1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_bhyve_snapshot.h"
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/sysctl.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sx.h>
45 #include <sys/vnode.h>
46
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vnode_pager.h>
57 #include <vm/swap_pager.h>
58 #include <vm/uma.h>
59
60 #include <machine/cpu.h>
61 #include <machine/pcb.h>
62 #include <machine/smp.h>
63 #include <machine/md_var.h>
64 #include <x86/psl.h>
65 #include <x86/apicreg.h>
66 #include <x86/ifunc.h>
67
68 #include <machine/vmm.h>
69 #include <machine/vmm_instruction_emul.h>
70 #include <machine/vmm_snapshot.h>
71
72 #include <dev/vmm/vmm_dev.h>
73 #include <dev/vmm/vmm_ktr.h>
74 #include <dev/vmm/vmm_mem.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92
93 struct vlapic;
94
95 /*
96 * Initialization:
97 * (a) allocated when vcpu is created
98 * (i) initialized when vcpu is created and when it is reinitialized
99 * (o) initialized the first time the vcpu is created
100 * (x) initialized before use
101 */
102 struct vcpu {
103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104 enum vcpu_state state; /* (o) vcpu state */
105 int vcpuid; /* (o) */
106 int hostcpu; /* (o) vcpu's host cpu */
107 int reqidle; /* (i) request vcpu to idle */
108 struct vm *vm; /* (o) */
109 void *cookie; /* (i) cpu-specific data */
110 struct vlapic *vlapic; /* (i) APIC device model */
111 enum x2apic_state x2apic_state; /* (i) APIC mode */
112 uint64_t exitintinfo; /* (i) events pending at VM exit */
113 int nmi_pending; /* (i) NMI pending */
114 int extint_pending; /* (i) INTR pending */
115 int exception_pending; /* (i) exception pending */
116 int exc_vector; /* (x) exception collateral */
117 int exc_errcode_valid;
118 uint32_t exc_errcode;
119 struct savefpu *guestfpu; /* (a,i) guest fpu state */
120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121 void *stats; /* (a,i) statistics */
122 struct vm_exit exitinfo; /* (x) exit reason and collateral */
123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 uint64_t nextrip; /* (x) next instruction to execute */
125 uint64_t tsc_offset; /* (o) TSC offsetting */
126 };
127
128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134 /*
135 * Initialization:
136 * (o) initialized the first time the VM is created
137 * (i) initialized when VM is created and when it is reinitialized
138 * (x) initialized before use
139 *
140 * Locking:
141 * [m] mem_segs_lock
142 * [r] rendezvous_mtx
143 * [v] reads require one frozen vcpu, writes require freezing all vcpus
144 */
145 struct vm {
146 void *cookie; /* (i) cpu-specific data */
147 void *iommu; /* (x) iommu-specific data */
148 struct vhpet *vhpet; /* (i) virtual HPET */
149 struct vioapic *vioapic; /* (i) virtual ioapic */
150 struct vatpic *vatpic; /* (i) virtual atpic */
151 struct vatpit *vatpit; /* (i) virtual atpit */
152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153 struct vrtc *vrtc; /* (o) virtual RTC */
154 volatile cpuset_t active_cpus; /* (i) active vcpus */
155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
157 int suspend; /* (i) stop VM execution */
158 bool dying; /* (o) is dying */
159 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
160 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
161 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
162 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
163 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
164 vm_rendezvous_func_t rendezvous_func;
165 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
166 struct vmspace *vmspace; /* (o) guest's address space */
167 struct vm_mem mem; /* (i) [m+v] guest memory */
168 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
169 struct vcpu **vcpu; /* (o) guest vcpus */
170 /* The following describe the vm cpu topology */
171 uint16_t sockets; /* (o) num of sockets */
172 uint16_t cores; /* (o) num of cores/socket */
173 uint16_t threads; /* (o) num of threads/core */
174 uint16_t maxcpus; /* (o) max pluggable cpus */
175 struct sx vcpus_init_lock; /* (o) */
176 };
177
178 #define VMM_CTR0(vcpu, format) \
179 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
180
181 #define VMM_CTR1(vcpu, format, p1) \
182 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
183
184 #define VMM_CTR2(vcpu, format, p1, p2) \
185 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
186
187 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
188 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
189
190 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
191 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
192
193 static int vmm_initialized;
194
195 static void vmmops_panic(void);
196
197 static void
vmmops_panic(void)198 vmmops_panic(void)
199 {
200 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
201 }
202
203 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
204 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \
205 { \
206 if (vmm_is_intel()) \
207 return (vmm_ops_intel.opname); \
208 else if (vmm_is_svm()) \
209 return (vmm_ops_amd.opname); \
210 else \
211 return ((ret_type (*)args)vmmops_panic); \
212 }
213
214 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
215 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
216 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
217 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
218 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
219 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
220 struct vm_eventinfo *info))
221 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
222 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
223 int vcpu_id))
224 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
225 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
226 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
227 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
228 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
229 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
230 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
231 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
232 vm_offset_t max))
233 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
234 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
235 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
236 #ifdef BHYVE_SNAPSHOT
237 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
238 struct vm_snapshot_meta *meta))
239 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
240 #endif
241
242 SDT_PROVIDER_DEFINE(vmm);
243
244 static MALLOC_DEFINE(M_VM, "vm", "vm");
245
246 /* statistics */
247 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
248
249 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
250 NULL);
251
252 /*
253 * Halt the guest if all vcpus are executing a HLT instruction with
254 * interrupts disabled.
255 */
256 static int halt_detection_enabled = 1;
257 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
258 &halt_detection_enabled, 0,
259 "Halt VM if all vcpus execute HLT with interrupts disabled");
260
261 static int vmm_ipinum;
262 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
263 "IPI vector used for vcpu notifications");
264
265 static int trace_guest_exceptions;
266 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
267 &trace_guest_exceptions, 0,
268 "Trap into hypervisor on all guest exceptions and reflect them back");
269
270 static int trap_wbinvd;
271 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
272 "WBINVD triggers a VM-exit");
273
274 u_int vm_maxcpu;
275 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
276 &vm_maxcpu, 0, "Maximum number of vCPUs");
277
278 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
279
280 /* global statistics */
281 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
282 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
283 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
284 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
285 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
286 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
287 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
288 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
289 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
290 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
291 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
292 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
293 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
294 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
295 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
296 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
297 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
298 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
299 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
300 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
301 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
302
303 /*
304 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
305 * counts as well as range of vpid values for VT-x and by the capacity
306 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
307 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
308 */
309 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
310
311 #ifdef KTR
312 static const char *
vcpu_state2str(enum vcpu_state state)313 vcpu_state2str(enum vcpu_state state)
314 {
315
316 switch (state) {
317 case VCPU_IDLE:
318 return ("idle");
319 case VCPU_FROZEN:
320 return ("frozen");
321 case VCPU_RUNNING:
322 return ("running");
323 case VCPU_SLEEPING:
324 return ("sleeping");
325 default:
326 return ("unknown");
327 }
328 }
329 #endif
330
331 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)332 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
333 {
334 vmmops_vlapic_cleanup(vcpu->vlapic);
335 vmmops_vcpu_cleanup(vcpu->cookie);
336 vcpu->cookie = NULL;
337 if (destroy) {
338 vmm_stat_free(vcpu->stats);
339 fpu_save_area_free(vcpu->guestfpu);
340 vcpu_lock_destroy(vcpu);
341 free(vcpu, M_VM);
342 }
343 }
344
345 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)346 vcpu_alloc(struct vm *vm, int vcpu_id)
347 {
348 struct vcpu *vcpu;
349
350 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
351 ("vcpu_init: invalid vcpu %d", vcpu_id));
352
353 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
354 vcpu_lock_init(vcpu);
355 vcpu->state = VCPU_IDLE;
356 vcpu->hostcpu = NOCPU;
357 vcpu->vcpuid = vcpu_id;
358 vcpu->vm = vm;
359 vcpu->guestfpu = fpu_save_area_alloc();
360 vcpu->stats = vmm_stat_alloc();
361 vcpu->tsc_offset = 0;
362 return (vcpu);
363 }
364
365 static void
vcpu_init(struct vcpu * vcpu)366 vcpu_init(struct vcpu *vcpu)
367 {
368 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
369 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
370 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
371 vcpu->reqidle = 0;
372 vcpu->exitintinfo = 0;
373 vcpu->nmi_pending = 0;
374 vcpu->extint_pending = 0;
375 vcpu->exception_pending = 0;
376 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
377 fpu_save_area_reset(vcpu->guestfpu);
378 vmm_stat_init(vcpu->stats);
379 }
380
381 int
vcpu_trace_exceptions(struct vcpu * vcpu)382 vcpu_trace_exceptions(struct vcpu *vcpu)
383 {
384
385 return (trace_guest_exceptions);
386 }
387
388 int
vcpu_trap_wbinvd(struct vcpu * vcpu)389 vcpu_trap_wbinvd(struct vcpu *vcpu)
390 {
391 return (trap_wbinvd);
392 }
393
394 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)395 vm_exitinfo(struct vcpu *vcpu)
396 {
397 return (&vcpu->exitinfo);
398 }
399
400 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)401 vm_exitinfo_cpuset(struct vcpu *vcpu)
402 {
403 return (&vcpu->exitinfo_cpuset);
404 }
405
406 static int
vmm_init(void)407 vmm_init(void)
408 {
409 if (!vmm_is_hw_supported())
410 return (ENXIO);
411
412 vm_maxcpu = mp_ncpus;
413 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
414
415 if (vm_maxcpu > VM_MAXCPU) {
416 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
417 vm_maxcpu = VM_MAXCPU;
418 }
419 if (vm_maxcpu == 0)
420 vm_maxcpu = 1;
421
422 vmm_host_state_init();
423
424 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
425 &IDTVEC(justreturn));
426 if (vmm_ipinum < 0)
427 vmm_ipinum = IPI_AST;
428
429 vmm_suspend_p = vmmops_modsuspend;
430 vmm_resume_p = vmmops_modresume;
431
432 return (vmmops_modinit(vmm_ipinum));
433 }
434
435 static int
vmm_handler(module_t mod,int what,void * arg)436 vmm_handler(module_t mod, int what, void *arg)
437 {
438 int error;
439
440 switch (what) {
441 case MOD_LOAD:
442 if (vmm_is_hw_supported()) {
443 error = vmmdev_init();
444 if (error != 0)
445 break;
446 error = vmm_init();
447 if (error == 0)
448 vmm_initialized = 1;
449 else
450 (void)vmmdev_cleanup();
451 } else {
452 error = ENXIO;
453 }
454 break;
455 case MOD_UNLOAD:
456 if (vmm_is_hw_supported()) {
457 error = vmmdev_cleanup();
458 if (error == 0) {
459 vmm_suspend_p = NULL;
460 vmm_resume_p = NULL;
461 iommu_cleanup();
462 if (vmm_ipinum != IPI_AST)
463 lapic_ipi_free(vmm_ipinum);
464 error = vmmops_modcleanup();
465 /*
466 * Something bad happened - prevent new
467 * VMs from being created
468 */
469 if (error)
470 vmm_initialized = 0;
471 }
472 } else {
473 error = 0;
474 }
475 break;
476 default:
477 error = 0;
478 break;
479 }
480 return (error);
481 }
482
483 static moduledata_t vmm_kmod = {
484 "vmm",
485 vmm_handler,
486 NULL
487 };
488
489 /*
490 * vmm initialization has the following dependencies:
491 *
492 * - VT-x initialization requires smp_rendezvous() and therefore must happen
493 * after SMP is fully functional (after SI_SUB_SMP).
