1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <linux/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.0 root hub device descriptor */
160 static const u8 usb2_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181
182 /* usb 1.1 root hub device descriptor */
183 static const u8 usb11_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
187
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
192
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
196
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
201 };
202
203
204 /*-------------------------------------------------------------------------*/
205
206 /* Configuration descriptors for our root hubs */
207
208 static const u8 fs_rh_config_descriptor[] = {
209
210 /* one configuration */
211 0x09, /* __u8 bLength; */
212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213 0x19, 0x00, /* __le16 wTotalLength; */
214 0x01, /* __u8 bNumInterfaces; (1) */
215 0x01, /* __u8 bConfigurationValue; */
216 0x00, /* __u8 iConfiguration; */
217 0xc0, /* __u8 bmAttributes;
218 Bit 7: must be set,
219 6: Self-powered,
220 5: Remote wakeup,
221 4..0: resvd */
222 0x00, /* __u8 MaxPower; */
223
224 /* USB 1.1:
225 * USB 2.0, single TT organization (mandatory):
226 * one interface, protocol 0
227 *
228 * USB 2.0, multiple TT organization (optional):
229 * two interfaces, protocols 1 (like single TT)
230 * and 2 (multiple TT mode) ... config is
231 * sometimes settable
232 * NOT IMPLEMENTED
233 */
234
235 /* one interface */
236 0x09, /* __u8 if_bLength; */
237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
238 0x00, /* __u8 if_bInterfaceNumber; */
239 0x00, /* __u8 if_bAlternateSetting; */
240 0x01, /* __u8 if_bNumEndpoints; */
241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
242 0x00, /* __u8 if_bInterfaceSubClass; */
243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
244 0x00, /* __u8 if_iInterface; */
245
246 /* one endpoint (status change endpoint) */
247 0x07, /* __u8 ep_bLength; */
248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
250 0x03, /* __u8 ep_bmAttributes; Interrupt */
251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
253 };
254
255 static const u8 hs_rh_config_descriptor[] = {
256
257 /* one configuration */
258 0x09, /* __u8 bLength; */
259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260 0x19, 0x00, /* __le16 wTotalLength; */
261 0x01, /* __u8 bNumInterfaces; (1) */
262 0x01, /* __u8 bConfigurationValue; */
263 0x00, /* __u8 iConfiguration; */
264 0xc0, /* __u8 bmAttributes;
265 Bit 7: must be set,
266 6: Self-powered,
267 5: Remote wakeup,
268 4..0: resvd */
269 0x00, /* __u8 MaxPower; */
270
271 /* USB 1.1:
272 * USB 2.0, single TT organization (mandatory):
273 * one interface, protocol 0
274 *
275 * USB 2.0, multiple TT organization (optional):
276 * two interfaces, protocols 1 (like single TT)
277 * and 2 (multiple TT mode) ... config is
278 * sometimes settable
279 * NOT IMPLEMENTED
280 */
281
282 /* one interface */
283 0x09, /* __u8 if_bLength; */
284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285 0x00, /* __u8 if_bInterfaceNumber; */
286 0x00, /* __u8 if_bAlternateSetting; */
287 0x01, /* __u8 if_bNumEndpoints; */
288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
289 0x00, /* __u8 if_bInterfaceSubClass; */
290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
291 0x00, /* __u8 if_iInterface; */
292
293 /* one endpoint (status change endpoint) */
294 0x07, /* __u8 ep_bLength; */
295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
297 0x03, /* __u8 ep_bmAttributes; Interrupt */
298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299 * see hub.c:hub_configure() for details. */
300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
302 };
303
304 static const u8 ss_rh_config_descriptor[] = {
305 /* one configuration */
306 0x09, /* __u8 bLength; */
307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308 0x1f, 0x00, /* __le16 wTotalLength; */
309 0x01, /* __u8 bNumInterfaces; (1) */
310 0x01, /* __u8 bConfigurationValue; */
311 0x00, /* __u8 iConfiguration; */
312 0xc0, /* __u8 bmAttributes;
313 Bit 7: must be set,
314 6: Self-powered,
315 5: Remote wakeup,
316 4..0: resvd */
317 0x00, /* __u8 MaxPower; */
318
319 /* one interface */
320 0x09, /* __u8 if_bLength; */
321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322 0x00, /* __u8 if_bInterfaceNumber; */
323 0x00, /* __u8 if_bAlternateSetting; */
324 0x01, /* __u8 if_bNumEndpoints; */
325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
326 0x00, /* __u8 if_bInterfaceSubClass; */
327 0x00, /* __u8 if_bInterfaceProtocol; */
328 0x00, /* __u8 if_iInterface; */
329
330 /* one endpoint (status change endpoint) */
331 0x07, /* __u8 ep_bLength; */
332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
334 0x03, /* __u8 ep_bmAttributes; Interrupt */
335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336 * see hub.c:hub_configure() for details. */
337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
339
340 /* one SuperSpeed endpoint companion descriptor */
341 0x06, /* __u8 ss_bLength */
342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343 /* Companion */
344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347 };
348
349 /* authorized_default behaviour:
350 * -1 is authorized for all devices (leftover from wireless USB)
351 * 0 is unauthorized for all devices
352 * 1 is authorized for all devices
353 * 2 is authorized for internal devices
354 */
355 #define USB_AUTHORIZE_WIRED -1
356 #define USB_AUTHORIZE_NONE 0
357 #define USB_AUTHORIZE_ALL 1
358 #define USB_AUTHORIZE_INTERNAL 2
359
360 static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
361 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362 MODULE_PARM_DESC(authorized_default,
363 "Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
364 /*-------------------------------------------------------------------------*/
365
366 /**
367 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
368 * @s: Null-terminated ASCII (actually ISO-8859-1) string
369 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
370 * @len: Length (in bytes; may be odd) of descriptor buffer.
371 *
372 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
373 * whichever is less.
374 *
375 * Note:
376 * USB String descriptors can contain at most 126 characters; input
377 * strings longer than that are truncated.
378 */
379 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)380 ascii2desc(char const *s, u8 *buf, unsigned len)
381 {
382 unsigned n, t = 2 + 2*strlen(s);
383
384 if (t > 254)
385 t = 254; /* Longest possible UTF string descriptor */
386 if (len > t)
387 len = t;
388
389 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
390
391 n = len;
392 while (n--) {
393 *buf++ = t;
394 if (!n--)
395 break;
396 *buf++ = t >> 8;
397 t = (unsigned char)*s++;
398 }
399 return len;
400 }
401
402 /**
403 * rh_string() - provides string descriptors for root hub
404 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
405 * @hcd: the host controller for this root hub
406 * @data: buffer for output packet
407 * @len: length of the provided buffer
408 *
409 * Produces either a manufacturer, product or serial number string for the
410 * virtual root hub device.
411 *
412 * Return: The number of bytes filled in: the length of the descriptor or
413 * of the provided buffer, whichever is less.
414 */
415 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)416 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
417 {
418 char buf[160];
419 char const *s;
420 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
421
422 /* language ids */
423 switch (id) {
424 case 0:
425 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
426 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
427 if (len > 4)
428 len = 4;
429 memcpy(data, langids, len);
430 return len;
431 case 1:
432 /* Serial number */
433 s = hcd->self.bus_name;
434 break;
435 case 2:
436 /* Product name */
437 s = hcd->product_desc;
438 break;
439 case 3:
440 /* Manufacturer */
441 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
442 init_utsname()->release, hcd->driver->description);
443 s = buf;
444 break;
445 default:
446 /* Can't happen; caller guarantees it */
447 return 0;
448 }
449
450 return ascii2desc(s, data, len);
451 }
452
453
454 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)455 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
456 {
457 struct usb_ctrlrequest *cmd;
458 u16 typeReq, wValue, wIndex, wLength;
459 u8 *ubuf = urb->transfer_buffer;
460 unsigned len = 0;
461 int status;
462 u8 patch_wakeup = 0;
463 u8 patch_protocol = 0;
464 u16 tbuf_size;
465 u8 *tbuf = NULL;
466 const u8 *bufp;
467
468 might_sleep();
469
470 spin_lock_irq(&hcd_root_hub_lock);
471 status = usb_hcd_link_urb_to_ep(hcd, urb);
472 spin_unlock_irq(&hcd_root_hub_lock);
473 if (status)
474 return status;
475 urb->hcpriv = hcd; /* Indicate it's queued */
476
477 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
478 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
479 wValue = le16_to_cpu (cmd->wValue);
480 wIndex = le16_to_cpu (cmd->wIndex);
481 wLength = le16_to_cpu (cmd->wLength);
482
483 if (wLength > urb->transfer_buffer_length)
484 goto error;
485
486 /*
487 * tbuf should be at least as big as the
488 * USB hub descriptor.
