xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_trim.c (revision aca928a50a42f00f344df934005b09dbcb4e2f77)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  * Copyright 2023 RackTop Systems, Inc.
27  */
28 
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39 
40 /*
41  * TRIM is a feature which is used to notify a SSD that some previously
42  * written space is no longer allocated by the pool.  This is useful because
43  * writes to a SSD must be performed to blocks which have first been erased.
44  * Ensuring the SSD always has a supply of erased blocks for new writes
45  * helps prevent the performance from deteriorating.
46  *
47  * There are two supported TRIM methods; manual and automatic.
48  *
49  * Manual TRIM:
50  *
51  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
52  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53  * managing that vdev TRIM process.  This involves iterating over all the
54  * metaslabs, calculating the unallocated space ranges, and then issuing the
55  * required TRIM I/Os.
56  *
57  * While a metaslab is being actively trimmed it is not eligible to perform
58  * new allocations.  After traversing all of the metaslabs the thread is
59  * terminated.  Finally, both the requested options and current progress of
60  * the TRIM are regularly written to the pool.  This allows the TRIM to be
61  * suspended and resumed as needed.
62  *
63  * Automatic TRIM:
64  *
65  * An automatic TRIM is enabled by setting the 'autotrim' pool property
66  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
67  * top-level (not leaf) vdev in the pool.  These threads perform the same
68  * core TRIM process as a manual TRIM, but with a few key differences.
69  *
70  * 1) Automatic TRIM happens continuously in the background and operates
71  *    solely on recently freed blocks (ms_trim not ms_allocatable).
72  *
73  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
74  *    the benefit of simplifying the threading model, it makes it easier
75  *    to coordinate administrative commands, and it ensures only a single
76  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
77  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78  *    children.
79  *
80  * 3) There is no automatic TRIM progress information stored on disk, nor
81  *    is it reported by 'zpool status'.
82  *
83  * While the automatic TRIM process is highly effective it is more likely
84  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
85  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86  * TRIM and are skipped.  This means small amounts of freed space may not
87  * be automatically trimmed.
88  *
89  * Furthermore, devices with attached hot spares and devices being actively
90  * replaced are skipped.  This is done to avoid adding additional stress to
91  * a potentially unhealthy device and to minimize the required rebuild time.
92  *
93  * For this reason it may be beneficial to occasionally manually TRIM a pool
94  * even when automatic TRIM is enabled.
95  */
96 
97 /*
98  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99  */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101 
102 /*
103  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104  */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106 
107 /*
108  * Skip uninitialized metaslabs during the TRIM process.  This option is
109  * useful for pools constructed from large thinly-provisioned devices where
110  * TRIM operations are slow.  As a pool ages an increasing fraction of
111  * the pools metaslabs will be initialized progressively degrading the
112  * usefulness of this option.  This setting is stored when starting a
113  * manual TRIM and will persist for the duration of the requested TRIM.
114  */
115 unsigned int zfs_trim_metaslab_skip = 0;
116 
117 /*
118  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
119  * concurrent TRIM I/Os issued to the device is controlled by the
120  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121  */
122 static unsigned int zfs_trim_queue_limit = 10;
123 
124 /*
125  * The minimum number of transaction groups between automatic trims of a
126  * metaslab.  This setting represents a trade-off between issuing more
127  * efficient TRIM operations, by allowing them to be aggregated longer,
128  * and issuing them promptly so the trimmed space is available.  Note
129  * that this value is a minimum; metaslabs can be trimmed less frequently
130  * when there are a large number of ranges which need to be trimmed.
131  *
132  * Increasing this value will allow frees to be aggregated for a longer
133  * time.  This can result is larger TRIM operations, and increased memory
134  * usage in order to track the ranges to be trimmed.  Decreasing this value
135  * has the opposite effect.  The default value of 32 was determined though
136  * testing to be a reasonable compromise.
137  */
138 static unsigned int zfs_trim_txg_batch = 32;
139 
140 /*
141  * The trim_args are a control structure which describe how a leaf vdev
142  * should be trimmed.  The core elements are the vdev, the metaslab being
143  * trimmed and a range tree containing the extents to TRIM.  All provided
144  * ranges must be within the metaslab.
145  */
146 typedef struct trim_args {
147 	/*
148 	 * These fields are set by the caller of vdev_trim_ranges().
149 	 */
150 	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
151 	metaslab_t	*trim_msp;		/* Disabled metaslab */
152 	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
153 	trim_type_t	trim_type;		/* Manual or auto TRIM */
154 	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
155 	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
156 	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
157 
158 	/*
159 	 * These fields are updated by vdev_trim_ranges().
160 	 */
161 	hrtime_t	trim_start_time;	/* Start time */
162 	uint64_t	trim_bytes_done;	/* Bytes trimmed */
163 } trim_args_t;
164 
165 /*
166  * Determines whether a vdev_trim_thread() should be stopped.
167  */
168 static boolean_t
vdev_trim_should_stop(vdev_t * vd)169 vdev_trim_should_stop(vdev_t *vd)
170 {
171 	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172 	    vd->vdev_detached || vd->vdev_top->vdev_removing ||
173 	    vd->vdev_top->vdev_rz_expanding);
174 }
175 
176 /*
177  * Determines whether a vdev_autotrim_thread() should be stopped.
178  */
179 static boolean_t
vdev_autotrim_should_stop(vdev_t * tvd)180 vdev_autotrim_should_stop(vdev_t *tvd)
181 {
182 	return (tvd->vdev_autotrim_exit_wanted ||
183 	    !vdev_writeable(tvd) || tvd->vdev_removing ||
184 	    tvd->vdev_rz_expanding ||
185 	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186 }
187 
188 /*
189  * Wait for given number of kicks, return true if the wait is aborted due to
190  * vdev_autotrim_exit_wanted.
191  */
192 static boolean_t
vdev_autotrim_wait_kick(vdev_t * vd,int num_of_kick)193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194 {
195 	mutex_enter(&vd->vdev_autotrim_lock);
196 	for (int i = 0; i < num_of_kick; i++) {
197 		if (vd->vdev_autotrim_exit_wanted)
198 			break;
199 		cv_wait_idle(&vd->vdev_autotrim_kick_cv,
200 		    &vd->vdev_autotrim_lock);
201 	}
202 	boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
203 	mutex_exit(&vd->vdev_autotrim_lock);
204 
205 	return (exit_wanted);
206 }
207 
208 /*
209  * The sync task for updating the on-disk state of a manual TRIM.  This
210  * is scheduled by vdev_trim_change_state().
211  */
212 static void
vdev_trim_zap_update_sync(void * arg,dmu_tx_t * tx)213 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
214 {
215 	/*
216 	 * We pass in the guid instead of the vdev_t since the vdev may
217 	 * have been freed prior to the sync task being processed.  This
218 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
219 	 * stop the trimming thread, schedule the sync task, and free
220 	 * the vdev. Later when the scheduled sync task is invoked, it would
221 	 * find that the vdev has been freed.
