1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/conf.h>
34 #include <sys/types.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/devicestat.h>
38 #include <sys/errno.h>
39 #include <sys/fcntl.h>
40 #include <sys/malloc.h>
41 #include <sys/proc.h>
42 #include <sys/poll.h>
43 #include <sys/selinfo.h>
44 #include <sys/sdt.h>
45 #include <sys/sysent.h>
46 #include <sys/taskqueue.h>
47 #include <vm/uma.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50
51 #include <machine/bus.h>
52
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_xpt.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_compat.h>
61 #include <cam/cam_xpt_periph.h>
62
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_pass.h>
65
66 typedef enum {
67 PASS_FLAG_OPEN = 0x01,
68 PASS_FLAG_LOCKED = 0x02,
69 PASS_FLAG_INVALID = 0x04,
70 PASS_FLAG_INITIAL_PHYSPATH = 0x08,
71 PASS_FLAG_ZONE_INPROG = 0x10,
72 PASS_FLAG_ZONE_VALID = 0x20,
73 PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
74 PASS_FLAG_ABANDONED_REF_SET = 0x80
75 } pass_flags;
76
77 typedef enum {
78 PASS_STATE_NORMAL
79 } pass_state;
80
81 typedef enum {
82 PASS_CCB_BUFFER_IO,
83 PASS_CCB_QUEUED_IO
84 } pass_ccb_types;
85
86 #define ccb_type ppriv_field0
87 #define ccb_ioreq ppriv_ptr1
88
89 /*
90 * The maximum number of memory segments we preallocate.
91 */
92 #define PASS_MAX_SEGS 16
93
94 typedef enum {
95 PASS_IO_NONE = 0x00,
96 PASS_IO_USER_SEG_MALLOC = 0x01,
97 PASS_IO_KERN_SEG_MALLOC = 0x02,
98 PASS_IO_ABANDONED = 0x04
99 } pass_io_flags;
100
101 struct pass_io_req {
102 union ccb ccb;
103 union ccb *alloced_ccb;
104 union ccb *user_ccb_ptr;
105 camq_entry user_periph_links;
106 ccb_ppriv_area user_periph_priv;
107 struct cam_periph_map_info mapinfo;
108 pass_io_flags flags;
109 ccb_flags data_flags;
110 int num_user_segs;
111 bus_dma_segment_t user_segs[PASS_MAX_SEGS];
112 int num_kern_segs;
113 bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
114 bus_dma_segment_t *user_segptr;
115 bus_dma_segment_t *kern_segptr;
116 int num_bufs;
117 uint32_t dirs[CAM_PERIPH_MAXMAPS];
118 uint32_t lengths[CAM_PERIPH_MAXMAPS];
119 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
120 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
121 struct bintime start_time;
122 TAILQ_ENTRY(pass_io_req) links;
123 };
124
125 struct pass_softc {
126 pass_state state;
127 pass_flags flags;
128 uint8_t pd_type;
129 int open_count;
130 u_int maxio;
131 struct devstat *device_stats;
132 struct cdev *dev;
133 struct cdev *alias_dev;
134 struct task add_physpath_task;
135 struct task shutdown_kqueue_task;
136 struct selinfo read_select;
137 TAILQ_HEAD(, pass_io_req) incoming_queue;
138 TAILQ_HEAD(, pass_io_req) active_queue;
139 TAILQ_HEAD(, pass_io_req) abandoned_queue;
140 TAILQ_HEAD(, pass_io_req) done_queue;
141 struct cam_periph *periph;
142 char zone_name[12];
143 char io_zone_name[12];
144 uma_zone_t pass_zone;
145 uma_zone_t pass_io_zone;
146 size_t io_zone_size;
147 };
148
149 static d_open_t passopen;
150 static d_close_t passclose;
151 static d_ioctl_t passioctl;
152 static d_ioctl_t passdoioctl;
153 static d_poll_t passpoll;
154 static d_kqfilter_t passkqfilter;
155 static void passreadfiltdetach(struct knote *kn);
156 static int passreadfilt(struct knote *kn, long hint);
157
158 static periph_init_t passinit;
159 static periph_ctor_t passregister;
160 static periph_oninv_t passoninvalidate;
161 static periph_dtor_t passcleanup;
162 static periph_start_t passstart;
163 static void pass_shutdown_kqueue(void *context, int pending);
164 static void pass_add_physpath(void *context, int pending);
165 static void passasync(void *callback_arg, uint32_t code,
166 struct cam_path *path, void *arg);
167 static void passdone(struct cam_periph *periph,
168 union ccb *done_ccb);
169 static int passcreatezone(struct cam_periph *periph);
170 static void passiocleanup(struct pass_softc *softc,
171 struct pass_io_req *io_req);
172 static int passcopysglist(struct cam_periph *periph,
173 struct pass_io_req *io_req,
174 ccb_flags direction);
175 static int passmemsetup(struct cam_periph *periph,
176 struct pass_io_req *io_req);
177 static int passmemdone(struct cam_periph *periph,
178 struct pass_io_req *io_req);
179 static int passerror(union ccb *ccb, uint32_t cam_flags,
180 uint32_t sense_flags);
181 static int passsendccb(struct cam_periph *periph, union ccb *ccb,
182 union ccb *inccb);
183 static void passflags(union ccb *ccb, uint32_t *cam_flags,
184 uint32_t *sense_flags);
185
186 static struct periph_driver passdriver =
187 {
188 passinit, "pass",
189 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
190 };
191
192 PERIPHDRIVER_DECLARE(pass, passdriver);
193
194 static struct cdevsw pass_cdevsw = {
195 .d_version = D_VERSION,
196 .d_flags = D_TRACKCLOSE,
197 .d_open = passopen,
198 .d_close = passclose,
199 .d_ioctl = passioctl,
200 .d_poll = passpoll,
201 .d_kqfilter = passkqfilter,
202 .d_name = "pass",
203 };
204
205 static const struct filterops passread_filtops = {
206 .f_isfd = 1,
207 .f_detach = passreadfiltdetach,
208 .f_event = passreadfilt
209 };
210
211 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
212
213 static void
passinit(void)214 passinit(void)
215 {
216 cam_status status;
217
218 /*
219 * Install a global async callback. This callback will
220 * receive async callbacks like "new device found".
221 */
222 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
223
224 if (status != CAM_REQ_CMP) {
225 printf("pass: Failed to attach master async callback "
226 "due to status 0x%x!\n", status);
227 }
228
229 }
230
231 static void
passrejectios(struct cam_periph * periph)232 passrejectios(struct cam_periph *periph)
233 {
234 struct pass_io_req *io_req, *io_req2;
235 struct pass_softc *softc;
236
237 softc = (struct pass_softc *)periph->softc;
238
239 /*
240 * The user can no longer get status for I/O on the done queue, so
241 * clean up all outstanding I/O on the done queue.
242 */
243 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
244 TAILQ_REMOVE(&softc->done_queue, io_req, links);
245 passiocleanup(softc, io_req);
246 uma_zfree(softc->pass_zone, io_req);
247 }
248
249 /*
250 * The underlying device is gone, so we can't issue these I/Os.
251 * The devfs node has been shut down, so we can't return status to
252 * the user. Free any I/O left on the incoming queue.
253 */
254 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
255 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
256 passiocleanup(softc, io_req);
257 uma_zfree(softc->pass_zone, io_req);
258 }
259
260 /*
261 * Normally we would put I/Os on the abandoned queue and acquire a
262 * reference when we saw the final close. But, the device went
263 * away and devfs may have moved everything off to deadfs by the
264 * time the I/O done callback is called; as a result, we won't see
265 * any more closes. So, if we have any active I/Os, we need to put
266 * them on the abandoned queue. When the abandoned queue is empty,
267 * we'll release the remaining reference (see below) to the peripheral.
268 */
269 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
270 TAILQ_REMOVE(&softc->active_queue, io_req, links);
271 io_req->flags |= PASS_IO_ABANDONED;
272 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
273 }
274
275 /*
276 * If we put any I/O on the abandoned queue, acquire a reference.
277 */
278 if ((!TAILQ_EMPTY(&softc->abandoned_queue))
279 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
280 cam_periph_doacquire(periph);
281 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
282 }
283 }
284
285 static void
passdevgonecb(void * arg)286 passdevgonecb(void *arg)
287 {
288 struct cam_periph *periph;
289 struct mtx *mtx;
290 struct pass_softc *softc;
291 int i;
292
293 periph = (struct cam_periph *)arg;
294 mtx = cam_periph_mtx(periph);
295 mtx_lock(mtx);
296
297 softc = (struct pass_softc *)periph->softc;
298 KASSERT(softc->open_count >= 0, ("Negative open count %d",
299 softc->open_count));
300
301 /*
302 * When we get this callback, we will get no more close calls from
303 * devfs. So if we have any dangling opens, we need to release the
304 * reference held for that particular context.
