1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2017, Intel Corporation. 25 * Copyright 2019 Joyent, Inc. 26 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org> 27 */ 28 29 #ifndef _SYS_VDEV_IMPL_H 30 #define _SYS_VDEV_IMPL_H 31 32 #include <sys/avl.h> 33 #include <sys/bpobj.h> 34 #include <sys/dmu.h> 35 #include <sys/metaslab.h> 36 #include <sys/nvpair.h> 37 #include <sys/space_map.h> 38 #include <sys/vdev.h> 39 #include <sys/dkio.h> 40 #include <sys/uberblock_impl.h> 41 #include <sys/vdev_indirect_mapping.h> 42 #include <sys/vdev_indirect_births.h> 43 #include <sys/vdev_removal.h> 44 45 #ifdef __cplusplus 46 extern "C" { 47 #endif 48 49 /* 50 * Virtual device descriptors. 51 * 52 * All storage pool operations go through the virtual device framework, 53 * which provides data replication and I/O scheduling. 54 */ 55 56 /* 57 * Forward declarations that lots of things need. 58 */ 59 typedef struct vdev_queue vdev_queue_t; 60 typedef struct vdev_cache vdev_cache_t; 61 typedef struct vdev_cache_entry vdev_cache_entry_t; 62 struct abd; 63 64 extern int zfs_vdev_queue_depth_pct; 65 extern int zfs_vdev_def_queue_depth; 66 extern uint32_t zfs_vdev_async_write_max_active; 67 68 /* 69 * Virtual device operations 70 */ 71 typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size, 72 uint64_t *ashift); 73 typedef void vdev_close_func_t(vdev_t *vd); 74 typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize); 75 typedef void vdev_io_start_func_t(zio_t *zio); 76 typedef void vdev_io_done_func_t(zio_t *zio); 77 typedef void vdev_state_change_func_t(vdev_t *vd, int, int); 78 typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, uint64_t, size_t); 79 typedef void vdev_hold_func_t(vdev_t *vd); 80 typedef void vdev_rele_func_t(vdev_t *vd); 81 82 typedef void vdev_remap_cb_t(uint64_t inner_offset, vdev_t *vd, 83 uint64_t offset, uint64_t size, void *arg); 84 typedef void vdev_remap_func_t(vdev_t *vd, uint64_t offset, uint64_t size, 85 vdev_remap_cb_t callback, void *arg); 86 typedef int vdev_dumpio_func_t(vdev_t *vd, caddr_t data, size_t size, 87 uint64_t offset, uint64_t origoffset, boolean_t doread, boolean_t isdump); 88 /* 89 * Given a target vdev, translates the logical range "in" to the physical 90 * range "res" 91 */ 92 typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *in, 93 range_seg64_t *res); 94 95 typedef struct vdev_ops { 96 vdev_open_func_t *vdev_op_open; 97 vdev_close_func_t *vdev_op_close; 98 vdev_asize_func_t *vdev_op_asize; 99 vdev_io_start_func_t *vdev_op_io_start; 100 vdev_io_done_func_t *vdev_op_io_done; 101 vdev_state_change_func_t *vdev_op_state_change; 102 vdev_need_resilver_func_t *vdev_op_need_resilver; 103 vdev_hold_func_t *vdev_op_hold; 104 vdev_rele_func_t *vdev_op_rele; 105 vdev_remap_func_t *vdev_op_remap; 106 /* 107 * For translating ranges from non-leaf vdevs (e.g. raidz) to leaves. 108 * Used when initializing vdevs. Isn't used by leaf ops. 109 */ 110 vdev_xlation_func_t *vdev_op_xlate; 111 vdev_dumpio_func_t *vdev_op_dumpio; 112 char vdev_op_type[16]; 113 boolean_t vdev_op_leaf; 114 } vdev_ops_t; 115 116 /* 117 * Virtual device properties 118 */ 119 struct vdev_cache_entry { 120 struct abd *ve_abd; 121 uint64_t ve_offset; 122 uint64_t ve_lastused; 123 avl_node_t ve_offset_node; 124 avl_node_t ve_lastused_node; 125 uint32_t ve_hits; 126 uint16_t ve_missed_update; 127 zio_t *ve_fill_io; 128 }; 129 130 struct vdev_cache { 131 avl_tree_t vc_offset_tree; 132 avl_tree_t vc_lastused_tree; 133 kmutex_t vc_lock; 134 }; 135 136 typedef struct vdev_queue_class { 137 uint32_t