494 * - vmm device initialization requires an initialized devfs.
495 */
496 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
497 MODULE_VERSION(vmm, 1);
498
499 static void
vm_init(struct vm * vm,bool create)500 vm_init(struct vm *vm, bool create)
501 {
502 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
503 vm->iommu = NULL;
504 vm->vioapic = vioapic_init(vm);
505 vm->vhpet = vhpet_init(vm);
506 vm->vatpic = vatpic_init(vm);
507 vm->vatpit = vatpit_init(vm);
508 vm->vpmtmr = vpmtmr_init(vm);
509 if (create)
510 vm->vrtc = vrtc_init(vm);
511
512 CPU_ZERO(&vm->active_cpus);
513 CPU_ZERO(&vm->debug_cpus);
514 CPU_ZERO(&vm->startup_cpus);
515
516 vm->suspend = 0;
517 CPU_ZERO(&vm->suspended_cpus);
518
519 if (!create) {
520 for (int i = 0; i < vm->maxcpus; i++) {
521 if (vm->vcpu[i] != NULL)
522 vcpu_init(vm->vcpu[i]);
523 }
524 }
525 }
526
527 void
vm_disable_vcpu_creation(struct vm * vm)528 vm_disable_vcpu_creation(struct vm *vm)
529 {
530 sx_xlock(&vm->vcpus_init_lock);
531 vm->dying = true;
532 sx_xunlock(&vm->vcpus_init_lock);
533 }
534
535 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)536 vm_alloc_vcpu(struct vm *vm, int vcpuid)
537 {
538 struct vcpu *vcpu;
539
540 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
541 return (NULL);
542
543 vcpu = (struct vcpu *)
544 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
545 if (__predict_true(vcpu != NULL))
546 return (vcpu);
547
548 sx_xlock(&vm->vcpus_init_lock);
549 vcpu = vm->vcpu[vcpuid];
550 if (vcpu == NULL && !vm->dying) {
551 vcpu = vcpu_alloc(vm, vcpuid);
552 vcpu_init(vcpu);
553
554 /*
555 * Ensure vCPU is fully created before updating pointer
556 * to permit unlocked reads above.
557 */
558 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
559 (uintptr_t)vcpu);
560 }
561 sx_xunlock(&vm->vcpus_init_lock);
562 return (vcpu);
563 }
564
565 void
vm_slock_vcpus(struct vm * vm)566 vm_slock_vcpus(struct vm *vm)
567 {
568 sx_slock(&vm->vcpus_init_lock);
569 }
570
571 void
vm_unlock_vcpus(struct vm * vm)572 vm_unlock_vcpus(struct vm *vm)
573 {
574 sx_unlock(&vm->vcpus_init_lock);
575 }
576
577 /*
578 * The default CPU topology is a single thread per package.
579 */
580 u_int cores_per_package = 1;
581 u_int threads_per_core = 1;
582
583 int
vm_create(const char * name,struct vm ** retvm)584 vm_create(const char *name, struct vm **retvm)
585 {
586 struct vm *vm;
587 struct vmspace *vmspace;
588
589 /*
590 * If vmm.ko could not be successfully initialized then don't attempt
591 * to create the virtual machine.
592 */
593 if (!vmm_initialized)
594 return (ENXIO);
595
596 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
597 VM_MAX_NAMELEN + 1)
598 return (EINVAL);
599
600 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48);
601 if (vmspace == NULL)
602 return (ENOMEM);
603
604 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
605 strcpy(vm->name, name);
606 vm->vmspace = vmspace;
607 vm_mem_init(&vm->mem);
608 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
609 sx_init(&vm->vcpus_init_lock, "vm vcpus");
610 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
611 M_ZERO);
612
613 vm->sockets = 1;
614 vm->cores = cores_per_package; /* XXX backwards compatibility */
615 vm->threads = threads_per_core; /* XXX backwards compatibility */
616 vm->maxcpus = vm_maxcpu;
617
618 vm_init(vm, true);
619
620 *retvm = vm;
621 return (0);
622 }
623
624 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)625 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
626 uint16_t *threads, uint16_t *maxcpus)
627 {
628 *sockets = vm->sockets;
629 *cores = vm->cores;
630 *threads = vm->threads;
631 *maxcpus = vm->maxcpus;
632 }
633
634 uint16_t
vm_get_maxcpus(struct vm * vm)635 vm_get_maxcpus(struct vm *vm)
636 {
637 return (vm->maxcpus);
638 }
639
640 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)641 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
642 uint16_t threads, uint16_t maxcpus __unused)
643 {
644 /* Ignore maxcpus. */
645 if ((sockets * cores * threads) > vm->maxcpus)
646 return (EINVAL);
647 vm->sockets = sockets;
648 vm->cores = cores;
649 vm->threads = threads;
650 return(0);
651 }
652
653 static void
vm_cleanup(struct vm * vm,bool destroy)654 vm_cleanup(struct vm *vm, bool destroy)
655 {
656 if (destroy)
657 vm_xlock_memsegs(vm);
658 else
659 vm_assert_memseg_xlocked(vm);
660
661 ppt_unassign_all(vm);
662
663 if (vm->iommu != NULL)
664 iommu_destroy_domain(vm->iommu);
665
666 if (destroy)
667 vrtc_cleanup(vm->vrtc);
668 else
669 vrtc_reset(vm->vrtc);
670 vpmtmr_cleanup(vm->vpmtmr);
671 vatpit_cleanup(vm->vatpit);
672 vhpet_cleanup(vm->vhpet);
673 vatpic_cleanup(vm->vatpic);
674 vioapic_cleanup(vm->vioapic);
675
676 for (int i = 0; i < vm->maxcpus; i++) {
677 if (vm->vcpu[i] != NULL)
678 vcpu_cleanup(vm->vcpu[i], destroy);
679 }
680
681 vmmops_cleanup(vm->cookie);
682
683 vm_mem_cleanup(vm);
684
685 if (destroy) {
686 vm_mem_destroy(vm);
687
688 vmmops_vmspace_free(vm->vmspace);
689 vm->vmspace = NULL;
690
691 free(vm->vcpu, M_VM);
692 sx_destroy(&vm->vcpus_init_lock);
693 mtx_destroy(&vm->rendezvous_mtx);
694 }
695 }
696
697 void
vm_destroy(struct vm * vm)698 vm_destroy(struct vm *vm)
699 {
700 vm_cleanup(vm, true);
701 free(vm, M_VM);
702 }
703
704 int
vm_reinit(struct vm * vm)705 vm_reinit(struct vm *vm)
706 {
707 int error;
708
709 /*
710 * A virtual machine can be reset only if all vcpus are suspended.
