1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * uvc_video.c -- USB Video Class driver - Video handling
4 *
5 * Copyright (C) 2005-2010
6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <linux/unaligned.h>
22
23 #include <media/v4l2-common.h>
24
25 #include "uvcvideo.h"
26
27 /* ------------------------------------------------------------------------
28 * UVC Controls
29 */
30
__uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size,int timeout)31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
32 u8 intfnum, u8 cs, void *data, u16 size,
33 int timeout)
34 {
35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
36 unsigned int pipe;
37
38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
39 : usb_sndctrlpipe(dev->udev, 0);
40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
41
42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
43 unit << 8 | intfnum, data, size, timeout);
44 }
45
uvc_query_name(u8 query)46 static const char *uvc_query_name(u8 query)
47 {
48 switch (query) {
49 case UVC_SET_CUR:
50 return "SET_CUR";
51 case UVC_GET_CUR:
52 return "GET_CUR";
53 case UVC_GET_MIN:
54 return "GET_MIN";
55 case UVC_GET_MAX:
56 return "GET_MAX";
57 case UVC_GET_RES:
58 return "GET_RES";
59 case UVC_GET_LEN:
60 return "GET_LEN";
61 case UVC_GET_INFO:
62 return "GET_INFO";
63 case UVC_GET_DEF:
64 return "GET_DEF";
65 default:
66 return "<invalid>";
67 }
68 }
69
uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size)70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
71 u8 intfnum, u8 cs, void *data, u16 size)
72 {
73 int ret;
74 u8 error;
75 u8 tmp;
76
77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 UVC_CTRL_CONTROL_TIMEOUT);
79 if (likely(ret == size))
80 return 0;
81
82 if (ret != -EPIPE) {
83 dev_err(&dev->udev->dev,
84 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
85 uvc_query_name(query), cs, unit, ret, size);
86 return ret < 0 ? ret : -EPIPE;
87 }
88
89 /* Reuse data[0] to request the error code. */
90 tmp = *(u8 *)data;
91
92 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
93 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
94 UVC_CTRL_CONTROL_TIMEOUT);
95
96 error = *(u8 *)data;
97 *(u8 *)data = tmp;
98
99 if (ret != 1)
100 return ret < 0 ? ret : -EPIPE;
101
102 uvc_dbg(dev, CONTROL, "Control error %u\n", error);
103
104 switch (error) {
105 case 0:
106 /* Cannot happen - we received a STALL */
107 return -EPIPE;
108 case 1: /* Not ready */
109 return -EBUSY;
110 case 2: /* Wrong state */
111 return -EACCES;
112 case 3: /* Power */
113 return -EREMOTE;
114 case 4: /* Out of range */
115 return -ERANGE;
116 case 5: /* Invalid unit */
117 case 6: /* Invalid control */
118 case 7: /* Invalid Request */
119 /*
120 * The firmware has not properly implemented
121 * the control or there has been a HW error.
122 */
123 return -EIO;
124 case 8: /* Invalid value within range */
125 return -EINVAL;
126 default: /* reserved or unknown */
127 break;
128 }
129
130 return -EPIPE;
131 }
132
133 static const struct usb_device_id elgato_cam_link_4k = {
134 USB_DEVICE(0x0fd9, 0x0066)
135 };
136
uvc_fixup_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl)137 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
138 struct uvc_streaming_control *ctrl)
139 {
140 const struct uvc_format *format = NULL;
141 const struct uvc_frame *frame = NULL;
142 unsigned int i;
143
144 /*
145 * The response of the Elgato Cam Link 4K is incorrect: The second byte
146 * contains bFormatIndex (instead of being the second byte of bmHint).
147 * The first byte is always zero. The third byte is always 1.
148 *
149 * The UVC 1.5 class specification defines the first five bits in the
150 * bmHint bitfield. The remaining bits are reserved and should be zero.
151 * Therefore a valid bmHint will be less than 32.
152 *
153 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
154 * MCU: 20.02.19, FPGA: 67
155 */
156 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
157 ctrl->bmHint > 255) {
158 u8 corrected_format_index = ctrl->bmHint >> 8;
159
160 uvc_dbg(stream->dev, VIDEO,
161 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
162 ctrl->bmHint, ctrl->bFormatIndex,
163 1, corrected_format_index);
164 ctrl->bmHint = 1;
165 ctrl->bFormatIndex = corrected_format_index;
166 }
167
168 for (i = 0; i < stream->nformats; ++i) {
169 if (stream->formats[i].index == ctrl->bFormatIndex) {
170 format = &stream->formats[i];
171 break;
172 }
173 }
174
175 if (format == NULL)
176 return;
177
178 for (i = 0; i < format->nframes; ++i) {
179 if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) {
180 frame = &format->frames[i];
181 break;
182 }
183 }
184
185 if (frame == NULL)
186 return;
187
188 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
189 (ctrl->dwMaxVideoFrameSize == 0 &&
190 stream->dev->uvc_version < 0x0110))
191 ctrl->dwMaxVideoFrameSize =
192 frame->dwMaxVideoFrameBufferSize;
193
194 /*
195 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
196 * compute the bandwidth on 16 bits and erroneously sign-extend it to
197 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
198 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
199 */
200 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
201 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
202
203 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
204 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
205 stream->intf->num_altsetting > 1) {
206 u32 interval;
207 u32 bandwidth;
208
209 interval = (ctrl->dwFrameInterval > 100000)
210 ? ctrl->dwFrameInterval
211 : frame->dwFrameInterval[0];
212
213 /*
214 * Compute a bandwidth estimation by multiplying the frame
215 * size by the number of video frames per second, divide the
216 * result by the number of USB frames (or micro-frames for
217 * high- and super-speed devices) per second and add the UVC
218 * header size (assumed to be 12 bytes long).
219 */
220 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
221 bandwidth *= 10000000 / interval + 1;
222 bandwidth /= 1000;
223 if (stream->dev->udev->speed >= USB_SPEED_HIGH)
224 bandwidth /= 8;
225 bandwidth += 12;
226
227 /*
228 * The bandwidth estimate is too low for many cameras. Don't use
229 * maximum packet sizes lower than 1024 bytes to try and work
230 * around the problem. According to measurements done on two
231 * different camera models, the value is high enough to get most
232 * resolutions working while not preventing two simultaneous
233 * VGA streams at 15 fps.
234 */
235 bandwidth = max_t(u32, bandwidth, 1024);
236
237 ctrl->dwMaxPayloadTransferSize = bandwidth;
238 }
239 }
240
uvc_video_ctrl_size(struct uvc_streaming * stream)241 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
242 {
243 /*
244 * Return the size of the video probe and commit controls, which depends
245 * on the protocol version.
246 */
247 if (stream->dev->uvc_version < 0x0110)
248 return 26;
249 else if (stream->dev->uvc_version < 0x0150)
250 return 34;
251 else
252 return 48;
253 }
254
uvc_get_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe,u8 query)255 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
256 struct uvc_streaming_control *ctrl, int probe, u8 query)
257 {
258 u16 size = uvc_video_ctrl_size(stream);
259 u8 *data;
260 int ret;
261
262 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
263 query == UVC_GET_DEF)
264 return -EIO;
265
266 data = kmalloc(size, GFP_KERNEL);
267 if (data == NULL)
268 return -ENOMEM;
269
270 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
271 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
272 size, uvc_timeout_param);
273
274 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
275 /*
276 * Some cameras, mostly based on Bison Electronics chipsets,
277 * answer a GET_MIN or GET_MAX request with the wCompQuality
278 * field only.
279 */
280 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
281 "compliance - GET_MIN/MAX(PROBE) incorrectly "
282 "supported. Enabling workaround.\n");
283 memset(ctrl, 0, sizeof(*ctrl));
284 ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
285 ret = 0;
286 goto out;
287 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
288 /*
289 * Many cameras don't support the GET_DEF request on their
290 * video probe control. Warn once and return, the caller will
291 * fall back to GET_CUR.
292 */
293 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
294 "compliance - GET_DEF(PROBE) not supported. "
295 "Enabling workaround.\n");
296 ret = -EIO;
297 goto out;
298 } else if (ret != size) {
299 dev_err(&stream->intf->dev,
300 "Failed to query (%u) UVC %s control : %d (exp. %u).\n",
301 query, probe ? "probe" : "commit", ret, size);
302 ret = (ret == -EPROTO) ? -EPROTO : -EIO;
303 goto out;
304 }
305
306 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
307 ctrl->bFormatIndex = data[2];
308 ctrl->bFrameIndex = data[3];
309 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
310 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
311 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
312 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
313 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
314 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
315 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
316 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
317
318 if (size >= 34) {
319 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
320 ctrl->bmFramingInfo = data[30];
321 ctrl->bPreferedVersion = data[31];
322 ctrl->bMinVersion = data[32];
323 ctrl->bMaxVersion = data[33];
324 } else {
325 ctrl->dwClockFrequency = stream->dev->clock_frequency;
326 ctrl->bmFramingInfo = 0;
327 ctrl->bPreferedVersion = 0;
328 ctrl->bMinVersion = 0;
329 ctrl->bMaxVersion = 0;
330 }
331
332 /*
333 * Some broken devices return null or wrong dwMaxVideoFrameSize and
334 * dwMaxPayloadTransferSize fields. Try to get the value from the
335 * format and frame descriptors.
