1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * UNIX machine dependent virtual memory support.
28 */
29
30 #include <sys/vm.h>
31 #include <sys/exec.h>
32
33 #include <sys/exechdr.h>
34 #include <vm/seg_kmem.h>
35 #include <sys/atomic.h>
36 #include <sys/archsystm.h>
37 #include <sys/machsystm.h>
38 #include <sys/kdi.h>
39 #include <sys/cpu_module.h>
40
41 #include <vm/hat_sfmmu.h>
42
43 #include <sys/memnode.h>
44
45 #include <sys/mem_config.h>
46 #include <sys/mem_cage.h>
47 #include <vm/vm_dep.h>
48 #include <vm/page.h>
49 #include <sys/platform_module.h>
50
51 /*
52 * These variables are set by module specific config routines.
53 * They are only set by modules which will use physical cache page coloring.
54 */
55 int do_pg_coloring = 0;
56
57 /*
58 * These variables can be conveniently patched at kernel load time to
59 * prevent do_pg_coloring from being enabled by
60 * module specific config routines.
61 */
62
63 int use_page_coloring = 1;
64
65 /*
66 * initialized by page_coloring_init()
67 */
68 extern uint_t page_colors;
69 extern uint_t page_colors_mask;
70 extern uint_t page_coloring_shift;
71 int cpu_page_colors;
72 uint_t vac_colors = 0;
73 uint_t vac_colors_mask = 0;
74
75 /* cpu specific coloring initialization */
76 extern void page_coloring_init_cpu();
77 #pragma weak page_coloring_init_cpu
78
79 /*
80 * get the ecache setsize for the current cpu.
81 */
82 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize)
83
84 plcnt_t plcnt; /* page list count */
85
86 /*
87 * This variable is set by the cpu module to contain the lowest
88 * address not affected by the SF_ERRATA_57 workaround. It should
89 * remain 0 if the workaround is not needed.
90 */
91 #if defined(SF_ERRATA_57)
92 caddr_t errata57_limit;
93 #endif
94
95 extern void page_relocate_hash(page_t *, page_t *);
96
97 /*
98 * these must be defined in platform specific areas
99 */
100 extern void map_addr_proc(caddr_t *, size_t, offset_t, int, caddr_t,
101 struct proc *, uint_t);
102 extern page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *,
103 caddr_t, size_t, uint_t, struct lgrp *);
104 /*
105 * Convert page frame number to an OBMEM page frame number
106 * (i.e. put in the type bits -- zero for this implementation)
107 */
108 pfn_t
impl_obmem_pfnum(pfn_t pf)109 impl_obmem_pfnum(pfn_t pf)
110 {
111 return (pf);
112 }
113
114 /*
115 * Use physmax to determine the highest physical page of DRAM memory
116 * It is assumed that any physical addresses above physmax is in IO space.
117 * We don't bother checking the low end because we assume that memory space
118 * begins at physical page frame 0.
119 *
120 * Return 1 if the page frame is onboard DRAM memory, else 0.
121 * Returns 0 for nvram so it won't be cached.
122 */
123 int
pf_is_memory(pfn_t pf)124 pf_is_memory(pfn_t pf)
125 {
126 /* We must be IO space */
127 if (pf > physmax)
128 return (0);
129
130 /* We must be memory space */
131 return (1);
132 }
133
134 /*
135 * Handle a pagefault.
136 */
137 faultcode_t
pagefault(caddr_t addr,enum fault_type type,enum seg_rw rw,int iskernel)138 pagefault(caddr_t addr, enum fault_type type, enum seg_rw rw, int iskernel)
139 {
140 struct as *as;
141 struct proc *p;
142 faultcode_t res;
143 caddr_t base;
144 size_t len;
145 int err;
146
147 if (INVALID_VADDR(addr))
148 return (FC_NOMAP);
149
150 if (iskernel) {
151 as = &kas;
152 } else {
153 p = curproc;
154 as = p->p_as;
155 #if defined(SF_ERRATA_57)
156 /*
157 * Prevent infinite loops due to a segment driver
158 * setting the execute permissions and the sfmmu hat
159 * silently ignoring them.
160 */
161 if (rw == S_EXEC && AS_TYPE_64BIT(as) &&
162 addr < errata57_limit) {
163 res = FC_NOMAP;
164 goto out;
165 }
166 #endif
167 }
168
169 /*
170 * Dispatch pagefault.
