1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_bhyve_snapshot.h"
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/sysctl.h>
35 #include <sys/malloc.h>
36 #include <sys/pcpu.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/rwlock.h>
41 #include <sys/sched.h>
42 #include <sys/smp.h>
43 #include <sys/sx.h>
44 #include <sys/vnode.h>
45
46 #include <vm/vm.h>
47 #include <vm/vm_param.h>
48 #include <vm/vm_extern.h>
49 #include <vm/vm_object.h>
50 #include <vm/vm_page.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_map.h>
53 #include <vm/vm_pager.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vnode_pager.h>
56 #include <vm/swap_pager.h>
57 #include <vm/uma.h>
58
59 #include <machine/cpu.h>
60 #include <machine/pcb.h>
61 #include <machine/smp.h>
62 #include <machine/md_var.h>
63 #include <x86/psl.h>
64 #include <x86/apicreg.h>
65 #include <x86/ifunc.h>
66
67 #include <machine/vmm.h>
68 #include <machine/vmm_instruction_emul.h>
69 #include <machine/vmm_snapshot.h>
70
71 #include <dev/vmm/vmm_dev.h>
72 #include <dev/vmm/vmm_ktr.h>
73 #include <dev/vmm/vmm_mem.h>
74
75 #include "vmm_ioport.h"
76 #include "vmm_host.h"
77 #include "vmm_mem.h"
78 #include "vmm_util.h"
79 #include "vatpic.h"
80 #include "vatpit.h"
81 #include "vhpet.h"
82 #include "vioapic.h"
83 #include "vlapic.h"
84 #include "vpmtmr.h"
85 #include "vrtc.h"
86 #include "vmm_stat.h"
87 #include "vmm_lapic.h"
88
89 #include "io/ppt.h"
90 #include "io/iommu.h"
91
92 struct vlapic;
93
94 /*
95 * Initialization:
96 * (a) allocated when vcpu is created
97 * (i) initialized when vcpu is created and when it is reinitialized
98 * (o) initialized the first time the vcpu is created
99 * (x) initialized before use
100 */
101 struct vcpu {
102 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
103 enum vcpu_state state; /* (o) vcpu state */
104 int vcpuid; /* (o) */
105 int hostcpu; /* (o) vcpu's host cpu */
106 int reqidle; /* (i) request vcpu to idle */
107 struct vm *vm; /* (o) */
108 void *cookie; /* (i) cpu-specific data */
109 struct vlapic *vlapic; /* (i) APIC device model */
110 enum x2apic_state x2apic_state; /* (i) APIC mode */
111 uint64_t exitintinfo; /* (i) events pending at VM exit */
112 int nmi_pending; /* (i) NMI pending */
113 int extint_pending; /* (i) INTR pending */
114 int exception_pending; /* (i) exception pending */
115 int exc_vector; /* (x) exception collateral */
116 int exc_errcode_valid;
117 uint32_t exc_errcode;
118 struct savefpu *guestfpu; /* (a,i) guest fpu state */
119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
120 void *stats; /* (a,i) statistics */
121 struct vm_exit exitinfo; /* (x) exit reason and collateral */
122 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
123 uint64_t nextrip; /* (x) next instruction to execute */
124 uint64_t tsc_offset; /* (o) TSC offsetting */
125 };
126
127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
128 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
129 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
130 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
131 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
132
133 /*
134 * Initialization:
135 * (o) initialized the first time the VM is created
136 * (i) initialized when VM is created and when it is reinitialized
137 * (x) initialized before use
138 *
139 * Locking:
140 * [m] mem_segs_lock
141 * [r] rendezvous_mtx
142 * [v] reads require one frozen vcpu, writes require freezing all vcpus
143 */
144 struct vm {
145 void *cookie; /* (i) cpu-specific data */
146 void *iommu; /* (x) iommu-specific data */
147 struct vhpet *vhpet; /* (i) virtual HPET */
148 struct vioapic *vioapic; /* (i) virtual ioapic */
149 struct vatpic *vatpic; /* (i) virtual atpic */
150 struct vatpit *vatpit; /* (i) virtual atpit */
151 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
152 struct vrtc *vrtc; /* (o) virtual RTC */
153 volatile cpuset_t active_cpus; /* (i) active vcpus */
154 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
155 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
156 int suspend; /* (i) stop VM execution */
157 bool dying; /* (o) is dying */
158 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
159 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
160 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
161 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
162 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
163 vm_rendezvous_func_t rendezvous_func;
164 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
165 struct vm_mem mem; /* (i) [m+v] guest memory */
166 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
167 struct vcpu **vcpu; /* (o) guest vcpus */
168 /* The following describe the vm cpu topology */
169 uint16_t sockets; /* (o) num of sockets */
170 uint16_t cores; /* (o) num of cores/socket */
171 uint16_t threads; /* (o) num of threads/core */
172 uint16_t maxcpus; /* (o) max pluggable cpus */
173 struct sx vcpus_init_lock; /* (o) */
174 };
175
176 #define VMM_CTR0(vcpu, format) \
177 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
178
179 #define VMM_CTR1(vcpu, format, p1) \
180 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
181
182 #define VMM_CTR2(vcpu, format, p1, p2) \
183 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
184
185 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
186 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
187
188 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
189 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
190
191 static void vmmops_panic(void);
192
193 static void
vmmops_panic(void)194 vmmops_panic(void)
195 {
196 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
197 }
198
199 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
200 DEFINE_IFUNC(, ret_type, vmmops_##opname, args) \
201 { \
202 if (vmm_is_intel()) \
203 return (vmm_ops_intel.opname); \
204 else if (vmm_is_svm()) \
205 return (vmm_ops_amd.opname); \
206 else \
207 return ((ret_type (*)args)vmmops_panic); \
208 }
209
210 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
211 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
212 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
213 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
214 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
215 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
216 struct vm_eventinfo *info))
217 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
218 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
219 int vcpu_id))
220 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
221 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
222 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
223 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
224 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
225 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
226 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
227 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
228 vm_offset_t max))
229 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
230 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
231 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
232 #ifdef BHYVE_SNAPSHOT
233 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
234 struct vm_snapshot_meta *meta))
235 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
236 #endif
237
238 SDT_PROVIDER_DEFINE(vmm);
239
240 static MALLOC_DEFINE(M_VM, "vm", "vm");
241
242 /* statistics */
243 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
244
245 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
246 NULL);
247
248 /*
249 * Halt the guest if all vcpus are executing a HLT instruction with
250 * interrupts disabled.
251 */
252 static int halt_detection_enabled = 1;
253 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
254 &halt_detection_enabled, 0,
255 "Halt VM if all vcpus execute HLT with interrupts disabled");
256
257 static int vmm_ipinum;
258 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
259 "IPI vector used for vcpu notifications");
260
261 static int trace_guest_exceptions;
262 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
263 &trace_guest_exceptions, 0,
264 "Trap into hypervisor on all guest exceptions and reflect them back");
265
266 static int trap_wbinvd;
267 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
268 "WBINVD triggers a VM-exit");
269
270 static void vcpu_notify_event_locked(struct vcpu *vcpu);
271
272 /* global statistics */
273 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
274 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
275 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
276 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
277 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
278 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
279 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
280 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
281 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
282 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
283 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
284 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
285 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
286 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
287 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
288 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
289 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
290 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
291 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
292 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
293 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
