1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/limits.h>
35
36 #ifndef _KERNEL
37 #include <stdbool.h>
38 #include <stdio.h>
39 #include <string.h>
40 #include <stdlib.h>
41 #include <time.h>
42 #include <sys/errno.h>
43 #include <ufs/ufs/dinode.h>
44 #include <ufs/ffs/fs.h>
45
46 uint32_t calculate_crc32c(uint32_t, const void *, size_t);
47 uint32_t ffs_calc_sbhash(struct fs *);
48 struct malloc_type;
49 #define UFS_MALLOC(size, type, flags) malloc(size)
50 #define UFS_FREE(ptr, type) free(ptr)
51 #define maxphys MAXPHYS
52
53 #else /* _KERNEL */
54 #include <sys/systm.h>
55 #include <sys/gsb_crc32.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/vnode.h>
60 #include <sys/bio.h>
61 #include <sys/buf.h>
62 #include <sys/ucred.h>
63 #include <sys/sysctl.h>
64
65 #include <ufs/ufs/quota.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/extattr.h>
68 #include <ufs/ufs/ufsmount.h>
69 #include <ufs/ufs/ufs_extern.h>
70 #include <ufs/ffs/ffs_extern.h>
71 #include <ufs/ffs/fs.h>
72
73 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
74 #define UFS_FREE(ptr, type) free(ptr, type)
75
76 #endif /* _KERNEL */
77
78 /*
79 * Verify an inode check-hash.
80 */
81 int
ffs_verify_dinode_ckhash(struct fs * fs,struct ufs2_dinode * dip)82 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
83 {
84 uint32_t ckhash, save_ckhash;
85
86 /*
87 * Return success if unallocated or we are not doing inode check-hash.
88 */
89 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
90 return (0);
91 /*
92 * Exclude di_ckhash from the crc32 calculation, e.g., always use
93 * a check-hash value of zero when calculating the check-hash.
94 */
95 save_ckhash = dip->di_ckhash;
96 dip->di_ckhash = 0;
97 ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
98 dip->di_ckhash = save_ckhash;
99 if (save_ckhash == ckhash)
100 return (0);
101 return (EINVAL);
102 }
103
104 /*
105 * Update an inode check-hash.
106 */
107 void
ffs_update_dinode_ckhash(struct fs * fs,struct ufs2_dinode * dip)108 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
109 {
110
111 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
112 return;
113 /*
114 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
115 * a check-hash value of zero when calculating the new check-hash.
116 */
117 dip->di_ckhash = 0;
118 dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
119 }
120
121 /*
122 * These are the low-level functions that actually read and write
123 * the superblock and its associated data.
124 */
125 static off_t sblock_try[] = SBLOCKSEARCH;
126 static int readsuper(void *, struct fs **, off_t, int,
127 int (*)(void *, off_t, void **, int));
128 static void ffs_oldfscompat_read(struct fs *, ufs2_daddr_t);
129 static int validate_sblock(struct fs *, int);
130
131 /*
132 * Read a superblock from the devfd device.
133 *
134 * If an alternate superblock is specified, it is read. Otherwise the
135 * set of locations given in the SBLOCKSEARCH list is searched for a
136 * superblock. Memory is allocated for the superblock by the readfunc and
137 * is returned. If filltype is non-NULL, additional memory is allocated
138 * of type filltype and filled in with the superblock summary information.
139 * All memory is freed when any error is returned.
140 *
141 * If a superblock is found, zero is returned. Otherwise one of the
142 * following error values is returned:
143 * EIO: non-existent or truncated superblock.
144 * EIO: error reading summary information.
145 * ENOENT: no usable known superblock found.
146 * EILSEQ: filesystem with wrong byte order found.
147 * ENOMEM: failed to allocate space for the superblock.
148 * EINVAL: The previous newfs operation on this volume did not complete.
149 * The administrator must complete newfs before using this volume.
150 */
151 int
ffs_sbget(void * devfd,struct fs ** fsp,off_t sblock,int flags,struct malloc_type * filltype,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))152 ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags,
153 struct malloc_type *filltype,
154 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
155 {
156 struct fs *fs;
157 struct fs_summary_info *fs_si;
158 int i, error;
159 uint64_t size, blks;
160 uint8_t *space;
161 int32_t *lp;
162 char *buf;
163
164 fs = NULL;
165 *fsp = NULL;
166 if (sblock != UFS_STDSB) {
167 if ((error = readsuper(devfd, &fs, sblock,
168 flags | UFS_ALTSBLK, readfunc)) != 0) {
169 if (fs != NULL)
170 UFS_FREE(fs, filltype);
171 return (error);
172 }
173 } else {
174 for (i = 0; sblock_try[i] != -1; i++) {
175 if ((error = readsuper(devfd, &fs, sblock_try[i],
176 flags, readfunc)) == 0) {
177 if ((flags & UFS_NOCSUM) != 0) {
178 *fsp = fs;
179 return (0);
180 }
181 break;
182 }
183 if (fs != NULL) {
184 UFS_FREE(fs, filltype);
185 fs = NULL;
186 }
187 if (error == ENOENT)
188 continue;
189 return (error);
190 }
191 if (sblock_try[i] == -1)
192 return (ENOENT);
193 }
194 /*
195 * Read in the superblock summary information.