711 */
712 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
713 vm_cleanup(vm, false);
714 vm_init(vm, false);
715 error = 0;
716 } else {
717 error = EBUSY;
718 }
719
720 return (error);
721 }
722
723 const char *
vm_name(struct vm * vm)724 vm_name(struct vm *vm)
725 {
726 return (vm->name);
727 }
728
729 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)730 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
731 {
732 vm_object_t obj;
733
734 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
735 return (ENOMEM);
736 else
737 return (0);
738 }
739
740 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)741 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
742 {
743
744 vmm_mmio_free(vm->vmspace, gpa, len);
745 return (0);
746 }
747
748 static int
vm_iommu_map(struct vm * vm)749 vm_iommu_map(struct vm *vm)
750 {
751 vm_paddr_t gpa, hpa;
752 struct vm_mem_map *mm;
753 int error, i;
754
755 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
756
757 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
758 if (!vm_memseg_sysmem(vm, i))
759 continue;
760
761 mm = &vm->mem.mem_maps[i];
762 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
763 ("iommu map found invalid memmap %#lx/%#lx/%#x",
764 mm->gpa, mm->len, mm->flags));
765 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
766 continue;
767 mm->flags |= VM_MEMMAP_F_IOMMU;
768
769 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
770 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa);
771
772 /*
773 * All mappings in the vmm vmspace must be
774 * present since they are managed by vmm in this way.
775 * Because we are in pass-through mode, the
776 * mappings must also be wired. This implies
777 * that all pages must be mapped and wired,
778 * allowing to use pmap_extract() and avoiding the
779 * need to use vm_gpa_hold_global().
780 *
781 * This could change if/when we start
782 * supporting page faults on IOMMU maps.
783 */
784 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
785 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
786 vm, (uintmax_t)gpa, (uintmax_t)hpa));
787
788 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
789 }
790 }
791
792 error = iommu_invalidate_tlb(iommu_host_domain());
793 return (error);
794 }
795
796 static int
vm_iommu_unmap(struct vm * vm)797 vm_iommu_unmap(struct vm *vm)
798 {
799 vm_paddr_t gpa;
800 struct vm_mem_map *mm;
801 int error, i;
802
803 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
804
805 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
806 if (!vm_memseg_sysmem(vm, i))
807 continue;
808
809 mm = &vm->mem.mem_maps[i];
810 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
811 continue;
812 mm->flags &= ~VM_MEMMAP_F_IOMMU;
813 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
814 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
815 mm->gpa, mm->len, mm->flags));
816
817 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
818 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
819 vmspace_pmap(vm->vmspace), gpa))),
820 ("vm_iommu_unmap: vm %p gpa %jx not wired",
821 vm, (uintmax_t)gpa));
822 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
823 }
824 }
825
826 /*
827 * Invalidate the cached translations associated with the domain
828 * from which pages were removed.
829 */
830 error = iommu_invalidate_tlb(vm->iommu);
831 return (error);
832 }
833
834 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)835 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
836 {
837 int error;
838
839 error = ppt_unassign_device(vm, bus, slot, func);
840 if (error)
841 return (error);
842
843 if (ppt_assigned_devices(vm) == 0)
844 error = vm_iommu_unmap(vm);
845
846 return (error);
847 }
848
849 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)850 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
851 {
852 int error;
853 vm_paddr_t maxaddr;
854 bool map = false;
855
856 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
857 if (ppt_assigned_devices(vm) == 0) {
858 KASSERT(vm->iommu == NULL,
859 ("vm_assign_pptdev: iommu must be NULL"));
860 maxaddr = vmm_sysmem_maxaddr(vm);
861 vm->iommu = iommu_create_domain(maxaddr);
862 if (vm->iommu == NULL)
863 return (ENXIO);
864 map = true;
865 }
866
867 error = ppt_assign_device(vm, bus, slot, func);
868 if (error == 0 && map)
869 error = vm_iommu_map(vm);
870 return (error);
871 }
872
873 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)874 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
875 {
876
877 if (reg >= VM_REG_LAST)
878 return (EINVAL);
879
880 return (vmmops_getreg(vcpu->cookie, reg, retval));
881 }
882
883 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)884 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
885 {
886 int error;
887
888 if (reg >= VM_REG_LAST)
889 return (EINVAL);
890
891 error = vmmops_setreg(vcpu->cookie, reg, val);
892 if (error || reg != VM_REG_GUEST_RIP)
893 return (error);
894
895 /* Set 'nextrip' to match the value of %rip */
896 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
897 vcpu->nextrip = val;
898 return (0);
899 }
900
901 static bool
is_descriptor_table(int reg)902 is_descriptor_table(int reg)
903 {
904
905 switch (reg) {
906 case VM_REG_GUEST_IDTR:
907 case VM_REG_GUEST_GDTR:
908 return (true);
909 default:
910 return (false);
911 }
912 }
913
914 static bool
is_segment_register(int reg)915 is_segment_register(int reg)
916 {
917
918 switch (reg) {
919 case VM_REG_GUEST_ES:
920 case VM_REG_GUEST_CS:
921 case VM_REG_GUEST_SS:
922 case VM_REG_GUEST_DS:
923 case VM_REG_GUEST_FS:
924 case VM_REG_GUEST_GS:
925 case VM_REG_GUEST_TR:
926 case VM_REG_GUEST_LDTR:
927 return (true);
928 default:
929 return (false);
930 }
931 }
932
933 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)934 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
935 {
936
937 if (!is_segment_register(reg) && !is_descriptor_table(reg))
938 return (EINVAL);
939
940 return (vmmops_getdesc(vcpu->cookie, reg, desc));
941 }
942
943 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)944 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
945 {
946
947 if (!is_segment_register(reg) && !is_descriptor_table(reg))
948 return (EINVAL);
949
950 return (vmmops_setdesc(vcpu->cookie, reg, desc));
951 }
952
953 static void
restore_guest_fpustate(struct vcpu * vcpu)954 restore_guest_fpustate(struct vcpu *vcpu)
955 {
956
957 /* flush host state to the pcb */
958 fpuexit(curthread);
959
960 /* restore guest FPU state */
961 fpu_enable();
962 fpurestore(vcpu->guestfpu);
963
964 /* restore guest XCR0 if XSAVE is enabled in the host */
965 if (rcr4() & CR4_XSAVE)
966 load_xcr(0, vcpu->guest_xcr0);
967
968 /*
969 * The FPU is now "dirty" with the guest's state so disable
970 * the FPU to trap any access by the host.
971 */
972 fpu_disable();
973 }
974
975 static void
save_guest_fpustate(struct vcpu * vcpu)976 save_guest_fpustate(struct vcpu *vcpu)
977 {
978
979 if ((rcr0() & CR0_TS) == 0)
980 panic("fpu emulation not enabled in host!");
981
982 /* save guest XCR0 and restore host XCR0 */
983 if (rcr4() & CR4_XSAVE) {
984 vcpu->guest_xcr0 = rxcr(0);
985 load_xcr(0, vmm_get_host_xcr0());
986 }
987
988 /* save guest FPU state */
989 fpu_enable();
990 fpusave(vcpu->guestfpu);
991 fpu_disable();
992 }
993
994 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
995
996 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)997 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
998 bool from_idle)
999 {
1000 int error;
1001
1002 vcpu_assert_locked(vcpu);
1003
1004 /*
1005 * State transitions from the vmmdev_ioctl() must always begin from
1006 * the VCPU_IDLE state. This guarantees that there is only a single
1007 * ioctl() operating on a vcpu at any point.
