xref: /linux/tools/include/uapi/linux/perf_event.h (revision a3d14d1602ca11429d242d230c31af8f822f614f)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * Performance events:
4  *
5  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8  *
9  * Data type definitions, declarations, prototypes.
10  *
11  *    Started by: Thomas Gleixner and Ingo Molnar
12  *
13  * For licencing details see kernel-base/COPYING
14  */
15 #ifndef _UAPI_LINUX_PERF_EVENT_H
16 #define _UAPI_LINUX_PERF_EVENT_H
17 
18 #include <linux/types.h>
19 #include <linux/ioctl.h>
20 #include <asm/byteorder.h>
21 
22 /*
23  * User-space ABI bits:
24  */
25 
26 /*
27  * attr.type
28  */
29 enum perf_type_id {
30 	PERF_TYPE_HARDWARE			= 0,
31 	PERF_TYPE_SOFTWARE			= 1,
32 	PERF_TYPE_TRACEPOINT			= 2,
33 	PERF_TYPE_HW_CACHE			= 3,
34 	PERF_TYPE_RAW				= 4,
35 	PERF_TYPE_BREAKPOINT			= 5,
36 
37 	PERF_TYPE_MAX,				/* non-ABI */
38 };
39 
40 /*
41  * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42  *
43  * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
44  *					AA: hardware event ID
45  *					EEEEEEEE: PMU type ID
46  *
47  * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
48  *					BB: hardware cache ID
49  *					CC: hardware cache op ID
50  *					DD: hardware cache op result ID
51  *					EEEEEEEE: PMU type ID
52  *
53  * If the PMU type ID is 0, PERF_TYPE_RAW will be applied.
54  */
55 #define PERF_PMU_TYPE_SHIFT			32
56 #define PERF_HW_EVENT_MASK			0xffffffff
57 
58 /*
59  * Generalized performance event event_id types, used by the
60  * attr.event_id parameter of the sys_perf_event_open()
61  * syscall:
62  */
63 enum perf_hw_id {
64 	/*
65 	 * Common hardware events, generalized by the kernel:
66 	 */
67 	PERF_COUNT_HW_CPU_CYCLES		= 0,
68 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
69 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
70 	PERF_COUNT_HW_CACHE_MISSES		= 3,
71 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
72 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
73 	PERF_COUNT_HW_BUS_CYCLES		= 6,
74 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
75 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
76 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
77 
78 	PERF_COUNT_HW_MAX,			/* non-ABI */
79 };
80 
81 /*
82  * Generalized hardware cache events:
83  *
84  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
85  *       { read, write, prefetch } x
86  *       { accesses, misses }
87  */
88 enum perf_hw_cache_id {
89 	PERF_COUNT_HW_CACHE_L1D			= 0,
90 	PERF_COUNT_HW_CACHE_L1I			= 1,
91 	PERF_COUNT_HW_CACHE_LL			= 2,
92 	PERF_COUNT_HW_CACHE_DTLB		= 3,
93 	PERF_COUNT_HW_CACHE_ITLB		= 4,
94 	PERF_COUNT_HW_CACHE_BPU			= 5,
95 	PERF_COUNT_HW_CACHE_NODE		= 6,
96 
97 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
98 };
99 
100 enum perf_hw_cache_op_id {
101 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
102 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
103 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
104 
105 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
106 };
107 
108 enum perf_hw_cache_op_result_id {
109 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
110 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
111 
112 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
113 };
114 
115 /*
116  * Special "software" events provided by the kernel, even if the hardware
117  * does not support performance events. These events measure various
118  * physical and SW events of the kernel (and allow the profiling of them as
119  * well):
120  */
121 enum perf_sw_ids {
122 	PERF_COUNT_SW_CPU_CLOCK			= 0,
123 	PERF_COUNT_SW_TASK_CLOCK		= 1,
124 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
125 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
126 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
127 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
128 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
129 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
130 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
131 	PERF_COUNT_SW_DUMMY			= 9,
132 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
133 	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
134 
135 	PERF_COUNT_SW_MAX,			/* non-ABI */
136 };
137 
138 /*
139  * Bits that can be set in attr.sample_type to request information
140  * in the overflow packets.
141  */
142 enum perf_event_sample_format {
143 	PERF_SAMPLE_IP				= 1U << 0,
144 	PERF_SAMPLE_TID				= 1U << 1,
145 	PERF_SAMPLE_TIME			= 1U << 2,
146 	PERF_SAMPLE_ADDR			= 1U << 3,
147 	PERF_SAMPLE_READ			= 1U << 4,
148 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
149 	PERF_SAMPLE_ID				= 1U << 6,
150 	PERF_SAMPLE_CPU				= 1U << 7,
151 	PERF_SAMPLE_PERIOD			= 1U << 8,
152 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
153 	PERF_SAMPLE_RAW				= 1U << 10,
154 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
155 	PERF_SAMPLE_REGS_USER			= 1U << 12,
156 	PERF_SAMPLE_STACK_USER			= 1U << 13,
157 	PERF_SAMPLE_WEIGHT			= 1U << 14,
158 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
159 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
160 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
161 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
162 	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
163 	PERF_SAMPLE_AUX				= 1U << 20,
164 	PERF_SAMPLE_CGROUP			= 1U << 21,
165 	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
166 	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
167 	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
168 
169 	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
170 };
171 
172 #define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
173 
174 /*
175  * Values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set.
176  *
177  * If the user does not pass priv level information via branch_sample_type,
178  * the kernel uses the event's priv level. Branch and event priv levels do
179  * not have to match. Branch priv level is checked for permissions.
180  *
181  * The branch types can be combined, however BRANCH_ANY covers all types
182  * of branches and therefore it supersedes all the other types.
