1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 /*
29 * This file and its contents are supplied under the terms of the
30 * Common Development and Distribution License ("CDDL"), version 1.0.
31 * You may only use this file in accordance with the terms of version
32 * 1.0 of the CDDL.
33 *
34 * A full copy of the text of the CDDL should have accompanied this
35 * source. A copy of the CDDL is also available via the Internet at
36 * http://www.illumos.org/license/CDDL.
37 *
38 * Copyright 2015 Pluribus Networks Inc.
39 * Copyright 2018 Joyent, Inc.
40 * Copyright 2024 Oxide Computer Company
41 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
42 */
43
44
45 #include <sys/cdefs.h>
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/module.h>
51 #include <sys/sysctl.h>
52 #include <sys/kmem.h>
53 #include <sys/pcpu.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/sched.h>
58 #include <sys/systm.h>
59 #include <sys/sunddi.h>
60 #include <sys/hma.h>
61 #include <sys/archsystm.h>
62
63 #include <machine/md_var.h>
64 #include <x86/psl.h>
65 #include <x86/apicreg.h>
66
67 #include <machine/specialreg.h>
68 #include <machine/vmm.h>
69 #include <machine/vmm_dev.h>
70 #include <machine/vmparam.h>
71 #include <sys/vmm_instruction_emul.h>
72 #include <sys/vmm_vm.h>
73 #include <sys/vmm_gpt.h>
74 #include <sys/vmm_data.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_util.h"
79 #include "vatpic.h"
80 #include "vatpit.h"
81 #include "vhpet.h"
82 #include "vioapic.h"
83 #include "vlapic.h"
84 #include "vpmtmr.h"
85 #include "vrtc.h"
86 #include "vmm_stat.h"
87 #include "vmm_lapic.h"
88
89 #include "io/ppt.h"
90 #include "io/iommu.h"
91
92 struct vlapic;
93
94 /* Flags for vtc_status */
95 #define VTCS_FPU_RESTORED 1 /* guest FPU restored, host FPU saved */
96 #define VTCS_FPU_CTX_CRITICAL 2 /* in ctx where FPU restore cannot be lazy */
97
98 typedef struct vm_thread_ctx {
99 struct vm *vtc_vm;
100 int vtc_vcpuid;
101 uint_t vtc_status;
102 enum vcpu_ustate vtc_ustate;
103 } vm_thread_ctx_t;
104
105 #define VMM_MTRR_VAR_MAX 10
106 #define VMM_MTRR_DEF_MASK \
107 (MTRR_DEF_ENABLE | MTRR_DEF_FIXED_ENABLE | MTRR_DEF_TYPE)
108 #define VMM_MTRR_PHYSBASE_MASK (MTRR_PHYSBASE_PHYSBASE | MTRR_PHYSBASE_TYPE)
109 #define VMM_MTRR_PHYSMASK_MASK (MTRR_PHYSMASK_PHYSMASK | MTRR_PHYSMASK_VALID)
110 struct vm_mtrr {
111 uint64_t def_type;
112 uint64_t fixed4k[8];
113 uint64_t fixed16k[2];
114 uint64_t fixed64k;
115 struct {
116 uint64_t base;
117 uint64_t mask;
118 } var[VMM_MTRR_VAR_MAX];
119 };
120
121 /*
122 * Initialization:
123 * (a) allocated when vcpu is created
124 * (i) initialized when vcpu is created and when it is reinitialized
125 * (o) initialized the first time the vcpu is created
126 * (x) initialized before use
127 */
128 struct vcpu {
129 /* (o) protects state, run_state, hostcpu, sipi_vector */
130 kmutex_t lock;
131
132 enum vcpu_state state; /* (o) vcpu state */
133 enum vcpu_run_state run_state; /* (i) vcpu init/sipi/run state */
134 kcondvar_t vcpu_cv; /* (o) cpu waiter cv */
135 kcondvar_t state_cv; /* (o) IDLE-transition cv */
136 int hostcpu; /* (o) vcpu's current host cpu */
137 int lastloccpu; /* (o) last host cpu localized to */
138 bool reqidle; /* (i) request vcpu to idle */
139 bool reqconsist; /* (i) req. vcpu exit when consistent */
140 bool reqbarrier; /* (i) request vcpu exit barrier */
141 struct vlapic *vlapic; /* (i) APIC device model */
142 enum x2apic_state x2apic_state; /* (i) APIC mode */
143 uint64_t exit_intinfo; /* (i) events pending at VM exit */
144 uint64_t exc_pending; /* (i) exception pending */
145 bool nmi_pending; /* (i) NMI pending */
146 bool extint_pending; /* (i) INTR pending */
147
148 uint8_t sipi_vector; /* (i) SIPI vector */
149 hma_fpu_t *guestfpu; /* (a,i) guest fpu state */
150 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
151 void *stats; /* (a,i) statistics */
152 struct vm_exit exitinfo; /* (x) exit reason and collateral */
153 uint64_t nextrip; /* (x) next instruction to execute */
154 struct vie *vie_ctx; /* (x) instruction emulation context */
155 vm_client_t *vmclient; /* (a) VM-system client */
156 uint64_t tsc_offset; /* (x) vCPU TSC offset */
157 struct vm_mtrr mtrr; /* (i) vcpu's MTRR */
158 vcpu_cpuid_config_t cpuid_cfg; /* (x) cpuid configuration */
159
160 enum vcpu_ustate ustate; /* (i) microstate for the vcpu */
161 hrtime_t ustate_when; /* (i) time of last ustate change */
162 uint64_t ustate_total[VU_MAX]; /* (o) total time spent in ustates */
163 vm_thread_ctx_t vtc; /* (o) thread state for ctxops */
164 struct ctxop *ctxop; /* (o) ctxop storage for vcpu */
165 };
166
167 #define vcpu_lock(v) mutex_enter(&((v)->lock))
168 #define vcpu_unlock(v) mutex_exit(&((v)->lock))
169 #define vcpu_assert_locked(v) ASSERT(MUTEX_HELD(&((v)->lock)))
170
171 struct mem_seg {
172 size_t len;
173 bool sysmem;
174 vm_object_t *object;
175 };
176 #define VM_MAX_MEMSEGS 5
177
178 struct mem_map {
179 vm_paddr_t gpa;
180 size_t len;
181 vm_ooffset_t segoff;
182 int segid;
183 int prot;
184 int flags;
185 };
186 #define VM_MAX_MEMMAPS 8
187
188 /*
189 * Initialization:
190 * (o) initialized the first time the VM is created
191 * (i) initialized when VM is created and when it is reinitialized
192 * (x) initialized before use
193 */
194 struct vm {
195 void *cookie; /* (i) cpu-specific data */
196 void *iommu; /* (x) iommu-specific data */
197 struct vhpet *vhpet; /* (i) virtual HPET */
198 struct vioapic *vioapic; /* (i) virtual ioapic */
199 struct vatpic *vatpic; /* (i) virtual atpic */
200 struct vatpit *vatpit; /* (i) virtual atpit */
201 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
202 struct vrtc *vrtc; /* (o) virtual RTC */
203 volatile cpuset_t active_cpus; /* (i) active vcpus */
204 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for dbg */
205 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
206 int suspend_how; /* (i) stop VM execution */
207 int suspend_source; /* (i) src vcpuid of suspend */
208 hrtime_t suspend_when; /* (i) time suspend asserted */
209 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
210 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
211 struct vmspace *vmspace; /* (o) guest's address space */
212 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */
213 /* The following describe the vm cpu topology */
214 uint16_t sockets; /* (o) num of sockets */
215 uint16_t cores; /* (o) num of cores/socket */
216 uint16_t threads; /* (o) num of threads/core */
217 uint16_t maxcpus; /* (o) max pluggable cpus */
218
219 hrtime_t boot_hrtime; /* (i) hrtime at VM boot */
220
221 /* TSC and TSC scaling related values */
222 uint64_t tsc_offset; /* (i) VM-wide TSC offset */
223 uint64_t guest_freq; /* (i) guest TSC Frequency */
224 uint64_t freq_multiplier; /* (i) guest/host TSC Ratio */
225
226 struct ioport_config ioports; /* (o) ioport handling */
227
228 bool mem_transient; /* (o) alloc transient memory */
229 bool is_paused; /* (i) instance is paused */
230 };
231
232 static int vmm_initialized;
233 static uint64_t vmm_host_freq;
234
235
236 static void
nullop_panic(void)237 nullop_panic(void)
238 {
239 panic("null vmm operation call");
240 }
241
242 /* Do not allow use of an un-set `ops` to do anything but panic */
243 static struct vmm_ops vmm_ops_null = {
244 .init = (vmm_init_func_t)nullop_panic,
245 .cleanup = (vmm_cleanup_func_t)nullop_panic,
246 .resume = (vmm_resume_func_t)nullop_panic,
247 .vminit = (vmi_init_func_t)nullop_panic,
248 .vmrun = (vmi_run_func_t)nullop_panic,
249 .vmcleanup = (vmi_cleanup_func_t)nullop_panic,
250 .vmgetreg = (vmi_get_register_t)nullop_panic,
251 .vmsetreg = (vmi_set_register_t)nullop_panic,
252 .vmgetdesc = (vmi_get_desc_t)nullop_panic,
253 .vmsetdesc = (vmi_set_desc_t)nullop_panic,
254 .vmgetcap = (vmi_get_cap_t)nullop_panic,
255 .vmsetcap = (vmi_set_cap_t)nullop_panic,
256 .vlapic_init = (vmi_vlapic_init)nullop_panic,
257 .vlapic_cleanup = (vmi_vlapic_cleanup)nullop_panic,
258 .vmpause = (vmi_pause_t)nullop_panic,
259 .vmsavectx = (vmi_savectx)nullop_panic,
260 .vmrestorectx = (vmi_restorectx)nullop_panic,
261 .vmgetmsr = (vmi_get_msr_t)nullop_panic,
262 .vmsetmsr = (vmi_set_msr_t)nullop_panic,
263 .vmfreqratio = (vmi_freqratio_t)nullop_panic,
264 .fr_fracsize = 0,
265 .fr_intsize = 0,
266 };
267
268 static struct vmm_ops *ops = &vmm_ops_null;
269 static vmm_pte_ops_t *pte_ops = NULL;
270
271 #define VMM_INIT() ((*ops->init)())
272 #define VMM_CLEANUP() ((*ops->cleanup)())
273 #define VMM_RESUME() ((*ops->resume)())
274
275 #define VMINIT(vm) ((*ops->vminit)(vm))
276 #define VMRUN(vmi, vcpu, rip) ((*ops->vmrun)(vmi, vcpu, rip))
277 #define VMCLEANUP(vmi) ((*ops->vmcleanup)(vmi))
278
279 #define VMGETREG(vmi, vcpu, num, rv) ((*ops->vmgetreg)(vmi, vcpu, num, rv))
280 #define VMSETREG(vmi, vcpu, num, val) ((*ops->vmsetreg)(vmi, vcpu, num, val))
281 #define VMGETDESC(vmi, vcpu, num, dsc) ((*ops->vmgetdesc)(vmi, vcpu, num, dsc))
282 #define VMSETDESC(vmi, vcpu, num, dsc) ((*ops->vmsetdesc)(vmi, vcpu, num, dsc))
283 #define VMGETCAP(vmi, vcpu, num, rv) ((*ops->vmgetcap)(vmi, vcpu, num, rv))
284 #define VMSETCAP(vmi, vcpu, num, val) ((*ops->vmsetcap)(vmi, vcpu, num, val))
285 #define VLAPIC_INIT(vmi, vcpu) ((*ops->vlapic_init)(vmi, vcpu))
286 #define VLAPIC_CLEANUP(vmi, vlapic) ((*ops->vlapic_cleanup)(vmi, vlapic))
287
288 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
289 #define fpu_stop_emulating() clts()
290
291 SDT_PROVIDER_DEFINE(vmm);
292
293 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
294 NULL);
295
296 /*
297 * Halt the guest if all vcpus are executing a HLT instruction with
298 * interrupts disabled.
299 */
300 int halt_detection_enabled = 1;
301
302 /* Trap into hypervisor on all guest exceptions and reflect them back */
303 int trace_guest_exceptions;
304
305 /* Trap WBINVD and ignore it */
306 int trap_wbinvd = 1;
307
308 static void vm_free_memmap(struct vm *vm, int ident);
309 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
310 static void vcpu_notify_event_locked(struct vcpu *vcpu, vcpu_notify_t);
311 static bool vcpu_sleep_bailout_checks(struct vm *vm, int vcpuid);
312 static int vcpu_vector_sipi(struct vm *vm, int vcpuid, uint8_t vector);
313 static bool vm_is_suspended(struct vm *, struct vm_exit *);
314
315 static void vmm_savectx(void *);
316 static void vmm_restorectx(void *);
317 static const struct ctxop_template vmm_ctxop_tpl = {
318 .ct_rev = CTXOP_TPL_REV,
319 .ct_save = vmm_savectx,
320 .ct_restore = vmm_restorectx,
321 };
322
323 static uint64_t calc_tsc_offset(uint64_t base_host_tsc, uint64_t base_guest_tsc,
324 uint64_t mult);
325 static uint64_t calc_guest_tsc(uint64_t host_tsc, uint64_t mult,
326 uint64_t offset);
327
328 /* functions implemented in vmm_time_support.S */
329 uint64_t calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz,
330 uint32_t frac_size);
331 uint64_t scale_tsc(uint64_t tsc, uint64_t multiplier, uint32_t frac_size);
332
333 #ifdef KTR
334 static const char *
vcpu_state2str(enum vcpu_state state)335 vcpu_state2str(enum vcpu_state state)
336 {
337
338 switch (state) {
339 case VCPU_IDLE:
340 return ("idle");
341 case VCPU_FROZEN:
342 return ("frozen");
343 case VCPU_RUNNING:
344 return ("running");
345 case VCPU_SLEEPING:
346 return ("sleeping");
347 default:
348 return ("unknown");
349 }
350 }
351 #endif
352
353 static void
vcpu_cleanup(struct vm * vm,int i,bool destroy)354 vcpu_cleanup(struct vm *vm, int i, bool destroy)
355 {
356 struct vcpu *vcpu = &vm->vcpu[i];
357
358 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
359 if (destroy) {
360 vmm_stat_free(vcpu->stats);
361
362 vcpu_cpuid_cleanup(&vcpu->cpuid_cfg);
363
364 hma_fpu_free(vcpu->guestfpu);
365 vcpu->guestfpu = NULL;
366
367 vie_free(vcpu->vie_ctx);
368 vcpu->vie_ctx = NULL;
369
370 vmc_destroy(vcpu->vmclient);
371 vcpu->vmclient = NULL;
372
373 ctxop_free(vcpu->ctxop);
374 mutex_destroy(&vcpu->lock);
375 }
376 }
377
378 static void
vcpu_init(struct vm * vm,int vcpu_id,bool create)379 vcpu_init(struct vm *vm, int vcpu_id, bool create)
380 {
381 struct vcpu *vcpu;
382
383 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
384 ("vcpu_init: invalid vcpu %d", vcpu_id));
385
386 vcpu = &vm->vcpu[vcpu_id];
387
388 if (create) {
389 mutex_init(&vcpu->lock, NULL, MUTEX_ADAPTIVE, NULL);
390
391 vcpu->state = VCPU_IDLE;
392 vcpu->hostcpu = NOCPU;
393 vcpu->lastloccpu = NOCPU;
394 vcpu->guestfpu = hma_fpu_alloc(KM_SLEEP);
395 vcpu->stats = vmm_stat_alloc();
396 vcpu->vie_ctx = vie_alloc();
397 vcpu_cpuid_init(&vcpu->cpuid_cfg);
398
399 vcpu->ustate = VU_INIT;
400 vcpu->ustate_when = gethrtime();
401
402 vcpu->vtc.vtc_vm = vm;
403 vcpu->vtc.vtc_vcpuid = vcpu_id;
404 vcpu->ctxop = ctxop_allocate(&vmm_ctxop_tpl, &vcpu->vtc);
405 } else {
406 vie_reset(vcpu->vie_ctx);
407 bzero(&vcpu->exitinfo, sizeof (vcpu->exitinfo));
408 vcpu_ustate_change(vm, vcpu_id, VU_INIT);
409 bzero(&vcpu->mtrr, sizeof (vcpu->mtrr));
410 }
411
412 vcpu->run_state = VRS_HALT;
413 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
414 (void) vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
415 vcpu->reqidle = false;
416 vcpu->reqconsist = false;
417 vcpu->reqbarrier = false;
418 vcpu->exit_intinfo = 0;
419 vcpu->nmi_pending = false;
420 vcpu->extint_pending = false;
421 vcpu->exc_pending = 0;
422 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
423 (void) hma_fpu_init(vcpu->guestfpu);
424 vmm_stat_init(vcpu->stats);
425 vcpu->tsc_offset = 0;
426 }
427
428 int
vcpu_trace_exceptions(struct vm * vm,int vcpuid)429 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
430 {
431 return (trace_guest_exceptions);
432 }
433
434 int
vcpu_trap_wbinvd(struct vm * vm,int vcpuid)435 vcpu_trap_wbinvd(struct vm *vm, int vcpuid)
436 {
437 return (trap_wbinvd);
438 }
439
440 struct vm_exit *
vm_exitinfo(struct vm * vm,int cpuid)441 vm_exitinfo(struct vm *vm, int cpuid)
442 {
443 struct vcpu *vcpu;
444
445 if (cpuid < 0 || cpuid >= vm->maxcpus)
446 panic("vm_exitinfo: invalid cpuid %d", cpuid);
447
448 vcpu = &vm->vcpu[cpuid];
449
450 return (&vcpu->exitinfo);
451 }
452
453 struct vie *
vm_vie_ctx(struct vm * vm,int cpuid)454 vm_vie_ctx(struct vm *vm, int cpuid)
455 {
456 if (cpuid < 0 || cpuid >= vm->maxcpus)
457 panic("vm_vie_ctx: invalid cpuid %d", cpuid);
458
459 return (vm->vcpu[cpuid].vie_ctx);
460 }
461
462 static int
vmm_init(void)463 vmm_init(void)
464 {
465 vmm_host_state_init();
466 vmm_host_freq = unscalehrtime(NANOSEC);
467
468 if (vmm_is_intel()) {
469 ops = &vmm_ops_intel;
470 pte_ops = &ept_pte_ops;
471 } else if (vmm_is_svm()) {
472 ops = &vmm_ops_amd;
473 pte_ops = &rvi_pte_ops;
474 } else {
475 return (ENXIO);
476 }
477
478 return (VMM_INIT());
479 }
480
481 int
vmm_mod_load()482 vmm_mod_load()
483 {
484 int error;
485
486 VERIFY(vmm_initialized == 0);
487
488 error = vmm_init();
489 if (error == 0)
490 vmm_initialized = 1;
491
492 return (error);
493 }
494
495 int
vmm_mod_unload()496 vmm_mod_unload()
497 {
498 int error;
499
500 VERIFY(vmm_initialized == 1);
501
502 error = VMM_CLEANUP();
503 if (error)
504 return (error);
505 vmm_initialized = 0;
506
507 return (0);
508 }
509
510 /*
511 * Create a test IOMMU domain to see if the host system has necessary hardware
512 * and drivers to do so.
513 */
514 bool
vmm_check_iommu(void)515 vmm_check_iommu(void)
516 {
517 void *domain;
518 const size_t arb_test_sz = (1UL << 32);
519
520 domain = iommu_create_domain(arb_test_sz);
521 if (domain == NULL) {
522 return (false);
523 }
524 iommu_destroy_domain(domain);
525 return (true);
526 }
527
528 static void
vm_init(struct vm * vm,bool create)529 vm_init(struct vm *vm, bool create)
530 {
531 int i;
532
533 vm->cookie = VMINIT(vm);
534 vm->iommu = NULL;
535 vm->vioapic = vioapic_init(vm);
536 vm->vhpet = vhpet_init(vm);
537 vm->vatpic = vatpic_init(vm);
538 vm->vatpit = vatpit_init(vm);
539 vm->vpmtmr = vpmtmr_init(vm);
540 if (create)
541 vm->vrtc = vrtc_init(vm);
542
543 vm_inout_init(vm, &vm->ioports);
544
545 CPU_ZERO(&vm->active_cpus);
546 CPU_ZERO(&vm->debug_cpus);
547
548 vm->suspend_how = 0;
549 vm->suspend_source = 0;
550 vm->suspend_when = 0;
551
552 for (i = 0; i < vm->maxcpus; i++)
553 vcpu_init(vm, i, create);
554
555 /*
556 * Configure VM time-related data, including:
557 * - VM-wide TSC offset
558 * - boot_hrtime
559 * - guest_freq (same as host at boot time)
560 * - freq_multiplier (used for scaling)
561 *
562 * This data is configured such that the call to vm_init() represents
563 * the boot time (when the TSC(s) read 0). Each vCPU will have its own
564 * offset from this, which is altered if/when the guest writes to
565 * MSR_TSC.
566 *
567 * Further changes to this data may occur if userspace writes to the
568 * time data.
569 */
570 const uint64_t boot_tsc = rdtsc_offset();
571
572 /* Convert the boot TSC reading to hrtime */
573 vm->boot_hrtime = (hrtime_t)boot_tsc;
574 scalehrtime(&vm->boot_hrtime);
575
576 /* Guest frequency is the same as the host at boot time */
577 vm->guest_freq = vmm_host_freq;
578
579 /* no scaling needed if guest_freq == host_freq */
580 vm->freq_multiplier = VM_TSCM_NOSCALE;
581
582 /* configure VM-wide offset: initial guest TSC is 0 at boot */
583 vm->tsc_offset = calc_tsc_offset(boot_tsc, 0, vm->freq_multiplier);
584 }
585
586 /*
587 * The default CPU topology is a single thread per package.
588 */
589 uint_t cores_per_package = 1;
590 uint_t threads_per_core = 1;
591
592 int
vm_create(uint64_t flags,struct vm ** retvm)593 vm_create(uint64_t flags, struct vm **retvm)
594 {
595 struct vm *vm;
596 struct vmspace *vmspace;
597
598 /*
599 * If vmm.ko could not be successfully initialized then don't attempt
600 * to create the virtual machine.
