xref: /linux/drivers/gpu/drm/v3d/v3d_sched.c (revision 0c86b42439b6c11d758b3392a21117934fef00c1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2018 Broadcom */
3 
4 /**
5  * DOC: Broadcom V3D scheduling
6  *
7  * The shared DRM GPU scheduler is used to coordinate submitting jobs
8  * to the hardware. Each DRM fd (roughly a client process) gets its
9  * own scheduler entity, which will process jobs in order. The GPU
10  * scheduler will schedule the clients with a FIFO scheduling algorithm.
11  *
12  * For simplicity, and in order to keep latency low for interactive
13  * jobs when bulk background jobs are queued up, we submit a new job
14  * to the HW only when it has completed the last one, instead of
15  * filling up the CT[01]Q FIFOs with jobs. Similarly, we use
16  * `drm_sched_job_add_dependency()` to manage the dependency between bin
17  * and render, instead of having the clients submit jobs using the HW's
18  * semaphores to interlock between them.
19  */
20 
21 #include <linux/sched/clock.h>
22 #include <linux/kthread.h>
23 
24 #include <drm/drm_syncobj.h>
25 
26 #include "v3d_drv.h"
27 #include "v3d_regs.h"
28 #include "v3d_trace.h"
29 
30 #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16
31 
32 static struct v3d_job *
33 to_v3d_job(struct drm_sched_job *sched_job)
34 {
35 	return container_of(sched_job, struct v3d_job, base);
36 }
37 
38 static struct v3d_bin_job *
39 to_bin_job(struct drm_sched_job *sched_job)
40 {
41 	return container_of(sched_job, struct v3d_bin_job, base.base);
42 }
43 
44 static struct v3d_render_job *
45 to_render_job(struct drm_sched_job *sched_job)
46 {
47 	return container_of(sched_job, struct v3d_render_job, base.base);
48 }
49 
50 static struct v3d_tfu_job *
51 to_tfu_job(struct drm_sched_job *sched_job)
52 {
53 	return container_of(sched_job, struct v3d_tfu_job, base.base);
54 }
55 
56 static struct v3d_csd_job *
57 to_csd_job(struct drm_sched_job *sched_job)
58 {
59 	return container_of(sched_job, struct v3d_csd_job, base.base);
60 }
61 
62 static struct v3d_cpu_job *
63 to_cpu_job(struct drm_sched_job *sched_job)
64 {
65 	return container_of(sched_job, struct v3d_cpu_job, base.base);
66 }
67 
68 static void
69 v3d_sched_job_free(struct drm_sched_job *sched_job)
70 {
71 	struct v3d_job *job = to_v3d_job(sched_job);
72 
73 	v3d_job_cleanup(job);
74 }
75 
76 void
77 v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info,
78 			      unsigned int count)
79 {
80 	if (query_info->queries) {
81 		unsigned int i;
82 
83 		for (i = 0; i < count; i++)
84 			drm_syncobj_put(query_info->queries[i].syncobj);
85 
86 		kvfree(query_info->queries);
87 	}
88 }
89 
90 void
91 v3d_performance_query_info_free(struct v3d_performance_query_info *query_info,
92 				unsigned int count)
93 {
94 	if (query_info->queries) {
95 		unsigned int i;
96 
97 		for (i = 0; i < count; i++) {
98 			drm_syncobj_put(query_info->queries[i].syncobj);
99 			kvfree(query_info->queries[i].kperfmon_ids);
100 		}
101 
102 		kvfree(query_info->queries);
103 	}
104 }
105 
106 static void
107 v3d_cpu_job_free(struct drm_sched_job *sched_job)
108 {
109 	struct v3d_cpu_job *job = to_cpu_job(sched_job);
110 
111 	v3d_timestamp_query_info_free(&job->timestamp_query,
112 				      job->timestamp_query.count);
113 
114 	v3d_performance_query_info_free(&job->performance_query,
115 					job->performance_query.count);
116 
117 	v3d_job_cleanup(&job->base);
118 }
119 
120 static void
121 v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job)
122 {
123 	struct v3d_perfmon *perfmon = v3d->global_perfmon;
124 
125 	if (!perfmon)
126 		perfmon = job->perfmon;
127 
128 	if (perfmon == v3d->active_perfmon)
129 		return;
130 
131 	if (perfmon != v3d->active_perfmon)
132 		v3d_perfmon_stop(v3d, v3d->active_perfmon, true);
133 
134 	if (perfmon && v3d->active_perfmon != perfmon)
135 		v3d_perfmon_start(v3d, perfmon);
136 }
137 
138 static void
139 v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue)
140 {
141 	struct v3d_dev *v3d = job->v3d;
142 	struct v3d_file_priv *file = job->file->driver_priv;
143 	struct v3d_stats *global_stats = &v3d->queue[queue].stats;
144 	struct v3d_stats *local_stats = &file->stats[queue];
145 	u64 now = local_clock();
146 	unsigned long flags;
147 
148 	/*
149 	 * We only need to disable local interrupts to appease lockdep who
150 	 * otherwise would think v3d_job_start_stats vs v3d_stats_update has an
151 	 * unsafe in-irq vs no-irq-off usage problem. This is a false positive
152 	 * because all the locks are per queue and stats type, and all jobs are
153 	 * completely one at a time serialised. More specifically:
154 	 *
155 	 * 1. Locks for GPU queues are updated from interrupt handlers under a
156 	 *    spin lock and started here with preemption disabled.