222 	 */
223 	uint64_t guid = *(uint64_t *)arg;
224 	uint64_t txg = dmu_tx_get_txg(tx);
225 	kmem_free(arg, sizeof (uint64_t));
226 
227 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
228 	if (vd == NULL || vd->vdev_top->vdev_removing ||
229 	    !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
230 		return;
231 
232 	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
233 	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
234 
235 	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
236 
237 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
238 
239 	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
240 
241 		if (vd->vdev_trim_last_offset == UINT64_MAX)
242 			last_offset = 0;
243 
244 		vd->vdev_trim_last_offset = last_offset;
245 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
246 		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
247 		    sizeof (last_offset), 1, &last_offset, tx));
248 	}
249 
250 	if (vd->vdev_trim_action_time > 0) {
251 		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
252 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
253 		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
254 		    1, &val, tx));
255 	}
256 
257 	if (vd->vdev_trim_rate > 0) {
258 		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
259 
260 		if (rate == UINT64_MAX)
261 			rate = 0;
262 
263 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
264 		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
265 	}
266 
267 	uint64_t partial = vd->vdev_trim_partial;
268 	if (partial == UINT64_MAX)
269 		partial = 0;
270 
271 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
272 	    sizeof (partial), 1, &partial, tx));
273 
274 	uint64_t secure = vd->vdev_trim_secure;
275 	if (secure == UINT64_MAX)
276 		secure = 0;
277 
278 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
279 	    sizeof (secure), 1, &secure, tx));
280 
281 
282 	uint64_t trim_state = vd->vdev_trim_state;
283 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
284 	    sizeof (trim_state), 1, &trim_state, tx));
285 }
286 
287 /*
288  * Update the on-disk state of a manual TRIM.  This is called to request
289  * that a TRIM be started/suspended/canceled, or to change one of the
290  * TRIM options (partial, secure, rate).
291  */
292 static void
vdev_trim_change_state(vdev_t * vd,vdev_trim_state_t new_state,uint64_t rate,boolean_t partial,boolean_t secure)293 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
294     uint64_t rate, boolean_t partial, boolean_t secure)
295 {
296 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
297 	spa_t *spa = vd->vdev_spa;
298 
299 	if (new_state == vd->vdev_trim_state)
300 		return;
301 
302 	/*
303 	 * Copy the vd's guid, this will be freed by the sync task.
304 	 */
305 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
306 	*guid = vd->vdev_guid;
307 
308 	/*
309 	 * If we're suspending, then preserve the original start time.
310 	 */
311 	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
312 		vd->vdev_trim_action_time = gethrestime_sec();
313 	}
314 
315 	/*
316 	 * If we're activating, then preserve the requested rate and trim
317 	 * method.  Setting the last offset and rate to UINT64_MAX is used
318 	 * as a sentinel to indicate they should be reset to default values.
319 	 */
320 	if (new_state == VDEV_TRIM_ACTIVE) {
321 		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
322 		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
323 			vd->vdev_trim_last_offset = UINT64_MAX;
324 			vd->vdev_trim_rate = UINT64_MAX;
325 			vd->vdev_trim_partial = UINT64_MAX;
326 			vd->vdev_trim_secure = UINT64_MAX;
327 		}
328 
329 		if (rate != 0)
330 			vd->vdev_trim_rate = rate;
331 
332 		if (partial != 0)
333 			vd->vdev_trim_partial = partial;
334 
335 		if (secure != 0)
336 			vd->vdev_trim_secure = secure;
337 	}
338 
339 	vdev_trim_state_t old_state = vd->vdev_trim_state;
340 	boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
341 	vd->vdev_trim_state = new_state;
342 
343 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
344 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
345 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
346 	    guid, tx);
347 
348 	switch (new_state) {
349 	case VDEV_TRIM_ACTIVE:
350 		spa_event_notify(spa, vd, NULL,
351 		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
352 		spa_history_log_internal(spa, "trim", tx,
353 		    "vdev=%s activated", vd->vdev_path);
354 		break;
355 	case VDEV_TRIM_SUSPENDED:
356 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
357 		spa_history_log_internal(spa, "trim", tx,
358 		    "vdev=%s suspended", vd->vdev_path);
359 		break;
360 	case VDEV_TRIM_CANCELED:
361 		if (old_state == VDEV_TRIM_ACTIVE ||
362 		    old_state == VDEV_TRIM_SUSPENDED) {
363 			spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
364 			spa_history_log_internal(spa, "trim", tx,
365 			    "vdev=%s canceled", vd->vdev_path);
366 		}
367 		break;
368 	case VDEV_TRIM_COMPLETE:
369 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
370 		spa_history_log_internal(spa, "trim", tx,
371 		    "vdev=%s complete", vd->vdev_path);
372 		break;
373 	default:
374 		panic("invalid state %llu", (unsigned long long)new_state);
375 	}
376 
377 	dmu_tx_commit(tx);
378 
379 	if (new_state != VDEV_TRIM_ACTIVE)
380 		spa_notify_waiters(spa);
381 }
382 
383 /*
384  * The zio_done_func_t done callback for each manual TRIM issued.  It is
385  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
386  * and limiting the number of in flight TRIM I/Os.
387  */
388 static void
vdev_trim_cb(zio_t * zio)389 vdev_trim_cb(zio_t *zio)
390 {
391 	vdev_t *vd = zio->io_vd;
392 
393 	mutex_enter(&vd->vdev_trim_io_lock);
394 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
395 		/*
396 		 * The I/O failed because the vdev was unavailable; roll the
397 		 * last offset back. (This works because spa_sync waits on
398 		 * spa_txg_zio before it runs sync tasks.)
399 		 */
400 		uint64_t *offset =
401 		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
402 		*offset = MIN(*offset, zio->io_offset);
403 	} else {
404 		if (zio->io_error != 0) {
405 			vd->vdev_stat.vs_trim_errors++;
406 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
407 			    0, 0, 0, 0, 1, zio->io_orig_size);
408 		} else {
409 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
410 			    1, zio->io_orig_size, 0, 0, 0, 0);
411 		}
412 
413 		vd->vdev_trim_bytes_done += zio->io_orig_size;
414 	}
415 
416 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
417 	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
418 	cv_broadcast(&vd->vdev_trim_io_cv);
419 	mutex_exit(&vd->vdev_trim_io_lock);
420 
421 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
422 }
423 
424 /*
425  * The zio_done_func_t done callback for each automatic TRIM issued.  It
426  * is responsible for updating the TRIM stats and limiting the number of
427  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
428  * never reissued on failure.
429  */
430 static void
vdev_autotrim_cb(zio_t * zio)431 vdev_autotrim_cb(zio_t *zio)
432 {
433 	vdev_t *vd = zio->io_vd;
434 
435 	mutex_enter(&vd->vdev_trim_io_lock);
436 
437 	if (zio->io_error != 0) {
438 		vd->vdev_stat.vs_trim_errors++;
439 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
440 		    0, 0, 0, 0, 1, zio->io_orig_size);
441 	} else {
442 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
443 		    1, zio->io_orig_size, 0, 0, 0, 0);
444 	}
445 
446 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
447 	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
448 	cv_broadcast(&vd->vdev_trim_io_cv);
449 	mutex_exit(&vd->vdev_trim_io_lock);
450 
451 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
452 }
453 
454 /*
455  * The zio_done_func_t done callback for each TRIM issued via
456  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
457  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
458  * effort and are never reissued on failure.
459  */
460 static void
vdev_trim_simple_cb(zio_t * zio)461 vdev_trim_simple_cb(zio_t *zio)
462 {
463 	vdev_t *vd = zio->io_vd;
464 
465 	mutex_enter(&vd->vdev_trim_io_lock);
466 
467 	if (zio->io_error != 0) {
468 		vd->vdev_stat.vs_trim_errors++;
469 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
470 		    0, 0, 0, 0, 1, zio->io_orig_size);
471 	} else {
472 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
473 		    1, zio->io_orig_size, 0, 0, 0, 0);
474 	}
475 
476 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
477 	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
478 	cv_broadcast(&vd->vdev_trim_io_cv);
479 	mutex_exit(&vd->vdev_trim_io_lock);
480 
481 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
482 }
483 /*
484  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
485  */
486 static uint64_t
vdev_trim_calculate_rate(trim_args_t * ta)487 vdev_trim_calculate_rate(trim_args_t *ta)
488 {
489 	return (ta->trim_bytes_done * 1000 /
490 	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
491 }
492 
493 /*
494  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
495  * and number of concurrent TRIM I/Os.