601 */
602 if (!vmm_initialized)
603 return (ENXIO);
604
605 bool track_dirty = (flags & VCF_TRACK_DIRTY) != 0;
606 if (track_dirty && !pte_ops->vpeo_hw_ad_supported())
607 return (ENOTSUP);
608
609 vmspace = vmspace_alloc(VM_MAXUSER_ADDRESS, pte_ops, track_dirty);
610 if (vmspace == NULL)
611 return (ENOMEM);
612
613 vm = kmem_zalloc(sizeof (struct vm), KM_SLEEP);
614
615 vm->vmspace = vmspace;
616 vm->mem_transient = (flags & VCF_RESERVOIR_MEM) == 0;
617 for (uint_t i = 0; i < VM_MAXCPU; i++) {
618 vm->vcpu[i].vmclient = vmspace_client_alloc(vmspace);
619 }
620
621 vm->sockets = 1;
622 vm->cores = cores_per_package; /* XXX backwards compatibility */
623 vm->threads = threads_per_core; /* XXX backwards compatibility */
624 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */
625
626 vm_init(vm, true);
627
628 *retvm = vm;
629 return (0);
630 }
631
632 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)633 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
634 uint16_t *threads, uint16_t *maxcpus)
635 {
636 *sockets = vm->sockets;
637 *cores = vm->cores;
638 *threads = vm->threads;
639 *maxcpus = vm->maxcpus;
640 }
641
642 uint16_t
vm_get_maxcpus(struct vm * vm)643 vm_get_maxcpus(struct vm *vm)
644 {
645 return (vm->maxcpus);
646 }
647
648 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)649 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
650 uint16_t threads, uint16_t maxcpus)
651 {
652 if (maxcpus != 0)
653 return (EINVAL); /* XXX remove when supported */
654 if ((sockets * cores * threads) > vm->maxcpus)
655 return (EINVAL);
656 /* XXX need to check sockets * cores * threads == vCPU, how? */
657 vm->sockets = sockets;
658 vm->cores = cores;
659 vm->threads = threads;
660 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */
661 return (0);
662 }
663
664 static void
vm_cleanup(struct vm * vm,bool destroy)665 vm_cleanup(struct vm *vm, bool destroy)
666 {
667 struct mem_map *mm;
668 int i;
669
670 ppt_unassign_all(vm);
671
672 if (vm->iommu != NULL)
673 iommu_destroy_domain(vm->iommu);
674
675 /*
676 * Devices which attach their own ioport hooks should be cleaned up
677 * first so they can tear down those registrations.
678 */
679 vpmtmr_cleanup(vm->vpmtmr);
680
681 vm_inout_cleanup(vm, &vm->ioports);
682
683 if (destroy)
684 vrtc_cleanup(vm->vrtc);
685 else
686 vrtc_reset(vm->vrtc);
687
688 vatpit_cleanup(vm->vatpit);
689 vhpet_cleanup(vm->vhpet);
690 vatpic_cleanup(vm->vatpic);
691 vioapic_cleanup(vm->vioapic);
692
693 for (i = 0; i < vm->maxcpus; i++)
694 vcpu_cleanup(vm, i, destroy);
695
696 VMCLEANUP(vm->cookie);
697
698 /*
699 * System memory is removed from the guest address space only when
700 * the VM is destroyed. This is because the mapping remains the same
701 * across VM reset.
702 *
703 * Device memory can be relocated by the guest (e.g. using PCI BARs)
704 * so those mappings are removed on a VM reset.
705 */
706 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
707 mm = &vm->mem_maps[i];
708 if (destroy || !sysmem_mapping(vm, mm)) {
709 vm_free_memmap(vm, i);
710 } else {
711 /*
712 * We need to reset the IOMMU flag so this mapping can
713 * be reused when a VM is rebooted. Since the IOMMU
714 * domain has already been destroyed we can just reset
715 * the flag here.
716 */
717 mm->flags &= ~VM_MEMMAP_F_IOMMU;
718 }
719 }
720
721 if (destroy) {
722 for (i = 0; i < VM_MAX_MEMSEGS; i++)
723 vm_free_memseg(vm, i);
724
725 vmspace_destroy(vm->vmspace);
726 vm->vmspace = NULL;
727 }
728 }
729
730 void
vm_destroy(struct vm * vm)731 vm_destroy(struct vm *vm)
732 {
733 vm_cleanup(vm, true);
734 kmem_free(vm, sizeof (*vm));
735 }
736
737 int
vm_reinit(struct vm * vm,uint64_t flags)738 vm_reinit(struct vm *vm, uint64_t flags)
739 {
740 vm_cleanup(vm, false);
741 vm_init(vm, false);
742 return (0);
743 }
744
745 bool
vm_is_paused(struct vm * vm)746 vm_is_paused(struct vm *vm)
747 {
748 return (vm->is_paused);
749 }
750
751 int
vm_pause_instance(struct vm * vm)752 vm_pause_instance(struct vm *vm)
753 {
754 if (vm->is_paused) {
755 return (EALREADY);
756 }
757 vm->is_paused = true;
758
759 for (uint_t i = 0; i < vm->maxcpus; i++) {
760 struct vcpu *vcpu = &vm->vcpu[i];
761
762 if (!CPU_ISSET(i, &vm->active_cpus)) {
763 continue;
764 }
765 vlapic_pause(vcpu->vlapic);
766
767 /*
768 * vCPU-specific pause logic includes stashing any
769 * to-be-injected events in exit_intinfo where it can be
770 * accessed in a manner generic to the backend.
771 */
772 ops->vmpause(vm->cookie, i);
773 }
774 vhpet_pause(vm->vhpet);
775 vatpit_pause(vm->vatpit);
776 vrtc_pause(vm->vrtc);
777
778 return (0);
779 }
780
781 int
vm_resume_instance(struct vm * vm)782 vm_resume_instance(struct vm *vm)
783 {
784 if (!vm->is_paused) {
785 return (EALREADY);
786 }
787 vm->is_paused = false;
788
789 vrtc_resume(vm->vrtc);
790 vatpit_resume(vm->vatpit);
791 vhpet_resume(vm->vhpet);
792 for (uint_t i = 0; i < vm->maxcpus; i++) {
793 struct vcpu *vcpu = &vm->vcpu[i];
794
795 if (!CPU_ISSET(i, &vm->active_cpus)) {
796 continue;
797 }
798 vlapic_resume(vcpu->vlapic);
799 }
800
801 return (0);
802 }
803
804 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)805 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
806 {
807 vm_object_t *obj;
808
809 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
810 return (ENOMEM);
811 else
812 return (0);
813 }
814
815 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)816 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
817 {
818 return (vmspace_unmap(vm->vmspace, gpa, len));
819 }
820
821 /*
822 * Return 'true' if 'gpa' is allocated in the guest address space.
823 *
824 * This function is called in the context of a running vcpu which acts as
825 * an implicit lock on 'vm->mem_maps[]'.
826 */
827 bool
vm_mem_allocated(struct vm * vm,int vcpuid,vm_paddr_t gpa)828 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
829 {
830 struct mem_map *mm;
831 int i;
832
833 #ifdef INVARIANTS
834 int hostcpu, state;
835 state = vcpu_get_state(vm, vcpuid, &hostcpu);
836 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
837 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
838 #endif
839
840 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
841 mm = &vm->mem_maps[i];
842 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
843 return (true); /* 'gpa' is sysmem or devmem */
844 }
845
846 if (ppt_is_mmio(vm, gpa))
847 return (true); /* 'gpa' is pci passthru mmio */
848
849 return (false);
850 }
851
852 int
vm_alloc_memseg(struct vm * vm,int ident,size_t len,bool sysmem)853 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
854 {
855 struct mem_seg *seg;
856 vm_object_t *obj;
857
858 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
859 return (EINVAL);
860
861 if (len == 0 || (len & PAGE_MASK))
862 return (EINVAL);
863
864 seg = &vm->mem_segs[ident];
865 if (seg->object != NULL) {
866 if (seg->len == len && seg->sysmem == sysmem)
867 return (EEXIST);
868 else
869 return (EINVAL);
870 }
871
872 obj = vm_object_mem_allocate(len, vm->mem_transient);
873 if (obj == NULL)
874 return (ENOMEM);
875
876 seg->len = len;
877 seg->object = obj;
878 seg->sysmem = sysmem;
879 return (0);
880 }
881
882 int
vm_get_memseg(struct vm * vm,int ident,size_t * len,bool * sysmem,vm_object_t ** objptr)883 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
884 vm_object_t **objptr)
885 {
886 struct mem_seg *seg;
887
888 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
889 return (EINVAL);
890
891 seg = &vm->mem_segs[ident];
892 if (len)
893 *len = seg->len;
894 if (sysmem)
895 *sysmem = seg->sysmem;
896 if (objptr)
897 *objptr = seg->object;
898 return (0);
899 }
900
901 void
vm_free_memseg(struct vm * vm,int ident)902 vm_free_memseg(struct vm *vm, int ident)
903 {
904 struct mem_seg *seg;
905
906 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
907 ("%s: invalid memseg ident %d", __func__, ident));
908
909 seg = &vm->mem_segs[ident];
910 if (seg->object != NULL) {
911 vm_object_release(seg->object);
912 bzero(seg, sizeof (struct mem_seg));
913 }
914 }
915
916 int
vm_mmap_memseg(struct vm * vm,vm_paddr_t gpa,int segid,vm_ooffset_t first,size_t len,int prot,int flags)917 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
918 size_t len, int prot, int flags)
919 {
920 struct mem_seg *seg;
921 struct mem_map *m, *map;
922 vm_ooffset_t last;
923 int i, error;
924
925 if (prot == 0 || (prot & ~(PROT_ALL)) != 0)
926 return (EINVAL);
927
928 if (flags & ~VM_MEMMAP_F_WIRED)
929 return (EINVAL);
930
931 if (segid < 0 || segid >= VM_MAX_MEMSEGS)
932 return (EINVAL);
933
934 seg = &vm->mem_segs[segid];
935 if (seg->object == NULL)
936 return (EINVAL);
937
938 last = first + len;
939 if (first < 0 || first >= last || last > seg->len)
940 return (EINVAL);
941
942 if ((gpa | first | last) & PAGE_MASK)
943 return (EINVAL);
944
945 map = NULL;
946 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
947 m = &vm->mem_maps[i];
948 if (m->len == 0) {
949 map = m;
950 break;
951 }
952 }
953
954 if (map == NULL)
955 return (ENOSPC);
956
957 error = vmspace_map(vm->vmspace, seg->object, first, gpa, len, prot);
958 if (error != 0)
959 return (EFAULT);
960
961 vm_object_reference(seg->object);
962
963 if ((flags & VM_MEMMAP_F_WIRED) != 0) {
964 error = vmspace_populate(vm->vmspace, gpa, len);
965 if (error != 0) {
966 VERIFY0(vmspace_unmap(vm->vmspace, gpa, len));
967 return (EFAULT);
968 }
969 }
970
971 map->gpa = gpa;
972 map->len = len;
973 map->segoff = first;
974 map->segid = segid;
975 map->prot = prot;
976 map->flags = flags;
977 return (0);
978 }
979
980 int
vm_munmap_memseg(struct vm * vm,vm_paddr_t gpa,size_t len)981 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
982 {
983 struct mem_map *m;
984 int i;
985
986 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
987 m = &vm->mem_maps[i];
988 if (m->gpa == gpa && m->len == len &&
989 (m->flags & VM_MEMMAP_F_IOMMU) == 0) {
990 vm_free_memmap(vm, i);
991 return (0);
992 }
993 }
994
995 return (EINVAL);
996 }
997
998 int
vm_mmap_getnext(struct vm * vm,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)999 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
1000 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
1001 {
1002 struct mem_map *mm, *mmnext;
1003 int i;
1004
1005 mmnext = NULL;
1006 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1007 mm = &vm->mem_maps[i];
1008 if (mm->len == 0 || mm->gpa < *gpa)
1009 continue;
1010 if (mmnext == NULL || mm->gpa < mmnext->gpa)
1011 mmnext = mm;
1012 }
1013
1014 if (mmnext != NULL) {
1015 *gpa = mmnext->gpa;
1016 if (segid)
1017 *segid = mmnext->segid;
1018 if (segoff)
1019 *segoff = mmnext->segoff;
1020 if (len)
1021 *len = mmnext->len;
1022 if (prot)
1023 *prot = mmnext->prot;
1024 if (flags)
1025 *flags = mmnext->flags;
1026 return (0);
1027 } else {
1028 return (ENOENT);
1029 }
1030 }
1031
1032 static void
vm_free_memmap(struct vm * vm,int ident)1033 vm_free_memmap(struct vm *vm, int ident)
1034 {
1035 struct mem_map *mm;
1036 int error;
1037
1038 mm = &vm->mem_maps[ident];
1039 if (mm->len) {
1040 error = vmspace_unmap(vm->vmspace, mm->gpa, mm->len);
1041 VERIFY0(error);
1042 bzero(mm, sizeof (struct mem_map));
1043 }
1044 }
1045
1046 static __inline bool
sysmem_mapping(struct vm * vm,struct mem_map * mm)1047 sysmem_mapping(struct vm *vm, struct mem_map *mm)
1048 {
1049
1050 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
1051 return (true);
1052 else
1053 return (false);
1054 }
1055
1056 vm_paddr_t
vmm_sysmem_maxaddr(struct vm * vm)1057 vmm_sysmem_maxaddr(struct vm *vm)
1058 {
1059 struct mem_map *mm;
1060 vm_paddr_t maxaddr;
1061 int i;
1062
1063 maxaddr = 0;
1064 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1065 mm = &vm->mem_maps[i];
1066 if (sysmem_mapping(vm, mm)) {
1067 if (maxaddr < mm->gpa + mm->len)
1068 maxaddr = mm->gpa + mm->len;
1069 }
1070 }
1071 return (maxaddr);
1072 }
1073
1074 static void
vm_iommu_modify(struct vm * vm,bool map)1075 vm_iommu_modify(struct vm *vm, bool map)
1076 {
1077 int i, sz;
1078 vm_paddr_t gpa, hpa;
1079 struct mem_map *mm;
1080 vm_client_t *vmc;
1081
1082 sz = PAGE_SIZE;
1083 vmc = vmspace_client_alloc(vm->vmspace);
1084
1085 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1086 mm = &vm->mem_maps[i];
1087 if (!sysmem_mapping(vm, mm))
1088 continue;
1089
1090 if (map) {
1091 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
1092 ("iommu map found invalid memmap %lx/%lx/%x",
1093 mm->gpa, mm->len, mm->flags));
1094 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
1095 continue;
1096 mm->flags |= VM_MEMMAP_F_IOMMU;
1097 } else {
1098 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
1099 continue;
1100 mm->flags &= ~VM_MEMMAP_F_IOMMU;
1101 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
1102 ("iommu unmap found invalid memmap %lx/%lx/%x",
1103 mm->gpa, mm->len, mm->flags));
1104 }
1105
1106 gpa = mm->gpa;
1107 while (gpa < mm->gpa + mm->len) {
1108 vm_page_t *vmp;
1109
1110 vmp = vmc_hold(vmc, gpa, PROT_WRITE);
1111 ASSERT(vmp != NULL);
1112 hpa = ((uintptr_t)vmp_get_pfn(vmp) << PAGESHIFT);
1113 (void) vmp_release(vmp);
1114
1115 /*
1116 * When originally ported from FreeBSD, the logic for
1117 * adding memory to the guest domain would
1118 * simultaneously remove it from the host domain. The
1119 * justification for that is not clear, and FreeBSD has
1120 * subsequently changed the behavior to not remove the
1121 * memory from the host domain.
1122 *
1123 * Leaving the guest memory in the host domain for the
1124 * life of the VM is necessary to make it available for
1125 * DMA, such as through viona in the TX path.
1126 */
1127 if (map) {
1128 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
1129 } else {
1130 iommu_remove_mapping(vm->iommu, gpa, sz);
1131 }
1132
1133 gpa += PAGE_SIZE;
1134 }
1135 }
1136 vmc_destroy(vmc);
1137
1138 /*
1139 * Invalidate the cached translations associated with the domain
1140 * from which pages were removed.
1141 */
1142 iommu_invalidate_tlb(vm->iommu);
1143 }
1144
1145 int
vm_unassign_pptdev(struct vm * vm,int pptfd)1146 vm_unassign_pptdev(struct vm *vm, int pptfd)
1147 {
1148 int error;
1149
1150 error = ppt_unassign_device(vm, pptfd);
1151 if (error)
1152 return (error);
1153
1154 if (ppt_assigned_devices(vm) == 0)
1155 vm_iommu_modify(vm, false);
1156
1157 return (0);
1158 }
1159
1160 int
vm_assign_pptdev(struct vm * vm,int pptfd)1161 vm_assign_pptdev(struct vm *vm, int pptfd)
1162 {
1163 int error;
1164 vm_paddr_t maxaddr;
1165
1166 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
1167 if (ppt_assigned_devices(vm) == 0) {
1168 KASSERT(vm->iommu == NULL,
1169 ("vm_assign_pptdev: iommu must be NULL"));
1170 maxaddr = vmm_sysmem_maxaddr(vm);
1171 vm->iommu = iommu_create_domain(maxaddr);
1172 if (vm->iommu == NULL)
1173 return (ENXIO);
1174 vm_iommu_modify(vm, true);
1175 }
1176
1177 error = ppt_assign_device(vm, pptfd);
1178 return (error);
1179 }
1180
1181 int
vm_get_register(struct vm * vm,int vcpuid,int reg,uint64_t * retval)1182 vm_get_register(struct vm *vm, int vcpuid, int reg, uint64_t *retval)
1183 {
1184 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1185 return (EINVAL);
1186
1187 if (reg >= VM_REG_LAST)
1188 return (EINVAL);
1189
1190 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1191 switch (reg) {
1192 case VM_REG_GUEST_XCR0:
1193 *retval = vcpu->guest_xcr0;
1194 return (0);
1195 default:
1196 return (VMGETREG(vm->cookie, vcpuid, reg, retval));
1197 }
1198 }
1199
1200 int
vm_set_register(struct vm * vm,int vcpuid,int reg,uint64_t val)1201 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
1202 {
1203 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1204 return (EINVAL);
1205
1206 if (reg >= VM_REG_LAST)
1207 return (EINVAL);
1208
1209 int error;
1210 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1211 switch (reg) {
1212 case VM_REG_GUEST_RIP:
1213 error = VMSETREG(vm->cookie, vcpuid, reg, val);
1214 if (error == 0) {
1215 vcpu->nextrip = val;
1216 }
1217 return (error);
1218 case VM_REG_GUEST_XCR0:
1219 if (!validate_guest_xcr0(val, vmm_get_host_xcr0())) {
1220 return (EINVAL);
1221 }
1222 vcpu->guest_xcr0 = val;
1223 return (0);
1224 default:
1225 return (VMSETREG(vm->cookie, vcpuid, reg, val));
1226 }
1227 }
1228
1229 static bool
is_descriptor_table(int reg)1230 is_descriptor_table(int reg)
1231 {
1232 switch (reg) {
1233 case VM_REG_GUEST_IDTR:
1234 case VM_REG_GUEST_GDTR:
1235 return (true);
1236 default:
1237 return (false);
1238 }
1239 }
1240
1241 static bool
is_segment_register(int reg)1242 is_segment_register(int reg)
1243 {
1244 switch (reg) {
1245 case VM_REG_GUEST_ES:
1246 case VM_REG_GUEST_CS:
1247 case VM_REG_GUEST_SS:
1248 case VM_REG_GUEST_DS:
1249 case VM_REG_GUEST_FS:
1250 case VM_REG_GUEST_GS:
1251 case VM_REG_GUEST_TR:
1252 case VM_REG_GUEST_LDTR:
1253 return (true);
1254 default:
1255 return (false);
1256 }
1257 }
1258
1259 int
vm_get_seg_desc(struct vm * vm,int vcpu,int reg,struct seg_desc * desc)1260 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, struct seg_desc *desc)
1261 {
1262
1263 if (vcpu < 0 || vcpu >= vm->maxcpus)
1264 return (EINVAL);
1265
1266 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1267 return (EINVAL);
1268
1269 return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1270 }
1271
1272 int
vm_set_seg_desc(struct vm * vm,int vcpu,int reg,const struct seg_desc * desc)1273 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, const struct seg_desc *desc)
1274 {
1275 if (vcpu < 0 || vcpu >= vm->maxcpus)
1276 return (EINVAL);
1277
1278 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1279 return (EINVAL);
1280
1281 return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1282 }
1283
1284 static int
translate_hma_xsave_result(hma_fpu_xsave_result_t res)1285 translate_hma_xsave_result(hma_fpu_xsave_result_t res)
1286 {
1287 switch (res) {
1288 case HFXR_OK:
1289 return (0);
1290 case HFXR_NO_SPACE:
1291 return (ENOSPC);
1292 case HFXR_BAD_ALIGN:
1293 case HFXR_UNSUP_FMT:
1294 case HFXR_UNSUP_FEAT:
1295 case HFXR_INVALID_DATA:
1296 return (EINVAL);
1297 default:
1298 panic("unexpected xsave result");
1299 }
1300 }
1301
1302 int
vm_get_fpu(struct vm * vm,int vcpuid,void * buf,size_t len)1303 vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len)
1304 {
1305 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1306 return (EINVAL);
1307
1308 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1309 hma_fpu_xsave_result_t res;
1310
1311 res = hma_fpu_get_xsave_state(vcpu->guestfpu, buf, len);
1312 return (translate_hma_xsave_result(res));
1313 }
1314
1315 int
vm_set_fpu(struct vm * vm,int vcpuid,void * buf,size_t len)1316 vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len)
1317 {
1318 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1319 return (EINVAL);
1320
1321 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1322 hma_fpu_xsave_result_t res;
1323
1324 res = hma_fpu_set_xsave_state(vcpu->guestfpu, buf, len);
1325 return (translate_hma_xsave_result(res));
1326 }
1327
1328 int
vm_get_run_state(struct vm * vm,int vcpuid,uint32_t * state,uint8_t * sipi_vec)1329 vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state, uint8_t *sipi_vec)
1330 {
1331 struct vcpu *vcpu;
1332
1333 if (vcpuid < 0 || vcpuid >= vm->maxcpus) {
1334 return (EINVAL);
1335 }
1336
1337 vcpu = &vm->vcpu[vcpuid];
1338
1339 vcpu_lock(vcpu);
1340 *state = vcpu->run_state;
1341 *sipi_vec = vcpu->sipi_vector;
1342 vcpu_unlock(vcpu);
1343
1344 return (0);
1345 }
1346
1347 int
vm_set_run_state(struct vm * vm,int vcpuid,uint32_t state,uint8_t sipi_vec)1348 vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state, uint8_t sipi_vec)
1349 {
1350 struct vcpu *vcpu;
1351
1352 if (vcpuid < 0 || vcpuid >= vm->maxcpus) {
1353 return (EINVAL);
1354 }
1355 if (!VRS_IS_VALID(state)) {
1356 return (EINVAL);
1357 }
1358
1359 vcpu = &vm->vcpu[vcpuid];
1360
1361 vcpu_lock(vcpu);
1362 vcpu->run_state = state;
1363 vcpu->sipi_vector = sipi_vec;
1364 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
1365 vcpu_unlock(vcpu);
1366
1367 return (0);
1368 }
1369
1370 int
vm_track_dirty_pages(struct vm * vm,uint64_t gpa,size_t len,uint8_t * bitmap)1371 vm_track_dirty_pages(struct vm *vm, uint64_t gpa, size_t len, uint8_t *bitmap)
1372 {
1373 ASSERT0(gpa & PAGEOFFSET);
1374 ASSERT0(len & PAGEOFFSET);
1375
1376 /*
1377 * The only difference in expectations between this legacy interface and
1378 * an equivalent call to vm_npt_do_operation() is the check for
1379 * dirty-page-tracking being enabled on the vmspace.
