TYPE_MANUAL &&
536 vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
537 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
538 *guid = vd->vdev_guid;
539
540 /* This is the first write of this txg. */
541 dsl_sync_task_nowait(spa_get_dsl(spa),
542 vdev_trim_zap_update_sync, guid, tx);
543 }
544
545 /*
546 * We know the vdev_t will still be around since all consumers of
547 * vdev_free must stop the trimming first.
548 */
549 if ((ta->trim_type == TRIM_TYPE_MANUAL &&
550 vdev_trim_should_stop(vd)) ||
551 (ta->trim_type == TRIM_TYPE_AUTO &&
552 vdev_autotrim_should_stop(vd->vdev_top))) {
553 mutex_enter(&vd->vdev_trim_io_lock);
554 vd->vdev_trim_inflight[ta->trim_type]--;
555 mutex_exit(&vd->vdev_trim_io_lock);
556 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
557 mutex_exit(&vd->vdev_trim_lock);
558 dmu_tx_commit(tx);
559 return (SET_ERROR(EINTR));
560 }
561 mutex_exit(&vd->vdev_trim_lock);
562
563 if (ta->trim_type == TRIM_TYPE_MANUAL)
564 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
565
566 if (ta->trim_type == TRIM_TYPE_MANUAL) {
567 cb = vdev_trim_cb;
568 } else if (ta->trim_type == TRIM_TYPE_AUTO) {
569 cb = vdev_autotrim_cb;
570 } else {
571 cb = vdev_trim_simple_cb;
572 }
573
574 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
575 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
576 ta->trim_flags));
577 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
578
579 dmu_tx_commit(tx);
580
581 return (0);
582 }
583
584 /*
585 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
586 * Additional parameters describing how the TRIM should be performed must
587 * be set in the trim_args structure. See the trim_args definition for
588 * additional information.
589 */
590 static int
vdev_trim_ranges(trim_args_t * ta)591 vdev_trim_ranges(trim_args_t *ta)
592 {
593 vdev_t *vd = ta->trim_vdev;
594 zfs_btree_t *t = &ta->trim_tree->rt_root;
595 zfs_btree_index_t idx;
596 uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
597 uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
598 spa_t *spa = vd->vdev_spa;
599 int error = 0;
600
601 ta->trim_start_time = gethrtime();
602 ta->trim_bytes_done = 0;
603
604 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
605 rs = zfs_btree_next(t, &idx, &idx)) {
606 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
607 ta->trim_tree);
608
609 if (extent_bytes_min && size < extent_bytes_min) {
610 spa_iostats_trim_add(spa, ta->trim_type,
611 0, 0, 1, size, 0, 0);
612 continue;
613 }
614
615 /* Split range into legally-sized physical chunks */
616 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
617
618 for (uint64_t w = 0; w < writes_required; w++) {
619 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
620 rs_get_start(rs, ta->trim_tree) +
621 (w *extent_bytes_max), MIN(size -
622 (w * extent_bytes_max), extent_bytes_max));
623 if (error != 0) {
624 goto done;
625 }
626 }
627 }
628
629 done:
630 /*
631 * Make sure all TRIMs for this metaslab have completed before
632 * returning. TRIM zios have lower priority over regular or syncing
633 * zios, so all TRIM zios for this metaslab must complete before the
634 * metaslab is re-enabled. Otherwise it's possible write zios to
635 * this metaslab could cut ahead of still queued TRIM zios for this
636 * metaslab causing corruption if the ranges overlap.
637 */
638 mutex_enter(&vd->vdev_trim_io_lock);
639 while (vd->vdev_trim_inflight[0] > 0) {
640 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
641 }
642 mutex_exit(&vd->vdev_trim_io_lock);
643
644 return (error);
645 }
646
647 static void
vdev_trim_xlate_last_rs_end(void * arg,range_seg64_t * physical_rs)648 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
649 {
650 uint64_t *last_rs_end = (uint64_t *)arg;
651
652 if (physical_rs->rs_end > *last_rs_end)
653 *last_rs_end = physical_rs->rs_end;
654 }
655
656 static void
vdev_trim_xlate_progress(void * arg,range_seg64_t * physical_rs)657 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
658 {
659 vdev_t *vd = (vdev_t *)arg;
660
661 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
662 vd->vdev_trim_bytes_est += size;
663
664 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
665 vd->vdev_trim_bytes_done += size;
666 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
667 vd->vdev_trim_last_offset <= physical_rs->rs_end) {
668 vd->vdev_trim_bytes_done +=
669 vd->vdev_trim_last_offset - physical_rs->rs_start;
670 }
671 }
672
673 /*
674 * Calculates the completion percentage of a manual TRIM.
675 */
676 static void
vdev_trim_calculate_progress(vdev_t * vd)677 vdev_trim_calculate_progress(vdev_t *vd)
678 {
679 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
680 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
681 ASSERT(vd->vdev_leaf_zap != 0);
682
683 vd->vdev_trim_bytes_est = 0;
684 vd->vdev_trim_bytes_done = 0;
685
686 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
687 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
688 mutex_enter(&msp->ms_lock);
689
690 uint64_t ms_free = (msp->ms_size -
691 metaslab_allocated_space(msp)) /
692 vdev_get_ndisks(vd->vdev_top);
693
694 /*
695 * Convert the metaslab range to a physical range
696 * on our vdev. We use this to determine if we are
697 * in the middle of this metaslab range.