336 */
337 uvc_fixup_video_ctrl(stream, ctrl);
338 ret = 0;
339
340 out:
341 kfree(data);
342 return ret;
343 }
344
uvc_set_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe)345 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
346 struct uvc_streaming_control *ctrl, int probe)
347 {
348 u16 size = uvc_video_ctrl_size(stream);
349 u8 *data;
350 int ret;
351
352 data = kzalloc(size, GFP_KERNEL);
353 if (data == NULL)
354 return -ENOMEM;
355
356 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
357 data[2] = ctrl->bFormatIndex;
358 data[3] = ctrl->bFrameIndex;
359 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
360 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
361 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
362 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
363 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
364 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
365 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
366 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
367
368 if (size >= 34) {
369 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
370 data[30] = ctrl->bmFramingInfo;
371 data[31] = ctrl->bPreferedVersion;
372 data[32] = ctrl->bMinVersion;
373 data[33] = ctrl->bMaxVersion;
374 }
375
376 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
377 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
378 size, uvc_timeout_param);
379 if (ret != size) {
380 dev_err(&stream->intf->dev,
381 "Failed to set UVC %s control : %d (exp. %u).\n",
382 probe ? "probe" : "commit", ret, size);
383 ret = -EIO;
384 }
385
386 kfree(data);
387 return ret;
388 }
389
uvc_probe_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)390 int uvc_probe_video(struct uvc_streaming *stream,
391 struct uvc_streaming_control *probe)
392 {
393 struct uvc_streaming_control probe_min, probe_max;
394 unsigned int i;
395 int ret;
396
397 /*
398 * Perform probing. The device should adjust the requested values
399 * according to its capabilities. However, some devices, namely the
400 * first generation UVC Logitech webcams, don't implement the Video
401 * Probe control properly, and just return the needed bandwidth. For
402 * that reason, if the needed bandwidth exceeds the maximum available
403 * bandwidth, try to lower the quality.
404 */
405 ret = uvc_set_video_ctrl(stream, probe, 1);
406 if (ret < 0)
407 goto done;
408
409 /* Get the minimum and maximum values for compression settings. */
410 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
411 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
412 if (ret < 0)
413 goto done;
414 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
415 if (ret < 0)
416 goto done;
417
418 probe->wCompQuality = probe_max.wCompQuality;
419 }
420
421 for (i = 0; i < 2; ++i) {
422 ret = uvc_set_video_ctrl(stream, probe, 1);
423 if (ret < 0)
424 goto done;
425 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
426 if (ret < 0)
427 goto done;
428
429 if (stream->intf->num_altsetting == 1)
430 break;
431
432 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize)
433 break;
434
435 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
436 ret = -ENOSPC;
437 goto done;
438 }
439
440 /* TODO: negotiate compression parameters */
441 probe->wKeyFrameRate = probe_min.wKeyFrameRate;
442 probe->wPFrameRate = probe_min.wPFrameRate;
443 probe->wCompQuality = probe_max.wCompQuality;
444 probe->wCompWindowSize = probe_min.wCompWindowSize;
445 }
446
447 done:
448 return ret;
449 }
450
uvc_commit_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)451 static int uvc_commit_video(struct uvc_streaming *stream,
452 struct uvc_streaming_control *probe)
453 {
454 return uvc_set_video_ctrl(stream, probe, 0);
455 }
456
457 /* -----------------------------------------------------------------------------
458 * Clocks and timestamps
459 */
460
uvc_video_get_time(void)461 static inline ktime_t uvc_video_get_time(void)
462 {
463 if (uvc_clock_param == CLOCK_MONOTONIC)
464 return ktime_get();
465 else
466 return ktime_get_real();
467 }
468
uvc_video_clock_add_sample(struct uvc_clock * clock,const struct uvc_clock_sample * sample)469 static void uvc_video_clock_add_sample(struct uvc_clock *clock,
470 const struct uvc_clock_sample *sample)
471 {
472 unsigned long flags;
473
474 /*
475 * If we write new data on the position where we had the last
476 * overflow, remove the overflow pointer. There is no SOF overflow
477 * in the whole circular buffer.
478 */
479 if (clock->head == clock->last_sof_overflow)
480 clock->last_sof_overflow = -1;
481
482 spin_lock_irqsave(&clock->lock, flags);
483
484 if (clock->count > 0 && clock->last_sof > sample->dev_sof) {
485 /*
486 * Remove data from the circular buffer that is older than the
487 * last SOF overflow. We only support one SOF overflow per
488 * circular buffer.
489 */
490 if (clock->last_sof_overflow != -1)
491 clock->count = (clock->head - clock->last_sof_overflow
492 + clock->size) % clock->size;
493 clock->last_sof_overflow = clock->head;
494 }
495
496 /* Add sample. */
497 clock->samples[clock->head] = *sample;
498 clock->head = (clock->head + 1) % clock->size;
499 clock->count = min(clock->count + 1, clock->size);
500
501 spin_unlock_irqrestore(&clock->lock, flags);
502 }
503
504 static void
uvc_video_clock_decode(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)505 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
506 const u8 *data, int len)
507 {
508 struct uvc_clock_sample sample;
509 unsigned int header_size;
510 bool has_pts = false;
511 bool has_scr = false;
512
513 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
514 case UVC_STREAM_PTS | UVC_STREAM_SCR:
515 header_size = 12;
516 has_pts = true;
517 has_scr = true;
518 break;
519 case UVC_STREAM_PTS:
520 header_size = 6;
521 has_pts = true;
522 break;
523 case UVC_STREAM_SCR:
524 header_size = 8;
525 has_scr = true;
526 break;
527 default:
528 header_size = 2;
529 break;
530 }
531
532 /* Check for invalid headers. */
533 if (len < header_size)
534 return;
535
536 /*
537 * Extract the timestamps:
538 *
539 * - store the frame PTS in the buffer structure
540 * - if the SCR field is present, retrieve the host SOF counter and
541 * kernel timestamps and store them with the SCR STC and SOF fields
542 * in the ring buffer
543 */
544 if (has_pts && buf != NULL)
545 buf->pts = get_unaligned_le32(&data[2]);
546
547 if (!has_scr)
548 return;
549
550 /*
551 * To limit the amount of data, drop SCRs with an SOF identical to the
552 * previous one. This filtering is also needed to support UVC 1.5, where
553 * all the data packets of the same frame contains the same SOF. In that
554 * case only the first one will match the host_sof.
555 */
556 sample.dev_sof = get_unaligned_le16(&data[header_size - 2]);
557 if (sample.dev_sof == stream->clock.last_sof)
558 return;
559
560 sample.dev_stc = get_unaligned_le32(&data[header_size - 6]);
561
562 /*
563 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5
564 * standard states that it "must be captured when the first video data
565 * of a video frame is put on the USB bus". This is generally understood
566 * as requiring devices to clear the payload header's SCR bit before
567 * the first packet containing video data.
568 *
569 * Most vendors follow that interpretation, but some (namely SunplusIT
570 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR
571 * field with 0's,and expect that the driver only processes the SCR if
572 * there is data in the packet.
573 *
574 * Ignore all the hardware timestamp information if we haven't received
575 * any data for this frame yet, the packet contains no data, and both
576 * STC and SOF are zero. This heuristics should be safe on compliant
577 * devices. This should be safe with compliant devices, as in the very
578 * unlikely case where a UVC 1.1 device would send timing information
579 * only before the first packet containing data, and both STC and SOF
580 * happen to be zero for a particular frame, we would only miss one
581 * clock sample from many and the clock recovery algorithm wouldn't
582 * suffer from this condition.
583 */
584 if (buf && buf->bytesused == 0 && len == header_size &&
585 sample.dev_stc == 0 && sample.dev_sof == 0)
586 return;
587
588 sample.host_sof = usb_get_current_frame_number(stream->dev->udev);
589
590 /*
591 * On some devices, like the Logitech C922, the device SOF does not run
592 * at a stable rate of 1kHz. For those devices use the host SOF instead.
593 * In the tests performed so far, this improves the timestamp precision.
594 * This is probably explained by a small packet handling jitter from the
595 * host, but the exact reason hasn't been fully determined.
596 */
597 if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF)
598 sample.dev_sof = sample.host_sof;
599
600 sample.host_time = uvc_video_get_time();
601
602 /*
603 * The UVC specification allows device implementations that can't obtain
604 * the USB frame number to keep their own frame counters as long as they
605 * match the size and frequency of the frame number associated with USB
606 * SOF tokens. The SOF values sent by such devices differ from the USB
607 * SOF tokens by a fixed offset that needs to be estimated and accounted
608 * for to make timestamp recovery as accurate as possible.
609 *
610 * The offset is estimated the first time a device SOF value is received
611 * as the difference between the host and device SOF values. As the two
612 * SOF values can differ slightly due to transmission delays, consider
613 * that the offset is null if the difference is not higher than 10 ms
614 * (negative differences can not happen and are thus considered as an
615 * offset). The video commit control wDelay field should be used to
616 * compute a dynamic threshold instead of using a fixed 10 ms value, but
617 * devices don't report reliable wDelay values.
618 *
619 * See uvc_video_clock_host_sof() for an explanation regarding why only
620 * the 8 LSBs of the delta are kept.