305 */
306 for (i = 0; i < softc->open_count; i++)
307 cam_periph_release_locked(periph);
308
309 softc->open_count = 0;
310
311 /*
312 * Release the reference held for the device node, it is gone now.
313 * Accordingly, inform all queued I/Os of their fate.
314 */
315 cam_periph_release_locked(periph);
316 passrejectios(periph);
317
318 /*
319 * We reference the SIM lock directly here, instead of using
320 * cam_periph_unlock(). The reason is that the final call to
321 * cam_periph_release_locked() above could result in the periph
322 * getting freed. If that is the case, dereferencing the periph
323 * with a cam_periph_unlock() call would cause a page fault.
324 */
325 mtx_unlock(mtx);
326
327 /*
328 * We have to remove our kqueue context from a thread because it
329 * may sleep. It would be nice if we could get a callback from
330 * kqueue when it is done cleaning up resources.
331 */
332 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
333 }
334
335 static void
passoninvalidate(struct cam_periph * periph)336 passoninvalidate(struct cam_periph *periph)
337 {
338 struct pass_softc *softc;
339
340 softc = (struct pass_softc *)periph->softc;
341
342 /*
343 * De-register any async callbacks.
344 */
345 xpt_register_async(0, passasync, periph, periph->path);
346
347 softc->flags |= PASS_FLAG_INVALID;
348
349 /*
350 * Tell devfs this device has gone away, and ask for a callback
351 * when it has cleaned up its state.
352 */
353 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
354 }
355
356 static void
passcleanup(struct cam_periph * periph)357 passcleanup(struct cam_periph *periph)
358 {
359 struct pass_softc *softc;
360
361 softc = (struct pass_softc *)periph->softc;
362
363 cam_periph_assert(periph, MA_OWNED);
364 KASSERT(TAILQ_EMPTY(&softc->active_queue),
365 ("%s called when there are commands on the active queue!\n",
366 __func__));
367 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
368 ("%s called when there are commands on the abandoned queue!\n",
369 __func__));
370 KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
371 ("%s called when there are commands on the incoming queue!\n",
372 __func__));
373 KASSERT(TAILQ_EMPTY(&softc->done_queue),
374 ("%s called when there are commands on the done queue!\n",
375 __func__));
376
377 devstat_remove_entry(softc->device_stats);
378
379 cam_periph_unlock(periph);
380
381 /*
382 * We call taskqueue_drain() for the physpath task to make sure it
383 * is complete. We drop the lock because this can potentially
384 * sleep. XXX KDM that is bad. Need a way to get a callback when
385 * a taskqueue is drained.
386 *
387 * Note that we don't drain the kqueue shutdown task queue. This
388 * is because we hold a reference on the periph for kqueue, and
389 * release that reference from the kqueue shutdown task queue. So
390 * we cannot come into this routine unless we've released that
391 * reference. Also, because that could be the last reference, we
392 * could be called from the cam_periph_release() call in
393 * pass_shutdown_kqueue(). In that case, the taskqueue_drain()
394 * would deadlock. It would be preferable if we had a way to
395 * get a callback when a taskqueue is done.
396 */
397 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
398
399 /*
400 * It should be safe to destroy the zones from here, because all
401 * of the references to this peripheral have been freed, and all
402 * I/O has been terminated and freed. We check the zones for NULL
403 * because they may not have been allocated yet if the device went
404 * away before any asynchronous I/O has been issued.
405 */
406 if (softc->pass_zone != NULL)
407 uma_zdestroy(softc->pass_zone);
408 if (softc->pass_io_zone != NULL)
409 uma_zdestroy(softc->pass_io_zone);
410
411 cam_periph_lock(periph);
412
413 free(softc, M_DEVBUF);
414 }
415
416 static void
pass_shutdown_kqueue(void * context,int pending)417 pass_shutdown_kqueue(void *context, int pending)
418 {
419 struct cam_periph *periph;
420 struct pass_softc *softc;
421
422 periph = context;
423 softc = periph->softc;
424
425 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
426 knlist_destroy(&softc->read_select.si_note);
427
428 /*
429 * Release the reference we held for kqueue.
430 */
431 cam_periph_release(periph);
432 }
433
434 static void
pass_add_physpath(void * context,int pending)435 pass_add_physpath(void *context, int pending)
436 {
437 struct cam_periph *periph;
438 struct pass_softc *softc;
439 struct mtx *mtx;
440 char *physpath;
441
442 /*
443 * If we have one, create a devfs alias for our
444 * physical path.
445 */
446 periph = context;
447 softc = periph->softc;
448 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
449 mtx = cam_periph_mtx(periph);
450 mtx_lock(mtx);
451
452 if (periph->flags & CAM_PERIPH_INVALID)
453 goto out;
454
455 if (xpt_getattr(physpath, MAXPATHLEN,
456 "GEOM::physpath", periph->path) == 0
457 && strlen(physpath) != 0) {
458 mtx_unlock(mtx);
459 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME,
460 &softc->alias_dev, softc->dev,
461 softc->alias_dev, physpath);
462 mtx_lock(mtx);
463 }
464
465 out:
466 /*
467 * Now that we've made our alias, we no longer have to have a
468 * reference to the device.
469 */
470 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
471 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
472
473 /*
474 * We always acquire a reference to the periph before queueing this
475 * task queue function, so it won't go away before we run.
476 */
477 while (pending-- > 0)
478 cam_periph_release_locked(periph);
479 mtx_unlock(mtx);
480
481 free(physpath, M_DEVBUF);
482 }
483
484 static void
passasync(void * callback_arg,uint32_t code,struct cam_path * path,void * arg)485 passasync(void *callback_arg, uint32_t code,
486 struct cam_path *path, void *arg)
487 {
488 struct cam_periph *periph;
489
490 periph = (struct cam_periph *)callback_arg;
491
492 switch (code) {
493 case AC_FOUND_DEVICE:
494 {
495 struct ccb_getdev *cgd;
496 cam_status status;
497
498 cgd = (struct ccb_getdev *)arg;
499 if (cgd == NULL)
500 break;
501
502 /*
503 * Allocate a peripheral instance for
504 * this device and start the probe
505 * process.
506 */
507 status = cam_periph_alloc(passregister, passoninvalidate,
508 passcleanup, passstart, "pass",
509 CAM_PERIPH_BIO, path,
510 passasync, AC_FOUND_DEVICE, cgd);
511
512 if (status != CAM_REQ_CMP
513 && status != CAM_REQ_INPROG) {
514 const struct cam_status_entry *entry;
515
516 entry = cam_fetch_status_entry(status);
517
518 printf("passasync: Unable to attach new device "
519 "due to status %#x: %s\n", status, entry ?
520 entry->status_text : "Unknown");
521 }
522
523 break;
524 }
525 case AC_ADVINFO_CHANGED:
526 {
527 uintptr_t buftype;
528
529 buftype = (uintptr_t)arg;
530 if (buftype == CDAI_TYPE_PHYS_PATH) {
531 struct pass_softc *softc;
532
533 softc = (struct pass_softc *)periph->softc;
534 /*
535 * Acquire a reference to the periph before we
536 * start the taskqueue, so that we don't run into
537 * a situation where the periph goes away before
538 * the task queue has a chance to run.
539 */
540 if (cam_periph_acquire(periph) != 0)
541 break;
542
543 taskqueue_enqueue(taskqueue_thread,
544 &softc->add_physpath_task);
545 }
546 break;
547 }
548 default:
549 cam_periph_async(periph, code, path, arg);
550 break;
551 }
552 }
553
554 static cam_status
passregister(struct cam_periph * periph,void * arg)555 passregister(struct cam_periph *periph, void *arg)
556 {
557 struct pass_softc *softc;
558 struct ccb_getdev *cgd;
559 struct ccb_pathinq cpi;
560 struct make_dev_args args;
561 int error, no_tags;
562
563 cgd = (struct ccb_getdev *)arg;
564 if (cgd == NULL) {
565 printf("%s: no getdev CCB, can't register device\n", __func__);
566 return(CAM_REQ_CMP_ERR);
567 }
568
569 softc = (struct pass_softc *)malloc(sizeof(*softc),
570 M_DEVBUF, M_NOWAIT);
571
572 if (softc == NULL) {
573 printf("%s: Unable to probe new device. "
574 "Unable to allocate softc\n", __func__);
575 return(CAM_REQ_CMP_ERR);
576 }
577
578 bzero(softc, sizeof(*softc));
579 softc->state = PASS_STATE_NORMAL;
580 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
581 softc->pd_type = SID_TYPE(&cgd->inq_data);
582 else if (cgd->protocol == PROTO_SATAPM)
583 softc->pd_type = T_ENCLOSURE;
584 else
585 softc->pd_type = T_DIRECT;
586
587 periph->softc = softc;
588 softc->periph = periph;
589 TAILQ_INIT(&softc->incoming_queue);
590 TAILQ_INIT(&softc->active_queue);
591 TAILQ_INIT(&softc->abandoned_queue);
592 TAILQ_INIT(&softc->done_queue);
593 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
594 periph->periph_name, periph->unit_number);
595 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
596 periph->periph_name, periph->unit_number);
597 softc->io_zone_size = maxphys;
598 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
599
600 xpt_path_inq(&cpi, periph->path);
601
602 if (cpi.maxio == 0)
603 softc->maxio = DFLTPHYS; /* traditional default */
604 else if (cpi.maxio > maxphys)
605 softc->maxio = maxphys; /* for safety */
606 else
607 softc->maxio = cpi.maxio; /* real value */
608
609 if (cpi.hba_misc & PIM_UNMAPPED)
610 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
611
612 /*
613 * We pass in 0 for a blocksize, since we don't
614 * know what the blocksize of this device is, if
615 * it even has a blocksize.
