1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2020 Joyent, Inc.
26 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
27 * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/refcount.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
35 #include <sys/abd.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zio.h>
38 #include <sys/sunldi.h>
39 #include <sys/efi_partition.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/ddi.h>
42
43 /*
44 * Tunable to disable TRIM in case we're using a problematic SSD.
45 */
46 uint_t zfs_no_trim = 0;
47
48 /*
49 * Tunable parameter for debugging or performance analysis. Setting this
50 * will cause pool corruption on power loss if a volatile out-of-order
51 * write cache is enabled.
52 */
53 boolean_t zfs_nocacheflush = B_FALSE;
54
55 /*
56 * Virtual device vector for disks.
57 */
58
59 extern ldi_ident_t zfs_li;
60
61 static void vdev_disk_close(vdev_t *);
62
63 typedef struct vdev_disk {
64 ddi_devid_t vd_devid;
65 char *vd_minor;
66 ldi_handle_t vd_lh;
67 list_t vd_ldi_cbs;
68 boolean_t vd_ldi_offline;
69 } vdev_disk_t;
70
71 typedef struct vdev_disk_buf {
72 buf_t vdb_buf;
73 zio_t *vdb_io;
74 } vdev_disk_buf_t;
75
76 typedef struct vdev_disk_ldi_cb {
77 list_node_t lcb_next;
78 ldi_callback_id_t lcb_id;
79 } vdev_disk_ldi_cb_t;
80
81 /*
82 * Bypass the devid when opening a disk vdev.
83 * There have been issues where the devids of several devices were shuffled,
84 * causing pool open failures. Note, that this flag is intended to be used
85 * for pool recovery only.
86 *
87 * Note that if a pool is imported with the devids bypassed, all its vdevs will
88 * cease storing devid information permanently. In practice, the devid is rarely
89 * useful as vdev paths do not tend to change unless the hardware is
90 * reconfigured. That said, if the paths do change and a pool fails to open
91 * automatically at boot, a simple zpool import should re-scan the paths and fix
92 * the issue.
93 */
94 boolean_t vdev_disk_bypass_devid = B_FALSE;
95
96 static void
vdev_disk_alloc(vdev_t * vd)97 vdev_disk_alloc(vdev_t *vd)
98 {
99 vdev_disk_t *dvd;
100
101 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
102 /*
103 * Create the LDI event callback list.
104 */
105 list_create(&dvd->vd_ldi_cbs, sizeof (vdev_disk_ldi_cb_t),
106 offsetof(vdev_disk_ldi_cb_t, lcb_next));
107 }
108
109 static void
vdev_disk_free(vdev_t * vd)110 vdev_disk_free(vdev_t *vd)
111 {
112 vdev_disk_t *dvd = vd->vdev_tsd;
113 vdev_disk_ldi_cb_t *lcb;
114
115 if (dvd == NULL)
116 return;
117
118 /*
119 * We have already closed the LDI handle. Clean up the LDI event
120 * callbacks and free vd->vdev_tsd.
121 */
122 while ((lcb = list_head(&dvd->vd_ldi_cbs)) != NULL) {
123 list_remove(&dvd->vd_ldi_cbs, lcb);
124 (void) ldi_ev_remove_callbacks(lcb->lcb_id);
125 kmem_free(lcb, sizeof (vdev_disk_ldi_cb_t));
126 }
127 list_destroy(&dvd->vd_ldi_cbs);
128 kmem_free(dvd, sizeof (vdev_disk_t));
129 vd->vdev_tsd = NULL;
130 }
131
132 static int
vdev_disk_off_notify(ldi_handle_t lh __unused,ldi_ev_cookie_t ecookie,void * arg,void * ev_data __unused)133 vdev_disk_off_notify(ldi_handle_t lh __unused, ldi_ev_cookie_t ecookie,
134 void *arg, void *ev_data __unused)
135 {
136 vdev_t *vd = (vdev_t *)arg;
137 vdev_disk_t *dvd = vd->vdev_tsd;
138
139 /*
140 * Ignore events other than offline.
141 */
142 if (strcmp(ldi_ev_get_type(ecookie), LDI_EV_OFFLINE) != 0)
143 return (LDI_EV_SUCCESS);
144
145 /*
146 * Tell any new threads that stumble upon this vdev that they should not
147 * try to do I/O.
148 */
149 dvd->vd_ldi_offline = B_TRUE;
150
151 /*
152 * Request that the spa_async_thread mark the device as REMOVED and
153 * notify FMA of the removal. This should also trigger a vdev_close()
154 * in the async thread.
155 */
156 zfs_post_remove(vd->vdev_spa, vd);
157 vd->vdev_remove_wanted = B_TRUE;
158 spa_async_request(vd->vdev_spa, SPA_ASYNC_REMOVE);
159
160 return (LDI_EV_SUCCESS);
161 }
162
163 static void
vdev_disk_off_finalize(ldi_handle_t lh __unused,ldi_ev_cookie_t ecookie,int ldi_result,void * arg,void * ev_data __unused)164 vdev_disk_off_finalize(ldi_handle_t lh __unused, ldi_ev_cookie_t ecookie,
165 int ldi_result, void *arg, void *ev_data __unused)
166 {
167 vdev_t *vd = (vdev_t *)arg;
168
169 /*
170 * Ignore events other than offline.
171 */
172 if (strcmp(ldi_ev_get_type(ecookie), LDI_EV_OFFLINE) != 0)
173 return;
174
175 /*
176 * Request that the vdev be reopened if the offline state change was
177 * unsuccessful.