157 	 *
158 	 * 2. Locks for CPU queues are updated from the worker with preemption
159 	 *    disabled and equally started here with preemption disabled.
160 	 *
161 	 * Therefore both are consistent.
162 	 *
163 	 * 3. Because next job can only be queued after the previous one has
164 	 *    been signaled, and locks are per queue, there is also no scope for
165 	 *    the start part to race with the update part.
166 	 */
167 	if (IS_ENABLED(CONFIG_LOCKDEP))
168 		local_irq_save(flags);
169 	else
170 		preempt_disable();
171 
172 	write_seqcount_begin(&local_stats->lock);
173 	local_stats->start_ns = now;
174 	write_seqcount_end(&local_stats->lock);
175 
176 	write_seqcount_begin(&global_stats->lock);
177 	global_stats->start_ns = now;
178 	write_seqcount_end(&global_stats->lock);
179 
180 	if (IS_ENABLED(CONFIG_LOCKDEP))
181 		local_irq_restore(flags);
182 	else
183 		preempt_enable();
184 }
185 
186 static void
187 v3d_stats_update(struct v3d_stats *stats, u64 now)
188 {
189 	write_seqcount_begin(&stats->lock);
190 	stats->enabled_ns += now - stats->start_ns;
191 	stats->jobs_completed++;
192 	stats->start_ns = 0;
193 	write_seqcount_end(&stats->lock);
194 }
195 
196 void
197 v3d_job_update_stats(struct v3d_job *job, enum v3d_queue queue)
198 {
199 	struct v3d_dev *v3d = job->v3d;
200 	struct v3d_file_priv *file = job->file->driver_priv;
201 	struct v3d_stats *global_stats = &v3d->queue[queue].stats;
202 	struct v3d_stats *local_stats = &file->stats[queue];
203 	u64 now = local_clock();
204 	unsigned long flags;
205 
206 	/* See comment in v3d_job_start_stats() */
207 	if (IS_ENABLED(CONFIG_LOCKDEP))
208 		local_irq_save(flags);
209 	else
210 		preempt_disable();
211 
212 	v3d_stats_update(local_stats, now);
213 	v3d_stats_update(global_stats, now);
214 
215 	if (IS_ENABLED(CONFIG_LOCKDEP))
216 		local_irq_restore(flags);
217 	else
218 		preempt_enable();
219 }
220 
221 static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
222 {
223 	struct v3d_bin_job *job = to_bin_job(sched_job);
224 	struct v3d_dev *v3d = job->base.v3d;
225 	struct drm_device *dev = &v3d->drm;
226 	struct dma_fence *fence;
227 	unsigned long irqflags;
228 
229 	if (unlikely(job->base.base.s_fence->finished.error)) {
230 		spin_lock_irqsave(&v3d->job_lock, irqflags);
231 		v3d->bin_job = NULL;
232 		spin_unlock_irqrestore(&v3d->job_lock, irqflags);
233 		return NULL;
234 	}
235 
236 	/* Lock required around bin_job update vs
237 	 * v3d_overflow_mem_work().
238 	 */
239 	spin_lock_irqsave(&v3d->job_lock, irqflags);
240 	v3d->bin_job = job;
241 	/* Clear out the overflow allocation, so we don't
242 	 * reuse the overflow attached to a previous job.