vqc_active; 138 139 /* 140 * Sorted by offset or timestamp, depending on if the queue is 141 * LBA-ordered vs FIFO. 142 */ 143 avl_tree_t vqc_queued_tree; 144 } vdev_queue_class_t; 145 146 struct vdev_queue { 147 vdev_t *vq_vdev; 148 vdev_queue_class_t vq_class[ZIO_PRIORITY_NUM_QUEUEABLE]; 149 avl_tree_t vq_active_tree; 150 avl_tree_t vq_read_offset_tree; 151 avl_tree_t vq_write_offset_tree; 152 avl_tree_t vq_trim_offset_tree; 153 uint64_t vq_last_offset; 154 hrtime_t vq_io_complete_ts; /* time last i/o completed */ 155 kmutex_t vq_lock; 156 }; 157 158 typedef enum vdev_alloc_bias { 159 VDEV_BIAS_NONE, 160 VDEV_BIAS_LOG, /* dedicated to ZIL data (SLOG) */ 161 VDEV_BIAS_SPECIAL, /* dedicated to ddt, metadata, and small blks */ 162 VDEV_BIAS_DEDUP /* dedicated to dedup metadata */ 163 } vdev_alloc_bias_t; 164 165 166 /* 167 * On-disk indirect vdev state. 168 * 169 * An indirect vdev is described exclusively in the MOS config of a pool. 170 * The config for an indirect vdev includes several fields, which are 171 * accessed in memory by a vdev_indirect_config_t. 172 */ 173 typedef struct vdev_indirect_config { 174 /* 175 * Object (in MOS) which contains the indirect mapping. This object 176 * contains an array of vdev_indirect_mapping_entry_phys_t ordered by 177 * vimep_src. The bonus buffer for this object is a 178 * vdev_indirect_mapping_phys_t. This object is allocated when a vdev 179 * removal is initiated. 180 * 181 * Note that this object can be empty if none of the data on the vdev 182 * has been copied yet. 183 */ 184 uint64_t vic_mapping_object; 185 186 /* 187 * Object (in MOS) which contains the birth times for the mapping 188 * entries. This object contains an array of 189 * vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus 190 * buffer for this object is a vdev_indirect_birth_phys_t. This object 191 * is allocated when a vdev removal is initiated. 192 * 193 * Note that this object can be empty if none of the vdev has yet been 194 * copied. 195 */ 196 uint64_t vic_births_object; 197 198 /* 199 * This is the vdev ID which was removed previous to this vdev, or 200 * UINT64_MAX if there are no previously removed vdevs. 201 */ 202 uint64_t vic_prev_indirect_vdev; 203 } vdev_indirect_config_t; 204 205 /* 206 * Virtual device descriptor 207 */ 208 struct vdev { 209 /* 210 * Common to all vdev types. 211 */ 212 uint64_t vdev_id; /* child number in vdev parent */ 213 uint64_t vdev_guid; /* unique ID for this vdev */ 214 uint64_t vdev_guid_sum; /* self guid + all child guids */ 215 uint64_t vdev_orig_guid; /* orig. guid prior to remove */ 216 uint64_t vdev_asize; /* allocatable device capacity */ 217 uint64_t vdev_min_asize; /* min acceptable asize */ 218 uint64_t vdev_max_asize; /* max acceptable asize */ 219 uint64_t vdev_ashift; /* block alignment shift */ 220 uint64_t vdev_state; /* see VDEV_STATE_* #defines */ 221 uint64_t vdev_prevstate; /* used when reopening a vdev */ 222 vdev_ops_t *vdev_ops; /* vdev operations */ 223 spa_t *vdev_spa; /* spa for this vdev */ 224 void *vdev_tsd; /* type-specific data */ 225 vnode_t *vdev_name_vp; /* vnode for pathname */ 226 vnode_t *vdev_devid_vp; /* vnode for devid */ 227 vdev_t *vdev_top; /* top-level vdev */ 228 vdev_t *vdev_parent; /* parent vdev */ 229 vdev_t **vdev_child; /* array of children */ 230 uint64_t vdev_children; /* number of children */ 231 vdev_stat_t vdev_stat; /* virtual device statistics */ 232 vdev_stat_ex_t vdev_stat_ex; /* extended statistics */ 233 boolean_t vdev_expanding; /* expand the vdev? */ 234 boolean_t vdev_reopening; /* reopen in progress? */ 235 boolean_t vdev_nonrot; /* true if solid state */ 236 int vdev_open_error; /* error on last open */ 237 kthread_t *vdev_open_thread; /* thread opening children */ 238 uint64_t vdev_crtxg; /* txg when top-level was added */ 239 240 /* 241 * Top-level vdev state. 