698 */
699 range_seg64_t logical_rs, physical_rs, remain_rs;
700 logical_rs.rs_start = msp->ms_start;
701 logical_rs.rs_end = msp->ms_start + msp->ms_size;
702
703 /* Metaslab space after this offset has not been trimmed. */
704 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
705 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
706 vd->vdev_trim_bytes_est += ms_free;
707 mutex_exit(&msp->ms_lock);
708 continue;
709 }
710
711 /* Metaslab space before this offset has been trimmed */
712 uint64_t last_rs_end = physical_rs.rs_end;
713 if (!vdev_xlate_is_empty(&remain_rs)) {
714 vdev_xlate_walk(vd, &remain_rs,
715 vdev_trim_xlate_last_rs_end, &last_rs_end);
716 }
717
718 if (vd->vdev_trim_last_offset > last_rs_end) {
719 vd->vdev_trim_bytes_done += ms_free;
720 vd->vdev_trim_bytes_est += ms_free;
721 mutex_exit(&msp->ms_lock);
722 continue;
723 }
724
725 /*
726 * If we get here, we're in the middle of trimming this
727 * metaslab. Load it and walk the free tree for more
728 * accurate progress estimation.
729 */
730 VERIFY0(metaslab_load(msp));
731
732 range_tree_t *rt = msp->ms_allocatable;
733 zfs_btree_t *bt = &rt->rt_root;
734 zfs_btree_index_t idx;
735 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
736 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
737 logical_rs.rs_start = rs_get_start(rs, rt);
738 logical_rs.rs_end = rs_get_end(rs, rt);
739
740 vdev_xlate_walk(vd, &logical_rs,
741 vdev_trim_xlate_progress, vd);
742 }
743 mutex_exit(&msp->ms_lock);
744 }
745 }
746
747 /*
748 * Load from disk the vdev's manual TRIM information. This includes the
749 * state, progress, and options provided when initiating the manual TRIM.
750 */
751 static int
vdev_trim_load(vdev_t * vd)752 vdev_trim_load(vdev_t *vd)
753 {
754 int err = 0;
755 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
756 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
757 ASSERT(vd->vdev_leaf_zap != 0);
758
759 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
760 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
761 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
762 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
763 sizeof (vd->vdev_trim_last_offset), 1,
764 &vd->vdev_trim_last_offset);
765 if (err == ENOENT) {
766 vd->vdev_trim_last_offset = 0;
767 err = 0;
768 }
769
770 if (err == 0) {
771 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
772 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
773 sizeof (vd->vdev_trim_rate), 1,
774 &vd->vdev_trim_rate);
775 if (err == ENOENT) {
776 vd->vdev_trim_rate = 0;
777 err = 0;
778 }
779 }
780
781 if (err == 0) {
782 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
783 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
784 sizeof (vd->vdev_trim_partial), 1,
785 &vd->vdev_trim_partial);
786 if (err == ENOENT) {
787 vd->vdev_trim_partial = 0;
788 err = 0;
789 }
790 }
791
792 if (err == 0) {
793 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
794 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
795 sizeof (vd->vdev_trim_secure), 1,
796 &vd->vdev_trim_secure);
797 if (err == ENOENT) {
798 vd->vdev_trim_secure = 0;
799 err = 0;
800 }
801 }
802 }
803
804 vdev_trim_calculate_progress(vd);
805
806 return (err);
807 }
808
809 static void
vdev_trim_xlate_range_add(void * arg,range_seg64_t * physical_rs)810 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
811 {
812 trim_args_t *ta = arg;
813 vdev_t *vd = ta->trim_vdev;
814
815 /*
816 * Only a manual trim will be traversing the vdev sequentially.
817 * For an auto trim all valid ranges should be added.
818 */
819 if (ta->trim_type == TRIM_TYPE_MANUAL) {
820
821 /* Only add segments that we have not visited yet */
822 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
823 return;
824
825 /* Pick up where we left off mid-range. */
826 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
827 ASSERT3U(physical_rs->rs_end, >,
828 vd->vdev_trim_last_offset);
829 physical_rs->rs_start = vd->vdev_trim_last_offset;
830 }
831 }
832
833 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
834
835 range_tree_add(ta->trim_tree, physical_rs->rs_start,
836 physical_rs->rs_end - physical_rs->rs_start);
837 }
838
839 /*
840 * Convert the logical range into physical ranges and add them to the
841 * range tree passed in the trim_args_t.
842 */
843 static void
vdev_trim_range_add(void * arg,uint64_t start,uint64_t size)844 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
845 {
846 trim_args_t *ta = arg;
847 vdev_t *vd = ta->trim_vdev;
848 range_seg64_t logical_rs;
849 logical_rs.rs_start = start;
850 logical_rs.rs_end = start + size;
851
852 /*
853 * Every range to be trimmed must be part of ms_allocatable.
854 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
855 * is always the case.