243 	 */
244 	V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
245 	spin_unlock_irqrestore(&v3d->job_lock, irqflags);
246 
247 	v3d_invalidate_caches(v3d);
248 
249 	fence = v3d_fence_create(v3d, V3D_BIN);
250 	if (IS_ERR(fence))
251 		return NULL;
252 
253 	if (job->base.irq_fence)
254 		dma_fence_put(job->base.irq_fence);
255 	job->base.irq_fence = dma_fence_get(fence);
256 
257 	trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
258 			    job->start, job->end);
259 
260 	v3d_job_start_stats(&job->base, V3D_BIN);
261 	v3d_switch_perfmon(v3d, &job->base);
262 
263 	/* Set the current and end address of the control list.
264 	 * Writing the end register is what starts the job.
265 	 */
266 	if (job->qma) {
267 		V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
268 		V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
269 	}
270 	if (job->qts) {
271 		V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
272 			       V3D_CLE_CT0QTS_ENABLE |
273 			       job->qts);
274 	}
275 	V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
276 	V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
277 
278 	return fence;
279 }
280 
281 static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
282 {
283 	struct v3d_render_job *job = to_render_job(sched_job);
284 	struct v3d_dev *v3d = job->base.v3d;
285 	struct drm_device *dev = &v3d->drm;
286 	struct dma_fence *fence;
287 
288 	if (unlikely(job->base.base.s_fence->finished.error)) {
289 		v3d->render_job = NULL;
290 		return NULL;
291 	}
292 
293 	v3d->render_job = job;
294 
295 	/* Can we avoid this flush?  We need to be careful of
296 	 * scheduling, though -- imagine job0 rendering to texture and
297 	 * job1 reading, and them being executed as bin0, bin1,
298 	 * render0, render1, so that render1's flush at bin time
299 	 * wasn't enough.
300 	 */
301 	v3d_invalidate_caches(v3d);
302 
303 	fence = v3d_fence_create(v3d, V3D_RENDER);
304 	if (IS_ERR(fence))
305 		return NULL;
306 
307 	if (job->base.irq_fence)
308 		dma_fence_put(job->base.irq_fence);
309 	job->base.irq_fence = dma_fence_get(fence);
310 
311 	trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
312 			    job->start, job->end);
313 
314 	v3d_job_start_stats(&job->base, V3D_RENDER);
315 	v3d_switch_perfmon(v3d, &job->base);
316 
317 	/* XXX: Set the QCFG */
318 
319 	/* Set the current and end address of the control list.
320 	 * Writing the end register is what starts the job.
321 	 */
322 	V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
323 	V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
324 
325 	return fence;
326 }
327 
328 static struct dma_fence *
329 v3d_tfu_job_run(struct drm_sched_job *sched_job)
330 {
331 	struct v3d_tfu_job *job = to_tfu_job(sched_job);
332 	struct v3d_dev *v3d = job->base.v3d;
333 	struct drm_device *dev = &v3d->drm;
334 	struct dma_fence *fence;
335 
336 	if (unlikely(job->base.base.s_fence->finished.error)) {
337 		v3d->tfu_job = NULL;
338 		return NULL;
339 	}
340 
341 	v3d->tfu_job = job;
342 
343 	fence = v3d_fence_create(v3d, V3D_TFU);
344 	if (IS_ERR(fence))
345 		return NULL;
346 
347 	if (job->base.irq_fence)
348 		dma_fence_put(job->base.irq_fence);
349 	job->base.irq_fence = dma_fence_get(fence);
350 
351 	trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
352 
353 	v3d_job_start_stats(&job->base, V3D_TFU);
354 
355 	V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia);
356 	V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis);
357 	V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica);
358 	V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua);
359 	V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa);
360 	if (v3d->ver >= 71)
361 		V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc);
362 	V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios);
363 	V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]);
364 	if (v3d->ver >= 71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) {
365 		V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]);
366 		V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]);
367 		V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]);
368 	}
369 	/* ICFG kicks off the job. */
370 	V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC);
371 
372 	return fence;
373 }
374 
375 static struct dma_fence *
376 v3d_csd_job_run(struct drm_sched_job *sched_job)
377 {
378 	struct v3d_csd_job *job = to_csd_job(sched_job);
379 	struct v3d_dev *v3d = job->base.v3d;
380 	struct drm_device *dev = &v3d->drm;
381 	struct dma_fence *fence;
382 	int i, csd_cfg0_reg;
383 
384 	if (unlikely(job->base.base.s_fence->finished.error)) {
385 		v3d->csd_job = NULL;
386 		return NULL;
387 	}
388 
389 	v3d->csd_job = job;
390 
391 	v3d_invalidate_caches(v3d);
392 
393 	fence = v3d_fence_create(v3d, V3D_CSD);
394 	if (IS_ERR(fence))
395 		return NULL;
396 
397 	if (job->base.irq_fence)
398 		dma_fence_put(job->base.irq_fence);
399 	job->base.irq_fence = dma_fence_get(fence);
400 
401 	trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
402 
403 	v3d_job_start_stats(&job->base, V3D_CSD);
404 	v3d_switch_perfmon(v3d, &job->base);
405 
406 	csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver);
407 	for (i = 1; i <= 6; i++)
408 		V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]);
409 
410 	/* Although V3D 7.1 has an eighth configuration register, we are not
411 	 * using it. Therefore, make sure it remains unused.