183  */
184 enum perf_branch_sample_type_shift {
185 	PERF_SAMPLE_BRANCH_USER_SHIFT		=  0, /* user branches */
186 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		=  1, /* kernel branches */
187 	PERF_SAMPLE_BRANCH_HV_SHIFT		=  2, /* hypervisor branches */
188 
189 	PERF_SAMPLE_BRANCH_ANY_SHIFT		=  3, /* any branch types */
190 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	=  4, /* any call branch */
191 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	=  5, /* any return branch */
192 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	=  6, /* indirect calls */
193 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	=  7, /* transaction aborts */
194 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		=  8, /* in transaction */
195 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		=  9, /* not in transaction */
196 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
197 
198 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* CALL/RET stack */
199 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
200 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
201 
202 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
203 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
204 
205 	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
206 
207 	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
208 
209 	PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT	= 18, /* save privilege mode */
210 
211 	PERF_SAMPLE_BRANCH_COUNTERS_SHIFT	= 19, /* save occurrences of events on a branch */
212 
213 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
214 };
215 
216 enum perf_branch_sample_type {
217 	PERF_SAMPLE_BRANCH_USER			= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
218 	PERF_SAMPLE_BRANCH_KERNEL		= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
219 	PERF_SAMPLE_BRANCH_HV			= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
220 
221 	PERF_SAMPLE_BRANCH_ANY			= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
222 	PERF_SAMPLE_BRANCH_ANY_CALL		= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
223 	PERF_SAMPLE_BRANCH_ANY_RETURN		= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
224 	PERF_SAMPLE_BRANCH_IND_CALL		= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
225 	PERF_SAMPLE_BRANCH_ABORT_TX		= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
226 	PERF_SAMPLE_BRANCH_IN_TX		= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
227 	PERF_SAMPLE_BRANCH_NO_TX		= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
228 	PERF_SAMPLE_BRANCH_COND			= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
229 
230 	PERF_SAMPLE_BRANCH_CALL_STACK		= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
231 	PERF_SAMPLE_BRANCH_IND_JUMP		= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
232 	PERF_SAMPLE_BRANCH_CALL			= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
233 
234 	PERF_SAMPLE_BRANCH_NO_FLAGS		= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
235 	PERF_SAMPLE_BRANCH_NO_CYCLES		= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
236 
237 	PERF_SAMPLE_BRANCH_TYPE_SAVE		= 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
238 
239 	PERF_SAMPLE_BRANCH_HW_INDEX		= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
240 
241 	PERF_SAMPLE_BRANCH_PRIV_SAVE		= 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
242 
243 	PERF_SAMPLE_BRANCH_COUNTERS		= 1U << PERF_SAMPLE_BRANCH_COUNTERS_SHIFT,
244 
245 	PERF_SAMPLE_BRANCH_MAX			= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
246 };
247 
248 /*
249  * Common control flow change classifications:
250  */
251 enum {
252 	PERF_BR_UNKNOWN				=  0,	/* Unknown */
253 	PERF_BR_COND				=  1,	/* Conditional */
254 	PERF_BR_UNCOND				=  2,	/* Unconditional  */
255 	PERF_BR_IND				=  3,	/* Indirect */
256 	PERF_BR_CALL				=  4,	/* Function call */
257 	PERF_BR_IND_CALL			=  5,	/* Indirect function call */
258 	PERF_BR_RET				=  6,	/* Function return */
259 	PERF_BR_SYSCALL				=  7,	/* Syscall */
260 	PERF_BR_SYSRET				=  8,	/* Syscall return */
261 	PERF_BR_COND_CALL			=  9,	/* Conditional function call */
262 	PERF_BR_COND_RET			= 10,	/* Conditional function return */
263 	PERF_BR_ERET				= 11,	/* Exception return */
264 	PERF_BR_IRQ				= 12,	/* IRQ */
265 	PERF_BR_SERROR				= 13,	/* System error */
266 	PERF_BR_NO_TX				= 14,	/* Not in transaction */
267 	PERF_BR_EXTEND_ABI			= 15,	/* Extend ABI */
268 	PERF_BR_MAX,
269 };
270 
271 /*
272  * Common branch speculation outcome classifications:
273  */
274 enum {
275 	PERF_BR_SPEC_NA				= 0,	/* Not available */
276 	PERF_BR_SPEC_WRONG_PATH			= 1,	/* Speculative but on wrong path */
277 	PERF_BR_NON_SPEC_CORRECT_PATH		= 2,	/* Non-speculative but on correct path */
278 	PERF_BR_SPEC_CORRECT_PATH		= 3,	/* Speculative and on correct path */
279 	PERF_BR_SPEC_MAX,
280 };
281 
282 enum {
283 	PERF_BR_NEW_FAULT_ALGN			= 0,    /* Alignment fault */
284 	PERF_BR_NEW_FAULT_DATA			= 1,    /* Data fault */
285 	PERF_BR_NEW_FAULT_INST			= 2,    /* Inst fault */
286 	PERF_BR_NEW_ARCH_1			= 3,    /* Architecture specific */
287 	PERF_BR_NEW_ARCH_2			= 4,    /* Architecture specific */
288 	PERF_BR_NEW_ARCH_3			= 5,    /* Architecture specific */
289 	PERF_BR_NEW_ARCH_4			= 6,    /* Architecture specific */
290 	PERF_BR_NEW_ARCH_5			= 7,    /* Architecture specific */
291 	PERF_BR_NEW_MAX,
292 };
293 
294 enum {
295 	PERF_BR_PRIV_UNKNOWN			= 0,
296 	PERF_BR_PRIV_USER			= 1,
297 	PERF_BR_PRIV_KERNEL			= 2,
298 	PERF_BR_PRIV_HV				= 3,
299 };
300 
301 #define PERF_BR_ARM64_FIQ			PERF_BR_NEW_ARCH_1
302 #define PERF_BR_ARM64_DEBUG_HALT		PERF_BR_NEW_ARCH_2
303 #define PERF_BR_ARM64_DEBUG_EXIT		PERF_BR_NEW_ARCH_3
304 #define PERF_BR_ARM64_DEBUG_INST		PERF_BR_NEW_ARCH_4
305 #define PERF_BR_ARM64_DEBUG_DATA		PERF_BR_NEW_ARCH_5
306 
307 #define PERF_SAMPLE_BRANCH_PLM_ALL \
308 	(PERF_SAMPLE_BRANCH_USER|\
309 	 PERF_SAMPLE_BRANCH_KERNEL|\
310 	 PERF_SAMPLE_BRANCH_HV)
311 
312 /*
313  * Values to determine ABI of the registers dump.
314  */
315 enum perf_sample_regs_abi {
316 	PERF_SAMPLE_REGS_ABI_NONE		= 0,
317 	PERF_SAMPLE_REGS_ABI_32			= 1,
318 	PERF_SAMPLE_REGS_ABI_64			= 2,
319 };
320 
321 /*
322  * Values for the memory transaction event qualifier, mostly for
323  * abort events. Multiple bits can be set.