1380 */
1381 if (!vmspace_get_tracking(vm->vmspace)) {
1382 return (EPERM);
1383 }
1384
1385 vmspace_bits_operate(vm->vmspace, gpa, len,
1386 VBO_RESET_DIRTY | VBO_FLAG_BITMAP_OUT, bitmap);
1387 return (0);
1388 }
1389
1390 int
vm_npt_do_operation(struct vm * vm,uint64_t gpa,size_t len,uint32_t oper,uint8_t * bitmap,int * rvalp)1391 vm_npt_do_operation(struct vm *vm, uint64_t gpa, size_t len, uint32_t oper,
1392 uint8_t *bitmap, int *rvalp)
1393 {
1394 ASSERT0(gpa & PAGEOFFSET);
1395 ASSERT0(len & PAGEOFFSET);
1396
1397 /*
1398 * For now, the bits defined in vmm_dev.h are meant to match up 1:1 with
1399 * those in vmm_vm.h
1400 */
1401 CTASSERT(VNO_OP_RESET_DIRTY == VBO_RESET_DIRTY);
1402 CTASSERT(VNO_OP_SET_DIRTY == VBO_SET_DIRTY);
1403 CTASSERT(VNO_OP_GET_DIRTY == VBO_GET_DIRTY);
1404 CTASSERT(VNO_FLAG_BITMAP_IN == VBO_FLAG_BITMAP_IN);
1405 CTASSERT(VNO_FLAG_BITMAP_OUT == VBO_FLAG_BITMAP_OUT);
1406
1407 const uint32_t oper_only =
1408 oper & ~(VNO_FLAG_BITMAP_IN | VNO_FLAG_BITMAP_OUT);
1409 switch (oper_only) {
1410 case VNO_OP_RESET_DIRTY:
1411 case VNO_OP_SET_DIRTY:
1412 case VNO_OP_GET_DIRTY:
1413 if (len == 0) {
1414 break;
1415 }
1416 vmspace_bits_operate(vm->vmspace, gpa, len, oper, bitmap);
1417 break;
1418 case VNO_OP_GET_TRACK_DIRTY:
1419 ASSERT3P(rvalp, !=, NULL);
1420 *rvalp = vmspace_get_tracking(vm->vmspace) ? 1 : 0;
1421 break;
1422 case VNO_OP_EN_TRACK_DIRTY:
1423 return (vmspace_set_tracking(vm->vmspace, true));
1424 case VNO_OP_DIS_TRACK_DIRTY:
1425 return (vmspace_set_tracking(vm->vmspace, false));
1426 default:
1427 return (EINVAL);
1428 }
1429 return (0);
1430 }
1431
1432 static void
restore_guest_fpustate(struct vcpu * vcpu)1433 restore_guest_fpustate(struct vcpu *vcpu)
1434 {
1435 /* Save host FPU and restore guest FPU */
1436 fpu_stop_emulating();
1437 hma_fpu_start_guest(vcpu->guestfpu);
1438
1439 /* restore guest XCR0 if XSAVE is enabled in the host */
1440 if (rcr4() & CR4_XSAVE)
1441 load_xcr(0, vcpu->guest_xcr0);
1442
1443 /*
1444 * The FPU is now "dirty" with the guest's state so turn on emulation
1445 * to trap any access to the FPU by the host.
1446 */
1447 fpu_start_emulating();
1448 }
1449
1450 static void
save_guest_fpustate(struct vcpu * vcpu)1451 save_guest_fpustate(struct vcpu *vcpu)
1452 {
1453
1454 if ((rcr0() & CR0_TS) == 0)
1455 panic("fpu emulation not enabled in host!");
1456
1457 /* save guest XCR0 and restore host XCR0 */
1458 if (rcr4() & CR4_XSAVE) {
1459 vcpu->guest_xcr0 = rxcr(0);
1460 load_xcr(0, vmm_get_host_xcr0());
1461 }
1462
1463 /* save guest FPU and restore host FPU */
1464 fpu_stop_emulating();
1465 hma_fpu_stop_guest(vcpu->guestfpu);
1466 /*
1467 * When the host state has been restored, we should not re-enable
1468 * CR0.TS on illumos for eager FPU.
1469 */
1470 }
1471
1472 static int
vcpu_set_state_locked(struct vm * vm,int vcpuid,enum vcpu_state newstate,bool from_idle)1473 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1474 bool from_idle)
1475 {
1476 struct vcpu *vcpu;
1477 int error;
1478
1479 vcpu = &vm->vcpu[vcpuid];
1480 vcpu_assert_locked(vcpu);
1481
1482 /*
1483 * State transitions from the vmmdev_ioctl() must always begin from
1484 * the VCPU_IDLE state. This guarantees that there is only a single
1485 * ioctl() operating on a vcpu at any point.
1486 */
1487 if (from_idle) {
1488 while (vcpu->state != VCPU_IDLE) {
1489 vcpu->reqidle = true;
1490 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
1491 cv_wait(&vcpu->state_cv, &vcpu->lock);
1492 vcpu->reqidle = false;
1493 }
1494 } else {
1495 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1496 "vcpu idle state"));
1497 }
1498
1499 if (vcpu->state == VCPU_RUNNING) {
1500 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1501 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1502 } else {
1503 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1504 "vcpu that is not running", vcpu->hostcpu));
1505 }
1506
1507 /*
1508 * The following state transitions are allowed:
1509 * IDLE -> FROZEN -> IDLE
1510 * FROZEN -> RUNNING -> FROZEN
1511 * FROZEN -> SLEEPING -> FROZEN
1512 */
1513 switch (vcpu->state) {
1514 case VCPU_IDLE:
1515 case VCPU_RUNNING:
1516 case VCPU_SLEEPING:
1517 error = (newstate != VCPU_FROZEN);
1518 break;
1519 case VCPU_FROZEN:
1520 error = (newstate == VCPU_FROZEN);
1521 break;
1522 default:
1523 error = 1;
1524 break;
1525 }
1526
1527 if (error)
1528 return (EBUSY);
1529
1530 vcpu->state = newstate;
1531 if (newstate == VCPU_RUNNING)
1532 vcpu->hostcpu = curcpu;
1533 else
1534 vcpu->hostcpu = NOCPU;
1535
1536 if (newstate == VCPU_IDLE) {
1537 cv_broadcast(&vcpu->state_cv);
1538 }
1539
1540 return (0);
1541 }
1542
1543 static void
vcpu_require_state(struct vm * vm,int vcpuid,enum vcpu_state newstate)1544 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1545 {
1546 int error;
1547
1548 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1549 panic("Error %d setting state to %d\n", error, newstate);
1550 }
1551
1552 static void
vcpu_require_state_locked(struct vm * vm,int vcpuid,enum vcpu_state newstate)1553 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1554 {
1555 int error;
1556
1557 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1558 panic("Error %d setting state to %d", error, newstate);
1559 }
1560
1561 /*
1562 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1563 */
1564 static int
vm_handle_hlt(struct vm * vm,int vcpuid,bool intr_disabled)1565 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled)
1566 {
1567 struct vcpu *vcpu;
1568 int vcpu_halted, vm_halted;
1569 bool userspace_exit = false;
1570
1571 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1572
1573 vcpu = &vm->vcpu[vcpuid];
1574 vcpu_halted = 0;
1575 vm_halted = 0;
1576
1577 vcpu_lock(vcpu);
1578 while (1) {
1579 /*
1580 * Do a final check for pending interrupts (including NMI and
1581 * INIT) before putting this thread to sleep.
1582 */
1583 if (vm_nmi_pending(vm, vcpuid))
1584 break;
1585 if (vcpu_run_state_pending(vm, vcpuid))
1586 break;
1587 if (!intr_disabled) {
1588 if (vm_extint_pending(vm, vcpuid) ||
1589 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1590 break;
1591 }
1592 }
1593
1594 /*
1595 * Also check for software events which would cause a wake-up.
1596 * This will set the appropriate exitcode directly, rather than
1597 * requiring a trip through VM_RUN().
1598 */
1599 if (vcpu_sleep_bailout_checks(vm, vcpuid)) {
1600 userspace_exit = true;
1601 break;
1602 }
1603
1604 /*
1605 * Some Linux guests implement "halt" by having all vcpus
1606 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1607 * track of the vcpus that have entered this state. When all
1608 * vcpus enter the halted state the virtual machine is halted.
1609 */
1610 if (intr_disabled) {
1611 if (!vcpu_halted && halt_detection_enabled) {
1612 vcpu_halted = 1;
1613 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1614 }
1615 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1616 vm_halted = 1;
1617 break;
1618 }
1619 }
1620
1621 vcpu_ustate_change(vm, vcpuid, VU_IDLE);
1622 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1623 (void) cv_wait_sig(&vcpu->vcpu_cv, &vcpu->lock);
1624 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1625 vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN);
1626 }
1627
1628 if (vcpu_halted)
1629 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1630
1631 vcpu_unlock(vcpu);
1632
1633 if (vm_halted) {
1634 (void) vm_suspend(vm, VM_SUSPEND_HALT, -1);
1635 }
1636
1637 return (userspace_exit ? -1 : 0);
1638 }
1639
1640 static int
vm_handle_paging(struct vm * vm,int vcpuid)1641 vm_handle_paging(struct vm *vm, int vcpuid)
1642 {
1643 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1644 vm_client_t *vmc = vcpu->vmclient;
1645 struct vm_exit *vme = &vcpu->exitinfo;
1646 const int ftype = vme->u.paging.fault_type;
1647
1648 ASSERT0(vme->inst_length);
1649 ASSERT(ftype == PROT_READ || ftype == PROT_WRITE || ftype == PROT_EXEC);
1650
1651 if (vmc_fault(vmc, vme->u.paging.gpa, ftype) != 0) {
1652 /*
1653 * If the fault cannot be serviced, kick it out to userspace for
1654 * handling (or more likely, halting the instance).
1655 */
1656 return (-1);
1657 }
1658
1659 return (0);
1660 }
1661
1662 int
vm_service_mmio_read(struct vm * vm,int cpuid,uint64_t gpa,uint64_t * rval,int rsize)1663 vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval,
1664 int rsize)
1665 {
1666 int err = ESRCH;
1667
1668 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1669 struct vlapic *vlapic = vm_lapic(vm, cpuid);
1670
1671 err = vlapic_mmio_read(vlapic, gpa, rval, rsize);
1672 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1673 err = vioapic_mmio_read(vm, cpuid, gpa, rval, rsize);
1674 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1675 err = vhpet_mmio_read(vm, cpuid, gpa, rval, rsize);
1676 }
1677
1678 return (err);
1679 }
1680
1681 int
vm_service_mmio_write(struct vm * vm,int cpuid,uint64_t gpa,uint64_t wval,int wsize)1682 vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval,
1683 int wsize)
1684 {
1685 int err = ESRCH;
1686
1687 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1688 struct vlapic *vlapic = vm_lapic(vm, cpuid);
1689
1690 err = vlapic_mmio_write(vlapic, gpa, wval, wsize);
1691 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1692 err = vioapic_mmio_write(vm, cpuid, gpa, wval, wsize);
1693 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1694 err = vhpet_mmio_write(vm, cpuid, gpa, wval, wsize);
1695 }
1696
1697 return (err);
1698 }
1699
1700 static int
vm_handle_mmio_emul(struct vm * vm,int vcpuid)1701 vm_handle_mmio_emul(struct vm *vm, int vcpuid)
1702 {
1703 struct vie *vie;
1704 struct vcpu *vcpu;
1705 struct vm_exit *vme;
1706 uint64_t inst_addr;
1707 int error, fault, cs_d;
1708
1709 vcpu = &vm->vcpu[vcpuid];
1710 vme = &vcpu->exitinfo;
1711 vie = vcpu->vie_ctx;
1712
1713 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1714 __func__, vme->inst_length));
1715
1716 inst_addr = vme->rip + vme->u.mmio_emul.cs_base;
1717 cs_d = vme->u.mmio_emul.cs_d;
1718
1719 /* Fetch the faulting instruction */
1720 if (vie_needs_fetch(vie)) {
1721 error = vie_fetch_instruction(vie, vm, vcpuid, inst_addr,
1722 &fault);
1723 if (error != 0) {
1724 return (error);
1725 } else if (fault) {
1726 /*
1727 * If a fault during instruction fetch was encountered,
1728 * it will have asserted that the appropriate exception
1729 * be injected at next entry.
1730 * No further work is required.
1731 */
1732 return (0);
1733 }
1734 }
1735
1736 if (vie_decode_instruction(vie, vm, vcpuid, cs_d) != 0) {
1737 /* Dump (unrecognized) instruction bytes in userspace */
1738 vie_fallback_exitinfo(vie, vme);
1739 return (-1);
1740 }
1741 if (vme->u.mmio_emul.gla != VIE_INVALID_GLA &&
1742 vie_verify_gla(vie, vm, vcpuid, vme->u.mmio_emul.gla) != 0) {
1743 /* Decoded GLA does not match GLA from VM exit state */
1744 vie_fallback_exitinfo(vie, vme);
1745 return (-1);
1746 }
1747
1748 repeat:
1749 error = vie_emulate_mmio(vie, vm, vcpuid);
1750 if (error < 0) {
1751 /*
1752 * MMIO not handled by any of the in-kernel-emulated devices, so
1753 * make a trip out to userspace for it.
1754 */
1755 vie_exitinfo(vie, vme);
1756 } else if (error == EAGAIN) {
1757 /*
1758 * Continue emulating the rep-prefixed instruction, which has
1759 * not completed its iterations.
1760 *
1761 * In case this can be emulated in-kernel and has a high
1762 * repetition count (causing a tight spin), it should be
1763 * deferential to yield conditions.
1764 */
1765 if (!vcpu_should_yield(vm, vcpuid)) {
1766 goto repeat;
1767 } else {
1768 /*
1769 * Defer to the contending load by making a trip to
1770 * userspace with a no-op (BOGUS) exit reason.
1771 */
1772 vie_reset(vie);
1773 vme->exitcode = VM_EXITCODE_BOGUS;
1774 return (-1);
1775 }
1776 } else if (error == 0) {
1777 /* Update %rip now that instruction has been emulated */
1778 vie_advance_pc(vie, &vcpu->nextrip);
1779 }
1780 return (error);
1781 }
1782
1783 static int
vm_handle_inout(struct vm * vm,int vcpuid,struct vm_exit * vme)1784 vm_handle_inout(struct vm *vm, int vcpuid, struct vm_exit *vme)
1785 {
1786 struct vcpu *vcpu;
1787 struct vie *vie;
1788 int err;
1789
1790 vcpu = &vm->vcpu[vcpuid];
1791 vie = vcpu->vie_ctx;
1792
1793 repeat:
1794 err = vie_emulate_inout(vie, vm, vcpuid);
1795
1796 if (err < 0) {
1797 /*
1798 * In/out not handled by any of the in-kernel-emulated devices,
1799 * so make a trip out to userspace for it.
1800 */
1801 vie_exitinfo(vie, vme);
1802 return (err);
1803 } else if (err == EAGAIN) {
1804 /*
1805 * Continue emulating the rep-prefixed ins/outs, which has not
1806 * completed its iterations.
1807 *
1808 * In case this can be emulated in-kernel and has a high
1809 * repetition count (causing a tight spin), it should be
1810 * deferential to yield conditions.
1811 */
1812 if (!vcpu_should_yield(vm, vcpuid)) {
1813 goto repeat;
1814 } else {
1815 /*
1816 * Defer to the contending load by making a trip to
1817 * userspace with a no-op (BOGUS) exit reason.
1818 */
1819 vie_reset(vie);
1820 vme->exitcode = VM_EXITCODE_BOGUS;
1821 return (-1);
1822 }
1823 } else if (err != 0) {
1824 /* Emulation failure. Bail all the way out to userspace. */
1825 vme->exitcode = VM_EXITCODE_INST_EMUL;
1826 bzero(&vme->u.inst_emul, sizeof (vme->u.inst_emul));
1827 return (-1);
1828 }
1829
1830 vie_advance_pc(vie, &vcpu->nextrip);
1831 return (0);
1832 }
1833
1834 static int
vm_handle_inst_emul(struct vm * vm,int vcpuid)1835 vm_handle_inst_emul(struct vm *vm, int vcpuid)
1836 {
1837 struct vie *vie;
1838 struct vcpu *vcpu;
1839 struct vm_exit *vme;
1840 uint64_t cs_base;
1841 int error, fault, cs_d;
1842
1843 vcpu = &vm->vcpu[vcpuid];
1844 vme = &vcpu->exitinfo;
1845 vie = vcpu->vie_ctx;
1846
1847 vie_cs_info(vie, vm, vcpuid, &cs_base, &cs_d);
1848
1849 /* Fetch the faulting instruction */
1850 ASSERT(vie_needs_fetch(vie));
1851 error = vie_fetch_instruction(vie, vm, vcpuid, vme->rip + cs_base,
1852 &fault);
1853 if (error != 0) {
1854 return (error);
1855 } else if (fault) {
1856 /*
1857 * If a fault during instruction fetch was encounted, it will
1858 * have asserted that the appropriate exception be injected at
1859 * next entry. No further work is required.
1860 */
1861 return (0);
1862 }
1863
1864 if (vie_decode_instruction(vie, vm, vcpuid, cs_d) != 0) {
1865 /* Dump (unrecognized) instruction bytes in userspace */
1866 vie_fallback_exitinfo(vie, vme);
1867 return (-1);
1868 }
1869
1870 error = vie_emulate_other(vie, vm, vcpuid);
1871 if (error != 0) {
1872 /*
1873 * Instruction emulation was unable to complete successfully, so
1874 * kick it out to userspace for handling.
1875 */
1876 vie_fallback_exitinfo(vie, vme);
1877 } else {
1878 /* Update %rip now that instruction has been emulated */
1879 vie_advance_pc(vie, &vcpu->nextrip);
1880 }
1881 return (error);
1882 }
1883
1884 static int
vm_handle_run_state(struct vm * vm,int vcpuid)1885 vm_handle_run_state(struct vm *vm, int vcpuid)
1886 {
1887 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1888 bool handled = false;
1889
1890 vcpu_lock(vcpu);
1891 while (1) {
1892 if ((vcpu->run_state & VRS_PEND_INIT) != 0) {
1893 vcpu_unlock(vcpu);
1894 VERIFY0(vcpu_arch_reset(vm, vcpuid, true));
1895 vcpu_lock(vcpu);
1896
1897 vcpu->run_state &= ~(VRS_RUN | VRS_PEND_INIT);
1898 vcpu->run_state |= VRS_INIT;
1899 }
1900
1901 if ((vcpu->run_state & (VRS_INIT | VRS_RUN | VRS_PEND_SIPI)) ==
1902 (VRS_INIT | VRS_PEND_SIPI)) {
1903 const uint8_t vector = vcpu->sipi_vector;
1904
1905 vcpu_unlock(vcpu);
1906 VERIFY0(vcpu_vector_sipi(vm, vcpuid, vector));
1907 vcpu_lock(vcpu);
1908
1909 vcpu->run_state &= ~VRS_PEND_SIPI;
1910 vcpu->run_state |= VRS_RUN;
1911 }
1912
1913 /*
1914 * If the vCPU is now in the running state, there is no need to
1915 * wait for anything prior to re-entry.
1916 */
1917 if ((vcpu->run_state & VRS_RUN) != 0) {
1918 handled = true;
1919 break;
1920 }
1921
1922 /*
1923 * Also check for software events which would cause a wake-up.
1924 * This will set the appropriate exitcode directly, rather than
1925 * requiring a trip through VM_RUN().
1926 */
1927 if (vcpu_sleep_bailout_checks(vm, vcpuid)) {
1928 break;
1929 }
1930
1931 vcpu_ustate_change(vm, vcpuid, VU_IDLE);
1932 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1933 (void) cv_wait_sig(&vcpu->vcpu_cv, &vcpu->lock);
1934 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1935 vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN);
1936 }
1937 vcpu_unlock(vcpu);
1938
1939 return (handled ? 0 : -1);
1940 }
1941
1942 static int
vm_rdmtrr(const struct vm_mtrr * mtrr,uint32_t num,uint64_t * val)1943 vm_rdmtrr(const struct vm_mtrr *mtrr, uint32_t num, uint64_t *val)
1944 {
1945 switch (num) {
1946 case MSR_MTRRcap:
1947 *val = MTRR_CAP_WC | MTRR_CAP_FIXED | VMM_MTRR_VAR_MAX;
1948 break;
1949 case MSR_MTRRdefType:
1950 *val = mtrr->def_type;
1951 break;
1952 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
1953 *val = mtrr->fixed4k[num - MSR_MTRR4kBase];
1954 break;
1955 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
1956 *val = mtrr->fixed16k[num - MSR_MTRR16kBase];
1957 break;
1958 case MSR_MTRR64kBase:
1959 *val = mtrr->fixed64k;
1960 break;
1961 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: {
1962 uint_t offset = num - MSR_MTRRVarBase;
1963 if (offset % 2 == 0) {
1964 *val = mtrr->var[offset / 2].base;
1965 } else {
1966 *val = mtrr->var[offset / 2].mask;
1967 }
1968 break;
1969 }
1970 default:
1971 return (EINVAL);
1972 }
1973
1974 return (0);
1975 }
1976
1977 static int
vm_wrmtrr(struct vm_mtrr * mtrr,uint32_t num,uint64_t val)1978 vm_wrmtrr(struct vm_mtrr *mtrr, uint32_t num, uint64_t val)
1979 {
1980 switch (num) {
1981 case MSR_MTRRcap:
1982 /* MTRRCAP is read only */
1983 return (EPERM);
1984 case MSR_MTRRdefType:
1985 if (val & ~VMM_MTRR_DEF_MASK) {
1986 /* generate #GP on writes to reserved fields */
1987 return (EINVAL);
1988 }
1989 mtrr->def_type = val;
1990 break;
1991 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
1992 mtrr->fixed4k[num - MSR_MTRR4kBase] = val;
1993 break;
1994 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
1995 mtrr->fixed16k[num - MSR_MTRR16kBase] = val;
1996 break;
1997 case MSR_MTRR64kBase:
1998 mtrr->fixed64k = val;
1999 break;
2000 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: {
2001 uint_t offset = num - MSR_MTRRVarBase;
2002 if (offset % 2 == 0) {
2003 if (val & ~VMM_MTRR_PHYSBASE_MASK) {
2004 /* generate #GP on writes to reserved fields */
2005 return (EINVAL);
2006 }
2007 mtrr->var[offset / 2].base = val;
2008 } else {
2009 if (val & ~VMM_MTRR_PHYSMASK_MASK) {
2010 /* generate #GP on writes to reserved fields */
2011 return (EINVAL);
2012 }
2013 mtrr->var[offset / 2].mask = val;
2014 }
2015 break;
2016 }
2017 default:
2018 return (EINVAL);
2019 }
2020
2021 return (0);
2022 }
2023
2024 static bool
is_mtrr_msr(uint32_t msr)2025 is_mtrr_msr(uint32_t msr)
2026 {
2027 switch (msr) {
2028 case MSR_MTRRcap:
2029 case MSR_MTRRdefType:
2030 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
2031 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
2032 case MSR_MTRR64kBase:
2033 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
2034 return (true);
2035 default:
2036 return (false);
2037 }
2038 }
2039
2040 static int
vm_handle_rdmsr(struct vm * vm,int vcpuid,struct vm_exit * vme)2041 vm_handle_rdmsr(struct vm *vm, int vcpuid, struct vm_exit *vme)
2042 {
2043 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2044 const uint32_t code = vme->u.msr.code;
2045 uint64_t val = 0;
2046
2047 switch (code) {
2048 case MSR_MCG_CAP:
2049 case MSR_MCG_STATUS:
2050 val = 0;
2051 break;
2052
2053 case MSR_MTRRcap:
2054 case MSR_MTRRdefType:
2055 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
2056 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
2057 case MSR_MTRR64kBase:
2058 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
2059 if (vm_rdmtrr(&vcpu->mtrr, code, &val) != 0)
2060 vm_inject_gp(vm, vcpuid);
2061 break;
2062
2063 case MSR_TSC:
2064 /*
2065 * Get the guest TSC, applying necessary vCPU offsets.