242 */ 243 uint64_t vdev_ms_array; /* metaslab array object */ 244 uint64_t vdev_ms_shift; /* metaslab size shift */ 245 uint64_t vdev_ms_count; /* number of metaslabs */ 246 metaslab_group_t *vdev_mg; /* metaslab group */ 247 metaslab_t **vdev_ms; /* metaslab array */ 248 txg_list_t vdev_ms_list; /* per-txg dirty metaslab lists */ 249 txg_list_t vdev_dtl_list; /* per-txg dirty DTL lists */ 250 txg_node_t vdev_txg_node; /* per-txg dirty vdev linkage */ 251 boolean_t vdev_remove_wanted; /* async remove wanted? */ 252 boolean_t vdev_probe_wanted; /* async probe wanted? */ 253 list_node_t vdev_config_dirty_node; /* config dirty list */ 254 list_node_t vdev_state_dirty_node; /* state dirty list */ 255 uint64_t vdev_deflate_ratio; /* deflation ratio (x512) */ 256 uint64_t vdev_islog; /* is an intent log device */ 257 uint64_t vdev_removing; /* device is being removed? */ 258 boolean_t vdev_ishole; /* is a hole in the namespace */ 259 uint64_t vdev_top_zap; 260 vdev_alloc_bias_t vdev_alloc_bias; /* metaslab allocation bias */ 261 262 /* pool checkpoint related */ 263 space_map_t *vdev_checkpoint_sm; /* contains reserved blocks */ 264 265 /* Initialize related */ 266 boolean_t vdev_initialize_exit_wanted; 267 vdev_initializing_state_t vdev_initialize_state; 268 list_node_t vdev_initialize_node; 269 kthread_t *vdev_initialize_thread; 270 /* Protects vdev_initialize_thread and vdev_initialize_state. */ 271 kmutex_t vdev_initialize_lock; 272 kcondvar_t vdev_initialize_cv; 273 uint64_t vdev_initialize_offset[TXG_SIZE]; 274 uint64_t vdev_initialize_last_offset; 275 range_tree_t *vdev_initialize_tree; /* valid while initializing */ 276 uint64_t vdev_initialize_bytes_est; 277 uint64_t vdev_initialize_bytes_done; 278 time_t vdev_initialize_action_time; /* start and end time */ 279 280 /* TRIM related */ 281 boolean_t vdev_trim_exit_wanted; 282 boolean_t vdev_autotrim_exit_wanted; 283 vdev_trim_state_t vdev_trim_state; 284 list_node_t vdev_trim_node; 285 kmutex_t vdev_autotrim_lock; 286 kcondvar_t vdev_autotrim_cv; 287 kthread_t *vdev_autotrim_thread; 288 /* Protects vdev_trim_thread and vdev_trim_state. */ 289 kmutex_t vdev_trim_lock; 290 kcondvar_t vdev_trim_cv; 291 kthread_t *vdev_trim_thread; 292 uint64_t vdev_trim_offset[TXG_SIZE]; 293 uint64_t vdev_trim_last_offset; 294 uint64_t vdev_trim_bytes_est; 295 uint64_t vdev_trim_bytes_done; 296 uint64_t vdev_trim_rate; /* requested rate (bytes/sec) */ 297 uint64_t vdev_trim_partial; /* requested partial TRIM */ 298 uint64_t vdev_trim_secure; /* requested secure TRIM */ 299 time_t vdev_trim_action_time; /* start and end time */ 300 301 /* The following is not in ZoL, but used for auto-trim test progress */ 302 uint64_t vdev_autotrim_bytes_done; 303 304 /* for limiting outstanding I/Os (initialize and TRIM) */ 305 kmutex_t vdev_initialize_io_lock; 306 kcondvar_t vdev_initialize_io_cv; 307 uint64_t vdev_initialize_inflight; 308 kmutex_t vdev_trim_io_lock; 309 kcondvar_t vdev_trim_io_cv; 310 uint64_t vdev_trim_inflight[2]; 311 312 /* 313 * Values stored in the config for an indirect or removing vdev. 314 */ 315 vdev_indirect_config_t vdev_indirect_config; 316 317 /* 318 * The vdev_indirect_rwlock protects the vdev_indirect_mapping 319 * pointer from changing on indirect vdevs (when it is condensed). 