621 */
622 if (stream->clock.sof_offset == (u16)-1) {
623 u16 delta_sof = (sample.host_sof - sample.dev_sof) & 255;
624 if (delta_sof >= 10)
625 stream->clock.sof_offset = delta_sof;
626 else
627 stream->clock.sof_offset = 0;
628 }
629
630 sample.dev_sof = (sample.dev_sof + stream->clock.sof_offset) & 2047;
631 uvc_video_clock_add_sample(&stream->clock, &sample);
632 stream->clock.last_sof = sample.dev_sof;
633 }
634
uvc_video_clock_reset(struct uvc_clock * clock)635 static void uvc_video_clock_reset(struct uvc_clock *clock)
636 {
637 clock->head = 0;
638 clock->count = 0;
639 clock->last_sof = -1;
640 clock->last_sof_overflow = -1;
641 clock->sof_offset = -1;
642 }
643
uvc_video_clock_init(struct uvc_clock * clock)644 static int uvc_video_clock_init(struct uvc_clock *clock)
645 {
646 spin_lock_init(&clock->lock);
647 clock->size = 32;
648
649 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
650 GFP_KERNEL);
651 if (clock->samples == NULL)
652 return -ENOMEM;
653
654 uvc_video_clock_reset(clock);
655
656 return 0;
657 }
658
uvc_video_clock_cleanup(struct uvc_clock * clock)659 static void uvc_video_clock_cleanup(struct uvc_clock *clock)
660 {
661 kfree(clock->samples);
662 clock->samples = NULL;
663 }
664
665 /*
666 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
667 *
668 * Host SOF counters reported by usb_get_current_frame_number() usually don't
669 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
670 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
671 * controller and its configuration.
672 *
673 * We thus need to recover the SOF value corresponding to the host frame number.
674 * As the device and host frame numbers are sampled in a short interval, the
675 * difference between their values should be equal to a small delta plus an
676 * integer multiple of 256 caused by the host frame number limited precision.
677 *
678 * To obtain the recovered host SOF value, compute the small delta by masking
679 * the high bits of the host frame counter and device SOF difference and add it
680 * to the device SOF value.
681 */
uvc_video_clock_host_sof(const struct uvc_clock_sample * sample)682 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
683 {
684 /* The delta value can be negative. */
685 s8 delta_sof;
686
687 delta_sof = (sample->host_sof - sample->dev_sof) & 255;
688
689 return (sample->dev_sof + delta_sof) & 2047;
690 }
691
692 /*
693 * uvc_video_clock_update - Update the buffer timestamp
694 *
695 * This function converts the buffer PTS timestamp to the host clock domain by
696 * going through the USB SOF clock domain and stores the result in the V4L2
697 * buffer timestamp field.
698 *
699 * The relationship between the device clock and the host clock isn't known.
700 * However, the device and the host share the common USB SOF clock which can be
701 * used to recover that relationship.
702 *
703 * The relationship between the device clock and the USB SOF clock is considered
704 * to be linear over the clock samples sliding window and is given by
705 *
706 * SOF = m * PTS + p
707 *
708 * Several methods to compute the slope (m) and intercept (p) can be used. As
709 * the clock drift should be small compared to the sliding window size, we
710 * assume that the line that goes through the points at both ends of the window
711 * is a good approximation. Naming those points P1 and P2, we get
712 *
713 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
714 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
715 *
716 * or
717 *
718 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
719 *
720 * to avoid losing precision in the division. Similarly, the host timestamp is
721 * computed with
722 *
723 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
724 *
725 * SOF values are coded on 11 bits by USB. We extend their precision with 16
726 * decimal bits, leading to a 11.16 coding.
727 *
728 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
729 * be normalized using the nominal device clock frequency reported through the
730 * UVC descriptors.
731 *
732 * Both the PTS/STC and SOF counters roll over, after a fixed but device
733 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
734 * sliding window size is smaller than the rollover period, differences computed
735 * on unsigned integers will produce the correct result. However, the p term in
736 * the linear relations will be miscomputed.
737 *
738 * To fix the issue, we subtract a constant from the PTS and STC values to bring
739 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
740 * the 32 bit range without any rollover.
741 *
742 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
743 * computed by (1) will never be smaller than 0. This offset is then compensated
744 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
745 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
746 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
747 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
748 * SOF value at the end of the sliding window.
749 *
750 * Finally we subtract a constant from the host timestamps to bring the first
751 * timestamp of the sliding window to 1s.
752 */
uvc_video_clock_update(struct uvc_streaming * stream,struct vb2_v4l2_buffer * vbuf,struct uvc_buffer * buf)753 void uvc_video_clock_update(struct uvc_streaming *stream,
754 struct vb2_v4l2_buffer *vbuf,
755 struct uvc_buffer *buf)
756 {
757 struct uvc_clock *clock = &stream->clock;
758 struct uvc_clock_sample *first;
759 struct uvc_clock_sample *last;
760 unsigned long flags;
761 u64 timestamp;
762 u32 delta_stc;
763 u32 y1;
764 u32 x1, x2;
765 u32 mean;
766 u32 sof;
767 u64 y, y2;
768
769 if (!uvc_hw_timestamps_param)
770 return;
771
772 /*
773 * We will get called from __vb2_queue_cancel() if there are buffers
774 * done but not dequeued by the user, but the sample array has already
775 * been released at that time. Just bail out in that case.
776 */
777 if (!clock->samples)
778 return;
779
780 spin_lock_irqsave(&clock->lock, flags);
781
782 if (clock->count < 2)
783 goto done;
784
785 first = &clock->samples[(clock->head - clock->count + clock->size) % clock->size];
786 last = &clock->samples[(clock->head - 1 + clock->size) % clock->size];
787
788 /* First step, PTS to SOF conversion. */
789 delta_stc = buf->pts - (1UL << 31);
790 x1 = first->dev_stc - delta_stc;
791 x2 = last->dev_stc - delta_stc;
792 if (x1 == x2)
793 goto done;
794
795 y1 = (first->dev_sof + 2048) << 16;
796 y2 = (last->dev_sof + 2048) << 16;
797 if (y2 < y1)
798 y2 += 2048 << 16;
799
800 /*
801 * Have at least 1/4 of a second of timestamps before we
802 * try to do any calculation. Otherwise we do not have enough
803 * precision. This value was determined by running Android CTS
804 * on different devices.
805 *
806 * dev_sof runs at 1KHz, and we have a fixed point precision of
807 * 16 bits.
808 */
809 if ((y2 - y1) < ((1000 / 4) << 16))
810 goto done;
811
812 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
813 - (u64)y2 * (u64)x1;
814 y = div_u64(y, x2 - x1);
815
816 sof = y;
817
818 uvc_dbg(stream->dev, CLOCK,
819 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n",
820 stream->dev->name, buf->pts,
821 y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
822 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
823 x1, x2, y1, y2, clock->sof_offset);
824
825 /* Second step, SOF to host clock conversion. */
826 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
827 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
828 if (x2 < x1)
829 x2 += 2048 << 16;
830 if (x1 == x2)
831 goto done;
832
833 y1 = NSEC_PER_SEC;
834 y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
835
836 /*
837 * Interpolated and host SOF timestamps can wrap around at slightly
838 * different times. Handle this by adding or removing 2048 to or from
839 * the computed SOF value to keep it close to the SOF samples mean
840 * value.
841 */
842 mean = (x1 + x2) / 2;
843 if (mean - (1024 << 16) > sof)
844 sof += 2048 << 16;
845 else if (sof > mean + (1024 << 16))
846 sof -= 2048 << 16;
847
848 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
849 - (u64)y2 * (u64)x1;
850 y = div_u64(y, x2 - x1);
851
852 timestamp = ktime_to_ns(first->host_time) + y - y1;
853
854 uvc_dbg(stream->dev, CLOCK,
855 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n",
856 stream->dev->name,
857 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
858 y, timestamp, vbuf->vb2_buf.timestamp,
859 x1, first->host_sof, first->dev_sof,
860 x2, last->host_sof, last->dev_sof, y1, y2);
861
862 /* Update the V4L2 buffer. */
863 vbuf->vb2_buf.timestamp = timestamp;
864
865 done:
866 spin_unlock_irqrestore(&clock->lock, flags);
867 }
868
869 /* ------------------------------------------------------------------------
870 * Stream statistics
871 */
872
uvc_video_stats_decode(struct uvc_streaming * stream,const u8 * data,int len)873 static void uvc_video_stats_decode(struct uvc_streaming *stream,
874 const u8 *data, int len)
875 {
876 unsigned int header_size;
877 bool has_pts = false;
878 bool has_scr = false;
879 u16 scr_sof;
880 u32 scr_stc;
881 u32 pts;
882
883 if (stream->stats.stream.nb_frames == 0 &&
884 stream->stats.frame.nb_packets == 0)
885 stream->stats.stream.start_ts = ktime_get();
886
887 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
888 case UVC_STREAM_PTS | UVC_STREAM_SCR:
889 header_size = 12;
890 has_pts = true;
891 has_scr = true;
892 break;
893 case UVC_STREAM_PTS:
894 header_size = 6;
895 has_pts = true;
896 break;
897 case UVC_STREAM_SCR:
898 header_size = 8;
899 has_scr = true;
900 break;
901 default:
902 header_size = 2;
903 break;
904 }
905
906 /* Check for invalid headers. */
907 if (len < header_size || data[0] < header_size) {
908 stream->stats.frame.nb_invalid++;
909 return;
910 }
911
912 /* Extract the timestamps. */
913 if (has_pts)
914 pts = get_unaligned_le32(&data[2]);
915
916 if (has_scr) {
917 scr_stc = get_unaligned_le32(&data[header_size - 6]);
918 scr_sof = get_unaligned_le16(&data[header_size - 2]);
919 }
920
921 /* Is PTS constant through the whole frame ? */
922 if (has_pts && stream->stats.frame.nb_pts) {
923 if (stream->stats.frame.pts != pts) {
924 stream->stats.frame.nb_pts_diffs++;
925 stream->stats.frame.last_pts_diff =
926 stream->stats.frame.nb_packets;
927 }
928 }
929
930 if (has_pts) {
931 stream->stats.frame.nb_pts++;
932 stream->stats.frame.pts = pts;
933 }
934
935 /*
936 * Do all frames have a PTS in their first non-empty packet, or before
937 * their first empty packet ?