178 */
179 if (ldi_result != LDI_EV_SUCCESS) {
180 vd->vdev_probe_wanted = B_TRUE;
181 spa_async_request(vd->vdev_spa, SPA_ASYNC_PROBE);
182 }
183 }
184
185 static ldi_ev_callback_t vdev_disk_off_callb = {
186 .cb_vers = LDI_EV_CB_VERS,
187 .cb_notify = vdev_disk_off_notify,
188 .cb_finalize = vdev_disk_off_finalize
189 };
190
191 static void
vdev_disk_dgrd_finalize(ldi_handle_t lh __unused,ldi_ev_cookie_t ecookie,int ldi_result,void * arg,void * ev_data __unused)192 vdev_disk_dgrd_finalize(ldi_handle_t lh __unused, ldi_ev_cookie_t ecookie,
193 int ldi_result, void *arg, void *ev_data __unused)
194 {
195 vdev_t *vd = (vdev_t *)arg;
196
197 /*
198 * Ignore events other than degrade.
199 */
200 if (strcmp(ldi_ev_get_type(ecookie), LDI_EV_DEGRADE) != 0)
201 return;
202
203 /*
204 * Degrade events always succeed. Mark the vdev as degraded.
205 * This status is purely informative for the user.
206 */
207 (void) vdev_degrade(vd->vdev_spa, vd->vdev_guid, 0);
208 }
209
210 static ldi_ev_callback_t vdev_disk_dgrd_callb = {
211 .cb_vers = LDI_EV_CB_VERS,
212 .cb_notify = NULL,
213 .cb_finalize = vdev_disk_dgrd_finalize
214 };
215
216 static void
vdev_disk_hold(vdev_t * vd)217 vdev_disk_hold(vdev_t *vd)
218 {
219 ddi_devid_t devid;
220 char *minor;
221
222 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
223
224 /*
225 * We must have a pathname, and it must be absolute.
226 */
227 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
228 return;
229
230 /*
231 * Only prefetch path and devid info if the device has
232 * never been opened.
233 */
234 if (vd->vdev_tsd != NULL)
235 return;
236
237 if (vd->vdev_wholedisk == -1ULL) {
238 size_t len = strlen(vd->vdev_path) + 3;
239 char *buf = kmem_alloc(len, KM_SLEEP);
240
241 (void) snprintf(buf, len, "%ss0", vd->vdev_path);
242
243 (void) ldi_vp_from_name(buf, &vd->vdev_name_vp);
244 kmem_free(buf, len);
245 }
246
247 if (vd->vdev_name_vp == NULL)
248 (void) ldi_vp_from_name(vd->vdev_path, &vd->vdev_name_vp);
249
250 if (vd->vdev_devid != NULL &&
251 ddi_devid_str_decode(vd->vdev_devid, &devid, &minor) == 0) {
252 (void) ldi_vp_from_devid(devid, minor, &vd->vdev_devid_vp);
253 ddi_devid_str_free(minor);
254 ddi_devid_free(devid);
255 }
256 }
257
258 static void
vdev_disk_rele(vdev_t * vd)259 vdev_disk_rele(vdev_t *vd)
260 {
261 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
262
263 if (vd->vdev_name_vp) {
264 VN_RELE_ASYNC(vd->vdev_name_vp,
265 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool));
266 vd->vdev_name_vp = NULL;
267 }
268 if (vd->vdev_devid_vp) {
269 VN_RELE_ASYNC(vd->vdev_devid_vp,
270 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool));
271 vd->vdev_devid_vp = NULL;
272 }
273 }
274
275 /*
276 * We want to be loud in DEBUG kernels when DKIOCGMEDIAINFOEXT fails, or when
277 * even a fallback to DKIOCGMEDIAINFO fails.
278 */
279 #ifdef DEBUG
280 #define VDEV_DEBUG(...) cmn_err(CE_NOTE, __VA_ARGS__)
281 #else
282 #define VDEV_DEBUG(...) /* Nothing... */
283 #endif
284
285 static int
vdev_disk_open(vdev_t * vd,uint64_t * psize,uint64_t * max_psize,uint64_t * ashift)286 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
287 uint64_t *ashift)
288 {
289 spa_t *spa = vd->vdev_spa;
290 vdev_disk_t *dvd = vd->vdev_tsd;
291 ldi_ev_cookie_t ecookie;
292 vdev_disk_ldi_cb_t *lcb;
293 union {
294 struct dk_minfo_ext ude;
295 struct dk_minfo ud;
296 } dks;
297 struct dk_minfo_ext *dkmext = &dks.ude;
298 struct dk_minfo *dkm = &dks.ud;
299 int error, can_free;
300 dev_t dev;
301 int otyp;
302 boolean_t validate_devid = B_FALSE;
303 uint64_t capacity = 0, blksz = 0, pbsize;
304 const char *rdpath = vdev_disk_preroot_force_path();
305
306 /*
307 * We must have a pathname, and it must be absolute.
308 */
309 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
310 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
311 return (SET_ERROR(EINVAL));
312 }
313
314 /*
315 * Reopen the device if it's not currently open. Otherwise,
316 * just update the physical size of the device.
317 */
318 if (dvd != NULL) {
319 ASSERT(vd->vdev_reopening);
320 goto skip_open;
321 }
322
323 /*
324 * Create vd->vdev_tsd.
325 */
326 vdev_disk_alloc(vd);
327 dvd = vd->vdev_tsd;
328
329 /*
330 * Allow bypassing the devid.
331 */
332 if (vd->vdev_devid != NULL &&
333 (vdev_disk_bypass_devid || rdpath != NULL)) {
334 vdev_dbgmsg(vd, "vdev_disk_open, devid %s bypassed",
335 vd->vdev_devid);
336 spa_strfree(vd->vdev_devid);
337 vd->vdev_devid = NULL;
338 }
339
340 /*
341 * When opening a disk device, we want to preserve the user's original
342 * intent. We always want to open the device by the path the user gave
343 * us, even if it is one of multiple paths to the same device. But we
344 * also want to be able to survive disks being removed/recabled.