320 * Note that removing (not yet indirect) vdevs have different 321 * access patterns (the mapping is not accessed from open context, 322 * e.g. from zio_read) and locking strategy (e.g. svr_lock). 323 */ 324 krwlock_t vdev_indirect_rwlock; 325 vdev_indirect_mapping_t *vdev_indirect_mapping; 326 vdev_indirect_births_t *vdev_indirect_births; 327 328 /* 329 * In memory data structures used to manage the obsolete sm, for 330 * indirect or removing vdevs. 331 * 332 * The vdev_obsolete_segments is the in-core record of the segments 333 * that are no longer referenced anywhere in the pool (due to 334 * being freed or remapped and not referenced by any snapshots). 335 * During a sync, segments are added to vdev_obsolete_segments 336 * via vdev_indirect_mark_obsolete(); at the end of each sync 337 * pass, this is appended to vdev_obsolete_sm via 338 * vdev_indirect_sync_obsolete(). The vdev_obsolete_lock 339 * protects against concurrent modifications of vdev_obsolete_segments 340 * from multiple zio threads. 341 */ 342 kmutex_t vdev_obsolete_lock; 343 range_tree_t *vdev_obsolete_segments; 344 space_map_t *vdev_obsolete_sm; 345 346 /* 347 * Protects the vdev_scan_io_queue field itself as well as the 348 * structure's contents (when present). 349 */ 350 kmutex_t vdev_scan_io_queue_lock; 351 struct dsl_scan_io_queue *vdev_scan_io_queue; 352 353 /* 354 * Leaf vdev state. 355 */ 356 range_tree_t *vdev_dtl[DTL_TYPES]; /* dirty time logs */ 357 space_map_t *vdev_dtl_sm; /* dirty time log space map */ 358 txg_node_t vdev_dtl_node; /* per-txg dirty DTL linkage */ 359 uint64_t vdev_dtl_object; /* DTL object */ 360 uint64_t vdev_psize; /* physical device capacity */ 361 uint64_t vdev_wholedisk; /* true if this is a whole disk */ 362 uint64_t vdev_offline; /* persistent offline state */ 363 uint64_t vdev_faulted; /* persistent faulted state */ 364 uint64_t vdev_degraded; /* persistent degraded state */ 365 uint64_t vdev_removed; /* persistent removed state */ 366 uint64_t vdev_resilver_txg; /* persistent resilvering state */ 367 uint64_t vdev_nparity; /* number of parity devices for raidz */ 368 char *vdev_path; /* vdev path (if any) */ 369 char *vdev_devid; /* vdev devid (if any) */ 370 char *vdev_physpath; /* vdev device path (if any) */ 371 char *vdev_fru; /* physical FRU location */ 372 uint64_t vdev_not_present; /* not present during import */ 373 uint64_t vdev_unspare; /* unspare when resilvering done */ 374 boolean_t vdev_nowritecache; /* true if flushwritecache failed */ 375 boolean_t vdev_has_trim; /* TRIM is supported */ 376 boolean_t vdev_has_securetrim; /* secure TRIM is supported */ 377 boolean_t vdev_checkremove; /* temporary online test */ 378 boolean_t vdev_forcefault; /* force online fault */ 379 boolean_t vdev_splitting; /* split or repair in progress */ 380 boolean_t vdev_delayed_close; /* delayed device close? */ 381 boolean_t vdev_tmpoffline; /* device taken offline temporarily? */ 382 boolean_t vdev_detached; /* device detached? */ 383 boolean_t vdev_cant_read; /* vdev is failing all reads */ 384 boolean_t vdev_cant_write; /* vdev is failing all writes */ 385 boolean_t vdev_isspare; /* was a hot spare */ 386 boolean_t vdev_isl2cache; /* was a l2cache device */ 387 boolean_t vdev_resilver_deferred; /* resilver deferred */ 388 vdev_queue_t vdev_queue; /* I/O deadline schedule queue */ 389 vdev_cache_t vdev_cache; /* physical block cache */ 390 spa_aux_vdev_t *vdev_aux; /* for l2cache and spares vdevs */ 391 zio_t *vdev_probe_zio; /* root of current probe */ 392 vdev_aux_t vdev_label_aux; /* on-disk aux state */ 393 uint64_t vdev_leaf_zap; 394 hrtime_t vdev_mmp_pending; /* 0 if write finished */ 395 uint64_t vdev_mmp_kstat_id; /* to find kstat entry */ 396 list_node_t vdev_leaf_node; /* leaf vdev list */ 397 398 /* 399 * For DTrace to work in userland (libzpool) context, these fields must 400 * remain at the end of the structure. DTrace will use the kernel's 401 * CTF definition for 'struct vdev', and since the size of a kmutex_t is 402 * larger in userland, the offsets for the rest of the fields would be 403 * incorrect. 