496  */
497 static int
vdev_trim_range(trim_args_t * ta,uint64_t start,uint64_t size)498 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
499 {
500 	vdev_t *vd = ta->trim_vdev;
501 	spa_t *spa = vd->vdev_spa;
502 	void *cb;
503 
504 	mutex_enter(&vd->vdev_trim_io_lock);
505 
506 	/*
507 	 * Limit manual TRIM I/Os to the requested rate.  This does not
508 	 * apply to automatic TRIM since no per vdev rate can be specified.
509 	 */
510 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
511 		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
512 		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
513 			cv_timedwait_idle(&vd->vdev_trim_io_cv,
514 			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
515 			    MSEC_TO_TICK(10));
516 		}
517 	}
518 	ta->trim_bytes_done += size;
519 
520 	/* Limit in flight trimming I/Os */
521 	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
522 	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
523 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
524 	}
525 	vd->vdev_trim_inflight[ta->trim_type]++;
526 	mutex_exit(&vd->vdev_trim_io_lock);
527 
528 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
529 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
530 	uint64_t txg = dmu_tx_get_txg(tx);
531 
532 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
533 	mutex_enter(&vd->vdev_trim_lock);
534 
535 	if (ta->trim_type == TRIM_TYPE_MANUAL &&
536 	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
537 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
538 		*guid = vd->vdev_guid;
539 
540 		/* This is the first write of this txg. */
541 		dsl_sync_task_nowait(spa_get_dsl(spa),
542 		    vdev_trim_zap_update_sync, guid, tx);
543 	}
544 
545 	/*
546 	 * We know the vdev_t will still be around since all consumers of
547 	 * vdev_free must stop the trimming first.
548 	 */
549 	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
550 	    vdev_trim_should_stop(vd)) ||
551 	    (ta->trim_type == TRIM_TYPE_AUTO &&
552 	    vdev_autotrim_should_stop(vd->vdev_top))) {
553 		mutex_enter(&vd->vdev_trim_io_lock);
554 		vd->vdev_trim_inflight[ta->trim_type]--;
555 		mutex_exit(&vd->vdev_trim_io_lock);
556 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
557 		mutex_exit(&vd->vdev_trim_lock);
558 		dmu_tx_commit(tx);
559 		return (SET_ERROR(EINTR));
560 	}
561 	mutex_exit(&vd->vdev_trim_lock);
562 
563 	if (ta->trim_type == TRIM_TYPE_MANUAL)
564 		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
565 
566 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
567 		cb = vdev_trim_cb;
568 	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
569 		cb = vdev_autotrim_cb;
570 	} else {
571 		cb = vdev_trim_simple_cb;
572 	}
573 
574 	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
575 	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
576 	    ta->trim_flags));
577 	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
578 
579 	dmu_tx_commit(tx);
580 
581 	return (0);
582 }
583 
584 /*
585  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
586  * Additional parameters describing how the TRIM should be performed must
587  * be set in the trim_args structure.  See the trim_args definition for
588  * additional information.
589  */
590 static int
vdev_trim_ranges(trim_args_t * ta)591 vdev_trim_ranges(trim_args_t *ta)
592 {
593 	vdev_t *vd = ta->trim_vdev;
594 	zfs_btree_t *t = &ta->trim_tree->rt_root;
595 	zfs_btree_index_t idx;
596 	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
597 	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
598 	spa_t *spa = vd->vdev_spa;
599 	int error = 0;
600 
601 	ta->trim_start_time = gethrtime();
602 	ta->trim_bytes_done = 0;
603 
604 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
605 	    rs = zfs_btree_next(t, &idx, &idx)) {
606 		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
607 		    ta->trim_tree);
608 
609 		if (extent_bytes_min && size < extent_bytes_min) {
610 			spa_iostats_trim_add(spa, ta->trim_type,
611 			    0, 0, 1, size, 0, 0);
612 			continue;
613 		}
614 
615 		/* Split range into legally-sized physical chunks */
616 		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
617 
618 		for (uint64_t w = 0; w < writes_required; w++) {
619 			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
620 			    rs_get_start(rs, ta->trim_tree) +
621 			    (w *extent_bytes_max), MIN(size -
622 			    (w * extent_bytes_max), extent_bytes_max));
623 			if (error != 0) {
624 				goto done;
625 			}
626 		}
627 	}
628 
629 done:
630 	/*
631 	 * Make sure all TRIMs for this metaslab have completed before
632 	 * returning. TRIM zios have lower priority over regular or syncing
633 	 * zios, so all TRIM zios for this metaslab must complete before the
634 	 * metaslab is re-enabled. Otherwise it's possible write zios to
635 	 * this metaslab could cut ahead of still queued TRIM zios for this
636 	 * metaslab causing corruption if the ranges overlap.
637 	 */
638 	mutex_enter(&vd->vdev_trim_io_lock);
639 	while (vd->vdev_trim_inflight[0] > 0) {
640 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
641 	}
642 	mutex_exit(&vd->vdev_trim_io_lock);
643 
644 	return (error);
645 }
646 
647 static void
vdev_trim_xlate_last_rs_end(void * arg,range_seg64_t * physical_rs)648 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
649 {
650 	uint64_t *last_rs_end = (uint64_t *)arg;
651 
652 	if (physical_rs->rs_end > *last_rs_end)
653 		*last_rs_end = physical_rs->rs_end;
654 }
655 
656 static void
vdev_trim_xlate_progress(void * arg,range_seg64_t * physical_rs)657 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
658 {
659 	vdev_t *vd = (vdev_t *)arg;
660 
661 	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
662 	vd->vdev_trim_bytes_est += size;
663 
664 	if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
665 		vd->vdev_trim_bytes_done += size;
666 	} else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
667 	    vd->vdev_trim_last_offset <= physical_rs->rs_end) {
668 		vd->vdev_trim_bytes_done +=
669 		    vd->vdev_trim_last_offset - physical_rs->rs_start;
670 	}
671 }
672 
673 /*
674  * Calculates the completion percentage of a manual TRIM.
675  */
676 static void
vdev_trim_calculate_progress(vdev_t * vd)677 vdev_trim_calculate_progress(vdev_t *vd)
678 {
679 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
680 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
681 	ASSERT(vd->vdev_leaf_zap != 0);
682 
683 	vd->vdev_trim_bytes_est = 0;
684 	vd->vdev_trim_bytes_done = 0;
685 
686 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
687 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
688 		mutex_enter(&msp->ms_lock);
689 
690 		uint64_t ms_free = (msp->ms_size -
691 		    metaslab_allocated_space(msp)) /
692 		    vdev_get_ndisks(vd->vdev_top);
693 
694 		/*
695 		 * Convert the metaslab range to a physical range
696 		 * on our vdev. We use this to determine if we are
697 		 * in the middle of this metaslab range.