196 */
197 size = fs->fs_cssize;
198 blks = howmany(size, fs->fs_fsize);
199 if (fs->fs_contigsumsize > 0)
200 size += fs->fs_ncg * sizeof(int32_t);
201 size += fs->fs_ncg * sizeof(uint8_t);
202 if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
203 UFS_FREE(fs, filltype);
204 return (ENOMEM);
205 }
206 bzero(fs_si, sizeof(*fs_si));
207 fs->fs_si = fs_si;
208 if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
209 UFS_FREE(fs->fs_si, filltype);
210 UFS_FREE(fs, filltype);
211 return (ENOMEM);
212 }
213 fs->fs_csp = (struct csum *)space;
214 for (i = 0; i < blks; i += fs->fs_frag) {
215 size = fs->fs_bsize;
216 if (i + fs->fs_frag > blks)
217 size = (blks - i) * fs->fs_fsize;
218 buf = NULL;
219 error = (*readfunc)(devfd,
220 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
221 if (error) {
222 if (buf != NULL)
223 UFS_FREE(buf, filltype);
224 UFS_FREE(fs->fs_csp, filltype);
225 UFS_FREE(fs->fs_si, filltype);
226 UFS_FREE(fs, filltype);
227 return (error);
228 }
229 memcpy(space, buf, size);
230 UFS_FREE(buf, filltype);
231 space += size;
232 }
233 if (fs->fs_contigsumsize > 0) {
234 fs->fs_maxcluster = lp = (int32_t *)space;
235 for (i = 0; i < fs->fs_ncg; i++)
236 *lp++ = fs->fs_contigsumsize;
237 space = (uint8_t *)lp;
238 }
239 size = fs->fs_ncg * sizeof(uint8_t);
240 fs->fs_contigdirs = (uint8_t *)space;
241 bzero(fs->fs_contigdirs, size);
242 *fsp = fs;
243 return (0);
244 }
245
246 /*
247 * Try to read a superblock from the location specified by sblockloc.
248 * Return zero on success or an errno on failure.
249 */
250 static int
readsuper(void * devfd,struct fs ** fsp,off_t sblockloc,int flags,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))251 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags,
252 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
253 {
254 struct fs *fs;
255 int error, res;
256 uint32_t ckhash;
257
258 error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
259 if (error != 0)
260 return (error);
261 fs = *fsp;
262 if (fs->fs_magic == FS_BAD_MAGIC)
263 return (EINVAL);
264 /*
265 * For UFS1 with a 65536 block size, the first backup superblock
266 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2
267 * is the first location checked, the first backup is the superblock
268 * that will be accessed. Here we fail the lookup so that we can
269 * retry with the correct location for the UFS1 superblock.
270 */
271 if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 &&
272 fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2)
273 return (ENOENT);
274 ffs_oldfscompat_read(fs, sblockloc);
275 if ((error = validate_sblock(fs, flags)) > 0)
276 return (error);
277 /*
278 * If the filesystem has been run on a kernel without
279 * metadata check hashes, disable them.
280 */
281 if ((fs->fs_flags & FS_METACKHASH) == 0)
282 fs->fs_metackhash = 0;
283 /*
284 * Clear any check-hashes that are not maintained
285 * by this kernel. Also clear any unsupported flags.
286 */
287 fs->fs_metackhash &= CK_SUPPORTED;
288 fs->fs_flags &= FS_SUPPORTED;
289 if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
290 if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) ==
291 (UFS_NOMSG | UFS_NOHASHFAIL))
292 return (0);
293 if ((flags & UFS_NOMSG) != 0)
294 return (EINTEGRITY);
295 #ifdef _KERNEL
296 res = uprintf("Superblock check-hash failed: recorded "
297 "check-hash 0x%x != computed check-hash 0x%x%s\n",
298 fs->fs_ckhash, ckhash,
299 (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : "");
300 #else
301 res = 0;
302 #endif
303 /*
304 * Print check-hash failure if no controlling terminal
305 * in kernel or always if in user-mode (libufs).
306 */
307 if (res == 0)
308 printf("Superblock check-hash failed: recorded "
309 "check-hash 0x%x != computed check-hash "
310 "0x%x%s\n", fs->fs_ckhash, ckhash,
311 (flags & UFS_NOHASHFAIL) ? " (Ignored)" : "");
312 if ((flags & UFS_NOHASHFAIL) != 0)
313 return (0);
314 return (EINTEGRITY);
315 }
316 /* Have to set for old filesystems that predate this field */
317 fs->fs_sblockactualloc = sblockloc;
318 /* Not yet any summary information */
319 fs->fs_si = NULL;
320 return (0);
321 }
322
323 /*
324 * Sanity checks for loading old filesystem superblocks.
325 * See ffs_oldfscompat_write below for unwound actions.
326 *
327 * XXX - Parts get retired eventually.
328 * Unfortunately new bits get added.
329 */
330 static void
ffs_oldfscompat_read(struct fs * fs,ufs2_daddr_t sblockloc)331 ffs_oldfscompat_read(struct fs *fs, ufs2_daddr_t sblockloc)
332 {
333 uint64_t maxfilesize;
334
335 /*
336 * If not yet done, update fs_flags location and value of fs_sblockloc.