171 */
172 res = as_fault(as->a_hat, as, addr, 1, type, rw);
173
174 /*
175 * If this isn't a potential unmapped hole in the user's
176 * UNIX data or stack segments, just return status info.
177 */
178 if (!(res == FC_NOMAP && iskernel == 0))
179 goto out;
180
181 /*
182 * Check to see if we happened to faulted on a currently unmapped
183 * part of the UNIX data or stack segments. If so, create a zfod
184 * mapping there and then try calling the fault routine again.
185 */
186 base = p->p_brkbase;
187 len = p->p_brksize;
188
189 if (addr < base || addr >= base + len) { /* data seg? */
190 base = (caddr_t)(p->p_usrstack - p->p_stksize);
191 len = p->p_stksize;
192 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */
193 /* not in either UNIX data or stack segments */
194 res = FC_NOMAP;
195 goto out;
196 }
197 }
198
199 /* the rest of this function implements a 3.X 4.X 5.X compatibility */
200 /* This code is probably not needed anymore */
201
202 /* expand the gap to the page boundaries on each side */
203 len = (((uintptr_t)base + len + PAGEOFFSET) & PAGEMASK) -
204 ((uintptr_t)base & PAGEMASK);
205 base = (caddr_t)((uintptr_t)base & PAGEMASK);
206
207 as_rangelock(as);
208 as_purge(as);
209 if (as_gap(as, PAGESIZE, &base, &len, AH_CONTAIN, addr) == 0) {
210 err = as_map(as, base, len, segvn_create, zfod_argsp);
211 as_rangeunlock(as);
212 if (err) {
213 res = FC_MAKE_ERR(err);
214 goto out;
215 }
216 } else {
217 /*
218 * This page is already mapped by another thread after we
219 * returned from as_fault() above. We just fallthrough
220 * as_fault() below.
221 */
222 as_rangeunlock(as);
223 }
224
225 res = as_fault(as->a_hat, as, addr, 1, F_INVAL, rw);
226
227 out:
228
229 return (res);
230 }
231
232 /*
233 * This is the routine which defines the address limit implied
234 * by the flag '_MAP_LOW32'. USERLIMIT32 matches the highest
235 * mappable address in a 32-bit process on this platform (though
236 * perhaps we should make it be UINT32_MAX here?)
237 */
238 void
map_addr(caddr_t * addrp,size_t len,offset_t off,int vacalign,uint_t flags)239 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
240 {
241 struct proc *p = curproc;
242 caddr_t userlimit = flags & _MAP_LOW32 ?
243 (caddr_t)USERLIMIT32 : p->p_as->a_userlimit;
244 map_addr_proc(addrp, len, off, vacalign, userlimit, p, flags);
245 }
246
247 /*
248 * Some V9 CPUs have holes in the middle of the 64-bit virtual address range.
249 */
250 caddr_t hole_start, hole_end;
251
252 /*
253 * kpm mapping window
254 */
255 caddr_t kpm_vbase;
256 size_t kpm_size;
257 uchar_t kpm_size_shift;
258
259 int valid_va_range_aligned_wraparound;
260 /*
261 * Determine whether [*basep, *basep + *lenp) contains a mappable range of
262 * addresses at least "minlen" long, where the base of the range is at "off"
263 * phase from an "align" boundary and there is space for a "redzone"-sized
264 * redzone on either side of the range. On success, 1 is returned and *basep
265 * and *lenp are adjusted to describe the acceptable range (including
266 * the redzone). On failure, 0 is returned.
267 */
268 int
valid_va_range_aligned(caddr_t * basep,size_t * lenp,size_t minlen,int dir,size_t align,size_t redzone,size_t off)269 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
270 size_t align, size_t redzone, size_t off)
271 {
272 caddr_t hi, lo;
273 size_t tot_len;
274
275 ASSERT(align == 0 ? off == 0 : off < align);
276 ASSERT(ISP2(align));
277 ASSERT(align == 0 || align >= PAGESIZE);
278
279 lo = *basep;
280 hi = lo + *lenp;
281 tot_len = minlen + 2 * redzone; /* need at least this much space */
282
283 /* If hi rolled over the top try cutting back. */
284 if (hi < lo) {
285 *lenp = 0UL - (uintptr_t)lo - 1UL;
286 /* Trying to see if this really happens, and then if so, why */
287 valid_va_range_aligned_wraparound++;
288 hi = lo + *lenp;
289 }
290 if (*lenp < tot_len) {
291 return (0);
292 }
293
294 /*
295 * Deal with a possible hole in the address range between
296 * hole_start and hole_end that should never be mapped by the MMU.
