xref: /freebsd/sys/dev/random/random_harvestq.c (revision 9940c974029ba53fc00696b3fa1784725c48a9e9)
1 /*-
2  * Copyright (c) 2017 Oliver Pinter
3  * Copyright (c) 2017 W. Dean Freeman
4  * Copyright (c) 2000-2015 Mark R V Murray
5  * Copyright (c) 2013 Arthur Mesh
6  * Copyright (c) 2004 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/ck.h>
35 #include <sys/conf.h>
36 #include <sys/epoch.h>
37 #include <sys/eventhandler.h>
38 #include <sys/hash.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/linker.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/random.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/unistd.h>
50 
51 #include <machine/atomic.h>
52 #include <machine/cpu.h>
53 
54 #include <crypto/rijndael/rijndael-api-fst.h>
55 #include <crypto/sha2/sha256.h>
56 
57 #include <dev/random/fortuna.h>
58 #include <dev/random/hash.h>
59 #include <dev/random/randomdev.h>
60 #include <dev/random/random_harvestq.h>
61 
62 #if defined(RANDOM_ENABLE_ETHER)
63 #define _RANDOM_HARVEST_ETHER_OFF 0
64 #else
65 #define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER)
66 #endif
67 #if defined(RANDOM_ENABLE_UMA)
68 #define _RANDOM_HARVEST_UMA_OFF 0
69 #else
70 #define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA)
71 #endif
72 
73 /*
74  * Note that random_sources_feed() will also use this to try and split up
75  * entropy into a subset of pools per iteration with the goal of feeding
76  * HARVESTSIZE into every pool at least once per second.
77  */
78 #define	RANDOM_KTHREAD_HZ	10
79 
80 static void random_kthread(void);
81 static void random_sources_feed(void);
82 
83 /*
84  * Random must initialize much earlier than epoch, but we can initialize the
85  * epoch code before SMP starts.  Prior to SMP, we can safely bypass
86  * concurrency primitives.
87  */
88 static __read_mostly bool epoch_inited;
89 static __read_mostly epoch_t rs_epoch;
90 
91 /*
92  * How many events to queue up. We create this many items in
93  * an 'empty' queue, then transfer them to the 'harvest' queue with
94  * supplied junk. When used, they are transferred back to the
95  * 'empty' queue.
96  */
97 #define	RANDOM_RING_MAX		1024
98 #define	RANDOM_ACCUM_MAX	8
99 
100 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */
101 volatile int random_kthread_control;
102 
103 
104 /* Allow the sysadmin to select the broad category of
105  * entropy types to harvest.
106  */
107 __read_frequently u_int hc_source_mask;
108 
109 struct random_sources {
110 	CK_LIST_ENTRY(random_sources)	 rrs_entries;
111 	struct random_source		*rrs_source;
112 };
113 
114 static CK_LIST_HEAD(sources_head, random_sources) source_list =
115     CK_LIST_HEAD_INITIALIZER(source_list);
116 
117 SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
118     "Entropy Device Parameters");
119 
120 /*
121  * Put all the harvest queue context stuff in one place.
122  * this make is a bit easier to lock and protect.
123  */
124 static struct harvest_context {
125 	/* The harvest mutex protects all of harvest_context and
126 	 * the related data.
127 	 */
128 	struct mtx hc_mtx;
129 	/* Round-robin destination cache. */
130 	u_int hc_destination[ENTROPYSOURCE];
131 	/* The context of the kernel thread processing harvested entropy */
132 	struct proc *hc_kthread_proc;
133 	/*
134 	 * A pair of buffers for queued events.  New events are added to the
135 	 * active queue while the kthread processes the other one in parallel.