337 */
338 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
339 fs->fs_flags = fs->fs_old_flags;
340 fs->fs_old_flags |= FS_FLAGS_UPDATED;
341 fs->fs_sblockloc = sblockloc;
342 }
343 /*
344 * If not yet done, update UFS1 superblock with new wider fields.
345 */
346 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
347 fs->fs_maxbsize = fs->fs_bsize;
348 fs->fs_time = fs->fs_old_time;
349 fs->fs_size = fs->fs_old_size;
350 fs->fs_dsize = fs->fs_old_dsize;
351 fs->fs_csaddr = fs->fs_old_csaddr;
352 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
353 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
354 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
355 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
356 }
357 if (fs->fs_magic == FS_UFS1_MAGIC &&
358 fs->fs_old_inodefmt < FS_44INODEFMT) {
359 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
360 fs->fs_qbmask = ~fs->fs_bmask;
361 fs->fs_qfmask = ~fs->fs_fmask;
362 }
363 if (fs->fs_magic == FS_UFS1_MAGIC) {
364 fs->fs_save_maxfilesize = fs->fs_maxfilesize;
365 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
366 if (fs->fs_maxfilesize > maxfilesize)
367 fs->fs_maxfilesize = maxfilesize;
368 }
369 /* Compatibility for old filesystems */
370 if (fs->fs_avgfilesize <= 0)
371 fs->fs_avgfilesize = AVFILESIZ;
372 if (fs->fs_avgfpdir <= 0)
373 fs->fs_avgfpdir = AFPDIR;
374 }
375
376 /*
377 * Unwinding superblock updates for old filesystems.
378 * See ffs_oldfscompat_read above for details.
379 *
380 * XXX - Parts get retired eventually.
381 * Unfortunately new bits get added.
382 */
383 void
ffs_oldfscompat_write(struct fs * fs)384 ffs_oldfscompat_write(struct fs *fs)
385 {
386
387 /*
388 * Copy back UFS2 updated fields that UFS1 inspects.
389 */
390 if (fs->fs_magic == FS_UFS1_MAGIC) {
391 fs->fs_old_time = fs->fs_time;
392 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
393 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
394 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
395 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
396 fs->fs_maxfilesize = fs->fs_save_maxfilesize;
397 }
398 }
399
400 /*
401 * Sanity checks for loading old filesystem inodes.
402 *
403 * XXX - Parts get retired eventually.
404 * Unfortunately new bits get added.
405 */
406 static int prttimechgs = 0;
407 #ifdef _KERNEL
408 SYSCTL_DECL(_vfs_ffs);
409 SYSCTL_INT(_vfs_ffs, OID_AUTO, prttimechgs, CTLFLAG_RWTUN, &prttimechgs, 0,
410 "print UFS1 time changes made to inodes");
411 #endif /* _KERNEL */
412 bool
ffs_oldfscompat_inode_read(struct fs * fs,union dinodep dp,time_t now)413 ffs_oldfscompat_inode_read(struct fs *fs, union dinodep dp, time_t now)
414 {
415 bool change;
416
417 change = false;
418 switch (fs->fs_magic) {
419 case FS_UFS2_MAGIC:
420 /* No changes for now */
421 break;
422
423 case FS_UFS1_MAGIC:
424 /*
425 * With the change to unsigned time values in UFS1, times set
426 * before Jan 1, 1970 will appear to be in the future. Check
427 * for future times and set them to be the current time.
428 */
429 if (dp.dp1->di_ctime > now) {
430 if (prttimechgs)
431 printf("ctime %ud changed to %ld\n",
432 dp.dp1->di_ctime, (long)now);
433 dp.dp1->di_ctime = now;
434 change = true;
435 }
436 if (dp.dp1->di_mtime > now) {
437 if (prttimechgs)
438 printf("mtime %ud changed to %ld\n",
439 dp.dp1->di_mtime, (long)now);
440 dp.dp1->di_mtime = now;
441 dp.dp1->di_ctime = now;
442 change = true;
443 }
444 if (dp.dp1->di_atime > now) {
445 if (prttimechgs)
446 printf("atime %ud changed to %ld\n",
447 dp.dp1->di_atime, (long)now);
448 dp.dp1->di_atime = now;
449 dp.dp1->di_ctime = now;
450 change = true;
451 }
452 break;
453 }
454 return (change);
455 }
456
457 /*
458 * Verify the filesystem values.
459 */
460 #define ILOG2(num) (fls(num) - 1)
461 #ifdef STANDALONE_SMALL
462 #define MPRINT(...) do { } while (0)
463 #else
464 #define MPRINT(...) if (prtmsg) printf(__VA_ARGS__)
465 #endif
466 #define FCHK(lhs, op, rhs, fmt) \
467 if (lhs op rhs) { \
468 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
469 #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, \
470 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs); \
471 if (error < 0) \
472 return (ENOENT); \
473 if (error == 0) \
474 error = ENOENT; \
475 }
476 #define WCHK(lhs, op, rhs, fmt) \
477 if (lhs op rhs) { \
478 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
479 #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\
480 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\
481 if (error == 0) \
482 error = warnerr; \
483 if (warnerr == 0) \
484 lhs = rhs; \
485 }
486 #define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \
487 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \
488 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
489 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n", \
490 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \
491 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \
492 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2); \
493 if (error < 0) \
494 return (ENOENT); \
495 if (error == 0) \
496 error = ENOENT; \
497 }
498
499 static int
validate_sblock(struct fs * fs,int flags)500 validate_sblock(struct fs *fs, int flags)
501 {
502 uint64_t i, sectorsize;
503 uint64_t maxfilesize, sizepb;
504 int error, prtmsg, warnerr;
505 char *wmsg;
506
507 error = 0;
508 sectorsize = dbtob(1);
509 prtmsg = ((flags & UFS_NOMSG) == 0);
510 warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT;
511 wmsg = warnerr ? "" : " (Ignored)";
512 /*
513 * Check for endian mismatch between machine and filesystem.