297 */
298
299 if (lo < hole_start) {
300 if (hi > hole_start)
301 if (hi < hole_end)
302 hi = hole_start;
303 else
304 /* lo < hole_start && hi >= hole_end */
305 if (dir == AH_LO) {
306 /*
307 * prefer lowest range
308 */
309 if (hole_start - lo >= tot_len)
310 hi = hole_start;
311 else if (hi - hole_end >= tot_len)
312 lo = hole_end;
313 else
314 return (0);
315 } else {
316 /*
317 * prefer highest range
318 */
319 if (hi - hole_end >= tot_len)
320 lo = hole_end;
321 else if (hole_start - lo >= tot_len)
322 hi = hole_start;
323 else
324 return (0);
325 }
326 } else {
327 /* lo >= hole_start */
328 if (hi < hole_end)
329 return (0);
330 if (lo < hole_end)
331 lo = hole_end;
332 }
333
334 /* Check if remaining length is too small */
335 if (hi - lo < tot_len) {
336 return (0);
337 }
338 if (align > 1) {
339 caddr_t tlo = lo + redzone;
340 caddr_t thi = hi - redzone;
341 tlo = (caddr_t)P2PHASEUP((uintptr_t)tlo, align, off);
342 if (tlo < lo + redzone) {
343 return (0);
344 }
345 if (thi < tlo || thi - tlo < minlen) {
346 return (0);
347 }
348 }
349 *basep = lo;
350 *lenp = hi - lo;
351 return (1);
352 }
353
354 /*
355 * Determine whether [*basep, *basep + *lenp) contains a mappable range of
356 * addresses at least "minlen" long. On success, 1 is returned and *basep
357 * and *lenp are adjusted to describe the acceptable range. On failure, 0
358 * is returned.
359 */
360 int
valid_va_range(caddr_t * basep,size_t * lenp,size_t minlen,int dir)361 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
362 {
363 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
364 }
365
366 /*
367 * Determine whether [addr, addr+len] with protections `prot' are valid
368 * for a user address space.
369 */
370 /*ARGSUSED*/
371 int
valid_usr_range(caddr_t addr,size_t len,uint_t prot,struct as * as,caddr_t userlimit)372 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
373 caddr_t userlimit)
374 {
375 caddr_t eaddr = addr + len;
376
377 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
378 return (RANGE_BADADDR);
379
380 /*
381 * Determine if the address range falls within an illegal
382 * range of the MMU.
383 */
384 if (eaddr > hole_start && addr < hole_end)
385 return (RANGE_BADADDR);
386
387 #if defined(SF_ERRATA_57)
388 /*
389 * Make sure USERLIMIT isn't raised too high
390 */
391 ASSERT64(addr <= (caddr_t)0xffffffff80000000ul ||
392 errata57_limit == 0);
393
394 if (AS_TYPE_64BIT(as) &&
395 (addr < errata57_limit) &&
396 (prot & PROT_EXEC))
397 return (RANGE_BADPROT);
398 #endif /* SF_ERRATA57 */
399 return (RANGE_OKAY);
400 }
401
402 /*
403 * Routine used to check to see if an a.out can be executed
404 * by the current machine/architecture.
405 */
406 int
chkaout(struct exdata * exp)407 chkaout(struct exdata *exp)
408 {
409 if (exp->ux_mach == M_SPARC)
410 return (0);
411 else
412 return (ENOEXEC);
413 }
414
415 /*
416 * The following functions return information about an a.out
417 * which is used when a program is executed.
418 */
419
420 /*
421 * Return the load memory address for the data segment.
422 */
423 caddr_t
getdmem(struct exec * exp)424 getdmem(struct exec *exp)
425 {
426 /*
427 * XXX - Sparc Reference Hack approaching
428 * Remember that we are loading
429 * 8k executables into a 4k machine
430 * DATA_ALIGN == 2 * PAGESIZE
431 */
432 if (exp->a_text)
433 return ((caddr_t)(roundup(USRTEXT + exp->a_text, DATA_ALIGN)));
434 else
435 return ((caddr_t)USRTEXT);
436 }
437
438 /*
439 * Return the starting disk address for the data segment.
440 */
441 ulong_t
getdfile(struct exec * exp)442 getdfile(struct exec *exp)
443 {
444 if (exp->a_magic == ZMAGIC)
445 return (exp->a_text);
446 else
447 return (sizeof (struct exec) + exp->a_text);
448 }
449
450 /*
451 * Return the load memory address for the text segment.