856 */
857 if (zfs_flags & ZFS_DEBUG_TRIM) {
858 metaslab_t *msp = ta->trim_msp;
859 VERIFY0(metaslab_load(msp));
860 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
861 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
862 }
863
864 ASSERT(vd->vdev_ops->vdev_op_leaf);
865 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
866 }
867
868 /*
869 * Each manual TRIM thread is responsible for trimming the unallocated
870 * space for each leaf vdev. This is accomplished by sequentially iterating
871 * over its top-level metaslabs and issuing TRIM I/O for the space described
872 * by its ms_allocatable. While a metaslab is undergoing trimming it is
873 * not eligible for new allocations.
874 */
875 static __attribute__((noreturn)) void
vdev_trim_thread(void * arg)876 vdev_trim_thread(void *arg)
877 {
878 vdev_t *vd = arg;
879 spa_t *spa = vd->vdev_spa;
880 trim_args_t ta;
881 int error = 0;
882
883 /*
884 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
885 * vdev_trim(). Wait for the updated values to be reflected
886 * in the zap in order to start with the requested settings.
887 */
888 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
889
890 ASSERT(vdev_is_concrete(vd));
891 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
892
893 vd->vdev_trim_last_offset = 0;
894 vd->vdev_trim_rate = 0;
895 vd->vdev_trim_partial = 0;
896 vd->vdev_trim_secure = 0;
897
898 VERIFY0(vdev_trim_load(vd));
899
900 ta.trim_vdev = vd;
901 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
902 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
903 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
904 ta.trim_type = TRIM_TYPE_MANUAL;
905 ta.trim_flags = 0;
906
907 /*
908 * When a secure TRIM has been requested infer that the intent
909 * is that everything must be trimmed. Override the default
910 * minimum TRIM size to prevent ranges from being skipped.
911 */
912 if (vd->vdev_trim_secure) {
913 ta.trim_flags |= ZIO_TRIM_SECURE;
914 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
915 }
916
917 uint64_t ms_count = 0;
918 for (uint64_t i = 0; !vd->vdev_detached &&
919 i < vd->vdev_top->vdev_ms_count; i++) {
920 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
921
922 /*
923 * If we've expanded the top-level vdev or it's our
924 * first pass, calculate our progress.
925 */
926 if (vd->vdev_top->vdev_ms_count != ms_count) {
927 vdev_trim_calculate_progress(vd);
928 ms_count = vd->vdev_top->vdev_ms_count;
929 }
930
931 spa_config_exit(spa, SCL_CONFIG, FTAG);
932 metaslab_disable(msp);
933 mutex_enter(&msp->ms_lock);
934 VERIFY0(metaslab_load(msp));
935
936 /*
937 * If a partial TRIM was requested skip metaslabs which have
938 * never been initialized and thus have never been written.
939 */
940 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
941 mutex_exit(&msp->ms_lock);
942 metaslab_enable(msp, B_FALSE, B_FALSE);
943 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
944 vdev_trim_calculate_progress(vd);
945 continue;
946 }
947
948 ta.trim_msp = msp;
949 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
950 range_tree_vacate(msp->ms_trim, NULL, NULL);
951 mutex_exit(&msp->ms_lock);
952
953 error = vdev_trim_ranges(&ta);
954 metaslab_enable(msp, B_TRUE, B_FALSE);
955 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
956
957 range_tree_vacate(ta.trim_tree, NULL, NULL);
958 if (error != 0)
959 break;
960 }
961
962 spa_config_exit(spa, SCL_CONFIG, FTAG);
963
964 range_tree_destroy(ta.trim_tree);
965
966 mutex_enter(&vd->vdev_trim_lock);
967 if (!vd->vdev_trim_exit_wanted) {
968 if (vdev_writeable(vd)) {
969 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
970 vd->vdev_trim_rate, vd->vdev_trim_partial,
971 vd->vdev_trim_secure);
972 } else if (vd->vdev_faulted) {
973 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
974 vd->vdev_trim_rate, vd->vdev_trim_partial,
975 vd->vdev_trim_secure);
976 }
977 }
978 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
979
980 /*
981 * Drop the vdev_trim_lock while we sync out the txg since it's
982 * possible that a device might be trying to come online and must
983 * check to see if it needs to restart a trim. That thread will be
984 * holding the spa_config_lock which would prevent the txg_wait_synced
985 * from completing.
986 */
987 mutex_exit(&vd->vdev_trim_lock);
988 txg_wait_synced(spa_get_dsl(spa), 0);
989 mutex_enter(&vd->vdev_trim_lock);
990
991 vd->vdev_trim_thread = NULL;
992 cv_broadcast(&vd->vdev_trim_cv);
993 mutex_exit(&vd->vdev_trim_lock);
994
995 thread_exit();
996 }
997
998 /*
999 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock,
1000 * the vdev_t must be a leaf and cannot already be manually trimming.
1001 */
1002 void
vdev_trim(vdev_t * vd,uint64_t rate,boolean_t partial,boolean_t secure)1003 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1004 {
1005 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1006 ASSERT(vd->vdev_ops->vdev_op_leaf);
1007 ASSERT(vdev_is_concrete(vd));
1008 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1009 ASSERT(!vd->vdev_detached);
1010 ASSERT(!vd->vdev_trim_exit_wanted);
1011 ASSERT(!vd->vdev_top->vdev_removing);
1012 ASSERT(!vd->vdev_rz_expanding);
1013
1014 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1015 vd->vdev_trim_thread = thread_create(NULL, 0,
1016 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1017 }
1018
1019 /*
1020 * Wait for the trimming thread to be terminated (canceled or stopped).