616 */
617 cam_periph_unlock(periph);
618 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
619 softc->device_stats = devstat_new_entry("pass",
620 periph->unit_number, 0,
621 DEVSTAT_NO_BLOCKSIZE
622 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
623 softc->pd_type |
624 XPORT_DEVSTAT_TYPE(cpi.transport) |
625 DEVSTAT_TYPE_PASS,
626 DEVSTAT_PRIORITY_PASS);
627
628 /*
629 * Initialize the taskqueue handler for shutting down kqueue.
630 */
631 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
632 pass_shutdown_kqueue, periph);
633
634 /*
635 * Acquire a reference to the periph that we can release once we've
636 * cleaned up the kqueue.
637 */
638 if (cam_periph_acquire(periph) != 0) {
639 xpt_print(periph->path, "%s: lost periph during "
640 "registration!\n", __func__);
641 cam_periph_lock(periph);
642 return (CAM_REQ_CMP_ERR);
643 }
644
645 /*
646 * Acquire a reference to the periph before we create the devfs
647 * instance for it. We'll release this reference once the devfs
648 * instance has been freed.
649 */
650 if (cam_periph_acquire(periph) != 0) {
651 xpt_print(periph->path, "%s: lost periph during "
652 "registration!\n", __func__);
653 cam_periph_lock(periph);
654 return (CAM_REQ_CMP_ERR);
655 }
656
657 /* Register the device */
658 make_dev_args_init(&args);
659 args.mda_devsw = &pass_cdevsw;
660 args.mda_unit = periph->unit_number;
661 args.mda_uid = UID_ROOT;
662 args.mda_gid = GID_OPERATOR;
663 args.mda_mode = 0600;
664 args.mda_si_drv1 = periph;
665 args.mda_flags = MAKEDEV_NOWAIT;
666 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
667 periph->unit_number);
668 if (error != 0) {
669 cam_periph_lock(periph);
670 cam_periph_release_locked(periph);
671 return (CAM_REQ_CMP_ERR);
672 }
673
674 /*
675 * Hold a reference to the periph before we create the physical
676 * path alias so it can't go away.
677 */
678 if (cam_periph_acquire(periph) != 0) {
679 xpt_print(periph->path, "%s: lost periph during "
680 "registration!\n", __func__);
681 cam_periph_lock(periph);
682 return (CAM_REQ_CMP_ERR);
683 }
684
685 cam_periph_lock(periph);
686
687 TASK_INIT(&softc->add_physpath_task, /*priority*/0,
688 pass_add_physpath, periph);
689
690 /*
691 * See if physical path information is already available.
692 */
693 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
694
695 /*
696 * Add an async callback so that we get notified if
697 * this device goes away or its physical path
698 * (stored in the advanced info data of the EDT) has
699 * changed.
700 */
701 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
702 passasync, periph, periph->path);
703
704 if (bootverbose)
705 xpt_announce_periph(periph, NULL);
706
707 return(CAM_REQ_CMP);
708 }
709
710 static int
passopen(struct cdev * dev,int flags,int fmt,struct thread * td)711 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
712 {
713 struct cam_periph *periph;
714 struct pass_softc *softc;
715 int error;
716
717 periph = (struct cam_periph *)dev->si_drv1;
718 if (cam_periph_acquire(periph) != 0)
719 return (ENXIO);
720
721 cam_periph_lock(periph);
722
723 softc = (struct pass_softc *)periph->softc;
724
725 if (softc->flags & PASS_FLAG_INVALID) {
726 cam_periph_release_locked(periph);
727 cam_periph_unlock(periph);
728 return(ENXIO);
729 }
730
731 /*
732 * Don't allow access when we're running at a high securelevel.
733 */
734 error = securelevel_gt(td->td_ucred, 1);
735 if (error) {
736 cam_periph_release_locked(periph);
737 cam_periph_unlock(periph);
738 return(error);
739 }
740
741 /*
742 * Only allow read-write access.
743 */
744 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
745 cam_periph_release_locked(periph);
746 cam_periph_unlock(periph);
747 return(EPERM);
748 }
749
750 /*
751 * We don't allow nonblocking access.
752 */
753 if ((flags & O_NONBLOCK) != 0) {
754 xpt_print(periph->path, "can't do nonblocking access\n");
755 cam_periph_release_locked(periph);
756 cam_periph_unlock(periph);
757 return(EINVAL);
758 }
759
760 softc->open_count++;
761
762 cam_periph_unlock(periph);
763
764 return (error);
765 }
766
767 static int
passclose(struct cdev * dev,int flag,int fmt,struct thread * td)768 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
769 {
770 struct cam_periph *periph;
771 struct pass_softc *softc;
772 struct mtx *mtx;
773
774 periph = (struct cam_periph *)dev->si_drv1;
775 mtx = cam_periph_mtx(periph);
776 mtx_lock(mtx);
777
778 softc = periph->softc;
779 softc->open_count--;
780
781 if (softc->open_count == 0) {
782 struct pass_io_req *io_req, *io_req2;
783
784 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
785 TAILQ_REMOVE(&softc->done_queue, io_req, links);
786 passiocleanup(softc, io_req);
787 uma_zfree(softc->pass_zone, io_req);
788 }
789
790 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
791 io_req2) {
792 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
793 passiocleanup(softc, io_req);
794 uma_zfree(softc->pass_zone, io_req);
795 }
796
797 /*
798 * If there are any active I/Os, we need to forcibly acquire a
799 * reference to the peripheral so that we don't go away
800 * before they complete. We'll release the reference when
801 * the abandoned queue is empty.
802 */
803 io_req = TAILQ_FIRST(&softc->active_queue);
804 if ((io_req != NULL)
805 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
806 cam_periph_doacquire(periph);
807 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
808 }
809
810 /*
811 * Since the I/O in the active queue is not under our
812 * control, just set a flag so that we can clean it up when
813 * it completes and put it on the abandoned queue. This
814 * will prevent our sending spurious completions in the
815 * event that the device is opened again before these I/Os
816 * complete.
817 */
818 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
819 io_req2) {
820 TAILQ_REMOVE(&softc->active_queue, io_req, links);
821 io_req->flags |= PASS_IO_ABANDONED;
822 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
823 links);
824 }
825 }
826
827 cam_periph_release_locked(periph);
828
829 /*
830 * We reference the lock directly here, instead of using
831 * cam_periph_unlock(). The reason is that the call to
832 * cam_periph_release_locked() above could result in the periph
833 * getting freed. If that is the case, dereferencing the periph
834 * with a cam_periph_unlock() call would cause a page fault.
835 *
836 * cam_periph_release() avoids this problem using the same method,
837 * but we're manually acquiring and dropping the lock here to
838 * protect the open count and avoid another lock acquisition and
839 * release.
840 */
841 mtx_unlock(mtx);
842
843 return (0);
844 }
845
846 static void
passstart(struct cam_periph * periph,union ccb * start_ccb)847 passstart(struct cam_periph *periph, union ccb *start_ccb)
848 {
849 struct pass_softc *softc;
850
851 softc = (struct pass_softc *)periph->softc;
852
853 switch (softc->state) {
854 case PASS_STATE_NORMAL: {
855 struct pass_io_req *io_req;
856
857 /*
858 * Check for any queued I/O requests that require an
859 * allocated slot.
860 */
861 io_req = TAILQ_FIRST(&softc->incoming_queue);
862 if (io_req == NULL) {
863 xpt_release_ccb(start_ccb);
864 break;
865 }
866 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
867 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
868 /*
869 * Merge the user's CCB into the allocated CCB.