324  */
325 enum {
326 	PERF_TXN_ELISION			= (1 << 0), /* From elision */
327 	PERF_TXN_TRANSACTION			= (1 << 1), /* From transaction */
328 	PERF_TXN_SYNC				= (1 << 2), /* Instruction is related */
329 	PERF_TXN_ASYNC				= (1 << 3), /* Instruction is not related */
330 	PERF_TXN_RETRY				= (1 << 4), /* Retry possible */
331 	PERF_TXN_CONFLICT			= (1 << 5), /* Conflict abort */
332 	PERF_TXN_CAPACITY_WRITE			= (1 << 6), /* Capacity write abort */
333 	PERF_TXN_CAPACITY_READ			= (1 << 7), /* Capacity read abort */
334 
335 	PERF_TXN_MAX				= (1 << 8), /* non-ABI */
336 
337 	/* Bits 32..63 are reserved for the abort code */
338 
339 	PERF_TXN_ABORT_MASK			= (0xffffffffULL << 32),
340 	PERF_TXN_ABORT_SHIFT			= 32,
341 };
342 
343 /*
344  * The format of the data returned by read() on a perf event fd,
345  * as specified by attr.read_format:
346  *
347  * struct read_format {
348  *	{ u64		value;
349  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
350  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
351  *	  { u64		id;           } && PERF_FORMAT_ID
352  *	  { u64		lost;         } && PERF_FORMAT_LOST
353  *	} && !PERF_FORMAT_GROUP
354  *
355  *	{ u64		nr;
356  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
357  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
358  *	  { u64		value;
359  *	    { u64	id;           } && PERF_FORMAT_ID
360  *	    { u64	lost;         } && PERF_FORMAT_LOST
361  *	  }		cntr[nr];
362  *	} && PERF_FORMAT_GROUP
363  * };
364  */
365 enum perf_event_read_format {
366 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
367 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
368 	PERF_FORMAT_ID				= 1U << 2,
369 	PERF_FORMAT_GROUP			= 1U << 3,
370 	PERF_FORMAT_LOST			= 1U << 4,
371 
372 	PERF_FORMAT_MAX = 1U << 5,		/* non-ABI */
373 };
374 
375 #define PERF_ATTR_SIZE_VER0			 64	/* Size of first published 'struct perf_event_attr' */
376 #define PERF_ATTR_SIZE_VER1			 72	/* Add: config2 */
377 #define PERF_ATTR_SIZE_VER2			 80	/* Add: branch_sample_type */
378 #define PERF_ATTR_SIZE_VER3			 96	/* Add: sample_regs_user */
379 							/* Add: sample_stack_user */
380 #define PERF_ATTR_SIZE_VER4			104	/* Add: sample_regs_intr */
381 #define PERF_ATTR_SIZE_VER5			112	/* Add: aux_watermark */
382 #define PERF_ATTR_SIZE_VER6			120	/* Add: aux_sample_size */
383 #define PERF_ATTR_SIZE_VER7			128	/* Add: sig_data */
384 #define PERF_ATTR_SIZE_VER8			136	/* Add: config3 */
385 
386 /*
387  * 'struct perf_event_attr' contains various attributes that define
388  * a performance event - most of them hardware related configuration
389  * details, but also a lot of behavioral switches and values implemented
390  * by the kernel.
391  */
392 struct perf_event_attr {
393 
394 	/*
395 	 * Major type: hardware/software/tracepoint/etc.
396 	 */
397 	__u32			type;
398 
399 	/*
400 	 * Size of the attr structure, for forward/backwards compatibility.
401 	 */
402 	__u32			size;
403 
404 	/*
405 	 * Type specific configuration information.
406 	 */
407 	__u64			config;
408 
409 	union {
410 		__u64		sample_period;
411 		__u64		sample_freq;
412 	};
413 
414 	__u64			sample_type;
415 	__u64			read_format;
416 
417 	__u64			disabled       :  1, /* off by default        */
418 				inherit	       :  1, /* children inherit it   */
419 				pinned	       :  1, /* must always be on PMU */
420 				exclusive      :  1, /* only group on PMU     */
421 				exclude_user   :  1, /* don't count user      */
422 				exclude_kernel :  1, /* ditto kernel          */
423 				exclude_hv     :  1, /* ditto hypervisor      */
424 				exclude_idle   :  1, /* don't count when idle */
425 				mmap           :  1, /* include mmap data     */
426 				comm	       :  1, /* include comm data     */
427 				freq           :  1, /* use freq, not period  */
428 				inherit_stat   :  1, /* per task counts       */
429 				enable_on_exec :  1, /* next exec enables     */
430 				task           :  1, /* trace fork/exit       */
431 				watermark      :  1, /* wakeup_watermark      */
432 				/*
433 				 * precise_ip:
434 				 *
435 				 *  0 - SAMPLE_IP can have arbitrary skid
436 				 *  1 - SAMPLE_IP must have constant skid
437 				 *  2 - SAMPLE_IP requested to have 0 skid
438 				 *  3 - SAMPLE_IP must have 0 skid
439 				 *
440 				 *  See also PERF_RECORD_MISC_EXACT_IP
441 				 */
442 				precise_ip     :  2, /* skid constraint       */
443 				mmap_data      :  1, /* non-exec mmap data    */
444 				sample_id_all  :  1, /* sample_type all events */
445 
446 				exclude_host   :  1, /* don't count in host   */
447 				exclude_guest  :  1, /* don't count in guest  */
448 
449 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
450 				exclude_callchain_user   : 1, /* exclude user callchains */
451 				mmap2          :  1, /* include mmap with inode data     */
452 				comm_exec      :  1, /* flag comm events that are due to an exec */
453 				use_clockid    :  1, /* use @clockid for time fields */
454 				context_switch :  1, /* context switch data */
455 				write_backward :  1, /* write ring buffer from end to beginning */
456 				namespaces     :  1, /* include namespaces data */
457 				ksymbol        :  1, /* include ksymbol events */
458 				bpf_event      :  1, /* include BPF events */
459 				aux_output     :  1, /* generate AUX records instead of events */
460 				cgroup         :  1, /* include cgroup events */
461 				text_poke      :  1, /* include text poke events */
462 				build_id       :  1, /* use build ID in mmap2 events */
463 				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
464 				remove_on_exec :  1, /* event is removed from task on exec */
465 				sigtrap        :  1, /* send synchronous SIGTRAP on event */
466 				__reserved_1   : 26;
467 
468 	union {
469 		__u32		wakeup_events;	  /* wake up every n events */
470 		__u32		wakeup_watermark; /* bytes before wakeup   */
471 	};
472 
473 	__u32			bp_type;
474 	union {
475 		__u64		bp_addr;
476 		__u64		kprobe_func; /* for perf_kprobe */
477 		__u64		uprobe_path; /* for perf_uprobe */
478 		__u64		config1;     /* extension of config */
479 	};
480 	union {
481 		__u64		bp_len;
482 		__u64		kprobe_addr;  /* when kprobe_func == NULL */
483 		__u64		probe_offset; /* for perf_[k,u]probe */
484 		__u64		config2;      /* extension of config1 */
485 	};
486 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
487 
488 	/*
489 	 * Defines set of user regs to dump on samples.
490 	 * See asm/perf_regs.h for details.
491 	 */
492 	__u64	sample_regs_user;
493 
494 	/*
495 	 * Defines size of the user stack to dump on samples.
496 	 */
497 	__u32	sample_stack_user;
498 
499 	__s32	clockid;
500 	/*
501 	 * Defines set of regs to dump for each sample
502 	 * state captured on:
503 	 *  - precise = 0: PMU interrupt
504 	 *  - precise > 0: sampled instruction
505 	 *
506 	 * See asm/perf_regs.h for details.
507 	 */
508 	__u64	sample_regs_intr;
509 
510 	/*
511 	 * Wakeup watermark for AUX area
512 	 */
513 	__u32	aux_watermark;
514 
515 	/*
516 	 * Max number of frame pointers in a callchain, should be
517 	 * lower than /proc/sys/kernel/perf_event_max_stack.
518 	 *
519 	 * Max number of entries of branch stack should be lower
520 	 * than the hardware limit.
521 	 */
522 	__u16	sample_max_stack;
523 
524 	__u16	__reserved_2;
525 	__u32	aux_sample_size;
526 
527 	union {
528 		__u32	aux_action;
529 		struct {
530 			__u32	aux_start_paused :  1, /* start AUX area tracing paused */
531 				aux_pause        :  1, /* on overflow, pause AUX area tracing */
532 				aux_resume       :  1, /* on overflow, resume AUX area tracing */
533 				__reserved_3     : 29;
534 		};
535 	};
536 
537 	/*
538 	 * User provided data if sigtrap=1, passed back to user via
539 	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
540 	 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
541 	 * truncated accordingly on 32 bit architectures.