698 		 */
699 		range_seg64_t logical_rs, physical_rs, remain_rs;
700 		logical_rs.rs_start = msp->ms_start;
701 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
702 
703 		/* Metaslab space after this offset has not been trimmed. */
704 		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
705 		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
706 			vd->vdev_trim_bytes_est += ms_free;
707 			mutex_exit(&msp->ms_lock);
708 			continue;
709 		}
710 
711 		/* Metaslab space before this offset has been trimmed */
712 		uint64_t last_rs_end = physical_rs.rs_end;
713 		if (!vdev_xlate_is_empty(&remain_rs)) {
714 			vdev_xlate_walk(vd, &remain_rs,
715 			    vdev_trim_xlate_last_rs_end, &last_rs_end);
716 		}
717 
718 		if (vd->vdev_trim_last_offset > last_rs_end) {
719 			vd->vdev_trim_bytes_done += ms_free;
720 			vd->vdev_trim_bytes_est += ms_free;
721 			mutex_exit(&msp->ms_lock);
722 			continue;
723 		}
724 
725 		/*
726 		 * If we get here, we're in the middle of trimming this
727 		 * metaslab.  Load it and walk the free tree for more
728 		 * accurate progress estimation.
729 		 */
730 		VERIFY0(metaslab_load(msp));
731 
732 		range_tree_t *rt = msp->ms_allocatable;
733 		zfs_btree_t *bt = &rt->rt_root;
734 		zfs_btree_index_t idx;
735 		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
736 		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
737 			logical_rs.rs_start = rs_get_start(rs, rt);
738 			logical_rs.rs_end = rs_get_end(rs, rt);
739 
740 			vdev_xlate_walk(vd, &logical_rs,
741 			    vdev_trim_xlate_progress, vd);
742 		}
743 		mutex_exit(&msp->ms_lock);
744 	}
745 }
746 
747 /*
748  * Load from disk the vdev's manual TRIM information.  This includes the
749  * state, progress, and options provided when initiating the manual TRIM.
750  */
751 static int
vdev_trim_load(vdev_t * vd)752 vdev_trim_load(vdev_t *vd)
753 {
754 	int err = 0;
755 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
756 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
757 	ASSERT(vd->vdev_leaf_zap != 0);
758 
759 	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
760 	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
761 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
762 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
763 		    sizeof (vd->vdev_trim_last_offset), 1,
764 		    &vd->vdev_trim_last_offset);
765 		if (err == ENOENT) {
766 			vd->vdev_trim_last_offset = 0;
767 			err = 0;
768 		}
769 
770 		if (err == 0) {
771 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
772 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
773 			    sizeof (vd->vdev_trim_rate), 1,
774 			    &vd->vdev_trim_rate);
775 			if (err == ENOENT) {
776 				vd->vdev_trim_rate = 0;
777 				err = 0;
778 			}
779 		}
780 
781 		if (err == 0) {
782 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
783 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
784 			    sizeof (vd->vdev_trim_partial), 1,
785 			    &vd->vdev_trim_partial);
786 			if (err == ENOENT) {
787 				vd->vdev_trim_partial = 0;
788 				err = 0;
789 			}
790 		}
791 
792 		if (err == 0) {
793 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
794 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
795 			    sizeof (vd->vdev_trim_secure), 1,
796 			    &vd->vdev_trim_secure);
797 			if (err == ENOENT) {
798 				vd->vdev_trim_secure = 0;
799 				err = 0;
800 			}
801 		}
802 	}
803 
804 	vdev_trim_calculate_progress(vd);
805 
806 	return (err);
807 }
808 
809 static void
vdev_trim_xlate_range_add(void * arg,range_seg64_t * physical_rs)810 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
811 {
812 	trim_args_t *ta = arg;
813 	vdev_t *vd = ta->trim_vdev;
814 
815 	/*
816 	 * Only a manual trim will be traversing the vdev sequentially.
817 	 * For an auto trim all valid ranges should be added.
818 	 */
819 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
820 
821 		/* Only add segments that we have not visited yet */
822 		if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
823 			return;
824 
825 		/* Pick up where we left off mid-range. */
826 		if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
827 			ASSERT3U(physical_rs->rs_end, >,
828 			    vd->vdev_trim_last_offset);
829 			physical_rs->rs_start = vd->vdev_trim_last_offset;
830 		}
831 	}
832 
833 	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
834 
835 	range_tree_add(ta->trim_tree, physical_rs->rs_start,
836 	    physical_rs->rs_end - physical_rs->rs_start);
837 }
838 
839 /*
840  * Convert the logical range into physical ranges and add them to the
841  * range tree passed in the trim_args_t.
842  */
843 static void
vdev_trim_range_add(void * arg,uint64_t start,uint64_t size)844 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
845 {
846 	trim_args_t *ta = arg;
847 	vdev_t *vd = ta->trim_vdev;
848 	range_seg64_t logical_rs;
849 	logical_rs.rs_start = start;
850 	logical_rs.rs_end = start + size;
851 
852 	/*
853 	 * Every range to be trimmed must be part of ms_allocatable.
854 	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
855 	 * is always the case.
856 	 */
857 	if (zfs_flags & ZFS_DEBUG_TRIM) {
858 		metaslab_t *msp = ta->trim_msp;
859 		VERIFY0(metaslab_load(msp));
860 		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
861 		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
862 	}
863 
864 	ASSERT(vd->vdev_ops->vdev_op_leaf);
865 	vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
866 }
867 
868 /*
869  * Each manual TRIM thread is responsible for trimming the unallocated
870  * space for each leaf vdev.  This is accomplished by sequentially iterating
871  * over its top-level metaslabs and issuing TRIM I/O for the space described
872  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
873  * not eligible for new allocations.
874  */
875 static __attribute__((noreturn)) void
vdev_trim_thread(void * arg)876 vdev_trim_thread(void *arg)
877 {
878 	vdev_t *vd = arg;
879 	spa_t *spa = vd->vdev_spa;
880 	trim_args_t ta;
881 	int error = 0;
882 
883 	/*
884 	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
885 	 * vdev_trim().  Wait for the updated values to be reflected
886 	 * in the zap in order to start with the requested settings.
887 	 */
888 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
889 
890 	ASSERT(vdev_is_concrete(vd));
891 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
892 
893 	vd->vdev_trim_last_offset = 0;
894 	vd->vdev_trim_rate = 0;
895 	vd->vdev_trim_partial = 0;
896 	vd->vdev_trim_secure = 0;
897 
898 	VERIFY0(vdev_trim_load(vd));
899 
900 	ta.trim_vdev = vd;
901 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
902 	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
903 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
904 	ta.trim_type = TRIM_TYPE_MANUAL;
905 	ta.trim_flags = 0;
906 
907 	/*
908 	 * When a secure TRIM has been requested infer that the intent
909 	 * is that everything must be trimmed.  Override the default
910 	 * minimum TRIM size to prevent ranges from being skipped.
911 	 */
912 	if (vd->vdev_trim_secure) {
913 		ta.trim_flags |= ZIO_TRIM_SECURE;
914 		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
915 	}
916 
917 	uint64_t ms_count = 0;
918 	for (uint64_t i = 0; !vd->vdev_detached &&
919 	    i < vd->vdev_top->vdev_ms_count; i++) {
920 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
921 
922 		/*
923 		 * If we've expanded the top-level vdev or it's our
924 		 * first pass, calculate our progress.
925 		 */
926 		if (vd->vdev_top->vdev_ms_count != ms_count) {
927 			vdev_trim_calculate_progress(vd);
928 			ms_count = vd->vdev_top->vdev_ms_count;
929 		}
930 
931 		spa_config_exit(spa, SCL_CONFIG, FTAG);
932 		metaslab_disable(msp);
933 		mutex_enter(&msp->ms_lock);
934 		VERIFY0(metaslab_load(msp));
935 
936 		/*
937 		 * If a partial TRIM was requested skip metaslabs which have
938 		 * never been initialized and thus have never been written.