345 * Therefore the sequence of opening devices is:
346 *
347 * 1. Try opening the device by path. For legacy pools without the
348 * 'whole_disk' property, attempt to fix the path by appending 's0'.
349 *
350 * 2. If the devid of the device matches the stored value, return
351 * success.
352 *
353 * 3. Otherwise, the device may have moved. Try opening the device
354 * by the devid instead.
355 */
356 if (vd->vdev_devid != NULL) {
357 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
358 &dvd->vd_minor) != 0) {
359 vdev_dbgmsg(vd,
360 "vdev_disk_open, invalid devid %s bypassed",
361 vd->vdev_devid);
362 spa_strfree(vd->vdev_devid);
363 vd->vdev_devid = NULL;
364 }
365 }
366
367 error = EINVAL; /* presume failure */
368
369 if (rdpath != NULL) {
370 /*
371 * We have been asked to open only a specific root device, and
372 * to fail otherwise.
373 */
374 error = ldi_open_by_name((char *)rdpath, spa_mode(spa), kcred,
375 &dvd->vd_lh, zfs_li);
376 validate_devid = B_TRUE;
377 goto rootdisk_only;
378 }
379
380 if (vd->vdev_path != NULL) {
381 if (vd->vdev_wholedisk == -1ULL) {
382 size_t len = strlen(vd->vdev_path) + 3;
383 char *buf = kmem_alloc(len, KM_SLEEP);
384
385 (void) snprintf(buf, len, "%ss0", vd->vdev_path);
386
387 error = ldi_open_by_name(buf, spa_mode(spa), kcred,
388 &dvd->vd_lh, zfs_li);
389 if (error == 0) {
390 spa_strfree(vd->vdev_path);
391 vd->vdev_path = buf;
392 vd->vdev_wholedisk = 1ULL;
393 } else {
394 kmem_free(buf, len);
395 }
396 }
397
398 /*
399 * If we have not yet opened the device, try to open it by the
400 * specified path.
401 */
402 if (error != 0) {
403 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa),
404 kcred, &dvd->vd_lh, zfs_li);
405 }
406
407 /*
408 * Compare the devid to the stored value.
409 */
410 if (error == 0 && vd->vdev_devid != NULL) {
411 ddi_devid_t devid = NULL;
412
413 if (ldi_get_devid(dvd->vd_lh, &devid) != 0) {
414 /*
415 * We expected a devid on this device but it no
416 * longer appears to have one. The validation
417 * step may need to remove it from the
418 * configuration.
419 */
420 validate_devid = B_TRUE;
421
422 } else if (ddi_devid_compare(devid, dvd->vd_devid) !=
423 0) {
424 /*
425 * A mismatch here is unexpected, log it.
426 */
427 char *devid_str = ddi_devid_str_encode(devid,
428 dvd->vd_minor);
429 vdev_dbgmsg(vd, "vdev_disk_open: devid "
430 "mismatch: %s != %s", vd->vdev_devid,
431 devid_str);
432 cmn_err(CE_NOTE, "vdev_disk_open %s: devid "
433 "mismatch: %s != %s", vd->vdev_path,
434 vd->vdev_devid, devid_str);
435 ddi_devid_str_free(devid_str);
436
437 error = SET_ERROR(EINVAL);
438 (void) ldi_close(dvd->vd_lh, spa_mode(spa),
439 kcred);
440 dvd->vd_lh = NULL;
441 }
442
443 if (devid != NULL) {
444 ddi_devid_free(devid);
445 }
446 }
447
448 /*
449 * If we succeeded in opening the device, but 'vdev_wholedisk'
450 * is not yet set, then this must be a slice.
451 */
452 if (error == 0 && vd->vdev_wholedisk == -1ULL)
453 vd->vdev_wholedisk = 0;
454 }
455
456 /*
457 * If we were unable to open by path, or the devid check fails, open by
458 * devid instead.
459 */
460 if (error != 0 && vd->vdev_devid != NULL) {
461 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
462 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li);
463 if (error != 0) {
464 vdev_dbgmsg(vd, "Failed to open by devid (%s)",
465 vd->vdev_devid);
466 }
467 }
468
469 /*
470 * If all else fails, then try opening by physical path (if available)
471 * or the logical path (if we failed due to the devid check). While not
472 * as reliable as the devid, this will give us something, and the higher
473 * level vdev validation will prevent us from opening the wrong device.
474 */
475 if (error != 0) {
476 validate_devid = B_TRUE;
477
478 if (vd->vdev_physpath != NULL &&
479 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) {
480 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa),
481 kcred, &dvd->vd_lh, zfs_li);
482 }
483
484 /*
485 * Note that we don't support the legacy auto-wholedisk support
486 * as above. This hasn't been used in a very long time and we
487 * don't need to propagate its oddities to this edge condition.
488 */
489 if (error != 0 && vd->vdev_path != NULL) {
490 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa),
491 kcred, &dvd->vd_lh, zfs_li);
492 }
493 }
494
495 /*
496 * If this is early in boot, a sweep of available block devices may
497 * locate an alternative path that we can try.
498 */
499 if (error != 0) {
500 const char *altdevpath = vdev_disk_preroot_lookup(
501 spa_guid(spa), vd->vdev_guid);
502
503 if (altdevpath != NULL) {
504 vdev_dbgmsg(vd, "Trying alternate preroot path (%s)",
505 altdevpath);
506
507 validate_devid = B_TRUE;
508
509 if ((error = ldi_open_by_name((char *)altdevpath,
510 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li)) != 0) {
511 vdev_dbgmsg(vd, "Failed to open by preroot "
512 "path (%s)", altdevpath);
513 }
514 }
515 }
516
517 rootdisk_only:
518 if (error != 0) {
519 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
520 vdev_dbgmsg(vd, "vdev_disk_open: failed to open [error=%d]",
521 error);
522 return (error);
523 }
524
525 /*
526 * Now that the device has been successfully opened, update the devid
527 * if necessary.