514 */
515 if (((fs->fs_magic != FS_UFS2_MAGIC) &&
516 (bswap32(fs->fs_magic) == FS_UFS2_MAGIC)) ||
517 ((fs->fs_magic != FS_UFS1_MAGIC) &&
518 (bswap32(fs->fs_magic) == FS_UFS1_MAGIC))) {
519 MPRINT("UFS superblock failed due to endian mismatch "
520 "between machine and filesystem\n");
521 return(EILSEQ);
522 }
523 /*
524 * If just validating for recovery, then do just the minimal
525 * checks needed for the superblock fields needed to find
526 * alternate superblocks.
527 */
528 if ((flags & UFS_FSRONLY) == UFS_FSRONLY &&
529 (fs->fs_magic == FS_UFS1_MAGIC || fs->fs_magic == FS_UFS2_MAGIC)) {
530 error = -1; /* fail on first error */
531 if (fs->fs_magic == FS_UFS2_MAGIC) {
532 FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
533 } else if (fs->fs_magic == FS_UFS1_MAGIC) {
534 FCHK(fs->fs_sblockloc, <, 0, %jd);
535 FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
536 }
537 FCHK(fs->fs_frag, <, 1, %jd);
538 FCHK(fs->fs_frag, >, MAXFRAG, %jd);
539 FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
540 FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
541 FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE),
542 %jd);
543 FCHK(fs->fs_fsize, <, sectorsize, %jd);
544 FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
545 FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
546 FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
547 FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
548 FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
549 FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
550 FCHK(fs->fs_ncg, <, 1, %jd);
551 FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
552 FCHK(fs->fs_old_cgoffset, <, 0, %jd);
553 FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
554 FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg,
555 %jd);
556 FCHK(fs->fs_sblkno, !=, roundup(
557 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
558 fs->fs_frag), %jd);
559 FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
560 /* Only need to validate these if reading in csum data */
561 if ((flags & UFS_NOCSUM) != 0)
562 return (error);
563 FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
564 (((int64_t)(1)) << 32) - INOPB(fs), %jd);
565 FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
566 FCHK(fs->fs_cstotal.cs_nifree, >,
567 (uint64_t)fs->fs_ipg * fs->fs_ncg, %jd);
568 FCHK(fs->fs_cstotal.cs_ndir, >,
569 ((uint64_t)fs->fs_ipg * fs->fs_ncg) -
570 fs->fs_cstotal.cs_nifree, %jd);
571 FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
572 FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg,
573 %jd);
574 FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
575 FCHK(fs->fs_csaddr, <, 0, %jd);
576 FCHK(fs->fs_cssize, !=,
577 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
578 FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
579 fs->fs_size, %jd);
580 FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)),
581 %jd);
582 FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize,
583 fs->fs_fsize)), >, dtog(fs, fs->fs_csaddr), %jd);
584 return (error);
585 }
586 if (fs->fs_magic == FS_UFS2_MAGIC) {
587 if ((flags & UFS_ALTSBLK) == 0)
588 FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2,
589 fs->fs_sblockactualloc, !=, 0, %jd);
590 FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
591 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
592 sizeof(ufs2_daddr_t)), %jd);
593 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t),
594 %jd);
595 FCHK(fs->fs_inopb, !=,
596 fs->fs_bsize / sizeof(struct ufs2_dinode), %jd);
597 } else if (fs->fs_magic == FS_UFS1_MAGIC) {
598 if ((flags & UFS_ALTSBLK) == 0)
599 FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd);
600 FCHK(fs->fs_sblockloc, <, 0, %jd);
601 FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
602 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t),
603 %jd);
604 FCHK(fs->fs_inopb, !=,
605 fs->fs_bsize / sizeof(struct ufs1_dinode), %jd);
606 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
607 sizeof(ufs1_daddr_t)), %jd);
608 WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd);
609 WCHK(fs->fs_old_rotdelay, !=, 0, %jd);
610 WCHK(fs->fs_old_rps, !=, 60, %jd);
611 WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd);
612 WCHK(fs->fs_old_interleave, !=, 1, %jd);
613 WCHK(fs->fs_old_trackskew, !=, 0, %jd);
614 WCHK(fs->fs_old_cpc, !=, 0, %jd);
615 WCHK(fs->fs_old_postblformat, !=, 1, %jd);
616 FCHK(fs->fs_old_nrpos, !=, 1, %jd);
617 WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd);
618 WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd);
619 } else {
620 /* Bad magic number, so assume not a superblock */
621 return (ENOENT);
622 }
623 FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
624 FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
625 FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd);
626 FCHK(powerof2(fs->fs_bsize), ==, 0, %jd);
627 FCHK(fs->fs_frag, <, 1, %jd);
628 FCHK(fs->fs_frag, >, MAXFRAG, %jd);
629 FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd);
630 FCHK(fs->fs_fsize, <, sectorsize, %jd);
631 FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
632 FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
633 FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
634 FCHK(fs->fs_ncg, <, 1, %jd);
635 FCHK(fs->fs_ipg, <, fs->fs_inopb, %jd);
636 FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
637 (((int64_t)(1)) << 32) - INOPB(fs), %jd);
638 FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
639 FCHK(fs->fs_cstotal.cs_nifree, >, (uint64_t)fs->fs_ipg * fs->fs_ncg,
640 %jd);
641 FCHK(fs->fs_cstotal.cs_ndir, <, 0, %jd);
642 FCHK(fs->fs_cstotal.cs_ndir, >,
643 ((uint64_t)fs->fs_ipg * fs->fs_ncg) - fs->fs_cstotal.cs_nifree,
644 %jd);
645 FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
646 FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
647 /* fix for misconfigured filesystems */
648 if (fs->fs_maxbsize == 0)
649 fs->fs_maxbsize = fs->fs_bsize;
650 FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd);
651 FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd);
652 FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd);
653 FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx);
654 FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx);
655 FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx);
656 FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx);
657 FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd);
658 FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd);
659 FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd);
660 FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
661 FCHK(fs->fs_old_cgoffset, <, 0, %jd);
662 FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
663 FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd);
664 FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
665 /*
666 * If anything has failed up to this point, it is usafe to proceed
667 * as checks below may divide by zero or make other fatal calculations.