542 	 */
543 	__u64	sig_data;
544 
545 	__u64	config3; /* extension of config2 */
546 };
547 
548 /*
549  * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
550  * to query BPF programs attached to the same perf tracepoint
551  * as the given perf event.
552  */
553 struct perf_event_query_bpf {
554 	/*
555 	 * The below ids array length
556 	 */
557 	__u32	ids_len;
558 	/*
559 	 * Set by the kernel to indicate the number of
560 	 * available programs
561 	 */
562 	__u32	prog_cnt;
563 	/*
564 	 * User provided buffer to store program ids
565 	 */
566 	__u32	ids[];
567 };
568 
569 /*
570  * Ioctls that can be done on a perf event fd:
571  */
572 #define PERF_EVENT_IOC_ENABLE			_IO  ('$', 0)
573 #define PERF_EVENT_IOC_DISABLE			_IO  ('$', 1)
574 #define PERF_EVENT_IOC_REFRESH			_IO  ('$', 2)
575 #define PERF_EVENT_IOC_RESET			_IO  ('$', 3)
576 #define PERF_EVENT_IOC_PERIOD			_IOW ('$', 4, __u64)
577 #define PERF_EVENT_IOC_SET_OUTPUT		_IO  ('$', 5)
578 #define PERF_EVENT_IOC_SET_FILTER		_IOW ('$', 6, char *)
579 #define PERF_EVENT_IOC_ID			_IOR ('$', 7, __u64 *)
580 #define PERF_EVENT_IOC_SET_BPF			_IOW ('$', 8, __u32)
581 #define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW ('$', 9, __u32)
582 #define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
583 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW ('$', 11, struct perf_event_attr *)
584 
585 enum perf_event_ioc_flags {
586 	PERF_IOC_FLAG_GROUP			= 1U << 0,
587 };
588 
589 /*
590  * Structure of the page that can be mapped via mmap
591  */
592 struct perf_event_mmap_page {
593 	__u32	version;		/* version number of this structure */
594 	__u32	compat_version;		/* lowest version this is compat with */
595 
596 	/*
597 	 * Bits needed to read the HW events in user-space.
598 	 *
599 	 *   u32 seq, time_mult, time_shift, index, width;
600 	 *   u64 count, enabled, running;
601 	 *   u64 cyc, time_offset;
602 	 *   s64 pmc = 0;
603 	 *
604 	 *   do {
605 	 *     seq = pc->lock;
606 	 *     barrier()
607 	 *
608 	 *     enabled = pc->time_enabled;
609 	 *     running = pc->time_running;
610 	 *
611 	 *     if (pc->cap_usr_time && enabled != running) {
612 	 *       cyc = rdtsc();
613 	 *       time_offset = pc->time_offset;
614 	 *       time_mult   = pc->time_mult;
615 	 *       time_shift  = pc->time_shift;
616 	 *     }
617 	 *
618 	 *     index = pc->index;
619 	 *     count = pc->offset;
620 	 *     if (pc->cap_user_rdpmc && index) {
621 	 *       width = pc->pmc_width;
622 	 *       pmc = rdpmc(index - 1);
623 	 *     }
624 	 *
625 	 *     barrier();
626 	 *   } while (pc->lock != seq);
627 	 *
628 	 * NOTE: for obvious reason this only works on self-monitoring
629 	 *       processes.
630 	 */
631 	__u32	lock;			/* seqlock for synchronization */
632 	__u32	index;			/* hardware event identifier */
633 	__s64	offset;			/* add to hardware event value */
634 	__u64	time_enabled;		/* time event active */
635 	__u64	time_running;		/* time event on CPU */
636 	union {
637 		__u64	capabilities;
638 		struct {
639 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
640 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
641 
642 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
643 				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
644 				cap_user_time_zero	: 1, /* The time_zero field is used */
645 				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
646 				cap_____res		: 58;
647 		};
648 	};
649 
650 	/*
651 	 * If cap_user_rdpmc this field provides the bit-width of the value
652 	 * read using the rdpmc() or equivalent instruction. This can be used
653 	 * to sign extend the result like:
654 	 *
655 	 *   pmc <<= 64 - width;
656 	 *   pmc >>= 64 - width; // signed shift right
657 	 *   count += pmc;
658 	 */
659 	__u16	pmc_width;
660 
661 	/*
662 	 * If cap_usr_time the below fields can be used to compute the time
663 	 * delta since time_enabled (in ns) using RDTSC or similar.
664 	 *
665 	 *   u64 quot, rem;
666 	 *   u64 delta;
667 	 *
668 	 *   quot = (cyc >> time_shift);
669 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
670 	 *   delta = time_offset + quot * time_mult +
671 	 *              ((rem * time_mult) >> time_shift);
672 	 *
673 	 * Where time_offset,time_mult,time_shift and cyc are read in the
674 	 * seqcount loop described above. This delta can then be added to
675 	 * enabled and possible running (if index), improving the scaling:
676 	 *
677 	 *   enabled += delta;
678 	 *   if (index)
679 	 *     running += delta;
680 	 *
681 	 *   quot = count / running;
682 	 *   rem  = count % running;
683 	 *   count = quot * enabled + (rem * enabled) / running;
684 	 */
685 	__u16	time_shift;
686 	__u32	time_mult;
687 	__u64	time_offset;
688 	/*
689 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
690 	 * from sample timestamps.
691 	 *
692 	 *   time = timestamp - time_zero;
693 	 *   quot = time / time_mult;
694 	 *   rem  = time % time_mult;
695 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
696 	 *
697 	 * And vice versa:
698 	 *
699 	 *   quot = cyc >> time_shift;
700 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
701 	 *   timestamp = time_zero + quot * time_mult +
702 	 *               ((rem * time_mult) >> time_shift);
703 	 */
704 	__u64	time_zero;
705 
706 	__u32	size;			/* Header size up to __reserved[] fields. */
707 	__u32	__reserved_1;
708 
709 	/*
710 	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
711 	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
712 	 *
713 	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
714 	 *
715 	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
716 	 *       is a correction on top of cap_usr_time, and code that doesn't
717 	 *       know about cap_usr_time_short still works under the assumption
718 	 *       the counter doesn't wrap.
719 	 */
720 	__u64	time_cycles;
721 	__u64	time_mask;
722 
723 		/*
724 		 * Hole for extension of the self monitor capabilities
725 		 */
726 
727 	__u8	__reserved[116*8];	/* align to 1k. */
728 
729 	/*
730 	 * Control data for the mmap() data buffer.
731 	 *
732 	 * User-space reading the @data_head value should issue an smp_rmb(),
733 	 * after reading this value.
734 	 *
735 	 * When the mapping is PROT_WRITE the @data_tail value should be
736 	 * written by user-space to reflect the last read data, after issuing
737 	 * an smp_mb() to separate the data read from the ->data_tail store.