938 */
939 if (stream->stats.frame.size == 0) {
940 if (len > header_size)
941 stream->stats.frame.has_initial_pts = has_pts;
942 if (len == header_size && has_pts)
943 stream->stats.frame.has_early_pts = true;
944 }
945
946 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
947 if (has_scr && stream->stats.frame.nb_scr) {
948 if (stream->stats.frame.scr_stc != scr_stc)
949 stream->stats.frame.nb_scr_diffs++;
950 }
951
952 if (has_scr) {
953 /* Expand the SOF counter to 32 bits and store its value. */
954 if (stream->stats.stream.nb_frames > 0 ||
955 stream->stats.frame.nb_scr > 0)
956 stream->stats.stream.scr_sof_count +=
957 (scr_sof - stream->stats.stream.scr_sof) % 2048;
958 stream->stats.stream.scr_sof = scr_sof;
959
960 stream->stats.frame.nb_scr++;
961 stream->stats.frame.scr_stc = scr_stc;
962 stream->stats.frame.scr_sof = scr_sof;
963
964 if (scr_sof < stream->stats.stream.min_sof)
965 stream->stats.stream.min_sof = scr_sof;
966 if (scr_sof > stream->stats.stream.max_sof)
967 stream->stats.stream.max_sof = scr_sof;
968 }
969
970 /* Record the first non-empty packet number. */
971 if (stream->stats.frame.size == 0 && len > header_size)
972 stream->stats.frame.first_data = stream->stats.frame.nb_packets;
973
974 /* Update the frame size. */
975 stream->stats.frame.size += len - header_size;
976
977 /* Update the packets counters. */
978 stream->stats.frame.nb_packets++;
979 if (len <= header_size)
980 stream->stats.frame.nb_empty++;
981
982 if (data[1] & UVC_STREAM_ERR)
983 stream->stats.frame.nb_errors++;
984 }
985
uvc_video_stats_update(struct uvc_streaming * stream)986 static void uvc_video_stats_update(struct uvc_streaming *stream)
987 {
988 struct uvc_stats_frame *frame = &stream->stats.frame;
989
990 uvc_dbg(stream->dev, STATS,
991 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
992 stream->sequence, frame->first_data,
993 frame->nb_packets - frame->nb_empty, frame->nb_packets,
994 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
995 frame->has_early_pts ? "" : "!",
996 frame->has_initial_pts ? "" : "!",
997 frame->nb_scr_diffs, frame->nb_scr,
998 frame->pts, frame->scr_stc, frame->scr_sof);
999
1000 stream->stats.stream.nb_frames++;
1001 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
1002 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
1003 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
1004 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
1005
1006 if (frame->has_early_pts)
1007 stream->stats.stream.nb_pts_early++;
1008 if (frame->has_initial_pts)
1009 stream->stats.stream.nb_pts_initial++;
1010 if (frame->last_pts_diff <= frame->first_data)
1011 stream->stats.stream.nb_pts_constant++;
1012 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
1013 stream->stats.stream.nb_scr_count_ok++;
1014 if (frame->nb_scr_diffs + 1 == frame->nb_scr)
1015 stream->stats.stream.nb_scr_diffs_ok++;
1016
1017 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
1018 }
1019
uvc_video_stats_dump(struct uvc_streaming * stream,char * buf,size_t size)1020 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
1021 size_t size)
1022 {
1023 unsigned int scr_sof_freq;
1024 unsigned int duration;
1025 size_t count = 0;
1026
1027 /*
1028 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
1029 * frequency this will not overflow before more than 1h.
1030 */
1031 duration = ktime_ms_delta(stream->stats.stream.stop_ts,
1032 stream->stats.stream.start_ts);
1033 if (duration != 0)
1034 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
1035 / duration;
1036 else
1037 scr_sof_freq = 0;
1038
1039 count += scnprintf(buf + count, size - count,
1040 "frames: %u\npackets: %u\nempty: %u\n"
1041 "errors: %u\ninvalid: %u\n",
1042 stream->stats.stream.nb_frames,
1043 stream->stats.stream.nb_packets,
1044 stream->stats.stream.nb_empty,
1045 stream->stats.stream.nb_errors,
1046 stream->stats.stream.nb_invalid);
1047 count += scnprintf(buf + count, size - count,
1048 "pts: %u early, %u initial, %u ok\n",
1049 stream->stats.stream.nb_pts_early,
1050 stream->stats.stream.nb_pts_initial,
1051 stream->stats.stream.nb_pts_constant);
1052 count += scnprintf(buf + count, size - count,
1053 "scr: %u count ok, %u diff ok\n",
1054 stream->stats.stream.nb_scr_count_ok,
1055 stream->stats.stream.nb_scr_diffs_ok);
1056 count += scnprintf(buf + count, size - count,
1057 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
1058 stream->stats.stream.min_sof,
1059 stream->stats.stream.max_sof,
1060 scr_sof_freq / 1000, scr_sof_freq % 1000);
1061
1062 return count;
1063 }
1064
uvc_video_stats_start(struct uvc_streaming * stream)1065 static void uvc_video_stats_start(struct uvc_streaming *stream)
1066 {
1067 memset(&stream->stats, 0, sizeof(stream->stats));
1068 stream->stats.stream.min_sof = 2048;
1069 }
1070
uvc_video_stats_stop(struct uvc_streaming * stream)1071 static void uvc_video_stats_stop(struct uvc_streaming *stream)
1072 {
1073 stream->stats.stream.stop_ts = ktime_get();
1074 }
1075
1076 /* ------------------------------------------------------------------------
1077 * Video codecs
1078 */
1079
1080 /*
1081 * Video payload decoding is handled by uvc_video_decode_start(),
1082 * uvc_video_decode_data() and uvc_video_decode_end().
1083 *
1084 * uvc_video_decode_start is called with URB data at the start of a bulk or
1085 * isochronous payload. It processes header data and returns the header size
1086 * in bytes if successful. If an error occurs, it returns a negative error
1087 * code. The following error codes have special meanings.
1088 *
1089 * - EAGAIN informs the caller that the current video buffer should be marked
1090 * as done, and that the function should be called again with the same data
1091 * and a new video buffer. This is used when end of frame conditions can be
1092 * reliably detected at the beginning of the next frame only.
1093 *
1094 * If an error other than -EAGAIN is returned, the caller will drop the current
1095 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1096 * made until the next payload. -ENODATA can be used to drop the current
1097 * payload if no other error code is appropriate.
1098 *
1099 * uvc_video_decode_data is called for every URB with URB data. It copies the
1100 * data to the video buffer.
1101 *
1102 * uvc_video_decode_end is called with header data at the end of a bulk or
1103 * isochronous payload. It performs any additional header data processing and
1104 * returns 0 or a negative error code if an error occurred. As header data have
1105 * already been processed by uvc_video_decode_start, this functions isn't
1106 * required to perform sanity checks a second time.
1107 *
1108 * For isochronous transfers where a payload is always transferred in a single
1109 * URB, the three functions will be called in a row.
1110 *
1111 * To let the decoder process header data and update its internal state even
1112 * when no video buffer is available, uvc_video_decode_start must be prepared
1113 * to be called with a NULL buf parameter. uvc_video_decode_data and
1114 * uvc_video_decode_end will never be called with a NULL buffer.
1115 */
uvc_video_decode_start(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1116 static int uvc_video_decode_start(struct uvc_streaming *stream,
1117 struct uvc_buffer *buf, const u8 *data, int len)
1118 {
1119 u8 fid;
1120
1121 /*
1122 * Sanity checks:
1123 * - packet must be at least 2 bytes long
1124 * - bHeaderLength value must be at least 2 bytes (see above)
1125 * - bHeaderLength value can't be larger than the packet size.
1126 */
1127 if (len < 2 || data[0] < 2 || data[0] > len) {
1128 stream->stats.frame.nb_invalid++;
1129 return -EINVAL;
1130 }
1131
1132 fid = data[1] & UVC_STREAM_FID;
1133
1134 /*
1135 * Increase the sequence number regardless of any buffer states, so
1136 * that discontinuous sequence numbers always indicate lost frames.
1137 */
1138 if (stream->last_fid != fid) {
1139 stream->sequence++;
1140 if (stream->sequence)
1141 uvc_video_stats_update(stream);
1142 }
1143
1144 uvc_video_clock_decode(stream, buf, data, len);
1145 uvc_video_stats_decode(stream, data, len);
1146
1147 /*
1148 * Store the payload FID bit and return immediately when the buffer is
1149 * NULL.
1150 */
1151 if (buf == NULL) {
1152 stream->last_fid = fid;
1153 return -ENODATA;
1154 }
1155
1156 /* Mark the buffer as bad if the error bit is set. */
1157 if (data[1] & UVC_STREAM_ERR) {
1158 uvc_dbg(stream->dev, FRAME,
1159 "Marking buffer as bad (error bit set)\n");
1160 buf->error = 1;
1161 }
1162
1163 /*
1164 * Synchronize to the input stream by waiting for the FID bit to be
1165 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE.
1166 * stream->last_fid is initialized to -1, so the first isochronous
1167 * frame will always be in sync.
1168 *
1169 * If the device doesn't toggle the FID bit, invert stream->last_fid
1170 * when the EOF bit is set to force synchronisation on the next packet.
1171 */
1172 if (buf->state != UVC_BUF_STATE_ACTIVE) {
1173 if (fid == stream->last_fid) {
1174 uvc_dbg(stream->dev, FRAME,
1175 "Dropping payload (out of sync)\n");
1176 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1177 (data[1] & UVC_STREAM_EOF))
1178 stream->last_fid ^= UVC_STREAM_FID;
1179 return -ENODATA;
1180 }
1181
1182 buf->buf.field = V4L2_FIELD_NONE;
1183 buf->buf.sequence = stream->sequence;
1184 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1185
1186 /* TODO: Handle PTS and SCR. */
1187 buf->state = UVC_BUF_STATE_ACTIVE;
1188 }
1189
1190 /*
1191 * Mark the buffer as done if we're at the beginning of a new frame.