668 * So if we have any errors at this point, give up.
669 */
670 if (error)
671 return (error);
672 FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
673 FCHK(fs->fs_ipg % fs->fs_inopb, !=, 0, %jd);
674 FCHK(fs->fs_sblkno, !=, roundup(
675 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
676 fs->fs_frag), %jd);
677 FCHK(fs->fs_cblkno, !=, fs->fs_sblkno +
678 roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd);
679 FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd);
680 FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd);
681 FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd);
682 FCHK(fs->fs_cgsize, <, fs->fs_fsize, %jd);
683 FCHK(fs->fs_cgsize % fs->fs_fsize, !=, 0, %jd);
684 /*
685 * This test is valid, however older versions of growfs failed
686 * to correctly update fs_dsize so will fail this test. Thus we
687 * exclude it from the requirements.
688 */
689 #ifdef notdef
690 WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno -
691 fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
692 howmany(fs->fs_cssize, fs->fs_fsize), %jd);
693 #endif
694 WCHK(fs->fs_metaspace, <, 0, %jd);
695 WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd);
696 WCHK(fs->fs_minfree, >, 99, %jd%%);
697 maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
698 for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
699 sizepb *= NINDIR(fs);
700 maxfilesize += sizepb;
701 }
702 WCHK(fs->fs_maxfilesize, >, maxfilesize, %jd);
703 /*
704 * These values have a tight interaction with each other that
705 * makes it hard to tightly bound them. So we can only check
706 * that they are within a broader possible range.
707 *
708 * The size cannot always be accurately determined, but ensure
709 * that it is consistent with the number of cylinder groups (fs_ncg)
710 * and the number of fragments per cylinder group (fs_fpg). Ensure
711 * that the summary information size is correct and that it starts
712 * and ends in the data area of the same cylinder group.
713 */
714 FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
715 FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg, %jd);
716 FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
717 /*
718 * If we are not requested to read in the csum data stop here
719 * as the correctness of the remaining values is only important
720 * to bound the space needed to be allocated to hold the csum data.
721 */
722 if ((flags & UFS_NOCSUM) != 0)
723 return (error);
724 FCHK(fs->fs_csaddr, <, 0, %jd);
725 FCHK(fs->fs_cssize, !=,
726 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
727 FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
728 fs->fs_size, %jd);
729 FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd);
730 FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >,
731 dtog(fs, fs->fs_csaddr), %jd);
732 /*
733 * With file system clustering it is possible to allocate
734 * many contiguous blocks. The kernel variable maxphys defines
735 * the maximum transfer size permitted by the controller and/or
736 * buffering. The fs_maxcontig parameter controls the maximum
737 * number of blocks that the filesystem will read or write
738 * in a single transfer. It is calculated when the filesystem
739 * is created as maxphys / fs_bsize. The loader uses a maxphys
740 * of 128K even when running on a system that supports larger
741 * values. If the filesystem was built on a system that supports
742 * a larger maxphys (1M is typical) it will have configured
743 * fs_maxcontig for that larger system. So we bound the upper
744 * allowable limit for fs_maxconfig to be able to at least
745 * work with a 1M maxphys on the smallest block size filesystem:
746 * 1M / 4096 == 256. There is no harm in allowing the mounting of
747 * filesystems that make larger than maxphys I/O requests because
748 * those (mostly 32-bit machines) can (very slowly) handle I/O
749 * requests that exceed maxphys.
750 */
751 WCHK(fs->fs_maxcontig, <, 0, %jd);
752 WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd);
753 FCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd);
754 FCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=,
755 MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd);
756 return (error);
757 }
758
759 /*
760 * Make an extensive search to find a superblock. If the superblock
761 * in the standard place cannot be used, try looking for one of the
762 * backup superblocks.