870 */
871 xpt_merge_ccb(start_ccb, &io_req->ccb);
872 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
873 start_ccb->ccb_h.ccb_ioreq = io_req;
874 start_ccb->ccb_h.cbfcnp = passdone;
875 io_req->alloced_ccb = start_ccb;
876 binuptime(&io_req->start_time);
877 devstat_start_transaction(softc->device_stats,
878 &io_req->start_time);
879
880 xpt_action(start_ccb);
881
882 /*
883 * If we have any more I/O waiting, schedule ourselves again.
884 */
885 if (!TAILQ_EMPTY(&softc->incoming_queue))
886 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
887 break;
888 }
889 default:
890 break;
891 }
892 }
893
894 static void
passdone(struct cam_periph * periph,union ccb * done_ccb)895 passdone(struct cam_periph *periph, union ccb *done_ccb)
896 {
897 struct pass_softc *softc;
898 struct ccb_scsiio *csio;
899
900 softc = (struct pass_softc *)periph->softc;
901
902 cam_periph_assert(periph, MA_OWNED);
903
904 csio = &done_ccb->csio;
905 switch (csio->ccb_h.ccb_type) {
906 case PASS_CCB_QUEUED_IO: {
907 struct pass_io_req *io_req;
908
909 io_req = done_ccb->ccb_h.ccb_ioreq;
910 #if 0
911 xpt_print(periph->path, "%s: called for user CCB %p\n",
912 __func__, io_req->user_ccb_ptr);
913 #endif
914 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) &&
915 ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
916 int error;
917 uint32_t cam_flags, sense_flags;
918
919 passflags(done_ccb, &cam_flags, &sense_flags);
920 error = passerror(done_ccb, cam_flags, sense_flags);
921
922 if (error == ERESTART) {
923 KASSERT(((sense_flags & SF_NO_RETRY) == 0),
924 ("passerror returned ERESTART with no retry requested\n"));
925 return;
926 }
927 }
928
929 /*
930 * Copy the allocated CCB contents back to the malloced CCB
931 * so we can give status back to the user when he requests it.
932 */
933 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
934
935 /*
936 * Log data/transaction completion with devstat(9).
937 */
938 switch (done_ccb->ccb_h.func_code) {
939 case XPT_SCSI_IO:
940 devstat_end_transaction(softc->device_stats,
941 done_ccb->csio.dxfer_len - done_ccb->csio.resid,
942 done_ccb->csio.tag_action & 0x3,
943 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
944 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
945 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
946 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
947 &io_req->start_time);
948 break;
949 case XPT_ATA_IO:
950 devstat_end_transaction(softc->device_stats,
951 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
952 0, /* Not used in ATA */
953 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
954 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
955 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
956 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
957 &io_req->start_time);
958 break;
959 case XPT_SMP_IO:
960 /*
961 * XXX KDM this isn't quite right, but there isn't
962 * currently an easy way to represent a bidirectional
963 * transfer in devstat. The only way to do it
964 * and have the byte counts come out right would
965 * mean that we would have to record two
966 * transactions, one for the request and one for the
967 * response. For now, so that we report something,
968 * just treat the entire thing as a read.
969 */
970 devstat_end_transaction(softc->device_stats,
971 done_ccb->smpio.smp_request_len +
972 done_ccb->smpio.smp_response_len,
973 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
974 &io_req->start_time);
975 break;
976 default:
977 devstat_end_transaction(softc->device_stats, 0,
978 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
979 &io_req->start_time);
980 break;
981 }
982
983 /*
984 * In the normal case, take the completed I/O off of the
985 * active queue and put it on the done queue. Notitfy the
986 * user that we have a completed I/O.
987 */
988 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
989 TAILQ_REMOVE(&softc->active_queue, io_req, links);
990 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
991 selwakeuppri(&softc->read_select, PRIBIO);
992 KNOTE_LOCKED(&softc->read_select.si_note, 0);
993 } else {
994 /*
995 * In the case of an abandoned I/O (final close
996 * without fetching the I/O), take it off of the
997 * abandoned queue and free it.
998 */
999 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1000 passiocleanup(softc, io_req);
1001 uma_zfree(softc->pass_zone, io_req);
1002
1003 /*
1004 * Release the done_ccb here, since we may wind up
1005 * freeing the peripheral when we decrement the
1006 * reference count below.
1007 */
1008 xpt_release_ccb(done_ccb);
1009
1010 /*
1011 * If the abandoned queue is empty, we can release
1012 * our reference to the periph since we won't have
1013 * any more completions coming.
1014 */
1015 if ((TAILQ_EMPTY(&softc->abandoned_queue))
1016 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1017 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1018 cam_periph_release_locked(periph);
1019 }
1020
1021 /*
1022 * We have already released the CCB, so we can
1023 * return.
1024 */
1025 return;
1026 }
1027 break;
1028 }
1029 }
1030 xpt_release_ccb(done_ccb);
1031 }
1032
1033 static int
passcreatezone(struct cam_periph * periph)1034 passcreatezone(struct cam_periph *periph)
1035 {
1036 struct pass_softc *softc;
1037 int error;
1038
1039 error = 0;
1040 softc = (struct pass_softc *)periph->softc;
1041
1042 cam_periph_assert(periph, MA_OWNED);
1043 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1044 ("%s called when the pass(4) zone is valid!\n", __func__));
1045 KASSERT((softc->pass_zone == NULL),
1046 ("%s called when the pass(4) zone is allocated!\n", __func__));
1047
1048 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1049 /*
1050 * We're the first context through, so we need to create
1051 * the pass(4) UMA zone for I/O requests.
1052 */
1053 softc->flags |= PASS_FLAG_ZONE_INPROG;
1054
1055 /*
1056 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1057 * so we cannot hold a mutex while we call it.
1058 */
1059 cam_periph_unlock(periph);
1060
1061 softc->pass_zone = uma_zcreate(softc->zone_name,
1062 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1063 /*align*/ 0, /*flags*/ 0);
1064
1065 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1066 softc->io_zone_size, NULL, NULL, NULL, NULL,
1067 /*align*/ 0, /*flags*/ 0);
1068
1069 cam_periph_lock(periph);
1070
1071 if ((softc->pass_zone == NULL)
1072 || (softc->pass_io_zone == NULL)) {
1073 if (softc->pass_zone == NULL)
1074 xpt_print(periph->path, "unable to allocate "
1075 "IO Req UMA zone\n");
1076 else
1077 xpt_print(periph->path, "unable to allocate "
1078 "IO UMA zone\n");
1079 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1080 goto bailout;
1081 }
1082
1083 /*
1084 * Set the flags appropriately and notify any other waiters.
1085 */
1086 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1087 softc->flags |= PASS_FLAG_ZONE_VALID;
1088 wakeup(&softc->pass_zone);
1089 } else {
1090 /*
1091 * In this case, the UMA zone has not yet been created, but
1092 * another context is in the process of creating it. We
1093 * need to sleep until the creation is either done or has
1094 * failed.
1095 */
1096 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1097 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1098 error = msleep(&softc->pass_zone,
1099 cam_periph_mtx(periph), PRIBIO,
1100 "paszon", 0);
1101 if (error != 0)
1102 goto bailout;
1103 }
1104 /*
1105 * If the zone creation failed, no luck for the user.
1106 */
1107 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1108 error = ENOMEM;
1109 goto bailout;
1110 }
1111 }
1112 bailout:
1113 return (error);
1114 }
1115
1116 static void
passiocleanup(struct pass_softc * softc,struct pass_io_req * io_req)1117 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1118 {
1119 union ccb *ccb;
1120 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1121 int i, numbufs;
1122
1123 ccb = &io_req->ccb;
1124
1125 switch (ccb->ccb_h.func_code) {
1126 case XPT_DEV_MATCH:
1127 numbufs = min(io_req->num_bufs, 2);
1128
1129 if (numbufs == 1) {
1130 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1131 } else {
1132 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1133 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1134 }
1135 break;
1136 case XPT_SCSI_IO:
1137 case XPT_CONT_TARGET_IO:
1138 data_ptrs[0] = &ccb->csio.data_ptr;
1139 numbufs = min(io_req->num_bufs, 1);
1140 break;
1141 case XPT_ATA_IO:
1142 data_ptrs[0] = &ccb->ataio.data_ptr;
1143 numbufs = min(io_req->num_bufs, 1);
1144 break;
1145 case XPT_SMP_IO:
1146 numbufs = min(io_req->num_bufs, 2);
1147 data_ptrs[0] = &ccb->smpio.smp_request;
1148 data_ptrs[1] = &ccb->smpio.smp_response;
1149 break;
1150 case XPT_DEV_ADVINFO:
1151 numbufs = min(io_req->num_bufs, 1);
1152 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1153 break;
1154 case XPT_NVME_IO:
1155 case XPT_NVME_ADMIN:
1156 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1157 numbufs = min(io_req->num_bufs, 1);
1158 break;
1159 default:
1160 /* allow ourselves to be swapped once again */
1161 return;
1162 break; /* NOTREACHED */
1163 }
1164
1165 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1166 free(io_req->user_segptr, M_SCSIPASS);
1167 io_req->user_segptr = NULL;
1168 }
1169
1170 /*
1171 * We only want to free memory we malloced.