1021 */
1022 static void
vdev_trim_stop_wait_impl(vdev_t * vd)1023 vdev_trim_stop_wait_impl(vdev_t *vd)
1024 {
1025 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1026
1027 while (vd->vdev_trim_thread != NULL)
1028 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1029
1030 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1031 vd->vdev_trim_exit_wanted = B_FALSE;
1032 }
1033
1034 /*
1035 * Wait for vdev trim threads which were listed to cleanly exit.
1036 */
1037 void
vdev_trim_stop_wait(spa_t * spa,list_t * vd_list)1038 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1039 {
1040 (void) spa;
1041 vdev_t *vd;
1042
1043 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1044 spa->spa_export_thread == curthread);
1045
1046 while ((vd = list_remove_head(vd_list)) != NULL) {
1047 mutex_enter(&vd->vdev_trim_lock);
1048 vdev_trim_stop_wait_impl(vd);
1049 mutex_exit(&vd->vdev_trim_lock);
1050 }
1051 }
1052
1053 /*
1054 * Stop trimming a device, with the resultant trimming state being tgt_state.
1055 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is
1056 * provided the stopping vdev is inserted in to the list. Callers are then
1057 * required to call vdev_trim_stop_wait() to block for all the trim threads
1058 * to exit. The caller must hold vdev_trim_lock and must not be writing to
1059 * the spa config, as the trimming thread may try to enter the config as a
1060 * reader before exiting.
1061 */
1062 void
vdev_trim_stop(vdev_t * vd,vdev_trim_state_t tgt_state,list_t * vd_list)1063 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1064 {
1065 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1066 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1067 ASSERT(vd->vdev_ops->vdev_op_leaf);
1068 ASSERT(vdev_is_concrete(vd));
1069
1070 /*
1071 * Allow cancel requests to proceed even if the trim thread has
1072 * stopped.
1073 */
1074 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1075 return;
1076
1077 vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1078 vd->vdev_trim_exit_wanted = B_TRUE;
1079
1080 if (vd_list == NULL) {
1081 vdev_trim_stop_wait_impl(vd);
1082 } else {
1083 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1084 vd->vdev_spa->spa_export_thread == curthread);
1085 list_insert_tail(vd_list, vd);
1086 }
1087 }
1088
1089 /*
1090 * Requests that all listed vdevs stop trimming.
1091 */
1092 static void
vdev_trim_stop_all_impl(vdev_t * vd,vdev_trim_state_t tgt_state,list_t * vd_list)1093 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1094 list_t *vd_list)
1095 {
1096 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1097 mutex_enter(&vd->vdev_trim_lock);
1098 vdev_trim_stop(vd, tgt_state, vd_list);
1099 mutex_exit(&vd->vdev_trim_lock);
1100 return;
1101 }
1102
1103 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1104 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1105 vd_list);
1106 }
1107 }
1108
1109 /*
1110 * Convenience function to stop trimming of a vdev tree and set all trim
1111 * thread pointers to NULL.
1112 */
1113 void
vdev_trim_stop_all(vdev_t * vd,vdev_trim_state_t tgt_state)1114 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1115 {
1116 spa_t *spa = vd->vdev_spa;
1117 list_t vd_list;
1118 vdev_t *vd_l2cache;
1119
1120 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1121 spa->spa_export_thread == curthread);
1122
1123 list_create(&vd_list, sizeof (vdev_t),
1124 offsetof(vdev_t, vdev_trim_node));
1125
1126 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1127
1128 /*
1129 * Iterate over cache devices and request stop trimming the
1130 * whole device in case we export the pool or remove the cache
1131 * device prematurely.
1132 */
1133 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1134 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1135 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1136 }
1137
1138 vdev_trim_stop_wait(spa, &vd_list);
1139
1140 if (vd->vdev_spa->spa_sync_on) {
1141 /* Make sure that our state has been synced to disk */
1142 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1143 }
1144
1145 list_destroy(&vd_list);
1146 }
1147
1148 /*
1149 * Conditionally restarts a manual TRIM given its on-disk state.
1150 */
1151 void
vdev_trim_restart(vdev_t * vd)1152 vdev_trim_restart(vdev_t *vd)
1153 {
1154 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1155 vd->vdev_spa->spa_load_thread == curthread);
1156 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1157
1158 if (vd->vdev_leaf_zap != 0) {
1159 mutex_enter(&vd->vdev_trim_lock);
1160 uint64_t trim_state = VDEV_TRIM_NONE;
1161 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1162 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1163 sizeof (trim_state), 1, &trim_state);
1164 ASSERT(err == 0 || err == ENOENT);
1165 vd->vdev_trim_state = trim_state;
1166
1167 uint64_t timestamp = 0;
1168 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1169 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1170 sizeof (timestamp), 1, ×tamp);
1171 ASSERT(err == 0 || err == ENOENT);
1172 vd->vdev_trim_action_time = timestamp;
1173
1174 if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1175 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1176 /* load progress for reporting, but don't resume */
1177 VERIFY0(vdev_trim_load(vd));
1178 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1179 vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1180 !vd->vdev_top->vdev_rz_expanding &&
1181 vd->vdev_trim_thread == NULL) {
1182 VERIFY0(vdev_trim_load(vd));
1183 vdev_trim(vd, vd->vdev_trim_rate,
1184 vd->vdev_trim_partial, vd->vdev_trim_secure);
1185 }
1186
1187 mutex_exit(&vd->vdev_trim_lock);
1188 }
1189
1190 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1191 vdev_trim_restart(vd->vdev_child[i]);
1192 }
1193 }
1194
1195 /*
1196 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1197 * every TRIM range is contained within ms_allocatable.