452 */
453
454 /*ARGSUSED*/
455 caddr_t
gettmem(struct exec * exp)456 gettmem(struct exec *exp)
457 {
458 return ((caddr_t)USRTEXT);
459 }
460
461 /*
462 * Return the file byte offset for the text segment.
463 */
464 uint_t
gettfile(struct exec * exp)465 gettfile(struct exec *exp)
466 {
467 if (exp->a_magic == ZMAGIC)
468 return (0);
469 else
470 return (sizeof (struct exec));
471 }
472
473 void
getexinfo(struct exdata * edp_in,struct exdata * edp_out,int * pagetext,int * pagedata)474 getexinfo(
475 struct exdata *edp_in,
476 struct exdata *edp_out,
477 int *pagetext,
478 int *pagedata)
479 {
480 *edp_out = *edp_in; /* structure copy */
481
482 if ((edp_in->ux_mag == ZMAGIC) &&
483 ((edp_in->vp->v_flag & VNOMAP) == 0)) {
484 *pagetext = 1;
485 *pagedata = 1;
486 } else {
487 *pagetext = 0;
488 *pagedata = 0;
489 }
490 }
491
492 /*
493 * Return non 0 value if the address may cause a VAC alias with KPM mappings.
494 * KPM selects an address such that it's equal offset modulo shm_alignment and
495 * assumes it can't be in VAC conflict with any larger than PAGESIZE mapping.
496 */
497 int
map_addr_vacalign_check(caddr_t addr,u_offset_t off)498 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
499 {
500 if (vac) {
501 return (((uintptr_t)addr ^ off) & shm_alignment - 1);
502 } else {
503 return (0);
504 }
505 }
506
507 /*
508 * Sanity control. Don't use large pages regardless of user
509 * settings if there's less than priv or shm_lpg_min_physmem memory installed.
510 * The units for this variable is 8K pages.
511 */
512 pgcnt_t shm_lpg_min_physmem = 131072; /* 1GB */
513 pgcnt_t privm_lpg_min_physmem = 131072; /* 1GB */
514
515 static size_t
map_pgszheap(struct proc * p,caddr_t addr,size_t len)516 map_pgszheap(struct proc *p, caddr_t addr, size_t len)
517 {
518 size_t pgsz = MMU_PAGESIZE;
519 int szc;
520
521 /*
522 * If len is zero, retrieve from proc and don't demote the page size.
523 * Use atleast the default pagesize.
524 */
525 if (len == 0) {
526 len = p->p_brkbase + p->p_brksize - p->p_bssbase;
527 }
528 len = MAX(len, default_uheap_lpsize);
529
530 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) {
531 pgsz = hw_page_array[szc].hp_size;
532 if ((disable_auto_data_large_pages & (1 << szc)) ||
533 pgsz > max_uheap_lpsize)
534 continue;
535 if (len >= pgsz) {
536 break;
537 }
538 }
539
540 /*
541 * If addr == 0 we were called by memcntl() when the
542 * size code is 0. Don't set pgsz less than current size.
543 */
544 if (addr == 0 && (pgsz < hw_page_array[p->p_brkpageszc].hp_size)) {
545 pgsz = hw_page_array[p->p_brkpageszc].hp_size;
546 }
547
548 return (pgsz);
549 }
550
551 static size_t
map_pgszstk(struct proc * p,caddr_t addr,size_t len)552 map_pgszstk(struct proc *p, caddr_t addr, size_t len)
553 {
554 size_t pgsz = MMU_PAGESIZE;
555 int szc;
556
557 /*
558 * If len is zero, retrieve from proc and don't demote the page size.
559 * Use atleast the default pagesize.
560 */
561 if (len == 0) {
562 len = p->p_stksize;
563 }
564 len = MAX(len, default_ustack_lpsize);
565
566 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) {
567 pgsz = hw_page_array[szc].hp_size;
568 if ((disable_auto_data_large_pages & (1 << szc)) ||
569 pgsz > max_ustack_lpsize)
570 continue;
571 if (len >= pgsz) {
572 break;
573 }
574 }
575
576 /*
577 * If addr == 0 we were called by memcntl() or exec_args() when the
578 * size code is 0. Don't set pgsz less than current size.