489 */
490 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
491 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
492 if (!tbuf) {
493 status = -ENOMEM;
494 goto err_alloc;
495 }
496
497 bufp = tbuf;
498
499
500 urb->actual_length = 0;
501 switch (typeReq) {
502
503 /* DEVICE REQUESTS */
504
505 /* The root hub's remote wakeup enable bit is implemented using
506 * driver model wakeup flags. If this system supports wakeup
507 * through USB, userspace may change the default "allow wakeup"
508 * policy through sysfs or these calls.
509 *
510 * Most root hubs support wakeup from downstream devices, for
511 * runtime power management (disabling USB clocks and reducing
512 * VBUS power usage). However, not all of them do so; silicon,
513 * board, and BIOS bugs here are not uncommon, so these can't
514 * be treated quite like external hubs.
515 *
516 * Likewise, not all root hubs will pass wakeup events upstream,
517 * to wake up the whole system. So don't assume root hub and
518 * controller capabilities are identical.
519 */
520
521 case DeviceRequest | USB_REQ_GET_STATUS:
522 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
523 << USB_DEVICE_REMOTE_WAKEUP)
524 | (1 << USB_DEVICE_SELF_POWERED);
525 tbuf[1] = 0;
526 len = 2;
527 break;
528 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
529 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
530 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
531 else
532 goto error;
533 break;
534 case DeviceOutRequest | USB_REQ_SET_FEATURE:
535 if (device_can_wakeup(&hcd->self.root_hub->dev)
536 && wValue == USB_DEVICE_REMOTE_WAKEUP)
537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
538 else
539 goto error;
540 break;
541 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
542 tbuf[0] = 1;
543 len = 1;
544 fallthrough;
545 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
546 break;
547 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
548 switch (wValue & 0xff00) {
549 case USB_DT_DEVICE << 8:
550 switch (hcd->speed) {
551 case HCD_USB32:
552 case HCD_USB31:
553 bufp = usb31_rh_dev_descriptor;
554 break;
555 case HCD_USB3:
556 bufp = usb3_rh_dev_descriptor;
557 break;
558 case HCD_USB2:
559 bufp = usb2_rh_dev_descriptor;
560 break;
561 case HCD_USB11:
562 bufp = usb11_rh_dev_descriptor;
563 break;
564 default:
565 goto error;
566 }
567 len = 18;
568 if (hcd->has_tt)
569 patch_protocol = 1;
570 break;
571 case USB_DT_CONFIG << 8:
572 switch (hcd->speed) {
573 case HCD_USB32:
574 case HCD_USB31:
575 case HCD_USB3:
576 bufp = ss_rh_config_descriptor;
577 len = sizeof ss_rh_config_descriptor;
578 break;
579 case HCD_USB2:
580 bufp = hs_rh_config_descriptor;
581 len = sizeof hs_rh_config_descriptor;
582 break;
583 case HCD_USB11:
584 bufp = fs_rh_config_descriptor;
585 len = sizeof fs_rh_config_descriptor;
586 break;
587 default:
588 goto error;
589 }
590 if (device_can_wakeup(&hcd->self.root_hub->dev))
591 patch_wakeup = 1;
592 break;
593 case USB_DT_STRING << 8:
594 if ((wValue & 0xff) < 4)
595 urb->actual_length = rh_string(wValue & 0xff,
596 hcd, ubuf, wLength);
597 else /* unsupported IDs --> "protocol stall" */
598 goto error;
599 break;
600 case USB_DT_BOS << 8:
601 goto nongeneric;
602 default:
603 goto error;
604 }
605 break;
606 case DeviceRequest | USB_REQ_GET_INTERFACE:
607 tbuf[0] = 0;
608 len = 1;
609 fallthrough;
610 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
611 break;
612 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
613 /* wValue == urb->dev->devaddr */
614 dev_dbg (hcd->self.controller, "root hub device address %d\n",
615 wValue);
616 break;
617
618 /* INTERFACE REQUESTS (no defined feature/status flags) */
619
620 /* ENDPOINT REQUESTS */
621
622 case EndpointRequest | USB_REQ_GET_STATUS:
623 /* ENDPOINT_HALT flag */
624 tbuf[0] = 0;
625 tbuf[1] = 0;
626 len = 2;
627 fallthrough;
628 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
629 case EndpointOutRequest | USB_REQ_SET_FEATURE:
630 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
631 break;
632
633 /* CLASS REQUESTS (and errors) */
634
635 default:
636 nongeneric:
637 /* non-generic request */
638 switch (typeReq) {
639 case GetHubStatus:
640 len = 4;
641 break;
642 case GetPortStatus:
643 if (wValue == HUB_PORT_STATUS)
644 len = 4;
645 else
646 /* other port status types return 8 bytes */
647 len = 8;
648 break;
649 case GetHubDescriptor:
650 len = sizeof (struct usb_hub_descriptor);
651 break;
652 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
653 /* len is returned by hub_control */
654 break;
655 }
656 status = hcd->driver->hub_control (hcd,
657 typeReq, wValue, wIndex,
658 tbuf, wLength);
659
660 if (typeReq == GetHubDescriptor)
661 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
662 (struct usb_hub_descriptor *)tbuf);
663 break;
664 error:
665 /* "protocol stall" on error */
666 status = -EPIPE;
667 }
668
669 if (status < 0) {
670 len = 0;
671 if (status != -EPIPE) {
672 dev_dbg (hcd->self.controller,
673 "CTRL: TypeReq=0x%x val=0x%x "
674 "idx=0x%x len=%d ==> %d\n",
675 typeReq, wValue, wIndex,
676 wLength, status);
677 }
678 } else if (status > 0) {
679 /* hub_control may return the length of data copied. */
680 len = status;
681 status = 0;
682 }
683 if (len) {
684 if (urb->transfer_buffer_length < len)
685 len = urb->transfer_buffer_length;
686 urb->actual_length = len;
687 /* always USB_DIR_IN, toward host */
688 memcpy (ubuf, bufp, len);
689
690 /* report whether RH hardware supports remote wakeup */
691 if (patch_wakeup &&
692 len > offsetof (struct usb_config_descriptor,
693 bmAttributes))
694 ((struct usb_config_descriptor *)ubuf)->bmAttributes
695 |= USB_CONFIG_ATT_WAKEUP;
696
697 /* report whether RH hardware has an integrated TT */
698 if (patch_protocol &&
699 len > offsetof(struct usb_device_descriptor,
700 bDeviceProtocol))
701 ((struct usb_device_descriptor *) ubuf)->
702 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
703 }
704
705 kfree(tbuf);
706 err_alloc:
707
708 /* any errors get returned through the urb completion */
709 spin_lock_irq(&hcd_root_hub_lock);
710 usb_hcd_unlink_urb_from_ep(hcd, urb);
711 usb_hcd_giveback_urb(hcd, urb, status);
712 spin_unlock_irq(&hcd_root_hub_lock);
713 return 0;
714 }
715
716 /*-------------------------------------------------------------------------*/
717
718 /*
719 * Root Hub interrupt transfers are polled using a timer if the
720 * driver requests it; otherwise the driver is responsible for
721 * calling usb_hcd_poll_rh_status() when an event occurs.
722 *
723 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
724 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)725 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
726 {
727 struct urb *urb;
728 int length;
729 int status;
730 unsigned long flags;
731 char buffer[6]; /* Any root hubs with > 31 ports? */
732
733 if (unlikely(!hcd->rh_pollable))
734 return;
735 if (!hcd->uses_new_polling && !hcd->status_urb)
736 return;
737
738 length = hcd->driver->hub_status_data(hcd, buffer);
739 if (length > 0) {
740
741 /* try to complete the status urb */
742 spin_lock_irqsave(&hcd_root_hub_lock, flags);
743 urb = hcd->status_urb;
744 if (urb) {
745 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
746 hcd->status_urb = NULL;
747 if (urb->transfer_buffer_length >= length) {
748 status = 0;
749 } else {
750 status = -EOVERFLOW;
751 length = urb->transfer_buffer_length;
752 }
753 urb->actual_length = length;
754 memcpy(urb->transfer_buffer, buffer, length);
755
756 usb_hcd_unlink_urb_from_ep(hcd, urb);
757 usb_hcd_giveback_urb(hcd, urb, status);
758 } else {
759 length = 0;
760 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
761 }
762 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
763 }
764
765 /* The USB 2.0 spec says 256 ms. This is close enough and won't
766 * exceed that limit if HZ is 100. The math is more clunky than
767 * maybe expected, this is to make sure that all timers for USB devices
768 * fire at the same time to give the CPU a break in between */
769 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
770 (length == 0 && hcd->status_urb != NULL))
771 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
772 }
773 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
774
775 /* timer callback */
rh_timer_func(struct timer_list * t)776 static void rh_timer_func (struct timer_list *t)
777 {
778 struct usb_hcd *_hcd = timer_container_of(_hcd, t, rh_timer);
779
780 usb_hcd_poll_rh_status(_hcd);
781 }
782
783 /*-------------------------------------------------------------------------*/
784
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)785 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
786 {
787 int retval;
788 unsigned long flags;
789 unsigned len = 1 + (urb->dev->maxchild / 8);
790
791 spin_lock_irqsave (&hcd_root_hub_lock, flags);
792 if (hcd->status_urb || urb->transfer_buffer_length < len) {
793 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
794 retval = -EINVAL;
795 goto done;
796 }
797
798 retval = usb_hcd_link_urb_to_ep(hcd, urb);
799 if (retval)
800 goto done;
801
802 hcd->status_urb = urb;
803 urb->hcpriv = hcd; /* indicate it's queued */
804 if (!hcd->uses_new_polling)
805 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
806
807 /* If a status change has already occurred, report it ASAP */
808 else if (HCD_POLL_PENDING(hcd))
809 mod_timer(&hcd->rh_timer, jiffies);
810 retval = 0;
811 done:
812 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
813 return retval;
814 }
815
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)816 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
817 {
818 if (usb_endpoint_xfer_int(&urb->ep->desc))
819 return rh_queue_status (hcd, urb);
820 if (usb_endpoint_xfer_control(&urb->ep->desc))
821 return rh_call_control (hcd, urb);
822 return -EINVAL;
823 }
824
825 /*-------------------------------------------------------------------------*/
826
827 /* Unlinks of root-hub control URBs are legal, but they don't do anything
828 * since these URBs always execute synchronously.