1008 */
1009 if (from_idle) {
1010 while (vcpu->state != VCPU_IDLE) {
1011 vcpu->reqidle = 1;
1012 vcpu_notify_event_locked(vcpu, false);
1013 VMM_CTR1(vcpu, "vcpu state change from %s to "
1014 "idle requested", vcpu_state2str(vcpu->state));
1015 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1016 }
1017 } else {
1018 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1019 "vcpu idle state"));
1020 }
1021
1022 if (vcpu->state == VCPU_RUNNING) {
1023 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1024 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1025 } else {
1026 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1027 "vcpu that is not running", vcpu->hostcpu));
1028 }
1029
1030 /*
1031 * The following state transitions are allowed:
1032 * IDLE -> FROZEN -> IDLE
1033 * FROZEN -> RUNNING -> FROZEN
1034 * FROZEN -> SLEEPING -> FROZEN
1035 */
1036 switch (vcpu->state) {
1037 case VCPU_IDLE:
1038 case VCPU_RUNNING:
1039 case VCPU_SLEEPING:
1040 error = (newstate != VCPU_FROZEN);
1041 break;
1042 case VCPU_FROZEN:
1043 error = (newstate == VCPU_FROZEN);
1044 break;
1045 default:
1046 error = 1;
1047 break;
1048 }
1049
1050 if (error)
1051 return (EBUSY);
1052
1053 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1054 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1055
1056 vcpu->state = newstate;
1057 if (newstate == VCPU_RUNNING)
1058 vcpu->hostcpu = curcpu;
1059 else
1060 vcpu->hostcpu = NOCPU;
1061
1062 if (newstate == VCPU_IDLE)
1063 wakeup(&vcpu->state);
1064
1065 return (0);
1066 }
1067
1068 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1069 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1070 {
1071 int error;
1072
1073 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1074 panic("Error %d setting state to %d\n", error, newstate);
1075 }
1076
1077 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1078 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1079 {
1080 int error;
1081
1082 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1083 panic("Error %d setting state to %d", error, newstate);
1084 }
1085
1086 static int
vm_handle_rendezvous(struct vcpu * vcpu)1087 vm_handle_rendezvous(struct vcpu *vcpu)
1088 {
1089 struct vm *vm = vcpu->vm;
1090 struct thread *td;
1091 int error, vcpuid;
1092
1093 error = 0;
1094 vcpuid = vcpu->vcpuid;
1095 td = curthread;
1096 mtx_lock(&vm->rendezvous_mtx);
1097 while (vm->rendezvous_func != NULL) {
1098 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1099 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
1100
1101 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1102 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1103 VMM_CTR0(vcpu, "Calling rendezvous func");
1104 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1105 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1106 }
1107 if (CPU_CMP(&vm->rendezvous_req_cpus,
1108 &vm->rendezvous_done_cpus) == 0) {
1109 VMM_CTR0(vcpu, "Rendezvous completed");
1110 CPU_ZERO(&vm->rendezvous_req_cpus);
1111 vm->rendezvous_func = NULL;
1112 wakeup(&vm->rendezvous_func);
1113 break;
1114 }
1115 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1116 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1117 "vmrndv", hz);
1118 if (td_ast_pending(td, TDA_SUSPEND)) {
1119 mtx_unlock(&vm->rendezvous_mtx);
1120 error = thread_check_susp(td, true);
1121 if (error != 0)
1122 return (error);
1123 mtx_lock(&vm->rendezvous_mtx);
1124 }
1125 }
1126 mtx_unlock(&vm->rendezvous_mtx);
1127 return (0);
1128 }
1129
1130 /*
1131 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1132 */
1133 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1134 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1135 {
1136 struct vm *vm = vcpu->vm;
1137 const char *wmesg;
1138 struct thread *td;
1139 int error, t, vcpuid, vcpu_halted, vm_halted;
1140
1141 vcpuid = vcpu->vcpuid;
1142 vcpu_halted = 0;
1143 vm_halted = 0;
1144 error = 0;
1145 td = curthread;
1146
1147 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1148
1149 vcpu_lock(vcpu);
1150 while (1) {
1151 /*
1152 * Do a final check for pending NMI or interrupts before
1153 * really putting this thread to sleep. Also check for
1154 * software events that would cause this vcpu to wakeup.
1155 *
1156 * These interrupts/events could have happened after the
1157 * vcpu returned from vmmops_run() and before it acquired the
1158 * vcpu lock above.
1159 */
1160 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1161 break;
1162 if (vm_nmi_pending(vcpu))
1163 break;
1164 if (!intr_disabled) {
1165 if (vm_extint_pending(vcpu) ||
1166 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1167 break;
1168 }
1169 }
1170
1171 /* Don't go to sleep if the vcpu thread needs to yield */
1172 if (vcpu_should_yield(vcpu))
1173 break;
1174
1175 if (vcpu_debugged(vcpu))
1176 break;
1177
1178 /*
1179 * Some Linux guests implement "halt" by having all vcpus
1180 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1181 * track of the vcpus that have entered this state. When all
1182 * vcpus enter the halted state the virtual machine is halted.
1183 */
1184 if (intr_disabled) {
1185 wmesg = "vmhalt";
1186 VMM_CTR0(vcpu, "Halted");
1187 if (!vcpu_halted && halt_detection_enabled) {
1188 vcpu_halted = 1;
1189 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1190 }
1191 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1192 vm_halted = 1;
1193 break;
1194 }
1195 } else {
1196 wmesg = "vmidle";
1197 }
1198
1199 t = ticks;
1200 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1201 /*
1202 * XXX msleep_spin() cannot be interrupted by signals so
1203 * wake up periodically to check pending signals.
1204 */
1205 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1206 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1207 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1208 if (td_ast_pending(td, TDA_SUSPEND)) {
1209 vcpu_unlock(vcpu);
1210 error = thread_check_susp(td, false);
1211 if (error != 0) {
1212 if (vcpu_halted) {
1213 CPU_CLR_ATOMIC(vcpuid,
1214 &vm->halted_cpus);
1215 }
1216 return (error);
1217 }
1218 vcpu_lock(vcpu);
1219 }
1220 }
1221
1222 if (vcpu_halted)
1223 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1224
1225 vcpu_unlock(vcpu);
1226
1227 if (vm_halted)
1228 vm_suspend(vm, VM_SUSPEND_HALT);
1229
1230 return (0);
1231 }
1232
1233 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1234 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1235 {
1236 struct vm *vm = vcpu->vm;
1237 int rv, ftype;
1238 struct vm_map *map;
1239 struct vm_exit *vme;
1240
1241 vme = &vcpu->exitinfo;
1242
1243 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1244 __func__, vme->inst_length));
1245
1246 ftype = vme->u.paging.fault_type;
1247 KASSERT(ftype == VM_PROT_READ ||
1248 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1249 ("vm_handle_paging: invalid fault_type %d", ftype));
1250
1251 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1252 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1253 vme->u.paging.gpa, ftype);
1254 if (rv == 0) {
1255 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1256 ftype == VM_PROT_READ ? "accessed" : "dirty",
1257 vme->u.paging.gpa);
1258 goto done;
1259 }
1260 }
1261
1262 map = &vm->vmspace->vm_map;
1263 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1264
1265 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1266 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1267
1268 if (rv != KERN_SUCCESS)
1269 return (EFAULT);
1270 done:
1271 return (0);
1272 }
1273
1274 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1275 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1276 {
1277 struct vie *vie;
1278 struct vm_exit *vme;
1279 uint64_t gla, gpa, cs_base;
1280 struct vm_guest_paging *paging;
1281 mem_region_read_t mread;
1282 mem_region_write_t mwrite;
1283 enum vm_cpu_mode cpu_mode;
1284 int cs_d, error, fault;
1285
1286 vme = &vcpu->exitinfo;
1287
1288 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1289 __func__, vme->inst_length));
1290
1291 gla = vme->u.inst_emul.gla;
1292 gpa = vme->u.inst_emul.gpa;
1293 cs_base = vme->u.inst_emul.cs_base;
1294 cs_d = vme->u.inst_emul.cs_d;
1295 vie = &vme->u.inst_emul.vie;
1296 paging = &vme->u.inst_emul.paging;
1297 cpu_mode = paging->cpu_mode;
1298
1299 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1300
1301 /* Fetch, decode and emulate the faulting instruction */
1302 if (vie->num_valid == 0) {
1303 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1304 VIE_INST_SIZE, vie, &fault);
1305 } else {
1306 /*
1307 * The instruction bytes have already been copied into 'vie'
1308 */
1309 error = fault = 0;
1310 }
1311 if (error || fault)
1312 return (error);
1313
1314 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1315 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1316 vme->rip + cs_base);
1317 *retu = true; /* dump instruction bytes in userspace */
1318 return (0);
1319 }
1320
1321 /*
1322 * Update 'nextrip' based on the length of the emulated instruction.
1323 */
1324 vme->inst_length = vie->num_processed;
1325 vcpu->nextrip += vie->num_processed;
1326 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1327 vcpu->nextrip);
1328
1329 /* return to userland unless this is an in-kernel emulated device */
1330 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1331 mread = lapic_mmio_read;
1332 mwrite = lapic_mmio_write;
1333 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1334 mread = vioapic_mmio_read;
1335 mwrite = vioapic_mmio_write;
1336 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1337 mread = vhpet_mmio_read;
1338 mwrite = vhpet_mmio_write;
1339 } else {
1340 *retu = true;
1341 return (0);
1342 }
1343
1344 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1345 retu);
1346
1347 return (error);
1348 }
1349
1350 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1351 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1352 {
1353 struct vm *vm = vcpu->vm;
1354 int error, i;
1355 struct thread *td;
1356
1357 error = 0;
1358 td = curthread;
1359
1360 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1361
1362 /*
1363 * Wait until all 'active_cpus' have suspended themselves.
1364 *
1365 * Since a VM may be suspended at any time including when one or
1366 * more vcpus are doing a rendezvous we need to call the rendezvous
1367 * handler while we are waiting to prevent a deadlock.