939 		 */
940 		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
941 			mutex_exit(&msp->ms_lock);
942 			metaslab_enable(msp, B_FALSE, B_FALSE);
943 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
944 			vdev_trim_calculate_progress(vd);
945 			continue;
946 		}
947 
948 		ta.trim_msp = msp;
949 		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
950 		range_tree_vacate(msp->ms_trim, NULL, NULL);
951 		mutex_exit(&msp->ms_lock);
952 
953 		error = vdev_trim_ranges(&ta);
954 		metaslab_enable(msp, B_TRUE, B_FALSE);
955 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
956 
957 		range_tree_vacate(ta.trim_tree, NULL, NULL);
958 		if (error != 0)
959 			break;
960 	}
961 
962 	spa_config_exit(spa, SCL_CONFIG, FTAG);
963 
964 	range_tree_destroy(ta.trim_tree);
965 
966 	mutex_enter(&vd->vdev_trim_lock);
967 	if (!vd->vdev_trim_exit_wanted) {
968 		if (vdev_writeable(vd)) {
969 			vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
970 			    vd->vdev_trim_rate, vd->vdev_trim_partial,
971 			    vd->vdev_trim_secure);
972 		} else if (vd->vdev_faulted) {
973 			vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
974 			    vd->vdev_trim_rate, vd->vdev_trim_partial,
975 			    vd->vdev_trim_secure);
976 		}
977 	}
978 	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
979 
980 	/*
981 	 * Drop the vdev_trim_lock while we sync out the txg since it's
982 	 * possible that a device might be trying to come online and must
983 	 * check to see if it needs to restart a trim. That thread will be
984 	 * holding the spa_config_lock which would prevent the txg_wait_synced
985 	 * from completing.
986 	 */
987 	mutex_exit(&vd->vdev_trim_lock);
988 	txg_wait_synced(spa_get_dsl(spa), 0);
989 	mutex_enter(&vd->vdev_trim_lock);
990 
991 	vd->vdev_trim_thread = NULL;
992 	cv_broadcast(&vd->vdev_trim_cv);
993 	mutex_exit(&vd->vdev_trim_lock);
994 
995 	thread_exit();
996 }
997 
998 /*
999  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
1000  * the vdev_t must be a leaf and cannot already be manually trimming.
1001  */
1002 void
vdev_trim(vdev_t * vd,uint64_t rate,boolean_t partial,boolean_t secure)1003 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1004 {
1005 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1006 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1007 	ASSERT(vdev_is_concrete(vd));
1008 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1009 	ASSERT(!vd->vdev_detached);
1010 	ASSERT(!vd->vdev_trim_exit_wanted);
1011 	ASSERT(!vd->vdev_top->vdev_removing);
1012 	ASSERT(!vd->vdev_rz_expanding);
1013 
1014 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1015 	vd->vdev_trim_thread = thread_create(NULL, 0,
1016 	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1017 }
1018 
1019 /*
1020  * Wait for the trimming thread to be terminated (canceled or stopped).
1021  */
1022 static void
vdev_trim_stop_wait_impl(vdev_t * vd)1023 vdev_trim_stop_wait_impl(vdev_t *vd)
1024 {
1025 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1026 
1027 	while (vd->vdev_trim_thread != NULL)
1028 		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1029 
1030 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1031 	vd->vdev_trim_exit_wanted = B_FALSE;
1032 }
1033 
1034 /*
1035  * Wait for vdev trim threads which were listed to cleanly exit.
1036  */
1037 void
vdev_trim_stop_wait(spa_t * spa,list_t * vd_list)1038 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1039 {
1040 	(void) spa;
1041 	vdev_t *vd;
1042 
1043 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1044 	    spa->spa_export_thread == curthread);
1045 
1046 	while ((vd = list_remove_head(vd_list)) != NULL) {
1047 		mutex_enter(&vd->vdev_trim_lock);
1048 		vdev_trim_stop_wait_impl(vd);
1049 		mutex_exit(&vd->vdev_trim_lock);
1050 	}
1051 }
1052 
1053 /*
1054  * Stop trimming a device, with the resultant trimming state being tgt_state.
1055  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1056  * provided the stopping vdev is inserted in to the list.  Callers are then
1057  * required to call vdev_trim_stop_wait() to block for all the trim threads
1058  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1059  * the spa config, as the trimming thread may try to enter the config as a
1060  * reader before exiting.
1061  */
1062 void
vdev_trim_stop(vdev_t * vd,vdev_trim_state_t tgt_state,list_t * vd_list)1063 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1064 {
1065 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1066 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1067 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1068 	ASSERT(vdev_is_concrete(vd));
1069 
1070 	/*
1071 	 * Allow cancel requests to proceed even if the trim thread has
1072 	 * stopped.
1073 	 */
1074 	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1075 		return;
1076 
1077 	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1078 	vd->vdev_trim_exit_wanted = B_TRUE;
1079 
1080 	if (vd_list == NULL) {
1081 		vdev_trim_stop_wait_impl(vd);
1082 	} else {
1083 		ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1084 		    vd->vdev_spa->spa_export_thread == curthread);
1085 		list_insert_tail(vd_list, vd);
1086 	}
1087 }
1088 
1089 /*
1090  * Requests that all listed vdevs stop trimming.
1091  */
1092 static void
vdev_trim_stop_all_impl(vdev_t * vd,vdev_trim_state_t tgt_state,list_t * vd_list)1093 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1094     list_t *vd_list)
1095 {
1096 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1097 		mutex_enter(&vd->vdev_trim_lock);
1098 		vdev_trim_stop(vd, tgt_state, vd_list);
1099 		mutex_exit(&vd->vdev_trim_lock);
1100 		return;
1101 	}
1102 
1103 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1104 		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1105 		    vd_list);
1106 	}
1107 }
1108 
1109 /*
1110  * Convenience function to stop trimming of a vdev tree and set all trim
1111  * thread pointers to NULL.
1112  */
1113 void
vdev_trim_stop_all(vdev_t * vd,vdev_trim_state_t tgt_state)1114 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1115 {
1116 	spa_t *spa = vd->vdev_spa;
1117 	list_t vd_list;
1118 	vdev_t *vd_l2cache;
1119 
1120 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1121 	    spa->spa_export_thread == curthread);
1122 
1123 	list_create(&vd_list, sizeof (vdev_t),
1124 	    offsetof(vdev_t, vdev_trim_node));
1125 
1126 	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1127 
1128 	/*
1129 	 * Iterate over cache devices and request stop trimming the
1130 	 * whole device in case we export the pool or remove the cache
1131 	 * device prematurely.
1132 	 */
1133 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1134 		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1135 		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1136 	}
1137 
1138 	vdev_trim_stop_wait(spa, &vd_list);
1139 
1140 	if (vd->vdev_spa->spa_sync_on) {
1141 		/* Make sure that our state has been synced to disk */
1142 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1143 	}
1144 
1145 	list_destroy(&vd_list);
1146 }
1147 
1148 /*
1149  * Conditionally restarts a manual TRIM given its on-disk state.