412 	 *
413 	 * XXX: Set the CFG7 register
414 	 */
415 	if (v3d->ver >= 71)
416 		V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0);
417 
418 	/* CFG0 write kicks off the job. */
419 	V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]);
420 
421 	return fence;
422 }
423 
424 static void
425 v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job)
426 {
427 	struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd;
428 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
429 	struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect);
430 	struct drm_v3d_submit_csd *args = &indirect_csd->job->args;
431 	u32 *wg_counts;
432 
433 	v3d_get_bo_vaddr(bo);
434 	v3d_get_bo_vaddr(indirect);
435 
436 	wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset);
437 
438 	if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0)
439 		return;
440 
441 	args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
442 	args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
443 	args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
444 	args->cfg[4] = DIV_ROUND_UP(indirect_csd->wg_size, 16) *
445 		       (wg_counts[0] * wg_counts[1] * wg_counts[2]) - 1;
446 
447 	for (int i = 0; i < 3; i++) {
448 		/* 0xffffffff indicates that the uniform rewrite is not needed */
449 		if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) {
450 			u32 uniform_idx = indirect_csd->wg_uniform_offsets[i];
451 			((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i];
452 		}
453 	}
454 
455 	v3d_put_bo_vaddr(indirect);
456 	v3d_put_bo_vaddr(bo);
457 }
458 
459 static void
460 v3d_timestamp_query(struct v3d_cpu_job *job)
461 {
462 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
463 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
464 	u8 *value_addr;
465 
466 	v3d_get_bo_vaddr(bo);
467 
468 	for (int i = 0; i < timestamp_query->count; i++) {
469 		value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset;
470 		*((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull;
471 
472 		drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj,
473 					  job->base.done_fence);
474 	}
475 
476 	v3d_put_bo_vaddr(bo);
477 }
478 
479 static void
480 v3d_reset_timestamp_queries(struct v3d_cpu_job *job)
481 {
482 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
483 	struct v3d_timestamp_query *queries = timestamp_query->queries;
484 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
485 	u8 *value_addr;
486 
487 	v3d_get_bo_vaddr(bo);
488 
489 	for (int i = 0; i < timestamp_query->count; i++) {
490 		value_addr = ((u8 *)bo->vaddr) + queries[i].offset;
491 		*((u64 *)value_addr) = 0;
492 
493 		drm_syncobj_replace_fence(queries[i].syncobj, NULL);
494 	}
495 
496 	v3d_put_bo_vaddr(bo);
497 }
498 
499 static void write_to_buffer_32(u32 *dst, unsigned int idx, u32 value)
500 {
501 	dst[idx] = value;
502 }
503 
504 static void write_to_buffer_64(u64 *dst, unsigned int idx, u64 value)
505 {
506 	dst[idx] = value;
507 }
508 
509 static void
510 write_to_buffer(void *dst, unsigned int idx, bool do_64bit, u64 value)
511 {
512 	if (do_64bit)
513 		write_to_buffer_64(dst, idx, value);
514 	else
515 		write_to_buffer_32(dst, idx, value);
516 }
517 
518 static void
519 v3d_copy_query_results(struct v3d_cpu_job *job)
520 {
521 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
522 	struct v3d_timestamp_query *queries = timestamp_query->queries;
523 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
524 	struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]);
525 	struct v3d_copy_query_results_info *copy = &job->copy;
526 	struct dma_fence *fence;
527 	u8 *query_addr;
528 	bool available, write_result;
529 	u8 *data;
530 	int i;
531 
532 	v3d_get_bo_vaddr(bo);
533 	v3d_get_bo_vaddr(timestamp);
534 
535 	data = ((u8 *)bo->vaddr) + copy->offset;
536 
537 	for (i = 0; i < timestamp_query->count; i++) {
538 		fence = drm_syncobj_fence_get(queries[i].syncobj);
539 		available = fence ? dma_fence_is_signaled(fence) : false;