1192 * End of frame detection is better implemented by checking the EOF
1193 * bit (FID bit toggling is delayed by one frame compared to the EOF
1194 * bit), but some devices don't set the bit at end of frame (and the
1195 * last payload can be lost anyway). We thus must check if the FID has
1196 * been toggled.
1197 *
1198 * stream->last_fid is initialized to -1, so the first isochronous
1199 * frame will never trigger an end of frame detection.
1200 *
1201 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1202 * as it doesn't make sense to return an empty buffer. This also
1203 * avoids detecting end of frame conditions at FID toggling if the
1204 * previous payload had the EOF bit set.
1205 */
1206 if (fid != stream->last_fid && buf->bytesused != 0) {
1207 uvc_dbg(stream->dev, FRAME,
1208 "Frame complete (FID bit toggled)\n");
1209 buf->state = UVC_BUF_STATE_READY;
1210 return -EAGAIN;
1211 }
1212
1213 stream->last_fid = fid;
1214
1215 return data[0];
1216 }
1217
uvc_stream_dir(struct uvc_streaming * stream)1218 static inline enum dma_data_direction uvc_stream_dir(
1219 struct uvc_streaming *stream)
1220 {
1221 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1222 return DMA_FROM_DEVICE;
1223 else
1224 return DMA_TO_DEVICE;
1225 }
1226
uvc_stream_to_dmadev(struct uvc_streaming * stream)1227 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream)
1228 {
1229 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev;
1230 }
1231
uvc_submit_urb(struct uvc_urb * uvc_urb,gfp_t mem_flags)1232 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags)
1233 {
1234 /* Sync DMA. */
1235 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream),
1236 uvc_urb->sgt,
1237 uvc_stream_dir(uvc_urb->stream));
1238 return usb_submit_urb(uvc_urb->urb, mem_flags);
1239 }
1240
1241 /*
1242 * uvc_video_decode_data_work: Asynchronous memcpy processing
1243 *
1244 * Copy URB data to video buffers in process context, releasing buffer
1245 * references and requeuing the URB when done.
1246 */
uvc_video_copy_data_work(struct work_struct * work)1247 static void uvc_video_copy_data_work(struct work_struct *work)
1248 {
1249 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1250 unsigned int i;
1251 int ret;
1252
1253 for (i = 0; i < uvc_urb->async_operations; i++) {
1254 struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1255
1256 memcpy(op->dst, op->src, op->len);
1257
1258 /* Release reference taken on this buffer. */
1259 uvc_queue_buffer_release(op->buf);
1260 }
1261
1262 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL);
1263 if (ret < 0)
1264 dev_err(&uvc_urb->stream->intf->dev,
1265 "Failed to resubmit video URB (%d).\n", ret);
1266 }
1267
uvc_video_decode_data(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,const u8 * data,int len)1268 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1269 struct uvc_buffer *buf, const u8 *data, int len)
1270 {
1271 unsigned int active_op = uvc_urb->async_operations;
1272 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1273 unsigned int maxlen;
1274
1275 if (len <= 0)
1276 return;
1277
1278 maxlen = buf->length - buf->bytesused;
1279
1280 /* Take a buffer reference for async work. */
1281 kref_get(&buf->ref);
1282
1283 op->buf = buf;
1284 op->src = data;
1285 op->dst = buf->mem + buf->bytesused;
1286 op->len = min_t(unsigned int, len, maxlen);
1287
1288 buf->bytesused += op->len;
1289
1290 /* Complete the current frame if the buffer size was exceeded. */
1291 if (len > maxlen) {
1292 uvc_dbg(uvc_urb->stream->dev, FRAME,
1293 "Frame complete (overflow)\n");
1294 buf->error = 1;
1295 buf->state = UVC_BUF_STATE_READY;
1296 }
1297
1298 uvc_urb->async_operations++;
1299 }
1300
uvc_video_decode_end(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1301 static void uvc_video_decode_end(struct uvc_streaming *stream,
1302 struct uvc_buffer *buf, const u8 *data, int len)
1303 {
1304 /* Mark the buffer as done if the EOF marker is set. */
1305 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1306 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1307 if (data[0] == len)
1308 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1309 buf->state = UVC_BUF_STATE_READY;
1310 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1311 stream->last_fid ^= UVC_STREAM_FID;
1312 }
1313 }
1314
1315 /*
1316 * Video payload encoding is handled by uvc_video_encode_header() and
1317 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1318 *
1319 * uvc_video_encode_header is called at the start of a payload. It adds header
1320 * data to the transfer buffer and returns the header size. As the only known
1321 * UVC output device transfers a whole frame in a single payload, the EOF bit
1322 * is always set in the header.
1323 *
1324 * uvc_video_encode_data is called for every URB and copies the data from the
1325 * video buffer to the transfer buffer.
1326 */
uvc_video_encode_header(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1327 static int uvc_video_encode_header(struct uvc_streaming *stream,
1328 struct uvc_buffer *buf, u8 *data, int len)
1329 {
1330 data[0] = 2; /* Header length */
1331 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1332 | (stream->last_fid & UVC_STREAM_FID);
1333 return 2;
1334 }
1335
uvc_video_encode_data(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1336 static int uvc_video_encode_data(struct uvc_streaming *stream,
1337 struct uvc_buffer *buf, u8 *data, int len)
1338 {
1339 struct uvc_video_queue *queue = &stream->queue;
1340 unsigned int nbytes;
1341 void *mem;
1342
1343 /* Copy video data to the URB buffer. */
1344 mem = buf->mem + queue->buf_used;
1345 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1346 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1347 nbytes);
1348 memcpy(data, mem, nbytes);
1349
1350 queue->buf_used += nbytes;
1351
1352 return nbytes;
1353 }
1354
1355 /* ------------------------------------------------------------------------
1356 * Metadata
1357 */
1358
1359 /*
1360 * Additionally to the payload headers we also want to provide the user with USB
1361 * Frame Numbers and system time values. The resulting buffer is thus composed
1362 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame
1363 * Number, and a copy of the payload header.
1364 *
1365 * Ideally we want to capture all payload headers for each frame. However, their
1366 * number is unknown and unbound. We thus drop headers that contain no vendor
1367 * data and that either contain no SCR value or an SCR value identical to the
1368 * previous header.
1369 */
uvc_video_decode_meta(struct uvc_streaming * stream,struct uvc_buffer * meta_buf,const u8 * mem,unsigned int length)1370 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1371 struct uvc_buffer *meta_buf,
1372 const u8 *mem, unsigned int length)
1373 {
1374 struct uvc_meta_buf *meta;
1375 size_t len_std = 2;
1376 bool has_pts, has_scr;
1377 unsigned long flags;
1378 unsigned int sof;
1379 ktime_t time;
1380 const u8 *scr;
1381
1382 if (!meta_buf || length == 2)
1383 return;
1384
1385 if (meta_buf->length - meta_buf->bytesused <
1386 length + sizeof(meta->ns) + sizeof(meta->sof)) {
1387 meta_buf->error = 1;
1388 return;
1389 }
1390
1391 has_pts = mem[1] & UVC_STREAM_PTS;
1392 has_scr = mem[1] & UVC_STREAM_SCR;
1393
1394 if (has_pts) {
1395 len_std += 4;
1396 scr = mem + 6;
1397 } else {
1398 scr = mem + 2;
1399 }
1400
1401 if (has_scr)
1402 len_std += 6;
1403
1404 if (stream->meta.format == V4L2_META_FMT_UVC)
1405 length = len_std;
1406
1407 if (length == len_std && (!has_scr ||
1408 !memcmp(scr, stream->clock.last_scr, 6)))
1409 return;
1410
1411 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1412 local_irq_save(flags);
1413 time = uvc_video_get_time();
1414 sof = usb_get_current_frame_number(stream->dev->udev);
1415 local_irq_restore(flags);
1416 put_unaligned(ktime_to_ns(time), &meta->ns);
1417 put_unaligned(sof, &meta->sof);
1418
1419 if (has_scr)
1420 memcpy(stream->clock.last_scr, scr, 6);
1421
1422 meta->length = mem[0];
1423 meta->flags = mem[1];
1424 memcpy(meta->buf, &mem[2], length - 2);
1425 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1426
1427 uvc_dbg(stream->dev, FRAME,
1428 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1429 __func__, ktime_to_ns(time), meta->sof, meta->length,
1430 meta->flags,
1431 has_pts ? *(u32 *)meta->buf : 0,
1432 has_scr ? *(u32 *)scr : 0,
1433 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1434 }
1435
1436 /* ------------------------------------------------------------------------
1437 * URB handling
1438 */
1439
1440 /*
1441 * Set error flag for incomplete buffer.
1442 */
uvc_video_validate_buffer(const struct uvc_streaming * stream,struct uvc_buffer * buf)1443 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1444 struct uvc_buffer *buf)
1445 {
1446 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1447 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1448 buf->error = 1;
1449 }
1450
1451 /*
1452 * Completion handler for video URBs.