579 */
580 if (addr == 0 && (pgsz < hw_page_array[p->p_stkpageszc].hp_size)) {
581 pgsz = hw_page_array[p->p_stkpageszc].hp_size;
582 }
583
584 return (pgsz);
585 }
586
587 static size_t
map_pgszism(caddr_t addr,size_t len)588 map_pgszism(caddr_t addr, size_t len)
589 {
590 uint_t szc;
591 size_t pgsz;
592
593 for (szc = mmu_page_sizes - 1; szc >= TTE4M; szc--) {
594 if (disable_ism_large_pages & (1 << szc))
595 continue;
596
597 pgsz = hw_page_array[szc].hp_size;
598 if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
599 return (pgsz);
600 }
601
602 return (DEFAULT_ISM_PAGESIZE);
603 }
604
605 /*
606 * Suggest a page size to be used to map a segment of type maptype and length
607 * len. Returns a page size (not a size code).
608 */
609 /* ARGSUSED */
610 size_t
map_pgsz(int maptype,struct proc * p,caddr_t addr,size_t len,int memcntl)611 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
612 {
613 size_t pgsz = MMU_PAGESIZE;
614
615 ASSERT(maptype != MAPPGSZ_VA);
616
617 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
618 return (MMU_PAGESIZE);
619 }
620
621 switch (maptype) {
622 case MAPPGSZ_ISM:
623 pgsz = map_pgszism(addr, len);
624 break;
625
626 case MAPPGSZ_STK:
627 if (max_ustack_lpsize > MMU_PAGESIZE) {
628 pgsz = map_pgszstk(p, addr, len);
629 }
630 break;
631
632 case MAPPGSZ_HEAP:
633 if (max_uheap_lpsize > MMU_PAGESIZE) {
634 pgsz = map_pgszheap(p, addr, len);
635 }
636 break;
637 }
638 return (pgsz);
639 }
640
641
642 /* assumes TTE8K...TTE4M == szc */
643
644 static uint_t
map_szcvec(caddr_t addr,size_t size,uintptr_t off,int disable_lpgs,size_t max_lpsize,size_t min_physmem)645 map_szcvec(caddr_t addr, size_t size, uintptr_t off, int disable_lpgs,
646 size_t max_lpsize, size_t min_physmem)
647 {
648 caddr_t eaddr = addr + size;
649 uint_t szcvec = 0;
650 caddr_t raddr;
651 caddr_t readdr;
652 size_t pgsz;
653 int i;
654
655 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
656 return (0);
657 }
658 for (i = mmu_page_sizes - 1; i > 0; i--) {
659 if (disable_lpgs & (1 << i)) {
660 continue;
661 }
662 pgsz = page_get_pagesize(i);
663 if (pgsz > max_lpsize) {
664 continue;
665 }
666 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
667 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
668 if (raddr < addr || raddr >= readdr) {
669 continue;
670 }
671 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
672 continue;
673 }
674 szcvec |= (1 << i);
675 /*
676 * And or in the remaining enabled page sizes.
677 */
678 szcvec |= P2PHASE(~disable_lpgs, (1 << i));
679 szcvec &= ~1; /* no need to return 8K pagesize */
680 break;
681 }
682 return (szcvec);
683 }
684
685 /*
686 * Return a bit vector of large page size codes that
687 * can be used to map [addr, addr + len) region.
688 */
689 /* ARGSUSED */
690 uint_t
map_pgszcvec(caddr_t addr,size_t size,uintptr_t off,int flags,int type,int memcntl)691 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
692 int memcntl)
693 {
694 if (flags & MAP_TEXT) {
695 return (map_szcvec(addr, size, off,
696 disable_auto_text_large_pages,
697 max_utext_lpsize, shm_lpg_min_physmem));
698
699 } else if (flags & MAP_INITDATA) {
700 return (map_szcvec(addr, size, off,
701 disable_auto_data_large_pages,
702 max_uidata_lpsize, privm_lpg_min_physmem));
703
704 } else if (type == MAPPGSZC_SHM) {
705 return (map_szcvec(addr, size, off,
706 disable_auto_data_large_pages,
707 max_shm_lpsize, shm_lpg_min_physmem));
708
709 } else if (type == MAPPGSZC_HEAP) {
710 return (map_szcvec(addr, size, off,
711 disable_auto_data_large_pages,
712 max_uheap_lpsize, privm_lpg_min_physmem));
713
714 } else if (type == MAPPGSZC_STACK) {
715 return (map_szcvec(addr, size, off,
716 disable_auto_data_large_pages,
717 max_ustack_lpsize, privm_lpg_min_physmem));
718
719 } else {
720 return (map_szcvec(addr, size, off,
721 disable_auto_data_large_pages,
722 max_privmap_lpsize, privm_lpg_min_physmem));
723 }
724 }
725
726 /*
727 * Anchored in the table below are counters used to keep track
728 * of free contiguous physical memory. Each element of the table contains
729 * the array of counters, the size of array which is allocated during
730 * startup based on physmax and a shift value used to convert a pagenum
731 * into a counter array index or vice versa. The table has page size
732 * for rows and region size for columns:
733 *
734 * page_counters[page_size][region_size]
735 *
736 * page_size: TTE size code of pages on page_size freelist.