136 	 */
137 	struct entropy_buffer {
138 		struct harvest_event ring[RANDOM_RING_MAX];
139 		u_int pos;
140 	} hc_entropy_buf[2];
141 	u_int hc_active_buf;
142 	struct fast_entropy_accumulator {
143 		volatile u_int pos;
144 		uint32_t buf[RANDOM_ACCUM_MAX];
145 	} hc_entropy_fast_accumulator;
146 } harvest_context;
147 
148 #define	RANDOM_HARVEST_INIT_LOCK()	mtx_init(&harvest_context.hc_mtx, \
149 					    "entropy harvest mutex", NULL, MTX_SPIN)
150 #define	RANDOM_HARVEST_LOCK()		mtx_lock_spin(&harvest_context.hc_mtx)
151 #define	RANDOM_HARVEST_UNLOCK()		mtx_unlock_spin(&harvest_context.hc_mtx)
152 
153 static struct kproc_desc random_proc_kp = {
154 	"rand_harvestq",
155 	random_kthread,
156 	&harvest_context.hc_kthread_proc,
157 };
158 
159 /* Pass the given event straight through to Fortuna/Whatever. */
160 static __inline void
random_harvestq_fast_process_event(struct harvest_event * event)161 random_harvestq_fast_process_event(struct harvest_event *event)
162 {
163 	p_random_alg_context->ra_event_processor(event);
164 	explicit_bzero(event, sizeof(*event));
165 }
166 
167 static void
random_kthread(void)168 random_kthread(void)
169 {
170 	struct harvest_context *hc;
171 
172 	hc = &harvest_context;
173 	for (random_kthread_control = 1; random_kthread_control;) {
174 		struct entropy_buffer *buf;
175 		u_int entries;
176 
177 		/* Deal with queued events. */
178 		RANDOM_HARVEST_LOCK();
179 		buf = &hc->hc_entropy_buf[hc->hc_active_buf];
180 		entries = buf->pos;
181 		buf->pos = 0;
182 		hc->hc_active_buf = (hc->hc_active_buf + 1) %
183 		    nitems(hc->hc_entropy_buf);
184 		RANDOM_HARVEST_UNLOCK();
185 		for (u_int i = 0; i < entries; i++)
186 			random_harvestq_fast_process_event(&buf->ring[i]);
187 
188 		/* Poll sources of noise. */
189 		random_sources_feed();
190 
191 		/* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */
192 		for (u_int i = 0; i < RANDOM_ACCUM_MAX; i++) {
193 			if (hc->hc_entropy_fast_accumulator.buf[i]) {
194 				random_harvest_direct(&hc->hc_entropy_fast_accumulator.buf[i],
195 				    sizeof(hc->hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA);
196 				hc->hc_entropy_fast_accumulator.buf[i] = 0;
197 			}
198 		}
199 		/* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */
200 		tsleep_sbt(&hc->hc_kthread_proc, 0, "-",
201 		    SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1));
202 	}
203 	random_kthread_control = -1;
204 	wakeup(&hc->hc_kthread_proc);
205 	kproc_exit(0);
206 	/* NOTREACHED */
207 }
208 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start,
209     &random_proc_kp);
210 _Static_assert(SI_SUB_KICK_SCHEDULER > SI_SUB_RANDOM,
211     "random kthread starting before subsystem initialization");
212 
213 static void
rs_epoch_init(void * dummy __unused)214 rs_epoch_init(void *dummy __unused)
215 {
216 	rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT);
217 	epoch_inited = true;
218 }
219 SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL);
220 
221 /*
222  * Run through all fast sources reading entropy for the given
223  * number of rounds, which should be a multiple of the number
224  * of entropy accumulation pools in use; it is 32 for Fortuna.
225  */
226 static void
random_sources_feed(void)227 random_sources_feed(void)
228 {
229 	uint32_t entropy[HARVESTSIZE];
230 	struct epoch_tracker et;
231 	struct random_sources *rrs;
232 	u_int i, n, npools;
233 	bool rse_warm;
234 
235 	rse_warm = epoch_inited;
236 
237 	/*
238 	 * Evenly-ish distribute pool population across the second based on how
239 	 * frequently random_kthread iterates.
240 	 *
241 	 * For Fortuna, the math currently works out as such:
242 	 *
243 	 * 64 bits * 4 pools = 256 bits per iteration
244 	 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s
245 	 *
246 	 */
247 	npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ);
248 
249 	/*-
250 	 * If we're not seeded yet, attempt to perform a "full seed", filling
251 	 * all of the PRNG's pools with entropy; if there is enough entropy
252 	 * available from "fast" entropy sources this will allow us to finish
253 	 * seeding and unblock the boot process immediately rather than being
254 	 * stuck for a few seconds with random_kthread gradually collecting a
255 	 * small chunk of entropy every 1 / RANDOM_KTHREAD_HZ seconds.