1453 */
1454
uvc_video_next_buffers(struct uvc_streaming * stream,struct uvc_buffer ** video_buf,struct uvc_buffer ** meta_buf)1455 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1456 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1457 {
1458 uvc_video_validate_buffer(stream, *video_buf);
1459
1460 if (*meta_buf) {
1461 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1462 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1463
1464 vb2_meta->sequence = vb2_video->sequence;
1465 vb2_meta->field = vb2_video->field;
1466 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1467
1468 (*meta_buf)->state = UVC_BUF_STATE_READY;
1469 if (!(*meta_buf)->error)
1470 (*meta_buf)->error = (*video_buf)->error;
1471 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1472 *meta_buf);
1473 }
1474 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1475 }
1476
uvc_video_decode_isoc(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1477 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1478 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1479 {
1480 struct urb *urb = uvc_urb->urb;
1481 struct uvc_streaming *stream = uvc_urb->stream;
1482 u8 *mem;
1483 int ret, i;
1484
1485 for (i = 0; i < urb->number_of_packets; ++i) {
1486 if (urb->iso_frame_desc[i].status < 0) {
1487 uvc_dbg(stream->dev, FRAME,
1488 "USB isochronous frame lost (%d)\n",
1489 urb->iso_frame_desc[i].status);
1490 /* Mark the buffer as faulty. */
1491 if (buf != NULL)
1492 buf->error = 1;
1493 continue;
1494 }
1495
1496 /* Decode the payload header. */
1497 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1498 do {
1499 ret = uvc_video_decode_start(stream, buf, mem,
1500 urb->iso_frame_desc[i].actual_length);
1501 if (ret == -EAGAIN)
1502 uvc_video_next_buffers(stream, &buf, &meta_buf);
1503 } while (ret == -EAGAIN);
1504
1505 if (ret < 0)
1506 continue;
1507
1508 uvc_video_decode_meta(stream, meta_buf, mem, ret);
1509
1510 /* Decode the payload data. */
1511 uvc_video_decode_data(uvc_urb, buf, mem + ret,
1512 urb->iso_frame_desc[i].actual_length - ret);
1513
1514 /* Process the header again. */
1515 uvc_video_decode_end(stream, buf, mem,
1516 urb->iso_frame_desc[i].actual_length);
1517
1518 if (buf->state == UVC_BUF_STATE_READY)
1519 uvc_video_next_buffers(stream, &buf, &meta_buf);
1520 }
1521 }
1522
uvc_video_decode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1523 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1524 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1525 {
1526 struct urb *urb = uvc_urb->urb;
1527 struct uvc_streaming *stream = uvc_urb->stream;
1528 u8 *mem;
1529 int len, ret;
1530
1531 /*
1532 * Ignore ZLPs if they're not part of a frame, otherwise process them
1533 * to trigger the end of payload detection.
1534 */
1535 if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1536 return;
1537
1538 mem = urb->transfer_buffer;
1539 len = urb->actual_length;
1540 stream->bulk.payload_size += len;
1541
1542 /*
1543 * If the URB is the first of its payload, decode and save the
1544 * header.
1545 */
1546 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1547 do {
1548 ret = uvc_video_decode_start(stream, buf, mem, len);
1549 if (ret == -EAGAIN)
1550 uvc_video_next_buffers(stream, &buf, &meta_buf);
1551 } while (ret == -EAGAIN);
1552
1553 /* If an error occurred skip the rest of the payload. */
1554 if (ret < 0 || buf == NULL) {
1555 stream->bulk.skip_payload = 1;
1556 } else {
1557 memcpy(stream->bulk.header, mem, ret);
1558 stream->bulk.header_size = ret;
1559
1560 uvc_video_decode_meta(stream, meta_buf, mem, ret);
1561
1562 mem += ret;
1563 len -= ret;
1564 }
1565 }
1566
1567 /*
1568 * The buffer queue might have been cancelled while a bulk transfer
1569 * was in progress, so we can reach here with buf equal to NULL. Make
1570 * sure buf is never dereferenced if NULL.
1571 */
1572
1573 /* Prepare video data for processing. */
1574 if (!stream->bulk.skip_payload && buf != NULL)
1575 uvc_video_decode_data(uvc_urb, buf, mem, len);
1576
1577 /*
1578 * Detect the payload end by a URB smaller than the maximum size (or
1579 * a payload size equal to the maximum) and process the header again.
1580 */
1581 if (urb->actual_length < urb->transfer_buffer_length ||
1582 stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1583 if (!stream->bulk.skip_payload && buf != NULL) {
1584 uvc_video_decode_end(stream, buf, stream->bulk.header,
1585 stream->bulk.payload_size);
1586 if (buf->state == UVC_BUF_STATE_READY)
1587 uvc_video_next_buffers(stream, &buf, &meta_buf);
1588 }
1589
1590 stream->bulk.header_size = 0;
1591 stream->bulk.skip_payload = 0;
1592 stream->bulk.payload_size = 0;
1593 }
1594 }
1595
uvc_video_encode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1596 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1597 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1598 {
1599 struct urb *urb = uvc_urb->urb;
1600 struct uvc_streaming *stream = uvc_urb->stream;
1601
1602 u8 *mem = urb->transfer_buffer;
1603 int len = stream->urb_size, ret;
1604
1605 if (buf == NULL) {
1606 urb->transfer_buffer_length = 0;
1607 return;
1608 }
1609
1610 /* If the URB is the first of its payload, add the header. */
1611 if (stream->bulk.header_size == 0) {
1612 ret = uvc_video_encode_header(stream, buf, mem, len);
1613 stream->bulk.header_size = ret;
1614 stream->bulk.payload_size += ret;
1615 mem += ret;
1616 len -= ret;
1617 }
1618
1619 /* Process video data. */
1620 ret = uvc_video_encode_data(stream, buf, mem, len);
1621
1622 stream->bulk.payload_size += ret;
1623 len -= ret;
1624
1625 if (buf->bytesused == stream->queue.buf_used ||
1626 stream->bulk.payload_size == stream->bulk.max_payload_size) {
1627 if (buf->bytesused == stream->queue.buf_used) {
1628 stream->queue.buf_used = 0;
1629 buf->state = UVC_BUF_STATE_READY;
1630 buf->buf.sequence = ++stream->sequence;
1631 uvc_queue_next_buffer(&stream->queue, buf);
1632 stream->last_fid ^= UVC_STREAM_FID;
1633 }
1634
1635 stream->bulk.header_size = 0;
1636 stream->bulk.payload_size = 0;
1637 }
1638
1639 urb->transfer_buffer_length = stream->urb_size - len;
1640 }
1641
uvc_video_complete(struct urb * urb)1642 static void uvc_video_complete(struct urb *urb)
1643 {
1644 struct uvc_urb *uvc_urb = urb->context;
1645 struct uvc_streaming *stream = uvc_urb->stream;
1646 struct uvc_video_queue *queue = &stream->queue;
1647 struct uvc_video_queue *qmeta = &stream->meta.queue;
1648 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1649 struct uvc_buffer *buf = NULL;
1650 struct uvc_buffer *buf_meta = NULL;
1651 unsigned long flags;
1652 int ret;
1653
1654 switch (urb->status) {
1655 case 0:
1656 break;
1657
1658 default:
1659 dev_warn(&stream->intf->dev,
1660 "Non-zero status (%d) in video completion handler.\n",
1661 urb->status);
1662 fallthrough;
1663 case -ENOENT: /* usb_poison_urb() called. */
1664 if (stream->frozen)
1665 return;
1666 fallthrough;
1667 case -ECONNRESET: /* usb_unlink_urb() called. */
1668 case -ESHUTDOWN: /* The endpoint is being disabled. */
1669 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1670 if (vb2_qmeta)
1671 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1672 return;
1673 }
1674
1675 buf = uvc_queue_get_current_buffer(queue);
1676
1677 if (vb2_qmeta) {
1678 spin_lock_irqsave(&qmeta->irqlock, flags);
1679 if (!list_empty(&qmeta->irqqueue))
1680 buf_meta = list_first_entry(&qmeta->irqqueue,
1681 struct uvc_buffer, queue);
1682 spin_unlock_irqrestore(&qmeta->irqlock, flags);
1683 }
1684
1685 /* Re-initialise the URB async work. */
1686 uvc_urb->async_operations = 0;
1687
1688 /* Sync DMA and invalidate vmap range. */
1689 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream),
1690 uvc_urb->sgt, uvc_stream_dir(stream));
1691 invalidate_kernel_vmap_range(uvc_urb->buffer,
1692 uvc_urb->stream->urb_size);
1693
1694 /*
1695 * Process the URB headers, and optionally queue expensive memcpy tasks
1696 * to be deferred to a work queue.
1697 */
1698 stream->decode(uvc_urb, buf, buf_meta);
1699
1700 /* If no async work is needed, resubmit the URB immediately. */
1701 if (!uvc_urb->async_operations) {
1702 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC);
1703 if (ret < 0)
1704 dev_err(&stream->intf->dev,
1705 "Failed to resubmit video URB (%d).\n", ret);
1706 return;
1707 }
1708
1709 queue_work(stream->async_wq, &uvc_urb->work);
1710 }
1711
1712 /*
1713 * Free transfer buffers.
1714 */
uvc_free_urb_buffers(struct uvc_streaming * stream)1715 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1716 {
1717 struct device *dma_dev = uvc_stream_to_dmadev(stream);
1718 struct uvc_urb *uvc_urb;
1719
1720 for_each_uvc_urb(uvc_urb, stream) {
1721 if (!uvc_urb->buffer)
1722 continue;
1723
1724 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer);
1725 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt,
1726 uvc_stream_dir(stream));
1727
1728 uvc_urb->buffer = NULL;
1729 uvc_urb->sgt = NULL;
1730 }
1731
1732 stream->urb_size = 0;
1733 }
1734
uvc_alloc_urb_buffer(struct uvc_streaming * stream,struct uvc_urb * uvc_urb,gfp_t gfp_flags)1735 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1736 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1737 {
1738 struct device *dma_dev = uvc_stream_to_dmadev(stream);
1739
1740 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size,
1741 uvc_stream_dir(stream),
1742 gfp_flags, 0);
1743 if (!uvc_urb->sgt)
1744 return false;
1745 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address;
1746
1747 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size,
1748 uvc_urb->sgt);
1749 if (!uvc_urb->buffer) {
1750 dma_free_noncontiguous(dma_dev, stream->urb_size,
1751 uvc_urb->sgt,
1752 uvc_stream_dir(stream));
1753 uvc_urb->sgt = NULL;
1754 return false;
1755 }
1756
1757 return true;
1758 }
1759
1760 /*
1761 * Allocate transfer buffers. This function can be called with buffers
1762 * already allocated when resuming from suspend, in which case it will
1763 * return without touching the buffers.