829 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)830 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
831 {
832 unsigned long flags;
833 int rc;
834
835 spin_lock_irqsave(&hcd_root_hub_lock, flags);
836 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
837 if (rc)
838 goto done;
839
840 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
841 ; /* Do nothing */
842
843 } else { /* Status URB */
844 if (!hcd->uses_new_polling)
845 timer_delete(&hcd->rh_timer);
846 if (urb == hcd->status_urb) {
847 hcd->status_urb = NULL;
848 usb_hcd_unlink_urb_from_ep(hcd, urb);
849 usb_hcd_giveback_urb(hcd, urb, status);
850 }
851 }
852 done:
853 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
854 return rc;
855 }
856
857
858 /*-------------------------------------------------------------------------*/
859
860 /**
861 * usb_bus_init - shared initialization code
862 * @bus: the bus structure being initialized
863 *
864 * This code is used to initialize a usb_bus structure, memory for which is
865 * separately managed.
866 */
usb_bus_init(struct usb_bus * bus)867 static void usb_bus_init (struct usb_bus *bus)
868 {
869 memset(&bus->devmap, 0, sizeof(bus->devmap));
870
871 bus->devnum_next = 1;
872
873 bus->root_hub = NULL;
874 bus->busnum = -1;
875 bus->bandwidth_allocated = 0;
876 bus->bandwidth_int_reqs = 0;
877 bus->bandwidth_isoc_reqs = 0;
878 mutex_init(&bus->devnum_next_mutex);
879 }
880
881 /*-------------------------------------------------------------------------*/
882
883 /**
884 * usb_register_bus - registers the USB host controller with the usb core
885 * @bus: pointer to the bus to register
886 *
887 * Context: task context, might sleep.
888 *
889 * Assigns a bus number, and links the controller into usbcore data
890 * structures so that it can be seen by scanning the bus list.
891 *
892 * Return: 0 if successful. A negative error code otherwise.
893 */
usb_register_bus(struct usb_bus * bus)894 static int usb_register_bus(struct usb_bus *bus)
895 {
896 int result = -E2BIG;
897 int busnum;
898
899 mutex_lock(&usb_bus_idr_lock);
900 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
901 if (busnum < 0) {
902 pr_err("%s: failed to get bus number\n", usbcore_name);
903 goto error_find_busnum;
904 }
905 bus->busnum = busnum;
906 mutex_unlock(&usb_bus_idr_lock);
907
908 usb_notify_add_bus(bus);
909
910 dev_info (bus->controller, "new USB bus registered, assigned bus "
911 "number %d\n", bus->busnum);
912 return 0;
913
914 error_find_busnum:
915 mutex_unlock(&usb_bus_idr_lock);
916 return result;
917 }
918
919 /**
920 * usb_deregister_bus - deregisters the USB host controller
921 * @bus: pointer to the bus to deregister
922 *
923 * Context: task context, might sleep.
924 *
925 * Recycles the bus number, and unlinks the controller from usbcore data
926 * structures so that it won't be seen by scanning the bus list.
927 */
usb_deregister_bus(struct usb_bus * bus)928 static void usb_deregister_bus (struct usb_bus *bus)
929 {
930 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
931
932 /*
933 * NOTE: make sure that all the devices are removed by the
934 * controller code, as well as having it call this when cleaning
935 * itself up
936 */
937 mutex_lock(&usb_bus_idr_lock);
938 idr_remove(&usb_bus_idr, bus->busnum);
939 mutex_unlock(&usb_bus_idr_lock);
940
941 usb_notify_remove_bus(bus);
942 }
943
944 /**
945 * register_root_hub - called by usb_add_hcd() to register a root hub
946 * @hcd: host controller for this root hub
947 *
948 * This function registers the root hub with the USB subsystem. It sets up
949 * the device properly in the device tree and then calls usb_new_device()
950 * to register the usb device. It also assigns the root hub's USB address
951 * (always 1).
952 *
953 * Return: 0 if successful. A negative error code otherwise.
954 */
register_root_hub(struct usb_hcd * hcd)955 static int register_root_hub(struct usb_hcd *hcd)
956 {
957 struct device *parent_dev = hcd->self.controller;
958 struct usb_device *usb_dev = hcd->self.root_hub;
959 struct usb_device_descriptor *descr;
960 const int devnum = 1;
961 int retval;
962
963 usb_dev->devnum = devnum;
964 usb_dev->bus->devnum_next = devnum + 1;
965 set_bit(devnum, usb_dev->bus->devmap);
966 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
967
968 mutex_lock(&usb_bus_idr_lock);
969
970 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
971 descr = usb_get_device_descriptor(usb_dev);
972 if (IS_ERR(descr)) {
973 retval = PTR_ERR(descr);
974 mutex_unlock(&usb_bus_idr_lock);
975 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
976 dev_name(&usb_dev->dev), retval);
977 return retval;
978 }
979 usb_dev->descriptor = *descr;
980 kfree(descr);
981
982 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
983 retval = usb_get_bos_descriptor(usb_dev);
984 if (!retval) {
985 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
986 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
987 mutex_unlock(&usb_bus_idr_lock);
988 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
989 dev_name(&usb_dev->dev), retval);
990 return retval;
991 }
992 }
993
994 retval = usb_new_device (usb_dev);
995 if (retval) {
996 dev_err (parent_dev, "can't register root hub for %s, %d\n",
997 dev_name(&usb_dev->dev), retval);
998 } else {
999 spin_lock_irq (&hcd_root_hub_lock);
1000 hcd->rh_registered = 1;
1001 spin_unlock_irq (&hcd_root_hub_lock);
1002
1003 /* Did the HC die before the root hub was registered? */
1004 if (HCD_DEAD(hcd))
1005 usb_hc_died (hcd); /* This time clean up */
1006 }
1007 mutex_unlock(&usb_bus_idr_lock);
1008
1009 return retval;
1010 }
1011
1012 /*
1013 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1014 * @bus: the bus which the root hub belongs to
1015 * @portnum: the port which is being resumed
1016 *
1017 * HCDs should call this function when they know that a resume signal is
1018 * being sent to a root-hub port. The root hub will be prevented from
1019 * going into autosuspend until usb_hcd_end_port_resume() is called.
1020 *
1021 * The bus's private lock must be held by the caller.
1022 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1023 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1024 {
1025 unsigned bit = 1 << portnum;
1026
1027 if (!(bus->resuming_ports & bit)) {
1028 bus->resuming_ports |= bit;
1029 pm_runtime_get_noresume(&bus->root_hub->dev);
1030 }
1031 }
1032 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1033
1034 /*
1035 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1036 * @bus: the bus which the root hub belongs to
1037 * @portnum: the port which is being resumed
1038 *
1039 * HCDs should call this function when they know that a resume signal has
1040 * stopped being sent to a root-hub port. The root hub will be allowed to
1041 * autosuspend again.
1042 *
1043 * The bus's private lock must be held by the caller.
1044 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1045 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1046 {
1047 unsigned bit = 1 << portnum;
1048
1049 if (bus->resuming_ports & bit) {
1050 bus->resuming_ports &= ~bit;
1051 pm_runtime_put_noidle(&bus->root_hub->dev);
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1055
1056 /*-------------------------------------------------------------------------*/
1057
1058 /**
1059 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1060 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1061 * @is_input: true iff the transaction sends data to the host
1062 * @isoc: true for isochronous transactions, false for interrupt ones
1063 * @bytecount: how many bytes in the transaction.