1172 */
1173 if (io_req->data_flags == CAM_DATA_VADDR) {
1174 for (i = 0; i < io_req->num_bufs; i++) {
1175 if (io_req->kern_bufs[i] == NULL)
1176 continue;
1177
1178 free(io_req->kern_bufs[i], M_SCSIPASS);
1179 io_req->kern_bufs[i] = NULL;
1180 }
1181 } else if (io_req->data_flags == CAM_DATA_SG) {
1182 for (i = 0; i < io_req->num_kern_segs; i++) {
1183 if ((uint8_t *)(uintptr_t)
1184 io_req->kern_segptr[i].ds_addr == NULL)
1185 continue;
1186
1187 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1188 io_req->kern_segptr[i].ds_addr);
1189 io_req->kern_segptr[i].ds_addr = 0;
1190 }
1191 }
1192
1193 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1194 free(io_req->kern_segptr, M_SCSIPASS);
1195 io_req->kern_segptr = NULL;
1196 }
1197
1198 if (io_req->data_flags != CAM_DATA_PADDR) {
1199 for (i = 0; i < numbufs; i++) {
1200 /*
1201 * Restore the user's buffer pointers to their
1202 * previous values.
1203 */
1204 if (io_req->user_bufs[i] != NULL)
1205 *data_ptrs[i] = io_req->user_bufs[i];
1206 }
1207 }
1208
1209 }
1210
1211 static int
passcopysglist(struct cam_periph * periph,struct pass_io_req * io_req,ccb_flags direction)1212 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1213 ccb_flags direction)
1214 {
1215 bus_size_t kern_watermark, user_watermark, len_to_copy;
1216 bus_dma_segment_t *user_sglist, *kern_sglist;
1217 int i, j, error;
1218
1219 error = 0;
1220 kern_watermark = 0;
1221 user_watermark = 0;
1222 len_to_copy = 0;
1223 user_sglist = io_req->user_segptr;
1224 kern_sglist = io_req->kern_segptr;
1225
1226 for (i = 0, j = 0; i < io_req->num_user_segs &&
1227 j < io_req->num_kern_segs;) {
1228 uint8_t *user_ptr, *kern_ptr;
1229
1230 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1231 kern_sglist[j].ds_len - kern_watermark);
1232
1233 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1234 user_ptr = user_ptr + user_watermark;
1235 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1236 kern_ptr = kern_ptr + kern_watermark;
1237
1238 user_watermark += len_to_copy;
1239 kern_watermark += len_to_copy;
1240
1241 if (direction == CAM_DIR_IN) {
1242 error = copyout(kern_ptr, user_ptr, len_to_copy);
1243 if (error != 0) {
1244 xpt_print(periph->path, "%s: copyout of %u "
1245 "bytes from %p to %p failed with "
1246 "error %d\n", __func__, len_to_copy,
1247 kern_ptr, user_ptr, error);
1248 goto bailout;
1249 }
1250 } else {
1251 error = copyin(user_ptr, kern_ptr, len_to_copy);
1252 if (error != 0) {
1253 xpt_print(periph->path, "%s: copyin of %u "
1254 "bytes from %p to %p failed with "
1255 "error %d\n", __func__, len_to_copy,
1256 user_ptr, kern_ptr, error);
1257 goto bailout;
1258 }
1259 }
1260
1261 if (user_sglist[i].ds_len == user_watermark) {
1262 i++;
1263 user_watermark = 0;
1264 }
1265
1266 if (kern_sglist[j].ds_len == kern_watermark) {
1267 j++;
1268 kern_watermark = 0;
1269 }
1270 }
1271
1272 bailout:
1273
1274 return (error);
1275 }
1276
1277 static int
passmemsetup(struct cam_periph * periph,struct pass_io_req * io_req)1278 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1279 {
1280 union ccb *ccb;
1281 struct pass_softc *softc;
1282 int numbufs, i;
1283 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1284 uint32_t lengths[CAM_PERIPH_MAXMAPS];
1285 uint32_t dirs[CAM_PERIPH_MAXMAPS];
1286 uint32_t num_segs;
1287 uint16_t *seg_cnt_ptr;
1288 size_t maxmap;
1289 int error;
1290
1291 cam_periph_assert(periph, MA_NOTOWNED);
1292
1293 softc = periph->softc;
1294
1295 error = 0;
1296 ccb = &io_req->ccb;
1297 maxmap = 0;
1298 num_segs = 0;
1299 seg_cnt_ptr = NULL;
1300
1301 switch(ccb->ccb_h.func_code) {
1302 case XPT_DEV_MATCH:
1303 if (ccb->cdm.match_buf_len == 0) {
1304 printf("%s: invalid match buffer length 0\n", __func__);
1305 return(EINVAL);
1306 }
1307 if (ccb->cdm.pattern_buf_len > 0) {
1308 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1309 lengths[0] = ccb->cdm.pattern_buf_len;
1310 dirs[0] = CAM_DIR_OUT;
1311 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1312 lengths[1] = ccb->cdm.match_buf_len;
1313 dirs[1] = CAM_DIR_IN;
1314 numbufs = 2;
1315 } else {
1316 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1317 lengths[0] = ccb->cdm.match_buf_len;
1318 dirs[0] = CAM_DIR_IN;
1319 numbufs = 1;
1320 }
1321 io_req->data_flags = CAM_DATA_VADDR;
1322 break;
1323 case XPT_SCSI_IO:
1324 case XPT_CONT_TARGET_IO:
1325 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1326 return(0);
1327
1328 /*
1329 * The user shouldn't be able to supply a bio.
1330 */
1331 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1332 return (EINVAL);
1333
1334 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1335
1336 data_ptrs[0] = &ccb->csio.data_ptr;
1337 lengths[0] = ccb->csio.dxfer_len;
1338 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1339 num_segs = ccb->csio.sglist_cnt;
1340 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1341 numbufs = 1;
1342 maxmap = softc->maxio;
1343 break;
1344 case XPT_ATA_IO:
1345 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1346 return(0);
1347
1348 /*
1349 * We only support a single virtual address for ATA I/O.
1350 */
1351 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1352 return (EINVAL);
1353
1354 io_req->data_flags = CAM_DATA_VADDR;
1355
1356 data_ptrs[0] = &ccb->ataio.data_ptr;
1357 lengths[0] = ccb->ataio.dxfer_len;
1358 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1359 numbufs = 1;
1360 maxmap = softc->maxio;
1361 break;
1362 case XPT_SMP_IO:
1363 io_req->data_flags = CAM_DATA_VADDR;
1364
1365 data_ptrs[0] = &ccb->smpio.smp_request;
1366 lengths[0] = ccb->smpio.smp_request_len;
1367 dirs[0] = CAM_DIR_OUT;
1368 data_ptrs[1] = &ccb->smpio.smp_response;
1369 lengths[1] = ccb->smpio.smp_response_len;
1370 dirs[1] = CAM_DIR_IN;
1371 numbufs = 2;
1372 maxmap = softc->maxio;
1373 break;
1374 case XPT_DEV_ADVINFO:
1375 if (ccb->cdai.bufsiz == 0)
1376 return (0);
1377
1378 io_req->data_flags = CAM_DATA_VADDR;
1379
1380 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1381 lengths[0] = ccb->cdai.bufsiz;
1382 dirs[0] = CAM_DIR_IN;
1383 numbufs = 1;
1384 break;
1385 case XPT_NVME_ADMIN:
1386 case XPT_NVME_IO:
1387 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1388 return (0);
1389
1390 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1391
1392 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1393 lengths[0] = ccb->nvmeio.dxfer_len;
1394 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1395 num_segs = ccb->nvmeio.sglist_cnt;
1396 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1397 numbufs = 1;
1398 maxmap = softc->maxio;
1399 break;
1400 default:
1401 return(EINVAL);
1402 break; /* NOTREACHED */
1403 }
1404
1405 io_req->num_bufs = numbufs;
1406
1407 /*
1408 * If there is a maximum, check to make sure that the user's
1409 * request fits within the limit. In general, we should only have
1410 * a maximum length for requests that go to hardware. Otherwise it
1411 * is whatever we're able to malloc.