1764 *
1765 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1766 * system is too low on memory try successively smaller numbers of packets
1767 * until allocation succeeds.
1768 *
1769 * Return the number of allocated packets on success or 0 when out of memory.
1770 */
uvc_alloc_urb_buffers(struct uvc_streaming * stream,unsigned int size,unsigned int psize,gfp_t gfp_flags)1771 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1772 unsigned int size, unsigned int psize, gfp_t gfp_flags)
1773 {
1774 unsigned int npackets;
1775 unsigned int i;
1776
1777 /* Buffers are already allocated, bail out. */
1778 if (stream->urb_size)
1779 return stream->urb_size / psize;
1780
1781 /*
1782 * Compute the number of packets. Bulk endpoints might transfer UVC
1783 * payloads across multiple URBs.
1784 */
1785 npackets = DIV_ROUND_UP(size, psize);
1786 if (npackets > UVC_MAX_PACKETS)
1787 npackets = UVC_MAX_PACKETS;
1788
1789 /* Retry allocations until one succeed. */
1790 for (; npackets > 1; npackets /= 2) {
1791 stream->urb_size = psize * npackets;
1792
1793 for (i = 0; i < UVC_URBS; ++i) {
1794 struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1795
1796 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1797 uvc_free_urb_buffers(stream);
1798 break;
1799 }
1800
1801 uvc_urb->stream = stream;
1802 }
1803
1804 if (i == UVC_URBS) {
1805 uvc_dbg(stream->dev, VIDEO,
1806 "Allocated %u URB buffers of %ux%u bytes each\n",
1807 UVC_URBS, npackets, psize);
1808 return npackets;
1809 }
1810 }
1811
1812 uvc_dbg(stream->dev, VIDEO,
1813 "Failed to allocate URB buffers (%u bytes per packet)\n",
1814 psize);
1815 return 0;
1816 }
1817
1818 /*
1819 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1820 */
uvc_video_stop_transfer(struct uvc_streaming * stream,int free_buffers)1821 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1822 int free_buffers)
1823 {
1824 struct uvc_urb *uvc_urb;
1825
1826 uvc_video_stats_stop(stream);
1827
1828 /*
1829 * We must poison the URBs rather than kill them to ensure that even
1830 * after the completion handler returns, any asynchronous workqueues
1831 * will be prevented from resubmitting the URBs.
1832 */
1833 for_each_uvc_urb(uvc_urb, stream)
1834 usb_poison_urb(uvc_urb->urb);
1835
1836 flush_workqueue(stream->async_wq);
1837
1838 for_each_uvc_urb(uvc_urb, stream) {
1839 usb_free_urb(uvc_urb->urb);
1840 uvc_urb->urb = NULL;
1841 }
1842
1843 if (free_buffers)
1844 uvc_free_urb_buffers(stream);
1845 }
1846
1847 /*
1848 * Compute the maximum number of bytes per interval for an endpoint.
1849 */
uvc_endpoint_max_bpi(struct usb_device * dev,struct usb_host_endpoint * ep)1850 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep)
1851 {
1852 u16 psize;
1853
1854 switch (dev->speed) {
1855 case USB_SPEED_SUPER:
1856 case USB_SPEED_SUPER_PLUS:
1857 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1858 default:
1859 psize = usb_endpoint_maxp(&ep->desc);
1860 psize *= usb_endpoint_maxp_mult(&ep->desc);
1861 return psize;
1862 }
1863 }
1864
1865 /*
1866 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1867 * is given by the endpoint.
1868 */
uvc_init_video_isoc(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1869 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1870 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1871 {
1872 struct urb *urb;
1873 struct uvc_urb *uvc_urb;
1874 unsigned int npackets, i;
1875 u16 psize;
1876 u32 size;
1877
1878 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1879 size = stream->ctrl.dwMaxVideoFrameSize;
1880
1881 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1882 if (npackets == 0)
1883 return -ENOMEM;
1884
1885 size = npackets * psize;
1886
1887 for_each_uvc_urb(uvc_urb, stream) {
1888 urb = usb_alloc_urb(npackets, gfp_flags);
1889 if (urb == NULL) {
1890 uvc_video_stop_transfer(stream, 1);
1891 return -ENOMEM;
1892 }
1893
1894 urb->dev = stream->dev->udev;
1895 urb->context = uvc_urb;
1896 urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1897 ep->desc.bEndpointAddress);
1898 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1899 urb->transfer_dma = uvc_urb->dma;
1900 urb->interval = ep->desc.bInterval;
1901 urb->transfer_buffer = uvc_urb->buffer;
1902 urb->complete = uvc_video_complete;
1903 urb->number_of_packets = npackets;
1904 urb->transfer_buffer_length = size;
1905
1906 for (i = 0; i < npackets; ++i) {
1907 urb->iso_frame_desc[i].offset = i * psize;
1908 urb->iso_frame_desc[i].length = psize;
1909 }
1910
1911 uvc_urb->urb = urb;
1912 }
1913
1914 return 0;
1915 }
1916
1917 /*
1918 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1919 * given by the endpoint.
1920 */
uvc_init_video_bulk(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1921 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1922 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1923 {
1924 struct urb *urb;
1925 struct uvc_urb *uvc_urb;
1926 unsigned int npackets, pipe;
1927 u16 psize;
1928 u32 size;
1929
1930 psize = usb_endpoint_maxp(&ep->desc);
1931 size = stream->ctrl.dwMaxPayloadTransferSize;
1932 stream->bulk.max_payload_size = size;
1933
1934 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1935 if (npackets == 0)
1936 return -ENOMEM;
1937
1938 size = npackets * psize;
1939
1940 if (usb_endpoint_dir_in(&ep->desc))
1941 pipe = usb_rcvbulkpipe(stream->dev->udev,
1942 ep->desc.bEndpointAddress);
1943 else
1944 pipe = usb_sndbulkpipe(stream->dev->udev,
1945 ep->desc.bEndpointAddress);
1946
1947 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1948 size = 0;
1949
1950 for_each_uvc_urb(uvc_urb, stream) {
1951 urb = usb_alloc_urb(0, gfp_flags);
1952 if (urb == NULL) {
1953 uvc_video_stop_transfer(stream, 1);
1954 return -ENOMEM;
1955 }
1956
1957 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer,
1958 size, uvc_video_complete, uvc_urb);
1959 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1960 urb->transfer_dma = uvc_urb->dma;
1961
1962 uvc_urb->urb = urb;
1963 }
1964
1965 return 0;
1966 }
1967
1968 /*
1969 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1970 */
uvc_video_start_transfer(struct uvc_streaming * stream,gfp_t gfp_flags)1971 static int uvc_video_start_transfer(struct uvc_streaming *stream,
1972 gfp_t gfp_flags)
1973 {
1974 struct usb_interface *intf = stream->intf;
1975 struct usb_host_endpoint *ep;
1976 struct uvc_urb *uvc_urb;
1977 unsigned int i;
1978 int ret;
1979
1980 stream->sequence = -1;
1981 stream->last_fid = -1;
1982 stream->bulk.header_size = 0;
1983 stream->bulk.skip_payload = 0;
1984 stream->bulk.payload_size = 0;
1985
1986 uvc_video_stats_start(stream);
1987
1988 if (intf->num_altsetting > 1) {
1989 struct usb_host_endpoint *best_ep = NULL;
1990 unsigned int best_psize = UINT_MAX;
1991 unsigned int bandwidth;
1992 unsigned int altsetting;
1993 int intfnum = stream->intfnum;
1994
1995 /* Isochronous endpoint, select the alternate setting. */
1996 bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1997
1998 if (bandwidth == 0) {
1999 uvc_dbg(stream->dev, VIDEO,
2000 "Device requested null bandwidth, defaulting to lowest\n");
2001 bandwidth = 1;
2002 } else {
2003 uvc_dbg(stream->dev, VIDEO,
2004 "Device requested %u B/frame bandwidth\n",
2005 bandwidth);
2006 }
2007
2008 for (i = 0; i < intf->num_altsetting; ++i) {
2009 struct usb_host_interface *alts;
2010 unsigned int psize;
2011
2012 alts = &intf->altsetting[i];
2013 ep = uvc_find_endpoint(alts,
2014 stream->header.bEndpointAddress);
2015 if (ep == NULL)
2016 continue;
2017
2018 /* Check if the bandwidth is high enough. */
2019 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
2020 if (psize >= bandwidth && psize < best_psize) {
2021 altsetting = alts->desc.bAlternateSetting;
2022 best_psize = psize;
2023 best_ep = ep;
2024 }
2025 }
2026
2027 if (best_ep == NULL) {
2028 uvc_dbg(stream->dev, VIDEO,
2029 "No fast enough alt setting for requested bandwidth\n");
2030 return -EIO;
2031 }
2032
2033 uvc_dbg(stream->dev, VIDEO,
2034 "Selecting alternate setting %u (%u B/frame bandwidth)\n",
2035 altsetting, best_psize);
2036
2037 /*
2038 * Some devices, namely the Logitech C910 and B910, are unable
2039 * to recover from a USB autosuspend, unless the alternate
2040 * setting of the streaming interface is toggled.