1198 */
1199 static void
vdev_trim_range_verify(void * arg,uint64_t start,uint64_t size)1200 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1201 {
1202 trim_args_t *ta = arg;
1203 metaslab_t *msp = ta->trim_msp;
1204
1205 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1206 VERIFY3U(msp->ms_disabled, >, 0);
1207 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1208 }
1209
1210 /*
1211 * Each automatic TRIM thread is responsible for managing the trimming of a
1212 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk.
1213 *
1214 * N.B. This behavior is different from a manual TRIM where a thread
1215 * is created for each leaf vdev, instead of each top-level vdev.
1216 */
1217 static __attribute__((noreturn)) void
vdev_autotrim_thread(void * arg)1218 vdev_autotrim_thread(void *arg)
1219 {
1220 vdev_t *vd = arg;
1221 spa_t *spa = vd->vdev_spa;
1222 int shift = 0;
1223
1224 mutex_enter(&vd->vdev_autotrim_lock);
1225 ASSERT3P(vd->vdev_top, ==, vd);
1226 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1227 mutex_exit(&vd->vdev_autotrim_lock);
1228 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1229
1230 while (!vdev_autotrim_should_stop(vd)) {
1231 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1232 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1233 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1234
1235 /*
1236 * All of the metaslabs are divided in to groups of size
1237 * num_metaslabs / zfs_trim_txg_batch. Each of these groups
1238 * is composed of metaslabs which are spread evenly over the
1239 * device.
1240 *
1241 * For example, when zfs_trim_txg_batch = 32 (default) then
1242 * group 0 will contain metaslabs 0, 32, 64, ...;
1243 * group 1 will contain metaslabs 1, 33, 65, ...;
1244 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1245 *
1246 * On each pass through the while() loop one of these groups
1247 * is selected. This is accomplished by using a shift value
1248 * to select the starting metaslab, then striding over the
1249 * metaslabs using the zfs_trim_txg_batch size. This is
1250 * done to accomplish two things.
1251 *
1252 * 1) By dividing the metaslabs in to groups, and making sure
1253 * that each group takes a minimum of one txg to process.
1254 * Then zfs_trim_txg_batch controls the minimum number of
1255 * txgs which must occur before a metaslab is revisited.
1256 *
1257 * 2) Selecting non-consecutive metaslabs distributes the
1258 * TRIM commands for a group evenly over the entire device.
1259 * This can be advantageous for certain types of devices.
1260 */
1261 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1262 i += txgs_per_trim) {
1263 metaslab_t *msp = vd->vdev_ms[i];
1264 range_tree_t *trim_tree;
1265 boolean_t issued_trim = B_FALSE;
1266 boolean_t wait_aborted = B_FALSE;
1267
1268 spa_config_exit(spa, SCL_CONFIG, FTAG);
1269 metaslab_disable(msp);
1270 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1271
1272 mutex_enter(&msp->ms_lock);
1273
1274 /*
1275 * Skip the metaslab when it has never been allocated
1276 * or when there are no recent frees to trim.
1277 */
1278 if (msp->ms_sm == NULL ||
1279 range_tree_is_empty(msp->ms_trim)) {
1280 mutex_exit(&msp->ms_lock);
1281 metaslab_enable(msp, B_FALSE, B_FALSE);
1282 continue;
1283 }
1284
1285 /*
1286 * Skip the metaslab when it has already been disabled.
1287 * This may happen when a manual TRIM or initialize
1288 * operation is running concurrently. In the case
1289 * of a manual TRIM, the ms_trim tree will have been
1290 * vacated. Only ranges added after the manual TRIM
1291 * disabled the metaslab will be included in the tree.
1292 * These will be processed when the automatic TRIM
1293 * next revisits this metaslab.
1294 */
1295 if (msp->ms_disabled > 1) {
1296 mutex_exit(&msp->ms_lock);
1297 metaslab_enable(msp, B_FALSE, B_FALSE);
1298 continue;
1299 }
1300
1301 /*
1302 * Allocate an empty range tree which is swapped in
1303 * for the existing ms_trim tree while it is processed.
1304 */
1305 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1306 0, 0);
1307 range_tree_swap(&msp->ms_trim, &trim_tree);
1308 ASSERT(range_tree_is_empty(msp->ms_trim));
1309
1310 /*
1311 * There are two cases when constructing the per-vdev
1312 * trim trees for a metaslab. If the top-level vdev
1313 * has no children then it is also a leaf and should
1314 * be trimmed. Otherwise our children are the leaves
1315 * and a trim tree should be constructed for each.