1064 *
1065 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1066 *
1067 * Note:
1068 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1069 * scheduled in software, this function is only used for such scheduling.
1070 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1071 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1072 {
1073 unsigned long tmp;
1074
1075 switch (speed) {
1076 case USB_SPEED_LOW: /* INTR only */
1077 if (is_input) {
1078 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1079 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1080 } else {
1081 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1082 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1083 }
1084 case USB_SPEED_FULL: /* ISOC or INTR */
1085 if (isoc) {
1086 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1087 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1088 } else {
1089 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1090 return 9107L + BW_HOST_DELAY + tmp;
1091 }
1092 case USB_SPEED_HIGH: /* ISOC or INTR */
1093 /* FIXME adjust for input vs output */
1094 if (isoc)
1095 tmp = HS_NSECS_ISO (bytecount);
1096 else
1097 tmp = HS_NSECS (bytecount);
1098 return tmp;
1099 default:
1100 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1101 return -1;
1102 }
1103 }
1104 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1105
1106
1107 /*-------------------------------------------------------------------------*/
1108
1109 /*
1110 * Generic HC operations.
1111 */
1112
1113 /*-------------------------------------------------------------------------*/
1114
1115 /**
1116 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1117 * @hcd: host controller to which @urb was submitted
1118 * @urb: URB being submitted
1119 *
1120 * Host controller drivers should call this routine in their enqueue()
1121 * method. The HCD's private spinlock must be held and interrupts must
1122 * be disabled. The actions carried out here are required for URB
1123 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1124 *
1125 * Return: 0 for no error, otherwise a negative error code (in which case
1126 * the enqueue() method must fail). If no error occurs but enqueue() fails
1127 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1128 * the private spinlock and returning.
1129 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1130 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1131 {
1132 int rc = 0;
1133
1134 spin_lock(&hcd_urb_list_lock);
1135
1136 /* Check that the URB isn't being killed */
1137 if (unlikely(atomic_read(&urb->reject))) {
1138 rc = -EPERM;
1139 goto done;
1140 }
1141
1142 if (unlikely(!urb->ep->enabled)) {
1143 rc = -ENOENT;
1144 goto done;
1145 }
1146
1147 if (unlikely(!urb->dev->can_submit)) {
1148 rc = -EHOSTUNREACH;
1149 goto done;
1150 }
1151
1152 /*
1153 * Check the host controller's state and add the URB to the
1154 * endpoint's queue.
1155 */
1156 if (HCD_RH_RUNNING(hcd)) {
1157 urb->unlinked = 0;
1158 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1159 } else {
1160 rc = -ESHUTDOWN;
1161 goto done;
1162 }
1163 done:
1164 spin_unlock(&hcd_urb_list_lock);
1165 return rc;
1166 }
1167 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1168
1169 /**
1170 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1171 * @hcd: host controller to which @urb was submitted
1172 * @urb: URB being checked for unlinkability
1173 * @status: error code to store in @urb if the unlink succeeds
1174 *
1175 * Host controller drivers should call this routine in their dequeue()
1176 * method. The HCD's private spinlock must be held and interrupts must
1177 * be disabled. The actions carried out here are required for making
1178 * sure than an unlink is valid.
1179 *
1180 * Return: 0 for no error, otherwise a negative error code (in which case
1181 * the dequeue() method must fail). The possible error codes are:
1182 *
1183 * -EIDRM: @urb was not submitted or has already completed.
1184 * The completion function may not have been called yet.
1185 *
1186 * -EBUSY: @urb has already been unlinked.
1187 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1188 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1189 int status)
1190 {
1191 struct list_head *tmp;
1192
1193 /* insist the urb is still queued */
1194 list_for_each(tmp, &urb->ep->urb_list) {
1195 if (tmp == &urb->urb_list)
1196 break;
1197 }
1198 if (tmp != &urb->urb_list)
1199 return -EIDRM;
1200
1201 /* Any status except -EINPROGRESS means something already started to
1202 * unlink this URB from the hardware. So there's no more work to do.
1203 */
1204 if (urb->unlinked)
1205 return -EBUSY;
1206 urb->unlinked = status;
1207 return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1210
1211 /**
1212 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1213 * @hcd: host controller to which @urb was submitted
1214 * @urb: URB being unlinked
1215 *
1216 * Host controller drivers should call this routine before calling
1217 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1218 * interrupts must be disabled. The actions carried out here are required
1219 * for URB completion.
1220 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1221 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1222 {
1223 /* clear all state linking urb to this dev (and hcd) */
1224 spin_lock(&hcd_urb_list_lock);
1225 list_del_init(&urb->urb_list);
1226 spin_unlock(&hcd_urb_list_lock);
1227 }
1228 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1229
1230 /*
1231 * Some usb host controllers can only perform dma using a small SRAM area,
1232 * or have restrictions on addressable DRAM.
1233 * The usb core itself is however optimized for host controllers that can dma
1234 * using regular system memory - like pci devices doing bus mastering.
1235 *
1236 * To support host controllers with limited dma capabilities we provide dma
1237 * bounce buffers. This feature can be enabled by initializing
1238 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1239 *
1240 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1241 * data for dma using the genalloc API.
1242 *
1243 * So, to summarize...
1244 *
1245 * - We need "local" memory, canonical example being
1246 * a small SRAM on a discrete controller being the
1247 * only memory that the controller can read ...
1248 * (a) "normal" kernel memory is no good, and
1249 * (b) there's not enough to share
1250 *
1251 * - So we use that, even though the primary requirement
1252 * is that the memory be "local" (hence addressable
1253 * by that device), not "coherent".
1254 *
1255 */
1256
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1257 static int hcd_alloc_coherent(struct usb_bus *bus,
1258 gfp_t mem_flags, dma_addr_t *dma_handle,
1259 void **vaddr_handle, size_t size,
1260 enum dma_data_direction dir)
1261 {
1262 unsigned char *vaddr;
1263
1264 if (*vaddr_handle == NULL) {
1265 WARN_ON_ONCE(1);
1266 return -EFAULT;
1267 }
1268
1269 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1270 mem_flags, dma_handle);
1271 if (!vaddr)
1272 return -ENOMEM;
1273
1274 /*
1275 * Store the virtual address of the buffer at the end
1276 * of the allocated dma buffer. The size of the buffer
1277 * may be uneven so use unaligned functions instead
1278 * of just rounding up. It makes sense to optimize for
1279 * memory footprint over access speed since the amount
1280 * of memory available for dma may be limited.
1281 */
1282 put_unaligned((unsigned long)*vaddr_handle,
1283 (unsigned long *)(vaddr + size));
1284
1285 if (dir == DMA_TO_DEVICE)
1286 memcpy(vaddr, *vaddr_handle, size);
1287
1288 *vaddr_handle = vaddr;
1289 return 0;
1290 }
1291
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1292 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1293 void **vaddr_handle, size_t size,
1294 enum dma_data_direction dir)
1295 {
1296 unsigned char *vaddr = *vaddr_handle;
1297
1298 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1299
1300 if (dir == DMA_FROM_DEVICE)
1301 memcpy(vaddr, *vaddr_handle, size);
1302
1303 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1304
1305 *vaddr_handle = vaddr;
1306 *dma_handle = 0;
1307 }
1308
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1309 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1310 {
1311 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1312 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1313 dma_unmap_single(hcd->self.sysdev,
1314 urb->setup_dma,
1315 sizeof(struct usb_ctrlrequest),
1316 DMA_TO_DEVICE);
1317 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1318 hcd_free_coherent(urb->dev->bus,
1319 &urb->setup_dma,
1320 (void **) &urb->setup_packet,
1321 sizeof(struct usb_ctrlrequest),
1322 DMA_TO_DEVICE);
1323
1324 /* Make it safe to call this routine more than once */
1325 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1326 }
1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1328
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330 {
1331 if (hcd->driver->unmap_urb_for_dma)
1332 hcd->driver->unmap_urb_for_dma(hcd, urb);
1333 else
1334 usb_hcd_unmap_urb_for_dma(hcd, urb);
1335 }
1336
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1337 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1338 {
1339 enum dma_data_direction dir;
1340
1341 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1342
1343 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1345 (urb->transfer_flags & URB_DMA_MAP_SG)) {
1346 dma_unmap_sg(hcd->self.sysdev,
1347 urb->sg,
1348 urb->num_sgs,
1349 dir);
1350 } else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1351 (urb->transfer_flags & URB_DMA_MAP_PAGE)) {
1352 dma_unmap_page(hcd->self.sysdev,
1353 urb->transfer_dma,
1354 urb->transfer_buffer_length,
1355 dir);
1356 } else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) {
1358 dma_unmap_single(hcd->self.sysdev,
1359 urb->transfer_dma,
1360 urb->transfer_buffer_length,
1361 dir);
1362 } else if (urb->transfer_flags & URB_MAP_LOCAL) {
1363 hcd_free_coherent(urb->dev->bus,
1364 &urb->transfer_dma,
1365 &urb->transfer_buffer,
1366 urb->transfer_buffer_length,
1367 dir);
1368 } else if ((urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) && urb->sgt) {
1369 dma_sync_sgtable_for_cpu(hcd->self.sysdev, urb->sgt, dir);
1370 if (dir == DMA_FROM_DEVICE)
1371 invalidate_kernel_vmap_range(urb->transfer_buffer,
1372 urb->transfer_buffer_length);
1373 }
1374
1375 /* Make it safe to call this routine more than once */
1376 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1377 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1378 }
1379 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1380
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1381 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1382 gfp_t mem_flags)
1383 {
1384 if (hcd->driver->map_urb_for_dma)
1385 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1386 else
1387 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1388 }
1389
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1390 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1391 gfp_t mem_flags)
1392 {
1393 enum dma_data_direction dir;
1394 int ret = 0;
1395
1396 /* Map the URB's buffers for DMA access.