1150  */
1151 void
vdev_trim_restart(vdev_t * vd)1152 vdev_trim_restart(vdev_t *vd)
1153 {
1154 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1155 	    vd->vdev_spa->spa_load_thread == curthread);
1156 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1157 
1158 	if (vd->vdev_leaf_zap != 0) {
1159 		mutex_enter(&vd->vdev_trim_lock);
1160 		uint64_t trim_state = VDEV_TRIM_NONE;
1161 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1162 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1163 		    sizeof (trim_state), 1, &trim_state);
1164 		ASSERT(err == 0 || err == ENOENT);
1165 		vd->vdev_trim_state = trim_state;
1166 
1167 		uint64_t timestamp = 0;
1168 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1169 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1170 		    sizeof (timestamp), 1, &timestamp);
1171 		ASSERT(err == 0 || err == ENOENT);
1172 		vd->vdev_trim_action_time = timestamp;
1173 
1174 		if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1175 		    vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1176 			/* load progress for reporting, but don't resume */
1177 			VERIFY0(vdev_trim_load(vd));
1178 		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1179 		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1180 		    !vd->vdev_top->vdev_rz_expanding &&
1181 		    vd->vdev_trim_thread == NULL) {
1182 			VERIFY0(vdev_trim_load(vd));
1183 			vdev_trim(vd, vd->vdev_trim_rate,
1184 			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1185 		}
1186 
1187 		mutex_exit(&vd->vdev_trim_lock);
1188 	}
1189 
1190 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1191 		vdev_trim_restart(vd->vdev_child[i]);
1192 	}
1193 }
1194 
1195 /*
1196  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1197  * every TRIM range is contained within ms_allocatable.
1198  */
1199 static void
vdev_trim_range_verify(void * arg,uint64_t start,uint64_t size)1200 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1201 {
1202 	trim_args_t *ta = arg;
1203 	metaslab_t *msp = ta->trim_msp;
1204 
1205 	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1206 	VERIFY3U(msp->ms_disabled, >, 0);
1207 	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1208 }
1209 
1210 /*
1211  * Each automatic TRIM thread is responsible for managing the trimming of a
1212  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1213  *
1214  * N.B. This behavior is different from a manual TRIM where a thread
1215  * is created for each leaf vdev, instead of each top-level vdev.
1216  */
1217 static __attribute__((noreturn)) void
vdev_autotrim_thread(void * arg)1218 vdev_autotrim_thread(void *arg)
1219 {
1220 	vdev_t *vd = arg;
1221 	spa_t *spa = vd->vdev_spa;
1222 	int shift = 0;
1223 
1224 	mutex_enter(&vd->vdev_autotrim_lock);
1225 	ASSERT3P(vd->vdev_top, ==, vd);
1226 	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1227 	mutex_exit(&vd->vdev_autotrim_lock);
1228 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1229 
1230 	while (!vdev_autotrim_should_stop(vd)) {
1231 		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1232 		uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1233 		uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1234 
1235 		/*
1236 		 * All of the metaslabs are divided in to groups of size
1237 		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1238 		 * is composed of metaslabs which are spread evenly over the
1239 		 * device.
1240 		 *
1241 		 * For example, when zfs_trim_txg_batch = 32 (default) then
1242 		 * group 0 will contain metaslabs 0, 32, 64, ...;
1243 		 * group 1 will contain metaslabs 1, 33, 65, ...;
1244 		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1245 		 *
1246 		 * On each pass through the while() loop one of these groups
1247 		 * is selected.  This is accomplished by using a shift value
1248 		 * to select the starting metaslab, then striding over the
1249 		 * metaslabs using the zfs_trim_txg_batch size.  This is
1250 		 * done to accomplish two things.
1251 		 *
1252 		 * 1) By dividing the metaslabs in to groups, and making sure
1253 		 *    that each group takes a minimum of one txg to process.
1254 		 *    Then zfs_trim_txg_batch controls the minimum number of
1255 		 *    txgs which must occur before a metaslab is revisited.
1256 		 *
1257 		 * 2) Selecting non-consecutive metaslabs distributes the
1258 		 *    TRIM commands for a group evenly over the entire device.
1259 		 *    This can be advantageous for certain types of devices.
1260 		 */
1261 		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1262 		    i += txgs_per_trim) {
1263 			metaslab_t *msp = vd->vdev_ms[i];
1264 			range_tree_t *trim_tree;
1265 			boolean_t issued_trim = B_FALSE;
1266 			boolean_t wait_aborted = B_FALSE;
1267 
1268 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1269 			metaslab_disable(msp);
1270 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1271 
1272 			mutex_enter(&msp->ms_lock);
1273 
1274 			/*
1275 			 * Skip the metaslab when it has never been allocated
1276 			 * or when there are no recent frees to trim.
1277 			 */
1278 			if (msp->ms_sm == NULL ||
1279 			    range_tree_is_empty(msp->ms_trim)) {
1280 				mutex_exit(&msp->ms_lock);
1281 				metaslab_enable(msp, B_FALSE, B_FALSE);
1282 				continue;
1283 			}
1284 
1285 			/*
1286 			 * Skip the metaslab when it has already been disabled.
1287 			 * This may happen when a manual TRIM or initialize
1288 			 * operation is running concurrently.  In the case
1289 			 * of a manual TRIM, the ms_trim tree will have been
1290 			 * vacated.  Only ranges added after the manual TRIM
1291 			 * disabled the metaslab will be included in the tree.
1292 			 * These will be processed when the automatic TRIM
1293 			 * next revisits this metaslab.
1294 			 */
1295 			if (msp->ms_disabled > 1) {
1296 				mutex_exit(&msp->ms_lock);
1297 				metaslab_enable(msp, B_FALSE, B_FALSE);
1298 				continue;
1299 			}
1300 
1301 			/*
1302 			 * Allocate an empty range tree which is swapped in
1303 			 * for the existing ms_trim tree while it is processed.
1304 			 */
1305 			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1306 			    0, 0);
1307 			range_tree_swap(&msp->ms_trim, &trim_tree);
1308 			ASSERT(range_tree_is_empty(msp->ms_trim));
1309 
1310 			/*
1311 			 * There are two cases when constructing the per-vdev
1312 			 * trim trees for a metaslab.  If the top-level vdev
1313 			 * has no children then it is also a leaf and should
1314 			 * be trimmed.  Otherwise our children are the leaves
1315 			 * and a trim tree should be constructed for each.
1316 			 */
1317 			trim_args_t *tap;
1318 			uint64_t children = vd->vdev_children;
1319 			if (children == 0) {
1320 				children = 1;
1321 				tap = kmem_zalloc(sizeof (trim_args_t) *
1322 				    children, KM_SLEEP);
1323 				tap[0].trim_vdev = vd;
1324 			} else {
1325 				tap = kmem_zalloc(sizeof (trim_args_t) *
1326 				    children, KM_SLEEP);
1327 
1328 				for (uint64_t c = 0; c < children; c++) {
1329 					tap[c].trim_vdev = vd->vdev_child[c];
1330 				}
1331 			}
1332 
1333 			for (uint64_t c = 0; c < children; c++) {
1334 				trim_args_t *ta = &tap[c];
1335 				vdev_t *cvd = ta->trim_vdev;
1336 
1337 				ta->trim_msp = msp;
1338 				ta->trim_extent_bytes_max = extent_bytes_max;
1339 				ta->trim_extent_bytes_min = extent_bytes_min;
1340 				ta->trim_type = TRIM_TYPE_AUTO;
1341 				ta->trim_flags = 0;
1342 
1343 				if (cvd->vdev_detached ||
1344 				    !vdev_writeable(cvd) ||
1345 				    !cvd->vdev_has_trim ||
1346 				    cvd->vdev_trim_thread != NULL) {
1347 					continue;
1348 				}
1349 
1350 				/*
1351 				 * When a device has an attached hot spare, or
1352 				 * is being replaced it will not be trimmed.