256 	 *
257 	 * We collect RANDOM_FORTUNA_DEFPOOLSIZE bytes per pool, i.e. enough
258 	 * to fill Fortuna's pools in the default configuration.  With another
259 	 * PRNG or smaller pools for Fortuna, we might collect more entropy
260 	 * than needed to fill the pools, but this is harmless; alternatively,
261 	 * a different PRNG, larger pools, or fast entropy sources which are
262 	 * not able to provide as much entropy as we request may result in the
263 	 * not being fully seeded (and thus remaining blocked) but in that
264 	 * case we will return here after 1 / RANDOM_KTHREAD_HZ seconds and
265 	 * try again for a large amount of entropy.
266 	 */
267 	if (!p_random_alg_context->ra_seeded())
268 		npools = howmany(p_random_alg_context->ra_poolcount *
269 		    RANDOM_FORTUNA_DEFPOOLSIZE, sizeof(entropy));
270 
271 	/*
272 	 * Step over all of live entropy sources, and feed their output
273 	 * to the system-wide RNG.
274 	 */
275 	if (rse_warm)
276 		epoch_enter_preempt(rs_epoch, &et);
277 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
278 		for (i = 0; i < npools; i++) {
279 			n = rrs->rrs_source->rs_read(entropy, sizeof(entropy));
280 			KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy)));
281 			/*
282 			 * Sometimes the HW entropy source doesn't have anything
283 			 * ready for us.  This isn't necessarily untrustworthy.
284 			 * We don't perform any other verification of an entropy
285 			 * source (i.e., length is allowed to be anywhere from 1
286 			 * to sizeof(entropy), quality is unchecked, etc), so
287 			 * don't balk verbosely at slow random sources either.
288 			 * There are reports that RDSEED on x86 metal falls
289 			 * behind the rate at which we query it, for example.
290 			 * But it's still a better entropy source than RDRAND.
291 			 */
292 			if (n == 0)
293 				continue;
294 			random_harvest_direct(entropy, n, rrs->rrs_source->rs_source);
295 		}
296 	}
297 	if (rse_warm)
298 		epoch_exit_preempt(rs_epoch, &et);
299 	explicit_bzero(entropy, sizeof(entropy));
300 }
301 
302 static int
random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS)303 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS)
304 {
305 	static const u_int user_immutable_mask =
306 	    (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) |
307 	    _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF;
308 
309 	int error;
310 	u_int value, orig_value;
311 
312 	orig_value = value = hc_source_mask;
313 	error = sysctl_handle_int(oidp, &value, 0, req);
314 	if (error != 0 || req->newptr == NULL)
315 		return (error);
316 
317 	if (flsl(value) > ENTROPYSOURCE)
318 		return (EINVAL);
319 
320 	/*
321 	 * Disallow userspace modification of pure entropy sources.