738 	 * In this case the kernel will not over-write unread data.
739 	 *
740 	 * See perf_output_put_handle() for the data ordering.
741 	 *
742 	 * data_{offset,size} indicate the location and size of the perf record
743 	 * buffer within the mmapped area.
744 	 */
745 	__u64   data_head;		/* head in the data section */
746 	__u64	data_tail;		/* user-space written tail */
747 	__u64	data_offset;		/* where the buffer starts */
748 	__u64	data_size;		/* data buffer size */
749 
750 	/*
751 	 * AUX area is defined by aux_{offset,size} fields that should be set
752 	 * by the user-space, so that
753 	 *
754 	 *   aux_offset >= data_offset + data_size
755 	 *
756 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
757 	 *
758 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
759 	 * data_{head,tail} and same ordering rules apply.
760 	 */
761 	__u64	aux_head;
762 	__u64	aux_tail;
763 	__u64	aux_offset;
764 	__u64	aux_size;
765 };
766 
767 /*
768  * The current state of perf_event_header::misc bits usage:
769  * ('|' used bit, '-' unused bit)
770  *
771  *  012         CDEF
772  *  |||---------||||
773  *
774  *  Where:
775  *    0-2     CPUMODE_MASK
776  *
777  *    C       PROC_MAP_PARSE_TIMEOUT
778  *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
779  *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
780  *    F       (reserved)
781  */
782 
783 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
784 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
785 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
786 #define PERF_RECORD_MISC_USER			(2 << 0)
787 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
788 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
789 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
790 
791 /*
792  * Indicates that /proc/PID/maps parsing are truncated by time out.
793  */
794 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
795 /*
796  * Following PERF_RECORD_MISC_* are used on different
797  * events, so can reuse the same bit position:
798  *
799  *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
800  *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
801  *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
802  *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
803  */
804 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
805 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
806 #define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
807 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
808 /*
809  * These PERF_RECORD_MISC_* flags below are safely reused
810  * for the following events:
811  *
812  *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
813  *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
814  *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
815  *
816  *
817  * PERF_RECORD_MISC_EXACT_IP:
818  *   Indicates that the content of PERF_SAMPLE_IP points to
819  *   the actual instruction that triggered the event. See also
820  *   perf_event_attr::precise_ip.
821  *
822  * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
823  *   Indicates that thread was preempted in TASK_RUNNING state.
824  *
825  * PERF_RECORD_MISC_MMAP_BUILD_ID:
826  *   Indicates that mmap2 event carries build ID data.
827  */
828 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
829 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
830 #define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
831 /*
832  * Reserve the last bit to indicate some extended misc field
833  */
834 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
835 
836 struct perf_event_header {
837 	__u32 type;
838 	__u16 misc;
839 	__u16 size;
840 };
841 
842 struct perf_ns_link_info {
843 	__u64 dev;
844 	__u64 ino;
845 };
846 
847 enum {
848 	NET_NS_INDEX				= 0,
849 	UTS_NS_INDEX				= 1,
850 	IPC_NS_INDEX				= 2,
851 	PID_NS_INDEX				= 3,
852 	USER_NS_INDEX				= 4,
853 	MNT_NS_INDEX				= 5,
854 	CGROUP_NS_INDEX				= 6,
855 
856 	NR_NAMESPACES, /* number of available namespaces */
857 };
858 
859 enum perf_event_type {
860 
861 	/*
862 	 * If perf_event_attr.sample_id_all is set then all event types will
863 	 * have the sample_type selected fields related to where/when
864 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
865 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
866 	 * just after the perf_event_header and the fields already present for
867 	 * the existing fields, i.e. at the end of the payload. That way a newer
868 	 * perf.data file will be supported by older perf tools, with these new
869 	 * optional fields being ignored.
870 	 *
871 	 * struct sample_id {
872 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
873 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
874 	 *	{ u64			id;       } && PERF_SAMPLE_ID
875 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
876 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
877 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
878 	 * } && perf_event_attr::sample_id_all
879 	 *
880 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
881 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
882 	 * relative to header.size.
883 	 */
884 
885 	/*
886 	 * The MMAP events record the PROT_EXEC mappings so that we can
887 	 * correlate user-space IPs to code. They have the following structure:
888 	 *
889 	 * struct {
890 	 *	struct perf_event_header	header;
891 	 *
892 	 *	u32				pid, tid;
893 	 *	u64				addr;
894 	 *	u64				len;
895 	 *	u64				pgoff;
896 	 *	char				filename[];
897 	 *	struct sample_id		sample_id;
898 	 * };
899 	 */
900 	PERF_RECORD_MMAP			= 1,
901 
902 	/*
903 	 * struct {
904 	 *	struct perf_event_header	header;
905 	 *	u64				id;
906 	 *	u64				lost;
907 	 *	struct sample_id		sample_id;
908 	 * };
909 	 */
910 	PERF_RECORD_LOST			= 2,
911 
912 	/*
913 	 * struct {
914 	 *	struct perf_event_header	header;
915 	 *
916 	 *	u32				pid, tid;
917 	 *	char				comm[];
918 	 *	struct sample_id		sample_id;
919 	 * };
920 	 */
921 	PERF_RECORD_COMM			= 3,
922 
923 	/*
924 	 * struct {
925 	 *	struct perf_event_header	header;
926 	 *	u32				pid, ppid;
927 	 *	u32				tid, ptid;
928 	 *	u64				time;
929 	 *	struct sample_id		sample_id;
930 	 * };
931 	 */
932 	PERF_RECORD_EXIT			= 4,
933 
934 	/*
935 	 * struct {
936 	 *	struct perf_event_header	header;
937 	 *	u64				time;
938 	 *	u64				id;
939 	 *	u64				stream_id;
940 	 *	struct sample_id		sample_id;
941 	 * };
942 	 */
943 	PERF_RECORD_THROTTLE			= 5,
944 	PERF_RECORD_UNTHROTTLE			= 6,
945 
946 	/*
947 	 * struct {
948 	 *	struct perf_event_header	header;
949 	 *	u32				pid, ppid;
950 	 *	u32				tid, ptid;
951 	 *	u64				time;
952 	 *	struct sample_id		sample_id;
953 	 * };
954 	 */
955 	PERF_RECORD_FORK			= 7,
956 
957 	/*
958 	 * struct {
959 	 *	struct perf_event_header	header;
960 	 *	u32				pid, tid;
961 	 *
962 	 *	struct read_format		values;
963 	 *	struct sample_id		sample_id;
964 	 * };
965 	 */
966 	PERF_RECORD_READ			= 8,
967 
968 	/*
969 	 * struct {
970 	 *	struct perf_event_header	header;
971 	 *
972 	 *	#
973 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
974 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
975 	 *	# is fixed relative to header.
976 	 *	#
977 	 *
978 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
979 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
980 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
981 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
982 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
983 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
984 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
985 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
986 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
987 	 *
988 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
989 	 *
990 	 *	{ u64			nr,
991 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
992 	 *
993 	 *	#
994 	 *	# The RAW record below is opaque data wrt the ABI
995 	 *	#
996 	 *	# That is, the ABI doesn't make any promises wrt to
997 	 *	# the stability of its content, it may vary depending
998 	 *	# on event, hardware, kernel version and phase of
999 	 *	# the moon.