737 *
738 * region_size: TTE size code of a candidate larger page made up
739 * made up of contiguous free page_size pages.
740 *
741 * As you go across a page_size row increasing region_size each
742 * element keeps track of how many (region_size - 1) size groups
743 * made up of page_size free pages can be coalesced into a
744 * regsion_size page. Yuck! Lets try an example:
745 *
746 * page_counters[1][3] is the table element used for identifying
747 * candidate 4M pages from contiguous pages off the 64K free list.
748 * Each index in the page_counters[1][3].array spans 4M. Its the
749 * number of free 512K size (regsion_size - 1) groups of contiguous
750 * 64K free pages. So when page_counters[1][3].counters[n] == 8
751 * we know we have a candidate 4M page made up of 512K size groups
752 * of 64K free pages.
753 */
754
755 /*
756 * Per page size free lists. 3rd (max_mem_nodes) and 4th (page coloring bins)
757 * dimensions are allocated dynamically.
758 */
759 page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES];
760
761 /*
762 * For now there is only a single size cache list.
763 * Allocated dynamically.
764 */
765 page_t ***page_cachelists[MAX_MEM_TYPES];
766
767 kmutex_t *fpc_mutex[NPC_MUTEX];
768 kmutex_t *cpc_mutex[NPC_MUTEX];
769
770 /*
771 * Calculate space needed for page freelists and counters
772 */
773 size_t
calc_free_pagelist_sz(void)774 calc_free_pagelist_sz(void)
775 {
776 int szc;
777 size_t alloc_sz, cache_sz, free_sz;
778
779 /*
780 * one cachelist per color, node, and type
781 */
782 cache_sz = (page_get_pagecolors(0) * sizeof (page_t *)) +
783 sizeof (page_t **);
784 cache_sz *= max_mem_nodes * MAX_MEM_TYPES;
785
786 /*
787 * one freelist per size, color, node, and type
788 */
789 free_sz = sizeof (page_t **);
790 for (szc = 0; szc < mmu_page_sizes; szc++)
791 free_sz += sizeof (page_t *) * page_get_pagecolors(szc);
792 free_sz *= max_mem_nodes * MAX_MEM_TYPES;
793
794 alloc_sz = cache_sz + free_sz + page_ctrs_sz();
795 return (alloc_sz);
796 }
797
798 caddr_t
alloc_page_freelists(caddr_t alloc_base)799 alloc_page_freelists(caddr_t alloc_base)
800 {
801 int mnode, mtype;
802 int szc, clrs;
803
804 /*
805 * We only support small pages in the cachelist.
806 */
807 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) {
808 page_cachelists[mtype] = (page_t ***)alloc_base;
809 alloc_base += (max_mem_nodes * sizeof (page_t **));
810 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
811 page_cachelists[mtype][mnode] = (page_t **)alloc_base;
812 alloc_base +=
813 (page_get_pagecolors(0) * sizeof (page_t *));
814 }
815 }
816
817 /*
818 * Allocate freelists bins for all
819 * supported page sizes.
820 */
821 for (szc = 0; szc < mmu_page_sizes; szc++) {
822 clrs = page_get_pagecolors(szc);
823 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) {
824 page_freelists[szc][mtype] = (page_t ***)alloc_base;
825 alloc_base += (max_mem_nodes * sizeof (page_t **));
826 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
827 page_freelists[szc][mtype][mnode] =
828 (page_t **)alloc_base;
829 alloc_base += (clrs * (sizeof (page_t *)));
830 }
831 }
832 }
833
834 alloc_base = page_ctrs_alloc(alloc_base);
835 return (alloc_base);
836 }
837
838 /*
839 * Allocate page_freelists locks for a memnode from the nucleus data
840 * area. This is the first time that mmu_page_sizes is used during
841 * bootup, so check mmu_page_sizes initialization.