1368 */
1369 vcpu_lock(vcpu);
1370 while (error == 0) {
1371 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1372 VMM_CTR0(vcpu, "All vcpus suspended");
1373 break;
1374 }
1375
1376 if (vm->rendezvous_func == NULL) {
1377 VMM_CTR0(vcpu, "Sleeping during suspend");
1378 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1379 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1380 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1381 if (td_ast_pending(td, TDA_SUSPEND)) {
1382 vcpu_unlock(vcpu);
1383 error = thread_check_susp(td, false);
1384 vcpu_lock(vcpu);
1385 }
1386 } else {
1387 VMM_CTR0(vcpu, "Rendezvous during suspend");
1388 vcpu_unlock(vcpu);
1389 error = vm_handle_rendezvous(vcpu);
1390 vcpu_lock(vcpu);
1391 }
1392 }
1393 vcpu_unlock(vcpu);
1394
1395 /*
1396 * Wakeup the other sleeping vcpus and return to userspace.
1397 */
1398 for (i = 0; i < vm->maxcpus; i++) {
1399 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1400 vcpu_notify_event(vm_vcpu(vm, i), false);
1401 }
1402 }
1403
1404 *retu = true;
1405 return (error);
1406 }
1407
1408 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1409 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1410 {
1411 vcpu_lock(vcpu);
1412 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1413 vcpu->reqidle = 0;
1414 vcpu_unlock(vcpu);
1415 *retu = true;
1416 return (0);
1417 }
1418
1419 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1420 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1421 {
1422 int error, fault;
1423 uint64_t rsp;
1424 uint64_t rflags;
1425 struct vm_copyinfo copyinfo[2];
1426
1427 *retu = true;
1428 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1429 return (0);
1430 }
1431
1432 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1433 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1434 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1435 if (error != 0 || fault != 0) {
1436 *retu = false;
1437 return (EINVAL);
1438 }
1439
1440 /* Read pushed rflags value from top of stack. */
1441 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1442
1443 /* Clear TF bit. */
1444 rflags &= ~(PSL_T);
1445
1446 /* Write updated value back to memory. */
1447 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1448 vm_copy_teardown(copyinfo, nitems(copyinfo));
1449
1450 return (0);
1451 }
1452
1453 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1454 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1455 {
1456 int i;
1457
1458 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1459 return (EINVAL);
1460
1461 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1462 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1463 vm->suspend, how);
1464 return (EALREADY);
1465 }
1466
1467 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1468
1469 /*
1470 * Notify all active vcpus that they are now suspended.
1471 */
1472 for (i = 0; i < vm->maxcpus; i++) {
1473 if (CPU_ISSET(i, &vm->active_cpus))
1474 vcpu_notify_event(vm_vcpu(vm, i), false);
1475 }
1476
1477 return (0);
1478 }
1479
1480 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1481 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1482 {
1483 struct vm *vm = vcpu->vm;
1484 struct vm_exit *vmexit;
1485
1486 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1487 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1488
1489 vmexit = vm_exitinfo(vcpu);
1490 vmexit->rip = rip;
1491 vmexit->inst_length = 0;
1492 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1493 vmexit->u.suspended.how = vm->suspend;
1494 }
1495
1496 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1497 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1498 {
1499 struct vm_exit *vmexit;
1500
1501 vmexit = vm_exitinfo(vcpu);
1502 vmexit->rip = rip;
1503 vmexit->inst_length = 0;
1504 vmexit->exitcode = VM_EXITCODE_DEBUG;
1505 }
1506
1507 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1508 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1509 {
1510 struct vm_exit *vmexit;
1511
1512 vmexit = vm_exitinfo(vcpu);
1513 vmexit->rip = rip;
1514 vmexit->inst_length = 0;
1515 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1516 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1517 }
1518
1519 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1520 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1521 {
1522 struct vm_exit *vmexit;
1523
1524 vmexit = vm_exitinfo(vcpu);
1525 vmexit->rip = rip;
1526 vmexit->inst_length = 0;
1527 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1528 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1529 }
1530
1531 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1532 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1533 {
1534 struct vm_exit *vmexit;
1535
1536 vmexit = vm_exitinfo(vcpu);
1537 vmexit->rip = rip;
1538 vmexit->inst_length = 0;
1539 vmexit->exitcode = VM_EXITCODE_BOGUS;
1540 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1541 }
1542
1543 int
vm_run(struct vcpu * vcpu)1544 vm_run(struct vcpu *vcpu)
1545 {
1546 struct vm *vm = vcpu->vm;
1547 struct vm_eventinfo evinfo;
1548 int error, vcpuid;
1549 struct pcb *pcb;
1550 uint64_t tscval;
1551 struct vm_exit *vme;
1552 bool retu, intr_disabled;
1553 pmap_t pmap;
1554
1555 vcpuid = vcpu->vcpuid;
1556
1557 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1558 return (EINVAL);
1559
1560 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1561 return (EINVAL);
1562
1563 pmap = vmspace_pmap(vm->vmspace);
1564 vme = &vcpu->exitinfo;
1565 evinfo.rptr = &vm->rendezvous_req_cpus;
1566 evinfo.sptr = &vm->suspend;
1567 evinfo.iptr = &vcpu->reqidle;
1568 restart:
1569 critical_enter();
1570
1571 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1572 ("vm_run: absurd pm_active"));
1573
1574 tscval = rdtsc();
1575
1576 pcb = PCPU_GET(curpcb);
1577 set_pcb_flags(pcb, PCB_FULL_IRET);
1578
1579 restore_guest_fpustate(vcpu);
1580
1581 vcpu_require_state(vcpu, VCPU_RUNNING);
1582 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1583 vcpu_require_state(vcpu, VCPU_FROZEN);
1584
1585 save_guest_fpustate(vcpu);
1586
1587 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1588
1589 critical_exit();
1590
1591 if (error == 0) {
1592 retu = false;
1593 vcpu->nextrip = vme->rip + vme->inst_length;
1594 switch (vme->exitcode) {
1595 case VM_EXITCODE_REQIDLE:
1596 error = vm_handle_reqidle(vcpu, &retu);
1597 break;
1598 case VM_EXITCODE_SUSPENDED:
1599 error = vm_handle_suspend(vcpu, &retu);
1600 break;
1601 case VM_EXITCODE_IOAPIC_EOI:
1602 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1603 break;
1604 case VM_EXITCODE_RENDEZVOUS:
1605 error = vm_handle_rendezvous(vcpu);
1606 break;
1607 case VM_EXITCODE_HLT:
1608 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1609 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1610 break;
1611 case VM_EXITCODE_PAGING:
1612 error = vm_handle_paging(vcpu, &retu);
1613 break;
1614 case VM_EXITCODE_INST_EMUL:
1615 error = vm_handle_inst_emul(vcpu, &retu);
1616 break;
1617 case VM_EXITCODE_INOUT:
1618 case VM_EXITCODE_INOUT_STR:
1619 error = vm_handle_inout(vcpu, vme, &retu);
1620 break;
1621 case VM_EXITCODE_DB:
1622 error = vm_handle_db(vcpu, vme, &retu);
1623 break;
1624 case VM_EXITCODE_MONITOR:
1625 case VM_EXITCODE_MWAIT:
1626 case VM_EXITCODE_VMINSN:
1627 vm_inject_ud(vcpu);
1628 break;
1629 default:
1630 retu = true; /* handled in userland */
1631 break;
1632 }
1633 }
1634
1635 /*
1636 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
1637 * exit code into VM_EXITCODE_IPI.
1638 */
1639 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1640 error = vm_handle_ipi(vcpu, vme, &retu);
1641
1642 if (error == 0 && retu == false)
1643 goto restart;
1644
1645 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1646 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1647
1648 return (error);
1649 }
1650
1651 int
vm_restart_instruction(struct vcpu * vcpu)1652 vm_restart_instruction(struct vcpu *vcpu)
1653 {
1654 enum vcpu_state state;
1655 uint64_t rip;
1656 int error __diagused;
1657
1658 state = vcpu_get_state(vcpu, NULL);
1659 if (state == VCPU_RUNNING) {
1660 /*
1661 * When a vcpu is "running" the next instruction is determined
1662 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1663 * Thus setting 'inst_length' to zero will cause the current
1664 * instruction to be restarted.
1665 */
1666 vcpu->exitinfo.inst_length = 0;
1667 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1668 "setting inst_length to zero", vcpu->exitinfo.rip);
1669 } else if (state == VCPU_FROZEN) {
1670 /*
1671 * When a vcpu is "frozen" it is outside the critical section
1672 * around vmmops_run() and 'nextrip' points to the next
1673 * instruction. Thus instruction restart is achieved by setting
1674 * 'nextrip' to the vcpu's %rip.