322 	 */
323 	hc_source_mask = (value & ~user_immutable_mask) |
324 	    (orig_value & user_immutable_mask);
325 	return (0);
326 }
327 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask,
328     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
329     random_check_uint_harvestmask, "IU",
330     "Entropy harvesting mask");
331 
332 static int
random_print_harvestmask(SYSCTL_HANDLER_ARGS)333 random_print_harvestmask(SYSCTL_HANDLER_ARGS)
334 {
335 	struct sbuf sbuf;
336 	int error, i;
337 
338 	error = sysctl_wire_old_buffer(req, 0);
339 	if (error == 0) {
340 		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
341 		for (i = ENTROPYSOURCE - 1; i >= 0; i--)
342 			sbuf_cat(&sbuf, (hc_source_mask & (1 << i)) ? "1" : "0");
343 		error = sbuf_finish(&sbuf);
344 		sbuf_delete(&sbuf);
345 	}
346 	return (error);
347 }
348 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin,
349     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
350     random_print_harvestmask, "A",
351     "Entropy harvesting mask (printable)");
352 
353 static const char *random_source_descr[ENTROPYSOURCE] = {
354 	[RANDOM_CACHED] = "CACHED",
355 	[RANDOM_ATTACH] = "ATTACH",
356 	[RANDOM_KEYBOARD] = "KEYBOARD",
357 	[RANDOM_MOUSE] = "MOUSE",
358 	[RANDOM_NET_TUN] = "NET_TUN",
359 	[RANDOM_NET_ETHER] = "NET_ETHER",
360 	[RANDOM_NET_NG] = "NET_NG",
361 	[RANDOM_INTERRUPT] = "INTERRUPT",
362 	[RANDOM_SWI] = "SWI",
363 	[RANDOM_FS_ATIME] = "FS_ATIME",
364 	[RANDOM_UMA] = "UMA",
365 	[RANDOM_CALLOUT] = "CALLOUT", /* ENVIRONMENTAL_END */
366 	[RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */
367 	[RANDOM_PURE_SAFE] = "PURE_SAFE",
368 	[RANDOM_PURE_GLXSB] = "PURE_GLXSB",
369 	[RANDOM_PURE_HIFN] = "PURE_HIFN",
370 	[RANDOM_PURE_RDRAND] = "PURE_RDRAND",
371 	[RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH",
372 	[RANDOM_PURE_RNDTEST] = "PURE_RNDTEST",
373 	[RANDOM_PURE_VIRTIO] = "PURE_VIRTIO",
374 	[RANDOM_PURE_BROADCOM] = "PURE_BROADCOM",
375 	[RANDOM_PURE_CCP] = "PURE_CCP",
376 	[RANDOM_PURE_DARN] = "PURE_DARN",
377 	[RANDOM_PURE_TPM] = "PURE_TPM",
378 	[RANDOM_PURE_VMGENID] = "PURE_VMGENID",
379 	[RANDOM_PURE_QUALCOMM] = "PURE_QUALCOMM",
380 	[RANDOM_PURE_ARMV8] = "PURE_ARMV8",
381 	[RANDOM_PURE_ARM_TRNG] = "PURE_ARM_TRNG",
382 	/* "ENTROPYSOURCE" */
383 };
384 
385 static int
random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS)386 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS)
387 {
388 	struct sbuf sbuf;
389 	int error, i;
390 	bool first;
391 
392 	first = true;
393 	error = sysctl_wire_old_buffer(req, 0);
394 	if (error == 0) {
395 		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
396 		for (i = ENTROPYSOURCE - 1; i >= 0; i--) {
397 			if (i >= RANDOM_PURE_START &&
398 			    (hc_source_mask & (1 << i)) == 0)
399 				continue;
400 			if (!first)
401 				sbuf_cat(&sbuf, ",");
402 			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "[" : "");
403 			sbuf_cat(&sbuf, random_source_descr[i]);
404 			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "]" : "");
405 			first = false;
406 		}
407 		error = sbuf_finish(&sbuf);
408 		sbuf_delete(&sbuf);
409 	}
410 	return (error);
411 }
412 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic,
413     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
414     random_print_harvestmask_symbolic, "A",
415     "Entropy harvesting mask (symbolic)");
416 
417 static void
random_harvestq_init(void * unused __unused)418 random_harvestq_init(void *unused __unused)
419 {
420 	static const u_int almost_everything_mask =
421 	    (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) &
422 	    ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF);
423 
424 	hc_source_mask = almost_everything_mask;
425 	RANDOM_HARVEST_INIT_LOCK();
426 	harvest_context.hc_active_buf = 0;
427 }
428 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL);
429 
430 /*
431  * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the
432  * underlying algorithm.  Returns number of bytes actually fed into underlying
433  * algorithm.
434  */
435 static size_t
random_early_prime(char * entropy,size_t len)436 random_early_prime(char *entropy, size_t len)
437 {
438 	struct harvest_event event;
439 	size_t i;
440 
441 	len = rounddown(len, sizeof(event.he_entropy));
442 	if (len == 0)
443 		return (0);
444 
445 	for (i = 0; i < len; i += sizeof(event.he_entropy)) {
446 		event.he_somecounter = random_get_cyclecount();
447 		event.he_size = sizeof(event.he_entropy);
448 		event.he_source = RANDOM_CACHED;
449 		event.he_destination =
450 		    harvest_context.hc_destination[RANDOM_CACHED]++;
451 		memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy));
452 		random_harvestq_fast_process_event(&event);
453 	}
454 	explicit_bzero(entropy, len);
455 	return (len);
456 }
457 
458 /*
459  * Subroutine to search for known loader-loaded files in memory and feed them
460  * into the underlying algorithm early in boot.  Returns the number of bytes
461  * loaded (zero if none were loaded).