528 */
529 if (validate_devid) {
530 ddi_devid_t devid = NULL;
531 char *minorname = NULL;
532 char *vd_devid = NULL;
533 boolean_t remove = B_FALSE, update = B_FALSE;
534
535 /*
536 * Get the current devid and minor name for the device we
537 * opened.
538 */
539 if (ldi_get_devid(dvd->vd_lh, &devid) != 0 ||
540 ldi_get_minor_name(dvd->vd_lh, &minorname) != 0) {
541 /*
542 * If we are unable to get the devid or the minor name
543 * for the device, we need to remove them from the
544 * configuration to prevent potential inconsistencies.
545 */
546 if (dvd->vd_minor != NULL || dvd->vd_devid != NULL ||
547 vd->vdev_devid != NULL) {
548 /*
549 * We only need to remove the devid if one
550 * exists.
551 */
552 remove = B_TRUE;
553 }
554
555 } else if (dvd->vd_devid == NULL || dvd->vd_minor == NULL) {
556 /*
557 * There was previously no devid at all so we need to
558 * add one.
559 */
560 update = B_TRUE;
561
562 } else if (ddi_devid_compare(devid, dvd->vd_devid) != 0 ||
563 strcmp(minorname, dvd->vd_minor) != 0) {
564 /*
565 * The devid or minor name on file does not match the
566 * one from the opened device.
567 */
568 update = B_TRUE;
569 }
570
571 if (update) {
572 /*
573 * Render the new devid and minor name as a string for
574 * logging and to store in the vdev configuration.
575 */
576 vd_devid = ddi_devid_str_encode(devid, minorname);
577 }
578
579 if (update || remove) {
580 vdev_dbgmsg(vd, "vdev_disk_open: update devid from "
581 "'%s' to '%s'",
582 vd->vdev_devid != NULL ? vd->vdev_devid : "<none>",
583 vd_devid != NULL ? vd_devid : "<none>");
584 cmn_err(CE_NOTE, "vdev_disk_open %s: update devid "
585 "from '%s' to '%s'",
586 vd->vdev_path != NULL ? vd->vdev_path : "?",
587 vd->vdev_devid != NULL ? vd->vdev_devid : "<none>",
588 vd_devid != NULL ? vd_devid : "<none>");
589
590 /*
591 * Remove and free any existing values.
592 */
593 if (dvd->vd_minor != NULL) {
594 ddi_devid_str_free(dvd->vd_minor);
595 dvd->vd_minor = NULL;
596 }
597 if (dvd->vd_devid != NULL) {
598 ddi_devid_free(dvd->vd_devid);
599 dvd->vd_devid = NULL;
600 }
601 if (vd->vdev_devid != NULL) {
602 spa_strfree(vd->vdev_devid);
603 vd->vdev_devid = NULL;
604 }
605 }
606
607 if (update) {
608 /*
609 * Install the new values.
610 */
611 vd->vdev_devid = vd_devid;
612 dvd->vd_minor = minorname;
613 dvd->vd_devid = devid;
614
615 } else {
616 if (devid != NULL) {
617 ddi_devid_free(devid);
618 }
619 if (minorname != NULL) {
620 kmem_free(minorname, strlen(minorname) + 1);
621 }
622 }
623 }
624
625 /*
626 * Once a device is opened, verify that the physical device path (if
627 * available) is up to date.
628 */
629 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
630 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
631 char *physpath, *minorname;
632
633 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
634 minorname = NULL;
635 if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
636 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
637 (vd->vdev_physpath == NULL ||
638 strcmp(vd->vdev_physpath, physpath) != 0)) {
639 if (vd->vdev_physpath)
640 spa_strfree(vd->vdev_physpath);
641 (void) strlcat(physpath, ":", MAXPATHLEN);
642 (void) strlcat(physpath, minorname, MAXPATHLEN);
643 vd->vdev_physpath = spa_strdup(physpath);
644 }
645 if (minorname)
646 kmem_free(minorname, strlen(minorname) + 1);
647 kmem_free(physpath, MAXPATHLEN);
648 }
649
650 /*
651 * Register callbacks for the LDI offline event.
652 */
653 if (ldi_ev_get_cookie(dvd->vd_lh, LDI_EV_OFFLINE, &ecookie) ==
654 LDI_EV_SUCCESS) {
655 lcb = kmem_zalloc(sizeof (vdev_disk_ldi_cb_t), KM_SLEEP);
656 list_insert_tail(&dvd->vd_ldi_cbs, lcb);
657 (void) ldi_ev_register_callbacks(dvd->vd_lh, ecookie,
658 &vdev_disk_off_callb, (void *) vd, &lcb->lcb_id);
659 }
660
661 /*
662 * Register callbacks for the LDI degrade event.
663 */
664 if (ldi_ev_get_cookie(dvd->vd_lh, LDI_EV_DEGRADE, &ecookie) ==
665 LDI_EV_SUCCESS) {
666 lcb = kmem_zalloc(sizeof (vdev_disk_ldi_cb_t), KM_SLEEP);
667 list_insert_tail(&dvd->vd_ldi_cbs, lcb);
668 (void) ldi_ev_register_callbacks(dvd->vd_lh, ecookie,
669 &vdev_disk_dgrd_callb, (void *) vd, &lcb->lcb_id);
670 }
671
672 skip_open:
673 /*
674 * Determine the actual size of the device.
675 */
676 if (ldi_get_size(dvd->vd_lh, psize) != 0) {
677 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
678 vdev_dbgmsg(vd, "vdev_disk_open: failed to get size");
679 return (SET_ERROR(EINVAL));
680 }
681
682 *max_psize = *psize;
683
684 /*
685 * Determine the device's minimum transfer size.