2041 */
2042 if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) {
2043 usb_set_interface(stream->dev->udev, intfnum,
2044 altsetting);
2045 usb_set_interface(stream->dev->udev, intfnum, 0);
2046 }
2047
2048 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
2049 if (ret < 0)
2050 return ret;
2051
2052 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
2053 } else {
2054 /* Bulk endpoint, proceed to URB initialization. */
2055 ep = uvc_find_endpoint(&intf->altsetting[0],
2056 stream->header.bEndpointAddress);
2057 if (ep == NULL)
2058 return -EIO;
2059
2060 /* Reject broken descriptors. */
2061 if (usb_endpoint_maxp(&ep->desc) == 0)
2062 return -EIO;
2063
2064 ret = uvc_init_video_bulk(stream, ep, gfp_flags);
2065 }
2066
2067 if (ret < 0)
2068 return ret;
2069
2070 /* Submit the URBs. */
2071 for_each_uvc_urb(uvc_urb, stream) {
2072 ret = uvc_submit_urb(uvc_urb, gfp_flags);
2073 if (ret < 0) {
2074 dev_err(&stream->intf->dev,
2075 "Failed to submit URB %u (%d).\n",
2076 uvc_urb_index(uvc_urb), ret);
2077 uvc_video_stop_transfer(stream, 1);
2078 return ret;
2079 }
2080 }
2081
2082 /*
2083 * The Logitech C920 temporarily forgets that it should not be adjusting
2084 * Exposure Absolute during init so restore controls to stored values.
2085 */
2086 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
2087 uvc_ctrl_restore_values(stream->dev);
2088
2089 return 0;
2090 }
2091
2092 /* --------------------------------------------------------------------------
2093 * Suspend/resume
2094 */
2095
2096 /*
2097 * Stop streaming without disabling the video queue.
2098 *
2099 * To let userspace applications resume without trouble, we must not touch the
2100 * video buffers in any way. We mark the device as frozen to make sure the URB
2101 * completion handler won't try to cancel the queue when we kill the URBs.
2102 */
uvc_video_suspend(struct uvc_streaming * stream)2103 int uvc_video_suspend(struct uvc_streaming *stream)
2104 {
2105 if (!uvc_queue_streaming(&stream->queue))
2106 return 0;
2107
2108 stream->frozen = 1;
2109 uvc_video_stop_transfer(stream, 0);
2110 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2111 return 0;
2112 }
2113
2114 /*
2115 * Reconfigure the video interface and restart streaming if it was enabled
2116 * before suspend.
2117 *
2118 * If an error occurs, disable the video queue. This will wake all pending
2119 * buffers, making sure userspace applications are notified of the problem
2120 * instead of waiting forever.
2121 */
uvc_video_resume(struct uvc_streaming * stream,int reset)2122 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2123 {
2124 int ret;
2125
2126 /*
2127 * If the bus has been reset on resume, set the alternate setting to 0.
2128 * This should be the default value, but some devices crash or otherwise
2129 * misbehave if they don't receive a SET_INTERFACE request before any
2130 * other video control request.
2131 */
2132 if (reset)
2133 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2134
2135 stream->frozen = 0;
2136
2137 uvc_video_clock_reset(&stream->clock);
2138
2139 if (!uvc_queue_streaming(&stream->queue))
2140 return 0;
2141
2142 ret = uvc_commit_video(stream, &stream->ctrl);
2143 if (ret < 0)
2144 return ret;
2145
2146 return uvc_video_start_transfer(stream, GFP_NOIO);
2147 }
2148
2149 /* ------------------------------------------------------------------------
2150 * Video device
2151 */
2152
2153 /*
2154 * Initialize the UVC video device by switching to alternate setting 0 and
2155 * retrieve the default format.
2156 *
2157 * Some cameras (namely the Fuji Finepix) set the format and frame
2158 * indexes to zero. The UVC standard doesn't clearly make this a spec
2159 * violation, so try to silently fix the values if possible.
2160 *
2161 * This function is called before registering the device with V4L.
2162 */
uvc_video_init(struct uvc_streaming * stream)2163 int uvc_video_init(struct uvc_streaming *stream)
2164 {
2165 struct uvc_streaming_control *probe = &stream->ctrl;
2166 const struct uvc_format *format = NULL;
2167 const struct uvc_frame *frame = NULL;
2168 struct uvc_urb *uvc_urb;
2169 unsigned int i;
2170 int ret;
2171
2172 if (stream->nformats == 0) {
2173 dev_info(&stream->intf->dev,
2174 "No supported video formats found.\n");
2175 return -EINVAL;
2176 }
2177
2178 atomic_set(&stream->active, 0);
2179
2180 /*
2181 * Alternate setting 0 should be the default, yet the XBox Live Vision
2182 * Cam (and possibly other devices) crash or otherwise misbehave if
2183 * they don't receive a SET_INTERFACE request before any other video
2184 * control request.
2185 */
2186 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2187
2188 /*
2189 * Set the streaming probe control with default streaming parameters
2190 * retrieved from the device. Webcams that don't support GET_DEF
2191 * requests on the probe control will just keep their current streaming
2192 * parameters.
2193 */
2194 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2195 uvc_set_video_ctrl(stream, probe, 1);
2196
2197 /*
2198 * Initialize the streaming parameters with the probe control current
2199 * value. This makes sure SET_CUR requests on the streaming commit
2200 * control will always use values retrieved from a successful GET_CUR
2201 * request on the probe control, as required by the UVC specification.
2202 */
2203 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2204
2205 /*
2206 * Elgato Cam Link 4k can be in a stalled state if the resolution of
2207 * the external source has changed while the firmware initializes.
2208 * Once in this state, the device is useless until it receives a
2209 * USB reset. It has even been observed that the stalled state will
2210 * continue even after unplugging the device.
2211 */
2212 if (ret == -EPROTO &&
2213 usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) {
2214 dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n");
2215 dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n");
2216 usb_reset_device(stream->dev->udev);
2217 }
2218
2219 if (ret < 0)
2220 return ret;
2221
2222 /*
2223 * Check if the default format descriptor exists. Use the first
2224 * available format otherwise.
2225 */
2226 for (i = stream->nformats; i > 0; --i) {
2227 format = &stream->formats[i-1];
2228 if (format->index == probe->bFormatIndex)
2229 break;
2230 }
2231
2232 if (format->nframes == 0) {
2233 dev_info(&stream->intf->dev,
2234 "No frame descriptor found for the default format.\n");
2235 return -EINVAL;
2236 }
2237
2238 /*
2239 * Zero bFrameIndex might be correct. Stream-based formats (including
2240 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2241 * descriptor with bFrameIndex set to zero. If the default frame
2242 * descriptor is not found, use the first available frame.
2243 */
2244 for (i = format->nframes; i > 0; --i) {
2245 frame = &format->frames[i-1];
2246 if (frame->bFrameIndex == probe->bFrameIndex)
2247 break;
2248 }
2249
2250 probe->bFormatIndex = format->index;
2251 probe->bFrameIndex = frame->bFrameIndex;
2252
2253 stream->def_format = format;
2254 stream->cur_format = format;
2255 stream->cur_frame = frame;
2256
2257 /* Select the video decoding function */
2258 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2259 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2260 stream->decode = uvc_video_decode_isight;
2261 else if (stream->intf->num_altsetting > 1)
2262 stream->decode = uvc_video_decode_isoc;
2263 else
2264 stream->decode = uvc_video_decode_bulk;
2265 } else {
2266 if (stream->intf->num_altsetting == 1)
2267 stream->decode = uvc_video_encode_bulk;
2268 else {
2269 dev_info(&stream->intf->dev,
2270 "Isochronous endpoints are not supported for video output devices.\n");
2271 return -EINVAL;
2272 }
2273 }
2274
2275 /* Prepare asynchronous work items. */
2276 for_each_uvc_urb(uvc_urb, stream)
2277 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2278
2279 return 0;
2280 }
2281
uvc_video_start_streaming(struct uvc_streaming * stream)2282 int uvc_video_start_streaming(struct uvc_streaming *stream)
2283 {
2284 int ret;
2285
2286 ret = uvc_video_clock_init(&stream->clock);
2287 if (ret < 0)
2288 return ret;
2289
2290 /* Commit the streaming parameters. */
2291 ret = uvc_commit_video(stream, &stream->ctrl);
2292 if (ret < 0)
2293 goto error_commit;
2294
2295 ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2296 if (ret < 0)
2297 goto error_video;
2298
2299 return 0;
2300
2301 error_video:
2302 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2303 error_commit:
2304 uvc_video_clock_cleanup(&stream->clock);
2305
2306 return ret;
2307 }
2308
uvc_video_stop_streaming(struct uvc_streaming * stream)2309 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2310 {
2311 uvc_video_stop_transfer(stream, 1);
2312
2313 if (stream->intf->num_altsetting > 1) {
2314 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2315 } else {
2316 /*
2317 * UVC doesn't specify how to inform a bulk-based device
2318 * when the video stream is stopped. Windows sends a
2319 * CLEAR_FEATURE(HALT) request to the video streaming
2320 * bulk endpoint, mimic the same behaviour.
2321 */
2322 unsigned int epnum = stream->header.bEndpointAddress
2323 & USB_ENDPOINT_NUMBER_MASK;
2324 unsigned int dir = stream->header.bEndpointAddress
2325 & USB_ENDPOINT_DIR_MASK;
2326 unsigned int pipe;
2327
2328 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2329 usb_clear_halt(stream->dev->udev, pipe);
2330 }
2331
2332 uvc_video_clock_cleanup(&stream->clock);
2333 }
2334