462  */
463 static size_t
random_prime_loader_file(const char * type)464 random_prime_loader_file(const char *type)
465 {
466 	uint8_t *keyfile, *data;
467 	size_t size;
468 
469 	keyfile = preload_search_by_type(type);
470 	if (keyfile == NULL)
471 		return (0);
472 
473 	data = preload_fetch_addr(keyfile);
474 	size = preload_fetch_size(keyfile);
475 	if (data == NULL)
476 		return (0);
477 
478 	return (random_early_prime(data, size));
479 }
480 
481 /*
482  * This is used to prime the RNG by grabbing any early random stuff
483  * known to the kernel, and inserting it directly into the hashing
484  * module, currently Fortuna.
485  */
486 static void
random_harvestq_prime(void * unused __unused)487 random_harvestq_prime(void *unused __unused)
488 {
489 	size_t size;
490 
491 	/*
492 	 * Get entropy that may have been preloaded by loader(8)
493 	 * and use it to pre-charge the entropy harvest queue.
494 	 */
495 	size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE);
496 	if (bootverbose) {
497 		if (size > 0)
498 			printf("random: read %zu bytes from preloaded cache\n",
499 			    size);
500 		else
501 			printf("random: no preloaded entropy cache\n");
502 	}
503 	size = random_prime_loader_file(RANDOM_PLATFORM_BOOT_ENTROPY_MODULE);
504 	if (bootverbose) {
505 		if (size > 0)
506 			printf("random: read %zu bytes from platform bootloader\n",
507 			    size);
508 		else
509 			printf("random: no platform bootloader entropy\n");
510 	}
511 }
512 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL);
513 
514 static void
random_harvestq_deinit(void * unused __unused)515 random_harvestq_deinit(void *unused __unused)
516 {
517 
518 	/* Command the hash/reseed thread to end and wait for it to finish */
519 	random_kthread_control = 0;
520 	while (random_kthread_control >= 0)
521 		tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5);
522 }
523 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL);
524 
525 /*-
526  * Entropy harvesting queue routine.
527  *
528  * This is supposed to be fast; do not do anything slow in here!
529  * It is also illegal (and morally reprehensible) to insert any
530  * high-rate data here. "High-rate" is defined as a data source
531  * that is likely to fill up the buffer in much less than 100ms.
532  * This includes the "always-on" sources like the Intel "rdrand"
533  * or the VIA Nehamiah "xstore" sources.
534  */
535 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle
536  * counters are built in, but on older hardware it will do a real time clock
537  * read which can be quite expensive.
538  */
539 void
random_harvest_queue_(const void * entropy,u_int size,enum random_entropy_source origin)540 random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin)
541 {
542 	struct harvest_context *hc;
543 	struct entropy_buffer *buf;
544 	struct harvest_event *event;
545 
546 	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE,
547 	    ("%s: origin %d invalid", __func__, origin));
548 
549 	hc = &harvest_context;
550 	RANDOM_HARVEST_LOCK();
551 	buf = &hc->hc_entropy_buf[hc->hc_active_buf];
552 	if (buf->pos < RANDOM_RING_MAX) {
553 		event = &buf->ring[buf->pos++];
554 		event->he_somecounter = random_get_cyclecount();
555 		event->he_source = origin;
556 		event->he_destination = hc->hc_destination[origin]++;
557 		if (size <= sizeof(event->he_entropy)) {
558 			event->he_size = size;
559 			memcpy(event->he_entropy, entropy, size);
560 		} else {
561 			/* Big event, so squash it */
562 			event->he_size = sizeof(event->he_entropy[0]);
563 			event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event);
564 		}
565 	}
566 	RANDOM_HARVEST_UNLOCK();
567 }
568 
569 /*-
570  * Entropy harvesting fast routine.