1412 */
1413 for (i = 0; i < numbufs; i++) {
1414 io_req->user_bufs[i] = *data_ptrs[i];
1415 io_req->dirs[i] = dirs[i];
1416 io_req->lengths[i] = lengths[i];
1417
1418 if (maxmap == 0)
1419 continue;
1420
1421 if (lengths[i] <= maxmap)
1422 continue;
1423
1424 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1425 "bytes\n", __func__, lengths[i], maxmap);
1426 error = EINVAL;
1427 goto bailout;
1428 }
1429
1430 switch (io_req->data_flags) {
1431 case CAM_DATA_VADDR:
1432 /* Map or copy the buffer into kernel address space */
1433 for (i = 0; i < numbufs; i++) {
1434 uint8_t *tmp_buf;
1435
1436 /*
1437 * If for some reason no length is specified, we
1438 * don't need to allocate anything.
1439 */
1440 if (io_req->lengths[i] == 0)
1441 continue;
1442
1443 tmp_buf = malloc(lengths[i], M_SCSIPASS,
1444 M_WAITOK | M_ZERO);
1445 io_req->kern_bufs[i] = tmp_buf;
1446 *data_ptrs[i] = tmp_buf;
1447
1448 #if 0
1449 xpt_print(periph->path, "%s: malloced %p len %u, user "
1450 "buffer %p, operation: %s\n", __func__,
1451 tmp_buf, lengths[i], io_req->user_bufs[i],
1452 (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1453 #endif
1454 /*
1455 * We only need to copy in if the user is writing.
1456 */
1457 if (dirs[i] != CAM_DIR_OUT)
1458 continue;
1459
1460 error = copyin(io_req->user_bufs[i],
1461 io_req->kern_bufs[i], lengths[i]);
1462 if (error != 0) {
1463 xpt_print(periph->path, "%s: copy of user "
1464 "buffer from %p to %p failed with "
1465 "error %d\n", __func__,
1466 io_req->user_bufs[i],
1467 io_req->kern_bufs[i], error);
1468 goto bailout;
1469 }
1470 }
1471 break;
1472 case CAM_DATA_PADDR:
1473 /* Pass down the pointer as-is */
1474 break;
1475 case CAM_DATA_SG: {
1476 size_t sg_length, size_to_go, alloc_size;
1477 uint32_t num_segs_needed;
1478
1479 /*
1480 * Copy the user S/G list in, and then copy in the
1481 * individual segments.
1482 */
1483 /*
1484 * We shouldn't see this, but check just in case.
1485 */
1486 if (numbufs != 1) {
1487 xpt_print(periph->path, "%s: cannot currently handle "
1488 "more than one S/G list per CCB\n", __func__);
1489 error = EINVAL;
1490 goto bailout;
1491 }
1492
1493 /*
1494 * We have to have at least one segment.
1495 */
1496 if (num_segs == 0) {
1497 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1498 "but sglist_cnt=0!\n", __func__);
1499 error = EINVAL;
1500 goto bailout;
1501 }
1502
1503 /*
1504 * Make sure the user specified the total length and didn't
1505 * just leave it to us to decode the S/G list.
1506 */
1507 if (lengths[0] == 0) {
1508 xpt_print(periph->path, "%s: no dxfer_len specified, "
1509 "but CAM_DATA_SG flag is set!\n", __func__);
1510 error = EINVAL;
1511 goto bailout;
1512 }
1513
1514 /*
1515 * We allocate buffers in io_zone_size increments for an
1516 * S/G list. This will generally be maxphys.
1517 */
1518 if (lengths[0] <= softc->io_zone_size)
1519 num_segs_needed = 1;
1520 else {
1521 num_segs_needed = lengths[0] / softc->io_zone_size;
1522 if ((lengths[0] % softc->io_zone_size) != 0)
1523 num_segs_needed++;
1524 }
1525
1526 /* Figure out the size of the S/G list */
1527 sg_length = num_segs * sizeof(bus_dma_segment_t);
1528 io_req->num_user_segs = num_segs;
1529 io_req->num_kern_segs = num_segs_needed;
1530
1531 /* Save the user's S/G list pointer for later restoration */
1532 io_req->user_bufs[0] = *data_ptrs[0];
1533
1534 /*
1535 * If we have enough segments allocated by default to handle
1536 * the length of the user's S/G list,
1537 */
1538 if (num_segs > PASS_MAX_SEGS) {
1539 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1540 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1541 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1542 } else
1543 io_req->user_segptr = io_req->user_segs;
1544
1545 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1546 if (error != 0) {
1547 xpt_print(periph->path, "%s: copy of user S/G list "
1548 "from %p to %p failed with error %d\n",
1549 __func__, *data_ptrs[0], io_req->user_segptr,
1550 error);
1551 goto bailout;
1552 }
1553
1554 if (num_segs_needed > PASS_MAX_SEGS) {
1555 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1556 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1557 io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1558 } else {
1559 io_req->kern_segptr = io_req->kern_segs;
1560 }
1561
1562 /*
1563 * Allocate the kernel S/G list.
1564 */
1565 for (size_to_go = lengths[0], i = 0;
1566 size_to_go > 0 && i < num_segs_needed;
1567 i++, size_to_go -= alloc_size) {
1568 uint8_t *kern_ptr;
1569
1570 alloc_size = min(size_to_go, softc->io_zone_size);
1571 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1572 io_req->kern_segptr[i].ds_addr =
1573 (bus_addr_t)(uintptr_t)kern_ptr;
1574 io_req->kern_segptr[i].ds_len = alloc_size;
1575 }
1576 if (size_to_go > 0) {
1577 printf("%s: size_to_go = %zu, software error!\n",
1578 __func__, size_to_go);
1579 error = EINVAL;
1580 goto bailout;
1581 }
1582
1583 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1584 *seg_cnt_ptr = io_req->num_kern_segs;
1585
1586 /*
1587 * We only need to copy data here if the user is writing.
1588 */
1589 if (dirs[0] == CAM_DIR_OUT)
1590 error = passcopysglist(periph, io_req, dirs[0]);
1591 break;
1592 }
1593 case CAM_DATA_SG_PADDR: {
1594 size_t sg_length;
1595
1596 /*
1597 * We shouldn't see this, but check just in case.
1598 */
1599 if (numbufs != 1) {
1600 printf("%s: cannot currently handle more than one "
1601 "S/G list per CCB\n", __func__);
1602 error = EINVAL;
1603 goto bailout;
1604 }
1605
1606 /*
1607 * We have to have at least one segment.
1608 */
1609 if (num_segs == 0) {
1610 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1611 "set, but sglist_cnt=0!\n", __func__);
1612 error = EINVAL;
1613 goto bailout;
1614 }
1615
1616 /*
1617 * Make sure the user specified the total length and didn't
1618 * just leave it to us to decode the S/G list.
1619 */
1620 if (lengths[0] == 0) {
1621 xpt_print(periph->path, "%s: no dxfer_len specified, "
1622 "but CAM_DATA_SG flag is set!\n", __func__);
1623 error = EINVAL;
1624 goto bailout;
1625 }
1626
1627 /* Figure out the size of the S/G list */
1628 sg_length = num_segs * sizeof(bus_dma_segment_t);
1629 io_req->num_user_segs = num_segs;
1630 io_req->num_kern_segs = io_req->num_user_segs;
1631
1632 /* Save the user's S/G list pointer for later restoration */
1633 io_req->user_bufs[0] = *data_ptrs[0];
1634
1635 if (num_segs > PASS_MAX_SEGS) {
1636 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1637 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1638 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1639 } else
1640 io_req->user_segptr = io_req->user_segs;
1641
1642 io_req->kern_segptr = io_req->user_segptr;
1643
1644 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1645 if (error != 0) {
1646 xpt_print(periph->path, "%s: copy of user S/G list "
1647 "from %p to %p failed with error %d\n",
1648 __func__, *data_ptrs[0], io_req->user_segptr,
1649 error);
1650 goto bailout;
1651 }
1652 break;
1653 }
1654 default:
1655 case CAM_DATA_BIO:
1656 /*
1657 * A user shouldn't be attaching a bio to the CCB. It
1658 * isn't a user-accessible structure.
1659 */
1660 error = EINVAL;
1661 break;
1662 }
1663
1664 bailout:
1665 if (error != 0)
1666 passiocleanup(softc, io_req);
1667
1668 return (error);
1669 }
1670
1671 static int
passmemdone(struct cam_periph * periph,struct pass_io_req * io_req)1672 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1673 {
1674 struct pass_softc *softc;
1675 int error;
1676 int i;
1677
1678 error = 0;
1679 softc = (struct pass_softc *)periph->softc;
1680
1681 switch (io_req->data_flags) {
1682 case CAM_DATA_VADDR:
1683 /*
1684 * Copy back to the user buffer if this was a read.