763 *
764 * Flags are made up of the following or'ed together options:
765 *
766 * UFS_NOMSG indicates that superblock inconsistency error messages
767 * should not be printed.
768 *
769 * UFS_NOCSUM causes only the superblock itself to be returned, but does
770 * not read in any auxillary data structures like the cylinder group
771 * summary information.
772 */
773 int
ffs_sbsearch(void * devfd,struct fs ** fsp,int reqflags,struct malloc_type * filltype,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))774 ffs_sbsearch(void *devfd, struct fs **fsp, int reqflags,
775 struct malloc_type *filltype,
776 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
777 {
778 struct fsrecovery *fsr;
779 struct fs *protofs;
780 void *fsrbuf;
781 char *cp;
782 long nocsum, flags, msg, cg;
783 off_t sblk, secsize;
784 int error;
785
786 msg = (reqflags & UFS_NOMSG) == 0;
787 nocsum = reqflags & UFS_NOCSUM;
788 /*
789 * Try normal superblock read and return it if it works.
790 *
791 * Suppress messages if it fails until we find out if
792 * failure can be avoided.
793 */
794 flags = UFS_NOMSG | nocsum;
795 error = ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc);
796 /*
797 * If successful or endian error, no need to try further.
798 */
799 if (error == 0 || error == EILSEQ) {
800 if (msg && error == EILSEQ)
801 printf("UFS superblock failed due to endian mismatch "
802 "between machine and filesystem\n");
803 return (error);
804 }
805 /*
806 * First try: ignoring hash failures.
807 */
808 flags |= UFS_NOHASHFAIL;
809 if (msg)
810 flags &= ~UFS_NOMSG;
811 if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) == 0)
812 return (0);
813 /*
814 * Next up is to check if fields of the superblock that are
815 * needed to find backup superblocks are usable.
816 */
817 if (msg)
818 printf("Attempted recovery for standard superblock: failed\n");
819 flags = UFS_FSRONLY | UFS_NOHASHFAIL | UFS_NOCSUM | UFS_NOMSG;
820 if (ffs_sbget(devfd, &protofs, UFS_STDSB, flags, filltype,
821 readfunc) == 0) {
822 if (msg)
823 printf("Attempt extraction of recovery data from "
824 "standard superblock.\n");
825 } else {
826 /*
827 * Final desperation is to see if alternate superblock
828 * parameters have been saved in the boot area.
829 */
830 if (msg)
831 printf("Attempted extraction of recovery data from "
832 "standard superblock: failed\nAttempt to find "
833 "boot zone recovery data.\n");
834 /*
835 * Look to see if recovery information has been saved.
836 * If so we can generate a prototype superblock based
837 * on that information.
838 *
839 * We need fragments-per-group, number of cylinder groups,
840 * location of the superblock within the cylinder group, and
841 * the conversion from filesystem fragments to disk blocks.
842 *
843 * When building a UFS2 filesystem, newfs(8) stores these
844 * details at the end of the boot block area at the start
845 * of the filesystem partition. If they have been overwritten
846 * by a boot block, we fail. But usually they are there
847 * and we can use them.
848 *
849 * We could ask the underlying device for its sector size,
850 * but some devices lie. So we just try a plausible range.
851 */
852 error = ENOENT;
853 fsrbuf = NULL;
854 for (secsize = dbtob(1); secsize <= SBLOCKSIZE; secsize *= 2)
855 if ((error = (*readfunc)(devfd, (SBLOCK_UFS2 - secsize),
856 &fsrbuf, secsize)) == 0)
857 break;
858 if (error != 0)
859 goto trynowarn;
860 cp = fsrbuf; /* type change to keep compiler happy */
861 fsr = (struct fsrecovery *)&cp[secsize - sizeof *fsr];
862 if (fsr->fsr_magic != FS_UFS2_MAGIC ||
863 (protofs = UFS_MALLOC(SBLOCKSIZE, filltype, M_NOWAIT))
864 == NULL) {
865 UFS_FREE(fsrbuf, filltype);
866 goto trynowarn;
867 }
868 memset(protofs, 0, sizeof(struct fs));
869 protofs->fs_fpg = fsr->fsr_fpg;
870 protofs->fs_fsbtodb = fsr->fsr_fsbtodb;
871 protofs->fs_sblkno = fsr->fsr_sblkno;
872 protofs->fs_magic = fsr->fsr_magic;
873 protofs->fs_ncg = fsr->fsr_ncg;
874 UFS_FREE(fsrbuf, filltype);
875 }
876 /*
877 * Scan looking for alternative superblocks.
878 */
879 flags = nocsum;
880 if (!msg)
881 flags |= UFS_NOMSG;
882 for (cg = 0; cg < protofs->fs_ncg; cg++) {
883 sblk = fsbtodb(protofs, cgsblock(protofs, cg));
884 if (msg)
885 printf("Try cg %ld at sblock loc %jd\n", cg,
886 (intmax_t)sblk);
887 if (ffs_sbget(devfd, fsp, dbtob(sblk), flags, filltype,
888 readfunc) == 0) {
889 if (msg)
890 printf("Succeeded with alternate superblock "
891 "at %jd\n", (intmax_t)sblk);
892 UFS_FREE(protofs, filltype);
893 return (0);
894 }
895 }
896 UFS_FREE(protofs, filltype);
897 /*
898 * Our alternate superblock strategies failed. Our last ditch effort
899 * is to see if the standard superblock has only non-critical errors.