294
295 #ifdef KTR
296 static const char *
vcpu_state2str(enum vcpu_state state)297 vcpu_state2str(enum vcpu_state state)
298 {
299
300 switch (state) {
301 case VCPU_IDLE:
302 return ("idle");
303 case VCPU_FROZEN:
304 return ("frozen");
305 case VCPU_RUNNING:
306 return ("running");
307 case VCPU_SLEEPING:
308 return ("sleeping");
309 default:
310 return ("unknown");
311 }
312 }
313 #endif
314
315 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)316 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
317 {
318 vmmops_vlapic_cleanup(vcpu->vlapic);
319 vmmops_vcpu_cleanup(vcpu->cookie);
320 vcpu->cookie = NULL;
321 if (destroy) {
322 vmm_stat_free(vcpu->stats);
323 fpu_save_area_free(vcpu->guestfpu);
324 vcpu_lock_destroy(vcpu);
325 free(vcpu, M_VM);
326 }
327 }
328
329 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)330 vcpu_alloc(struct vm *vm, int vcpu_id)
331 {
332 struct vcpu *vcpu;
333
334 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
335 ("vcpu_init: invalid vcpu %d", vcpu_id));
336
337 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
338 vcpu_lock_init(vcpu);
339 vcpu->state = VCPU_IDLE;
340 vcpu->hostcpu = NOCPU;
341 vcpu->vcpuid = vcpu_id;
342 vcpu->vm = vm;
343 vcpu->guestfpu = fpu_save_area_alloc();
344 vcpu->stats = vmm_stat_alloc();
345 vcpu->tsc_offset = 0;
346 return (vcpu);
347 }
348
349 static void
vcpu_init(struct vcpu * vcpu)350 vcpu_init(struct vcpu *vcpu)
351 {
352 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
353 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
354 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
355 vcpu->reqidle = 0;
356 vcpu->exitintinfo = 0;
357 vcpu->nmi_pending = 0;
358 vcpu->extint_pending = 0;
359 vcpu->exception_pending = 0;
360 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
361 fpu_save_area_reset(vcpu->guestfpu);
362 vmm_stat_init(vcpu->stats);
363 }
364
365 int
vcpu_trace_exceptions(struct vcpu * vcpu)366 vcpu_trace_exceptions(struct vcpu *vcpu)
367 {
368
369 return (trace_guest_exceptions);
370 }
371
372 int
vcpu_trap_wbinvd(struct vcpu * vcpu)373 vcpu_trap_wbinvd(struct vcpu *vcpu)
374 {
375 return (trap_wbinvd);
376 }
377
378 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)379 vm_exitinfo(struct vcpu *vcpu)
380 {
381 return (&vcpu->exitinfo);
382 }
383
384 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)385 vm_exitinfo_cpuset(struct vcpu *vcpu)
386 {
387 return (&vcpu->exitinfo_cpuset);
388 }
389
390 int
vmm_modinit(void)391 vmm_modinit(void)
392 {
393 if (!vmm_is_hw_supported())
394 return (ENXIO);
395
396 vmm_host_state_init();
397
398 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
399 &IDTVEC(justreturn));
400 if (vmm_ipinum < 0)
401 vmm_ipinum = IPI_AST;
402
403 vmm_suspend_p = vmmops_modsuspend;
404 vmm_resume_p = vmmops_modresume;
405
406 return (vmmops_modinit(vmm_ipinum));
407 }
408
409 int
vmm_modcleanup(void)410 vmm_modcleanup(void)
411 {
412 vmm_suspend_p = NULL;
413 vmm_resume_p = NULL;
414 iommu_cleanup();
415 if (vmm_ipinum != IPI_AST)
416 lapic_ipi_free(vmm_ipinum);
417 return (vmmops_modcleanup());
418 }
419
420 static void
vm_init(struct vm * vm,bool create)421 vm_init(struct vm *vm, bool create)
422 {
423 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm)));
424 vm->iommu = NULL;
425 vm->vioapic = vioapic_init(vm);
426 vm->vhpet = vhpet_init(vm);
427 vm->vatpic = vatpic_init(vm);
428 vm->vatpit = vatpit_init(vm);
429 vm->vpmtmr = vpmtmr_init(vm);
430 if (create)
431 vm->vrtc = vrtc_init(vm);
432
433 CPU_ZERO(&vm->active_cpus);
434 CPU_ZERO(&vm->debug_cpus);
435 CPU_ZERO(&vm->startup_cpus);
436
437 vm->suspend = 0;
438 CPU_ZERO(&vm->suspended_cpus);
439
440 if (!create) {
441 for (int i = 0; i < vm->maxcpus; i++) {
442 if (vm->vcpu[i] != NULL)
443 vcpu_init(vm->vcpu[i]);
444 }
445 }
446 }
447
448 void
vm_disable_vcpu_creation(struct vm * vm)449 vm_disable_vcpu_creation(struct vm *vm)
450 {
451 sx_xlock(&vm->vcpus_init_lock);
452 vm->dying = true;
453 sx_xunlock(&vm->vcpus_init_lock);
454 }
455
456 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)457 vm_alloc_vcpu(struct vm *vm, int vcpuid)
458 {
459 struct vcpu *vcpu;
460
461 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
462 return (NULL);
463
464 vcpu = (struct vcpu *)
465 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
466 if (__predict_true(vcpu != NULL))
467 return (vcpu);
468
469 sx_xlock(&vm->vcpus_init_lock);
470 vcpu = vm->vcpu[vcpuid];
471 if (vcpu == NULL && !vm->dying) {
472 vcpu = vcpu_alloc(vm, vcpuid);
473 vcpu_init(vcpu);
474
475 /*
476 * Ensure vCPU is fully created before updating pointer
477 * to permit unlocked reads above.
478 */
479 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
480 (uintptr_t)vcpu);
481 }
482 sx_xunlock(&vm->vcpus_init_lock);
483 return (vcpu);
484 }
485
486 void
vm_lock_vcpus(struct vm * vm)487 vm_lock_vcpus(struct vm *vm)
488 {
489 sx_xlock(&vm->vcpus_init_lock);
490 }
491
492 void
vm_unlock_vcpus(struct vm * vm)493 vm_unlock_vcpus(struct vm *vm)
494 {
495 sx_unlock(&vm->vcpus_init_lock);
496 }
497
498 int
vm_create(const char * name,struct vm ** retvm)499 vm_create(const char *name, struct vm **retvm)
500 {
501 struct vm *vm;
502 int error;
503
504 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
505 error = vm_mem_init(&vm->mem, 0, VM_MAXUSER_ADDRESS_LA48);
506 if (error != 0) {
507 free(vm, M_VM);
508 return (error);
509 }
510 strcpy(vm->name, name);
511 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
512 sx_init(&vm->vcpus_init_lock, "vm vcpus");
513 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
514 M_ZERO);
515
516 vm->sockets = 1;
517 vm->cores = 1; /* XXX backwards compatibility */
518 vm->threads = 1; /* XXX backwards compatibility */
519 vm->maxcpus = vm_maxcpu;
520
521 vm_init(vm, true);
522
523 *retvm = vm;
524 return (0);
525 }
526
527 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)528 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
529 uint16_t *threads, uint16_t *maxcpus)
530 {
531 *sockets = vm->sockets;
532 *cores = vm->cores;
533 *threads = vm->threads;
534 *maxcpus = vm->maxcpus;
535 }
536
537 uint16_t
vm_get_maxcpus(struct vm * vm)538 vm_get_maxcpus(struct vm *vm)
539 {
540 return (vm->maxcpus);
541 }
542
543 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)544 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
545 uint16_t threads, uint16_t maxcpus __unused)
546 {
547 /* Ignore maxcpus. */
548 if ((sockets * cores * threads) > vm->maxcpus)
549 return (EINVAL);
550 vm->sockets = sockets;
551 vm->cores = cores;
552 vm->threads = threads;
553 return(0);
554 }
555
556 static void
vm_cleanup(struct vm * vm,bool destroy)557 vm_cleanup(struct vm *vm, bool destroy)
558 {
559 if (destroy)
560 vm_xlock_memsegs(vm);
561 else
562 vm_assert_memseg_xlocked(vm);
563
564 ppt_unassign_all(vm);
565
566 if (vm->iommu != NULL)
567 iommu_destroy_domain(vm->iommu);
568
569 if (destroy)
570 vrtc_cleanup(vm->vrtc);
571 else
572 vrtc_reset(vm->vrtc);
573 vpmtmr_cleanup(vm->vpmtmr);
574 vatpit_cleanup(vm->vatpit);
575 vhpet_cleanup(vm->vhpet);
576 vatpic_cleanup(vm->vatpic);
577 vioapic_cleanup(vm->vioapic);
578
579 for (int i = 0; i < vm->maxcpus; i++) {
580 if (vm->vcpu[i] != NULL)
581 vcpu_cleanup(vm->vcpu[i], destroy);
582 }
583
584 vmmops_cleanup(vm->cookie);
585
586 vm_mem_cleanup(vm);
587
588 if (destroy) {
589 vm_mem_destroy(vm);
590
591 free(vm->vcpu, M_VM);
592 sx_destroy(&vm->vcpus_init_lock);
593 mtx_destroy(&vm->rendezvous_mtx);
594 }
595 }
596
597 void
vm_destroy(struct vm * vm)598 vm_destroy(struct vm *vm)
599 {
600 vm_cleanup(vm, true);
601 free(vm, M_VM);
602 }
603
604 int
vm_reinit(struct vm * vm)605 vm_reinit(struct vm *vm)
606 {
607 int error;
608
609 /*
610 * A virtual machine can be reset only if all vcpus are suspended.
611 */
612 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
613 vm_cleanup(vm, false);
614 vm_init(vm, false);
615 error = 0;
616 } else {
617 error = EBUSY;
618 }
619
620 return (error);
621 }
622
623 const char *
vm_name(struct vm * vm)624 vm_name(struct vm *vm)
625 {
626 return (vm->name);
627 }
628
629 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)630 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
631 {
632 return (vmm_mmio_alloc(vm_vmspace(vm), gpa, len, hpa));
633 }
634
635 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)636 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
637 {
638
639 vmm_mmio_free(vm_vmspace(vm), gpa, len);
640 return (0);
641 }
642
643 static int
vm_iommu_map(struct vm * vm)644 vm_iommu_map(struct vm *vm)
645 {
646 pmap_t pmap;
647 vm_paddr_t gpa, hpa;
648 struct vm_mem_map *mm;
649 int error, i;
650
651 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
652
653 pmap = vmspace_pmap(vm_vmspace(vm));
654 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
655 if (!vm_memseg_sysmem(vm, i))
656 continue;
657
658 mm = &vm->mem.mem_maps[i];
659 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
660 ("iommu map found invalid memmap %#lx/%#lx/%#x",
661 mm->gpa, mm->len, mm->flags));
662 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
663 continue;
664 mm->flags |= VM_MEMMAP_F_IOMMU;
665
666 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
667 hpa = pmap_extract(pmap, gpa);
668
669 /*
670 * All mappings in the vmm vmspace must be
671 * present since they are managed by vmm in this way.
672 * Because we are in pass-through mode, the
673 * mappings must also be wired. This implies
674 * that all pages must be mapped and wired,
675 * allowing to use pmap_extract() and avoiding the
676 * need to use vm_gpa_hold_global().
677 *
678 * This could change if/when we start
679 * supporting page faults on IOMMU maps.