1685 */
1686 for (i = 0; i < io_req->num_bufs; i++) {
1687 if (io_req->dirs[i] != CAM_DIR_IN)
1688 continue;
1689
1690 error = copyout(io_req->kern_bufs[i],
1691 io_req->user_bufs[i], io_req->lengths[i]);
1692 if (error != 0) {
1693 xpt_print(periph->path, "Unable to copy %u "
1694 "bytes from %p to user address %p\n",
1695 io_req->lengths[i],
1696 io_req->kern_bufs[i],
1697 io_req->user_bufs[i]);
1698 goto bailout;
1699 }
1700 }
1701 break;
1702 case CAM_DATA_PADDR:
1703 /* Do nothing. The pointer is a physical address already */
1704 break;
1705 case CAM_DATA_SG:
1706 /*
1707 * Copy back to the user buffer if this was a read.
1708 * Restore the user's S/G list buffer pointer.
1709 */
1710 if (io_req->dirs[0] == CAM_DIR_IN)
1711 error = passcopysglist(periph, io_req, io_req->dirs[0]);
1712 break;
1713 case CAM_DATA_SG_PADDR:
1714 /*
1715 * Restore the user's S/G list buffer pointer. No need to
1716 * copy.
1717 */
1718 break;
1719 default:
1720 case CAM_DATA_BIO:
1721 error = EINVAL;
1722 break;
1723 }
1724
1725 bailout:
1726 /*
1727 * Reset the user's pointers to their original values and free
1728 * allocated memory.
1729 */
1730 passiocleanup(softc, io_req);
1731
1732 return (error);
1733 }
1734
1735 static int
passioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1736 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1737 {
1738 int error;
1739
1740 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1741 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1742 }
1743 return (error);
1744 }
1745
1746 static int
passdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1747 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1748 {
1749 struct cam_periph *periph;
1750 struct pass_softc *softc;
1751 int error;
1752 uint32_t priority;
1753
1754 periph = (struct cam_periph *)dev->si_drv1;
1755 cam_periph_lock(periph);
1756 softc = (struct pass_softc *)periph->softc;
1757
1758 error = 0;
1759
1760 switch (cmd) {
1761 case CAMIOCOMMAND:
1762 {
1763 union ccb *inccb;
1764 union ccb *ccb;
1765 int ccb_malloced;
1766
1767 inccb = (union ccb *)addr;
1768 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1769 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1770 inccb->csio.bio = NULL;
1771 #endif
1772
1773 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1774 error = EINVAL;
1775 break;
1776 }
1777
1778 /*
1779 * Some CCB types, like scan bus and scan lun can only go
1780 * through the transport layer device.
1781 */
1782 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1783 xpt_print(periph->path, "CCB function code %#x is "
1784 "restricted to the XPT device\n",
1785 inccb->ccb_h.func_code);
1786 error = ENODEV;
1787 break;
1788 }
1789
1790 /* Compatibility for RL/priority-unaware code. */
1791 priority = inccb->ccb_h.pinfo.priority;
1792 if (priority <= CAM_PRIORITY_OOB)
1793 priority += CAM_PRIORITY_OOB + 1;
1794
1795 /*
1796 * Non-immediate CCBs need a CCB from the per-device pool
1797 * of CCBs, which is scheduled by the transport layer.
1798 * Immediate CCBs and user-supplied CCBs should just be
1799 * malloced.
1800 */
1801 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1802 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1803 ccb = cam_periph_getccb(periph, priority);
1804 ccb_malloced = 0;
1805 } else {
1806 ccb = xpt_alloc_ccb_nowait();
1807
1808 if (ccb != NULL)
1809 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1810 priority);
1811 ccb_malloced = 1;
1812 }
1813
1814 if (ccb == NULL) {
1815 xpt_print(periph->path, "unable to allocate CCB\n");
1816 error = ENOMEM;
1817 break;
1818 }
1819
1820 error = passsendccb(periph, ccb, inccb);
1821
1822 if (ccb_malloced)
1823 xpt_free_ccb(ccb);
1824 else
1825 xpt_release_ccb(ccb);
1826
1827 break;
1828 }
1829 case CAMIOQUEUE:
1830 {
1831 struct pass_io_req *io_req;
1832 union ccb **user_ccb, *ccb;
1833 xpt_opcode fc;
1834
1835 #ifdef COMPAT_FREEBSD32
1836 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1837 error = ENOTTY;
1838 goto bailout;
1839 }
1840 #endif
1841 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1842 error = passcreatezone(periph);
1843 if (error != 0)
1844 goto bailout;
1845 }
1846
1847 /*
1848 * We're going to do a blocking allocation for this I/O
1849 * request, so we have to drop the lock.
1850 */
1851 cam_periph_unlock(periph);
1852
1853 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1854 ccb = &io_req->ccb;
1855 user_ccb = (union ccb **)addr;
1856
1857 /*
1858 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1859 * pointer to the user's CCB, so we have to copy the whole
1860 * thing in to a buffer we have allocated (above) instead
1861 * of allowing the ioctl code to malloc a buffer and copy
1862 * it in.
1863 *
1864 * This is an advantage for this asynchronous interface,
1865 * since we don't want the memory to get freed while the
1866 * CCB is outstanding.
1867 */
1868 #if 0
1869 xpt_print(periph->path, "Copying user CCB %p to "
1870 "kernel address %p\n", *user_ccb, ccb);
1871 #endif
1872 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1873 if (error != 0) {
1874 xpt_print(periph->path, "Copy of user CCB %p to "
1875 "kernel address %p failed with error %d\n",
1876 *user_ccb, ccb, error);
1877 goto camioqueue_error;
1878 }
1879 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1880 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1881 ccb->csio.bio = NULL;
1882 #endif
1883
1884 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1885 error = EINVAL;
1886 goto camioqueue_error;
1887 }
1888
1889 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1890 if (ccb->csio.cdb_len > IOCDBLEN) {
1891 error = EINVAL;
1892 goto camioqueue_error;
1893 }
1894 error = copyin(ccb->csio.cdb_io.cdb_ptr,
1895 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1896 if (error != 0)
1897 goto camioqueue_error;
1898 ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1899 }
1900
1901 /*
1902 * Some CCB types, like scan bus and scan lun can only go
1903 * through the transport layer device.
1904 */
1905 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1906 xpt_print(periph->path, "CCB function code %#x is "
1907 "restricted to the XPT device\n",
1908 ccb->ccb_h.func_code);
1909 error = ENODEV;
1910 goto camioqueue_error;
1911 }
1912
1913 /*
1914 * Save the user's CCB pointer as well as his linked list
1915 * pointers and peripheral private area so that we can
1916 * restore these later.
1917 */
1918 io_req->user_ccb_ptr = *user_ccb;
1919 io_req->user_periph_links = ccb->ccb_h.periph_links;
1920 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1921
1922 /*
1923 * Now that we've saved the user's values, we can set our
1924 * own peripheral private entry.
1925 */
1926 ccb->ccb_h.ccb_ioreq = io_req;
1927
1928 /* Compatibility for RL/priority-unaware code. */
1929 priority = ccb->ccb_h.pinfo.priority;
1930 if (priority <= CAM_PRIORITY_OOB)
1931 priority += CAM_PRIORITY_OOB + 1;
1932
1933 /*
1934 * Setup fields in the CCB like the path and the priority.
1935 * The path in particular cannot be done in userland, since
1936 * it is a pointer to a kernel data structure.
1937 */
1938 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1939 ccb->ccb_h.flags);
1940
1941 /*
1942 * Setup our done routine. There is no way for the user to
1943 * have a valid pointer here.
1944 */
1945 ccb->ccb_h.cbfcnp = passdone;
1946
1947 fc = ccb->ccb_h.func_code;
1948 /*
1949 * If this function code has memory that can be mapped in
1950 * or out, we need to call passmemsetup().
1951 */
1952 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1953 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1954 || (fc == XPT_DEV_ADVINFO)
1955 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1956 error = passmemsetup(periph, io_req);
1957 if (error != 0)
1958 goto camioqueue_error;
1959 } else
1960 io_req->mapinfo.num_bufs_used = 0;
1961
1962 cam_periph_lock(periph);
1963
1964 /*
1965 * Everything goes on the incoming queue initially.
1966 */
1967 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1968
1969 /*
1970 * If the CCB is queued, and is not a user CCB, then
1971 * we need to allocate a slot for it. Call xpt_schedule()
1972 * so that our start routine will get called when a CCB is
1973 * available.
1974 */
1975 if ((fc & XPT_FC_QUEUED)
1976 && ((fc & XPT_FC_USER_CCB) == 0)) {
1977 xpt_schedule(periph, priority);
1978 break;
1979 }
1980
1981 /*
1982 * At this point, the CCB in question is either an
1983 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1984 * and therefore should be malloced, not allocated via a slot.
1985 * Remove the CCB from the incoming queue and add it to the
1986 * active queue.