900 */
901 trynowarn:
902 flags = UFS_NOWARNFAIL | UFS_NOMSG | nocsum;
903 if (msg) {
904 printf("Finding an alternate superblock failed.\nCheck for "
905 "only non-critical errors in standard superblock\n");
906 flags &= ~UFS_NOMSG;
907 }
908 if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) != 0) {
909 if (msg)
910 printf("Failed, superblock has critical errors\n");
911 return (ENOENT);
912 }
913 if (msg)
914 printf("Success, using standard superblock with "
915 "non-critical errors.\n");
916 return (0);
917 }
918
919 /*
920 * Write a superblock to the devfd device from the memory pointed to by fs.
921 * Write out the superblock summary information if it is present.
922 *
923 * If the write is successful, zero is returned. Otherwise one of the
924 * following error values is returned:
925 * EIO: failed to write superblock.
926 * EIO: failed to write superblock summary information.
927 */
928 int
ffs_sbput(void * devfd,struct fs * fs,off_t loc,int (* writefunc)(void * devfd,off_t loc,void * buf,int size))929 ffs_sbput(void *devfd, struct fs *fs, off_t loc,
930 int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
931 {
932 int i, error, blks, size;
933 uint8_t *space;
934
935 /*
936 * If there is summary information, write it first, so if there
937 * is an error, the superblock will not be marked as clean.
938 */
939 if (fs->fs_si != NULL && fs->fs_csp != NULL) {
940 blks = howmany(fs->fs_cssize, fs->fs_fsize);
941 space = (uint8_t *)fs->fs_csp;
942 for (i = 0; i < blks; i += fs->fs_frag) {
943 size = fs->fs_bsize;
944 if (i + fs->fs_frag > blks)
945 size = (blks - i) * fs->fs_fsize;
946 if ((error = (*writefunc)(devfd,
947 dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
948 space, size)) != 0)
949 return (error);
950 space += size;
951 }
952 }
953 fs->fs_fmod = 0;
954 #ifndef _KERNEL
955 {
956 struct fs_summary_info *fs_si;
957
958 fs->fs_time = time(NULL);
959 /* Clear the pointers for the duration of writing. */
960 fs_si = fs->fs_si;
961 fs->fs_si = NULL;
962 fs->fs_ckhash = ffs_calc_sbhash(fs);
963 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
964 fs->fs_si = fs_si;
965 }
966 #else /* _KERNEL */
967 fs->fs_time = time_second;
968 fs->fs_ckhash = ffs_calc_sbhash(fs);
969 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
970 #endif /* _KERNEL */
971 return (error);
972 }
973
974 /*
975 * Calculate the check-hash for a superblock.
976 */
977 uint32_t
ffs_calc_sbhash(struct fs * fs)978 ffs_calc_sbhash(struct fs *fs)
979 {
980 uint32_t ckhash, save_ckhash;
981
982 /*
983 * A filesystem that was using a superblock ckhash may be moved
984 * to an older kernel that does not support ckhashes. The
985 * older kernel will clear the FS_METACKHASH flag indicating
986 * that it does not update hashes. When the disk is moved back
987 * to a kernel capable of ckhashes it disables them on mount:
988 *
989 * if ((fs->fs_flags & FS_METACKHASH) == 0)
990 * fs->fs_metackhash = 0;
991 *
992 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
993 * old stale value in the fs->fs_ckhash field. Thus the need to
994 * just accept what is there.
995 */
996 if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
997 return (fs->fs_ckhash);
998
999 save_ckhash = fs->fs_ckhash;
1000 fs->fs_ckhash = 0;
1001 /*
1002 * If newly read from disk, the caller is responsible for
1003 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
1004 */
1005 ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
1006 fs->fs_ckhash = save_ckhash;
1007 return (ckhash);
1008 }
1009
1010 /*
1011 * Update the frsum fields to reflect addition or deletion
1012 * of some frags.