1316 */
1317 trim_args_t *tap;
1318 uint64_t children = vd->vdev_children;
1319 if (children == 0) {
1320 children = 1;
1321 tap = kmem_zalloc(sizeof (trim_args_t) *
1322 children, KM_SLEEP);
1323 tap[0].trim_vdev = vd;
1324 } else {
1325 tap = kmem_zalloc(sizeof (trim_args_t) *
1326 children, KM_SLEEP);
1327
1328 for (uint64_t c = 0; c < children; c++) {
1329 tap[c].trim_vdev = vd->vdev_child[c];
1330 }
1331 }
1332
1333 for (uint64_t c = 0; c < children; c++) {
1334 trim_args_t *ta = &tap[c];
1335 vdev_t *cvd = ta->trim_vdev;
1336
1337 ta->trim_msp = msp;
1338 ta->trim_extent_bytes_max = extent_bytes_max;
1339 ta->trim_extent_bytes_min = extent_bytes_min;
1340 ta->trim_type = TRIM_TYPE_AUTO;
1341 ta->trim_flags = 0;
1342
1343 if (cvd->vdev_detached ||
1344 !vdev_writeable(cvd) ||
1345 !cvd->vdev_has_trim ||
1346 cvd->vdev_trim_thread != NULL) {
1347 continue;
1348 }
1349
1350 /*
1351 * When a device has an attached hot spare, or
1352 * is being replaced it will not be trimmed.
1353 * This is done to avoid adding additional
1354 * stress to a potentially unhealthy device,
1355 * and to minimize the required rebuild time.
1356 */
1357 if (!cvd->vdev_ops->vdev_op_leaf)
1358 continue;
1359
1360 ta->trim_tree = range_tree_create(NULL,
1361 RANGE_SEG64, NULL, 0, 0);
1362 range_tree_walk(trim_tree,
1363 vdev_trim_range_add, ta);
1364 }
1365
1366 mutex_exit(&msp->ms_lock);
1367 spa_config_exit(spa, SCL_CONFIG, FTAG);
1368
1369 /*
1370 * Issue the TRIM I/Os for all ranges covered by the
1371 * TRIM trees. These ranges are safe to TRIM because
1372 * no new allocations will be performed until the call
1373 * to metaslab_enabled() below.
1374 */
1375 for (uint64_t c = 0; c < children; c++) {
1376 trim_args_t *ta = &tap[c];
1377
1378 /*
1379 * Always yield to a manual TRIM if one has
1380 * been started for the child vdev.
1381 */
1382 if (ta->trim_tree == NULL ||
1383 ta->trim_vdev->vdev_trim_thread != NULL) {
1384 continue;
1385 }
1386
1387 /*
1388 * After this point metaslab_enable() must be
1389 * called with the sync flag set. This is done
1390 * here because vdev_trim_ranges() is allowed
1391 * to be interrupted (EINTR) before issuing all
1392 * of the required TRIM I/Os.
1393 */
1394 issued_trim = B_TRUE;
1395
1396 int error = vdev_trim_ranges(ta);
1397 if (error)
1398 break;
1399 }
1400
1401 /*
1402 * Verify every range which was trimmed is still
1403 * contained within the ms_allocatable tree.
1404 */
1405 if (zfs_flags & ZFS_DEBUG_TRIM) {
1406 mutex_enter(&msp->ms_lock);
1407 VERIFY0(metaslab_load(msp));
1408 VERIFY3P(tap[0].trim_msp, ==, msp);
1409 range_tree_walk(trim_tree,
1410 vdev_trim_range_verify, &tap[0]);
1411 mutex_exit(&msp->ms_lock);
1412 }
1413
1414 range_tree_vacate(trim_tree, NULL, NULL);
1415 range_tree_destroy(trim_tree);
1416
1417 /*
1418 * Wait for couples of kicks, to ensure the trim io is
1419 * synced. If the wait is aborted due to
1420 * vdev_autotrim_exit_wanted, we need to signal
1421 * metaslab_enable() to wait for sync.
1422 */
1423 if (issued_trim) {
1424 wait_aborted = vdev_autotrim_wait_kick(vd,
1425 TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1426 }
1427
1428 metaslab_enable(msp, wait_aborted, B_FALSE);
1429 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1430
1431 for (uint64_t c = 0; c < children; c++) {
1432 trim_args_t *ta = &tap[c];
1433
1434 if (ta->trim_tree == NULL)
1435 continue;
1436
1437 range_tree_vacate(ta->trim_tree, NULL, NULL);
1438 range_tree_destroy(ta->trim_tree);
1439 }
1440
1441 kmem_free(tap, sizeof (trim_args_t) * children);
1442
1443 if (vdev_autotrim_should_stop(vd))
1444 break;
1445 }
1446
1447 spa_config_exit(spa, SCL_CONFIG, FTAG);
1448
1449 vdev_autotrim_wait_kick(vd, 1);
1450
1451 shift++;
1452 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1453 }
1454
1455 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1456 vdev_t *cvd = vd->vdev_child[c];
1457 mutex_enter(&cvd->vdev_trim_io_lock);
1458
1459 while (cvd->vdev_trim_inflight[1] > 0) {
1460 cv_wait(&cvd->vdev_trim_io_cv,
1461 &cvd->vdev_trim_io_lock);
1462 }
1463 mutex_exit(&cvd->vdev_trim_io_lock);
1464 }
1465
1466 spa_config_exit(spa, SCL_CONFIG, FTAG);
1467
1468 /*
1469 * When exiting because the autotrim property was set to off, then
1470 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1471 */
1472 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1473 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1474 metaslab_t *msp = vd->vdev_ms[i];
1475
1476 mutex_enter(&msp->ms_lock);
1477 range_tree_vacate(msp->ms_trim, NULL, NULL);
1478 mutex_exit(&msp->ms_lock);
1479 }
1480 }
1481
1482 mutex_enter(&vd->vdev_autotrim_lock);
1483 ASSERT(vd->vdev_autotrim_thread != NULL);
1484 vd->vdev_autotrim_thread = NULL;
1485 cv_broadcast(&vd->vdev_autotrim_cv);
1486 mutex_exit(&vd->vdev_autotrim_lock);
1487
1488 thread_exit();
1489 }
1490
1491 /*
1492 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1493 * trimmed. A top-level vdev which has been evacuated will never be trimmed.