1397 * Lower level HCD code should use *_dma exclusively,
1398 * unless it uses pio or talks to another transport,
1399 * or uses the provided scatter gather list for bulk.
1400 */
1401
1402 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1403 if (hcd->self.uses_pio_for_control)
1404 return ret;
1405 if (hcd->localmem_pool) {
1406 ret = hcd_alloc_coherent(
1407 urb->dev->bus, mem_flags,
1408 &urb->setup_dma,
1409 (void **)&urb->setup_packet,
1410 sizeof(struct usb_ctrlrequest),
1411 DMA_TO_DEVICE);
1412 if (ret)
1413 return ret;
1414 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1415 } else if (hcd_uses_dma(hcd)) {
1416 if (object_is_on_stack(urb->setup_packet)) {
1417 WARN_ONCE(1, "setup packet is on stack\n");
1418 return -EAGAIN;
1419 }
1420
1421 urb->setup_dma = dma_map_single(
1422 hcd->self.sysdev,
1423 urb->setup_packet,
1424 sizeof(struct usb_ctrlrequest),
1425 DMA_TO_DEVICE);
1426 if (dma_mapping_error(hcd->self.sysdev,
1427 urb->setup_dma))
1428 return -EAGAIN;
1429 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1430 }
1431 }
1432
1433 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1434 if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) {
1435 if (!urb->sgt)
1436 return 0;
1437
1438 if (dir == DMA_TO_DEVICE)
1439 flush_kernel_vmap_range(urb->transfer_buffer,
1440 urb->transfer_buffer_length);
1441 dma_sync_sgtable_for_device(hcd->self.sysdev, urb->sgt, dir);
1442 } else if (urb->transfer_buffer_length != 0) {
1443 if (hcd->localmem_pool) {
1444 ret = hcd_alloc_coherent(
1445 urb->dev->bus, mem_flags,
1446 &urb->transfer_dma,
1447 &urb->transfer_buffer,
1448 urb->transfer_buffer_length,
1449 dir);
1450 if (ret == 0)
1451 urb->transfer_flags |= URB_MAP_LOCAL;
1452 } else if (hcd_uses_dma(hcd)) {
1453 if (urb->num_sgs) {
1454 int n;
1455
1456 /* We don't support sg for isoc transfers ! */
1457 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1458 WARN_ON(1);
1459 return -EINVAL;
1460 }
1461
1462 n = dma_map_sg(
1463 hcd->self.sysdev,
1464 urb->sg,
1465 urb->num_sgs,
1466 dir);
1467 if (!n)
1468 ret = -EAGAIN;
1469 else
1470 urb->transfer_flags |= URB_DMA_MAP_SG;
1471 urb->num_mapped_sgs = n;
1472 if (n != urb->num_sgs)
1473 urb->transfer_flags |=
1474 URB_DMA_SG_COMBINED;
1475 } else if (urb->sg) {
1476 struct scatterlist *sg = urb->sg;
1477 urb->transfer_dma = dma_map_page(
1478 hcd->self.sysdev,
1479 sg_page(sg),
1480 sg->offset,
1481 urb->transfer_buffer_length,
1482 dir);
1483 if (dma_mapping_error(hcd->self.sysdev,
1484 urb->transfer_dma))
1485 ret = -EAGAIN;
1486 else
1487 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1488 } else if (object_is_on_stack(urb->transfer_buffer)) {
1489 WARN_ONCE(1, "transfer buffer is on stack\n");
1490 ret = -EAGAIN;
1491 } else {
1492 urb->transfer_dma = dma_map_single(
1493 hcd->self.sysdev,
1494 urb->transfer_buffer,
1495 urb->transfer_buffer_length,
1496 dir);
1497 if (dma_mapping_error(hcd->self.sysdev,
1498 urb->transfer_dma))
1499 ret = -EAGAIN;
1500 else
1501 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1502 }
1503 }
1504 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1505 URB_SETUP_MAP_LOCAL)))
1506 usb_hcd_unmap_urb_for_dma(hcd, urb);
1507 }
1508 return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1511
1512 /*-------------------------------------------------------------------------*/
1513
1514 /* may be called in any context with a valid urb->dev usecount
1515 * caller surrenders "ownership" of urb
1516 * expects usb_submit_urb() to have sanity checked and conditioned all
1517 * inputs in the urb
1518 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1519 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1520 {
1521 int status;
1522 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1523
1524 /* increment urb's reference count as part of giving it to the HCD
1525 * (which will control it). HCD guarantees that it either returns
1526 * an error or calls giveback(), but not both.
1527 */
1528 usb_get_urb(urb);
1529 atomic_inc(&urb->use_count);
1530 atomic_inc(&urb->dev->urbnum);
1531 usbmon_urb_submit(&hcd->self, urb);
1532
1533 /* NOTE requirements on root-hub callers (usbfs and the hub
1534 * driver, for now): URBs' urb->transfer_buffer must be
1535 * valid and usb_buffer_{sync,unmap}() not be needed, since
1536 * they could clobber root hub response data. Also, control
1537 * URBs must be submitted in process context with interrupts
1538 * enabled.
1539 */
1540
1541 if (is_root_hub(urb->dev)) {
1542 status = rh_urb_enqueue(hcd, urb);
1543 } else {
1544 status = map_urb_for_dma(hcd, urb, mem_flags);
1545 if (likely(status == 0)) {
1546 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1547 if (unlikely(status))
1548 unmap_urb_for_dma(hcd, urb);
1549 }
1550 }
1551
1552 if (unlikely(status)) {
1553 usbmon_urb_submit_error(&hcd->self, urb, status);
1554 urb->hcpriv = NULL;
1555 INIT_LIST_HEAD(&urb->urb_list);
1556 atomic_dec(&urb->use_count);
1557 /*
1558 * Order the write of urb->use_count above before the read
1559 * of urb->reject below. Pairs with the memory barriers in
1560 * usb_kill_urb() and usb_poison_urb().
1561 */
1562 smp_mb__after_atomic();
1563
1564 atomic_dec(&urb->dev->urbnum);
1565 if (atomic_read(&urb->reject))
1566 wake_up(&usb_kill_urb_queue);
1567 usb_put_urb(urb);
1568 }
1569 return status;
1570 }
1571
1572 /*-------------------------------------------------------------------------*/
1573
1574 /* this makes the hcd giveback() the urb more quickly, by kicking it
1575 * off hardware queues (which may take a while) and returning it as
1576 * soon as practical. we've already set up the urb's return status,
1577 * but we can't know if the callback completed already.
1578 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1579 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1580 {
1581 int value;
1582
1583 if (is_root_hub(urb->dev))
1584 value = usb_rh_urb_dequeue(hcd, urb, status);
1585 else {
1586
1587 /* The only reason an HCD might fail this call is if
1588 * it has not yet fully queued the urb to begin with.
1589 * Such failures should be harmless. */
1590 value = hcd->driver->urb_dequeue(hcd, urb, status);
1591 }
1592 return value;
1593 }
1594
1595 /*
1596 * called in any context
1597 *
1598 * caller guarantees urb won't be recycled till both unlink()
1599 * and the urb's completion function return
1600 */
usb_hcd_unlink_urb(struct urb * urb,int status)1601 int usb_hcd_unlink_urb (struct urb *urb, int status)
1602 {
1603 struct usb_hcd *hcd;
1604 struct usb_device *udev = urb->dev;
1605 int retval = -EIDRM;
1606 unsigned long flags;
1607
1608 /* Prevent the device and bus from going away while
1609 * the unlink is carried out. If they are already gone
1610 * then urb->use_count must be 0, since disconnected
1611 * devices can't have any active URBs.