686 * If the ioctl isn't supported, assume DEV_BSIZE.
687 */
688 if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFOEXT,
689 (intptr_t)dkmext, FKIOCTL, kcred, NULL)) == 0) {
690 capacity = dkmext->dki_capacity - 1;
691 blksz = dkmext->dki_lbsize;
692 pbsize = dkmext->dki_pbsize;
693 } else if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO,
694 (intptr_t)dkm, FKIOCTL, kcred, NULL)) == 0) {
695 VDEV_DEBUG(
696 "vdev_disk_open(\"%s\"): fallback to DKIOCGMEDIAINFO\n",
697 vd->vdev_path);
698 capacity = dkm->dki_capacity - 1;
699 blksz = dkm->dki_lbsize;
700 pbsize = blksz;
701 } else {
702 VDEV_DEBUG("vdev_disk_open(\"%s\"): "
703 "both DKIOCGMEDIAINFO{,EXT} calls failed, %d\n",
704 vd->vdev_path, error);
705 pbsize = DEV_BSIZE;
706 }
707
708 *ashift = highbit64(MAX(pbsize, SPA_MINBLOCKSIZE)) - 1;
709
710 if (vd->vdev_wholedisk == 1) {
711 int wce = 1;
712
713 if (error == 0) {
714 /*
715 * If we have the capability to expand, we'd have
716 * found out via success from DKIOCGMEDIAINFO{,EXT}.
717 * Adjust max_psize upward accordingly since we know
718 * we own the whole disk now.
719 */
720 *max_psize = capacity * blksz;
721 }
722
723 /*
724 * Since we own the whole disk, try to enable disk write
725 * caching. We ignore errors because it's OK if we can't do it.
726 */
727 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
728 FKIOCTL, kcred, NULL);
729 }
730
731 /*
732 * Clear the nowritecache bit, so that on a vdev_reopen() we will
733 * try again.
734 */
735 vd->vdev_nowritecache = B_FALSE;
736
737 if (ldi_ioctl(dvd->vd_lh, DKIOC_CANFREE, (intptr_t)&can_free, FKIOCTL,
738 kcred, NULL) == 0 && can_free == 1) {
739 vd->vdev_has_trim = B_TRUE;
740 } else {
741 vd->vdev_has_trim = B_FALSE;
742 }
743
744 if (zfs_no_trim == 1)
745 vd->vdev_has_trim = B_FALSE;
746
747 /* Currently only supported for ZoL. */
748 vd->vdev_has_securetrim = B_FALSE;
749
750 /* Inform the ZIO pipeline that we are non-rotational */
751 vd->vdev_nonrot = B_FALSE;
752 if (ldi_prop_exists(dvd->vd_lh, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
753 "device-solid-state")) {
754 if (ldi_prop_get_int(dvd->vd_lh,
755 LDI_DEV_T_ANY | DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
756 "device-solid-state", B_FALSE) != 0)
757 vd->vdev_nonrot = B_TRUE;
758 }
759
760 return (0);
761 }
762
763 static void
vdev_disk_close(vdev_t * vd)764 vdev_disk_close(vdev_t *vd)
765 {
766 vdev_disk_t *dvd = vd->vdev_tsd;
767
768 if (vd->vdev_reopening || dvd == NULL)
769 return;
770
771 if (dvd->vd_minor != NULL) {
772 ddi_devid_str_free(dvd->vd_minor);
773 dvd->vd_minor = NULL;
774 }
775
776 if (dvd->vd_devid != NULL) {
777 ddi_devid_free(dvd->vd_devid);
778 dvd->vd_devid = NULL;
779 }
780
781 if (dvd->vd_lh != NULL) {
782 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred);
783 dvd->vd_lh = NULL;
784 }
785
786 vd->vdev_delayed_close = B_FALSE;
787 vdev_disk_free(vd);
788 }
789
790 static int
vdev_disk_ldi_physio(ldi_handle_t vd_lh,caddr_t data,size_t size,uint64_t offset,int flags)791 vdev_disk_ldi_physio(ldi_handle_t vd_lh, caddr_t data,
792 size_t size, uint64_t offset, int flags)
793 {
794 buf_t *bp;
795 int error = 0;
796
797 if (vd_lh == NULL)
798 return (SET_ERROR(EINVAL));
799
800 ASSERT(flags & B_READ || flags & B_WRITE);
801
802 bp = getrbuf(KM_SLEEP);
803 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
804 bp->b_bcount = size;
805 bp->b_un.b_addr = (void *)data;
806 bp->b_lblkno = lbtodb(offset);
807 bp->b_bufsize = size;
808
809 error = ldi_strategy(vd_lh, bp);
810 ASSERT(error == 0);
811 if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
812 error = SET_ERROR(EIO);
813 freerbuf(bp);
814
815 return (error);
816 }
817
818 static int
vdev_disk_dumpio(vdev_t * vd,caddr_t data,size_t size,uint64_t offset,uint64_t origoffset __unused,boolean_t doread,boolean_t isdump)819 vdev_disk_dumpio(vdev_t *vd, caddr_t data, size_t size,
820 uint64_t offset, uint64_t origoffset __unused, boolean_t doread,
821 boolean_t isdump)
822 {
823 vdev_disk_t *dvd = vd->vdev_tsd;
824 int flags = doread ? B_READ : B_WRITE;
825
826 /*
827 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
828 * Nothing to be done here but return failure.
829 */
830 if (dvd == NULL || dvd->vd_ldi_offline) {
831 return (SET_ERROR(ENXIO));
832 }
833
834 ASSERT(vd->vdev_ops == &vdev_disk_ops);
835
836 offset += VDEV_LABEL_START_SIZE;
837
838 /*
839 * If in the context of an active crash dump, use the ldi_dump(9F)
840 * call instead of ldi_strategy(9F) as usual.