1675 */
1676 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1677 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1678 VMM_CTR2(vcpu, "restarting instruction by updating "
1679 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1680 vcpu->nextrip = rip;
1681 } else {
1682 panic("%s: invalid state %d", __func__, state);
1683 }
1684 return (0);
1685 }
1686
1687 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)1688 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1689 {
1690 int type, vector;
1691
1692 if (info & VM_INTINFO_VALID) {
1693 type = info & VM_INTINFO_TYPE;
1694 vector = info & 0xff;
1695 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1696 return (EINVAL);
1697 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1698 return (EINVAL);
1699 if (info & VM_INTINFO_RSVD)
1700 return (EINVAL);
1701 } else {
1702 info = 0;
1703 }
1704 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1705 vcpu->exitintinfo = info;
1706 return (0);
1707 }
1708
1709 enum exc_class {
1710 EXC_BENIGN,
1711 EXC_CONTRIBUTORY,
1712 EXC_PAGEFAULT
1713 };
1714
1715 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1716
1717 static enum exc_class
exception_class(uint64_t info)1718 exception_class(uint64_t info)
1719 {
1720 int type, vector;
1721
1722 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1723 type = info & VM_INTINFO_TYPE;
1724 vector = info & 0xff;
1725
1726 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1727 switch (type) {
1728 case VM_INTINFO_HWINTR:
1729 case VM_INTINFO_SWINTR:
1730 case VM_INTINFO_NMI:
1731 return (EXC_BENIGN);
1732 default:
1733 /*
1734 * Hardware exception.
1735 *
1736 * SVM and VT-x use identical type values to represent NMI,
1737 * hardware interrupt and software interrupt.
1738 *
1739 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1740 * for exceptions except #BP and #OF. #BP and #OF use a type
1741 * value of '5' or '6'. Therefore we don't check for explicit
1742 * values of 'type' to classify 'intinfo' into a hardware
1743 * exception.
1744 */
1745 break;
1746 }
1747
1748 switch (vector) {
1749 case IDT_PF:
1750 case IDT_VE:
1751 return (EXC_PAGEFAULT);
1752 case IDT_DE:
1753 case IDT_TS:
1754 case IDT_NP:
1755 case IDT_SS:
1756 case IDT_GP:
1757 return (EXC_CONTRIBUTORY);
1758 default:
1759 return (EXC_BENIGN);
1760 }
1761 }
1762
1763 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)1764 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1765 uint64_t *retinfo)
1766 {
1767 enum exc_class exc1, exc2;
1768 int type1, vector1;
1769
1770 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1771 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1772
1773 /*
1774 * If an exception occurs while attempting to call the double-fault
1775 * handler the processor enters shutdown mode (aka triple fault).
1776 */
1777 type1 = info1 & VM_INTINFO_TYPE;
1778 vector1 = info1 & 0xff;
1779 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1780 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1781 info1, info2);
1782 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1783 *retinfo = 0;
1784 return (0);
1785 }
1786
1787 /*
1788 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1789 */
1790 exc1 = exception_class(info1);
1791 exc2 = exception_class(info2);
1792 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1793 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1794 /* Convert nested fault into a double fault. */
1795 *retinfo = IDT_DF;
1796 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1797 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1798 } else {
1799 /* Handle exceptions serially */
1800 *retinfo = info2;
1801 }
1802 return (1);
1803 }
1804
1805 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1806 vcpu_exception_intinfo(struct vcpu *vcpu)
1807 {
1808 uint64_t info = 0;
1809
1810 if (vcpu->exception_pending) {
1811 info = vcpu->exc_vector & 0xff;
1812 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1813 if (vcpu->exc_errcode_valid) {
1814 info |= VM_INTINFO_DEL_ERRCODE;
1815 info |= (uint64_t)vcpu->exc_errcode << 32;
1816 }
1817 }
1818 return (info);
1819 }
1820
1821 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)1822 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1823 {
1824 uint64_t info1, info2;
1825 int valid;
1826
1827 info1 = vcpu->exitintinfo;
1828 vcpu->exitintinfo = 0;
1829
1830 info2 = 0;
1831 if (vcpu->exception_pending) {
1832 info2 = vcpu_exception_intinfo(vcpu);
1833 vcpu->exception_pending = 0;
1834 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1835 vcpu->exc_vector, info2);
1836 }
1837
1838 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1839 valid = nested_fault(vcpu, info1, info2, retinfo);
1840 } else if (info1 & VM_INTINFO_VALID) {
1841 *retinfo = info1;
1842 valid = 1;
1843 } else if (info2 & VM_INTINFO_VALID) {
1844 *retinfo = info2;
1845 valid = 1;
1846 } else {
1847 valid = 0;
1848 }
1849
1850 if (valid) {
1851 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1852 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1853 }
1854
1855 return (valid);
1856 }
1857
1858 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1859 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1860 {
1861 *info1 = vcpu->exitintinfo;
1862 *info2 = vcpu_exception_intinfo(vcpu);
1863 return (0);
1864 }
1865
1866 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)1867 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1868 uint32_t errcode, int restart_instruction)
1869 {
1870 uint64_t regval;
1871 int error __diagused;
1872
1873 if (vector < 0 || vector >= 32)
1874 return (EINVAL);
1875
1876 /*
1877 * A double fault exception should never be injected directly into
1878 * the guest. It is a derived exception that results from specific
1879 * combinations of nested faults.
1880 */
1881 if (vector == IDT_DF)
1882 return (EINVAL);
1883
1884 if (vcpu->exception_pending) {
1885 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
1886 "pending exception %d", vector, vcpu->exc_vector);
1887 return (EBUSY);
1888 }
1889
1890 if (errcode_valid) {
1891 /*
1892 * Exceptions don't deliver an error code in real mode.
1893 */
1894 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
1895 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1896 if (!(regval & CR0_PE))
1897 errcode_valid = 0;
1898 }
1899
1900 /*
1901 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1902 *
1903 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1904 * one instruction or incurs an exception.
1905 */
1906 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
1907 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1908 __func__, error));
1909
1910 if (restart_instruction)
1911 vm_restart_instruction(vcpu);
1912
1913 vcpu->exception_pending = 1;
1914 vcpu->exc_vector = vector;
1915 vcpu->exc_errcode = errcode;
1916 vcpu->exc_errcode_valid = errcode_valid;
1917 VMM_CTR1(vcpu, "Exception %d pending", vector);
1918 return (0);
1919 }
1920
1921 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)1922 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
1923 {
1924 int error __diagused, restart_instruction;
1925
1926 restart_instruction = 1;
1927
1928 error = vm_inject_exception(vcpu, vector, errcode_valid,
1929 errcode, restart_instruction);
1930 KASSERT(error == 0, ("vm_inject_exception error %d", error));
1931 }
1932
1933 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)1934 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
1935 {
1936 int error __diagused;
1937
1938 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
1939 error_code, cr2);
1940
1941 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
1942 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
1943
1944 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
1945 }
1946
1947 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1948
1949 int
vm_inject_nmi(struct vcpu * vcpu)1950 vm_inject_nmi(struct vcpu *vcpu)
1951 {
1952
1953 vcpu->nmi_pending = 1;
1954 vcpu_notify_event(vcpu, false);
1955 return (0);
1956 }
1957
1958 int
vm_nmi_pending(struct vcpu * vcpu)1959 vm_nmi_pending(struct vcpu *vcpu)
1960 {
1961 return (vcpu->nmi_pending);
1962 }
1963
1964 void
vm_nmi_clear(struct vcpu * vcpu)1965 vm_nmi_clear(struct vcpu *vcpu)
1966 {
1967 if (vcpu->nmi_pending == 0)
1968 panic("vm_nmi_clear: inconsistent nmi_pending state");
1969
1970 vcpu->nmi_pending = 0;
1971 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
1972 }
1973
1974 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
1975
1976 int
vm_inject_extint(struct vcpu * vcpu)1977 vm_inject_extint(struct vcpu *vcpu)
1978 {
1979
1980 vcpu->extint_pending = 1;
1981 vcpu_notify_event(vcpu, false);
1982 return (0);
1983 }
1984
1985 int
vm_extint_pending(struct vcpu * vcpu)1986 vm_extint_pending(struct vcpu *vcpu)
1987 {
1988 return (vcpu->extint_pending);
1989 }
1990
1991 void
vm_extint_clear(struct vcpu * vcpu)1992 vm_extint_clear(struct vcpu *vcpu)
1993 {
1994 if (vcpu->extint_pending == 0)
1995 panic("vm_extint_clear: inconsistent extint_pending state");
1996
1997 vcpu->extint_pending = 0;
1998 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
1999 }
2000
2001 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)2002 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2003 {
2004 if (type < 0 || type >= VM_CAP_MAX)
2005 return (EINVAL);
2006
2007 return (vmmops_getcap(vcpu->cookie, type, retval));
2008 }
2009
2010 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2011 vm_set_capability(struct vcpu *vcpu, int type, int val)
2012 {
2013 if (type < 0 || type >= VM_CAP_MAX)
2014 return (EINVAL);
2015
2016 return (vmmops_setcap(vcpu->cookie, type, val));
2017 }
2018
2019 struct vm *
vcpu_vm(struct vcpu * vcpu)2020 vcpu_vm(struct vcpu *vcpu)
2021 {
2022 return (vcpu->vm);
2023 }
2024
2025 int
vcpu_vcpuid(struct vcpu * vcpu)2026 vcpu_vcpuid(struct vcpu *vcpu)
2027 {
2028 return (vcpu->vcpuid);
2029 }
2030
2031 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2032 vm_vcpu(struct vm *vm, int vcpuid)
2033 {
2034 return (vm->vcpu[vcpuid]);
2035 }
2036
2037 struct vlapic *
vm_lapic(struct vcpu * vcpu)2038 vm_lapic(struct vcpu *vcpu)
2039 {
2040 return (vcpu->vlapic);
2041 }
2042
2043 struct vioapic *
vm_ioapic(struct vm * vm)2044 vm_ioapic(struct vm *vm)
2045 {
2046
2047 return (vm->vioapic);
2048 }
2049
2050 struct vhpet *
vm_hpet(struct vm * vm)2051 vm_hpet(struct vm *vm)
2052 {
2053
2054 return (vm->vhpet);
2055 }
2056
2057 bool
vmm_is_pptdev(int bus,int slot,int func)2058 vmm_is_pptdev(int bus, int slot, int func)
2059 {
2060 int b, f, i, n, s;
2061 char *val, *cp, *cp2;
2062 bool found;
2063
2064 /*
2065 * XXX
2066 * The length of an environment variable is limited to 128 bytes which
2067 * puts an upper limit on the number of passthru devices that may be
2068 * specified using a single environment variable.