680 */
681 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
682 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
683 vm, (uintmax_t)gpa, (uintmax_t)hpa));
684
685 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
686 }
687 }
688
689 error = iommu_invalidate_tlb(iommu_host_domain());
690 return (error);
691 }
692
693 static int
vm_iommu_unmap(struct vm * vm)694 vm_iommu_unmap(struct vm *vm)
695 {
696 vm_paddr_t gpa;
697 struct vm_mem_map *mm;
698 int error, i;
699
700 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
701
702 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
703 if (!vm_memseg_sysmem(vm, i))
704 continue;
705
706 mm = &vm->mem.mem_maps[i];
707 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
708 continue;
709 mm->flags &= ~VM_MEMMAP_F_IOMMU;
710 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
711 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
712 mm->gpa, mm->len, mm->flags));
713
714 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
715 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
716 vmspace_pmap(vm_vmspace(vm)), gpa))),
717 ("vm_iommu_unmap: vm %p gpa %jx not wired",
718 vm, (uintmax_t)gpa));
719 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
720 }
721 }
722
723 /*
724 * Invalidate the cached translations associated with the domain
725 * from which pages were removed.
726 */
727 error = iommu_invalidate_tlb(vm->iommu);
728 return (error);
729 }
730
731 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)732 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
733 {
734 int error;
735
736 error = ppt_unassign_device(vm, bus, slot, func);
737 if (error)
738 return (error);
739
740 if (ppt_assigned_devices(vm) == 0)
741 error = vm_iommu_unmap(vm);
742
743 return (error);
744 }
745
746 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)747 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
748 {
749 int error;
750 vm_paddr_t maxaddr;
751 bool map = false;
752
753 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
754 if (ppt_assigned_devices(vm) == 0) {
755 KASSERT(vm->iommu == NULL,
756 ("vm_assign_pptdev: iommu must be NULL"));
757 maxaddr = vmm_sysmem_maxaddr(vm);
758 vm->iommu = iommu_create_domain(maxaddr);
759 if (vm->iommu == NULL)
760 return (ENXIO);
761 map = true;
762 }
763
764 error = ppt_assign_device(vm, bus, slot, func);
765 if (error == 0 && map)
766 error = vm_iommu_map(vm);
767 return (error);
768 }
769
770 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)771 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
772 {
773 /* Negative values represent VM control structure fields. */
774 if (reg >= VM_REG_LAST)
775 return (EINVAL);
776
777 return (vmmops_getreg(vcpu->cookie, reg, retval));
778 }
779
780 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)781 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
782 {
783 int error;
784
785 /* Negative values represent VM control structure fields. */
786 if (reg >= VM_REG_LAST)
787 return (EINVAL);
788
789 error = vmmops_setreg(vcpu->cookie, reg, val);
790 if (error || reg != VM_REG_GUEST_RIP)
791 return (error);
792
793 /* Set 'nextrip' to match the value of %rip */
794 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
795 vcpu->nextrip = val;
796 return (0);
797 }
798
799 static bool
is_descriptor_table(int reg)800 is_descriptor_table(int reg)
801 {
802
803 switch (reg) {
804 case VM_REG_GUEST_IDTR:
805 case VM_REG_GUEST_GDTR:
806 return (true);
807 default:
808 return (false);
809 }
810 }
811
812 static bool
is_segment_register(int reg)813 is_segment_register(int reg)
814 {
815
816 switch (reg) {
817 case VM_REG_GUEST_ES:
818 case VM_REG_GUEST_CS:
819 case VM_REG_GUEST_SS:
820 case VM_REG_GUEST_DS:
821 case VM_REG_GUEST_FS:
822 case VM_REG_GUEST_GS:
823 case VM_REG_GUEST_TR:
824 case VM_REG_GUEST_LDTR:
825 return (true);
826 default:
827 return (false);
828 }
829 }
830
831 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)832 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
833 {
834
835 if (!is_segment_register(reg) && !is_descriptor_table(reg))
836 return (EINVAL);
837
838 return (vmmops_getdesc(vcpu->cookie, reg, desc));
839 }
840
841 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)842 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
843 {
844
845 if (!is_segment_register(reg) && !is_descriptor_table(reg))
846 return (EINVAL);
847
848 return (vmmops_setdesc(vcpu->cookie, reg, desc));
849 }
850
851 static void
restore_guest_fpustate(struct vcpu * vcpu)852 restore_guest_fpustate(struct vcpu *vcpu)
853 {
854
855 /* flush host state to the pcb */
856 fpuexit(curthread);
857
858 /* restore guest FPU state */
859 fpu_enable();
860 fpurestore(vcpu->guestfpu);
861
862 /* restore guest XCR0 if XSAVE is enabled in the host */
863 if (rcr4() & CR4_XSAVE)
864 load_xcr(0, vcpu->guest_xcr0);
865
866 /*
867 * The FPU is now "dirty" with the guest's state so disable
868 * the FPU to trap any access by the host.
869 */
870 fpu_disable();
871 }
872
873 static void
save_guest_fpustate(struct vcpu * vcpu)874 save_guest_fpustate(struct vcpu *vcpu)
875 {
876
877 if ((rcr0() & CR0_TS) == 0)
878 panic("fpu emulation not enabled in host!");
879
880 /* save guest XCR0 and restore host XCR0 */
881 if (rcr4() & CR4_XSAVE) {
882 vcpu->guest_xcr0 = rxcr(0);
883 load_xcr(0, vmm_get_host_xcr0());
884 }
885
886 /* save guest FPU state */
887 fpu_enable();
888 fpusave(vcpu->guestfpu);
889 fpu_disable();
890 }
891
892 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
893
894 /*
895 * Invoke the rendezvous function on the specified vcpu if applicable. Return
896 * true if the rendezvous is finished, false otherwise.
897 */
898 static bool
vm_rendezvous(struct vcpu * vcpu)899 vm_rendezvous(struct vcpu *vcpu)
900 {
901 struct vm *vm = vcpu->vm;
902 int vcpuid;
903
904 mtx_assert(&vcpu->vm->rendezvous_mtx, MA_OWNED);
905 KASSERT(vcpu->vm->rendezvous_func != NULL,
906 ("vm_rendezvous: no rendezvous pending"));
907
908 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
909 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus,
910 &vm->active_cpus);
911
912 vcpuid = vcpu->vcpuid;
913 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
914 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
915 VMM_CTR0(vcpu, "Calling rendezvous func");
916 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
917 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
918 }
919 if (CPU_CMP(&vm->rendezvous_req_cpus,
920 &vm->rendezvous_done_cpus) == 0) {
921 VMM_CTR0(vcpu, "Rendezvous completed");
922 CPU_ZERO(&vm->rendezvous_req_cpus);
923 vm->rendezvous_func = NULL;
924 wakeup(&vm->rendezvous_func);
925 return (true);
926 }
927 return (false);
928 }
929
930 static void
vcpu_wait_idle(struct vcpu * vcpu)931 vcpu_wait_idle(struct vcpu *vcpu)
932 {
933 KASSERT(vcpu->state != VCPU_IDLE, ("vcpu already idle"));
934
935 vcpu->reqidle = 1;
936 vcpu_notify_event_locked(vcpu);
937 VMM_CTR1(vcpu, "vcpu state change from %s to "
938 "idle requested", vcpu_state2str(vcpu->state));
939 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
940 }
941
942 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)943 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
944 bool from_idle)
945 {
946 int error;
947
948 vcpu_assert_locked(vcpu);
949
950 /*
951 * State transitions from the vmmdev_ioctl() must always begin from
952 * the VCPU_IDLE state. This guarantees that there is only a single
953 * ioctl() operating on a vcpu at any point.
954 */
955 if (from_idle) {
956 while (vcpu->state != VCPU_IDLE)
957 vcpu_wait_idle(vcpu);
958 } else {
959 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
960 "vcpu idle state"));
961 }
962
963 if (vcpu->state == VCPU_RUNNING) {
964 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
965 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
966 } else {
967 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
968 "vcpu that is not running", vcpu->hostcpu));
969 }
970
971 /*
972 * The following state transitions are allowed:
973 * IDLE -> FROZEN -> IDLE
974 * FROZEN -> RUNNING -> FROZEN
975 * FROZEN -> SLEEPING -> FROZEN
976 */
977 switch (vcpu->state) {
978 case VCPU_IDLE:
979 case VCPU_RUNNING:
980 case VCPU_SLEEPING:
981 error = (newstate != VCPU_FROZEN);
982 break;
983 case VCPU_FROZEN:
984 error = (newstate == VCPU_FROZEN);
985 break;
986 default:
987 error = 1;
988 break;
989 }
990
991 if (error)
992 return (EBUSY);
993
994 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
995 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
996
997 vcpu->state = newstate;
998 if (newstate == VCPU_RUNNING)
999 vcpu->hostcpu = curcpu;
1000 else
1001 vcpu->hostcpu = NOCPU;
1002
1003 if (newstate == VCPU_IDLE)
1004 wakeup(&vcpu->state);
1005
1006 return (0);
1007 }
1008
1009 /*
1010 * Try to lock all of the vCPUs in the VM while taking care to avoid deadlocks
1011 * with vm_smp_rendezvous().
1012 *
1013 * The complexity here suggests that the rendezvous mechanism needs a rethink.