2066 *
2067 * In all likelihood, this should always be handled in guest
2068 * context by VMX/SVM rather than taking an exit. (Both VMX and
2069 * SVM pass through read-only access to MSR_TSC to the guest.)
2070 *
2071 * The VM-wide TSC offset and per-vCPU offset are included in
2072 * the calculations of vcpu_tsc_offset(), so this is sufficient
2073 * to use as the offset in our calculations.
2074 *
2075 * No physical offset is requested of vcpu_tsc_offset() since
2076 * rdtsc_offset() takes care of that instead.
2077 */
2078 val = calc_guest_tsc(rdtsc_offset(), vm->freq_multiplier,
2079 vcpu_tsc_offset(vm, vcpuid, false));
2080 break;
2081
2082 default:
2083 /*
2084 * Anything not handled at this point will be kicked out to
2085 * userspace for attempted processing there.
2086 */
2087 return (-1);
2088 }
2089
2090 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RAX,
2091 val & 0xffffffff));
2092 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RDX,
2093 val >> 32));
2094 return (0);
2095 }
2096
2097 static int
vm_handle_wrmsr(struct vm * vm,int vcpuid,struct vm_exit * vme)2098 vm_handle_wrmsr(struct vm *vm, int vcpuid, struct vm_exit *vme)
2099 {
2100 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2101 const uint32_t code = vme->u.msr.code;
2102 const uint64_t val = vme->u.msr.wval;
2103
2104 switch (code) {
2105 case MSR_MCG_CAP:
2106 case MSR_MCG_STATUS:
2107 /* Ignore writes */
2108 break;
2109
2110 case MSR_MTRRcap:
2111 case MSR_MTRRdefType:
2112 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
2113 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
2114 case MSR_MTRR64kBase:
2115 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
2116 if (vm_wrmtrr(&vcpu->mtrr, code, val) != 0)
2117 vm_inject_gp(vm, vcpuid);
2118 break;
2119
2120 case MSR_TSC:
2121 /*
2122 * The effect of writing the TSC MSR is that a subsequent read
2123 * of the TSC would report that value written (plus any time
2124 * elapsed between the write and the read).
2125 *
2126 * To calculate that per-vCPU offset, we can work backwards from
2127 * the guest TSC at the time of write:
2128 *
2129 * value = current guest TSC + vCPU offset
2130 *
2131 * so therefore:
2132 *
2133 * value - current guest TSC = vCPU offset
2134 */
2135 vcpu->tsc_offset = val - calc_guest_tsc(rdtsc_offset(),
2136 vm->freq_multiplier, vm->tsc_offset);
2137 break;
2138
2139 default:
2140 /*
2141 * Anything not handled at this point will be kicked out to
2142 * userspace for attempted processing there.
2143 */
2144 return (-1);
2145 }
2146
2147 return (0);
2148 }
2149
2150 /*
2151 * Has a suspend event been asserted on the VM?
2152 *
2153 * The reason and (in the case of a triple-fault) source vcpuid are optionally
2154 * returned if such a state is present.
2155 */
2156 static bool
vm_is_suspended(struct vm * vm,struct vm_exit * vme)2157 vm_is_suspended(struct vm *vm, struct vm_exit *vme)
2158 {
2159 const int val = vm->suspend_how;
2160 if (val == 0) {
2161 return (false);
2162 } else {
2163 if (vme != NULL) {
2164 vme->exitcode = VM_EXITCODE_SUSPENDED;
2165 vme->u.suspended.how = val;
2166 vme->u.suspended.source = vm->suspend_source;
2167 /*
2168 * Normalize suspend event time and, on the off chance
2169 * that it was recorded as occuring prior to VM boot,
2170 * clamp it to a minimum of 0.
2171 */
2172 vme->u.suspended.when = (uint64_t)
2173 MAX(vm_normalize_hrtime(vm, vm->suspend_when), 0);
2174 }
2175 return (true);
2176 }
2177 }
2178
2179 int
vm_suspend(struct vm * vm,enum vm_suspend_how how,int source)2180 vm_suspend(struct vm *vm, enum vm_suspend_how how, int source)
2181 {
2182 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) {
2183 return (EINVAL);
2184 }
2185
2186 /*
2187 * Although the common case of calling vm_suspend() is via
2188 * ioctl(VM_SUSPEND), where all the vCPUs will be held in the frozen
2189 * state, it can also be called by a running vCPU to indicate a
2190 * triple-fault. In the latter case, there is no exclusion from a
2191 * racing vm_suspend() from a different vCPU, so assertion of the
2192 * suspended state must be performed carefully.
2193 *
2194 * The `suspend_when` is set first via atomic cmpset to pick a "winner"
2195 * of the suspension race, followed by population of 'suspend_source'.
2196 * Only after those are done, and a membar is emitted will 'suspend_how'
2197 * be set, which makes the suspended state visible to any vCPU checking
2198 * for it. That order will prevent an incomplete suspend state (between
2199 * 'how', 'source', and 'when') from being observed.
2200 */
2201 const hrtime_t now = gethrtime();
2202 if (atomic_cmpset_long((ulong_t *)&vm->suspend_when, 0, now) == 0) {
2203 return (EALREADY);
2204 }
2205 vm->suspend_source = source;
2206 membar_producer();
2207 vm->suspend_how = how;
2208
2209 /* Notify all active vcpus that they are now suspended. */
2210 for (uint_t i = 0; i < vm->maxcpus; i++) {
2211 struct vcpu *vcpu = &vm->vcpu[i];
2212
2213 vcpu_lock(vcpu);
2214
2215 if (!CPU_ISSET(i, &vm->active_cpus)) {
2216 /*
2217 * vCPUs not already marked as active can be ignored,
2218 * since they cannot become marked as active unless the
2219 * VM is reinitialized, clearing the suspended state.
2220 */
2221 vcpu_unlock(vcpu);
2222 continue;
2223 }
2224
2225 switch (vcpu->state) {
2226 case VCPU_IDLE:
2227 case VCPU_FROZEN:
2228 /*
2229 * vCPUs not locked by in-kernel activity can be
2230 * immediately marked as suspended: The ustate is moved
2231 * back to VU_INIT, since no further guest work will
2232 * occur while the VM is in this state.
2233 *
2234 * A FROZEN vCPU may still change its ustate on the way
2235 * out of the kernel, but a subsequent check at the end
2236 * of vm_run() should be adequate to fix it up.
2237 */
2238 vcpu_ustate_change(vm, i, VU_INIT);
2239 break;
2240 default:
2241 /*
2242 * Any vCPUs which are running or waiting in-kernel
2243 * (such as in HLT) are notified to pick up the newly
2244 * suspended state.
2245 */
2246 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
2247 break;
2248 }
2249 vcpu_unlock(vcpu);
2250 }
2251 return (0);
2252 }
2253
2254 void
vm_exit_run_state(struct vm * vm,int vcpuid,uint64_t rip)2255 vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip)
2256 {
2257 struct vm_exit *vmexit;
2258
2259 vmexit = vm_exitinfo(vm, vcpuid);
2260 vmexit->rip = rip;
2261 vmexit->inst_length = 0;
2262 vmexit->exitcode = VM_EXITCODE_RUN_STATE;
2263 vmm_stat_incr(vm, vcpuid, VMEXIT_RUN_STATE, 1);
2264 }
2265
2266 /*
2267 * Some vmm resources, such as the lapic, may have CPU-specific resources
2268 * allocated to them which would benefit from migration onto the host CPU which
2269 * is processing the vcpu state.
2270 */
2271 static void
vm_localize_resources(struct vm * vm,struct vcpu * vcpu)2272 vm_localize_resources(struct vm *vm, struct vcpu *vcpu)
2273 {
2274 /*
2275 * Localizing cyclic resources requires acquisition of cpu_lock, and
2276 * doing so with kpreempt disabled is a recipe for deadlock disaster.
2277 */
2278 VERIFY(curthread->t_preempt == 0);
2279
2280 /*
2281 * Do not bother with localization if this vCPU is about to return to
2282 * the host CPU it was last localized to.
2283 */
2284 if (vcpu->lastloccpu == curcpu)
2285 return;
2286
2287 /*
2288 * Localize system-wide resources to the primary boot vCPU. While any
2289 * of the other vCPUs may access them, it keeps the potential interrupt
2290 * footprint constrained to CPUs involved with this instance.
2291 */
2292 if (vcpu == &vm->vcpu[0]) {
2293 vhpet_localize_resources(vm->vhpet);
2294 vrtc_localize_resources(vm->vrtc);
2295 vatpit_localize_resources(vm->vatpit);
2296 }
2297
2298 vlapic_localize_resources(vcpu->vlapic);
2299
2300 vcpu->lastloccpu = curcpu;
2301 }
2302
2303 static void
vmm_savectx(void * arg)2304 vmm_savectx(void *arg)
2305 {
2306 vm_thread_ctx_t *vtc = arg;
2307 struct vm *vm = vtc->vtc_vm;
2308 const int vcpuid = vtc->vtc_vcpuid;
2309
2310 if (ops->vmsavectx != NULL) {
2311 ops->vmsavectx(vm->cookie, vcpuid);
2312 }
2313
2314 /*
2315 * Account for going off-cpu, unless the vCPU is idled, where being
2316 * off-cpu is the explicit point.
2317 */
2318 if (vm->vcpu[vcpuid].ustate != VU_IDLE) {
2319 vtc->vtc_ustate = vm->vcpu[vcpuid].ustate;
2320 vcpu_ustate_change(vm, vcpuid, VU_SCHED);
2321 }
2322
2323 /*
2324 * If the CPU holds the restored guest FPU state, save it and restore
2325 * the host FPU state before this thread goes off-cpu.
2326 */
2327 if ((vtc->vtc_status & VTCS_FPU_RESTORED) != 0) {
2328 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2329
2330 save_guest_fpustate(vcpu);
2331 vtc->vtc_status &= ~VTCS_FPU_RESTORED;
2332 }
2333 }
2334
2335 static void
vmm_restorectx(void * arg)2336 vmm_restorectx(void *arg)
2337 {
2338 vm_thread_ctx_t *vtc = arg;
2339 struct vm *vm = vtc->vtc_vm;
2340 const int vcpuid = vtc->vtc_vcpuid;
2341
2342 /* Complete microstate accounting for vCPU being off-cpu */
2343 if (vm->vcpu[vcpuid].ustate != VU_IDLE) {
2344 vcpu_ustate_change(vm, vcpuid, vtc->vtc_ustate);
2345 }
2346
2347 /*
2348 * When coming back on-cpu, only restore the guest FPU status if the
2349 * thread is in a context marked as requiring it. This should be rare,
2350 * occurring only when a future logic error results in a voluntary
2351 * sleep during the VMRUN critical section.
2352 *
2353 * The common case will result in elision of the guest FPU state
2354 * restoration, deferring that action until it is clearly necessary
2355 * during vm_run.
2356 */
2357 VERIFY((vtc->vtc_status & VTCS_FPU_RESTORED) == 0);
2358 if ((vtc->vtc_status & VTCS_FPU_CTX_CRITICAL) != 0) {
2359 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2360
2361 restore_guest_fpustate(vcpu);
2362 vtc->vtc_status |= VTCS_FPU_RESTORED;
2363 }
2364
2365 if (ops->vmrestorectx != NULL) {
2366 ops->vmrestorectx(vm->cookie, vcpuid);
2367 }
2368
2369 }
2370
2371 /* Convenience defines for parsing vm_entry`cmd values */
2372 #define VEC_MASK_FLAGS (VEC_FLAG_EXIT_CONSISTENT)
2373 #define VEC_MASK_CMD (~VEC_MASK_FLAGS)
2374
2375 static int
vm_entry_actions(struct vm * vm,int vcpuid,const struct vm_entry * entry,struct vm_exit * vme)2376 vm_entry_actions(struct vm *vm, int vcpuid, const struct vm_entry *entry,
2377 struct vm_exit *vme)
2378 {
2379 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2380 struct vie *vie = vcpu->vie_ctx;
2381 int err = 0;
2382
2383 const uint_t cmd = entry->cmd & VEC_MASK_CMD;
2384 const uint_t flags = entry->cmd & VEC_MASK_FLAGS;
2385
2386 switch (cmd) {
2387 case VEC_DEFAULT:
2388 break;
2389 case VEC_DISCARD_INSTR:
2390 vie_reset(vie);
2391 break;
2392 case VEC_FULFILL_MMIO:
2393 err = vie_fulfill_mmio(vie, &entry->u.mmio);
2394 if (err == 0) {
2395 err = vie_emulate_mmio(vie, vm, vcpuid);
2396 if (err == 0) {
2397 vie_advance_pc(vie, &vcpu->nextrip);
2398 } else if (err < 0) {
2399 vie_exitinfo(vie, vme);
2400 } else if (err == EAGAIN) {
2401 /*
2402 * Clear the instruction emulation state in
2403 * order to re-enter VM context and continue
2404 * this 'rep <instruction>'
2405 */
2406 vie_reset(vie);
2407 err = 0;
2408 }
2409 }
2410 break;
2411 case VEC_FULFILL_INOUT:
2412 err = vie_fulfill_inout(vie, &entry->u.inout);
2413 if (err == 0) {
2414 err = vie_emulate_inout(vie, vm, vcpuid);
2415 if (err == 0) {
2416 vie_advance_pc(vie, &vcpu->nextrip);
2417 } else if (err < 0) {
2418 vie_exitinfo(vie, vme);
2419 } else if (err == EAGAIN) {
2420 /*
2421 * Clear the instruction emulation state in
2422 * order to re-enter VM context and continue
2423 * this 'rep ins/outs'
2424 */
2425 vie_reset(vie);
2426 err = 0;
2427 }
2428 }
2429 break;
2430 default:
2431 return (EINVAL);
2432 }
2433
2434 /*
2435 * Pay heed to requests for exit-when-vCPU-is-consistent requests, at
2436 * least when we are not immediately bound for another exit due to
2437 * multi-part instruction emulation or related causes.
2438 */
2439 if ((flags & VEC_FLAG_EXIT_CONSISTENT) != 0 && err == 0) {
2440 vcpu->reqconsist = true;
2441 }
2442
2443 return (err);
2444 }
2445
2446 static int
vm_loop_checks(struct vm * vm,int vcpuid,struct vm_exit * vme)2447 vm_loop_checks(struct vm *vm, int vcpuid, struct vm_exit *vme)
2448 {
2449 struct vie *vie;
2450
2451 vie = vm->vcpu[vcpuid].vie_ctx;
2452
2453 if (vie_pending(vie)) {
2454 /*
2455 * Userspace has not fulfilled the pending needs of the
2456 * instruction emulation, so bail back out.
2457 */
2458 vie_exitinfo(vie, vme);
2459 return (-1);
2460 }
2461
2462 return (0);
2463 }
2464
2465 int
vm_run(struct vm * vm,int vcpuid,const struct vm_entry * entry)2466 vm_run(struct vm *vm, int vcpuid, const struct vm_entry *entry)
2467 {
2468 int error;
2469 struct vcpu *vcpu;
2470 struct vm_exit *vme;
2471 bool intr_disabled;
2472 int affinity_type = CPU_CURRENT;
2473
2474 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2475 return (EINVAL);
2476 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
2477 return (EINVAL);
2478 if (vm->is_paused) {
2479 return (EBUSY);
2480 }
2481
2482 vcpu = &vm->vcpu[vcpuid];
2483 vme = &vcpu->exitinfo;
2484
2485 vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN);
2486
2487 vcpu->vtc.vtc_status = 0;
2488 ctxop_attach(curthread, vcpu->ctxop);
2489
2490 error = vm_entry_actions(vm, vcpuid, entry, vme);
2491 if (error != 0) {
2492 goto exit;
2493 }
2494
2495 restart:
2496 error = vm_loop_checks(vm, vcpuid, vme);
2497 if (error != 0) {
2498 goto exit;
2499 }
2500
2501 thread_affinity_set(curthread, affinity_type);
2502 /*
2503 * Resource localization should happen after the CPU affinity for the
2504 * thread has been set to ensure that access from restricted contexts,
2505 * such as VMX-accelerated APIC operations, can occur without inducing
2506 * cyclic cross-calls.
2507 *
2508 * This must be done prior to disabling kpreempt via critical_enter().
2509 */
2510 vm_localize_resources(vm, vcpu);
2511 affinity_type = CPU_CURRENT;
2512 critical_enter();
2513
2514 /* Force a trip through update_sregs to reload %fs/%gs and friends */
2515 PCB_SET_UPDATE_SEGS(&ttolwp(curthread)->lwp_pcb);
2516
2517 if ((vcpu->vtc.vtc_status & VTCS_FPU_RESTORED) == 0) {
2518 restore_guest_fpustate(vcpu);
2519 vcpu->vtc.vtc_status |= VTCS_FPU_RESTORED;
2520 }
2521 vcpu->vtc.vtc_status |= VTCS_FPU_CTX_CRITICAL;
2522
2523 vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
2524 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip);
2525 vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
2526
2527 /*
2528 * Once clear of the delicate contexts comprising the VM_RUN handler,
2529 * thread CPU affinity can be loosened while other processing occurs.
2530 */
2531 vcpu->vtc.vtc_status &= ~VTCS_FPU_CTX_CRITICAL;
2532 thread_affinity_clear(curthread);
2533 critical_exit();
2534
2535 if (error != 0) {
2536 /* Communicate out any error from VMRUN() above */
2537 goto exit;
2538 }
2539
2540 vcpu->nextrip = vme->rip + vme->inst_length;
2541 switch (vme->exitcode) {
2542 case VM_EXITCODE_RUN_STATE:
2543 error = vm_handle_run_state(vm, vcpuid);
2544 break;
2545 case VM_EXITCODE_IOAPIC_EOI:
2546 vioapic_process_eoi(vm, vcpuid,
2547 vme->u.ioapic_eoi.vector);
2548 break;
2549 case VM_EXITCODE_HLT:
2550 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
2551 error = vm_handle_hlt(vm, vcpuid, intr_disabled);
2552 break;
2553 case VM_EXITCODE_PAGING:
2554 error = vm_handle_paging(vm, vcpuid);
2555 break;
2556 case VM_EXITCODE_MMIO_EMUL:
2557 error = vm_handle_mmio_emul(vm, vcpuid);
2558 break;
2559 case VM_EXITCODE_INOUT:
2560 error = vm_handle_inout(vm, vcpuid, vme);
2561 break;
2562 case VM_EXITCODE_INST_EMUL:
2563 error = vm_handle_inst_emul(vm, vcpuid);
2564 break;
2565 case VM_EXITCODE_MONITOR:
2566 case VM_EXITCODE_MWAIT:
2567 case VM_EXITCODE_VMINSN:
2568 vm_inject_ud(vm, vcpuid);
2569 break;
2570 case VM_EXITCODE_RDMSR:
2571 error = vm_handle_rdmsr(vm, vcpuid, vme);
2572 break;
2573 case VM_EXITCODE_WRMSR:
2574 error = vm_handle_wrmsr(vm, vcpuid, vme);
2575 break;
2576 case VM_EXITCODE_HT:
2577 affinity_type = CPU_BEST;
2578 break;
2579 case VM_EXITCODE_MTRAP:
2580 VERIFY0(vm_suspend_cpu(vm, vcpuid));
2581 error = -1;
2582 break;
2583 default:
2584 /* handled in userland */
2585 error = -1;
2586 break;
2587 }
2588
2589 if (error == 0) {
2590 /* VM exit conditions handled in-kernel, continue running */
2591 goto restart;
2592 }
2593
2594 exit:
2595 kpreempt_disable();
2596 ctxop_detach(curthread, vcpu->ctxop);
2597 /* Make sure all of the needed vCPU context state is saved */
2598 vmm_savectx(&vcpu->vtc);
2599 kpreempt_enable();
2600
2601 /*
2602 * Bill time in userspace against VU_EMU_USER, unless the VM is
2603 * suspended, in which case VU_INIT is the choice.
2604 */
2605 vcpu_ustate_change(vm, vcpuid,
2606 vm_is_suspended(vm, NULL) ? VU_INIT : VU_EMU_USER);
2607
2608 return (error);
2609 }
2610
2611 int
vm_restart_instruction(void * arg,int vcpuid)2612 vm_restart_instruction(void *arg, int vcpuid)
2613 {
2614 struct vm *vm;
2615 struct vcpu *vcpu;
2616 enum vcpu_state state;
2617 uint64_t rip;
2618 int error;
2619
2620 vm = arg;
2621 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2622 return (EINVAL);
2623
2624 vcpu = &vm->vcpu[vcpuid];
2625 state = vcpu_get_state(vm, vcpuid, NULL);
2626 if (state == VCPU_RUNNING) {
2627 /*
2628 * When a vcpu is "running" the next instruction is determined
2629 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
2630 * Thus setting 'inst_length' to zero will cause the current
2631 * instruction to be restarted.
2632 */
2633 vcpu->exitinfo.inst_length = 0;
2634 } else if (state == VCPU_FROZEN) {
2635 /*
2636 * When a vcpu is "frozen" it is outside the critical section
2637 * around VMRUN() and 'nextrip' points to the next instruction.
2638 * Thus instruction restart is achieved by setting 'nextrip'
2639 * to the vcpu's %rip.
2640 */
2641 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
2642 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
2643 vcpu->nextrip = rip;
2644 } else {
2645 panic("%s: invalid state %d", __func__, state);
2646 }
2647 return (0);
2648 }
2649
2650 int
vm_exit_intinfo(struct vm * vm,int vcpuid,uint64_t info)2651 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
2652 {
2653 struct vcpu *vcpu;
2654
2655 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2656 return (EINVAL);
2657
2658 vcpu = &vm->vcpu[vcpuid];
2659
2660 if (VM_INTINFO_PENDING(info)) {
2661 const uint32_t type = VM_INTINFO_TYPE(info);
2662 const uint8_t vector = VM_INTINFO_VECTOR(info);
2663
2664 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
2665 return (EINVAL);
2666 if (type == VM_INTINFO_HWEXCP && vector >= 32)
2667 return (EINVAL);
2668 if (info & VM_INTINFO_MASK_RSVD)
2669 return (EINVAL);
2670 } else {
2671 info = 0;
2672 }
2673 vcpu->exit_intinfo = info;
2674 return (0);
2675 }
2676
2677 enum exc_class {
2678 EXC_BENIGN,
2679 EXC_CONTRIBUTORY,
2680 EXC_PAGEFAULT
2681 };
2682
2683 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
2684
2685 static enum exc_class
exception_class(uint64_t info)2686 exception_class(uint64_t info)
2687 {
2688 ASSERT(VM_INTINFO_PENDING(info));
2689
2690 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
2691 switch (VM_INTINFO_TYPE(info)) {
2692 case VM_INTINFO_HWINTR:
2693 case VM_INTINFO_SWINTR:
2694 case VM_INTINFO_NMI:
2695 return (EXC_BENIGN);
2696 default:
2697 /*
2698 * Hardware exception.