1494 */
1495 void
vdev_autotrim(spa_t * spa)1496 vdev_autotrim(spa_t *spa)
1497 {
1498 vdev_t *root_vd = spa->spa_root_vdev;
1499
1500 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1501 vdev_t *tvd = root_vd->vdev_child[i];
1502
1503 mutex_enter(&tvd->vdev_autotrim_lock);
1504 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1505 tvd->vdev_autotrim_thread == NULL &&
1506 !tvd->vdev_rz_expanding) {
1507 ASSERT3P(tvd->vdev_top, ==, tvd);
1508
1509 tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1510 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1511 maxclsyspri);
1512 ASSERT(tvd->vdev_autotrim_thread != NULL);
1513 }
1514 mutex_exit(&tvd->vdev_autotrim_lock);
1515 }
1516 }
1517
1518 /*
1519 * Wait for the vdev_autotrim_thread associated with the passed top-level
1520 * vdev to be terminated (canceled or stopped).
1521 */
1522 void
vdev_autotrim_stop_wait(vdev_t * tvd)1523 vdev_autotrim_stop_wait(vdev_t *tvd)
1524 {
1525 mutex_enter(&tvd->vdev_autotrim_lock);
1526 if (tvd->vdev_autotrim_thread != NULL) {
1527 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1528 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1529 cv_wait(&tvd->vdev_autotrim_cv,
1530 &tvd->vdev_autotrim_lock);
1531
1532 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1533 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1534 }
1535 mutex_exit(&tvd->vdev_autotrim_lock);
1536 }
1537
1538 void
vdev_autotrim_kick(spa_t * spa)1539 vdev_autotrim_kick(spa_t *spa)
1540 {
1541 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1542
1543 vdev_t *root_vd = spa->spa_root_vdev;
1544 vdev_t *tvd;
1545
1546 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1547 tvd = root_vd->vdev_child[i];
1548
1549 mutex_enter(&tvd->vdev_autotrim_lock);
1550 if (tvd->vdev_autotrim_thread != NULL)
1551 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1552 mutex_exit(&tvd->vdev_autotrim_lock);
1553 }
1554 }
1555
1556 /*
1557 * Wait for all of the vdev_autotrim_thread associated with the pool to
1558 * be terminated (canceled or stopped).
1559 */
1560 void
vdev_autotrim_stop_all(spa_t * spa)1561 vdev_autotrim_stop_all(spa_t *spa)
1562 {
1563 vdev_t *root_vd = spa->spa_root_vdev;
1564
1565 for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1566 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1567 }
1568
1569 /*
1570 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1571 */
1572 void
vdev_autotrim_restart(spa_t * spa)1573 vdev_autotrim_restart(spa_t *spa)
1574 {
1575 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1576 spa->spa_load_thread == curthread);
1577 if (spa->spa_autotrim)
1578 vdev_autotrim(spa);
1579 }
1580
1581 static __attribute__((noreturn)) void
vdev_trim_l2arc_thread(void * arg)1582 vdev_trim_l2arc_thread(void *arg)
1583 {
1584 vdev_t *vd = arg;
1585 spa_t *spa = vd->vdev_spa;
1586 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1587 trim_args_t ta = {0};
1588 range_seg64_t physical_rs;
1589
1590 ASSERT(vdev_is_concrete(vd));
1591 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1592
1593 vd->vdev_trim_last_offset = 0;
1594 vd->vdev_trim_rate = 0;
1595 vd->vdev_trim_partial = 0;
1596 vd->vdev_trim_secure = 0;
1597
1598 ta.trim_vdev = vd;
1599 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1600 ta.trim_type = TRIM_TYPE_MANUAL;
1601 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1602 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1603 ta.trim_flags = 0;
1604
1605 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1606 physical_rs.rs_end = vd->vdev_trim_bytes_est =
1607 vdev_get_min_asize(vd);
1608
1609 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1610 physical_rs.rs_end - physical_rs.rs_start);
1611
1612 mutex_enter(&vd->vdev_trim_lock);
1613 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1614 mutex_exit(&vd->vdev_trim_lock);
1615
1616 (void) vdev_trim_ranges(&ta);
1617
1618 spa_config_exit(spa, SCL_CONFIG, FTAG);
1619 mutex_enter(&vd->vdev_trim_io_lock);
1620 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1621 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1622 }
1623 mutex_exit(&vd->vdev_trim_io_lock);
1624
1625 range_tree_vacate(ta.trim_tree, NULL, NULL);
1626 range_tree_destroy(ta.trim_tree);
1627
1628 mutex_enter(&vd->vdev_trim_lock);
1629 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1630 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1631 vd->vdev_trim_rate, vd->vdev_trim_partial,
1632 vd->vdev_trim_secure);
1633 }
1634 ASSERT(vd->vdev_trim_thread != NULL ||
1635 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1636
1637 /*
1638 * Drop the vdev_trim_lock while we sync out the txg since it's
1639 * possible that a device might be trying to come online and
1640 * must check to see if it needs to restart a trim. That thread
1641 * will be holding the spa_config_lock which would prevent the
1642 * txg_wait_synced from completing. Same strategy as in
1643 * vdev_trim_thread().