1612 */
1613 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1614 if (atomic_read(&urb->use_count) > 0) {
1615 retval = 0;
1616 usb_get_dev(udev);
1617 }
1618 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1619 if (retval == 0) {
1620 hcd = bus_to_hcd(urb->dev->bus);
1621 retval = unlink1(hcd, urb, status);
1622 if (retval == 0)
1623 retval = -EINPROGRESS;
1624 else if (retval != -EIDRM && retval != -EBUSY)
1625 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1626 urb, retval);
1627 usb_put_dev(udev);
1628 }
1629 return retval;
1630 }
1631
1632 /*-------------------------------------------------------------------------*/
1633
__usb_hcd_giveback_urb(struct urb * urb)1634 static void __usb_hcd_giveback_urb(struct urb *urb)
1635 {
1636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1637 struct usb_anchor *anchor = urb->anchor;
1638 int status = urb->unlinked;
1639
1640 urb->hcpriv = NULL;
1641 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1642 urb->actual_length < urb->transfer_buffer_length &&
1643 !status))
1644 status = -EREMOTEIO;
1645
1646 unmap_urb_for_dma(hcd, urb);
1647 usbmon_urb_complete(&hcd->self, urb, status);
1648 usb_anchor_suspend_wakeups(anchor);
1649 usb_unanchor_urb(urb);
1650 if (likely(status == 0))
1651 usb_led_activity(USB_LED_EVENT_HOST);
1652
1653 /* pass ownership to the completion handler */
1654 urb->status = status;
1655 /*
1656 * This function can be called in task context inside another remote
1657 * coverage collection section, but kcov doesn't support that kind of
1658 * recursion yet. Only collect coverage in softirq context for now.
1659 */
1660 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1661 urb->complete(urb);
1662 kcov_remote_stop_softirq();
1663
1664 usb_anchor_resume_wakeups(anchor);
1665 atomic_dec(&urb->use_count);
1666 /*
1667 * Order the write of urb->use_count above before the read
1668 * of urb->reject below. Pairs with the memory barriers in
1669 * usb_kill_urb() and usb_poison_urb().
1670 */
1671 smp_mb__after_atomic();
1672
1673 if (unlikely(atomic_read(&urb->reject)))
1674 wake_up(&usb_kill_urb_queue);
1675 usb_put_urb(urb);
1676 }
1677
usb_giveback_urb_bh(struct work_struct * work)1678 static void usb_giveback_urb_bh(struct work_struct *work)
1679 {
1680 struct giveback_urb_bh *bh =
1681 container_of(work, struct giveback_urb_bh, bh);
1682 struct list_head local_list;
1683
1684 spin_lock_irq(&bh->lock);
1685 bh->running = true;
1686 list_replace_init(&bh->head, &local_list);
1687 spin_unlock_irq(&bh->lock);
1688
1689 while (!list_empty(&local_list)) {
1690 struct urb *urb;
1691
1692 urb = list_entry(local_list.next, struct urb, urb_list);
1693 list_del_init(&urb->urb_list);
1694 bh->completing_ep = urb->ep;
1695 __usb_hcd_giveback_urb(urb);
1696 bh->completing_ep = NULL;
1697 }
1698
1699 /*
1700 * giveback new URBs next time to prevent this function
1701 * from not exiting for a long time.
1702 */
1703 spin_lock_irq(&bh->lock);
1704 if (!list_empty(&bh->head)) {
1705 if (bh->high_prio)
1706 queue_work(system_bh_highpri_wq, &bh->bh);
1707 else
1708 queue_work(system_bh_wq, &bh->bh);
1709 }
1710 bh->running = false;
1711 spin_unlock_irq(&bh->lock);
1712 }
1713
1714 /**
1715 * usb_hcd_giveback_urb - return URB from HCD to device driver
1716 * @hcd: host controller returning the URB
1717 * @urb: urb being returned to the USB device driver.
1718 * @status: completion status code for the URB.
1719 *
1720 * Context: atomic. The completion callback is invoked either in a work queue
1721 * (BH) context or in the caller's context, depending on whether the HCD_BH
1722 * flag is set in the @hcd structure, except that URBs submitted to the
1723 * root hub always complete in BH context.
1724 *
1725 * This hands the URB from HCD to its USB device driver, using its
1726 * completion function. The HCD has freed all per-urb resources
1727 * (and is done using urb->hcpriv). It also released all HCD locks;
1728 * the device driver won't cause problems if it frees, modifies,
1729 * or resubmits this URB.
1730 *
1731 * If @urb was unlinked, the value of @status will be overridden by
1732 * @urb->unlinked. Erroneous short transfers are detected in case
1733 * the HCD hasn't checked for them.
1734 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1735 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1736 {
1737 struct giveback_urb_bh *bh;
1738 bool running;
1739
1740 /* pass status to BH via unlinked */
1741 if (likely(!urb->unlinked))
1742 urb->unlinked = status;
1743
1744 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1745 __usb_hcd_giveback_urb(urb);
1746 return;
1747 }
1748
1749 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1750 bh = &hcd->high_prio_bh;
1751 else
1752 bh = &hcd->low_prio_bh;
1753
1754 spin_lock(&bh->lock);
1755 list_add_tail(&urb->urb_list, &bh->head);
1756 running = bh->running;
1757 spin_unlock(&bh->lock);
1758
1759 if (running)
1760 ;
1761 else if (bh->high_prio)
1762 queue_work(system_bh_highpri_wq, &bh->bh);
1763 else
1764 queue_work(system_bh_wq, &bh->bh);
1765 }
1766 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1767
1768 /*-------------------------------------------------------------------------*/
1769
1770 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1771 * queue to drain completely. The caller must first insure that no more
1772 * URBs can be submitted for this endpoint.
1773 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1774 void usb_hcd_flush_endpoint(struct usb_device *udev,
1775 struct usb_host_endpoint *ep)
1776 {
1777 struct usb_hcd *hcd;
1778 struct urb *urb;
1779
1780 if (!ep)
1781 return;
1782 might_sleep();
1783 hcd = bus_to_hcd(udev->bus);
1784
1785 /* No more submits can occur */
1786 spin_lock_irq(&hcd_urb_list_lock);
1787 rescan:
1788 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1789 int is_in;
1790
1791 if (urb->unlinked)
1792 continue;
1793 usb_get_urb (urb);
1794 is_in = usb_urb_dir_in(urb);
1795 spin_unlock(&hcd_urb_list_lock);
1796
1797 /* kick hcd */
1798 unlink1(hcd, urb, -ESHUTDOWN);
1799 dev_dbg (hcd->self.controller,
1800 "shutdown urb %p ep%d%s-%s\n",
1801 urb, usb_endpoint_num(&ep->desc),
1802 is_in ? "in" : "out",
1803 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1804 usb_put_urb (urb);
1805
1806 /* list contents may have changed */
1807 spin_lock(&hcd_urb_list_lock);
1808 goto rescan;
1809 }
1810 spin_unlock_irq(&hcd_urb_list_lock);
1811
1812 /* Wait until the endpoint queue is completely empty */
1813 while (!list_empty (&ep->urb_list)) {
1814 spin_lock_irq(&hcd_urb_list_lock);
1815
1816 /* The list may have changed while we acquired the spinlock */
1817 urb = NULL;
1818 if (!list_empty (&ep->urb_list)) {
1819 urb = list_entry (ep->urb_list.prev, struct urb,
1820 urb_list);
1821 usb_get_urb (urb);
1822 }
1823 spin_unlock_irq(&hcd_urb_list_lock);
1824
1825 if (urb) {
1826 usb_kill_urb (urb);
1827 usb_put_urb (urb);
1828 }
1829 }
1830 }
1831
1832 /**
1833 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1834 * the bus bandwidth
1835 * @udev: target &usb_device
1836 * @new_config: new configuration to install
1837 * @cur_alt: the current alternate interface setting
1838 * @new_alt: alternate interface setting that is being installed
1839 *
1840 * To change configurations, pass in the new configuration in new_config,
1841 * and pass NULL for cur_alt and new_alt.
1842 *
1843 * To reset a device's configuration (put the device in the ADDRESSED state),
1844 * pass in NULL for new_config, cur_alt, and new_alt.
1845 *
1846 * To change alternate interface settings, pass in NULL for new_config,
1847 * pass in the current alternate interface setting in cur_alt,
1848 * and pass in the new alternate interface setting in new_alt.
1849 *
1850 * Return: An error if the requested bandwidth change exceeds the
1851 * bus bandwidth or host controller internal resources.
1852 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1853 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1854 struct usb_host_config *new_config,
1855 struct usb_host_interface *cur_alt,
1856 struct usb_host_interface *new_alt)
1857 {
1858 int num_intfs, i, j;
1859 struct usb_host_interface *alt = NULL;
1860 int ret = 0;
1861 struct usb_hcd *hcd;
1862 struct usb_host_endpoint *ep;
1863
1864 hcd = bus_to_hcd(udev->bus);
1865 if (!hcd->driver->check_bandwidth)
1866 return 0;
1867
1868 /* Configuration is being removed - set configuration 0 */
1869 if (!new_config && !cur_alt) {
1870 for (i = 1; i < 16; ++i) {
1871 ep = udev->ep_out[i];
1872 if (ep)
1873 hcd->driver->drop_endpoint(hcd, udev, ep);
1874 ep = udev->ep_in[i];
1875 if (ep)
1876 hcd->driver->drop_endpoint(hcd, udev, ep);
1877 }
1878 hcd->driver->check_bandwidth(hcd, udev);
1879 return 0;
1880 }
1881 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1882 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1883 * of the bus. There will always be bandwidth for endpoint 0, so it's
1884 * ok to exclude it.