540 
541 		write_result = available || copy->do_partial;
542 		if (write_result) {
543 			query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset;
544 			write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr));
545 		}
546 
547 		if (copy->availability_bit)
548 			write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u);
549 
550 		data += copy->stride;
551 
552 		dma_fence_put(fence);
553 	}
554 
555 	v3d_put_bo_vaddr(timestamp);
556 	v3d_put_bo_vaddr(bo);
557 }
558 
559 static void
560 v3d_reset_performance_queries(struct v3d_cpu_job *job)
561 {
562 	struct v3d_performance_query_info *performance_query = &job->performance_query;
563 	struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
564 	struct v3d_dev *v3d = job->base.v3d;
565 	struct v3d_perfmon *perfmon;
566 
567 	for (int i = 0; i < performance_query->count; i++) {
568 		for (int j = 0; j < performance_query->nperfmons; j++) {
569 			perfmon = v3d_perfmon_find(v3d_priv,
570 						   performance_query->queries[i].kperfmon_ids[j]);
571 			if (!perfmon) {
572 				DRM_DEBUG("Failed to find perfmon.");
573 				continue;
574 			}
575 
576 			v3d_perfmon_stop(v3d, perfmon, false);
577 
578 			memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64));
579 
580 			v3d_perfmon_put(perfmon);
581 		}
582 
583 		drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL);
584 	}
585 }
586 
587 static void
588 v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data,
589 				   unsigned int query)
590 {
591 	struct v3d_performance_query_info *performance_query =
592 						&job->performance_query;
593 	struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
594 	struct v3d_performance_query *perf_query =
595 			&performance_query->queries[query];
596 	struct v3d_dev *v3d = job->base.v3d;
597 	unsigned int i, j, offset;
598 
599 	for (i = 0, offset = 0;
600 	     i < performance_query->nperfmons;
601 	     i++, offset += DRM_V3D_MAX_PERF_COUNTERS) {
602 		struct v3d_perfmon *perfmon;
603 
604 		perfmon = v3d_perfmon_find(v3d_priv,
605 					   perf_query->kperfmon_ids[i]);
606 		if (!perfmon) {
607 			DRM_DEBUG("Failed to find perfmon.");
608 			continue;
609 		}
610 
611 		v3d_perfmon_stop(v3d, perfmon, true);
612 
613 		if (job->copy.do_64bit) {
614 			for (j = 0; j < perfmon->ncounters; j++)
615 				write_to_buffer_64(data, offset + j,
616 						   perfmon->values[j]);
617 		} else {
618 			for (j = 0; j < perfmon->ncounters; j++)
619 				write_to_buffer_32(data, offset + j,
620 						   perfmon->values[j]);
621 		}
622 
623 		v3d_perfmon_put(perfmon);
624 	}
625 }
626 
627 static void
628 v3d_copy_performance_query(struct v3d_cpu_job *job)
629 {
630 	struct v3d_performance_query_info *performance_query = &job->performance_query;
631 	struct v3d_copy_query_results_info *copy = &job->copy;
632 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
633 	struct dma_fence *fence;
634 	bool available, write_result;
635 	u8 *data;
636 
637 	v3d_get_bo_vaddr(bo);
638 
639 	data = ((u8 *)bo->vaddr) + copy->offset;
640 
641 	for (int i = 0; i < performance_query->count; i++) {
642 		fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj);
643 		available = fence ? dma_fence_is_signaled(fence) : false;
644 
645 		write_result = available || copy->do_partial;
646 		if (write_result)
647 			v3d_write_performance_query_result(job, data, i);
648 
649 		if (copy->availability_bit)
650 			write_to_buffer(data, performance_query->ncounters,
651 					copy->do_64bit, available ? 1u : 0u);
652 
653 		data += copy->stride;
654 
655 		dma_fence_put(fence);
656 	}
657 
658 	v3d_put_bo_vaddr(bo);
659 }
660 
661 static const v3d_cpu_job_fn cpu_job_function[] = {
662 	[V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect,
663 	[V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query,
664 	[V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries,
665 	[V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results,