842 */
843 int
ndata_alloc_page_mutexs(struct memlist * ndata)844 ndata_alloc_page_mutexs(struct memlist *ndata)
845 {
846 size_t alloc_sz;
847 caddr_t alloc_base;
848 int i;
849 void page_coloring_init();
850
851 page_coloring_init();
852 if (&mmu_init_mmu_page_sizes) {
853 if (!mmu_init_mmu_page_sizes(0)) {
854 cmn_err(CE_PANIC, "mmu_page_sizes %d not initialized",
855 mmu_page_sizes);
856 }
857 }
858 ASSERT(mmu_page_sizes >= DEFAULT_MMU_PAGE_SIZES);
859
860 /* fpc_mutex and cpc_mutex */
861 alloc_sz = 2 * NPC_MUTEX * max_mem_nodes * sizeof (kmutex_t);
862
863 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize);
864 if (alloc_base == NULL)
865 return (-1);
866
867 ASSERT(((uintptr_t)alloc_base & (ecache_alignsize - 1)) == 0);
868
869 for (i = 0; i < NPC_MUTEX; i++) {
870 fpc_mutex[i] = (kmutex_t *)alloc_base;
871 alloc_base += (sizeof (kmutex_t) * max_mem_nodes);
872 cpc_mutex[i] = (kmutex_t *)alloc_base;
873 alloc_base += (sizeof (kmutex_t) * max_mem_nodes);
874 }
875 return (0);
876 }
877
878 /*
879 * To select our starting bin, we stride through the bins with a stride
880 * of 337. Why 337? It's prime, it's largeish, and it performs well both
881 * in simulation and practice for different workloads on varying cache sizes.
882 */
883 uint32_t color_start_current = 0;
884 uint32_t color_start_stride = 337;
885 int color_start_random = 0;
886
887 /* ARGSUSED */
888 uint_t
get_color_start(struct as * as)889 get_color_start(struct as *as)
890 {
891 uint32_t old, new;
892
893 if (consistent_coloring == 2 || color_start_random) {
894 return ((uint_t)(((gettick()) << (vac_shift - MMU_PAGESHIFT)) &
895 (hw_page_array[0].hp_colors - 1)));
896 }
897
898 do {
899 old = color_start_current;
900 new = old + (color_start_stride << (vac_shift - MMU_PAGESHIFT));
901 } while (atomic_cas_32(&color_start_current, old, new) != old);
902
903 return ((uint_t)(new));
904 }
905
906 /*
907 * Called once at startup from kphysm_init() -- before memialloc()
908 * is invoked to do the 1st page_free()/page_freelist_add().
909 *
910 * initializes page_colors and page_colors_mask based on ecache_setsize.
911 *
912 * Also initializes the counter locks.
913 */
914 void
page_coloring_init()915 page_coloring_init()
916 {
917 int a, i;
918 uint_t colors;
919
920 if (do_pg_coloring == 0) {
921 page_colors = 1;
922 for (i = 0; i < mmu_page_sizes; i++) {
923 colorequivszc[i] = 0;
924 hw_page_array[i].hp_colors = 1;
925 }
926 return;
927 }
928
929 /*
930 * Calculate page_colors from ecache_setsize. ecache_setsize contains
931 * the max ecache setsize of all cpus configured in the system or, for
932 * cheetah+ systems, the max possible ecache setsize for all possible
933 * cheetah+ cpus.
934 */
935 page_colors = ecache_setsize / MMU_PAGESIZE;
936 page_colors_mask = page_colors - 1;
937
938 vac_colors = vac_size / MMU_PAGESIZE;
939 vac_colors_mask = vac_colors -1;
940
941 page_coloring_shift = 0;
942 a = ecache_setsize;
943 while (a >>= 1) {
944 page_coloring_shift++;
945 }
946
947 /* initialize number of colors per page size */
948 for (i = 0; i < mmu_page_sizes; i++) {
949 hw_page_array[i].hp_colors = (page_colors_mask >>
950 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
951 + 1;
952 colorequivszc[i] = 0;
953 }
954
955 /*
956 * initialize cpu_page_colors if ecache setsizes are homogenous.
957 * cpu_page_colors set to -1 during DR operation or during startup
958 * if setsizes are heterogenous.
959 *
960 * The value of cpu_page_colors determines if additional color bins
961 * need to be checked for a particular color in the page_get routines.