404 */ 405 kmutex_t vdev_dtl_lock; /* vdev_dtl_{map,resilver} */ 406 kmutex_t vdev_stat_lock; /* vdev_stat */ 407 kmutex_t vdev_probe_lock; /* protects vdev_probe_zio */ 408 }; 409 410 #define VDEV_RAIDZ_MAXPARITY 3 411 412 #define VDEV_PAD_SIZE (8 << 10) 413 /* 2 padding areas (vl_pad1 and vl_be) to skip */ 414 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 415 #define VDEV_PHYS_SIZE (112 << 10) 416 #define VDEV_UBERBLOCK_RING (128 << 10) 417 418 /* 419 * MMP blocks occupy the last MMP_BLOCKS_PER_LABEL slots in the uberblock 420 * ring when MMP is enabled. 421 */ 422 #define MMP_BLOCKS_PER_LABEL 1 423 424 /* The largest uberblock we support is 8k. */ 425 #define MAX_UBERBLOCK_SHIFT (13) 426 #define VDEV_UBERBLOCK_SHIFT(vd) \ 427 MIN(MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT), \ 428 MAX_UBERBLOCK_SHIFT) 429 #define VDEV_UBERBLOCK_COUNT(vd) \ 430 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 431 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 432 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 433 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 434 435 typedef struct vdev_phys { 436 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; 437 zio_eck_t vp_zbt; 438 } vdev_phys_t; 439 440 typedef enum vbe_vers { 441 /* 442 * The bootenv file is stored as ascii text in the envblock. 443 * It is used by the GRUB bootloader used on Linux to store the 444 * contents of the grubenv file. The file is stored as raw ASCII, 445 * and is protected by an embedded checksum. By default, GRUB will 446 * check if the boot filesystem supports storing the environment data 447 * in a special location, and if so, will invoke filesystem specific 448 * logic to retrieve it. This can be overriden by a variable, should 449 * the user so desire. 450 */ 451 VB_RAW = 0, 452 453 /* 454 * The bootenv file is converted to an nvlist and then packed into the 455 * envblock. 456 */ 457 VB_NVLIST = 1 458 } vbe_vers_t; 459 460 typedef struct vdev_boot_envblock { 461 uint64_t vbe_version; 462 char vbe_bootenv[VDEV_PAD_SIZE - sizeof (uint64_t) - 463 sizeof (zio_eck_t)]; 464 zio_eck_t vbe_zbt; 465 } vdev_boot_envblock_t; 466 467 CTASSERT(sizeof (vdev_boot_envblock_t) == VDEV_PAD_SIZE); 468 469 typedef struct vdev_label { 470 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ 471 vdev_boot_envblock_t vl_be; /* 8K */ 472 vdev_phys_t vl_vdev_phys; /* 112K */ 473 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 474 } vdev_label_t; /* 256K total */ 475 476 /* 477 * vdev_dirty() flags 478 */ 479 #define VDD_METASLAB 0x01 480 #define VDD_DTL 0x02 481 482 /* Offset of embedded boot loader region on each label */ 483 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 484 /* 485 * Size of embedded boot loader region on each label. 486 * The total size of the first two labels plus the boot area is 4MB. 487 */ 488 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 489 490 /* 491 * Size of label regions at the start and end of each leaf device. 