1000 	 *	#
1001 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
1002 	 *	#
1003 	 *
1004 	 *	{ u32			size;
1005 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
1006 	 *
1007 	 *	{ u64                   nr;
1008 	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
1009 	 *        { u64 from, to, flags } lbr[nr];
1010 	 *        #
1011 	 *        # The format of the counters is decided by the
1012 	 *        # "branch_counter_nr" and "branch_counter_width",
1013 	 *        # which are defined in the ABI.
1014 	 *        #
1015 	 *        { u64 counters; } cntr[nr] && PERF_SAMPLE_BRANCH_COUNTERS
1016 	 *      } && PERF_SAMPLE_BRANCH_STACK
1017 	 *
1018 	 *	{ u64			abi; # enum perf_sample_regs_abi
1019 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
1020 	 *
1021 	 *	{ u64			size;
1022 	 *	  char			data[size];
1023 	 *	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
1024 	 *
1025 	 *	{ union perf_sample_weight
1026 	 *	 {
1027 	 *		u64		full; && PERF_SAMPLE_WEIGHT
1028 	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
1029 	 *		struct {
1030 	 *			u32	var1_dw;
1031 	 *			u16	var2_w;
1032 	 *			u16	var3_w;
1033 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1034 	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
1035 	 *		struct {
1036 	 *			u16	var3_w;
1037 	 *			u16	var2_w;
1038 	 *			u32	var1_dw;
1039 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1040 	 *	#endif
1041 	 *	 }
1042 	 *	}
1043 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
1044 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
1045 	 *	{ u64			abi; # enum perf_sample_regs_abi
1046 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
1047 	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
1048 	 *	{ u64			cgroup;} && PERF_SAMPLE_CGROUP
1049 	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
1050 	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
1051 	 *	{ u64			size;
1052 	 *	  char			data[size]; } && PERF_SAMPLE_AUX
1053 	 * };
1054 	 */
1055 	PERF_RECORD_SAMPLE			= 9,
1056 
1057 	/*
1058 	 * The MMAP2 records are an augmented version of MMAP, they add
1059 	 * maj, min, ino numbers to be used to uniquely identify each mapping
1060 	 *
1061 	 * struct {
1062 	 *	struct perf_event_header	header;
1063 	 *
1064 	 *	u32				pid, tid;
1065 	 *	u64				addr;
1066 	 *	u64				len;
1067 	 *	u64				pgoff;
1068 	 *	union {
1069 	 *		struct {
1070 	 *			u32		maj;
1071 	 *			u32		min;
1072 	 *			u64		ino;
1073 	 *			u64		ino_generation;
1074 	 *		};
1075 	 *		struct {
1076 	 *			u8		build_id_size;
1077 	 *			u8		__reserved_1;
1078 	 *			u16		__reserved_2;
1079 	 *			u8		build_id[20];
1080 	 *		};
1081 	 *	};
1082 	 *	u32				prot, flags;
1083 	 *	char				filename[];
1084 	 *	struct sample_id		sample_id;
1085 	 * };
1086 	 */
1087 	PERF_RECORD_MMAP2			= 10,
1088 
1089 	/*
1090 	 * Records that new data landed in the AUX buffer part.
1091 	 *
1092 	 * struct {
1093 	 *	struct perf_event_header	header;
1094 	 *
1095 	 *	u64				aux_offset;
1096 	 *	u64				aux_size;
1097 	 *	u64				flags;
1098 	 *	struct sample_id		sample_id;
1099 	 * };
1100 	 */
1101 	PERF_RECORD_AUX				= 11,
1102 
1103 	/*
1104 	 * Indicates that instruction trace has started
1105 	 *
1106 	 * struct {
1107 	 *	struct perf_event_header	header;
1108 	 *	u32				pid;
1109 	 *	u32				tid;
1110 	 *	struct sample_id		sample_id;
1111 	 * };
1112 	 */
1113 	PERF_RECORD_ITRACE_START		= 12,
1114 
1115 	/*
1116 	 * Records the dropped/lost sample number.
1117 	 *
1118 	 * struct {
1119 	 *	struct perf_event_header	header;
1120 	 *
1121 	 *	u64				lost;
1122 	 *	struct sample_id		sample_id;
1123 	 * };
1124 	 */
1125 	PERF_RECORD_LOST_SAMPLES		= 13,
1126 
1127 	/*
1128 	 * Records a context switch in or out (flagged by
1129 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1130 	 * PERF_RECORD_SWITCH_CPU_WIDE.
1131 	 *
1132 	 * struct {
1133 	 *	struct perf_event_header	header;
1134 	 *	struct sample_id		sample_id;
1135 	 * };
1136 	 */
1137 	PERF_RECORD_SWITCH			= 14,
1138 
1139 	/*
1140 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1141 	 * next_prev_tid that are the next (switching out) or previous
1142 	 * (switching in) pid/tid.
1143 	 *
1144 	 * struct {
1145 	 *	struct perf_event_header	header;
1146 	 *	u32				next_prev_pid;
1147 	 *	u32				next_prev_tid;
1148 	 *	struct sample_id		sample_id;
1149 	 * };
1150 	 */
1151 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1152 
1153 	/*
1154 	 * struct {
1155 	 *	struct perf_event_header	header;
1156 	 *	u32				pid;
1157 	 *	u32				tid;
1158 	 *	u64				nr_namespaces;
1159 	 *	{ u64				dev, inode; } [nr_namespaces];
1160 	 *	struct sample_id		sample_id;
1161 	 * };
1162 	 */
1163 	PERF_RECORD_NAMESPACES			= 16,
1164 
1165 	/*
1166 	 * Record ksymbol register/unregister events:
1167 	 *
1168 	 * struct {
1169 	 *	struct perf_event_header	header;
1170 	 *	u64				addr;
1171 	 *	u32				len;
1172 	 *	u16				ksym_type;
1173 	 *	u16				flags;
1174 	 *	char				name[];
1175 	 *	struct sample_id		sample_id;
1176 	 * };
1177 	 */
1178 	PERF_RECORD_KSYMBOL			= 17,
1179 
1180 	/*
1181 	 * Record BPF events:
1182 	 *  enum perf_bpf_event_type {
1183 	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1184 	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1185 	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1186 	 *  };
1187 	 *
1188 	 * struct {
1189 	 *	struct perf_event_header	header;
1190 	 *	u16				type;
1191 	 *	u16				flags;
1192 	 *	u32				id;
1193 	 *	u8				tag[BPF_TAG_SIZE];
1194 	 *	struct sample_id		sample_id;
1195 	 * };
1196 	 */
1197 	PERF_RECORD_BPF_EVENT			= 18,
1198 
1199 	/*
1200 	 * struct {
1201 	 *	struct perf_event_header	header;
1202 	 *	u64				id;
1203 	 *	char				path[];
1204 	 *	struct sample_id		sample_id;
1205 	 * };
1206 	 */
1207 	PERF_RECORD_CGROUP			= 19,
1208 
1209 	/*
1210 	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1211 	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1212 	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1213 	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1214 	 * followed immediately by the new bytes.