841 */
842 if (isdump) {
843 ASSERT3P(dvd, !=, NULL);
844 return (ldi_dump(dvd->vd_lh, data, lbtodb(offset),
845 lbtodb(size)));
846 }
847
848 return (vdev_disk_ldi_physio(dvd->vd_lh, data, size, offset, flags));
849 }
850
851 static int
vdev_disk_io_intr(buf_t * bp)852 vdev_disk_io_intr(buf_t *bp)
853 {
854 vdev_buf_t *vb = (vdev_buf_t *)bp;
855 zio_t *zio = vb->vb_io;
856
857 /*
858 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO.
859 * Rather than teach the rest of the stack about other error
860 * possibilities (EFAULT, etc), we normalize the error value here.
861 */
862 zio->io_error = (geterror(bp) != 0 ? EIO : 0);
863
864 if (zio->io_error == 0 && bp->b_resid != 0)
865 zio->io_error = SET_ERROR(EIO);
866
867 if (zio->io_type == ZIO_TYPE_READ) {
868 abd_return_buf_copy(zio->io_abd, bp->b_un.b_addr, zio->io_size);
869 } else {
870 abd_return_buf(zio->io_abd, bp->b_un.b_addr, zio->io_size);
871 }
872
873 kmem_free(vb, sizeof (vdev_buf_t));
874
875 zio_delay_interrupt(zio);
876 return (0);
877 }
878
879 static void
vdev_disk_ioctl_free(zio_t * zio)880 vdev_disk_ioctl_free(zio_t *zio)
881 {
882 kmem_free(zio->io_vsd, sizeof (struct dk_callback));
883 }
884
885 static const zio_vsd_ops_t vdev_disk_vsd_ops = {
886 vdev_disk_ioctl_free,
887 zio_vsd_default_cksum_report
888 };
889
890 static void
vdev_disk_ioctl_done(void * zio_arg,int error)891 vdev_disk_ioctl_done(void *zio_arg, int error)
892 {
893 zio_t *zio = zio_arg;
894
895 zio->io_error = error;
896
897 zio_interrupt(zio);
898 }
899
900 static void
vdev_disk_io_start(zio_t * zio)901 vdev_disk_io_start(zio_t *zio)
902 {
903 vdev_t *vd = zio->io_vd;
904 vdev_disk_t *dvd = vd->vdev_tsd;
905 unsigned long trim_flags = 0;
906 vdev_buf_t *vb;
907 struct dk_callback *dkc;
908 buf_t *bp;
909 int error;
910
911 /*
912 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
913 * Nothing to be done here but return failure.
914 */
915 if (dvd == NULL || dvd->vd_ldi_offline) {
916 zio->io_error = ENXIO;
917 zio_interrupt(zio);
918 return;
919 }
920
921 switch (zio->io_type) {
922 case ZIO_TYPE_IOCTL:
923 /* XXPOLICY */
924 if (!vdev_readable(vd)) {
925 zio->io_error = SET_ERROR(ENXIO);
926 zio_interrupt(zio);
927 return;
928 }
929
930 switch (zio->io_cmd) {
931
932 case DKIOCFLUSHWRITECACHE:
933
934 if (zfs_nocacheflush)
935 break;
936
937 if (vd->vdev_nowritecache) {
938 zio->io_error = SET_ERROR(ENOTSUP);
939 break;
940 }
941
942 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP);
943 zio->io_vsd_ops = &vdev_disk_vsd_ops;
944
945 dkc->dkc_callback = vdev_disk_ioctl_done;
946 dkc->dkc_flag = FLUSH_VOLATILE;
947 dkc->dkc_cookie = zio;
948
949 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
950 (uintptr_t)dkc, FKIOCTL, kcred, NULL);
951
952 if (error == 0) {
953 /*
954 * The ioctl will be done asychronously,
955 * and will call vdev_disk_ioctl_done()
956 * upon completion.
957 */
958 return;
959 }
960
961 zio->io_error = error;
962
963 break;
964
965 default:
966 zio->io_error = SET_ERROR(ENOTSUP);
967 }
968
969 zio_execute(zio);
970 return;
971
972 case ZIO_TYPE_TRIM:
973 if (zfs_no_trim == 1 || !vd->vdev_has_trim) {
974 zio->io_error = SET_ERROR(ENOTSUP);
975 zio_execute(zio);
976 return;
977 }
978 /* Currently only supported on ZoL. */
979 ASSERT0(zio->io_trim_flags & ZIO_TRIM_SECURE);
980
981 /* dkioc_free_list_t is already declared to hold one entry */
982 dkioc_free_list_t dfl;
983 dfl.dfl_flags = 0;
984 dfl.dfl_num_exts = 1;
985 dfl.dfl_offset = 0;
986 dfl.dfl_exts[0].dfle_start = zio->io_offset;
987 dfl.dfl_exts[0].dfle_length = zio->io_size;
988
989 zio->io_error = ldi_ioctl(dvd->vd_lh, DKIOCFREE,
990 (uintptr_t)&dfl, FKIOCTL, kcred, NULL);
991
992 if (zio->io_error == ENOTSUP || zio->io_error == ENOTTY) {
993 /*
994 * The device must have changed and now TRIM is
995 * no longer supported.