571  *
572  * This is supposed to be very fast; do not do anything slow in here!
573  * This is the right place for high-rate harvested data.
574  */
575 void
random_harvest_fast_(const void * entropy,u_int size)576 random_harvest_fast_(const void *entropy, u_int size)
577 {
578 	u_int pos;
579 
580 	pos = harvest_context.hc_entropy_fast_accumulator.pos;
581 	harvest_context.hc_entropy_fast_accumulator.buf[pos] ^=
582 	    jenkins_hash(entropy, size, random_get_cyclecount());
583 	harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX;
584 }
585 
586 /*-
587  * Entropy harvesting direct routine.
588  *
589  * This is not supposed to be fast, but will only be used during
590  * (e.g.) booting when initial entropy is being gathered.
591  */
592 void
random_harvest_direct_(const void * entropy,u_int size,enum random_entropy_source origin)593 random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin)
594 {
595 	struct harvest_event event;
596 
597 	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
598 	size = MIN(size, sizeof(event.he_entropy));
599 	event.he_somecounter = random_get_cyclecount();
600 	event.he_size = size;
601 	event.he_source = origin;
602 	event.he_destination = harvest_context.hc_destination[origin]++;
603 	memcpy(event.he_entropy, entropy, size);
604 	random_harvestq_fast_process_event(&event);
605 }
606 
607 void
random_harvest_register_source(enum random_entropy_source source)608 random_harvest_register_source(enum random_entropy_source source)
609 {
610 
611 	hc_source_mask |= (1 << source);
612 }
613 
614 void
random_harvest_deregister_source(enum random_entropy_source source)615 random_harvest_deregister_source(enum random_entropy_source source)
616 {
617 
618 	hc_source_mask &= ~(1 << source);
619 }
620 
621 void
random_source_register(struct random_source * rsource)622 random_source_register(struct random_source *rsource)
623 {
624 	struct random_sources *rrs;
625 
626 	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
627 
628 	rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK);
629 	rrs->rrs_source = rsource;
630 
631 	random_harvest_register_source(rsource->rs_source);
632 
633 	printf("random: registering fast source %s\n", rsource->rs_ident);
634 
635 	RANDOM_HARVEST_LOCK();
636 	CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries);
637 	RANDOM_HARVEST_UNLOCK();
638 }
639 
640 void
random_source_deregister(struct random_source * rsource)641 random_source_deregister(struct random_source *rsource)
642 {
643 	struct random_sources *rrs = NULL;
644 
645 	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
646 
647 	random_harvest_deregister_source(rsource->rs_source);
648 
649 	RANDOM_HARVEST_LOCK();
650 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries)
651 		if (rrs->rrs_source == rsource) {
652 			CK_LIST_REMOVE(rrs, rrs_entries);
653 			break;
654 		}
655 	RANDOM_HARVEST_UNLOCK();
656 
657 	if (rrs != NULL && epoch_inited)
658 		epoch_wait_preempt(rs_epoch);
659 	free(rrs, M_ENTROPY);
660 }
661 
662 static int
random_source_handler(SYSCTL_HANDLER_ARGS)663 random_source_handler(SYSCTL_HANDLER_ARGS)
664 {
665 	struct epoch_tracker et;
666 	struct random_sources *rrs;
667 	struct sbuf sbuf;
668 	int error, count;
669 
670 	error = sysctl_wire_old_buffer(req, 0);
671 	if (error != 0)
672 		return (error);
673 
674 	sbuf_new_for_sysctl(&sbuf, NULL, 64, req);
675 	count = 0;
676 	epoch_enter_preempt(rs_epoch, &et);
677 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
678 		sbuf_cat(&sbuf, (count++ ? ",'" : "'"));
679 		sbuf_cat(&sbuf, rrs->rrs_source->rs_ident);
680 		sbuf_cat(&sbuf, "'");
681 	}
682 	epoch_exit_preempt(rs_epoch, &et);
683 	error = sbuf_finish(&sbuf);
684 	sbuf_delete(&sbuf);
685 	return (error);
686 }
687 SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
688 	    NULL, 0, random_source_handler, "A",
689 	    "List of active fast entropy sources.");
690 
691 MODULE_VERSION(random_harvestq, 1);
692