1644 */
1645 mutex_exit(&vd->vdev_trim_lock);
1646 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1647 mutex_enter(&vd->vdev_trim_lock);
1648
1649 /*
1650 * Update the header of the cache device here, before
1651 * broadcasting vdev_trim_cv which may lead to the removal
1652 * of the device. The same applies for setting l2ad_trim_all to
1653 * false.
1654 */
1655 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1656 RW_READER);
1657 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1658 l2arc_dev_hdr_update(dev);
1659 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1660
1661 vd->vdev_trim_thread = NULL;
1662 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1663 dev->l2ad_trim_all = B_FALSE;
1664
1665 cv_broadcast(&vd->vdev_trim_cv);
1666 mutex_exit(&vd->vdev_trim_lock);
1667
1668 thread_exit();
1669 }
1670
1671 /*
1672 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1673 * to vd->vdev_trim_thread variable. This facilitates the management of
1674 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1675 * to a pool or pool creation or when the header of the device is invalid.
1676 */
1677 void
vdev_trim_l2arc(spa_t * spa)1678 vdev_trim_l2arc(spa_t *spa)
1679 {
1680 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1681
1682 /*
1683 * Locate the spa's l2arc devices and kick off TRIM threads.
1684 */
1685 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1686 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1687 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1688
1689 if (dev == NULL || !dev->l2ad_trim_all) {
1690 /*
1691 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1692 * cache device was not marked for whole device TRIM
1693 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1694 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1695 * l2ad_log_entries > 0).
1696 */
1697 continue;
1698 }
1699
1700 mutex_enter(&vd->vdev_trim_lock);
1701 ASSERT(vd->vdev_ops->vdev_op_leaf);
1702 ASSERT(vdev_is_concrete(vd));
1703 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1704 ASSERT(!vd->vdev_detached);
1705 ASSERT(!vd->vdev_trim_exit_wanted);
1706 ASSERT(!vd->vdev_top->vdev_removing);
1707 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1708 vd->vdev_trim_thread = thread_create(NULL, 0,
1709 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1710 mutex_exit(&vd->vdev_trim_lock);
1711 }
1712 }
1713
1714 /*
1715 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1716 * on leaf vdevs.
1717 */
1718 int
vdev_trim_simple(vdev_t * vd,uint64_t start,uint64_t size)1719 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1720 {
1721 trim_args_t ta = {0};
1722 range_seg64_t physical_rs;
1723 int error;
1724 physical_rs.rs_start = start;
1725 physical_rs.rs_end = start + size;
1726
1727 ASSERT(vdev_is_concrete(vd));
1728 ASSERT(vd->vdev_ops->vdev_op_leaf);
1729 ASSERT(!vd->vdev_detached);
1730 ASSERT(!vd->vdev_top->vdev_removing);
1731 ASSERT(!vd->vdev_top->vdev_rz_expanding);
1732
1733 ta.trim_vdev = vd;
1734 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1735 ta.trim_type = TRIM_TYPE_SIMPLE;
1736 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1737 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1738 ta.trim_flags = 0;
1739
1740 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1741
1742 if (physical_rs.rs_end > physical_rs.rs_start) {
1743 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1744 physical_rs.rs_end - physical_rs.rs_start);
1745 } else {
1746 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1747 }
1748
1749 error = vdev_trim_ranges(&ta);
1750
1751 mutex_enter(&vd->vdev_trim_io_lock);
1752 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1753 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1754 }
1755 mutex_exit(&vd->vdev_trim_io_lock);
1756
1757 range_tree_vacate(ta.trim_tree, NULL, NULL);
1758 range_tree_destroy(ta.trim_tree);
1759
1760 return (error);
1761 }
1762
1763 EXPORT_SYMBOL(vdev_trim);
1764 EXPORT_SYMBOL(vdev_trim_stop);
1765 EXPORT_SYMBOL(vdev_trim_stop_all);
1766 EXPORT_SYMBOL(vdev_trim_stop_wait);
1767 EXPORT_SYMBOL(vdev_trim_restart);
1768 EXPORT_SYMBOL(vdev_autotrim);
1769 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1770 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1771 EXPORT_SYMBOL(vdev_autotrim_restart);
1772 EXPORT_SYMBOL(vdev_trim_l2arc);
1773 EXPORT_SYMBOL(vdev_trim_simple);
1774
1775 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1776 "Max size of TRIM commands, larger will be split");
1777
1778 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1779 "Min size of TRIM commands, smaller will be skipped");
1780
1781 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1782 "Skip metaslabs which have never been initialized");
1783
1784 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1785 "Min number of txgs to aggregate frees before issuing TRIM");
1786
1787 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1788 "Max queued TRIMs outstanding per leaf vdev");
1789