1014 */
1015 int
vcpu_set_state_all(struct vm * vm,enum vcpu_state newstate)1016 vcpu_set_state_all(struct vm *vm, enum vcpu_state newstate)
1017 {
1018 cpuset_t locked;
1019 struct vcpu *vcpu;
1020 int error, i;
1021 uint16_t maxcpus;
1022
1023 KASSERT(newstate != VCPU_IDLE,
1024 ("vcpu_set_state_all: invalid target state %d", newstate));
1025
1026 error = 0;
1027 CPU_ZERO(&locked);
1028 maxcpus = vm->maxcpus;
1029
1030 mtx_lock(&vm->rendezvous_mtx);
1031 restart:
1032 if (vm->rendezvous_func != NULL) {
1033 /*
1034 * If we have a pending rendezvous, then the initiator may be
1035 * blocked waiting for other vCPUs to execute the callback. The
1036 * current thread may be a vCPU thread so we must not block
1037 * waiting for the initiator, otherwise we get a deadlock.
1038 * Thus, execute the callback on behalf of any idle vCPUs.
1039 */
1040 for (i = 0; i < maxcpus; i++) {
1041 vcpu = vm_vcpu(vm, i);
1042 if (vcpu == NULL)
1043 continue;
1044 vcpu_lock(vcpu);
1045 if (vcpu->state == VCPU_IDLE) {
1046 (void)vcpu_set_state_locked(vcpu, VCPU_FROZEN,
1047 true);
1048 CPU_SET(i, &locked);
1049 }
1050 if (CPU_ISSET(i, &locked)) {
1051 /*
1052 * We can safely execute the callback on this
1053 * vCPU's behalf.
1054 */
1055 vcpu_unlock(vcpu);
1056 (void)vm_rendezvous(vcpu);
1057 vcpu_lock(vcpu);
1058 }
1059 vcpu_unlock(vcpu);
1060 }
1061 }
1062
1063 /*
1064 * Now wait for remaining vCPUs to become idle. This may include the
1065 * initiator of a rendezvous that is currently blocked on the rendezvous
1066 * mutex.
1067 */
1068 CPU_FOREACH_ISCLR(i, &locked) {
1069 if (i >= maxcpus)
1070 break;
1071 vcpu = vm_vcpu(vm, i);
1072 if (vcpu == NULL)
1073 continue;
1074 vcpu_lock(vcpu);
1075 while (vcpu->state != VCPU_IDLE) {
1076 mtx_unlock(&vm->rendezvous_mtx);
1077 vcpu_wait_idle(vcpu);
1078 vcpu_unlock(vcpu);
1079 mtx_lock(&vm->rendezvous_mtx);
1080 if (vm->rendezvous_func != NULL)
1081 goto restart;
1082 vcpu_lock(vcpu);
1083 }
1084 error = vcpu_set_state_locked(vcpu, newstate, true);
1085 vcpu_unlock(vcpu);
1086 if (error != 0) {
1087 /* Roll back state changes. */
1088 CPU_FOREACH_ISSET(i, &locked)
1089 (void)vcpu_set_state(vcpu, VCPU_IDLE, false);
1090 break;
1091 }
1092 CPU_SET(i, &locked);
1093 }
1094 mtx_unlock(&vm->rendezvous_mtx);
1095 return (error);
1096 }
1097
1098 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1099 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1100 {
1101 int error;
1102
1103 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1104 panic("Error %d setting state to %d\n", error, newstate);
1105 }
1106
1107 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1108 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1109 {
1110 int error;
1111
1112 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1113 panic("Error %d setting state to %d", error, newstate);
1114 }
1115
1116 static int
vm_handle_rendezvous(struct vcpu * vcpu)1117 vm_handle_rendezvous(struct vcpu *vcpu)
1118 {
1119 struct vm *vm;
1120 struct thread *td;
1121
1122 td = curthread;
1123 vm = vcpu->vm;
1124
1125 mtx_lock(&vm->rendezvous_mtx);
1126 while (vm->rendezvous_func != NULL) {
1127 if (vm_rendezvous(vcpu))
1128 break;
1129
1130 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1131 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1132 "vmrndv", hz);
1133 if (td_ast_pending(td, TDA_SUSPEND)) {
1134 int error;
1135
1136 mtx_unlock(&vm->rendezvous_mtx);
1137 error = thread_check_susp(td, true);
1138 if (error != 0)
1139 return (error);
1140 mtx_lock(&vm->rendezvous_mtx);
1141 }
1142 }
1143 mtx_unlock(&vm->rendezvous_mtx);
1144 return (0);
1145 }
1146
1147 /*
1148 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1149 */
1150 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1151 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1152 {
1153 struct vm *vm = vcpu->vm;
1154 const char *wmesg;
1155 struct thread *td;
1156 int error, t, vcpuid, vcpu_halted, vm_halted;
1157
1158 vcpuid = vcpu->vcpuid;
1159 vcpu_halted = 0;
1160 vm_halted = 0;
1161 error = 0;
1162 td = curthread;
1163
1164 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1165
1166 vcpu_lock(vcpu);
1167 while (1) {
1168 /*
1169 * Do a final check for pending NMI or interrupts before
1170 * really putting this thread to sleep. Also check for
1171 * software events that would cause this vcpu to wakeup.
1172 *
1173 * These interrupts/events could have happened after the
1174 * vcpu returned from vmmops_run() and before it acquired the
1175 * vcpu lock above.
1176 */
1177 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1178 break;
1179 if (vm_nmi_pending(vcpu))
1180 break;
1181 if (!intr_disabled) {
1182 if (vm_extint_pending(vcpu) ||
1183 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1184 break;
1185 }
1186 }
1187
1188 /* Don't go to sleep if the vcpu thread needs to yield */
1189 if (vcpu_should_yield(vcpu))
1190 break;
1191
1192 if (vcpu_debugged(vcpu))
1193 break;
1194
1195 /*
1196 * Some Linux guests implement "halt" by having all vcpus
1197 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1198 * track of the vcpus that have entered this state. When all
1199 * vcpus enter the halted state the virtual machine is halted.
1200 */
1201 if (intr_disabled) {
1202 wmesg = "vmhalt";
1203 VMM_CTR0(vcpu, "Halted");
1204 if (!vcpu_halted && halt_detection_enabled) {
1205 vcpu_halted = 1;
1206 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1207 }
1208 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1209 vm_halted = 1;
1210 break;
1211 }
1212 } else {
1213 wmesg = "vmidle";
1214 }
1215
1216 t = ticks;
1217 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1218 /*
1219 * XXX msleep_spin() cannot be interrupted by signals so
1220 * wake up periodically to check pending signals.
1221 */
1222 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1223 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1224 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1225 if (td_ast_pending(td, TDA_SUSPEND)) {
1226 vcpu_unlock(vcpu);
1227 error = thread_check_susp(td, false);
1228 if (error != 0) {
1229 if (vcpu_halted) {
1230 CPU_CLR_ATOMIC(vcpuid,
1231 &vm->halted_cpus);
1232 }
1233 return (error);
1234 }
1235 vcpu_lock(vcpu);
1236 }
1237 }
1238
1239 if (vcpu_halted)
1240 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1241
1242 vcpu_unlock(vcpu);
1243
1244 if (vm_halted)
1245 vm_suspend(vm, VM_SUSPEND_HALT);
1246
1247 return (0);
1248 }
1249
1250 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1251 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1252 {
1253 struct vm *vm = vcpu->vm;
1254 int rv, ftype;
1255 struct vm_map *map;
1256 struct vm_exit *vme;
1257
1258 vme = &vcpu->exitinfo;
1259
1260 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1261 __func__, vme->inst_length));
1262
1263 ftype = vme->u.paging.fault_type;
1264 KASSERT(ftype == VM_PROT_READ ||
1265 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1266 ("vm_handle_paging: invalid fault_type %d", ftype));
1267
1268 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1269 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm_vmspace(vm)),
1270 vme->u.paging.gpa, ftype);
1271 if (rv == 0) {
1272 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1273 ftype == VM_PROT_READ ? "accessed" : "dirty",
1274 vme->u.paging.gpa);
1275 goto done;
1276 }
1277 }
1278
1279 map = &vm_vmspace(vm)->vm_map;
1280 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1281
1282 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1283 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1284
1285 if (rv != KERN_SUCCESS)
1286 return (EFAULT);
1287 done:
1288 return (0);
1289 }
1290
1291 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1292 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1293 {
1294 struct vie *vie;
1295 struct vm_exit *vme;
1296 uint64_t gla, gpa, cs_base;
1297 struct vm_guest_paging *paging;
1298 mem_region_read_t mread;
1299 mem_region_write_t mwrite;
1300 enum vm_cpu_mode cpu_mode;
1301 int cs_d, error, fault;
1302
1303 vme = &vcpu->exitinfo;
1304
1305 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1306 __func__, vme->inst_length));
1307
1308 gla = vme->u.inst_emul.gla;
1309 gpa = vme->u.inst_emul.gpa;
1310 cs_base = vme->u.inst_emul.cs_base;
1311 cs_d = vme->u.inst_emul.cs_d;
1312 vie = &vme->u.inst_emul.vie;
1313 paging = &vme->u.inst_emul.paging;
1314 cpu_mode = paging->cpu_mode;
1315
1316 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1317
1318 /* Fetch, decode and emulate the faulting instruction */
1319 if (vie->num_valid == 0) {
1320 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1321 VIE_INST_SIZE, vie, &fault);
1322 } else {
1323 /*
1324 * The instruction bytes have already been copied into 'vie'
1325 */
1326 error = fault = 0;
1327 }
1328 if (error || fault)
1329 return (error);
1330
1331 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1332 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1333 vme->rip + cs_base);
1334 *retu = true; /* dump instruction bytes in userspace */
1335 return (0);
1336 }
1337
1338 /*
1339 * Update 'nextrip' based on the length of the emulated instruction.