1885 */
1886 if (new_config) {
1887 num_intfs = new_config->desc.bNumInterfaces;
1888 /* Remove endpoints (except endpoint 0, which is always on the
1889 * schedule) from the old config from the schedule
1890 */
1891 for (i = 1; i < 16; ++i) {
1892 ep = udev->ep_out[i];
1893 if (ep) {
1894 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1895 if (ret < 0)
1896 goto reset;
1897 }
1898 ep = udev->ep_in[i];
1899 if (ep) {
1900 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1901 if (ret < 0)
1902 goto reset;
1903 }
1904 }
1905 for (i = 0; i < num_intfs; ++i) {
1906 struct usb_host_interface *first_alt;
1907 int iface_num;
1908
1909 first_alt = &new_config->intf_cache[i]->altsetting[0];
1910 iface_num = first_alt->desc.bInterfaceNumber;
1911 /* Set up endpoints for alternate interface setting 0 */
1912 alt = usb_find_alt_setting(new_config, iface_num, 0);
1913 if (!alt)
1914 /* No alt setting 0? Pick the first setting. */
1915 alt = first_alt;
1916
1917 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1918 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1919 if (ret < 0)
1920 goto reset;
1921 }
1922 }
1923 }
1924 if (cur_alt && new_alt) {
1925 struct usb_interface *iface = usb_ifnum_to_if(udev,
1926 cur_alt->desc.bInterfaceNumber);
1927
1928 if (!iface)
1929 return -EINVAL;
1930 if (iface->resetting_device) {
1931 /*
1932 * The USB core just reset the device, so the xHCI host
1933 * and the device will think alt setting 0 is installed.
1934 * However, the USB core will pass in the alternate
1935 * setting installed before the reset as cur_alt. Dig
1936 * out the alternate setting 0 structure, or the first
1937 * alternate setting if a broken device doesn't have alt
1938 * setting 0.
1939 */
1940 cur_alt = usb_altnum_to_altsetting(iface, 0);
1941 if (!cur_alt)
1942 cur_alt = &iface->altsetting[0];
1943 }
1944
1945 /* Drop all the endpoints in the current alt setting */
1946 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1947 ret = hcd->driver->drop_endpoint(hcd, udev,
1948 &cur_alt->endpoint[i]);
1949 if (ret < 0)
1950 goto reset;
1951 }
1952 /* Add all the endpoints in the new alt setting */
1953 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1954 ret = hcd->driver->add_endpoint(hcd, udev,
1955 &new_alt->endpoint[i]);
1956 if (ret < 0)
1957 goto reset;
1958 }
1959 }
1960 ret = hcd->driver->check_bandwidth(hcd, udev);
1961 reset:
1962 if (ret < 0)
1963 hcd->driver->reset_bandwidth(hcd, udev);
1964 return ret;
1965 }
1966
1967 /* Disables the endpoint: synchronizes with the hcd to make sure all
1968 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1969 * have been called previously. Use for set_configuration, set_interface,
1970 * driver removal, physical disconnect.
1971 *
1972 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1973 * type, maxpacket size, toggle, halt status, and scheduling.
1974 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1975 void usb_hcd_disable_endpoint(struct usb_device *udev,
1976 struct usb_host_endpoint *ep)
1977 {
1978 struct usb_hcd *hcd;
1979
1980 might_sleep();
1981 hcd = bus_to_hcd(udev->bus);
1982 if (hcd->driver->endpoint_disable)
1983 hcd->driver->endpoint_disable(hcd, ep);
1984 }
1985
1986 /**
1987 * usb_hcd_reset_endpoint - reset host endpoint state
1988 * @udev: USB device.
1989 * @ep: the endpoint to reset.
1990 *
1991 * Resets any host endpoint state such as the toggle bit, sequence
1992 * number and current window.
1993 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1994 void usb_hcd_reset_endpoint(struct usb_device *udev,
1995 struct usb_host_endpoint *ep)
1996 {
1997 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1998
1999 if (hcd->driver->endpoint_reset)
2000 hcd->driver->endpoint_reset(hcd, ep);
2001 else {
2002 int epnum = usb_endpoint_num(&ep->desc);
2003 int is_out = usb_endpoint_dir_out(&ep->desc);
2004 int is_control = usb_endpoint_xfer_control(&ep->desc);
2005
2006 usb_settoggle(udev, epnum, is_out, 0);
2007 if (is_control)
2008 usb_settoggle(udev, epnum, !is_out, 0);
2009 }
2010 }
2011
2012 /**
2013 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2014 * @interface: alternate setting that includes all endpoints.
2015 * @eps: array of endpoints that need streams.
2016 * @num_eps: number of endpoints in the array.
2017 * @num_streams: number of streams to allocate.
2018 * @mem_flags: flags hcd should use to allocate memory.
2019 *
2020 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2021 * Drivers may queue multiple transfers to different stream IDs, which may
2022 * complete in a different order than they were queued.
2023 *
2024 * Return: On success, the number of allocated streams. On failure, a negative
2025 * error code.
2026 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2027 int usb_alloc_streams(struct usb_interface *interface,
2028 struct usb_host_endpoint **eps, unsigned int num_eps,
2029 unsigned int num_streams, gfp_t mem_flags)
2030 {
2031 struct usb_hcd *hcd;
2032 struct usb_device *dev;
2033 int i, ret;
2034
2035 dev = interface_to_usbdev(interface);
2036 hcd = bus_to_hcd(dev->bus);
2037 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2038 return -EINVAL;
2039 if (dev->speed < USB_SPEED_SUPER)
2040 return -EINVAL;
2041 if (dev->state < USB_STATE_CONFIGURED)
2042 return -ENODEV;
2043
2044 for (i = 0; i < num_eps; i++) {
2045 /* Streams only apply to bulk endpoints. */
2046 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2047 return -EINVAL;
2048 /* Re-alloc is not allowed */
2049 if (eps[i]->streams)
2050 return -EINVAL;
2051 }
2052
2053 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2054 num_streams, mem_flags);
2055 if (ret < 0)
2056 return ret;
2057
2058 for (i = 0; i < num_eps; i++)
2059 eps[i]->streams = ret;
2060
2061 return ret;
2062 }
2063 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2064
2065 /**
2066 * usb_free_streams - free bulk endpoint stream IDs.
2067 * @interface: alternate setting that includes all endpoints.
2068 * @eps: array of endpoints to remove streams from.
2069 * @num_eps: number of endpoints in the array.
2070 * @mem_flags: flags hcd should use to allocate memory.
2071 *
2072 * Reverts a group of bulk endpoints back to not using stream IDs.
2073 * Can fail if we are given bad arguments, or HCD is broken.
2074 *
2075 * Return: 0 on success. On failure, a negative error code.
2076 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2077 int usb_free_streams(struct usb_interface *interface,
2078 struct usb_host_endpoint **eps, unsigned int num_eps,
2079 gfp_t mem_flags)
2080 {
2081 struct usb_hcd *hcd;
2082 struct usb_device *dev;
2083 int i, ret;
2084
2085 dev = interface_to_usbdev(interface);
2086 hcd = bus_to_hcd(dev->bus);
2087 if (dev->speed < USB_SPEED_SUPER)
2088 return -EINVAL;
2089
2090 /* Double-free is not allowed */
2091 for (i = 0; i < num_eps; i++)
2092 if (!eps[i] || !eps[i]->streams)
2093 return -EINVAL;
2094
2095 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2096 if (ret < 0)
2097 return ret;
2098
2099 for (i = 0; i < num_eps; i++)
2100 eps[i]->streams = 0;
2101
2102 return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(usb_free_streams);
2105
2106 /* Protect against drivers that try to unlink URBs after the device
2107 * is gone, by waiting until all unlinks for @udev are finished.
2108 * Since we don't currently track URBs by device, simply wait until
2109 * nothing is running in the locked region of usb_hcd_unlink_urb().