2699 *
2700 * SVM and VT-x use identical type values to represent NMI,
2701 * hardware interrupt and software interrupt.
2702 *
2703 * SVM uses type '3' for all exceptions. VT-x uses type '3'
2704 * for exceptions except #BP and #OF. #BP and #OF use a type
2705 * value of '5' or '6'. Therefore we don't check for explicit
2706 * values of 'type' to classify 'intinfo' into a hardware
2707 * exception.
2708 */
2709 break;
2710 }
2711
2712 switch (VM_INTINFO_VECTOR(info)) {
2713 case IDT_PF:
2714 case IDT_VE:
2715 return (EXC_PAGEFAULT);
2716 case IDT_DE:
2717 case IDT_TS:
2718 case IDT_NP:
2719 case IDT_SS:
2720 case IDT_GP:
2721 return (EXC_CONTRIBUTORY);
2722 default:
2723 return (EXC_BENIGN);
2724 }
2725 }
2726
2727 /*
2728 * Fetch event pending injection into the guest, if one exists.
2729 *
2730 * Returns true if an event is to be injected (which is placed in `retinfo`).
2731 */
2732 bool
vm_entry_intinfo(struct vm * vm,int vcpuid,uint64_t * retinfo)2733 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
2734 {
2735 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2736 const uint64_t info1 = vcpu->exit_intinfo;
2737 vcpu->exit_intinfo = 0;
2738 const uint64_t info2 = vcpu->exc_pending;
2739 vcpu->exc_pending = 0;
2740
2741 if (VM_INTINFO_PENDING(info1) && VM_INTINFO_PENDING(info2)) {
2742 /*
2743 * If an exception occurs while attempting to call the
2744 * double-fault handler the processor enters shutdown mode
2745 * (aka triple fault).
2746 */
2747 if (VM_INTINFO_TYPE(info1) == VM_INTINFO_HWEXCP &&
2748 VM_INTINFO_VECTOR(info1) == IDT_DF) {
2749 (void) vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT, vcpuid);
2750 *retinfo = 0;
2751 return (false);
2752 }
2753 /*
2754 * "Conditions for Generating a Double Fault"
2755 * Intel SDM, Vol3, Table 6-5
2756 */
2757 const enum exc_class exc1 = exception_class(info1);
2758 const enum exc_class exc2 = exception_class(info2);
2759 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
2760 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
2761 /* Convert nested fault into a double fault. */
2762 *retinfo =
2763 VM_INTINFO_VALID |
2764 VM_INTINFO_DEL_ERRCODE |
2765 VM_INTINFO_HWEXCP |
2766 IDT_DF;
2767 } else {
2768 /* Handle exceptions serially */
2769 vcpu->exit_intinfo = info1;
2770 *retinfo = info2;
2771 }
2772 return (true);
2773 } else if (VM_INTINFO_PENDING(info1)) {
2774 *retinfo = info1;
2775 return (true);
2776 } else if (VM_INTINFO_PENDING(info2)) {
2777 *retinfo = info2;
2778 return (true);
2779 }
2780
2781 return (false);
2782 }
2783
2784 int
vm_get_intinfo(struct vm * vm,int vcpuid,uint64_t * info1,uint64_t * info2)2785 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
2786 {
2787 struct vcpu *vcpu;
2788
2789 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2790 return (EINVAL);
2791
2792 vcpu = &vm->vcpu[vcpuid];
2793 *info1 = vcpu->exit_intinfo;
2794 *info2 = vcpu->exc_pending;
2795 return (0);
2796 }
2797
2798 int
vm_inject_exception(struct vm * vm,int vcpuid,uint8_t vector,bool errcode_valid,uint32_t errcode,bool restart_instruction)2799 vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector,
2800 bool errcode_valid, uint32_t errcode, bool restart_instruction)
2801 {
2802 struct vcpu *vcpu;
2803 uint64_t regval;
2804 int error;
2805
2806 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2807 return (EINVAL);
2808
2809 if (vector >= 32)
2810 return (EINVAL);
2811
2812 /*
2813 * NMIs are to be injected via their own specialized path using
2814 * vm_inject_nmi().
2815 */
2816 if (vector == IDT_NMI) {
2817 return (EINVAL);
2818 }
2819
2820 /*
2821 * A double fault exception should never be injected directly into
2822 * the guest. It is a derived exception that results from specific
2823 * combinations of nested faults.
2824 */
2825 if (vector == IDT_DF) {
2826 return (EINVAL);
2827 }
2828
2829 vcpu = &vm->vcpu[vcpuid];
2830
2831 if (VM_INTINFO_PENDING(vcpu->exc_pending)) {
2832 /* Unable to inject exception due to one already pending */
2833 return (EBUSY);
2834 }
2835
2836 if (errcode_valid) {
2837 /*
2838 * Exceptions don't deliver an error code in real mode.
2839 */
2840 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val);
2841 VERIFY0(error);
2842 if ((regval & CR0_PE) == 0) {
2843 errcode_valid = false;
2844 }
2845 }
2846
2847 /*
2848 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2849 *
2850 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2851 * one instruction or incurs an exception.
2852 */
2853 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
2854 VERIFY0(error);
2855
2856 if (restart_instruction) {
2857 VERIFY0(vm_restart_instruction(vm, vcpuid));
2858 }
2859
2860 uint64_t val = VM_INTINFO_VALID | VM_INTINFO_HWEXCP | vector;
2861 if (errcode_valid) {
2862 val |= VM_INTINFO_DEL_ERRCODE;
2863 val |= (uint64_t)errcode << VM_INTINFO_SHIFT_ERRCODE;
2864 }
2865 vcpu->exc_pending = val;
2866 return (0);
2867 }
2868
2869 void
vm_inject_ud(struct vm * vm,int vcpuid)2870 vm_inject_ud(struct vm *vm, int vcpuid)
2871 {
2872 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_UD, false, 0, true));
2873 }
2874
2875 void
vm_inject_gp(struct vm * vm,int vcpuid)2876 vm_inject_gp(struct vm *vm, int vcpuid)
2877 {
2878 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_GP, true, 0, true));
2879 }
2880
2881 void
vm_inject_ac(struct vm * vm,int vcpuid,uint32_t errcode)2882 vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode)
2883 {
2884 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_AC, true, errcode, true));
2885 }
2886
2887 void
vm_inject_ss(struct vm * vm,int vcpuid,uint32_t errcode)2888 vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode)
2889 {
2890 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_SS, true, errcode, true));
2891 }
2892
2893 void
vm_inject_pf(struct vm * vm,int vcpuid,uint32_t errcode,uint64_t cr2)2894 vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2)
2895 {
2896 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2));
2897 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_PF, true, errcode, true));
2898 }
2899
2900 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2901
2902 int
vm_inject_nmi(struct vm * vm,int vcpuid)2903 vm_inject_nmi(struct vm *vm, int vcpuid)
2904 {
2905 struct vcpu *vcpu;
2906
2907 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2908 return (EINVAL);
2909
2910 vcpu = &vm->vcpu[vcpuid];
2911
2912 vcpu->nmi_pending = true;
2913 vcpu_notify_event(vm, vcpuid);
2914 return (0);
2915 }
2916
2917 bool
vm_nmi_pending(struct vm * vm,int vcpuid)2918 vm_nmi_pending(struct vm *vm, int vcpuid)
2919 {
2920 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2921
2922 return (vcpu->nmi_pending);
2923 }
2924
2925 void
vm_nmi_clear(struct vm * vm,int vcpuid)2926 vm_nmi_clear(struct vm *vm, int vcpuid)
2927 {
2928 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2929
2930 ASSERT(vcpu->nmi_pending);
2931
2932 vcpu->nmi_pending = false;
2933 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2934 }
2935
2936 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2937
2938 int
vm_inject_extint(struct vm * vm,int vcpuid)2939 vm_inject_extint(struct vm *vm, int vcpuid)
2940 {
2941 struct vcpu *vcpu;
2942
2943 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2944 return (EINVAL);
2945
2946 vcpu = &vm->vcpu[vcpuid];
2947
2948 vcpu->extint_pending = true;
2949 vcpu_notify_event(vm, vcpuid);
2950 return (0);
2951 }
2952
2953 bool
vm_extint_pending(struct vm * vm,int vcpuid)2954 vm_extint_pending(struct vm *vm, int vcpuid)
2955 {
2956 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2957
2958 return (vcpu->extint_pending);
2959 }
2960
2961 void
vm_extint_clear(struct vm * vm,int vcpuid)2962 vm_extint_clear(struct vm *vm, int vcpuid)
2963 {
2964 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2965
2966 ASSERT(vcpu->extint_pending);
2967
2968 vcpu->extint_pending = false;
2969 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2970 }
2971
2972 int
vm_inject_init(struct vm * vm,int vcpuid)2973 vm_inject_init(struct vm *vm, int vcpuid)
2974 {
2975 struct vcpu *vcpu;
2976
2977 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2978 return (EINVAL);
2979
2980 vcpu = &vm->vcpu[vcpuid];
2981 vcpu_lock(vcpu);
2982 vcpu->run_state |= VRS_PEND_INIT;
2983 /*
2984 * As part of queuing the INIT request, clear any pending SIPI. It
2985 * would not otherwise survive across the reset of the vCPU when it
2986 * undergoes the requested INIT. We would not want it to linger when it
2987 * could be mistaken as a subsequent (after the INIT) SIPI request.
2988 */
2989 vcpu->run_state &= ~VRS_PEND_SIPI;
2990 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
2991
2992 vcpu_unlock(vcpu);
2993 return (0);
2994 }
2995
2996 int
vm_inject_sipi(struct vm * vm,int vcpuid,uint8_t vector)2997 vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vector)
2998 {
2999 struct vcpu *vcpu;
3000
3001 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3002 return (EINVAL);
3003
3004 vcpu = &vm->vcpu[vcpuid];
3005 vcpu_lock(vcpu);
3006 vcpu->run_state |= VRS_PEND_SIPI;
3007 vcpu->sipi_vector = vector;
3008 /* SIPI is only actionable if the CPU is waiting in INIT state */
3009 if ((vcpu->run_state & (VRS_INIT | VRS_RUN)) == VRS_INIT) {
3010 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
3011 }
3012 vcpu_unlock(vcpu);
3013 return (0);
3014 }
3015
3016 bool
vcpu_run_state_pending(struct vm * vm,int vcpuid)3017 vcpu_run_state_pending(struct vm *vm, int vcpuid)
3018 {
3019 struct vcpu *vcpu;
3020
3021 ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus);
3022 vcpu = &vm->vcpu[vcpuid];
3023
3024 /* Of interest: vCPU not in running state or with pending INIT */
3025 return ((vcpu->run_state & (VRS_RUN | VRS_PEND_INIT)) != VRS_RUN);
3026 }
3027
3028 int
vcpu_arch_reset(struct vm * vm,int vcpuid,bool init_only)3029 vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only)
3030 {
3031 struct seg_desc desc;
3032 const enum vm_reg_name clear_regs[] = {
3033 VM_REG_GUEST_CR2,
3034 VM_REG_GUEST_CR3,
3035 VM_REG_GUEST_CR4,
3036 VM_REG_GUEST_RAX,
3037 VM_REG_GUEST_RBX,
3038 VM_REG_GUEST_RCX,
3039 VM_REG_GUEST_RSI,
3040 VM_REG_GUEST_RDI,
3041 VM_REG_GUEST_RBP,
3042 VM_REG_GUEST_RSP,
3043 VM_REG_GUEST_R8,
3044 VM_REG_GUEST_R9,
3045 VM_REG_GUEST_R10,
3046 VM_REG_GUEST_R11,
3047 VM_REG_GUEST_R12,
3048 VM_REG_GUEST_R13,
3049 VM_REG_GUEST_R14,
3050 VM_REG_GUEST_R15,
3051 VM_REG_GUEST_DR0,
3052 VM_REG_GUEST_DR1,
3053 VM_REG_GUEST_DR2,
3054 VM_REG_GUEST_DR3,
3055 VM_REG_GUEST_EFER,
3056 };
3057 const enum vm_reg_name data_segs[] = {
3058 VM_REG_GUEST_SS,
3059 VM_REG_GUEST_DS,
3060 VM_REG_GUEST_ES,
3061 VM_REG_GUEST_FS,
3062 VM_REG_GUEST_GS,
3063 };
3064 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3065
3066 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3067 return (EINVAL);
3068
3069 for (uint_t i = 0; i < nitems(clear_regs); i++) {
3070 VERIFY0(vm_set_register(vm, vcpuid, clear_regs[i], 0));
3071 }
3072
3073 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, 2));
3074 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RIP, 0xfff0));
3075 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CR0, 0x60000010));
3076
3077 /*
3078 * The prescribed contents of %rdx differ slightly between the Intel and
3079 * AMD architectural definitions. The former expects the Extended Model
3080 * in bits 16-19 where the latter expects all the Family, Model, and
3081 * Stepping be there. Common boot ROMs appear to disregard this
3082 * anyways, so we stick with a compromise value similar to what is
3083 * spelled out in the Intel SDM.
3084 */
3085 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RDX, 0x600));
3086
3087 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_DR6, 0xffff0ff0));
3088 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_DR7, 0x400));
3089
3090 /* CS: Present, R/W, Accessed */
3091 desc.access = 0x0093;
3092 desc.base = 0xffff0000;
3093 desc.limit = 0xffff;
3094 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_CS, &desc));
3095 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CS, 0xf000));
3096
3097 /* SS, DS, ES, FS, GS: Present, R/W, Accessed */
3098 desc.access = 0x0093;
3099 desc.base = 0;
3100 desc.limit = 0xffff;
3101 for (uint_t i = 0; i < nitems(data_segs); i++) {
3102 VERIFY0(vm_set_seg_desc(vm, vcpuid, data_segs[i], &desc));
3103 VERIFY0(vm_set_register(vm, vcpuid, data_segs[i], 0));
3104 }
3105
3106 /* GDTR, IDTR */
3107 desc.base = 0;
3108 desc.limit = 0xffff;
3109 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_GDTR, &desc));
3110 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_IDTR, &desc));
3111
3112 /* LDTR: Present, LDT */
3113 desc.access = 0x0082;
3114 desc.base = 0;
3115 desc.limit = 0xffff;
3116 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_LDTR, &desc));
3117 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_LDTR, 0));
3118
3119 /* TR: Present, 32-bit TSS */
3120 desc.access = 0x008b;
3121 desc.base = 0;
3122 desc.limit = 0xffff;
3123 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_TR, &desc));
3124 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_TR, 0));
3125
3126 vlapic_reset(vm_lapic(vm, vcpuid));
3127
3128 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0));
3129
3130 vcpu->exit_intinfo = 0;
3131 vcpu->exc_pending = 0;
3132 vcpu->nmi_pending = false;
3133 vcpu->extint_pending = 0;
3134
3135 /*
3136 * A CPU reset caused by power-on or system reset clears more state than
3137 * one which is trigged from an INIT IPI.
3138 */
3139 if (!init_only) {
3140 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
3141 (void) hma_fpu_init(vcpu->guestfpu);
3142
3143 /* XXX: clear MSRs and other pieces */
3144 bzero(&vcpu->mtrr, sizeof (vcpu->mtrr));
3145 }
3146
3147 return (0);
3148 }
3149
3150 static int
vcpu_vector_sipi(struct vm * vm,int vcpuid,uint8_t vector)3151 vcpu_vector_sipi(struct vm *vm, int vcpuid, uint8_t vector)
3152 {
3153 struct seg_desc desc;
3154
3155 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3156 return (EINVAL);
3157
3158 /* CS: Present, R/W, Accessed */
3159 desc.access = 0x0093;
3160 desc.base = (uint64_t)vector << 12;
3161 desc.limit = 0xffff;
3162 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_CS, &desc));
3163 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CS,
3164 (uint64_t)vector << 8));
3165
3166 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RIP, 0));
3167
3168 return (0);
3169 }
3170
3171 int
vm_get_capability(struct vm * vm,int vcpu,int type,int * retval)3172 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
3173 {
3174 if (vcpu < 0 || vcpu >= vm->maxcpus)
3175 return (EINVAL);
3176
3177 if (type < 0 || type >= VM_CAP_MAX)
3178 return (EINVAL);
3179
3180 return (VMGETCAP(vm->cookie, vcpu, type, retval));
3181 }
3182
3183 int
vm_set_capability(struct vm * vm,int vcpu,int type,int val)3184 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
3185 {
3186 if (vcpu < 0 || vcpu >= vm->maxcpus)
3187 return (EINVAL);
3188
3189 if (type < 0 || type >= VM_CAP_MAX)
3190 return (EINVAL);
3191
3192 return (VMSETCAP(vm->cookie, vcpu, type, val));
3193 }
3194
3195 vcpu_cpuid_config_t *
vm_cpuid_config(struct vm * vm,int vcpuid)3196 vm_cpuid_config(struct vm *vm, int vcpuid)
3197 {
3198 ASSERT3S(vcpuid, >=, 0);
3199 ASSERT3S(vcpuid, <, VM_MAXCPU);
3200
3201 return (&vm->vcpu[vcpuid].cpuid_cfg);
3202 }
3203
3204 struct vlapic *
vm_lapic(struct vm * vm,int cpu)3205 vm_lapic(struct vm *vm, int cpu)
3206 {
3207 ASSERT3S(cpu, >=, 0);
3208 ASSERT3S(cpu, <, VM_MAXCPU);
3209
3210 return (vm->vcpu[cpu].vlapic);
3211 }
3212
3213 struct vioapic *
vm_ioapic(struct vm * vm)3214 vm_ioapic(struct vm *vm)
3215 {
3216
3217 return (vm->vioapic);
3218 }
3219
3220 struct vhpet *
vm_hpet(struct vm * vm)3221 vm_hpet(struct vm *vm)
3222 {
3223
3224 return (vm->vhpet);
3225 }
3226
3227 void *
vm_iommu_domain(struct vm * vm)3228 vm_iommu_domain(struct vm *vm)
3229 {
3230
3231 return (vm->iommu);
3232 }
3233
3234 int
vcpu_set_state(struct vm * vm,int vcpuid,enum vcpu_state newstate,bool from_idle)3235 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
3236 bool from_idle)
3237 {
3238 int error;
3239 struct vcpu *vcpu;
3240
3241 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3242 panic("vcpu_set_state: invalid vcpuid %d", vcpuid);
3243
3244 vcpu = &vm->vcpu[vcpuid];
3245
3246 vcpu_lock(vcpu);
3247 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
3248 vcpu_unlock(vcpu);
3249
3250 return (error);
3251 }
3252
3253 enum vcpu_state
vcpu_get_state(struct vm * vm,int vcpuid,int * hostcpu)3254 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
3255 {
3256 struct vcpu *vcpu;
3257 enum vcpu_state state;
3258
3259 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3260 panic("vcpu_get_state: invalid vcpuid %d", vcpuid);
3261
3262 vcpu = &vm->vcpu[vcpuid];
3263
3264 vcpu_lock(vcpu);
3265 state = vcpu->state;
3266 if (hostcpu != NULL)
3267 *hostcpu = vcpu->hostcpu;
3268 vcpu_unlock(vcpu);
3269
3270 return (state);
3271 }
3272
3273 /*
3274 * Calculate the TSC offset for a vCPU, applying physical CPU adjustments if
3275 * requested. The offset calculations include the VM-wide TSC offset.
3276 */
3277 uint64_t
vcpu_tsc_offset(struct vm * vm,int vcpuid,bool phys_adj)3278 vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj)
3279 {
3280 ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus);
3281
3282 uint64_t vcpu_off = vm->tsc_offset + vm->vcpu[vcpuid].tsc_offset;
3283
3284 if (phys_adj) {
3285 /* Include any offset for the current physical CPU too */
3286 vcpu_off += vmm_host_tsc_delta();
3287 }
3288
3289 return (vcpu_off);
3290 }
3291
3292 uint64_t
vm_get_freq_multiplier(struct vm * vm)3293 vm_get_freq_multiplier(struct vm *vm)
3294 {
3295 return (vm->freq_multiplier);
3296 }
3297
3298 /* Normalize hrtime against the boot time for a VM */
3299 hrtime_t
vm_normalize_hrtime(struct vm * vm,hrtime_t hrt)3300 vm_normalize_hrtime(struct vm *vm, hrtime_t hrt)
3301 {
3302 /* To avoid underflow/overflow UB, perform math as unsigned */
3303 return ((hrtime_t)((uint64_t)hrt - (uint64_t)vm->boot_hrtime));
3304 }
3305
3306 /* Denormalize hrtime against the boot time for a VM */
3307 hrtime_t
vm_denormalize_hrtime(struct vm * vm,hrtime_t hrt)3308 vm_denormalize_hrtime(struct vm *vm, hrtime_t hrt)
3309 {
3310 /* To avoid underflow/overflow UB, perform math as unsigned */
3311 return ((hrtime_t)((uint64_t)hrt + (uint64_t)vm->boot_hrtime));
3312 }
3313
3314 int
vm_activate_cpu(struct vm * vm,int vcpuid)3315 vm_activate_cpu(struct vm *vm, int vcpuid)
3316 {
3317
3318 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3319 return (EINVAL);
3320
3321 if (CPU_ISSET(vcpuid, &vm->active_cpus))
3322 return (EBUSY);
3323
3324 if (vm_is_suspended(vm, NULL)) {
3325 return (EBUSY);
3326 }
3327
3328 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
3329
3330 /*
3331 * It is possible that this vCPU was undergoing activation at the same
3332 * time that the VM was being suspended.