1340 */
1341 vme->inst_length = vie->num_processed;
1342 vcpu->nextrip += vie->num_processed;
1343 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1344 vcpu->nextrip);
1345
1346 /* return to userland unless this is an in-kernel emulated device */
1347 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1348 mread = lapic_mmio_read;
1349 mwrite = lapic_mmio_write;
1350 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1351 mread = vioapic_mmio_read;
1352 mwrite = vioapic_mmio_write;
1353 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1354 mread = vhpet_mmio_read;
1355 mwrite = vhpet_mmio_write;
1356 } else {
1357 *retu = true;
1358 return (0);
1359 }
1360
1361 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1362 retu);
1363
1364 return (error);
1365 }
1366
1367 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1368 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1369 {
1370 struct vm *vm = vcpu->vm;
1371 int error, i;
1372 struct thread *td;
1373
1374 error = 0;
1375 td = curthread;
1376
1377 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1378
1379 /*
1380 * Wait until all 'active_cpus' have suspended themselves.
1381 *
1382 * Since a VM may be suspended at any time including when one or
1383 * more vcpus are doing a rendezvous we need to call the rendezvous
1384 * handler while we are waiting to prevent a deadlock.
1385 */
1386 vcpu_lock(vcpu);
1387 while (error == 0) {
1388 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1389 VMM_CTR0(vcpu, "All vcpus suspended");
1390 break;
1391 }
1392
1393 if (vm->rendezvous_func == NULL) {
1394 VMM_CTR0(vcpu, "Sleeping during suspend");
1395 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1396 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1397 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1398 if (td_ast_pending(td, TDA_SUSPEND)) {
1399 vcpu_unlock(vcpu);
1400 error = thread_check_susp(td, false);
1401 vcpu_lock(vcpu);
1402 }
1403 } else {
1404 VMM_CTR0(vcpu, "Rendezvous during suspend");
1405 vcpu_unlock(vcpu);
1406 error = vm_handle_rendezvous(vcpu);
1407 vcpu_lock(vcpu);
1408 }
1409 }
1410 vcpu_unlock(vcpu);
1411
1412 /*
1413 * Wakeup the other sleeping vcpus and return to userspace.
1414 */
1415 for (i = 0; i < vm->maxcpus; i++) {
1416 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1417 vcpu_notify_event(vm_vcpu(vm, i));
1418 }
1419 }
1420
1421 *retu = true;
1422 return (error);
1423 }
1424
1425 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1426 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1427 {
1428 vcpu_lock(vcpu);
1429 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1430 vcpu->reqidle = 0;
1431 vcpu_unlock(vcpu);
1432 *retu = true;
1433 return (0);
1434 }
1435
1436 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1437 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1438 {
1439 int error, fault;
1440 uint64_t rsp;
1441 uint64_t rflags;
1442 struct vm_copyinfo copyinfo[2];
1443
1444 *retu = true;
1445 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1446 return (0);
1447 }
1448
1449 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1450 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1451 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1452 if (error != 0 || fault != 0) {
1453 *retu = false;
1454 return (EINVAL);
1455 }
1456
1457 /* Read pushed rflags value from top of stack. */
1458 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1459
1460 /* Clear TF bit. */
1461 rflags &= ~(PSL_T);
1462
1463 /* Write updated value back to memory. */
1464 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1465 vm_copy_teardown(copyinfo, nitems(copyinfo));
1466
1467 return (0);
1468 }
1469
1470 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1471 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1472 {
1473 int i;
1474
1475 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1476 return (EINVAL);
1477
1478 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1479 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1480 vm->suspend, how);
1481 return (EALREADY);
1482 }
1483
1484 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1485
1486 /*
1487 * Notify all active vcpus that they are now suspended.
1488 */
1489 for (i = 0; i < vm->maxcpus; i++) {
1490 if (CPU_ISSET(i, &vm->active_cpus))
1491 vcpu_notify_event(vm_vcpu(vm, i));
1492 }
1493
1494 return (0);
1495 }
1496
1497 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1498 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1499 {
1500 struct vm *vm = vcpu->vm;
1501 struct vm_exit *vmexit;
1502
1503 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1504 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1505
1506 vmexit = vm_exitinfo(vcpu);
1507 vmexit->rip = rip;
1508 vmexit->inst_length = 0;
1509 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1510 vmexit->u.suspended.how = vm->suspend;
1511 }
1512
1513 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1514 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1515 {
1516 struct vm_exit *vmexit;
1517
1518 vmexit = vm_exitinfo(vcpu);
1519 vmexit->rip = rip;
1520 vmexit->inst_length = 0;
1521 vmexit->exitcode = VM_EXITCODE_DEBUG;
1522 }
1523
1524 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1525 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1526 {
1527 struct vm_exit *vmexit;
1528
1529 vmexit = vm_exitinfo(vcpu);
1530 vmexit->rip = rip;
1531 vmexit->inst_length = 0;
1532 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1533 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1534 }
1535
1536 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1537 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1538 {
1539 struct vm_exit *vmexit;
1540
1541 vmexit = vm_exitinfo(vcpu);
1542 vmexit->rip = rip;
1543 vmexit->inst_length = 0;
1544 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1545 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1546 }
1547
1548 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1549 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1550 {
1551 struct vm_exit *vmexit;
1552
1553 vmexit = vm_exitinfo(vcpu);
1554 vmexit->rip = rip;
1555 vmexit->inst_length = 0;
1556 vmexit->exitcode = VM_EXITCODE_BOGUS;
1557 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1558 }
1559
1560 int
vm_run(struct vcpu * vcpu)1561 vm_run(struct vcpu *vcpu)
1562 {
1563 struct vm *vm = vcpu->vm;
1564 struct vm_eventinfo evinfo;
1565 int error, vcpuid;
1566 struct pcb *pcb;
1567 uint64_t tscval;
1568 struct vm_exit *vme;
1569 bool retu, intr_disabled;
1570 pmap_t pmap;
1571
1572 vcpuid = vcpu->vcpuid;
1573
1574 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1575 return (EINVAL);
1576
1577 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1578 return (EINVAL);
1579
1580 pmap = vmspace_pmap(vm_vmspace(vm));
1581 vme = &vcpu->exitinfo;
1582 evinfo.rptr = &vm->rendezvous_req_cpus;
1583 evinfo.sptr = &vm->suspend;
1584 evinfo.iptr = &vcpu->reqidle;
1585 restart:
1586 critical_enter();
1587
1588 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1589 ("vm_run: absurd pm_active"));
1590
1591 tscval = rdtsc();
1592
1593 pcb = PCPU_GET(curpcb);
1594 set_pcb_flags(pcb, PCB_FULL_IRET);
1595
1596 restore_guest_fpustate(vcpu);
1597
1598 vcpu_require_state(vcpu, VCPU_RUNNING);
1599 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1600 vcpu_require_state(vcpu, VCPU_FROZEN);
1601
1602 save_guest_fpustate(vcpu);
1603
1604 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1605
1606 critical_exit();
1607
1608 if (error == 0) {
1609 retu = false;
1610 vcpu->nextrip = vme->rip + vme->inst_length;
1611 switch (vme->exitcode) {
1612 case VM_EXITCODE_REQIDLE:
1613 error = vm_handle_reqidle(vcpu, &retu);
1614 break;
1615 case VM_EXITCODE_SUSPENDED:
1616 error = vm_handle_suspend(vcpu, &retu);
1617 break;
1618 case VM_EXITCODE_IOAPIC_EOI:
1619 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1620 break;
1621 case VM_EXITCODE_RENDEZVOUS:
1622 error = vm_handle_rendezvous(vcpu);
1623 break;
1624 case VM_EXITCODE_HLT:
1625 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1626 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1627 break;
1628 case VM_EXITCODE_PAGING:
1629 error = vm_handle_paging(vcpu, &retu);
1630 break;
1631 case VM_EXITCODE_INST_EMUL:
1632 error = vm_handle_inst_emul(vcpu, &retu);
1633 break;
1634 case VM_EXITCODE_INOUT:
1635 case VM_EXITCODE_INOUT_STR:
1636 error = vm_handle_inout(vcpu, vme, &retu);
1637 break;
1638 case VM_EXITCODE_DB:
1639 error = vm_handle_db(vcpu, vme, &retu);
1640 break;
1641 case VM_EXITCODE_MONITOR:
1642 case VM_EXITCODE_MWAIT:
1643 case VM_EXITCODE_VMINSN:
1644 vm_inject_ud(vcpu);
1645 break;
1646 default:
1647 retu = true; /* handled in userland */
1648 break;
1649 }
1650 }
1651
1652 /*
1653 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
1654 * exit code into VM_EXITCODE_IPI.
1655 */
1656 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1657 error = vm_handle_ipi(vcpu, vme, &retu);
1658
1659 if (error == 0 && retu == false)
1660 goto restart;
1661
1662 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1663 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1664
1665 return (error);
1666 }
1667
1668 int
vm_restart_instruction(struct vcpu * vcpu)1669 vm_restart_instruction(struct vcpu *vcpu)
1670 {
1671 enum vcpu_state state;
1672 uint64_t rip;
1673 int error __diagused;
1674
1675 state = vcpu_get_state(vcpu, NULL);
1676 if (state == VCPU_RUNNING) {
1677 /*
1678 * When a vcpu is "running" the next instruction is determined
1679 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1680 * Thus setting 'inst_length' to zero will cause the current
1681 * instruction to be restarted.