666 	[V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries,
667 	[V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query,
668 };
669 
670 static struct dma_fence *
671 v3d_cpu_job_run(struct drm_sched_job *sched_job)
672 {
673 	struct v3d_cpu_job *job = to_cpu_job(sched_job);
674 	struct v3d_dev *v3d = job->base.v3d;
675 
676 	if (job->job_type >= ARRAY_SIZE(cpu_job_function)) {
677 		DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type);
678 		return NULL;
679 	}
680 
681 	v3d_job_start_stats(&job->base, V3D_CPU);
682 	trace_v3d_cpu_job_begin(&v3d->drm, job->job_type);
683 
684 	cpu_job_function[job->job_type](job);
685 
686 	trace_v3d_cpu_job_end(&v3d->drm, job->job_type);
687 	v3d_job_update_stats(&job->base, V3D_CPU);
688 
689 	return NULL;
690 }
691 
692 static struct dma_fence *
693 v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
694 {
695 	struct v3d_job *job = to_v3d_job(sched_job);
696 	struct v3d_dev *v3d = job->v3d;
697 
698 	v3d_job_start_stats(job, V3D_CACHE_CLEAN);
699 
700 	v3d_clean_caches(v3d);
701 
702 	v3d_job_update_stats(job, V3D_CACHE_CLEAN);
703 
704 	return NULL;
705 }
706 
707 static enum drm_gpu_sched_stat
708 v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job)
709 {
710 	enum v3d_queue q;
711 
712 	mutex_lock(&v3d->reset_lock);
713 
714 	/* block scheduler */
715 	for (q = 0; q < V3D_MAX_QUEUES; q++)
716 		drm_sched_stop(&v3d->queue[q].sched, sched_job);
717 
718 	if (sched_job)
719 		drm_sched_increase_karma(sched_job);
720 
721 	/* get the GPU back into the init state */
722 	v3d_reset(v3d);
723 
724 	for (q = 0; q < V3D_MAX_QUEUES; q++)
725 		drm_sched_resubmit_jobs(&v3d->queue[q].sched);
726 
727 	/* Unblock schedulers and restart their jobs. */
728 	for (q = 0; q < V3D_MAX_QUEUES; q++) {
729 		drm_sched_start(&v3d->queue[q].sched, 0);
730 	}
731 
732 	mutex_unlock(&v3d->reset_lock);
733 
734 	return DRM_GPU_SCHED_STAT_NOMINAL;
735 }
736 
737 /* If the current address or return address have changed, then the GPU
738  * has probably made progress and we should delay the reset.  This
739  * could fail if the GPU got in an infinite loop in the CL, but that
740  * is pretty unlikely outside of an i-g-t testcase.
741  */
742 static enum drm_gpu_sched_stat
743 v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
744 		    u32 *timedout_ctca, u32 *timedout_ctra)
745 {
746 	struct v3d_job *job = to_v3d_job(sched_job);
747 	struct v3d_dev *v3d = job->v3d;
748 	u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
749 	u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
750 
751 	if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
752 		*timedout_ctca = ctca;
753 		*timedout_ctra = ctra;
754 		return DRM_GPU_SCHED_STAT_NOMINAL;
755 	}
756 
757 	return v3d_gpu_reset_for_timeout(v3d, sched_job);
758 }
759 
760 static enum drm_gpu_sched_stat
761 v3d_bin_job_timedout(struct drm_sched_job *sched_job)
762 {
763 	struct v3d_bin_job *job = to_bin_job(sched_job);
764 
765 	return v3d_cl_job_timedout(sched_job, V3D_BIN,
766 				   &job->timedout_ctca, &job->timedout_ctra);
767 }
768 
769 static enum drm_gpu_sched_stat
770 v3d_render_job_timedout(struct drm_sched_job *sched_job)
771 {
772 	struct v3d_render_job *job = to_render_job(sched_job);
773 
774 	return v3d_cl_job_timedout(sched_job, V3D_RENDER,
775 				   &job->timedout_ctca, &job->timedout_ctra);
776 }
777 
778 static enum drm_gpu_sched_stat
779 v3d_generic_job_timedout(struct drm_sched_job *sched_job)
780 {
781 	struct v3d_job *job = to_v3d_job(sched_job);
782 
783 	return v3d_gpu_reset_for_timeout(job->v3d, sched_job);
784 }
785 
786 static enum drm_gpu_sched_stat
787 v3d_csd_job_timedout(struct drm_sched_job *sched_job)
788 {
789 	struct v3d_csd_job *job = to_csd_job(sched_job);
790 	struct v3d_dev *v3d = job->base.v3d;
791 	u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver));
792 
793 	/* If we've made progress, skip reset and let the timer get
794 	 * rearmed.