3333 */
3334 if (vm_is_suspended(vm, NULL)) {
3335 return (EBUSY);
3336 }
3337
3338 return (0);
3339 }
3340
3341 int
vm_suspend_cpu(struct vm * vm,int vcpuid)3342 vm_suspend_cpu(struct vm *vm, int vcpuid)
3343 {
3344 int i;
3345
3346 if (vcpuid < -1 || vcpuid >= vm->maxcpus)
3347 return (EINVAL);
3348
3349 if (vcpuid == -1) {
3350 vm->debug_cpus = vm->active_cpus;
3351 for (i = 0; i < vm->maxcpus; i++) {
3352 if (CPU_ISSET(i, &vm->active_cpus))
3353 vcpu_notify_event(vm, i);
3354 }
3355 } else {
3356 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
3357 return (EINVAL);
3358
3359 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus);
3360 vcpu_notify_event(vm, vcpuid);
3361 }
3362 return (0);
3363 }
3364
3365 int
vm_resume_cpu(struct vm * vm,int vcpuid)3366 vm_resume_cpu(struct vm *vm, int vcpuid)
3367 {
3368
3369 if (vcpuid < -1 || vcpuid >= vm->maxcpus)
3370 return (EINVAL);
3371
3372 if (vcpuid == -1) {
3373 CPU_ZERO(&vm->debug_cpus);
3374 } else {
3375 if (!CPU_ISSET(vcpuid, &vm->debug_cpus))
3376 return (EINVAL);
3377
3378 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus);
3379 }
3380 return (0);
3381 }
3382
3383 static bool
vcpu_bailout_checks(struct vm * vm,int vcpuid)3384 vcpu_bailout_checks(struct vm *vm, int vcpuid)
3385 {
3386 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3387 struct vm_exit *vme = &vcpu->exitinfo;
3388
3389 ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus);
3390
3391 /*
3392 * Check if VM is suspended, only passing the 'vm_exit *' to be
3393 * populated if this check is being performed as part of entry.
3394 */
3395 if (vm_is_suspended(vm, vme)) {
3396 /* Confirm exit details are as expected */
3397 VERIFY3S(vme->exitcode, ==, VM_EXITCODE_SUSPENDED);
3398 VERIFY(vme->u.suspended.how > VM_SUSPEND_NONE &&
3399 vme->u.suspended.how < VM_SUSPEND_LAST);
3400
3401 return (true);
3402 }
3403 if (vcpu->reqidle) {
3404 /*
3405 * Another thread is trying to lock this vCPU and is waiting for
3406 * it to enter the VCPU_IDLE state. Take a lap with a BOGUS
3407 * exit to allow other thread(s) access to this vCPU.
3408 */
3409 vme->exitcode = VM_EXITCODE_BOGUS;
3410 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
3411 return (true);
3412 }
3413 if (vcpu->reqbarrier) {
3414 /*
3415 * Similar to 'reqidle', userspace has requested that this vCPU
3416 * be pushed to a barrier by exiting to userspace. Take that
3417 * lap with BOGUS and clear the flag.
3418 */
3419 vme->exitcode = VM_EXITCODE_BOGUS;
3420 vcpu->reqbarrier = false;
3421 return (true);
3422 }
3423 if (vcpu->reqconsist) {
3424 /*
3425 * We only expect exit-when-consistent requests to be asserted
3426 * during entry, not as an otherwise spontaneous condition. As
3427 * such, we do not count it among the exit statistics, and emit
3428 * the expected BOGUS exitcode, while clearing the request.
3429 */
3430 vme->exitcode = VM_EXITCODE_BOGUS;
3431 vcpu->reqconsist = false;
3432 return (true);
3433 }
3434 if (vcpu_should_yield(vm, vcpuid)) {
3435 vme->exitcode = VM_EXITCODE_BOGUS;
3436 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
3437 return (true);
3438 }
3439 if (CPU_ISSET(vcpuid, &vm->debug_cpus)) {
3440 vme->exitcode = VM_EXITCODE_DEBUG;
3441 return (true);
3442 }
3443
3444 return (false);
3445 }
3446
3447 static bool
vcpu_sleep_bailout_checks(struct vm * vm,int vcpuid)3448 vcpu_sleep_bailout_checks(struct vm *vm, int vcpuid)
3449 {
3450 if (vcpu_bailout_checks(vm, vcpuid)) {
3451 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3452 struct vm_exit *vme = &vcpu->exitinfo;
3453
3454 /*
3455 * Bail-out check done prior to sleeping (in vCPU contexts like
3456 * HLT or wait-for-SIPI) expect that %rip is already populated
3457 * in the vm_exit structure, and we would only modify the
3458 * exitcode and clear the inst_length.
3459 */
3460 vme->inst_length = 0;
3461 return (true);
3462 }
3463 return (false);
3464 }
3465
3466 bool
vcpu_entry_bailout_checks(struct vm * vm,int vcpuid,uint64_t rip)3467 vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip)
3468 {
3469 if (vcpu_bailout_checks(vm, vcpuid)) {
3470 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3471 struct vm_exit *vme = &vcpu->exitinfo;
3472
3473 /*
3474 * Bail-out checks done as part of VM entry require an updated
3475 * %rip to populate the vm_exit struct if any of the conditions
3476 * of interest are matched in the check.
3477 */
3478 vme->rip = rip;
3479 vme->inst_length = 0;
3480 return (true);
3481 }
3482 return (false);
3483 }
3484
3485 int
vm_vcpu_barrier(struct vm * vm,int vcpuid)3486 vm_vcpu_barrier(struct vm *vm, int vcpuid)
3487 {
3488 if (vcpuid >= 0 && vcpuid < vm->maxcpus) {
3489 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3490
3491 /* Push specified vCPU to barrier */
3492 vcpu_lock(vcpu);
3493 if (CPU_ISSET(vcpuid, &vm->active_cpus)) {
3494 vcpu->reqbarrier = true;
3495 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
3496 }
3497 vcpu_unlock(vcpu);
3498
3499 return (0);
3500 } else if (vcpuid == -1) {
3501 /* Push all (active) vCPUs to barrier */
3502 for (int i = 0; i < vm->maxcpus; i++) {
3503 struct vcpu *vcpu = &vm->vcpu[i];
3504
3505 vcpu_lock(vcpu);
3506 if (CPU_ISSET(vcpuid, &vm->active_cpus)) {
3507 vcpu->reqbarrier = true;
3508 vcpu_notify_event_locked(vcpu,
3509 VCPU_NOTIFY_EXIT);
3510 }
3511 vcpu_unlock(vcpu);
3512 }
3513
3514 return (0);
3515 } else {
3516 return (EINVAL);
3517 }
3518 }
3519
3520 cpuset_t
vm_active_cpus(struct vm * vm)3521 vm_active_cpus(struct vm *vm)
3522 {
3523 return (vm->active_cpus);
3524 }
3525
3526 cpuset_t
vm_debug_cpus(struct vm * vm)3527 vm_debug_cpus(struct vm *vm)
3528 {
3529 return (vm->debug_cpus);
3530 }
3531
3532 void *
vcpu_stats(struct vm * vm,int vcpuid)3533 vcpu_stats(struct vm *vm, int vcpuid)
3534 {
3535
3536 return (vm->vcpu[vcpuid].stats);
3537 }
3538
3539 int
vm_get_x2apic_state(struct vm * vm,int vcpuid,enum x2apic_state * state)3540 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
3541 {
3542 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3543 return (EINVAL);
3544
3545 *state = vm->vcpu[vcpuid].x2apic_state;
3546
3547 return (0);
3548 }
3549
3550 int
vm_set_x2apic_state(struct vm * vm,int vcpuid,enum x2apic_state state)3551 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
3552 {
3553 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3554 return (EINVAL);
3555
3556 if (state >= X2APIC_STATE_LAST)
3557 return (EINVAL);
3558
3559 vm->vcpu[vcpuid].x2apic_state = state;
3560
3561 vlapic_set_x2apic_state(vm, vcpuid, state);
3562
3563 return (0);
3564 }
3565
3566 /*
3567 * This function is called to ensure that a vcpu "sees" a pending event
3568 * as soon as possible:
3569 * - If the vcpu thread is sleeping then it is woken up.
3570 * - If the vcpu is running on a different host_cpu then an IPI will be directed
3571 * to the host_cpu to cause the vcpu to trap into the hypervisor.
3572 */
3573 static void
vcpu_notify_event_locked(struct vcpu * vcpu,vcpu_notify_t ntype)3574 vcpu_notify_event_locked(struct vcpu *vcpu, vcpu_notify_t ntype)
3575 {
3576 int hostcpu;
3577
3578 ASSERT(ntype == VCPU_NOTIFY_APIC || VCPU_NOTIFY_EXIT);
3579
3580 hostcpu = vcpu->hostcpu;
3581 if (vcpu->state == VCPU_RUNNING) {
3582 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
3583 if (hostcpu != curcpu) {
3584 if (ntype == VCPU_NOTIFY_APIC) {
3585 vlapic_post_intr(vcpu->vlapic, hostcpu);
3586 } else {
3587 poke_cpu(hostcpu);
3588 }
3589 } else {
3590 /*
3591 * If the 'vcpu' is running on 'curcpu' then it must
3592 * be sending a notification to itself (e.g. SELF_IPI).
3593 * The pending event will be picked up when the vcpu
3594 * transitions back to guest context.
3595 */
3596 }
3597 } else {
3598 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
3599 "with hostcpu %d", vcpu->state, hostcpu));
3600 if (vcpu->state == VCPU_SLEEPING) {
3601 cv_signal(&vcpu->vcpu_cv);
3602 }
3603 }
3604 }
3605
3606 void
vcpu_notify_event(struct vm * vm,int vcpuid)3607 vcpu_notify_event(struct vm *vm, int vcpuid)
3608 {
3609 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3610
3611 vcpu_lock(vcpu);
3612 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
3613 vcpu_unlock(vcpu);
3614 }
3615
3616 void
vcpu_notify_event_type(struct vm * vm,int vcpuid,vcpu_notify_t ntype)3617 vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t ntype)
3618 {
3619 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3620
3621 if (ntype == VCPU_NOTIFY_NONE) {
3622 return;
3623 }
3624
3625 vcpu_lock(vcpu);
3626 vcpu_notify_event_locked(vcpu, ntype);
3627 vcpu_unlock(vcpu);
3628 }
3629
3630 void
vcpu_ustate_change(struct vm * vm,int vcpuid,enum vcpu_ustate ustate)3631 vcpu_ustate_change(struct vm *vm, int vcpuid, enum vcpu_ustate ustate)
3632 {
3633 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3634 const hrtime_t now = gethrtime();
3635
3636 ASSERT3S(ustate, <, VU_MAX);
3637 ASSERT3S(ustate, >=, VU_INIT);
3638
3639 if (ustate == vcpu->ustate) {
3640 return;
3641 }
3642
3643 const hrtime_t delta = now - vcpu->ustate_when;
3644 vcpu->ustate_total[vcpu->ustate] += delta;
3645
3646 membar_producer();
3647
3648 vcpu->ustate_when = now;
3649 vcpu->ustate = ustate;
3650 }
3651
3652 struct vmspace *
vm_get_vmspace(struct vm * vm)3653 vm_get_vmspace(struct vm *vm)
3654 {
3655
3656 return (vm->vmspace);
3657 }
3658
3659 struct vm_client *
vm_get_vmclient(struct vm * vm,int vcpuid)3660 vm_get_vmclient(struct vm *vm, int vcpuid)
3661 {
3662 return (vm->vcpu[vcpuid].vmclient);
3663 }
3664
3665 int
vm_apicid2vcpuid(struct vm * vm,int apicid)3666 vm_apicid2vcpuid(struct vm *vm, int apicid)
3667 {
3668 /*
3669 * XXX apic id is assumed to be numerically identical to vcpu id
3670 */
3671 return (apicid);
3672 }
3673
3674 struct vatpic *
vm_atpic(struct vm * vm)3675 vm_atpic(struct vm *vm)
3676 {
3677 return (vm->vatpic);
3678 }
3679
3680 struct vatpit *
vm_atpit(struct vm * vm)3681 vm_atpit(struct vm *vm)
3682 {
3683 return (vm->vatpit);
3684 }
3685
3686 struct vpmtmr *
vm_pmtmr(struct vm * vm)3687 vm_pmtmr(struct vm *vm)
3688 {
3689
3690 return (vm->vpmtmr);
3691 }
3692
3693 struct vrtc *
vm_rtc(struct vm * vm)3694 vm_rtc(struct vm *vm)
3695 {
3696
3697 return (vm->vrtc);
3698 }
3699
3700 enum vm_reg_name
vm_segment_name(int seg)3701 vm_segment_name(int seg)
3702 {
3703 static enum vm_reg_name seg_names[] = {
3704 VM_REG_GUEST_ES,
3705 VM_REG_GUEST_CS,
3706 VM_REG_GUEST_SS,
3707 VM_REG_GUEST_DS,
3708 VM_REG_GUEST_FS,
3709 VM_REG_GUEST_GS
3710 };
3711
3712 KASSERT(seg >= 0 && seg < nitems(seg_names),
3713 ("%s: invalid segment encoding %d", __func__, seg));
3714 return (seg_names[seg]);
3715 }
3716
3717 void
vm_copy_teardown(struct vm * vm,int vcpuid,struct vm_copyinfo * copyinfo,uint_t num_copyinfo)3718 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
3719 uint_t num_copyinfo)
3720 {
3721 for (uint_t idx = 0; idx < num_copyinfo; idx++) {
3722 if (copyinfo[idx].cookie != NULL) {
3723 (void) vmp_release((vm_page_t *)copyinfo[idx].cookie);
3724 }
3725 }
3726 bzero(copyinfo, num_copyinfo * sizeof (struct vm_copyinfo));
3727 }
3728
3729 int
vm_copy_setup(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,uint_t num_copyinfo,int * fault)3730 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
3731 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
3732 uint_t num_copyinfo, int *fault)
3733 {
3734 uint_t idx, nused;
3735 size_t n, off, remaining;
3736 vm_client_t *vmc = vm_get_vmclient(vm, vcpuid);
3737
3738 bzero(copyinfo, sizeof (struct vm_copyinfo) * num_copyinfo);
3739
3740 nused = 0;
3741 remaining = len;
3742 while (remaining > 0) {
3743 uint64_t gpa;
3744 int error;
3745
3746 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
3747 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
3748 if (error || *fault)
3749 return (error);
3750 off = gpa & PAGEOFFSET;
3751 n = min(remaining, PAGESIZE - off);
3752 copyinfo[nused].gpa = gpa;
3753 copyinfo[nused].len = n;
3754 remaining -= n;
3755 gla += n;
3756 nused++;
3757 }
3758
3759 for (idx = 0; idx < nused; idx++) {
3760 vm_page_t *vmp;
3761 caddr_t hva;
3762
3763 vmp = vmc_hold(vmc, copyinfo[idx].gpa & PAGEMASK, prot);
3764 if (vmp == NULL) {
3765 break;
3766 }
3767 if ((prot & PROT_WRITE) != 0) {
3768 hva = (caddr_t)vmp_get_writable(vmp);
3769 } else {
3770 hva = (caddr_t)vmp_get_readable(vmp);
3771 }
3772 copyinfo[idx].hva = hva + (copyinfo[idx].gpa & PAGEOFFSET);
3773 copyinfo[idx].cookie = vmp;
3774 copyinfo[idx].prot = prot;
3775 }
3776
3777 if (idx != nused) {
3778 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
3779 return (EFAULT);
3780 } else {
3781 *fault = 0;
3782 return (0);
3783 }
3784 }
3785
3786 void
vm_copyin(struct vm * vm,int vcpuid,struct vm_copyinfo * copyinfo,void * kaddr,size_t len)3787 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
3788 size_t len)
3789 {
3790 char *dst;
3791 int idx;
3792
3793 dst = kaddr;
3794 idx = 0;
3795 while (len > 0) {
3796 ASSERT(copyinfo[idx].prot & PROT_READ);
3797
3798 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
3799 len -= copyinfo[idx].len;
3800 dst += copyinfo[idx].len;
3801 idx++;
3802 }
3803 }
3804
3805 void
vm_copyout(struct vm * vm,int vcpuid,const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)3806 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
3807 struct vm_copyinfo *copyinfo, size_t len)
3808 {
3809 const char *src;
3810 int idx;
3811
3812 src = kaddr;
3813 idx = 0;
3814 while (len > 0) {
3815 ASSERT(copyinfo[idx].prot & PROT_WRITE);
3816
3817 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
3818 len -= copyinfo[idx].len;
3819 src += copyinfo[idx].len;
3820 idx++;
3821 }
3822 }
3823
3824 /*
3825 * Return the amount of in-use and wired memory for the VM. Since
3826 * these are global stats, only return the values with for vCPU 0
3827 */
3828 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
3829
3830 static void
vm_get_rescnt(struct vm * vm,int vcpu,struct vmm_stat_type * stat)3831 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
3832 {
3833 if (vcpu == 0) {
3834 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
3835 PAGE_SIZE * vmspace_resident_count(vm->vmspace));
3836 }
3837 }
3838
3839 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
3840
3841 int
vm_ioport_access(struct vm * vm,int vcpuid,bool in,uint16_t port,uint8_t bytes,uint32_t * val)3842 vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port,
3843 uint8_t bytes, uint32_t *val)
3844 {
3845 return (vm_inout_access(&vm->ioports, in, port, bytes, val));
3846 }
3847
3848 /*
3849 * bhyve-internal interfaces to attach or detach IO port handlers.
3850 * Must be called with VM write lock held for safety.
3851 */
3852 int
vm_ioport_attach(struct vm * vm,uint16_t port,ioport_handler_t func,void * arg,void ** cookie)3853 vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func, void *arg,
3854 void **cookie)
3855 {
3856 int err;
3857 err = vm_inout_attach(&vm->ioports, port, IOPF_DEFAULT, func, arg);
3858 if (err == 0) {
3859 *cookie = (void *)IOP_GEN_COOKIE(func, arg, port);
3860 }
3861 return (err);
3862 }
3863 int
vm_ioport_detach(struct vm * vm,void ** cookie,ioport_handler_t * old_func,void ** old_arg)3864 vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func,
3865 void **old_arg)
3866 {
3867 uint16_t port = IOP_PORT_FROM_COOKIE((uintptr_t)*cookie);
3868 int err;
3869
3870 err = vm_inout_detach(&vm->ioports, port, false, old_func, old_arg);
3871 if (err == 0) {
3872 *cookie = NULL;
3873 }
3874 return (err);
3875 }
3876
3877 /*
3878 * External driver interfaces to attach or detach IO port handlers.
3879 * Must be called with VM write lock held for safety.
3880 */
3881 int
vm_ioport_hook(struct vm * vm,uint16_t port,ioport_handler_t func,void * arg,void ** cookie)3882 vm_ioport_hook(struct vm *vm, uint16_t port, ioport_handler_t func,
3883 void *arg, void **cookie)
3884 {
3885 int err;
3886
3887 if (port == 0) {
3888 return (EINVAL);
3889 }
3890
3891 err = vm_inout_attach(&vm->ioports, port, IOPF_DRV_HOOK, func, arg);
3892 if (err == 0) {
3893 *cookie = (void *)IOP_GEN_COOKIE(func, arg, port);
3894 }
3895 return (err);
3896 }
3897 void
vm_ioport_unhook(struct vm * vm,void ** cookie)3898 vm_ioport_unhook(struct vm *vm, void **cookie)
3899 {
3900 uint16_t port = IOP_PORT_FROM_COOKIE((uintptr_t)*cookie);
3901 ioport_handler_t old_func;
3902 void *old_arg;
3903 int err;
3904
3905 err = vm_inout_detach(&vm->ioports, port, true, &old_func, &old_arg);
3906
3907 /* ioport-hook-using drivers are expected to be well-behaved */
3908 VERIFY0(err);
3909 VERIFY(IOP_GEN_COOKIE(old_func, old_arg, port) == (uintptr_t)*cookie);
3910
3911 *cookie = NULL;
3912 }
3913
3914 int
vmm_kstat_update_vcpu(struct kstat * ksp,int rw)3915 vmm_kstat_update_vcpu(struct kstat *ksp, int rw)
3916 {
3917 struct vm *vm = ksp->ks_private;
3918 vmm_vcpu_kstats_t *vvk = ksp->ks_data;
3919 const int vcpuid = vvk->vvk_vcpu.value.ui32;
3920 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3921
3922 ASSERT3U(vcpuid, <, VM_MAXCPU);
3923
3924 vvk->vvk_time_init.value.ui64 = vcpu->ustate_total[VU_INIT];
3925 vvk->vvk_time_run.value.ui64 = vcpu->ustate_total[VU_RUN];
3926 vvk->vvk_time_idle.value.ui64 = vcpu->ustate_total[VU_IDLE];
3927 vvk->vvk_time_emu_kern.value.ui64 = vcpu->ustate_total[VU_EMU_KERN];
3928 vvk->vvk_time_emu_user.value.ui64 = vcpu->ustate_total[VU_EMU_USER];
3929 vvk->vvk_time_sched.value.ui64 = vcpu->ustate_total[VU_SCHED];
3930
3931 return (0);
3932 }
3933
3934 SET_DECLARE(vmm_data_version_entries, const vmm_data_version_entry_t);
3935
3936 static int
vmm_data_find(const vmm_data_req_t * req,const vmm_data_version_entry_t ** resp)3937 vmm_data_find(const vmm_data_req_t *req, const vmm_data_version_entry_t **resp)
3938 {
3939 const vmm_data_version_entry_t **vdpp, *vdp;
3940
3941 ASSERT(resp != NULL);
3942 ASSERT(req->vdr_result_len != NULL);
3943
3944 SET_FOREACH(vdpp, vmm_data_version_entries) {
3945 vdp = *vdpp;
3946 if (vdp->vdve_class != req->vdr_class ||
3947 vdp->vdve_version != req->vdr_version) {
3948 continue;
3949 }
3950
3951 /*
3952 * Enforce any data length expectation expressed by the provider
3953 * for this data.
3954 */
3955 if (vdp->vdve_len_expect != 0 &&
3956 vdp->vdve_len_expect > req->vdr_len) {
3957 *req->vdr_result_len = vdp->vdve_len_expect;
3958 return (ENOSPC);
3959 }
3960
3961 /*
3962 * Make sure that the provided vcpuid is acceptable for the
3963 * backend handler.
3964 */
3965 if (vdp->vdve_readf != NULL || vdp->vdve_writef != NULL) {
3966 /*
3967 * While it is tempting to demand the -1 sentinel value
3968 * in vcpuid here, that expectation was not established
3969 * for early consumers, so it is ignored.
3970 */
3971 } else if (vdp->vdve_vcpu_readf != NULL ||
3972 vdp->vdve_vcpu_writef != NULL) {
3973 /*
3974 * Per-vCPU handlers which permit "wildcard" access will
3975 * accept a vcpuid of -1 (for VM-wide data), while all
3976 * others expect vcpuid [0, VM_MAXCPU).
3977 */
3978 const int llimit = vdp->vdve_vcpu_wildcard ? -1 : 0;
3979 if (req->vdr_vcpuid < llimit ||
3980 req->vdr_vcpuid >= VM_MAXCPU) {
3981 return (EINVAL);
3982 }
3983 } else {
3984 /*
3985 * A provider with neither VM-wide nor per-vCPU handlers
3986 * is completely unexpected. Such a situation should be
3987 * made into a compile-time error. Bail out for now,
3988 * rather than punishing the user with a panic.
3989 */
3990 return (EINVAL);
3991 }
3992
3993
3994 *resp = vdp;
3995 return (0);
3996 }
3997 return (EINVAL);
3998 }
3999
4000 static void *
vmm_data_from_class(const vmm_data_req_t * req,struct vm * vm)4001 vmm_data_from_class(const vmm_data_req_t *req, struct vm *vm)
4002 {
4003 switch (req->vdr_class) {
4004 case VDC_REGISTER:
4005 case VDC_MSR:
4006 case VDC_FPU:
4007 case VDC_LAPIC:
4008 case VDC_VMM_ARCH:
4009 /*
4010 * These have per-CPU handling which is dispatched outside
4011 * vmm_data_version_entries listing.