1682 */
1683 vcpu->exitinfo.inst_length = 0;
1684 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1685 "setting inst_length to zero", vcpu->exitinfo.rip);
1686 } else if (state == VCPU_FROZEN) {
1687 /*
1688 * When a vcpu is "frozen" it is outside the critical section
1689 * around vmmops_run() and 'nextrip' points to the next
1690 * instruction. Thus instruction restart is achieved by setting
1691 * 'nextrip' to the vcpu's %rip.
1692 */
1693 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1694 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1695 VMM_CTR2(vcpu, "restarting instruction by updating "
1696 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1697 vcpu->nextrip = rip;
1698 } else {
1699 panic("%s: invalid state %d", __func__, state);
1700 }
1701 return (0);
1702 }
1703
1704 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)1705 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1706 {
1707 int type, vector;
1708
1709 if (info & VM_INTINFO_VALID) {
1710 type = info & VM_INTINFO_TYPE;
1711 vector = info & 0xff;
1712 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1713 return (EINVAL);
1714 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1715 return (EINVAL);
1716 if (info & VM_INTINFO_RSVD)
1717 return (EINVAL);
1718 } else {
1719 info = 0;
1720 }
1721 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1722 vcpu->exitintinfo = info;
1723 return (0);
1724 }
1725
1726 enum exc_class {
1727 EXC_BENIGN,
1728 EXC_CONTRIBUTORY,
1729 EXC_PAGEFAULT
1730 };
1731
1732 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1733
1734 static enum exc_class
exception_class(uint64_t info)1735 exception_class(uint64_t info)
1736 {
1737 int type, vector;
1738
1739 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1740 type = info & VM_INTINFO_TYPE;
1741 vector = info & 0xff;
1742
1743 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1744 switch (type) {
1745 case VM_INTINFO_HWINTR:
1746 case VM_INTINFO_SWINTR:
1747 case VM_INTINFO_NMI:
1748 return (EXC_BENIGN);
1749 default:
1750 /*
1751 * Hardware exception.
1752 *
1753 * SVM and VT-x use identical type values to represent NMI,
1754 * hardware interrupt and software interrupt.
1755 *
1756 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1757 * for exceptions except #BP and #OF. #BP and #OF use a type
1758 * value of '5' or '6'. Therefore we don't check for explicit
1759 * values of 'type' to classify 'intinfo' into a hardware
1760 * exception.
1761 */
1762 break;
1763 }
1764
1765 switch (vector) {
1766 case IDT_PF:
1767 case IDT_VE:
1768 return (EXC_PAGEFAULT);
1769 case IDT_DE:
1770 case IDT_TS:
1771 case IDT_NP:
1772 case IDT_SS:
1773 case IDT_GP:
1774 return (EXC_CONTRIBUTORY);
1775 default:
1776 return (EXC_BENIGN);
1777 }
1778 }
1779
1780 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)1781 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1782 uint64_t *retinfo)
1783 {
1784 enum exc_class exc1, exc2;
1785 int type1, vector1;
1786
1787 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1788 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1789
1790 /*
1791 * If an exception occurs while attempting to call the double-fault
1792 * handler the processor enters shutdown mode (aka triple fault).
1793 */
1794 type1 = info1 & VM_INTINFO_TYPE;
1795 vector1 = info1 & 0xff;
1796 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1797 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1798 info1, info2);
1799 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1800 *retinfo = 0;
1801 return (0);
1802 }
1803
1804 /*
1805 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1806 */
1807 exc1 = exception_class(info1);
1808 exc2 = exception_class(info2);
1809 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1810 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1811 /* Convert nested fault into a double fault. */
1812 *retinfo = IDT_DF;
1813 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1814 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1815 } else {
1816 /* Handle exceptions serially */
1817 *retinfo = info2;
1818 }
1819 return (1);
1820 }
1821
1822 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1823 vcpu_exception_intinfo(struct vcpu *vcpu)
1824 {
1825 uint64_t info = 0;
1826
1827 if (vcpu->exception_pending) {
1828 info = vcpu->exc_vector & 0xff;
1829 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1830 if (vcpu->exc_errcode_valid) {
1831 info |= VM_INTINFO_DEL_ERRCODE;
1832 info |= (uint64_t)vcpu->exc_errcode << 32;
1833 }
1834 }
1835 return (info);
1836 }
1837
1838 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)1839 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1840 {
1841 uint64_t info1, info2;
1842 int valid;
1843
1844 info1 = vcpu->exitintinfo;
1845 vcpu->exitintinfo = 0;
1846
1847 info2 = 0;
1848 if (vcpu->exception_pending) {
1849 info2 = vcpu_exception_intinfo(vcpu);
1850 vcpu->exception_pending = 0;
1851 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1852 vcpu->exc_vector, info2);
1853 }
1854
1855 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1856 valid = nested_fault(vcpu, info1, info2, retinfo);
1857 } else if (info1 & VM_INTINFO_VALID) {
1858 *retinfo = info1;
1859 valid = 1;
1860 } else if (info2 & VM_INTINFO_VALID) {
1861 *retinfo = info2;
1862 valid = 1;
1863 } else {
1864 valid = 0;
1865 }
1866
1867 if (valid) {
1868 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1869 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1870 }
1871
1872 return (valid);
1873 }
1874
1875 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1876 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1877 {
1878 *info1 = vcpu->exitintinfo;
1879 *info2 = vcpu_exception_intinfo(vcpu);
1880 return (0);
1881 }
1882
1883 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)1884 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1885 uint32_t errcode, int restart_instruction)
1886 {
1887 uint64_t regval;
1888 int error __diagused;
1889
1890 if (vector < 0 || vector >= 32)
1891 return (EINVAL);
1892
1893 /*
1894 * A double fault exception should never be injected directly into
1895 * the guest. It is a derived exception that results from specific
1896 * combinations of nested faults.
1897 */
1898 if (vector == IDT_DF)
1899 return (EINVAL);
1900
1901 if (vcpu->exception_pending) {
1902 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
1903 "pending exception %d", vector, vcpu->exc_vector);
1904 return (EBUSY);
1905 }
1906
1907 if (errcode_valid) {
1908 /*
1909 * Exceptions don't deliver an error code in real mode.
1910 */
1911 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
1912 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1913 if (!(regval & CR0_PE))
1914 errcode_valid = 0;
1915 }
1916
1917 /*
1918 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1919 *
1920 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1921 * one instruction or incurs an exception.
1922 */
1923 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
1924 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1925 __func__, error));
1926
1927 if (restart_instruction)
1928 vm_restart_instruction(vcpu);
1929
1930 vcpu->exception_pending = 1;
1931 vcpu->exc_vector = vector;
1932 vcpu->exc_errcode = errcode;
1933 vcpu->exc_errcode_valid = errcode_valid;
1934 VMM_CTR1(vcpu, "Exception %d pending", vector);
1935 return (0);
1936 }
1937
1938 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)1939 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
1940 {
1941 int error __diagused, restart_instruction;
1942
1943 restart_instruction = 1;
1944
1945 error = vm_inject_exception(vcpu, vector, errcode_valid,
1946 errcode, restart_instruction);
1947 KASSERT(error == 0, ("vm_inject_exception error %d", error));
1948 }
1949
1950 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)1951 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
1952 {
1953 int error __diagused;
1954
1955 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
1956 error_code, cr2);
1957
1958 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
1959 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
1960
1961 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
1962 }
1963
1964 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1965
1966 int
vm_inject_nmi(struct vcpu * vcpu)1967 vm_inject_nmi(struct vcpu *vcpu)
1968 {
1969
1970 vcpu->nmi_pending = 1;
1971 vcpu_notify_event(vcpu);
1972 return (0);
1973 }
1974
1975 int
vm_nmi_pending(struct vcpu * vcpu)1976 vm_nmi_pending(struct vcpu *vcpu)
1977 {
1978 return (vcpu->nmi_pending);
1979 }
1980
1981 void
vm_nmi_clear(struct vcpu * vcpu)1982 vm_nmi_clear(struct vcpu *vcpu)
1983 {
1984 if (vcpu->nmi_pending == 0)
1985 panic("vm_nmi_clear: inconsistent nmi_pending state");
1986
1987 vcpu->nmi_pending = 0;
1988 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
1989 }
1990
1991 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
1992
1993 int
vm_inject_extint(struct vcpu * vcpu)1994 vm_inject_extint(struct vcpu *vcpu)
1995 {
1996
1997 vcpu->extint_pending = 1;
1998 vcpu_notify_event(vcpu);
1999 return (0);
2000 }
2001
2002 int
vm_extint_pending(struct vcpu * vcpu)2003 vm_extint_pending(struct vcpu *vcpu)
2004 {
2005 return (vcpu->extint_pending);
2006 }
2007
2008 void
vm_extint_clear(struct vcpu * vcpu)2009 vm_extint_clear(struct vcpu *vcpu)
2010 {
2011 if (vcpu->extint_pending == 0)
2012 panic("vm_extint_clear: inconsistent extint_pending state");
2013
2014 vcpu->extint_pending = 0;
2015 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
2016 }
2017
2018 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)2019 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2020 {
2021 if (type < 0 || type >= VM_CAP_MAX)
2022 return (EINVAL);
2023
2024 return (vmmops_getcap(vcpu->cookie, type, retval));
2025 }
2026
2027 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2028 vm_set_capability(struct vcpu *vcpu, int type, int val)
2029 {
2030 if (type < 0 || type >= VM_CAP_MAX)
2031 return (EINVAL);
2032
2033 return (vmmops_setcap(vcpu->cookie, type, val));
2034 }
2035
2036 struct vm *
vcpu_vm(struct vcpu * vcpu)2037 vcpu_vm(struct vcpu *vcpu)
2038 {
2039 return (vcpu->vm);
2040 }
2041
2042 int
vcpu_vcpuid(struct vcpu * vcpu)2043 vcpu_vcpuid(struct vcpu *vcpu)
2044 {
2045 return (vcpu->vcpuid);
2046 }
2047
2048 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2049 vm_vcpu(struct vm *vm, int vcpuid)
2050 {
2051 return (vm->vcpu[vcpuid]);
2052 }
2053
2054 struct vlapic *
vm_lapic(struct vcpu * vcpu)2055 vm_lapic(struct vcpu *vcpu)
2056 {
2057 return (vcpu->vlapic);
2058 }
2059
2060 struct vioapic *
vm_ioapic(struct vm * vm)2061 vm_ioapic(struct vm *vm)
2062 {
2063
2064 return (vm->vioapic);
2065 }
2066
2067 struct vhpet *
vm_hpet(struct vm * vm)2068 vm_hpet(struct vm *vm)
2069 {
2070
2071 return (vm->vhpet);
2072 }
2073
2074 bool
vmm_is_pptdev(int bus,int slot,int func)2075 vmm_is_pptdev(int bus, int slot, int func)
2076 {
2077 int b, f, i, n, s;
2078 char *val, *cp, *cp2;
2079 bool found;
2080
2081 /*
2082 * XXX
2083 * The length of an environment variable is limited to 128 bytes which
2084 * puts an upper limit on the number of passthru devices that may be
2085 * specified using a single environment variable.