1353 				 * This is done to avoid adding additional
1354 				 * stress to a potentially unhealthy device,
1355 				 * and to minimize the required rebuild time.
1356 				 */
1357 				if (!cvd->vdev_ops->vdev_op_leaf)
1358 					continue;
1359 
1360 				ta->trim_tree = range_tree_create(NULL,
1361 				    RANGE_SEG64, NULL, 0, 0);
1362 				range_tree_walk(trim_tree,
1363 				    vdev_trim_range_add, ta);
1364 			}
1365 
1366 			mutex_exit(&msp->ms_lock);
1367 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1368 
1369 			/*
1370 			 * Issue the TRIM I/Os for all ranges covered by the
1371 			 * TRIM trees.  These ranges are safe to TRIM because
1372 			 * no new allocations will be performed until the call
1373 			 * to metaslab_enabled() below.
1374 			 */
1375 			for (uint64_t c = 0; c < children; c++) {
1376 				trim_args_t *ta = &tap[c];
1377 
1378 				/*
1379 				 * Always yield to a manual TRIM if one has
1380 				 * been started for the child vdev.
1381 				 */
1382 				if (ta->trim_tree == NULL ||
1383 				    ta->trim_vdev->vdev_trim_thread != NULL) {
1384 					continue;
1385 				}
1386 
1387 				/*
1388 				 * After this point metaslab_enable() must be
1389 				 * called with the sync flag set.  This is done
1390 				 * here because vdev_trim_ranges() is allowed
1391 				 * to be interrupted (EINTR) before issuing all
1392 				 * of the required TRIM I/Os.
1393 				 */
1394 				issued_trim = B_TRUE;
1395 
1396 				int error = vdev_trim_ranges(ta);
1397 				if (error)
1398 					break;
1399 			}
1400 
1401 			/*
1402 			 * Verify every range which was trimmed is still
1403 			 * contained within the ms_allocatable tree.
1404 			 */
1405 			if (zfs_flags & ZFS_DEBUG_TRIM) {
1406 				mutex_enter(&msp->ms_lock);
1407 				VERIFY0(metaslab_load(msp));
1408 				VERIFY3P(tap[0].trim_msp, ==, msp);
1409 				range_tree_walk(trim_tree,
1410 				    vdev_trim_range_verify, &tap[0]);
1411 				mutex_exit(&msp->ms_lock);
1412 			}
1413 
1414 			range_tree_vacate(trim_tree, NULL, NULL);
1415 			range_tree_destroy(trim_tree);
1416 
1417 			/*
1418 			 * Wait for couples of kicks, to ensure the trim io is
1419 			 * synced. If the wait is aborted due to
1420 			 * vdev_autotrim_exit_wanted, we need to signal
1421 			 * metaslab_enable() to wait for sync.
1422 			 */
1423 			if (issued_trim) {
1424 				wait_aborted = vdev_autotrim_wait_kick(vd,
1425 				    TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1426 			}
1427 
1428 			metaslab_enable(msp, wait_aborted, B_FALSE);
1429 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1430 
1431 			for (uint64_t c = 0; c < children; c++) {
1432 				trim_args_t *ta = &tap[c];
1433 
1434 				if (ta->trim_tree == NULL)
1435 					continue;
1436 
1437 				range_tree_vacate(ta->trim_tree, NULL, NULL);
1438 				range_tree_destroy(ta->trim_tree);
1439 			}
1440 
1441 			kmem_free(tap, sizeof (trim_args_t) * children);
1442 
1443 			if (vdev_autotrim_should_stop(vd))
1444 				break;
1445 		}
1446 
1447 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1448 
1449 		vdev_autotrim_wait_kick(vd, 1);
1450 
1451 		shift++;
1452 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1453 	}
1454 
1455 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1456 		vdev_t *cvd = vd->vdev_child[c];
1457 		mutex_enter(&cvd->vdev_trim_io_lock);
1458 
1459 		while (cvd->vdev_trim_inflight[1] > 0) {
1460 			cv_wait(&cvd->vdev_trim_io_cv,
1461 			    &cvd->vdev_trim_io_lock);
1462 		}
1463 		mutex_exit(&cvd->vdev_trim_io_lock);
1464 	}
1465 
1466 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1467 
1468 	/*
1469 	 * When exiting because the autotrim property was set to off, then
1470 	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1471 	 */
1472 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1473 		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1474 			metaslab_t *msp = vd->vdev_ms[i];
1475 
1476 			mutex_enter(&msp->ms_lock);
1477 			range_tree_vacate(msp->ms_trim, NULL, NULL);
1478 			mutex_exit(&msp->ms_lock);
1479 		}
1480 	}
1481 
1482 	mutex_enter(&vd->vdev_autotrim_lock);
1483 	ASSERT(vd->vdev_autotrim_thread != NULL);
1484 	vd->vdev_autotrim_thread = NULL;
1485 	cv_broadcast(&vd->vdev_autotrim_cv);
1486 	mutex_exit(&vd->vdev_autotrim_lock);
1487 
1488 	thread_exit();
1489 }
1490 
1491 /*
1492  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1493  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1494  */
1495 void
vdev_autotrim(spa_t * spa)1496 vdev_autotrim(spa_t *spa)
1497 {
1498 	vdev_t *root_vd = spa->spa_root_vdev;
1499 
1500 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1501 		vdev_t *tvd = root_vd->vdev_child[i];
1502 
1503 		mutex_enter(&tvd->vdev_autotrim_lock);
1504 		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1505 		    tvd->vdev_autotrim_thread == NULL &&
1506 		    !tvd->vdev_rz_expanding) {
1507 			ASSERT3P(tvd->vdev_top, ==, tvd);
1508 
1509 			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1510 			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1511 			    maxclsyspri);
1512 			ASSERT(tvd->vdev_autotrim_thread != NULL);
1513 		}
1514 		mutex_exit(&tvd->vdev_autotrim_lock);
1515 	}
1516 }
1517 
1518 /*
1519  * Wait for the vdev_autotrim_thread associated with the passed top-level
1520  * vdev to be terminated (canceled or stopped).
1521  */
1522 void
vdev_autotrim_stop_wait(vdev_t * tvd)1523 vdev_autotrim_stop_wait(vdev_t *tvd)
1524 {
1525 	mutex_enter(&tvd->vdev_autotrim_lock);
1526 	if (tvd->vdev_autotrim_thread != NULL) {
1527 		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1528 		cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1529 		cv_wait(&tvd->vdev_autotrim_cv,
1530 		    &tvd->vdev_autotrim_lock);
1531 
1532 		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1533 		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1534 	}
1535 	mutex_exit(&tvd->vdev_autotrim_lock);
1536 }
1537 
1538 void
vdev_autotrim_kick(spa_t * spa)1539 vdev_autotrim_kick(spa_t *spa)
1540 {
1541 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1542 
1543 	vdev_t *root_vd = spa->spa_root_vdev;
1544 	vdev_t *tvd;
1545 
1546 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1547 		tvd = root_vd->vdev_child[i];
1548 
1549 		mutex_enter(&tvd->vdev_autotrim_lock);
1550 		if (tvd->vdev_autotrim_thread != NULL)
1551 			cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1552 		mutex_exit(&tvd->vdev_autotrim_lock);
1553 	}
1554 }
1555 
1556 /*
1557  * Wait for all of the vdev_autotrim_thread associated with the pool to
1558  * be terminated (canceled or stopped).