962 */
963 if (cpu_setsize > 0 && cpu_page_colors == 0 &&
964 cpu_setsize < ecache_setsize) {
965 cpu_page_colors = cpu_setsize / MMU_PAGESIZE;
966 a = lowbit(page_colors) - lowbit(cpu_page_colors);
967 ASSERT(a > 0);
968 ASSERT(a < 16);
969
970 for (i = 0; i < mmu_page_sizes; i++) {
971 if ((colors = hw_page_array[i].hp_colors) <= 1) {
972 continue;
973 }
974 while ((colors >> a) == 0)
975 a--;
976 ASSERT(a >= 0);
977
978 /* higher 4 bits encodes color equiv mask */
979 colorequivszc[i] = (a << 4);
980 }
981 }
982
983 /* do cpu specific color initialization */
984 if (&page_coloring_init_cpu) {
985 page_coloring_init_cpu();
986 }
987 }
988
989 int
bp_color(struct buf * bp)990 bp_color(struct buf *bp)
991 {
992 int color = -1;
993
994 if (vac) {
995 if ((bp->b_flags & B_PAGEIO) != 0) {
996 color = sfmmu_get_ppvcolor(bp->b_pages);
997 } else if (bp->b_un.b_addr != NULL) {
998 color = sfmmu_get_addrvcolor(bp->b_un.b_addr);
999 }
1000 }
1001 return (color < 0 ? 0 : ptob(color));
1002 }
1003
1004 /*
1005 * Function for flushing D-cache when performing module relocations
1006 * to an alternate mapping. Stubbed out on all platforms except sun4u,
1007 * at least for now.
1008 */
1009 void
dcache_flushall()1010 dcache_flushall()
1011 {
1012 sfmmu_cache_flushall();
1013 }
1014
1015 static int
kdi_range_overlap(uintptr_t va1,size_t sz1,uintptr_t va2,size_t sz2)1016 kdi_range_overlap(uintptr_t va1, size_t sz1, uintptr_t va2, size_t sz2)
1017 {
1018 if (va1 < va2 && va1 + sz1 <= va2)
1019 return (0);
1020
1021 if (va2 < va1 && va2 + sz2 <= va1)
1022 return (0);
1023
1024 return (1);
1025 }
1026
1027 /*
1028 * Return the number of bytes, relative to the beginning of a given range, that
1029 * are non-toxic (can be read from and written to with relative impunity).
1030 */
1031 size_t
kdi_range_is_nontoxic(uintptr_t va,size_t sz,int write)1032 kdi_range_is_nontoxic(uintptr_t va, size_t sz, int write)
1033 {
1034 /* OBP reads are harmless, but we don't want people writing there */
1035 if (write && kdi_range_overlap(va, sz, OFW_START_ADDR, OFW_END_ADDR -
1036 OFW_START_ADDR + 1))
1037 return (va < OFW_START_ADDR ? OFW_START_ADDR - va : 0);
1038
1039 if (kdi_range_overlap(va, sz, PIOMAPBASE, PIOMAPSIZE))
1040 return (va < PIOMAPBASE ? PIOMAPBASE - va : 0);
1041
1042 return (sz); /* no overlap */
1043 }
1044
1045 /*
1046 * Minimum physmem required for enabling large pages for kernel heap
1047 * Currently we do not enable lp for kmem on systems with less
1048 * than 1GB of memory. This value can be changed via /etc/system
1049 */
1050 size_t segkmem_lpminphysmem = 0x40000000; /* 1GB */
1051
1052 /*
1053 * this function chooses large page size for kernel heap
1054 */
1055 size_t
get_segkmem_lpsize(size_t lpsize)1056 get_segkmem_lpsize(size_t lpsize)
1057 {
1058 size_t memtotal = physmem * PAGESIZE;
1059 size_t mmusz;
1060 uint_t szc;
1061
1062 if (memtotal < segkmem_lpminphysmem)
1063 return (PAGESIZE);
1064
1065 if (plat_lpkmem_is_supported != NULL &&
1066 plat_lpkmem_is_supported() == 0)
1067 return (PAGESIZE);
1068
1069 mmusz = mmu_get_kernel_lpsize(lpsize);
1070 szc = page_szc(mmusz);
1071
1072 while (szc) {
1073 if (!(disable_large_pages & (1 << szc)))
1074 return (page_get_pagesize(szc));
1075 szc--;
1076 }
1077 return (PAGESIZE);
1078 }
1079