4012 */
4013 panic("Unexpected per-vcpu class %u", req->vdr_class);
4014 break;
4015
4016 case VDC_IOAPIC:
4017 return (vm->vioapic);
4018 case VDC_ATPIT:
4019 return (vm->vatpit);
4020 case VDC_ATPIC:
4021 return (vm->vatpic);
4022 case VDC_HPET:
4023 return (vm->vhpet);
4024 case VDC_PM_TIMER:
4025 return (vm->vpmtmr);
4026 case VDC_RTC:
4027 return (vm->vrtc);
4028 case VDC_VMM_TIME:
4029 return (vm);
4030 case VDC_VERSION:
4031 /*
4032 * Play along with all of the other classes which need backup
4033 * data, even though version info does not require it.
4034 */
4035 return (vm);
4036
4037 default:
4038 /* The data class will have been validated by now */
4039 panic("Unexpected class %u", req->vdr_class);
4040 }
4041 }
4042
4043 const uint32_t default_msr_iter[] = {
4044 /*
4045 * Although EFER is also available via the get/set-register interface,
4046 * we include it in the default list of emitted MSRs.
4047 */
4048 MSR_EFER,
4049
4050 /*
4051 * While gsbase and fsbase are accessible via the MSR accessors, they
4052 * are not included in MSR iteration since they are covered by the
4053 * segment descriptor interface too.
4054 */
4055 MSR_KGSBASE,
4056
4057 MSR_STAR,
4058 MSR_LSTAR,
4059 MSR_CSTAR,
4060 MSR_SF_MASK,
4061
4062 MSR_SYSENTER_CS_MSR,
4063 MSR_SYSENTER_ESP_MSR,
4064 MSR_SYSENTER_EIP_MSR,
4065
4066 MSR_PAT,
4067
4068 MSR_TSC,
4069
4070 MSR_MTRRcap,
4071 MSR_MTRRdefType,
4072 MSR_MTRR4kBase, MSR_MTRR4kBase + 1, MSR_MTRR4kBase + 2,
4073 MSR_MTRR4kBase + 3, MSR_MTRR4kBase + 4, MSR_MTRR4kBase + 5,
4074 MSR_MTRR4kBase + 6, MSR_MTRR4kBase + 7,
4075 MSR_MTRR16kBase, MSR_MTRR16kBase + 1,
4076 MSR_MTRR64kBase,
4077 };
4078
4079 static int
vmm_data_read_msr(struct vm * vm,int vcpuid,uint32_t msr,uint64_t * value)4080 vmm_data_read_msr(struct vm *vm, int vcpuid, uint32_t msr, uint64_t *value)
4081 {
4082 int err = 0;
4083
4084 switch (msr) {
4085 case MSR_TSC:
4086 /*
4087 * The vmm-data interface for MSRs provides access to the
4088 * per-vCPU offset of the TSC, when reading/writing MSR_TSC.
4089 *
4090 * The VM-wide offset (and scaling) of the guest TSC is accessed
4091 * via the VMM_TIME data class.
4092 */
4093 *value = vm->vcpu[vcpuid].tsc_offset;
4094 return (0);
4095
4096 default:
4097 if (is_mtrr_msr(msr)) {
4098 err = vm_rdmtrr(&vm->vcpu[vcpuid].mtrr, msr, value);
4099 } else {
4100 err = ops->vmgetmsr(vm->cookie, vcpuid, msr, value);
4101 }
4102 break;
4103 }
4104
4105 return (err);
4106 }
4107
4108 static int
vmm_data_write_msr(struct vm * vm,int vcpuid,uint32_t msr,uint64_t value)4109 vmm_data_write_msr(struct vm *vm, int vcpuid, uint32_t msr, uint64_t value)
4110 {
4111 int err = 0;
4112
4113 switch (msr) {
4114 case MSR_TSC:
4115 /* See vmm_data_read_msr() for more detail */
4116 vm->vcpu[vcpuid].tsc_offset = value;
4117 return (0);
4118 case MSR_MTRRcap: {
4119 /*
4120 * MTRRcap is read-only. If the desired value matches the
4121 * existing one, consider it a success.
4122 */
4123 uint64_t comp;
4124 err = vm_rdmtrr(&vm->vcpu[vcpuid].mtrr, msr, &comp);
4125 if (err == 0 && comp != value) {
4126 return (EINVAL);
4127 }
4128 break;
4129 }
4130 default:
4131 if (is_mtrr_msr(msr)) {
4132 /* MTRRcap is already handled above */
4133 ASSERT3U(msr, !=, MSR_MTRRcap);
4134
4135 err = vm_wrmtrr(&vm->vcpu[vcpuid].mtrr, msr, value);
4136 } else {
4137 err = ops->vmsetmsr(vm->cookie, vcpuid, msr, value);
4138 }
4139 break;
4140 }
4141
4142 return (err);
4143 }
4144
4145 static int
vmm_data_read_msrs(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4146 vmm_data_read_msrs(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4147 {
4148 VERIFY3U(req->vdr_class, ==, VDC_MSR);
4149 VERIFY3U(req->vdr_version, ==, 1);
4150
4151 struct vdi_field_entry_v1 *entryp = req->vdr_data;
4152
4153 /* Specific MSRs requested */
4154 if ((req->vdr_flags & VDX_FLAG_READ_COPYIN) != 0) {
4155 const uint_t count =
4156 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4157
4158 for (uint_t i = 0; i < count; i++, entryp++) {
4159 int err = vmm_data_read_msr(vm, vcpuid,
4160 entryp->vfe_ident, &entryp->vfe_value);
4161
4162 if (err != 0) {
4163 return (err);
4164 }
4165 }
4166
4167 *req->vdr_result_len =
4168 count * sizeof (struct vdi_field_entry_v1);
4169 return (0);
4170 }
4171
4172 /*
4173 * If specific MSRs are not requested, try to provide all those which we
4174 * know about instead.
4175 */
4176 const uint_t num_msrs = nitems(default_msr_iter) +
4177 (VMM_MTRR_VAR_MAX * 2);
4178 const uint32_t output_len =
4179 num_msrs * sizeof (struct vdi_field_entry_v1);
4180
4181 *req->vdr_result_len = output_len;
4182 if (req->vdr_len < output_len) {
4183 return (ENOSPC);
4184 }
4185
4186 /* Output the MSRs in the default list */
4187 for (uint_t i = 0; i < nitems(default_msr_iter); i++, entryp++) {
4188 entryp->vfe_ident = default_msr_iter[i];
4189
4190 /* All of these MSRs are expected to work */
4191 VERIFY0(vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident,
4192 &entryp->vfe_value));
4193 }
4194
4195 /* Output the variable MTRRs */
4196 for (uint_t i = 0; i < (VMM_MTRR_VAR_MAX * 2); i++, entryp++) {
4197 entryp->vfe_ident = MSR_MTRRVarBase + i;
4198
4199 /* All of these MSRs are expected to work */
4200 VERIFY0(vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident,
4201 &entryp->vfe_value));
4202 }
4203 return (0);
4204 }
4205
4206 static int
vmm_data_write_msrs(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4207 vmm_data_write_msrs(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4208 {
4209 VERIFY3U(req->vdr_class, ==, VDC_MSR);
4210 VERIFY3U(req->vdr_version, ==, 1);
4211
4212 const struct vdi_field_entry_v1 *entryp = req->vdr_data;
4213 const uint_t entry_count =
4214 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4215
4216 /*
4217 * First make sure that all of the MSRs can be manipulated.
4218 * For now, this check is done by going though the getmsr handler
4219 */
4220 for (uint_t i = 0; i < entry_count; i++, entryp++) {
4221 const uint64_t msr = entryp->vfe_ident;
4222 uint64_t val;
4223
4224 if (vmm_data_read_msr(vm, vcpuid, msr, &val) != 0) {
4225 return (EINVAL);
4226 }
4227 }
4228
4229 /*
4230 * Fairly confident that all of the 'set' operations are at least
4231 * targeting valid MSRs, continue on.
4232 */
4233 entryp = req->vdr_data;
4234 for (uint_t i = 0; i < entry_count; i++, entryp++) {
4235 int err = vmm_data_write_msr(vm, vcpuid, entryp->vfe_ident,
4236 entryp->vfe_value);
4237
4238 if (err != 0) {
4239 return (err);
4240 }
4241 }
4242 *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1);
4243
4244 return (0);
4245 }
4246
4247 static const vmm_data_version_entry_t msr_v1 = {
4248 .vdve_class = VDC_MSR,
4249 .vdve_version = 1,
4250 .vdve_len_per_item = sizeof (struct vdi_field_entry_v1),
4251 .vdve_vcpu_readf = vmm_data_read_msrs,
4252 .vdve_vcpu_writef = vmm_data_write_msrs,
4253 };
4254 VMM_DATA_VERSION(msr_v1);
4255
4256 static const uint32_t vmm_arch_v1_fields[] = {
4257 VAI_VM_IS_PAUSED,
4258 };
4259
4260 static const uint32_t vmm_arch_v1_vcpu_fields[] = {
4261 VAI_PEND_NMI,
4262 VAI_PEND_EXTINT,
4263 VAI_PEND_EXCP,
4264 VAI_PEND_INTINFO,
4265 };
4266
4267 static bool
vmm_read_arch_field(struct vm * vm,int vcpuid,uint32_t ident,uint64_t * valp)4268 vmm_read_arch_field(struct vm *vm, int vcpuid, uint32_t ident, uint64_t *valp)
4269 {
4270 ASSERT(valp != NULL);
4271
4272 if (vcpuid == -1) {
4273 switch (ident) {
4274 case VAI_VM_IS_PAUSED:
4275 *valp = vm->is_paused ? 1 : 0;
4276 return (true);
4277 default:
4278 break;
4279 }
4280 } else {
4281 VERIFY(vcpuid >= 0 && vcpuid <= VM_MAXCPU);
4282
4283 struct vcpu *vcpu = &vm->vcpu[vcpuid];
4284 switch (ident) {
4285 case VAI_PEND_NMI:
4286 *valp = vcpu->nmi_pending != 0 ? 1 : 0;
4287 return (true);
4288 case VAI_PEND_EXTINT:
4289 *valp = vcpu->extint_pending != 0 ? 1 : 0;
4290 return (true);
4291 case VAI_PEND_EXCP:
4292 *valp = vcpu->exc_pending;
4293 return (true);
4294 case VAI_PEND_INTINFO:
4295 *valp = vcpu->exit_intinfo;
4296 return (true);
4297 default:
4298 break;
4299 }
4300 }
4301 return (false);
4302 }
4303
4304 static int
vmm_data_read_varch(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4305 vmm_data_read_varch(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4306 {
4307 VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH);
4308 VERIFY3U(req->vdr_version, ==, 1);
4309
4310 /* per-vCPU fields are handled separately from VM-wide ones */
4311 if (vcpuid != -1 && (vcpuid < 0 || vcpuid >= VM_MAXCPU)) {
4312 return (EINVAL);
4313 }
4314
4315 struct vdi_field_entry_v1 *entryp = req->vdr_data;
4316
4317 /* Specific fields requested */
4318 if ((req->vdr_flags & VDX_FLAG_READ_COPYIN) != 0) {
4319 const uint_t count =
4320 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4321
4322 for (uint_t i = 0; i < count; i++, entryp++) {
4323 if (!vmm_read_arch_field(vm, vcpuid, entryp->vfe_ident,
4324 &entryp->vfe_value)) {
4325 return (EINVAL);
4326 }
4327 }
4328 *req->vdr_result_len =
4329 count * sizeof (struct vdi_field_entry_v1);
4330 return (0);
4331 }
4332
4333 /* Emit all of the possible values */
4334 const uint32_t *idents;
4335 uint_t ident_count;
4336
4337 if (vcpuid == -1) {
4338 idents = vmm_arch_v1_fields;
4339 ident_count = nitems(vmm_arch_v1_fields);
4340 } else {
4341 idents = vmm_arch_v1_vcpu_fields;
4342 ident_count = nitems(vmm_arch_v1_vcpu_fields);
4343
4344 }
4345
4346 const uint32_t total_size =
4347 ident_count * sizeof (struct vdi_field_entry_v1);
4348
4349 *req->vdr_result_len = total_size;
4350 if (req->vdr_len < total_size) {
4351 return (ENOSPC);
4352 }
4353 for (uint_t i = 0; i < ident_count; i++, entryp++) {
4354 entryp->vfe_ident = idents[i];
4355 VERIFY(vmm_read_arch_field(vm, vcpuid, entryp->vfe_ident,
4356 &entryp->vfe_value));
4357 }
4358 return (0);
4359 }
4360
4361 static int
vmm_data_write_varch_vcpu(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4362 vmm_data_write_varch_vcpu(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4363 {
4364 VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH);
4365 VERIFY3U(req->vdr_version, ==, 1);
4366
4367 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) {
4368 return (EINVAL);
4369 }
4370
4371 const struct vdi_field_entry_v1 *entryp = req->vdr_data;
4372 const uint_t entry_count =
4373 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4374 struct vcpu *vcpu = &vm->vcpu[vcpuid];
4375
4376 for (uint_t i = 0; i < entry_count; i++, entryp++) {
4377 const uint64_t val = entryp->vfe_value;
4378
4379 switch (entryp->vfe_ident) {
4380 case VAI_PEND_NMI:
4381 vcpu->nmi_pending = (val != 0);
4382 break;
4383 case VAI_PEND_EXTINT:
4384 vcpu->extint_pending = (val != 0);
4385 break;
4386 case VAI_PEND_EXCP:
4387 if (!VM_INTINFO_PENDING(val)) {
4388 vcpu->exc_pending = 0;
4389 } else if (VM_INTINFO_TYPE(val) != VM_INTINFO_HWEXCP ||
4390 (val & VM_INTINFO_MASK_RSVD) != 0) {
4391 /* reject improperly-formed hw exception */
4392 return (EINVAL);
4393 } else {
4394 vcpu->exc_pending = val;
4395 }
4396 break;
4397 case VAI_PEND_INTINFO:
4398 if (vm_exit_intinfo(vm, vcpuid, val) != 0) {
4399 return (EINVAL);
4400 }
4401 break;
4402 default:
4403 return (EINVAL);
4404 }
4405 }
4406
4407 *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1);
4408 return (0);
4409 }
4410
4411 static int
vmm_data_write_varch(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4412 vmm_data_write_varch(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4413 {
4414 VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH);
4415 VERIFY3U(req->vdr_version, ==, 1);
4416
4417 /* per-vCPU fields are handled separately from VM-wide ones */
4418 if (vcpuid != -1) {
4419 return (vmm_data_write_varch_vcpu(vm, vcpuid, req));
4420 }
4421
4422 const struct vdi_field_entry_v1 *entryp = req->vdr_data;
4423 const uint_t entry_count =
4424 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4425
4426 if (entry_count > 0) {
4427 if (entryp->vfe_ident == VAI_VM_IS_PAUSED) {
4428 /*
4429 * The VM_PAUSE and VM_RESUME ioctls are the officially
4430 * sanctioned mechanisms for setting the is-paused state
4431 * of the VM.
4432 */
4433 return (EPERM);
4434 } else {
4435 /* no other valid arch entries at this time */
4436 return (EINVAL);
4437 }
4438 }
4439
4440 *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1);
4441 return (0);
4442 }
4443
4444 static const vmm_data_version_entry_t vmm_arch_v1 = {
4445 .vdve_class = VDC_VMM_ARCH,
4446 .vdve_version = 1,
4447 .vdve_len_per_item = sizeof (struct vdi_field_entry_v1),
4448 .vdve_vcpu_readf = vmm_data_read_varch,
4449 .vdve_vcpu_writef = vmm_data_write_varch,
4450
4451 /*
4452 * Handlers for VMM_ARCH can process VM-wide (vcpuid == -1) entries in
4453 * addition to vCPU specific ones.
4454 */
4455 .vdve_vcpu_wildcard = true,
4456 };
4457 VMM_DATA_VERSION(vmm_arch_v1);
4458
4459
4460 /*
4461 * GUEST TIME SUPPORT
4462 *
4463 * Broadly, there are two categories of functionality related to time passing in
4464 * the guest: the guest's TSC and timers used by emulated devices.
4465 *
4466 * ---------------------------
4467 * GUEST TSC "VIRTUALIZATION"
4468 * ---------------------------
4469 *
4470 * The TSC can be read either via an instruction (rdtsc/rdtscp) or by reading
4471 * the TSC MSR.
4472 *
4473 * When a guest reads the TSC via its MSR, the guest will exit and we emulate
4474 * the rdmsr. More typically, the guest reads the TSC via a rdtsc(p)
4475 * instruction. Both SVM and VMX support virtualizing the guest TSC in hardware
4476 * -- that is, a guest will not generally exit on a rdtsc instruction.
4477 *
4478 * To support hardware-virtualized guest TSC, both SVM and VMX provide two knobs
4479 * for the hypervisor to adjust the guest's view of the TSC:
4480 * - TSC offset
4481 * - TSC frequency multiplier (also called "frequency ratio")
4482 *
4483 * When a guest calls rdtsc(p), the TSC value it sees is the sum of:
4484 * guest_tsc = (host TSC, scaled according to frequency multiplier)
4485 * + (TSC offset, programmed by hypervisor)
4486 *
4487 * See the discussions of the TSC offset and frequency multiplier below for more
4488 * details on each of these.
4489 *
4490 * --------------------
4491 * TSC OFFSET OVERVIEW
4492 * --------------------
4493 *
4494 * The TSC offset is a value added to the host TSC (which may be scaled first)
4495 * to provide the guest TSC. This offset addition is generally done by hardware,
4496 * but may be used in emulating the TSC if necessary.
4497 *
4498 * Recall that general formula for calculating the guest TSC is:
4499 *
4500 * guest_tsc = (host TSC, scaled if needed) + TSC offset
4501 *
4502 * Intuitively, the TSC offset is simply an offset of the host's TSC to make the
4503 * guest's view of the TSC appear correct: The guest TSC should be 0 at boot and
4504 * monotonically increase at a roughly constant frequency. Thus in the simplest
4505 * case, the TSC offset is just the negated value of the host TSC when the guest
4506 * was booted, assuming they have the same frequencies.
4507 *
4508 * In practice, there are several factors that can make calculating the TSC
4509 * offset more complicated, including:
4510 *
4511 * (1) the physical CPU the guest is running on
4512 * (2) whether the guest has written to the TSC of that vCPU
4513 * (3) differing host and guest frequencies, like after a live migration
4514 * (4) a guest running on a different system than where it was booted, like
4515 * after a live migration
4516 *
4517 * We will explore each of these factors individually. See below for a
4518 * summary.
4519 *
4520 *
4521 * (1) Physical CPU offsets
4522 *
4523 * The system maintains a set of per-CPU offsets to the TSC to provide a
4524 * consistent view of the TSC regardless of the CPU a thread is running on.
4525 * These offsets are included automatically as a part of rdtsc_offset().
4526 *
4527 * The per-CPU offset must be included as a part reading the host TSC when
4528 * calculating the offset before running the guest on a given CPU.
4529 *
4530 *
4531 * (2) Guest TSC writes (vCPU offsets)
4532 *
4533 * The TSC is a writable MSR. When a guest writes to the TSC, this operation
4534 * should result in the TSC, when read from that vCPU, shows the value written,
4535 * plus whatever time has elapsed since the read.
4536 *
4537 * To support this, when the guest writes to the TSC, we store an additional
4538 * vCPU offset calculated to make future reads of the TSC map to what the guest
4539 * expects.
4540 *
4541 *
4542 * (3) Differing host and guest frequencies (host TSC scaling)
4543 *
4544 * A guest has the same frequency of its host when it boots, but it may be
4545 * migrated to a machine with a different TSC frequency. Systems expect that
4546 * their TSC frequency does not change. To support this fiction in which a guest
4547 * is running on hardware of a different TSC frequency, the hypervisor can
4548 * program a "frequency multiplier" that represents the ratio of guest/host
4549 * frequency.
4550 *
4551 * Any time a host TSC is used in calculations for the offset, it should be
4552 * "scaled" according to this multiplier, and the hypervisor should program the
4553 * multiplier before running a guest so that the hardware virtualization of the
4554 * TSC functions properly. Similarly, the multiplier should be used in any TSC
4555 * emulation.
4556 *
4557 * See below for more details about the frequency multiplier.
4558 *
4559 *
4560 * (4) Guest running on a system it did not boot on ("base guest TSC")
4561 *
4562 * When a guest boots, its TSC offset is simply the negated host TSC at the time
4563 * it booted. If a guest is migrated from a source host to a target host, the
4564 * TSC offset from the source host is no longer useful for several reasons:
4565 * - the target host TSC has no relationship to the source host TSC
4566 * - the guest did not boot on the target system, so the TSC of the target host
4567 * is not sufficient to describe how long the guest has been running prior to
4568 * migration
4569 * - the target system may have a different TSC frequency than the source system
4570 *
4571 * Ignoring the issue of frequency differences for a moment, let's consider how
4572 * to re-align the guest TSC with the host TSC of the target host. Intuitively,
4573 * for the guest to see the correct TSC, we still want to add some offset to the
4574 * host TSC that offsets how long this guest has been running on
4575 * the system.
4576 *
4577 * An example here might be helpful. Consider a source host and target host,
4578 * both with TSC frequencies of 1GHz. On the source host, the guest and host TSC
4579 * values might look like:
4580 *
4581 * +----------------------------------------------------------------------+
4582 * | Event | source host TSC | guest TSC |
4583 * ------------------------------------------------------------------------
4584 * | guest boot (t=0s) | 5000000000 | 5000000000 + -5000000000 |
4585 * | | | 0 |
4586 * ------------------------------------------------------------------------
4587 * | guest rdtsc (t=10s)) | 15000000000 | 15000000000 + -5000000000 |
4588 * | | | 10000000000 |
4589 * ------------------------------------------------------------------------
4590 * | migration (t=15s) | 20000000000 | 20000000000 + -5000000000 |
4591 * | | | 15000000000 |
4592 * +----------------------------------------------------------------------+
4593 *
4594 * Ignoring the time it takes for a guest to physically migrate machines, on the
4595 * target host, we would expect the TSC to continue functioning as such:
4596 *
4597 * +----------------------------------------------------------------------+
4598 * | Event | target host TSC | guest TSC |
4599 * ------------------------------------------------------------------------
4600 * | guest migrate (t=15s) | 300000000000 | 15000000000 |
4601 * ------------------------------------------------------------------------
4602 * | guest rdtsc (t=20s)) | 305000000000 | 20000000000 |
4603 * ------------------------------------------------------------------------
4604 *
4605 * In order to produce a correct TSC value here, we can calculate a new
4606 * "effective" boot TSC that maps to what the host TSC would've been had it been
4607 * booted on the target. We add that to the guest TSC when it began to run on
4608 * this machine, and negate them both to get a new offset. In this example, the
4609 * effective boot TSC is: -(300000000000 - 15000000000) = -285000000000.