2086 *
2087 * Work around this by scanning multiple environment variable
2088 * names instead of a single one - yuck!
2089 */
2090 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2091
2092 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2093 found = false;
2094 for (i = 0; names[i] != NULL && !found; i++) {
2095 cp = val = kern_getenv(names[i]);
2096 while (cp != NULL && *cp != '\0') {
2097 if ((cp2 = strchr(cp, ' ')) != NULL)
2098 *cp2 = '\0';
2099
2100 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2101 if (n == 3 && bus == b && slot == s && func == f) {
2102 found = true;
2103 break;
2104 }
2105
2106 if (cp2 != NULL)
2107 *cp2++ = ' ';
2108
2109 cp = cp2;
2110 }
2111 freeenv(val);
2112 }
2113 return (found);
2114 }
2115
2116 void *
vm_iommu_domain(struct vm * vm)2117 vm_iommu_domain(struct vm *vm)
2118 {
2119
2120 return (vm->iommu);
2121 }
2122
2123 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2124 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2125 {
2126 int error;
2127
2128 vcpu_lock(vcpu);
2129 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2130 vcpu_unlock(vcpu);
2131
2132 return (error);
2133 }
2134
2135 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2136 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2137 {
2138 enum vcpu_state state;
2139
2140 vcpu_lock(vcpu);
2141 state = vcpu->state;
2142 if (hostcpu != NULL)
2143 *hostcpu = vcpu->hostcpu;
2144 vcpu_unlock(vcpu);
2145
2146 return (state);
2147 }
2148
2149 int
vm_activate_cpu(struct vcpu * vcpu)2150 vm_activate_cpu(struct vcpu *vcpu)
2151 {
2152 struct vm *vm = vcpu->vm;
2153
2154 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2155 return (EBUSY);
2156
2157 VMM_CTR0(vcpu, "activated");
2158 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2159 return (0);
2160 }
2161
2162 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2163 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2164 {
2165 if (vcpu == NULL) {
2166 vm->debug_cpus = vm->active_cpus;
2167 for (int i = 0; i < vm->maxcpus; i++) {
2168 if (CPU_ISSET(i, &vm->active_cpus))
2169 vcpu_notify_event(vm_vcpu(vm, i));
2170 }
2171 } else {
2172 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2173 return (EINVAL);
2174
2175 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2176 vcpu_notify_event(vcpu);
2177 }
2178 return (0);
2179 }
2180
2181 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2182 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2183 {
2184
2185 if (vcpu == NULL) {
2186 CPU_ZERO(&vm->debug_cpus);
2187 } else {
2188 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2189 return (EINVAL);
2190
2191 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2192 }
2193 return (0);
2194 }
2195
2196 int
vcpu_debugged(struct vcpu * vcpu)2197 vcpu_debugged(struct vcpu *vcpu)
2198 {
2199
2200 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2201 }
2202
2203 cpuset_t
vm_active_cpus(struct vm * vm)2204 vm_active_cpus(struct vm *vm)
2205 {
2206
2207 return (vm->active_cpus);
2208 }
2209
2210 cpuset_t
vm_debug_cpus(struct vm * vm)2211 vm_debug_cpus(struct vm *vm)
2212 {
2213
2214 return (vm->debug_cpus);
2215 }
2216
2217 cpuset_t
vm_suspended_cpus(struct vm * vm)2218 vm_suspended_cpus(struct vm *vm)
2219 {
2220
2221 return (vm->suspended_cpus);
2222 }
2223
2224 /*
2225 * Returns the subset of vCPUs in tostart that are awaiting startup.
2226 * These vCPUs are also marked as no longer awaiting startup.
2227 */
2228 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2229 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2230 {
2231 cpuset_t set;
2232
2233 mtx_lock(&vm->rendezvous_mtx);
2234 CPU_AND(&set, &vm->startup_cpus, tostart);
2235 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2236 mtx_unlock(&vm->rendezvous_mtx);
2237 return (set);
2238 }
2239
2240 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2241 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2242 {
2243 mtx_lock(&vm->rendezvous_mtx);
2244 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2245 mtx_unlock(&vm->rendezvous_mtx);
2246 }
2247
2248 void *
vcpu_stats(struct vcpu * vcpu)2249 vcpu_stats(struct vcpu *vcpu)
2250 {
2251
2252 return (vcpu->stats);
2253 }
2254
2255 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2256 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2257 {
2258 *state = vcpu->x2apic_state;
2259
2260 return (0);
2261 }
2262
2263 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2264 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2265 {
2266 if (state >= X2APIC_STATE_LAST)
2267 return (EINVAL);
2268
2269 vcpu->x2apic_state = state;
2270
2271 vlapic_set_x2apic_state(vcpu, state);
2272
2273 return (0);
2274 }
2275
2276 /*
2277 * This function is called to ensure that a vcpu "sees" a pending event
2278 * as soon as possible:
2279 * - If the vcpu thread is sleeping then it is woken up.
2280 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2281 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2282 */
2283 static void
vcpu_notify_event_locked(struct vcpu * vcpu)2284 vcpu_notify_event_locked(struct vcpu *vcpu)
2285 {
2286 int hostcpu;
2287
2288 hostcpu = vcpu->hostcpu;
2289 if (vcpu->state == VCPU_RUNNING) {
2290 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2291 if (hostcpu != curcpu) {
2292 ipi_cpu(hostcpu, vmm_ipinum);
2293 } else {
2294 /*
2295 * If the 'vcpu' is running on 'curcpu' then it must
2296 * be sending a notification to itself (e.g. SELF_IPI).
2297 * The pending event will be picked up when the vcpu
2298 * transitions back to guest context.
2299 */
2300 }
2301 } else {
2302 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2303 "with hostcpu %d", vcpu->state, hostcpu));
2304 if (vcpu->state == VCPU_SLEEPING)
2305 wakeup_one(vcpu);
2306 }
2307 }
2308
2309 void
vcpu_notify_event(struct vcpu * vcpu)2310 vcpu_notify_event(struct vcpu *vcpu)
2311 {
2312 vcpu_lock(vcpu);
2313 vcpu_notify_event_locked(vcpu);
2314 vcpu_unlock(vcpu);
2315 }
2316
2317 void
vcpu_notify_lapic(struct vcpu * vcpu)2318 vcpu_notify_lapic(struct vcpu *vcpu)
2319 {
2320 vcpu_lock(vcpu);
2321 if (vcpu->state == VCPU_RUNNING && vcpu->hostcpu != curcpu)
2322 vlapic_post_intr(vcpu->vlapic, vcpu->hostcpu, vmm_ipinum);
2323 else
2324 vcpu_notify_event_locked(vcpu);
2325 vcpu_unlock(vcpu);
2326 }
2327
2328 struct vm_mem *
vm_mem(struct vm * vm)2329 vm_mem(struct vm *vm)
2330 {
2331 return (&vm->mem);
2332 }
2333
2334 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2335 vm_apicid2vcpuid(struct vm *vm, int apicid)
2336 {
2337 /*
2338 * XXX apic id is assumed to be numerically identical to vcpu id
2339 */
2340 return (apicid);
2341 }
2342
2343 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2344 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2345 vm_rendezvous_func_t func, void *arg)
2346 {
2347 struct vm *vm = vcpu->vm;
2348 int error, i;
2349
2350 /*
2351 * Enforce that this function is called without any locks
2352 */
2353 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2354
2355 restart:
2356 mtx_lock(&vm->rendezvous_mtx);
2357 if (vm->rendezvous_func != NULL) {
2358 /*
2359 * If a rendezvous is already in progress then we need to
2360 * call the rendezvous handler in case this 'vcpu' is one
2361 * of the targets of the rendezvous.