1215 	 *
1216 	 * struct {
1217 	 *	struct perf_event_header	header;
1218 	 *	u64				addr;
1219 	 *	u16				old_len;
1220 	 *	u16				new_len;
1221 	 *	u8				bytes[];
1222 	 *	struct sample_id		sample_id;
1223 	 * };
1224 	 */
1225 	PERF_RECORD_TEXT_POKE			= 20,
1226 
1227 	/*
1228 	 * Data written to the AUX area by hardware due to aux_output, may need
1229 	 * to be matched to the event by an architecture-specific hardware ID.
1230 	 * This records the hardware ID, but requires sample_id to provide the
1231 	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1232 	 * records from multiple events.
1233 	 *
1234 	 * struct {
1235 	 *	struct perf_event_header	header;
1236 	 *	u64				hw_id;
1237 	 *	struct sample_id		sample_id;
1238 	 * };
1239 	 */
1240 	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
1241 
1242 	PERF_RECORD_MAX,			/* non-ABI */
1243 };
1244 
1245 enum perf_record_ksymbol_type {
1246 	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1247 	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1248 	/*
1249 	 * Out of line code such as kprobe-replaced instructions or optimized
1250 	 * kprobes or ftrace trampolines.
1251 	 */
1252 	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1253 	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1254 };
1255 
1256 #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1257 
1258 enum perf_bpf_event_type {
1259 	PERF_BPF_EVENT_UNKNOWN			= 0,
1260 	PERF_BPF_EVENT_PROG_LOAD		= 1,
1261 	PERF_BPF_EVENT_PROG_UNLOAD		= 2,
1262 	PERF_BPF_EVENT_MAX,			/* non-ABI */
1263 };
1264 
1265 #define PERF_MAX_STACK_DEPTH			127
1266 #define PERF_MAX_CONTEXTS_PER_STACK		  8
1267 
1268 enum perf_callchain_context {
1269 	PERF_CONTEXT_HV				= (__u64)-32,
1270 	PERF_CONTEXT_KERNEL			= (__u64)-128,
1271 	PERF_CONTEXT_USER			= (__u64)-512,
1272 
1273 	PERF_CONTEXT_GUEST			= (__u64)-2048,
1274 	PERF_CONTEXT_GUEST_KERNEL		= (__u64)-2176,
1275 	PERF_CONTEXT_GUEST_USER			= (__u64)-2560,
1276 
1277 	PERF_CONTEXT_MAX			= (__u64)-4095,
1278 };
1279 
1280 /**
1281  * PERF_RECORD_AUX::flags bits
1282  */
1283 #define PERF_AUX_FLAG_TRUNCATED			0x0001	/* Record was truncated to fit */
1284 #define PERF_AUX_FLAG_OVERWRITE			0x0002	/* Snapshot from overwrite mode */
1285 #define PERF_AUX_FLAG_PARTIAL			0x0004	/* Record contains gaps */
1286 #define PERF_AUX_FLAG_COLLISION			0x0008	/* Sample collided with another */
1287 #define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
1288 
1289 /* CoreSight PMU AUX buffer formats */
1290 #define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */
1291 #define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW	 0x0100 /* Raw format of the source */
1292 
1293 #define PERF_FLAG_FD_NO_GROUP			(1UL << 0)
1294 #define PERF_FLAG_FD_OUTPUT			(1UL << 1)
1295 #define PERF_FLAG_PID_CGROUP			(1UL << 2) /* pid=cgroup ID, per-CPU mode only */
1296 #define PERF_FLAG_FD_CLOEXEC			(1UL << 3) /* O_CLOEXEC */
1297 
1298 #if defined(__LITTLE_ENDIAN_BITFIELD)
1299 union perf_mem_data_src {
1300 	__u64 val;
1301 	struct {
1302 		__u64   mem_op      :  5, /* Type of opcode */
1303 			mem_lvl     : 14, /* Memory hierarchy level */
1304 			mem_snoop   :  5, /* Snoop mode */
1305 			mem_lock    :  2, /* Lock instr */
1306 			mem_dtlb    :  7, /* TLB access */
1307 			mem_lvl_num :  4, /* Memory hierarchy level number */
1308 			mem_remote  :  1, /* Remote */
1309 			mem_snoopx  :  2, /* Snoop mode, ext */
1310 			mem_blk     :  3, /* Access blocked */
1311 			mem_hops    :  3, /* Hop level */
1312 			mem_rsvd    : 18;
1313 	};
1314 };
1315 #elif defined(__BIG_ENDIAN_BITFIELD)
1316 union perf_mem_data_src {
1317 	__u64 val;
1318 	struct {
1319 		__u64	mem_rsvd    : 18,
1320 			mem_hops    :  3, /* Hop level */
1321 			mem_blk     :  3, /* Access blocked */
1322 			mem_snoopx  :  2, /* Snoop mode, ext */
1323 			mem_remote  :  1, /* Remote */
1324 			mem_lvl_num :  4, /* Memory hierarchy level number */
1325 			mem_dtlb    :  7, /* TLB access */
1326 			mem_lock    :  2, /* Lock instr */
1327 			mem_snoop   :  5, /* Snoop mode */
1328 			mem_lvl     : 14, /* Memory hierarchy level */
1329 			mem_op      :  5; /* Type of opcode */
1330 	};
1331 };
1332 #else
1333 # error "Unknown endianness"
1334 #endif
1335 
1336 /* Type of memory opcode: */
1337 #define PERF_MEM_OP_NA				0x0001 /* Not available */
1338 #define PERF_MEM_OP_LOAD			0x0002 /* Load instruction */
1339 #define PERF_MEM_OP_STORE			0x0004 /* Store instruction */
1340 #define PERF_MEM_OP_PFETCH			0x0008 /* Prefetch */
1341 #define PERF_MEM_OP_EXEC			0x0010 /* Code (execution) */
1342 #define PERF_MEM_OP_SHIFT			0
1343 
1344 /*
1345  * The PERF_MEM_LVL_* namespace is being deprecated to some extent in
1346  * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1347  * We support this namespace in order to not break defined ABIs.