996 */
997 vd->vdev_has_trim = B_FALSE;
998 }
999
1000 zio_interrupt(zio);
1001 return;
1002 }
1003
1004 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
1005 zio->io_target_timestamp = zio_handle_io_delay(zio);
1006
1007 vb = kmem_alloc(sizeof (vdev_buf_t), KM_SLEEP);
1008
1009 vb->vb_io = zio;
1010 bp = &vb->vb_buf;
1011
1012 bioinit(bp);
1013 bp->b_flags = B_BUSY | B_NOCACHE |
1014 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
1015 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
1016 bp->b_flags |= B_FAILFAST;
1017 bp->b_bcount = zio->io_size;
1018
1019 if (zio->io_type == ZIO_TYPE_READ) {
1020 bp->b_un.b_addr =
1021 abd_borrow_buf(zio->io_abd, zio->io_size);
1022 } else {
1023 bp->b_un.b_addr =
1024 abd_borrow_buf_copy(zio->io_abd, zio->io_size);
1025 }
1026
1027 bp->b_lblkno = lbtodb(zio->io_offset);
1028 bp->b_bufsize = zio->io_size;
1029 bp->b_iodone = vdev_disk_io_intr;
1030
1031 /*
1032 * In general we would expect ldi_strategy() to return non-zero only
1033 * because of programming errors, but we've also seen this fail shortly
1034 * after a disk dies.
1035 */
1036 if (ldi_strategy(dvd->vd_lh, bp) != 0) {
1037 zio->io_error = ENXIO;
1038 zio_interrupt(zio);
1039 }
1040 }
1041
1042 static void
vdev_disk_io_done(zio_t * zio)1043 vdev_disk_io_done(zio_t *zio)
1044 {
1045 vdev_t *vd = zio->io_vd;
1046
1047 /*
1048 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
1049 * the device has been removed. If this is the case, then we trigger an
1050 * asynchronous removal of the device. Otherwise, probe the device and
1051 * make sure it's still accessible.
1052 */
1053 if (zio->io_error == EIO && !vd->vdev_remove_wanted) {
1054 vdev_disk_t *dvd = vd->vdev_tsd;
1055 int state = DKIO_NONE;
1056
1057 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
1058 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) {
1059 /*
1060 * We post the resource as soon as possible, instead of
1061 * when the async removal actually happens, because the
1062 * DE is using this information to discard previous I/O
1063 * errors.
1064 */
1065 zfs_post_remove(zio->io_spa, vd);
1066 vd->vdev_remove_wanted = B_TRUE;
1067 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1068 } else if (!vd->vdev_delayed_close) {
1069 vd->vdev_delayed_close = B_TRUE;
1070 }
1071 }
1072 }
1073
1074 vdev_ops_t vdev_disk_ops = {
1075 .vdev_op_open = vdev_disk_open,
1076 .vdev_op_close = vdev_disk_close,
1077 .vdev_op_asize = vdev_default_asize,
1078 .vdev_op_io_start = vdev_disk_io_start,
1079 .vdev_op_io_done = vdev_disk_io_done,
1080 .vdev_op_state_change = NULL,
1081 .vdev_op_need_resilver = NULL,
1082 .vdev_op_hold = vdev_disk_hold,
1083 .vdev_op_rele = vdev_disk_rele,
1084 .vdev_op_remap = NULL,
1085 .vdev_op_xlate = vdev_default_xlate,
1086 .vdev_op_dumpio = vdev_disk_dumpio,
1087 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
1088 .vdev_op_leaf = B_TRUE /* leaf vdev */
1089 };
1090
1091 /*
1092 * Given the root disk device devid or pathname, read the label from
1093 * the device, and construct a configuration nvlist.
1094 */
1095 int
vdev_disk_read_rootlabel(const char * devpath,const char * devid,nvlist_t ** config)1096 vdev_disk_read_rootlabel(const char *devpath, const char *devid,
1097 nvlist_t **config)
1098 {
1099 ldi_handle_t vd_lh;
1100 vdev_label_t *label;
1101 uint64_t s, size;
1102 int l;
1103 ddi_devid_t tmpdevid;
1104 int error = -1;
1105 char *minor_name;
1106
1107 /*
1108 * Read the device label and build the nvlist.
1109 */
1110 if (devid != NULL && ddi_devid_str_decode((char *)devid, &tmpdevid,
1111 &minor_name) == 0) {
1112 error = ldi_open_by_devid(tmpdevid, minor_name,
1113 FREAD, kcred, &vd_lh, zfs_li);
1114 ddi_devid_free(tmpdevid);
1115 ddi_devid_str_free(minor_name);
1116 }
1117
1118 if (error != 0 && (error = ldi_open_by_name((char *)devpath, FREAD,
1119 kcred, &vd_lh, zfs_li)) != 0) {
1120 return (error);
1121 }
1122
1123 if (ldi_get_size(vd_lh, &s)) {
1124 (void) ldi_close(vd_lh, FREAD, kcred);
1125 return (SET_ERROR(EIO));
1126 }
1127
1128 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
1129 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
1130
1131 *config = NULL;
1132 for (l = 0; l < VDEV_LABELS; l++) {
1133 uint64_t offset, state, txg = 0;
1134
1135 /* read vdev label */
1136 offset = vdev_label_offset(size, l, 0);
1137 if (vdev_disk_ldi_physio(vd_lh, (caddr_t)label,
1138 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0)
1139 continue;
1140
1141 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
1142 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
1143 *config = NULL;
1144 continue;
1145 }
1146
1147 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
1148 &state) != 0 || state >= POOL_STATE_DESTROYED) {
1149 nvlist_free(*config);
1150 *config = NULL;
1151 continue;
1152 }
1153
1154 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
1155 &txg) != 0 || txg == 0) {
1156 nvlist_free(*config);
1157 *config = NULL;
1158 continue;
1159 }
1160
1161 break;
1162 }
1163
1164 kmem_free(label, sizeof (vdev_label_t));
1165 (void) ldi_close(vd_lh, FREAD, kcred);
1166 if (*config == NULL)
1167 error = SET_ERROR(EIDRM);
1168
1169 return (error);
1170 }
1171
1172 struct veb {
1173 list_t veb_ents;
1174 boolean_t veb_scanned;
1175 char *veb_force_path;
1176 };
1177
1178 struct veb_ent {
1179 uint64_t vebe_pool_guid;
1180 uint64_t vebe_vdev_guid;
1181
1182 char *vebe_devpath;
1183
1184 list_node_t vebe_link;
1185 };
1186
1187 static kmutex_t veb_lock;
1188 static struct veb *veb;
1189
1190 static int
vdev_disk_preroot_scan_walk(const char * devpath,void * arg)1191 vdev_disk_preroot_scan_walk(const char *devpath, void *arg)
1192 {
1193 int r;
1194 nvlist_t *cfg = NULL;
1195 uint64_t pguid = 0, vguid = 0;
1196
1197 /*
1198 * Attempt to read the label from this block device.