2069 *
2070 * Work around this by scanning multiple environment variable
2071 * names instead of a single one - yuck!
2072 */
2073 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2074
2075 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2076 found = false;
2077 for (i = 0; names[i] != NULL && !found; i++) {
2078 cp = val = kern_getenv(names[i]);
2079 while (cp != NULL && *cp != '\0') {
2080 if ((cp2 = strchr(cp, ' ')) != NULL)
2081 *cp2 = '\0';
2082
2083 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2084 if (n == 3 && bus == b && slot == s && func == f) {
2085 found = true;
2086 break;
2087 }
2088
2089 if (cp2 != NULL)
2090 *cp2++ = ' ';
2091
2092 cp = cp2;
2093 }
2094 freeenv(val);
2095 }
2096 return (found);
2097 }
2098
2099 void *
vm_iommu_domain(struct vm * vm)2100 vm_iommu_domain(struct vm *vm)
2101 {
2102
2103 return (vm->iommu);
2104 }
2105
2106 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2107 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2108 {
2109 int error;
2110
2111 vcpu_lock(vcpu);
2112 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2113 vcpu_unlock(vcpu);
2114
2115 return (error);
2116 }
2117
2118 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2119 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2120 {
2121 enum vcpu_state state;
2122
2123 vcpu_lock(vcpu);
2124 state = vcpu->state;
2125 if (hostcpu != NULL)
2126 *hostcpu = vcpu->hostcpu;
2127 vcpu_unlock(vcpu);
2128
2129 return (state);
2130 }
2131
2132 int
vm_activate_cpu(struct vcpu * vcpu)2133 vm_activate_cpu(struct vcpu *vcpu)
2134 {
2135 struct vm *vm = vcpu->vm;
2136
2137 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2138 return (EBUSY);
2139
2140 VMM_CTR0(vcpu, "activated");
2141 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2142 return (0);
2143 }
2144
2145 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2146 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2147 {
2148 if (vcpu == NULL) {
2149 vm->debug_cpus = vm->active_cpus;
2150 for (int i = 0; i < vm->maxcpus; i++) {
2151 if (CPU_ISSET(i, &vm->active_cpus))
2152 vcpu_notify_event(vm_vcpu(vm, i), false);
2153 }
2154 } else {
2155 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2156 return (EINVAL);
2157
2158 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2159 vcpu_notify_event(vcpu, false);
2160 }
2161 return (0);
2162 }
2163
2164 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2165 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2166 {
2167
2168 if (vcpu == NULL) {
2169 CPU_ZERO(&vm->debug_cpus);
2170 } else {
2171 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2172 return (EINVAL);
2173
2174 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2175 }
2176 return (0);
2177 }
2178
2179 int
vcpu_debugged(struct vcpu * vcpu)2180 vcpu_debugged(struct vcpu *vcpu)
2181 {
2182
2183 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2184 }
2185
2186 cpuset_t
vm_active_cpus(struct vm * vm)2187 vm_active_cpus(struct vm *vm)
2188 {
2189
2190 return (vm->active_cpus);
2191 }
2192
2193 cpuset_t
vm_debug_cpus(struct vm * vm)2194 vm_debug_cpus(struct vm *vm)
2195 {
2196
2197 return (vm->debug_cpus);
2198 }
2199
2200 cpuset_t
vm_suspended_cpus(struct vm * vm)2201 vm_suspended_cpus(struct vm *vm)
2202 {
2203
2204 return (vm->suspended_cpus);
2205 }
2206
2207 /*
2208 * Returns the subset of vCPUs in tostart that are awaiting startup.
2209 * These vCPUs are also marked as no longer awaiting startup.
2210 */
2211 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2212 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2213 {
2214 cpuset_t set;
2215
2216 mtx_lock(&vm->rendezvous_mtx);
2217 CPU_AND(&set, &vm->startup_cpus, tostart);
2218 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2219 mtx_unlock(&vm->rendezvous_mtx);
2220 return (set);
2221 }
2222
2223 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2224 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2225 {
2226 mtx_lock(&vm->rendezvous_mtx);
2227 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2228 mtx_unlock(&vm->rendezvous_mtx);
2229 }
2230
2231 void *
vcpu_stats(struct vcpu * vcpu)2232 vcpu_stats(struct vcpu *vcpu)
2233 {
2234
2235 return (vcpu->stats);
2236 }
2237
2238 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2239 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2240 {
2241 *state = vcpu->x2apic_state;
2242
2243 return (0);
2244 }
2245
2246 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2247 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2248 {
2249 if (state >= X2APIC_STATE_LAST)
2250 return (EINVAL);
2251
2252 vcpu->x2apic_state = state;
2253
2254 vlapic_set_x2apic_state(vcpu, state);
2255
2256 return (0);
2257 }
2258
2259 /*
2260 * This function is called to ensure that a vcpu "sees" a pending event
2261 * as soon as possible:
2262 * - If the vcpu thread is sleeping then it is woken up.
2263 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2264 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2265 */
2266 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2267 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2268 {
2269 int hostcpu;
2270
2271 hostcpu = vcpu->hostcpu;
2272 if (vcpu->state == VCPU_RUNNING) {
2273 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2274 if (hostcpu != curcpu) {
2275 if (lapic_intr) {
2276 vlapic_post_intr(vcpu->vlapic, hostcpu,
2277 vmm_ipinum);
2278 } else {
2279 ipi_cpu(hostcpu, vmm_ipinum);
2280 }
2281 } else {
2282 /*
2283 * If the 'vcpu' is running on 'curcpu' then it must
2284 * be sending a notification to itself (e.g. SELF_IPI).
2285 * The pending event will be picked up when the vcpu
2286 * transitions back to guest context.
2287 */
2288 }
2289 } else {
2290 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2291 "with hostcpu %d", vcpu->state, hostcpu));
2292 if (vcpu->state == VCPU_SLEEPING)
2293 wakeup_one(vcpu);
2294 }
2295 }
2296
2297 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2298 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2299 {
2300 vcpu_lock(vcpu);
2301 vcpu_notify_event_locked(vcpu, lapic_intr);
2302 vcpu_unlock(vcpu);
2303 }
2304
2305 struct vmspace *
vm_vmspace(struct vm * vm)2306 vm_vmspace(struct vm *vm)
2307 {
2308 return (vm->vmspace);
2309 }
2310
2311 struct vm_mem *
vm_mem(struct vm * vm)2312 vm_mem(struct vm *vm)
2313 {
2314 return (&vm->mem);
2315 }
2316
2317 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2318 vm_apicid2vcpuid(struct vm *vm, int apicid)
2319 {
2320 /*
2321 * XXX apic id is assumed to be numerically identical to vcpu id
2322 */
2323 return (apicid);
2324 }
2325
2326 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2327 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2328 vm_rendezvous_func_t func, void *arg)
2329 {
2330 struct vm *vm = vcpu->vm;
2331 int error, i;
2332
2333 /*
2334 * Enforce that this function is called without any locks
2335 */
2336 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2337
2338 restart:
2339 mtx_lock(&vm->rendezvous_mtx);
2340 if (vm->rendezvous_func != NULL) {
2341 /*
2342 * If a rendezvous is already in progress then we need to
2343 * call the rendezvous handler in case this 'vcpu' is one
2344 * of the targets of the rendezvous.
2345 */
2346 VMM_CTR0(vcpu, "Rendezvous already in progress");
2347 mtx_unlock(&vm->rendezvous_mtx);
2348 error = vm_handle_rendezvous(vcpu);
2349 if (error != 0)
2350 return (error);
2351 goto restart;
2352 }
2353 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2354 "rendezvous is still in progress"));
2355
2356 VMM_CTR0(vcpu, "Initiating rendezvous");
2357 vm->rendezvous_req_cpus = dest;
2358 CPU_ZERO(&vm->rendezvous_done_cpus);
2359 vm->rendezvous_arg = arg;
2360 vm->rendezvous_func = func;
2361 mtx_unlock(&vm->rendezvous_mtx);
2362
2363 /*
2364 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2365 * vcpus so they handle the rendezvous as soon as possible.