2362 */
2363 VMM_CTR0(vcpu, "Rendezvous already in progress");
2364 mtx_unlock(&vm->rendezvous_mtx);
2365 error = vm_handle_rendezvous(vcpu);
2366 if (error != 0)
2367 return (error);
2368 goto restart;
2369 }
2370 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2371 "rendezvous is still in progress"));
2372
2373 VMM_CTR0(vcpu, "Initiating rendezvous");
2374 vm->rendezvous_req_cpus = dest;
2375 CPU_ZERO(&vm->rendezvous_done_cpus);
2376 vm->rendezvous_arg = arg;
2377 vm->rendezvous_func = func;
2378 mtx_unlock(&vm->rendezvous_mtx);
2379
2380 /*
2381 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2382 * vcpus so they handle the rendezvous as soon as possible.
2383 */
2384 for (i = 0; i < vm->maxcpus; i++) {
2385 if (CPU_ISSET(i, &dest))
2386 vcpu_notify_event(vm_vcpu(vm, i));
2387 }
2388
2389 return (vm_handle_rendezvous(vcpu));
2390 }
2391
2392 struct vatpic *
vm_atpic(struct vm * vm)2393 vm_atpic(struct vm *vm)
2394 {
2395 return (vm->vatpic);
2396 }
2397
2398 struct vatpit *
vm_atpit(struct vm * vm)2399 vm_atpit(struct vm *vm)
2400 {
2401 return (vm->vatpit);
2402 }
2403
2404 struct vpmtmr *
vm_pmtmr(struct vm * vm)2405 vm_pmtmr(struct vm *vm)
2406 {
2407
2408 return (vm->vpmtmr);
2409 }
2410
2411 struct vrtc *
vm_rtc(struct vm * vm)2412 vm_rtc(struct vm *vm)
2413 {
2414
2415 return (vm->vrtc);
2416 }
2417
2418 enum vm_reg_name
vm_segment_name(int seg)2419 vm_segment_name(int seg)
2420 {
2421 static enum vm_reg_name seg_names[] = {
2422 VM_REG_GUEST_ES,
2423 VM_REG_GUEST_CS,
2424 VM_REG_GUEST_SS,
2425 VM_REG_GUEST_DS,
2426 VM_REG_GUEST_FS,
2427 VM_REG_GUEST_GS
2428 };
2429
2430 KASSERT(seg >= 0 && seg < nitems(seg_names),
2431 ("%s: invalid segment encoding %d", __func__, seg));
2432 return (seg_names[seg]);
2433 }
2434
2435 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2436 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2437 {
2438 int idx;
2439
2440 for (idx = 0; idx < num_copyinfo; idx++) {
2441 if (copyinfo[idx].cookie != NULL)
2442 vm_gpa_release(copyinfo[idx].cookie);
2443 }
2444 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2445 }
2446
2447 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2448 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2449 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2450 int num_copyinfo, int *fault)
2451 {
2452 int error, idx, nused;
2453 size_t n, off, remaining;
2454 void *hva, *cookie;
2455 uint64_t gpa;
2456
2457 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2458
2459 nused = 0;
2460 remaining = len;
2461 while (remaining > 0) {
2462 if (nused >= num_copyinfo)
2463 return (EFAULT);
2464 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2465 if (error || *fault)
2466 return (error);
2467 off = gpa & PAGE_MASK;
2468 n = min(remaining, PAGE_SIZE - off);
2469 copyinfo[nused].gpa = gpa;
2470 copyinfo[nused].len = n;
2471 remaining -= n;
2472 gla += n;
2473 nused++;
2474 }
2475
2476 for (idx = 0; idx < nused; idx++) {
2477 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2478 copyinfo[idx].len, prot, &cookie);
2479 if (hva == NULL)
2480 break;
2481 copyinfo[idx].hva = hva;
2482 copyinfo[idx].cookie = cookie;
2483 }
2484
2485 if (idx != nused) {
2486 vm_copy_teardown(copyinfo, num_copyinfo);
2487 return (EFAULT);
2488 } else {
2489 *fault = 0;
2490 return (0);
2491 }
2492 }
2493
2494 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2495 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2496 {
2497 char *dst;
2498 int idx;
2499
2500 dst = kaddr;
2501 idx = 0;
2502 while (len > 0) {
2503 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2504 len -= copyinfo[idx].len;
2505 dst += copyinfo[idx].len;
2506 idx++;
2507 }
2508 }
2509
2510 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2511 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2512 {
2513 const char *src;
2514 int idx;
2515
2516 src = kaddr;
2517 idx = 0;
2518 while (len > 0) {
2519 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2520 len -= copyinfo[idx].len;
2521 src += copyinfo[idx].len;
2522 idx++;
2523 }
2524 }
2525
2526 /*
2527 * Return the amount of in-use and wired memory for the VM. Since
2528 * these are global stats, only return the values with for vCPU 0
2529 */
2530 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2531 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2532
2533 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2534 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2535 {
2536
2537 if (vcpu->vcpuid == 0) {
2538 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2539 vmspace_resident_count(vm_vmspace(vcpu->vm)));
2540 }
2541 }
2542
2543 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2544 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2545 {
2546
2547 if (vcpu->vcpuid == 0) {
2548 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2549 pmap_wired_count(vmspace_pmap(vm_vmspace(vcpu->vm))));
2550 }
2551 }
2552
2553 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2554 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2555
2556 #ifdef BHYVE_SNAPSHOT
2557 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2558 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2559 {
2560 uint64_t tsc, now;
2561 int ret;
2562 struct vcpu *vcpu;
2563 uint16_t i, maxcpus;
2564
2565 now = rdtsc();
2566 maxcpus = vm_get_maxcpus(vm);
2567 for (i = 0; i < maxcpus; i++) {
2568 vcpu = vm->vcpu[i];
2569 if (vcpu == NULL)
2570 continue;
2571
2572 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2573 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2574 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2575 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2576 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2577 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2578 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2579 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2580
2581 /*
2582 * Save the absolute TSC value by adding now to tsc_offset.
2583 *
2584 * It will be turned turned back into an actual offset when the
2585 * TSC restore function is called
2586 */
2587 tsc = now + vcpu->tsc_offset;
2588 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2589 if (meta->op == VM_SNAPSHOT_RESTORE)
2590 vcpu->tsc_offset = tsc;
2591 }
2592
2593 done:
2594 return (ret);
2595 }
2596
2597 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2598 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2599 {
2600 int ret;
2601
2602 ret = vm_snapshot_vcpus(vm, meta);
2603 if (ret != 0)
2604 goto done;
2605
2606 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2607 done:
2608 return (ret);
2609 }
2610
2611 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2612 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2613 {
2614 int error;
2615 struct vcpu *vcpu;
2616 uint16_t i, maxcpus;
2617
2618 error = 0;
2619
2620 maxcpus = vm_get_maxcpus(vm);
2621 for (i = 0; i < maxcpus; i++) {
2622 vcpu = vm->vcpu[i];
2623 if (vcpu == NULL)
2624 continue;
2625
2626 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2627 if (error != 0) {
2628 printf("%s: failed to snapshot vmcs/vmcb data for "
2629 "vCPU: %d; error: %d\n", __func__, i, error);
2630 goto done;
2631 }
2632 }
2633
2634 done:
2635 return (error);
2636 }
2637
2638 /*
2639 * Save kernel-side structures to user-space for snapshotting.
2640 */
2641 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2642 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2643 {
2644 int ret = 0;
2645
2646 switch (meta->dev_req) {
2647 case STRUCT_VMCX:
2648 ret = vm_snapshot_vcpu(vm, meta);
2649 break;
2650 case STRUCT_VM:
2651 ret = vm_snapshot_vm(vm, meta);
2652 break;
2653 case STRUCT_VIOAPIC:
2654 ret = vioapic_snapshot(vm_ioapic(vm), meta);
2655 break;
2656 case STRUCT_VLAPIC:
2657 ret = vlapic_snapshot(vm, meta);
2658 break;
2659 case STRUCT_VHPET:
2660 ret = vhpet_snapshot(vm_hpet(vm), meta);
2661 break;
2662 case STRUCT_VATPIC:
2663 ret = vatpic_snapshot(vm_atpic(vm), meta);
2664 break;
2665 case STRUCT_VATPIT:
2666 ret = vatpit_snapshot(vm_atpit(vm), meta);
2667 break;
2668 case STRUCT_VPMTMR:
2669 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2670 break;
2671 case STRUCT_VRTC:
2672 ret = vrtc_snapshot(vm_rtc(vm), meta);
2673 break;
2674 default:
2675 printf("%s: failed to find the requested type %#x\n",
2676 __func__, meta->dev_req);
2677 ret = (EINVAL);
2678 }
2679 return (ret);
2680 }
2681
2682 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)2683 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2684 {
2685 vcpu->tsc_offset = offset;
2686 }
2687
2688 int
vm_restore_time(struct vm * vm)2689 vm_restore_time(struct vm *vm)
2690 {
2691 int error;
2692 uint64_t now;
2693 struct vcpu *vcpu;
2694 uint16_t i, maxcpus;
2695
2696 now = rdtsc();
2697
2698 error = vhpet_restore_time(vm_hpet(vm));
2699 if (error)
2700 return (error);
2701
2702 maxcpus = vm_get_maxcpus(vm);
2703 for (i = 0; i < maxcpus; i++) {
2704 vcpu = vm->vcpu[i];
2705 if (vcpu == NULL)
2706 continue;
2707
2708 error = vmmops_restore_tsc(vcpu->cookie,
2709 vcpu->tsc_offset - now);
2710 if (error)
2711 return (error);
2712 }
2713
2714 return (0);
2715 }
2716 #endif
2717