795 	 */
796 	if (job->timedout_batches != batches) {
797 		job->timedout_batches = batches;
798 		return DRM_GPU_SCHED_STAT_NOMINAL;
799 	}
800 
801 	return v3d_gpu_reset_for_timeout(v3d, sched_job);
802 }
803 
804 static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
805 	.run_job = v3d_bin_job_run,
806 	.timedout_job = v3d_bin_job_timedout,
807 	.free_job = v3d_sched_job_free,
808 };
809 
810 static const struct drm_sched_backend_ops v3d_render_sched_ops = {
811 	.run_job = v3d_render_job_run,
812 	.timedout_job = v3d_render_job_timedout,
813 	.free_job = v3d_sched_job_free,
814 };
815 
816 static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
817 	.run_job = v3d_tfu_job_run,
818 	.timedout_job = v3d_generic_job_timedout,
819 	.free_job = v3d_sched_job_free,
820 };
821 
822 static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
823 	.run_job = v3d_csd_job_run,
824 	.timedout_job = v3d_csd_job_timedout,
825 	.free_job = v3d_sched_job_free
826 };
827 
828 static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
829 	.run_job = v3d_cache_clean_job_run,
830 	.timedout_job = v3d_generic_job_timedout,
831 	.free_job = v3d_sched_job_free
832 };
833 
834 static const struct drm_sched_backend_ops v3d_cpu_sched_ops = {
835 	.run_job = v3d_cpu_job_run,
836 	.timedout_job = v3d_generic_job_timedout,
837 	.free_job = v3d_cpu_job_free
838 };
839 
840 static int
841 v3d_queue_sched_init(struct v3d_dev *v3d, const struct drm_sched_backend_ops *ops,
842 		     enum v3d_queue queue, const char *name)
843 {
844 	struct drm_sched_init_args args = {
845 		.num_rqs = DRM_SCHED_PRIORITY_COUNT,
846 		.credit_limit = 1,
847 		.timeout = msecs_to_jiffies(500),
848 		.dev = v3d->drm.dev,
849 	};
850 
851 	args.ops = ops;
852 	args.name = name;
853 
854 	return drm_sched_init(&v3d->queue[queue].sched, &args);
855 }
856 
857 int
858 v3d_sched_init(struct v3d_dev *v3d)
859 {
860 	int ret;
861 
862 	ret = v3d_queue_sched_init(v3d, &v3d_bin_sched_ops, V3D_BIN, "v3d_bin");
863 	if (ret)
864 		return ret;
865 
866 	ret = v3d_queue_sched_init(v3d, &v3d_render_sched_ops, V3D_RENDER,
867 				   "v3d_render");
868 	if (ret)
869 		goto fail;
870 
871 	ret = v3d_queue_sched_init(v3d, &v3d_tfu_sched_ops, V3D_TFU, "v3d_tfu");
872 	if (ret)
873 		goto fail;
874 
875 	if (v3d_has_csd(v3d)) {
876 		ret = v3d_queue_sched_init(v3d, &v3d_csd_sched_ops, V3D_CSD,
877 					   "v3d_csd");
878 		if (ret)
879 			goto fail;
880 
881 		ret = v3d_queue_sched_init(v3d, &v3d_cache_clean_sched_ops,
882 					   V3D_CACHE_CLEAN, "v3d_cache_clean");
883 		if (ret)
884 			goto fail;
885 	}
886 
887 	ret = v3d_queue_sched_init(v3d, &v3d_cpu_sched_ops, V3D_CPU, "v3d_cpu");
888 	if (ret)
889 		goto fail;
890 
891 	return 0;
892 
893 fail:
894 	v3d_sched_fini(v3d);
895 	return ret;
896 }
897 
898 void
899 v3d_sched_fini(struct v3d_dev *v3d)
900 {
901 	enum v3d_queue q;
902 
903 	for (q = 0; q < V3D_MAX_QUEUES; q++) {
904 		if (v3d->queue[q].sched.ready)
905 			drm_sched_fini(&v3d->queue[q].sched);
906 	}
907 }
908