1987 */
1988 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1989 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1990
1991 xpt_action(ccb);
1992
1993 /*
1994 * If this is not a queued CCB (i.e. it is an immediate CCB),
1995 * then it is already done. We need to put it on the done
1996 * queue for the user to fetch.
1997 */
1998 if ((fc & XPT_FC_QUEUED) == 0) {
1999 TAILQ_REMOVE(&softc->active_queue, io_req, links);
2000 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2001 }
2002 break;
2003
2004 camioqueue_error:
2005 uma_zfree(softc->pass_zone, io_req);
2006 cam_periph_lock(periph);
2007 break;
2008 }
2009 case CAMIOGET:
2010 {
2011 union ccb **user_ccb;
2012 struct pass_io_req *io_req;
2013 int old_error;
2014
2015 #ifdef COMPAT_FREEBSD32
2016 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2017 error = ENOTTY;
2018 goto bailout;
2019 }
2020 #endif
2021 user_ccb = (union ccb **)addr;
2022 old_error = 0;
2023
2024 io_req = TAILQ_FIRST(&softc->done_queue);
2025 if (io_req == NULL) {
2026 error = ENOENT;
2027 break;
2028 }
2029
2030 /*
2031 * Remove the I/O from the done queue.
2032 */
2033 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2034
2035 /*
2036 * We have to drop the lock during the copyout because the
2037 * copyout can result in VM faults that require sleeping.
2038 */
2039 cam_periph_unlock(periph);
2040
2041 /*
2042 * Do any needed copies (e.g. for reads) and revert the
2043 * pointers in the CCB back to the user's pointers.
2044 */
2045 error = passmemdone(periph, io_req);
2046
2047 old_error = error;
2048
2049 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2050 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2051
2052 #if 0
2053 xpt_print(periph->path, "Copying to user CCB %p from "
2054 "kernel address %p\n", *user_ccb, &io_req->ccb);
2055 #endif
2056
2057 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2058 if (error != 0) {
2059 xpt_print(periph->path, "Copy to user CCB %p from "
2060 "kernel address %p failed with error %d\n",
2061 *user_ccb, &io_req->ccb, error);
2062 }
2063
2064 /*
2065 * Prefer the first error we got back, and make sure we
2066 * don't overwrite bad status with good.
2067 */
2068 if (old_error != 0)
2069 error = old_error;
2070
2071 cam_periph_lock(periph);
2072
2073 /*
2074 * At this point, if there was an error, we could potentially
2075 * re-queue the I/O and try again. But why? The error
2076 * would almost certainly happen again. We might as well
2077 * not leak memory.
2078 */
2079 uma_zfree(softc->pass_zone, io_req);
2080 break;
2081 }
2082 default:
2083 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2084 break;
2085 }
2086
2087 bailout:
2088 cam_periph_unlock(periph);
2089
2090 return(error);
2091 }
2092
2093 static int
passpoll(struct cdev * dev,int poll_events,struct thread * td)2094 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2095 {
2096 struct cam_periph *periph;
2097 struct pass_softc *softc;
2098 int revents;
2099
2100 periph = (struct cam_periph *)dev->si_drv1;
2101 softc = (struct pass_softc *)periph->softc;
2102
2103 revents = poll_events & (POLLOUT | POLLWRNORM);
2104 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2105 cam_periph_lock(periph);
2106
2107 if (!TAILQ_EMPTY(&softc->done_queue)) {
2108 revents |= poll_events & (POLLIN | POLLRDNORM);
2109 }
2110 cam_periph_unlock(periph);
2111 if (revents == 0)
2112 selrecord(td, &softc->read_select);
2113 }
2114
2115 return (revents);
2116 }
2117
2118 static int
passkqfilter(struct cdev * dev,struct knote * kn)2119 passkqfilter(struct cdev *dev, struct knote *kn)
2120 {
2121 struct cam_periph *periph;
2122 struct pass_softc *softc;
2123
2124 periph = (struct cam_periph *)dev->si_drv1;
2125 softc = (struct pass_softc *)periph->softc;
2126
2127 kn->kn_hook = (caddr_t)periph;
2128 kn->kn_fop = &passread_filtops;
2129 knlist_add(&softc->read_select.si_note, kn, 0);
2130
2131 return (0);
2132 }
2133
2134 static void
passreadfiltdetach(struct knote * kn)2135 passreadfiltdetach(struct knote *kn)
2136 {
2137 struct cam_periph *periph;
2138 struct pass_softc *softc;
2139
2140 periph = (struct cam_periph *)kn->kn_hook;
2141 softc = (struct pass_softc *)periph->softc;
2142
2143 knlist_remove(&softc->read_select.si_note, kn, 0);
2144 }
2145
2146 static int
passreadfilt(struct knote * kn,long hint)2147 passreadfilt(struct knote *kn, long hint)
2148 {
2149 struct cam_periph *periph;
2150 struct pass_softc *softc;
2151 int retval;
2152
2153 periph = (struct cam_periph *)kn->kn_hook;
2154 softc = (struct pass_softc *)periph->softc;
2155
2156 cam_periph_assert(periph, MA_OWNED);
2157
2158 if (TAILQ_EMPTY(&softc->done_queue))
2159 retval = 0;
2160 else
2161 retval = 1;
2162
2163 return (retval);
2164 }
2165
2166 /*
2167 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
2168 * should be the CCB that is copied in from the user.
2169 */
2170 static int
passsendccb(struct cam_periph * periph,union ccb * ccb,union ccb * inccb)2171 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2172 {
2173 struct pass_softc *softc;
2174 struct cam_periph_map_info mapinfo;
2175 uint8_t *cmd;
2176 xpt_opcode fc;
2177 int error;
2178
2179 softc = (struct pass_softc *)periph->softc;
2180
2181 /*
2182 * There are some fields in the CCB header that need to be
2183 * preserved, the rest we get from the user.
2184 */
2185 xpt_merge_ccb(ccb, inccb);
2186
2187 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2188 cmd = __builtin_alloca(ccb->csio.cdb_len);
2189 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2190 if (error)
2191 return (error);
2192 ccb->csio.cdb_io.cdb_ptr = cmd;
2193 }
2194
2195 /*
2196 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2197 * Even if no data transfer is needed, it's a cheap check and it
2198 * simplifies the code.
2199 */
2200 fc = ccb->ccb_h.func_code;
2201 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2202 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2203 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2204 bzero(&mapinfo, sizeof(mapinfo));
2205
2206 /*
2207 * cam_periph_mapmem calls into proc and vm functions that can
2208 * sleep as well as trigger I/O, so we can't hold the lock.
2209 * Dropping it here is reasonably safe.
2210 */
2211 cam_periph_unlock(periph);
2212 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2213 cam_periph_lock(periph);
2214
2215 /*
2216 * cam_periph_mapmem returned an error, we can't continue.
2217 * Return the error to the user.
2218 */
2219 if (error)
2220 return(error);
2221 } else
2222 /* Ensure that the unmap call later on is a no-op. */
2223 mapinfo.num_bufs_used = 0;
2224
2225 /*
2226 * If the user wants us to perform any error recovery, then honor
2227 * that request. Otherwise, it's up to the user to perform any
2228 * error recovery.
2229 */
2230 {
2231 uint32_t cam_flags, sense_flags;
2232
2233 passflags(ccb, &cam_flags, &sense_flags);
2234 cam_periph_runccb(ccb, passerror, cam_flags,
2235 sense_flags, softc->device_stats);
2236 }
2237
2238 cam_periph_unlock(periph);
2239 error = cam_periph_unmapmem(ccb, &mapinfo);
2240 cam_periph_lock(periph);
2241
2242 ccb->ccb_h.cbfcnp = NULL;
2243 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2244 bcopy(ccb, inccb, sizeof(union ccb));
2245
2246 return (error);
2247 }
2248
2249 /*
2250 * Set the cam_flags and sense_flags based on whether or not the request wants
2251 * error recovery. In order to log errors via devctl, we need to do at least
2252 * minimal recovery. We do this by not retrying unit attention (we let the
2253 * requester do it, or not, if appropriate) and specifically asking for no
2254 * recovery, like we do during device probing.
2255 */
2256 static void
passflags(union ccb * ccb,uint32_t * cam_flags,uint32_t * sense_flags)2257 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags)
2258 {
2259 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) {
2260 *cam_flags = CAM_RETRY_SELTO;
2261 *sense_flags = SF_RETRY_UA | SF_NO_PRINT;
2262 } else {
2263 *cam_flags = 0;
2264 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT;
2265 }
2266 }
2267
2268 static int
passerror(union ccb * ccb,uint32_t cam_flags,uint32_t sense_flags)2269 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags)
2270 {
2271
2272 return(cam_periph_error(ccb, cam_flags, sense_flags));
2273 }
2274