1348  *
1349  * Memory hierarchy (memory level, hit or miss)
1350  */
1351 #define PERF_MEM_LVL_NA				0x0001 /* Not available */
1352 #define PERF_MEM_LVL_HIT			0x0002 /* Hit level */
1353 #define PERF_MEM_LVL_MISS			0x0004 /* Miss level  */
1354 #define PERF_MEM_LVL_L1				0x0008 /* L1 */
1355 #define PERF_MEM_LVL_LFB			0x0010 /* Line Fill Buffer */
1356 #define PERF_MEM_LVL_L2				0x0020 /* L2 */
1357 #define PERF_MEM_LVL_L3				0x0040 /* L3 */
1358 #define PERF_MEM_LVL_LOC_RAM			0x0080 /* Local DRAM */
1359 #define PERF_MEM_LVL_REM_RAM1			0x0100 /* Remote DRAM (1 hop) */
1360 #define PERF_MEM_LVL_REM_RAM2			0x0200 /* Remote DRAM (2 hops) */
1361 #define PERF_MEM_LVL_REM_CCE1			0x0400 /* Remote Cache (1 hop) */
1362 #define PERF_MEM_LVL_REM_CCE2			0x0800 /* Remote Cache (2 hops) */
1363 #define PERF_MEM_LVL_IO				0x1000 /* I/O memory */
1364 #define PERF_MEM_LVL_UNC			0x2000 /* Uncached memory */
1365 #define PERF_MEM_LVL_SHIFT			5
1366 
1367 #define PERF_MEM_REMOTE_REMOTE			0x0001 /* Remote */
1368 #define PERF_MEM_REMOTE_SHIFT			37
1369 
1370 #define PERF_MEM_LVLNUM_L1			0x0001 /* L1 */
1371 #define PERF_MEM_LVLNUM_L2			0x0002 /* L2 */
1372 #define PERF_MEM_LVLNUM_L3			0x0003 /* L3 */
1373 #define PERF_MEM_LVLNUM_L4			0x0004 /* L4 */
1374 #define PERF_MEM_LVLNUM_L2_MHB			0x0005 /* L2 Miss Handling Buffer */
1375 #define PERF_MEM_LVLNUM_MSC			0x0006 /* Memory-side Cache */
1376 /* 0x007 available */
1377 #define PERF_MEM_LVLNUM_UNC			0x0008 /* Uncached */
1378 #define PERF_MEM_LVLNUM_CXL			0x0009 /* CXL */
1379 #define PERF_MEM_LVLNUM_IO			0x000a /* I/O */
1380 #define PERF_MEM_LVLNUM_ANY_CACHE		0x000b /* Any cache */
1381 #define PERF_MEM_LVLNUM_LFB			0x000c /* LFB / L1 Miss Handling Buffer */
1382 #define PERF_MEM_LVLNUM_RAM			0x000d /* RAM */
1383 #define PERF_MEM_LVLNUM_PMEM			0x000e /* PMEM */
1384 #define PERF_MEM_LVLNUM_NA			0x000f /* N/A */
1385 
1386 #define PERF_MEM_LVLNUM_SHIFT			33
1387 
1388 /* Snoop mode */
1389 #define PERF_MEM_SNOOP_NA			0x0001 /* Not available */
1390 #define PERF_MEM_SNOOP_NONE			0x0002 /* No snoop */
1391 #define PERF_MEM_SNOOP_HIT			0x0004 /* Snoop hit */
1392 #define PERF_MEM_SNOOP_MISS			0x0008 /* Snoop miss */
1393 #define PERF_MEM_SNOOP_HITM			0x0010 /* Snoop hit modified */
1394 #define PERF_MEM_SNOOP_SHIFT			19
1395 
1396 #define PERF_MEM_SNOOPX_FWD			0x0001 /* Forward */
1397 #define PERF_MEM_SNOOPX_PEER			0x0002 /* Transfer from peer */
1398 #define PERF_MEM_SNOOPX_SHIFT			38
1399 
1400 /* Locked instruction */
1401 #define PERF_MEM_LOCK_NA			0x0001 /* Not available */
1402 #define PERF_MEM_LOCK_LOCKED			0x0002 /* Locked transaction */
1403 #define PERF_MEM_LOCK_SHIFT			24
1404 
1405 /* TLB access */
1406 #define PERF_MEM_TLB_NA				0x0001 /* Not available */
1407 #define PERF_MEM_TLB_HIT			0x0002 /* Hit level */
1408 #define PERF_MEM_TLB_MISS			0x0004 /* Miss level */
1409 #define PERF_MEM_TLB_L1				0x0008 /* L1 */
1410 #define PERF_MEM_TLB_L2				0x0010 /* L2 */
1411 #define PERF_MEM_TLB_WK				0x0020 /* Hardware Walker*/
1412 #define PERF_MEM_TLB_OS				0x0040 /* OS fault handler */
1413 #define PERF_MEM_TLB_SHIFT			26
1414 
1415 /* Access blocked */
1416 #define PERF_MEM_BLK_NA				0x0001 /* Not available */
1417 #define PERF_MEM_BLK_DATA			0x0002 /* Data could not be forwarded */
1418 #define PERF_MEM_BLK_ADDR			0x0004 /* Address conflict */
1419 #define PERF_MEM_BLK_SHIFT			40
1420 
1421 /* Hop level */
1422 #define PERF_MEM_HOPS_0				0x0001 /* Remote core, same node */
1423 #define PERF_MEM_HOPS_1				0x0002 /* Remote node, same socket */
1424 #define PERF_MEM_HOPS_2				0x0003 /* Remote socket, same board */
1425 #define PERF_MEM_HOPS_3				0x0004 /* Remote board */
1426 /* 5-7 available */
1427 #define PERF_MEM_HOPS_SHIFT			43
1428 
1429 #define PERF_MEM_S(a, s) \
1430 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1431 
1432 /*
1433  * Layout of single taken branch records:
1434  *
1435  *      from: source instruction (may not always be a branch insn)
1436  *        to: branch target
1437  *   mispred: branch target was mispredicted
1438  * predicted: branch target was predicted
1439  *
1440  * support for mispred, predicted is optional. In case it
1441  * is not supported mispred = predicted = 0.
1442  *
1443  *     in_tx: running in a hardware transaction
1444  *     abort: aborting a hardware transaction
1445  *    cycles: cycles from last branch (or 0 if not supported)
1446  *      type: branch type
1447  *      spec: branch speculation info (or 0 if not supported)
1448  */
1449 struct perf_branch_entry {
1450 	__u64	from;
1451 	__u64	to;
1452 	__u64	mispred   :  1, /* target mispredicted */
1453 		predicted :  1, /* target predicted */
1454 		in_tx     :  1, /* in transaction */
1455 		abort     :  1, /* transaction abort */
1456 		cycles    : 16, /* cycle count to last branch */
1457 		type      :  4, /* branch type */
1458 		spec      :  2, /* branch speculation info */
1459 		new_type  :  4, /* additional branch type */
1460 		priv      :  3, /* privilege level */
1461 		reserved  : 31;
1462 };
1463 
1464 /* Size of used info bits in struct perf_branch_entry */
1465 #define PERF_BRANCH_ENTRY_INFO_BITS_MAX		33
1466 
1467 union perf_sample_weight {
1468 	__u64	      full;
1469 #if defined(__LITTLE_ENDIAN_BITFIELD)
1470 	struct {
1471 		__u32 var1_dw;
1472 		__u16 var2_w;
1473 		__u16 var3_w;
1474 	};
1475 #elif defined(__BIG_ENDIAN_BITFIELD)
1476 	struct {
1477 		__u16 var3_w;
1478 		__u16 var2_w;
1479 		__u32 var1_dw;
1480 	};
1481 #else
1482 # error "Unknown endianness"
1483 #endif
1484 };
1485 
1486 #endif /* _UAPI_LINUX_PERF_EVENT_H */
1487