1013 */
1014 void
ffs_fragacct(struct fs * fs,int fragmap,int32_t fraglist[],int cnt)1015 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
1016 {
1017 int inblk;
1018 int field, subfield;
1019 int siz, pos;
1020
1021 inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
1022 fragmap <<= 1;
1023 for (siz = 1; siz < fs->fs_frag; siz++) {
1024 if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
1025 continue;
1026 field = around[siz];
1027 subfield = inside[siz];
1028 for (pos = siz; pos <= fs->fs_frag; pos++) {
1029 if ((fragmap & field) == subfield) {
1030 fraglist[siz] += cnt;
1031 pos += siz;
1032 field <<= siz;
1033 subfield <<= siz;
1034 }
1035 field <<= 1;
1036 subfield <<= 1;
1037 }
1038 }
1039 }
1040
1041 /*
1042 * block operations
1043 *
1044 * check if a block is available
1045 */
1046 int
ffs_isblock(struct fs * fs,unsigned char * cp,ufs1_daddr_t h)1047 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1048 {
1049 unsigned char mask;
1050
1051 switch ((int)fs->fs_frag) {
1052 case 8:
1053 return (cp[h] == 0xff);
1054 case 4:
1055 mask = 0x0f << ((h & 0x1) << 2);
1056 return ((cp[h >> 1] & mask) == mask);
1057 case 2:
1058 mask = 0x03 << ((h & 0x3) << 1);
1059 return ((cp[h >> 2] & mask) == mask);
1060 case 1:
1061 mask = 0x01 << (h & 0x7);
1062 return ((cp[h >> 3] & mask) == mask);
1063 default:
1064 #ifdef _KERNEL
1065 panic("ffs_isblock");
1066 #endif
1067 break;
1068 }
1069 return (0);
1070 }
1071
1072 /*
1073 * check if a block is free
1074 */
1075 int
ffs_isfreeblock(struct fs * fs,uint8_t * cp,ufs1_daddr_t h)1076 ffs_isfreeblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
1077 {
1078
1079 switch ((int)fs->fs_frag) {
1080 case 8:
1081 return (cp[h] == 0);
1082 case 4:
1083 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1084 case 2:
1085 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1086 case 1:
1087 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1088 default:
1089 #ifdef _KERNEL
1090 panic("ffs_isfreeblock");
1091 #endif
1092 break;
1093 }
1094 return (0);
1095 }
1096
1097 /*
1098 * take a block out of the map
1099 */
1100 void
ffs_clrblock(struct fs * fs,uint8_t * cp,ufs1_daddr_t h)1101 ffs_clrblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
1102 {
1103
1104 switch ((int)fs->fs_frag) {
1105 case 8:
1106 cp[h] = 0;
1107 return;
1108 case 4:
1109 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1110 return;
1111 case 2:
1112 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1113 return;
1114 case 1:
1115 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1116 return;
1117 default:
1118 #ifdef _KERNEL
1119 panic("ffs_clrblock");
1120 #endif
1121 break;
1122 }
1123 }
1124
1125 /*
1126 * put a block into the map
1127 */
1128 void
ffs_setblock(struct fs * fs,unsigned char * cp,ufs1_daddr_t h)1129 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1130 {
1131
1132 switch ((int)fs->fs_frag) {
1133 case 8:
1134 cp[h] = 0xff;
1135 return;
1136 case 4:
1137 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1138 return;
1139 case 2:
1140 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1141 return;
1142 case 1:
1143 cp[h >> 3] |= (0x01 << (h & 0x7));
1144 return;
1145 default:
1146 #ifdef _KERNEL
1147 panic("ffs_setblock");
1148 #endif
1149 break;
1150 }
1151 }
1152
1153 /*
1154 * Update the cluster map because of an allocation or free.
1155 *
1156 * Cnt == 1 means free; cnt == -1 means allocating.
1157 */
1158 void
ffs_clusteracct(struct fs * fs,struct cg * cgp,ufs1_daddr_t blkno,int cnt)1159 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
1160 {
1161 int32_t *sump;
1162 int32_t *lp;
1163 uint8_t *freemapp, *mapp;
1164 int i, start, end, forw, back, map;
1165 uint64_t bit;
1166
1167 if (fs->fs_contigsumsize <= 0)
1168 return;
1169 freemapp = cg_clustersfree(cgp);
1170 sump = cg_clustersum(cgp);
1171 /*
1172 * Allocate or clear the actual block.
1173 */
1174 if (cnt > 0)
1175 setbit(freemapp, blkno);
1176 else
1177 clrbit(freemapp, blkno);
1178 /*
1179 * Find the size of the cluster going forward.
1180 */
1181 start = blkno + 1;
1182 end = start + fs->fs_contigsumsize;
1183 if (end >= cgp->cg_nclusterblks)
1184 end = cgp->cg_nclusterblks;
1185 mapp = &freemapp[start / NBBY];
1186 map = *mapp++;
1187 bit = 1U << (start % NBBY);
1188 for (i = start; i < end; i++) {
1189 if ((map & bit) == 0)
1190 break;
1191 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1192 bit <<= 1;
1193 } else {
1194 map = *mapp++;
1195 bit = 1;
1196 }
1197 }
1198 forw = i - start;
1199 /*
1200 * Find the size of the cluster going backward.
1201 */
1202 start = blkno - 1;
1203 end = start - fs->fs_contigsumsize;
1204 if (end < 0)
1205 end = -1;
1206 mapp = &freemapp[start / NBBY];
1207 map = *mapp--;
1208 bit = 1U << (start % NBBY);
1209 for (i = start; i > end; i--) {
1210 if ((map & bit) == 0)
1211 break;
1212 if ((i & (NBBY - 1)) != 0) {
1213 bit >>= 1;
1214 } else {
1215 map = *mapp--;
1216 bit = 1U << (NBBY - 1);
1217 }
1218 }
1219 back = start - i;
1220 /*
1221 * Account for old cluster and the possibly new forward and
1222 * back clusters.
1223 */
1224 i = back + forw + 1;
1225 if (i > fs->fs_contigsumsize)
1226 i = fs->fs_contigsumsize;
1227 sump[i] += cnt;
1228 if (back > 0)
1229 sump[back] -= cnt;
1230 if (forw > 0)
1231 sump[forw] -= cnt;
1232 /*
1233 * Update cluster summary information.
1234 */
1235 lp = &sump[fs->fs_contigsumsize];
1236 for (i = fs->fs_contigsumsize; i > 0; i--)
1237 if (*lp-- > 0)
1238 break;
1239 fs->fs_maxcluster[cgp->cg_cgx] = i;
1240 }
1241