4610 *
4611 * +-------------------------------------------------------------------------+
4612 * | Event | target host TSC | guest TSC |
4613 * ---------------------------------------------------------------------------
4614 * | guest "boot" (t=0s) | 285000000000 | 285000000000 + -285000000000 |
4615 * | | | 0 |
4616 * ---------------------------------------------------------------------------
4617 * | guest migrate (t=15s) | 300000000000 | 300000000000 + -285000000000 |
4618 * | | | 15000000000 |
4619 * ---------------------------------------------------------------------------
4620 * | guest rdtsc (t=20s)) | 305000000000 | 305000000000 + -285000000000 |
4621 * | | | 20000000000 |
4622 * --------------------------------------------------------------------------+
4623 *
4624 * To support the offset calculation following a migration, the VMM data time
4625 * interface allows callers to set a "base guest TSC", which is the TSC value of
4626 * the guest when it began running on the host. The current guest TSC can be
4627 * requested via a read of the time data. See below for details on that
4628 * interface.
4629 *
4630 * Frequency differences between the host and the guest are accounted for when
4631 * scaling the host TSC. See below for details on the frequency multiplier.
4632 *
4633 *
4634 * --------------------
4635 * TSC OFFSET SUMMARY
4636 * --------------------
4637 *
4638 * Factoring in all of the components to the TSC above, the TSC offset that is
4639 * programmed by the hypervisor before running a given vCPU is:
4640 *
4641 * offset = -((base host TSC, scaled if needed) - base_guest_tsc) + vCPU offset
4642 *
4643 * This offset is stored in two pieces. Per-vCPU offsets are stored with the
4644 * given vCPU and added in when programming the offset. The rest of the offset
4645 * is stored as a VM-wide offset, and computed either at boot or when the time
4646 * data is written to.
4647 *
4648 * It is safe to add the vCPU offset and the VM-wide offsets together because
4649 * the vCPU offset is in terms of the guest TSC. The host TSC is scaled before
4650 * using it in calculations, so all TSC values are applicable to the same
4651 * frequency.
4652 *
4653 * Note: Though both the VM-wide offset and per-vCPU offsets may be negative, we
4654 * store them as unsigned values and perform all offsetting math unsigned. This
4655 * is to avoid UB from signed overflow.
4656 *
4657 * -------------------------
4658 * TSC FREQUENCY MULTIPLIER
4659 * -------------------------
4660 *
4661 * In order to account for frequency differences between the host and guest, SVM
4662 * and VMX provide an interface to set a "frequency multiplier" (or "frequency
4663 * ratio") representing guest to host frequency. In a hardware-virtualized read
4664 * of the TSC, the host TSC is scaled using this multiplier prior to adding the
4665 * programmed TSC offset.
4666 *
4667 * Both platforms represent the ratio as a fixed point number, where the lower
4668 * bits are used as a fractional component, and some number of the upper bits
4669 * are used as the integer component.
4670 *
4671 * Some example multipliers, for a platform with FRAC fractional bits in the
4672 * multiplier:
4673 * - guest frequency == host: 1 << FRAC
4674 * - guest frequency is 2x host: 1 << (FRAC + 1)
4675 * - guest frequency is 0.5x host: 1 << (FRAC - 1), as the highest-order
4676 * fractional bit represents 1/2
4677 * - guest frequency is 2.5x host: (1 << FRAC) | (1 << (FRAC - 1))
4678 * and so on.
4679 *
4680 * In general, the frequency multiplier is calculated as follows:
4681 * (guest_hz * (1 << FRAC_SIZE)) / host_hz
4682 *
4683 * The multiplier should be used any time the host TSC value is used in
4684 * calculations with the guest TSC (and their frequencies differ). The function
4685 * `vmm_scale_tsc` is intended to be used for these purposes, as it will scale
4686 * the host TSC only if needed.
4687 *
4688 * The multiplier should also be programmed by the hypervisor before the guest
4689 * is run.
4690 *
4691 *
4692 * ----------------------------
4693 * DEVICE TIMERS (BOOT_HRTIME)
4694 * ----------------------------
4695 *
4696 * Emulated devices use timers to do things such as scheduling periodic events.
4697 * These timers are scheduled relative to the hrtime of the host. When device
4698 * state is exported or imported, we use boot_hrtime to normalize these timers
4699 * against the host hrtime. The boot_hrtime represents the hrtime of the host
4700 * when the guest was booted.
4701 *
4702 * If a guest is migrated to a different machine, boot_hrtime must be adjusted
4703 * to match the hrtime of when the guest was effectively booted on the target
4704 * host. This allows timers to continue functioning when device state is
4705 * imported on the target.
4706 *
4707 *
4708 * ------------------------
4709 * VMM DATA TIME INTERFACE
4710 * ------------------------
4711 *
4712 * In order to facilitate live migrations of guests, we provide an interface,
4713 * via the VMM data read/write ioctls, for userspace to make changes to the
4714 * guest's view of the TSC and device timers, allowing these features to
4715 * continue functioning after a migration.
4716 *
4717 * The interface was designed to expose the minimal amount of data needed for a
4718 * userspace component to make adjustments to the guest's view of time (e.g., to
4719 * account for time passing in a live migration). At a minimum, such a program
4720 * needs:
4721 * - the current guest TSC
4722 * - guest TSC frequency
4723 * - guest's boot_hrtime
4724 * - timestamps of when this data was taken (hrtime for hrtime calculations, and
4725 * wall clock time for computing time deltas between machines)
4726 *
4727 * The wall clock time is provided for consumers to make adjustments to the
4728 * guest TSC and boot_hrtime based on deltas observed during migrations. It may
4729 * be prudent for consumers to use this data only in circumstances where the
4730 * source and target have well-synchronized wall clocks, but nothing in the
4731 * interface depends on this assumption.
4732 *
4733 * On writes, consumers write back:
4734 * - the base guest TSC (used for TSC offset calculations)
4735 * - desired boot_hrtime
4736 * - guest_frequency (cannot change)
4737 * - hrtime of when this data was adjusted
4738 * - (wall clock time on writes is ignored)
4739 *
4740 * The interface will adjust the input guest TSC slightly, based on the input
4741 * hrtime, to account for latency between userspace calculations and application
4742 * of the data on the kernel side. This amounts to adding a small amount of
4743 * additional "uptime" for the guest.
4744 *
4745 * After the adjustments, the interface updates the VM-wide TSC offset and
4746 * boot_hrtime. Per-vCPU offsets are not adjusted, as those are already in terms
4747 * of the guest TSC and can be exported/imported via the MSR VMM data interface.
4748 *
4749 *
4750 * --------------------------------
4751 * SUPPORTED PLATFORMS AND CAVEATS
4752 * --------------------------------
4753 *
4754 * While both VMX and SVM offer TSC scaling as a feature, at this time only SVM
4755 * is supported by bhyve.
4756 *
4757 * The time data interface is designed such that Intel support can be added
4758 * easily, and all other aspects of the time interface should work on Intel.
4759 * (Without frequency control though, in practice, doing live migrations of
4760 * guests on Intel will not work for time-related things, as two machines
4761 * rarely have exactly the same frequency).
4762 *
4763 * Additionally, while on both SVM and VMX the frequency multiplier is a fixed
4764 * point number, each uses a different number of fractional and integer bits for
4765 * the multiplier. As such, calculating the multiplier and fractional bit size
4766 * is requested via the vmm_ops.
4767 *
4768 * Care should be taken to set reasonable limits for ratios based on the
4769 * platform, as the difference in fractional bits can lead to slightly different
4770 * tradeoffs in terms of representable ratios and potentially overflowing
4771 * calculations.
4772 */
4773
4774 /*
4775 * Scales the TSC if needed, based on the input frequency multiplier.
4776 */
4777 static uint64_t
vmm_scale_tsc(uint64_t tsc,uint64_t mult)4778 vmm_scale_tsc(uint64_t tsc, uint64_t mult)
4779 {
4780 const uint32_t frac_size = ops->fr_fracsize;
4781
4782 if (mult != VM_TSCM_NOSCALE) {
4783 VERIFY3U(frac_size, >, 0);
4784 return (scale_tsc(tsc, mult, frac_size));
4785 } else {
4786 return (tsc);
4787 }
4788 }
4789
4790 /*
4791 * Calculate the frequency multiplier, which represents the ratio of
4792 * guest_hz / host_hz. The frequency multiplier is a fixed point number with
4793 * `frac_sz` fractional bits (fractional bits begin at bit 0).
4794 *
4795 * See comment for "calc_freq_multiplier" in "vmm_time_support.S" for more
4796 * information about valid input to this function.
4797 */
4798 uint64_t
vmm_calc_freq_multiplier(uint64_t guest_hz,uint64_t host_hz,uint32_t frac_size)4799 vmm_calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz,
4800 uint32_t frac_size)
4801 {
4802 VERIFY3U(guest_hz, !=, 0);
4803 VERIFY3U(frac_size, >, 0);
4804 VERIFY3U(frac_size, <, 64);
4805
4806 return (calc_freq_multiplier(guest_hz, host_hz, frac_size));
4807 }
4808
4809 /*
4810 * Calculate the guest VM-wide TSC offset.
4811 *
4812 * offset = - ((base host TSC, scaled if needed) - base_guest_tsc)
4813 *
4814 * The base_host_tsc and the base_guest_tsc are the TSC values of the host
4815 * (read on the system) and the guest (calculated) at the same point in time.
4816 * This allows us to fix the guest TSC at this point in time as a base, either
4817 * following boot (guest TSC = 0), or a change to the guest's time data from
4818 * userspace (such as in the case of a migration).
4819 */
4820 static uint64_t
calc_tsc_offset(uint64_t base_host_tsc,uint64_t base_guest_tsc,uint64_t mult)4821 calc_tsc_offset(uint64_t base_host_tsc, uint64_t base_guest_tsc, uint64_t mult)
4822 {
4823 const uint64_t htsc_scaled = vmm_scale_tsc(base_host_tsc, mult);
4824 if (htsc_scaled > base_guest_tsc) {
4825 return ((uint64_t)(- (int64_t)(htsc_scaled - base_guest_tsc)));
4826 } else {
4827 return (base_guest_tsc - htsc_scaled);
4828 }
4829 }
4830
4831 /*
4832 * Calculate an estimate of the guest TSC.
4833 *
4834 * guest_tsc = (host TSC, scaled if needed) + offset
4835 */
4836 static uint64_t
calc_guest_tsc(uint64_t host_tsc,uint64_t mult,uint64_t offset)4837 calc_guest_tsc(uint64_t host_tsc, uint64_t mult, uint64_t offset)
4838 {
4839 return (vmm_scale_tsc(host_tsc, mult) + offset);
4840 }
4841
4842 /*
4843 * Take a non-atomic "snapshot" of the current:
4844 * - TSC
4845 * - hrtime
4846 * - wall clock time
4847 */
4848 static void
vmm_time_snapshot(uint64_t * tsc,hrtime_t * hrtime,timespec_t * hrestime)4849 vmm_time_snapshot(uint64_t *tsc, hrtime_t *hrtime, timespec_t *hrestime)
4850 {
4851 /*
4852 * Disable interrupts while we take the readings: In the absence of a
4853 * mechanism to convert hrtime to hrestime, we want the time between
4854 * each of these measurements to be as small as possible.
4855 */
4856 ulong_t iflag = intr_clear();
4857
4858 hrtime_t hrt = gethrtimeunscaledf();
4859 *tsc = (uint64_t)hrt;
4860 *hrtime = hrt;
4861 scalehrtime(hrtime);
4862 gethrestime(hrestime);
4863
4864 intr_restore(iflag);
4865 }
4866
4867 /*
4868 * Read VMM Time data
4869 *
4870 * Provides:
4871 * - the current guest TSC and TSC frequency
4872 * - guest boot_hrtime
4873 * - timestamps of the read (hrtime and wall clock time)
4874 */
4875 static int
vmm_data_read_vmm_time(void * arg,const vmm_data_req_t * req)4876 vmm_data_read_vmm_time(void *arg, const vmm_data_req_t *req)
4877 {
4878 VERIFY3U(req->vdr_class, ==, VDC_VMM_TIME);
4879 VERIFY3U(req->vdr_version, ==, 1);
4880 VERIFY3U(req->vdr_len, >=, sizeof (struct vdi_time_info_v1));
4881
4882 struct vm *vm = arg;
4883 struct vdi_time_info_v1 *out = req->vdr_data;
4884
4885 /*
4886 * Since write operations on VMM_TIME data are strict about vcpuid
4887 * (see: vmm_data_write_vmm_time()), read operations should be as well.
4888 */
4889 if (req->vdr_vcpuid != -1) {
4890 return (EINVAL);
4891 }
4892
4893 /* Take a snapshot of this point in time */
4894 uint64_t tsc;
4895 hrtime_t hrtime;
4896 timespec_t hrestime;
4897 vmm_time_snapshot(&tsc, &hrtime, &hrestime);
4898
4899 /* Write the output values */
4900 out->vt_guest_freq = vm->guest_freq;
4901
4902 /*
4903 * Use only the VM-wide TSC offset for calculating the guest TSC,
4904 * ignoring per-vCPU offsets. This value is provided as a "base" guest
4905 * TSC at the time of the read; per-vCPU offsets are factored in as
4906 * needed elsewhere, either when running the vCPU or if the guest reads
4907 * the TSC via rdmsr.
4908 */
4909 out->vt_guest_tsc = calc_guest_tsc(tsc, vm->freq_multiplier,
4910 vm->tsc_offset);
4911 out->vt_boot_hrtime = vm->boot_hrtime;
4912 out->vt_hrtime = hrtime;
4913 out->vt_hres_sec = hrestime.tv_sec;
4914 out->vt_hres_ns = hrestime.tv_nsec;
4915
4916 return (0);
4917 }
4918
4919 /*
4920 * Modify VMM Time data related values
4921 *
4922 * This interface serves to allow guests' TSC and device timers to continue
4923 * functioning across live migrations. On a successful write, the VM-wide TSC
4924 * offset and boot_hrtime of the guest are updated.
4925 *
4926 * The interface requires an hrtime of the system at which the caller wrote
4927 * this data; this allows us to adjust the TSC and boot_hrtime slightly to
4928 * account for time passing between the userspace call and application
4929 * of the data here.
4930 *
4931 * There are several possibilities for invalid input, including:
4932 * - a requested guest frequency of 0, or a frequency otherwise unsupported by
4933 * the underlying platform
4934 * - hrtime or boot_hrtime values that appear to be from the future
4935 * - the requested frequency does not match the host, and this system does not
4936 * have hardware TSC scaling support
4937 */
4938 static int
vmm_data_write_vmm_time(void * arg,const vmm_data_req_t * req)4939 vmm_data_write_vmm_time(void *arg, const vmm_data_req_t *req)
4940 {
4941 VERIFY3U(req->vdr_class, ==, VDC_VMM_TIME);
4942 VERIFY3U(req->vdr_version, ==, 1);
4943 VERIFY3U(req->vdr_len, >=, sizeof (struct vdi_time_info_v1));
4944
4945 struct vm *vm = arg;
4946 const struct vdi_time_info_v1 *src = req->vdr_data;
4947
4948 /*
4949 * While vcpuid values != -1 are tolerated by the vmm_data machinery for
4950 * VM-wide endpoints, the time-related data is more strict: It relies on
4951 * write-locking the VM (implied by the vcpuid -1) to prevent vCPUs or
4952 * other bits from observing inconsistent values while the state is
4953 * being written.
4954 */
4955 if (req->vdr_vcpuid != -1) {
4956 return (EINVAL);
4957 }
4958
4959 /*
4960 * Platform-specific checks will verify the requested frequency against
4961 * the supported range further, but a frequency of 0 is never valid.
4962 */
4963 if (src->vt_guest_freq == 0) {
4964 return (EINVAL);
4965 }
4966
4967 /*
4968 * Check whether the request frequency is supported and get the
4969 * frequency multiplier.
4970 */
4971 uint64_t mult = VM_TSCM_NOSCALE;
4972 freqratio_res_t res = ops->vmfreqratio(src->vt_guest_freq,
4973 vmm_host_freq, &mult);
4974 switch (res) {
4975 case FR_SCALING_NOT_SUPPORTED:
4976 /*
4977 * This system doesn't support TSC scaling, and the guest/host
4978 * frequencies differ
4979 */
4980 return (EPERM);
4981 case FR_OUT_OF_RANGE:
4982 /* Requested frequency ratio is too small/large */
4983 return (EINVAL);
4984 case FR_SCALING_NOT_NEEDED:
4985 /* Host and guest frequencies are the same */
4986 VERIFY3U(mult, ==, VM_TSCM_NOSCALE);
4987 break;
4988 case FR_VALID:
4989 VERIFY3U(mult, !=, VM_TSCM_NOSCALE);
4990 break;
4991 }
4992
4993 /*
4994 * Find (and validate) the hrtime delta between the input request and
4995 * when we received it so that we can bump the TSC to account for time
4996 * passing.
4997 *
4998 * We ignore the hrestime as input, as this is a field that
4999 * exists for reads.
5000 */
5001 uint64_t tsc;
5002 hrtime_t hrtime;
5003 timespec_t hrestime;
5004 vmm_time_snapshot(&tsc, &hrtime, &hrestime);
5005 if ((src->vt_hrtime > hrtime) || (src->vt_boot_hrtime > hrtime)) {
5006 /*
5007 * The caller has passed in an hrtime / boot_hrtime from the
5008 * future.
5009 */
5010 return (EINVAL);
5011 }
5012 hrtime_t hrt_delta = hrtime - src->vt_hrtime;
5013
5014 /* Calculate guest TSC adjustment */
5015 const uint64_t host_ticks = unscalehrtime(hrt_delta);
5016 const uint64_t guest_ticks = vmm_scale_tsc(host_ticks,
5017 vm->freq_multiplier);
5018 const uint64_t base_guest_tsc = src->vt_guest_tsc + guest_ticks;
5019
5020 /* Update guest time data */
5021 vm->freq_multiplier = mult;
5022 vm->guest_freq = src->vt_guest_freq;
5023 vm->boot_hrtime = src->vt_boot_hrtime;
5024 vm->tsc_offset = calc_tsc_offset(tsc, base_guest_tsc,
5025 vm->freq_multiplier);
5026
5027 return (0);
5028 }
5029
5030 static const vmm_data_version_entry_t vmm_time_v1 = {
5031 .vdve_class = VDC_VMM_TIME,
5032 .vdve_version = 1,
5033 .vdve_len_expect = sizeof (struct vdi_time_info_v1),
5034 .vdve_readf = vmm_data_read_vmm_time,
5035 .vdve_writef = vmm_data_write_vmm_time,
5036 };
5037 VMM_DATA_VERSION(vmm_time_v1);
5038
5039
5040 static int
vmm_data_read_versions(void * arg,const vmm_data_req_t * req)5041 vmm_data_read_versions(void *arg, const vmm_data_req_t *req)
5042 {
5043 VERIFY3U(req->vdr_class, ==, VDC_VERSION);
5044 VERIFY3U(req->vdr_version, ==, 1);
5045
5046 const uint32_t total_size = SET_COUNT(vmm_data_version_entries) *
5047 sizeof (struct vdi_version_entry_v1);
5048
5049 /* Make sure there is room for all of the entries */
5050 *req->vdr_result_len = total_size;
5051 if (req->vdr_len < *req->vdr_result_len) {
5052 return (ENOSPC);
5053 }
5054
5055 struct vdi_version_entry_v1 *entryp = req->vdr_data;
5056 const vmm_data_version_entry_t **vdpp;
5057 SET_FOREACH(vdpp, vmm_data_version_entries) {
5058 const vmm_data_version_entry_t *vdp = *vdpp;
5059
5060 entryp->vve_class = vdp->vdve_class;
5061 entryp->vve_version = vdp->vdve_version;
5062 entryp->vve_len_expect = vdp->vdve_len_expect;
5063 entryp->vve_len_per_item = vdp->vdve_len_per_item;
5064 entryp++;
5065 }
5066 return (0);
5067 }
5068
5069 static int
vmm_data_write_versions(void * arg,const vmm_data_req_t * req)5070 vmm_data_write_versions(void *arg, const vmm_data_req_t *req)
5071 {
5072 /* Writing to the version information makes no sense */
5073 return (EPERM);
5074 }
5075
5076 static const vmm_data_version_entry_t versions_v1 = {
5077 .vdve_class = VDC_VERSION,
5078 .vdve_version = 1,
5079 .vdve_len_per_item = sizeof (struct vdi_version_entry_v1),
5080 .vdve_readf = vmm_data_read_versions,
5081 .vdve_writef = vmm_data_write_versions,
5082 };
5083 VMM_DATA_VERSION(versions_v1);
5084
5085 int
vmm_data_read(struct vm * vm,const vmm_data_req_t * req)5086 vmm_data_read(struct vm *vm, const vmm_data_req_t *req)
5087 {
5088 int err = 0;
5089
5090 const vmm_data_version_entry_t *entry = NULL;
5091 err = vmm_data_find(req, &entry);
5092 if (err != 0) {
5093 return (err);
5094 }
5095 ASSERT(entry != NULL);
5096
5097 if (entry->vdve_readf != NULL) {
5098 void *datap = vmm_data_from_class(req, vm);
5099
5100 err = entry->vdve_readf(datap, req);
5101 } else if (entry->vdve_vcpu_readf != NULL) {
5102 err = entry->vdve_vcpu_readf(vm, req->vdr_vcpuid, req);
5103 } else {
5104 err = EINVAL;
5105 }
5106
5107 /*
5108 * Successful reads of fixed-length data should populate the length of
5109 * that result.
5110 */
5111 if (err == 0 && entry->vdve_len_expect != 0) {
5112 *req->vdr_result_len = entry->vdve_len_expect;
5113 }
5114
5115 return (err);
5116 }
5117
5118 int
vmm_data_write(struct vm * vm,const vmm_data_req_t * req)5119 vmm_data_write(struct vm *vm, const vmm_data_req_t *req)
5120 {
5121 int err = 0;
5122
5123 const vmm_data_version_entry_t *entry = NULL;
5124 err = vmm_data_find(req, &entry);
5125 if (err != 0) {
5126 return (err);
5127 }
5128 ASSERT(entry != NULL);
5129
5130 if (entry->vdve_writef != NULL) {
5131 void *datap = vmm_data_from_class(req, vm);
5132
5133 err = entry->vdve_writef(datap, req);
5134 } else if (entry->vdve_vcpu_writef != NULL) {
5135 err = entry->vdve_vcpu_writef(vm, req->vdr_vcpuid, req);
5136 } else {
5137 err = EINVAL;
5138 }
5139
5140 /*
5141 * Successful writes of fixed-length data should populate the length of
5142 * that result.
5143 */
5144 if (err == 0 && entry->vdve_len_expect != 0) {
5145 *req->vdr_result_len = entry->vdve_len_expect;
5146 }
5147
5148 return (err);
5149 }
5150