1559  */
1560 void
vdev_autotrim_stop_all(spa_t * spa)1561 vdev_autotrim_stop_all(spa_t *spa)
1562 {
1563 	vdev_t *root_vd = spa->spa_root_vdev;
1564 
1565 	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1566 		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1567 }
1568 
1569 /*
1570  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1571  */
1572 void
vdev_autotrim_restart(spa_t * spa)1573 vdev_autotrim_restart(spa_t *spa)
1574 {
1575 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1576 	    spa->spa_load_thread == curthread);
1577 	if (spa->spa_autotrim)
1578 		vdev_autotrim(spa);
1579 }
1580 
1581 static __attribute__((noreturn)) void
vdev_trim_l2arc_thread(void * arg)1582 vdev_trim_l2arc_thread(void *arg)
1583 {
1584 	vdev_t		*vd = arg;
1585 	spa_t		*spa = vd->vdev_spa;
1586 	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1587 	trim_args_t	ta = {0};
1588 	range_seg64_t 	physical_rs;
1589 
1590 	ASSERT(vdev_is_concrete(vd));
1591 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1592 
1593 	vd->vdev_trim_last_offset = 0;
1594 	vd->vdev_trim_rate = 0;
1595 	vd->vdev_trim_partial = 0;
1596 	vd->vdev_trim_secure = 0;
1597 
1598 	ta.trim_vdev = vd;
1599 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1600 	ta.trim_type = TRIM_TYPE_MANUAL;
1601 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1602 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1603 	ta.trim_flags = 0;
1604 
1605 	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1606 	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1607 	    vdev_get_min_asize(vd);
1608 
1609 	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1610 	    physical_rs.rs_end - physical_rs.rs_start);
1611 
1612 	mutex_enter(&vd->vdev_trim_lock);
1613 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1614 	mutex_exit(&vd->vdev_trim_lock);
1615 
1616 	(void) vdev_trim_ranges(&ta);
1617 
1618 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1619 	mutex_enter(&vd->vdev_trim_io_lock);
1620 	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1621 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1622 	}
1623 	mutex_exit(&vd->vdev_trim_io_lock);
1624 
1625 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1626 	range_tree_destroy(ta.trim_tree);
1627 
1628 	mutex_enter(&vd->vdev_trim_lock);
1629 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1630 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1631 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1632 		    vd->vdev_trim_secure);
1633 	}
1634 	ASSERT(vd->vdev_trim_thread != NULL ||
1635 	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1636 
1637 	/*
1638 	 * Drop the vdev_trim_lock while we sync out the txg since it's
1639 	 * possible that a device might be trying to come online and
1640 	 * must check to see if it needs to restart a trim. That thread
1641 	 * will be holding the spa_config_lock which would prevent the
1642 	 * txg_wait_synced from completing. Same strategy as in
1643 	 * vdev_trim_thread().
1644 	 */
1645 	mutex_exit(&vd->vdev_trim_lock);
1646 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1647 	mutex_enter(&vd->vdev_trim_lock);
1648 
1649 	/*
1650 	 * Update the header of the cache device here, before
1651 	 * broadcasting vdev_trim_cv which may lead to the removal
1652 	 * of the device. The same applies for setting l2ad_trim_all to
1653 	 * false.
1654 	 */
1655 	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1656 	    RW_READER);
1657 	memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1658 	l2arc_dev_hdr_update(dev);
1659 	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1660 
1661 	vd->vdev_trim_thread = NULL;
1662 	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1663 		dev->l2ad_trim_all = B_FALSE;
1664 
1665 	cv_broadcast(&vd->vdev_trim_cv);
1666 	mutex_exit(&vd->vdev_trim_lock);
1667 
1668 	thread_exit();
1669 }
1670 
1671 /*
1672  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1673  * to vd->vdev_trim_thread variable. This facilitates the management of
1674  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1675  * to a pool or pool creation or when the header of the device is invalid.
1676  */
1677 void
vdev_trim_l2arc(spa_t * spa)1678 vdev_trim_l2arc(spa_t *spa)
1679 {
1680 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1681 
1682 	/*
1683 	 * Locate the spa's l2arc devices and kick off TRIM threads.
1684 	 */
1685 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1686 		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1687 		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1688 
1689 		if (dev == NULL || !dev->l2ad_trim_all) {
1690 			/*
1691 			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1692 			 * cache device was not marked for whole device TRIM
1693 			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1694 			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1695 			 * l2ad_log_entries > 0).
1696 			 */
1697 			continue;
1698 		}
1699 
1700 		mutex_enter(&vd->vdev_trim_lock);
1701 		ASSERT(vd->vdev_ops->vdev_op_leaf);
1702 		ASSERT(vdev_is_concrete(vd));
1703 		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1704 		ASSERT(!vd->vdev_detached);
1705 		ASSERT(!vd->vdev_trim_exit_wanted);
1706 		ASSERT(!vd->vdev_top->vdev_removing);
1707 		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1708 		vd->vdev_trim_thread = thread_create(NULL, 0,
1709 		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1710 		mutex_exit(&vd->vdev_trim_lock);
1711 	}
1712 }
1713 
1714 /*
1715  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1716  * on leaf vdevs.
1717  */
1718 int
vdev_trim_simple(vdev_t * vd,uint64_t start,uint64_t size)1719 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1720 {
1721 	trim_args_t ta = {0};
1722 	range_seg64_t physical_rs;
1723 	int error;
1724 	physical_rs.rs_start = start;
1725 	physical_rs.rs_end = start + size;
1726 
1727 	ASSERT(vdev_is_concrete(vd));
1728 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1729 	ASSERT(!vd->vdev_detached);
1730 	ASSERT(!vd->vdev_top->vdev_removing);
1731 	ASSERT(!vd->vdev_top->vdev_rz_expanding);
1732 
1733 	ta.trim_vdev = vd;
1734 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1735 	ta.trim_type = TRIM_TYPE_SIMPLE;
1736 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1737 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1738 	ta.trim_flags = 0;
1739 
1740 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1741 
1742 	if (physical_rs.rs_end > physical_rs.rs_start) {
1743 		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1744 		    physical_rs.rs_end - physical_rs.rs_start);
1745 	} else {
1746 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1747 	}
1748 
1749 	error = vdev_trim_ranges(&ta);
1750 
1751 	mutex_enter(&vd->vdev_trim_io_lock);
1752 	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1753 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1754 	}
1755 	mutex_exit(&vd->vdev_trim_io_lock);
1756 
1757 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1758 	range_tree_destroy(ta.trim_tree);
1759 
1760 	return (error);
1761 }
1762 
1763 EXPORT_SYMBOL(vdev_trim);
1764 EXPORT_SYMBOL(vdev_trim_stop);
1765 EXPORT_SYMBOL(vdev_trim_stop_all);
1766 EXPORT_SYMBOL(vdev_trim_stop_wait);
1767 EXPORT_SYMBOL(vdev_trim_restart);
1768 EXPORT_SYMBOL(vdev_autotrim);
1769 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1770 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1771 EXPORT_SYMBOL(vdev_autotrim_restart);
1772 EXPORT_SYMBOL(vdev_trim_l2arc);
1773 EXPORT_SYMBOL(vdev_trim_simple);
1774 
1775 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1776 	"Max size of TRIM commands, larger will be split");
1777 
1778 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1779 	"Min size of TRIM commands, smaller will be skipped");
1780 
1781 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1782 	"Skip metaslabs which have never been initialized");
1783 
1784 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1785 	"Min number of txgs to aggregate frees before issuing TRIM");
1786 
1787 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1788 	"Max queued TRIMs outstanding per leaf vdev");
1789