1199 */
1200 if ((r = vdev_disk_read_rootlabel(devpath, NULL, &cfg)) != 0) {
1201 /*
1202 * Many of the available block devices will represent slices or
1203 * partitions of disks, or may represent disks that are not at
1204 * all initialised with ZFS. As this is a best effort
1205 * mechanism to locate an alternate path to a particular vdev,
1206 * we will ignore any failures and keep scanning.
1207 */
1208 return (PREROOT_WALK_BLOCK_DEVICES_NEXT);
1209 }
1210
1211 /*
1212 * Determine the pool and vdev GUID read from the label for this
1213 * device. Both values must be present and have a non-zero value.
1214 */
1215 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &pguid) != 0 ||
1216 nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_GUID, &vguid) != 0 ||
1217 pguid == 0 || vguid == 0) {
1218 /*
1219 * This label was not complete.
1220 */
1221 goto out;
1222 }
1223
1224 /*
1225 * Keep track of all of the GUID-to-devpath mappings we find so that
1226 * vdev_disk_preroot_lookup() can search them.
1227 */
1228 struct veb_ent *vebe = kmem_zalloc(sizeof (*vebe), KM_SLEEP);
1229 vebe->vebe_pool_guid = pguid;
1230 vebe->vebe_vdev_guid = vguid;
1231 vebe->vebe_devpath = spa_strdup(devpath);
1232
1233 list_insert_tail(&veb->veb_ents, vebe);
1234
1235 out:
1236 nvlist_free(cfg);
1237 return (PREROOT_WALK_BLOCK_DEVICES_NEXT);
1238 }
1239
1240 const char *
vdev_disk_preroot_lookup(uint64_t pool_guid,uint64_t vdev_guid)1241 vdev_disk_preroot_lookup(uint64_t pool_guid, uint64_t vdev_guid)
1242 {
1243 if (pool_guid == 0 || vdev_guid == 0) {
1244 /*
1245 * If we aren't provided both a pool and a vdev GUID, we cannot
1246 * perform a lookup.
1247 */
1248 return (NULL);
1249 }
1250
1251 mutex_enter(&veb_lock);
1252 if (veb == NULL) {
1253 /*
1254 * If vdev_disk_preroot_fini() has been called already, there
1255 * is nothing we can do.
1256 */
1257 mutex_exit(&veb_lock);
1258 return (NULL);
1259 }
1260
1261 /*
1262 * We want to perform at most one scan of all block devices per boot.
1263 */
1264 if (!veb->veb_scanned) {
1265 cmn_err(CE_NOTE, "Performing full ZFS device scan!");
1266
1267 preroot_walk_block_devices(vdev_disk_preroot_scan_walk, NULL);
1268
1269 veb->veb_scanned = B_TRUE;
1270 }
1271
1272 const char *path = NULL;
1273 for (struct veb_ent *vebe = list_head(&veb->veb_ents); vebe != NULL;
1274 vebe = list_next(&veb->veb_ents, vebe)) {
1275 if (vebe->vebe_pool_guid == pool_guid &&
1276 vebe->vebe_vdev_guid == vdev_guid) {
1277 path = vebe->vebe_devpath;
1278 break;
1279 }
1280 }
1281
1282 mutex_exit(&veb_lock);
1283
1284 return (path);
1285 }
1286
1287 const char *
vdev_disk_preroot_force_path(void)1288 vdev_disk_preroot_force_path(void)
1289 {
1290 const char *force_path = NULL;
1291
1292 mutex_enter(&veb_lock);
1293 if (veb != NULL) {
1294 force_path = veb->veb_force_path;
1295 }
1296 mutex_exit(&veb_lock);
1297
1298 return (force_path);
1299 }
1300
1301 void
vdev_disk_preroot_init(const char * force_path)1302 vdev_disk_preroot_init(const char *force_path)
1303 {
1304 mutex_init(&veb_lock, NULL, MUTEX_DEFAULT, NULL);
1305
1306 VERIFY3P(veb, ==, NULL);
1307 veb = kmem_zalloc(sizeof (*veb), KM_SLEEP);
1308 list_create(&veb->veb_ents, sizeof (struct veb_ent),
1309 offsetof(struct veb_ent, vebe_link));
1310 veb->veb_scanned = B_FALSE;
1311 if (force_path != NULL) {
1312 veb->veb_force_path = spa_strdup(force_path);
1313 }
1314 }
1315
1316 void
vdev_disk_preroot_fini(void)1317 vdev_disk_preroot_fini(void)
1318 {
1319 mutex_enter(&veb_lock);
1320
1321 if (veb != NULL) {
1322 while (!list_is_empty(&veb->veb_ents)) {
1323 struct veb_ent *vebe = list_remove_head(&veb->veb_ents);
1324
1325 spa_strfree(vebe->vebe_devpath);
1326
1327 kmem_free(vebe, sizeof (*vebe));
1328 }
1329
1330 if (veb->veb_force_path != NULL) {
1331 spa_strfree(veb->veb_force_path);
1332 }
1333
1334 kmem_free(veb, sizeof (*veb));
1335 veb = NULL;
1336 }
1337
1338 mutex_exit(&veb_lock);
1339 }
1340