2366 */
2367 for (i = 0; i < vm->maxcpus; i++) {
2368 if (CPU_ISSET(i, &dest))
2369 vcpu_notify_event(vm_vcpu(vm, i), false);
2370 }
2371
2372 return (vm_handle_rendezvous(vcpu));
2373 }
2374
2375 struct vatpic *
vm_atpic(struct vm * vm)2376 vm_atpic(struct vm *vm)
2377 {
2378 return (vm->vatpic);
2379 }
2380
2381 struct vatpit *
vm_atpit(struct vm * vm)2382 vm_atpit(struct vm *vm)
2383 {
2384 return (vm->vatpit);
2385 }
2386
2387 struct vpmtmr *
vm_pmtmr(struct vm * vm)2388 vm_pmtmr(struct vm *vm)
2389 {
2390
2391 return (vm->vpmtmr);
2392 }
2393
2394 struct vrtc *
vm_rtc(struct vm * vm)2395 vm_rtc(struct vm *vm)
2396 {
2397
2398 return (vm->vrtc);
2399 }
2400
2401 enum vm_reg_name
vm_segment_name(int seg)2402 vm_segment_name(int seg)
2403 {
2404 static enum vm_reg_name seg_names[] = {
2405 VM_REG_GUEST_ES,
2406 VM_REG_GUEST_CS,
2407 VM_REG_GUEST_SS,
2408 VM_REG_GUEST_DS,
2409 VM_REG_GUEST_FS,
2410 VM_REG_GUEST_GS
2411 };
2412
2413 KASSERT(seg >= 0 && seg < nitems(seg_names),
2414 ("%s: invalid segment encoding %d", __func__, seg));
2415 return (seg_names[seg]);
2416 }
2417
2418 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2419 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2420 {
2421 int idx;
2422
2423 for (idx = 0; idx < num_copyinfo; idx++) {
2424 if (copyinfo[idx].cookie != NULL)
2425 vm_gpa_release(copyinfo[idx].cookie);
2426 }
2427 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2428 }
2429
2430 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2431 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2432 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2433 int num_copyinfo, int *fault)
2434 {
2435 int error, idx, nused;
2436 size_t n, off, remaining;
2437 void *hva, *cookie;
2438 uint64_t gpa;
2439
2440 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2441
2442 nused = 0;
2443 remaining = len;
2444 while (remaining > 0) {
2445 if (nused >= num_copyinfo)
2446 return (EFAULT);
2447 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2448 if (error || *fault)
2449 return (error);
2450 off = gpa & PAGE_MASK;
2451 n = min(remaining, PAGE_SIZE - off);
2452 copyinfo[nused].gpa = gpa;
2453 copyinfo[nused].len = n;
2454 remaining -= n;
2455 gla += n;
2456 nused++;
2457 }
2458
2459 for (idx = 0; idx < nused; idx++) {
2460 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2461 copyinfo[idx].len, prot, &cookie);
2462 if (hva == NULL)
2463 break;
2464 copyinfo[idx].hva = hva;
2465 copyinfo[idx].cookie = cookie;
2466 }
2467
2468 if (idx != nused) {
2469 vm_copy_teardown(copyinfo, num_copyinfo);
2470 return (EFAULT);
2471 } else {
2472 *fault = 0;
2473 return (0);
2474 }
2475 }
2476
2477 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2478 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2479 {
2480 char *dst;
2481 int idx;
2482
2483 dst = kaddr;
2484 idx = 0;
2485 while (len > 0) {
2486 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2487 len -= copyinfo[idx].len;
2488 dst += copyinfo[idx].len;
2489 idx++;
2490 }
2491 }
2492
2493 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2494 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2495 {
2496 const char *src;
2497 int idx;
2498
2499 src = kaddr;
2500 idx = 0;
2501 while (len > 0) {
2502 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2503 len -= copyinfo[idx].len;
2504 src += copyinfo[idx].len;
2505 idx++;
2506 }
2507 }
2508
2509 /*
2510 * Return the amount of in-use and wired memory for the VM. Since
2511 * these are global stats, only return the values with for vCPU 0
2512 */
2513 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2514 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2515
2516 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2517 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2518 {
2519
2520 if (vcpu->vcpuid == 0) {
2521 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2522 vmspace_resident_count(vcpu->vm->vmspace));
2523 }
2524 }
2525
2526 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2527 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2528 {
2529
2530 if (vcpu->vcpuid == 0) {
2531 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2532 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace)));
2533 }
2534 }
2535
2536 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2537 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2538
2539 #ifdef BHYVE_SNAPSHOT
2540 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2541 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2542 {
2543 uint64_t tsc, now;
2544 int ret;
2545 struct vcpu *vcpu;
2546 uint16_t i, maxcpus;
2547
2548 now = rdtsc();
2549 maxcpus = vm_get_maxcpus(vm);
2550 for (i = 0; i < maxcpus; i++) {
2551 vcpu = vm->vcpu[i];
2552 if (vcpu == NULL)
2553 continue;
2554
2555 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2556 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2557 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2558 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2559 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2560 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2561 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2562 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2563
2564 /*
2565 * Save the absolute TSC value by adding now to tsc_offset.
2566 *
2567 * It will be turned turned back into an actual offset when the
2568 * TSC restore function is called
2569 */
2570 tsc = now + vcpu->tsc_offset;
2571 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2572 if (meta->op == VM_SNAPSHOT_RESTORE)
2573 vcpu->tsc_offset = tsc;
2574 }
2575
2576 done:
2577 return (ret);
2578 }
2579
2580 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2581 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2582 {
2583 int ret;
2584
2585 ret = vm_snapshot_vcpus(vm, meta);
2586 if (ret != 0)
2587 goto done;
2588
2589 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2590 done:
2591 return (ret);
2592 }
2593
2594 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2595 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2596 {
2597 int error;
2598 struct vcpu *vcpu;
2599 uint16_t i, maxcpus;
2600
2601 error = 0;
2602
2603 maxcpus = vm_get_maxcpus(vm);
2604 for (i = 0; i < maxcpus; i++) {
2605 vcpu = vm->vcpu[i];
2606 if (vcpu == NULL)
2607 continue;
2608
2609 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2610 if (error != 0) {
2611 printf("%s: failed to snapshot vmcs/vmcb data for "
2612 "vCPU: %d; error: %d\n", __func__, i, error);
2613 goto done;
2614 }
2615 }
2616
2617 done:
2618 return (error);
2619 }
2620
2621 /*
2622 * Save kernel-side structures to user-space for snapshotting.
2623 */
2624 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2625 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2626 {
2627 int ret = 0;
2628
2629 switch (meta->dev_req) {
2630 case STRUCT_VMCX:
2631 ret = vm_snapshot_vcpu(vm, meta);
2632 break;
2633 case STRUCT_VM:
2634 ret = vm_snapshot_vm(vm, meta);
2635 break;
2636 case STRUCT_VIOAPIC:
2637 ret = vioapic_snapshot(vm_ioapic(vm), meta);
2638 break;
2639 case STRUCT_VLAPIC:
2640 ret = vlapic_snapshot(vm, meta);
2641 break;
2642 case STRUCT_VHPET:
2643 ret = vhpet_snapshot(vm_hpet(vm), meta);
2644 break;
2645 case STRUCT_VATPIC:
2646 ret = vatpic_snapshot(vm_atpic(vm), meta);
2647 break;
2648 case STRUCT_VATPIT:
2649 ret = vatpit_snapshot(vm_atpit(vm), meta);
2650 break;
2651 case STRUCT_VPMTMR:
2652 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2653 break;
2654 case STRUCT_VRTC:
2655 ret = vrtc_snapshot(vm_rtc(vm), meta);
2656 break;
2657 default:
2658 printf("%s: failed to find the requested type %#x\n",
2659 __func__, meta->dev_req);
2660 ret = (EINVAL);
2661 }
2662 return (ret);
2663 }
2664
2665 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)2666 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2667 {
2668 vcpu->tsc_offset = offset;
2669 }
2670
2671 int
vm_restore_time(struct vm * vm)2672 vm_restore_time(struct vm *vm)
2673 {
2674 int error;
2675 uint64_t now;
2676 struct vcpu *vcpu;
2677 uint16_t i, maxcpus;
2678
2679 now = rdtsc();
2680
2681 error = vhpet_restore_time(vm_hpet(vm));
2682 if (error)
2683 return (error);
2684
2685 maxcpus = vm_get_maxcpus(vm);
2686 for (i = 0; i < maxcpus; i++) {
2687 vcpu = vm->vcpu[i];
2688 if (vcpu == NULL)
2689 continue;
2690
2691 error = vmmops_restore_tsc(vcpu->cookie,
2692 vcpu->tsc_offset - now);
2693 if (error)
2694 return (error);
2695 }
2696
2697 return (0);
2698 }
2699 #endif
2700