492 */ 493 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 494 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 495 #define VDEV_LABELS 4 496 #define VDEV_BEST_LABEL VDEV_LABELS 497 498 #define VDEV_ALLOC_LOAD 0 499 #define VDEV_ALLOC_ADD 1 500 #define VDEV_ALLOC_SPARE 2 501 #define VDEV_ALLOC_L2CACHE 3 502 #define VDEV_ALLOC_ROOTPOOL 4 503 #define VDEV_ALLOC_SPLIT 5 504 #define VDEV_ALLOC_ATTACH 6 505 506 /* 507 * Allocate or free a vdev 508 */ 509 extern vdev_t *vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, 510 vdev_ops_t *ops); 511 extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config, 512 vdev_t *parent, uint_t id, int alloctype); 513 extern void vdev_free(vdev_t *vd); 514 515 /* 516 * Add or remove children and parents 517 */ 518 extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd); 519 extern void vdev_remove_child(vdev_t *pvd, vdev_t *cvd); 520 extern void vdev_compact_children(vdev_t *pvd); 521 extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops); 522 extern void vdev_remove_parent(vdev_t *cvd); 523 524 /* 525 * vdev sync load and sync 526 */ 527 extern boolean_t vdev_log_state_valid(vdev_t *vd); 528 extern int vdev_load(vdev_t *vd); 529 extern int vdev_dtl_load(vdev_t *vd); 530 extern void vdev_sync(vdev_t *vd, uint64_t txg); 531 extern void vdev_sync_done(vdev_t *vd, uint64_t txg); 532 extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg); 533 extern void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg); 534 535 /* 536 * Available vdev types. 537 */ 538 extern vdev_ops_t vdev_root_ops; 539 extern vdev_ops_t vdev_mirror_ops; 540 extern vdev_ops_t vdev_replacing_ops; 541 extern vdev_ops_t vdev_raidz_ops; 542 extern vdev_ops_t vdev_disk_ops; 543 extern vdev_ops_t vdev_file_ops; 544 extern vdev_ops_t vdev_missing_ops; 545 extern vdev_ops_t vdev_hole_ops; 546 extern vdev_ops_t vdev_spare_ops; 547 extern vdev_ops_t vdev_indirect_ops; 548 549 /* 550 * Common size functions 551 */ 552 extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, 553 range_seg64_t *out); 554 extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize); 555 extern uint64_t vdev_get_min_asize(vdev_t *vd); 556 extern void vdev_set_min_asize(vdev_t *vd); 557 558 /* 559 * Global variables 560 */ 561 extern int zfs_vdev_standard_sm_blksz; 562 /* zdb uses this tunable, so it must be declared here to make lint happy. */ 563 extern int zfs_vdev_cache_size; 564 565 /* 566 * Functions from vdev_indirect.c 567 */ 568 extern void vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx); 569 extern boolean_t vdev_indirect_should_condense(vdev_t *vd); 570 extern void spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx); 571 extern int vdev_obsolete_sm_object(vdev_t *vd); 572 extern boolean_t vdev_obsolete_counts_are_precise(vdev_t *vd); 573 574 /* 575 * Other miscellaneous functions 576 */ 577 int vdev_checkpoint_sm_object(vdev_t *vd); 578 579 /* 580 * The vdev_buf_t is used to translate between zio_t and buf_t, and back again. 581 */ 582 typedef struct vdev_buf { 583 buf_t vb_buf; /* buffer that describes the io */ 584 zio_t *vb_io; /* pointer back to the original zio_t */ 585 } vdev_buf_t; 586 587 /* 588 * Support routines used during boot from a ZFS pool 589 */ 590 extern int vdev_disk_read_rootlabel(const char *, const char *, nvlist_t **); 591 extern void vdev_disk_preroot_init(const char *); 592 extern void vdev_disk_preroot_fini(void); 593 extern const char *vdev_disk_preroot_lookup(uint64_t, uint64_t); 594 extern const char *vdev_disk_preroot_force_path(void); 595 596 #ifdef __cplusplus 597 } 598 #endif 599 600 #endif /* _SYS_VDEV_IMPL_H */ 601