2110 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2111 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2112 {
2113 spin_lock_irq(&hcd_urb_unlink_lock);
2114 spin_unlock_irq(&hcd_urb_unlink_lock);
2115 }
2116
2117 /*-------------------------------------------------------------------------*/
2118
2119 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2120 int usb_hcd_get_frame_number (struct usb_device *udev)
2121 {
2122 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2123
2124 if (!HCD_RH_RUNNING(hcd))
2125 return -ESHUTDOWN;
2126 return hcd->driver->get_frame_number (hcd);
2127 }
2128
2129 /*-------------------------------------------------------------------------*/
2130 #ifdef CONFIG_USB_HCD_TEST_MODE
2131
usb_ehset_completion(struct urb * urb)2132 static void usb_ehset_completion(struct urb *urb)
2133 {
2134 struct completion *done = urb->context;
2135
2136 complete(done);
2137 }
2138 /*
2139 * Allocate and initialize a control URB. This request will be used by the
2140 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2141 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2142 * Return NULL if failed.
2143 */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2144 static struct urb *request_single_step_set_feature_urb(
2145 struct usb_device *udev,
2146 void *dr,
2147 void *buf,
2148 struct completion *done)
2149 {
2150 struct urb *urb;
2151 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2152
2153 urb = usb_alloc_urb(0, GFP_KERNEL);
2154 if (!urb)
2155 return NULL;
2156
2157 urb->pipe = usb_rcvctrlpipe(udev, 0);
2158
2159 urb->ep = &udev->ep0;
2160 urb->dev = udev;
2161 urb->setup_packet = (void *)dr;
2162 urb->transfer_buffer = buf;
2163 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2164 urb->complete = usb_ehset_completion;
2165 urb->status = -EINPROGRESS;
2166 urb->actual_length = 0;
2167 urb->transfer_flags = URB_DIR_IN | URB_NO_TRANSFER_DMA_MAP;
2168 usb_get_urb(urb);
2169 atomic_inc(&urb->use_count);
2170 atomic_inc(&urb->dev->urbnum);
2171 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2172 usb_put_urb(urb);
2173 usb_free_urb(urb);
2174 return NULL;
2175 }
2176
2177 urb->context = done;
2178 return urb;
2179 }
2180
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2181 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2182 {
2183 int retval = -ENOMEM;
2184 struct usb_ctrlrequest *dr;
2185 struct urb *urb;
2186 struct usb_device *udev;
2187 struct usb_device_descriptor *buf;
2188 DECLARE_COMPLETION_ONSTACK(done);
2189
2190 /* Obtain udev of the rhub's child port */
2191 udev = usb_hub_find_child(hcd->self.root_hub, port);
2192 if (!udev) {
2193 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2194 return -ENODEV;
2195 }
2196 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2197 if (!buf)
2198 return -ENOMEM;
2199
2200 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2201 if (!dr) {
2202 kfree(buf);
2203 return -ENOMEM;
2204 }
2205
2206 /* Fill Setup packet for GetDescriptor */
2207 dr->bRequestType = USB_DIR_IN;
2208 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2209 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2210 dr->wIndex = 0;
2211 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2212 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2213 if (!urb)
2214 goto cleanup;
2215
2216 /* Submit just the SETUP stage */
2217 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2218 if (retval)
2219 goto out1;
2220 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2221 usb_kill_urb(urb);
2222 retval = -ETIMEDOUT;
2223 dev_err(hcd->self.controller,
2224 "%s SETUP stage timed out on ep0\n", __func__);
2225 goto out1;
2226 }
2227 msleep(15 * 1000);
2228
2229 /* Complete remaining DATA and STATUS stages using the same URB */
2230 urb->status = -EINPROGRESS;
2231 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
2232 usb_get_urb(urb);
2233 atomic_inc(&urb->use_count);
2234 atomic_inc(&urb->dev->urbnum);
2235 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2236 usb_put_urb(urb);
2237 goto out1;
2238 }
2239
2240 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2241 if (!retval && !wait_for_completion_timeout(&done,
2242 msecs_to_jiffies(2000))) {
2243 usb_kill_urb(urb);
2244 retval = -ETIMEDOUT;
2245 dev_err(hcd->self.controller,
2246 "%s IN stage timed out on ep0\n", __func__);
2247 }
2248 out1:
2249 usb_free_urb(urb);
2250 cleanup:
2251 kfree(dr);
2252 kfree(buf);
2253 return retval;
2254 }
2255 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2256 #endif /* CONFIG_USB_HCD_TEST_MODE */
2257
2258 /*-------------------------------------------------------------------------*/
2259
2260 #ifdef CONFIG_PM
2261
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2262 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2263 {
2264 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2265 int status;
2266 int old_state = hcd->state;
2267
2268 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2269 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2270 rhdev->do_remote_wakeup);
2271 if (HCD_DEAD(hcd)) {
2272 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2273 return 0;
2274 }
2275
2276 if (!hcd->driver->bus_suspend) {
2277 status = -ENOENT;
2278 } else {
2279 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2280 hcd->state = HC_STATE_QUIESCING;
2281 status = hcd->driver->bus_suspend(hcd);
2282 }
2283 if (status == 0) {
2284 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2285 hcd->state = HC_STATE_SUSPENDED;
2286
2287 if (!PMSG_IS_AUTO(msg))
2288 usb_phy_roothub_suspend(hcd->self.sysdev,
2289 hcd->phy_roothub);
2290
2291 /* Did we race with a root-hub wakeup event? */
2292 if (rhdev->do_remote_wakeup) {
2293 char buffer[6];
2294
2295 status = hcd->driver->hub_status_data(hcd, buffer);
2296 if (status != 0) {
2297 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2298 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2299 status = -EBUSY;
2300 }
2301 }
2302 } else {
2303 spin_lock_irq(&hcd_root_hub_lock);
2304 if (!HCD_DEAD(hcd)) {
2305 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2306 hcd->state = old_state;
2307 }
2308 spin_unlock_irq(&hcd_root_hub_lock);
2309 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2310 "suspend", status);
2311 }
2312 return status;
2313 }
2314
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2315 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2316 {
2317 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2318 int status;
2319 int old_state = hcd->state;
2320
2321 dev_dbg(&rhdev->dev, "usb %sresume\n",
2322 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2323 if (HCD_DEAD(hcd)) {
2324 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2325 return 0;
2326 }
2327
2328 if (!PMSG_IS_AUTO(msg)) {
2329 status = usb_phy_roothub_resume(hcd->self.sysdev,
2330 hcd->phy_roothub);
2331 if (status)
2332 return status;
2333 }
2334
2335 if (!hcd->driver->bus_resume)
2336 return -ENOENT;
2337 if (HCD_RH_RUNNING(hcd))
2338 return 0;
2339
2340 hcd->state = HC_STATE_RESUMING;
2341 status = hcd->driver->bus_resume(hcd);
2342 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2343 if (status == 0)
2344 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2345
2346 if (status == 0) {
2347 struct usb_device *udev;
2348 int port1;
2349
2350 spin_lock_irq(&hcd_root_hub_lock);
2351 if (!HCD_DEAD(hcd)) {
2352 usb_set_device_state(rhdev, rhdev->actconfig
2353 ? USB_STATE_CONFIGURED
2354 : USB_STATE_ADDRESS);
2355 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2356 hcd->state = HC_STATE_RUNNING;
2357 }
2358 spin_unlock_irq(&hcd_root_hub_lock);
2359
2360 /*
2361 * Check whether any of the enabled ports on the root hub are
2362 * unsuspended. If they are then a TRSMRCY delay is needed
2363 * (this is what the USB-2 spec calls a "global resume").
2364 * Otherwise we can skip the delay.
2365 */
2366 usb_hub_for_each_child(rhdev, port1, udev) {
2367 if (udev->state != USB_STATE_NOTATTACHED &&
2368 !udev->port_is_suspended) {
2369 usleep_range(10000, 11000); /* TRSMRCY */
2370 break;
2371 }
2372 }
2373 } else {
2374 hcd->state = old_state;
2375 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2376 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2377 "resume", status);
2378 if (status != -ESHUTDOWN)
2379 usb_hc_died(hcd);
2380 }
2381 return status;
2382 }
2383
2384 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2385 static void hcd_resume_work(struct work_struct *work)
2386 {
2387 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2388 struct usb_device *udev = hcd->self.root_hub;
2389
2390 usb_remote_wakeup(udev);
2391 }
2392
2393 /**
2394 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2395 * @hcd: host controller for this root hub
2396 *
2397 * The USB host controller calls this function when its root hub is
2398 * suspended (with the remote wakeup feature enabled) and a remote
2399 * wakeup request is received. The routine submits a workqueue request
2400 * to resume the root hub (that is, manage its downstream ports again).
2401 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2402 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2403 {
2404 unsigned long flags;
2405
2406 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2407 if (hcd->rh_registered) {
2408 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2409 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2410 queue_work(pm_wq, &hcd->wakeup_work);
2411 }
2412 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2413 }
2414 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2415
2416 #endif /* CONFIG_PM */
2417
2418 /*-------------------------------------------------------------------------*/
2419
2420 #ifdef CONFIG_USB_OTG
2421
2422 /**
2423 * usb_bus_start_enum - start immediate enumeration (for OTG)
2424 * @bus: the bus (must use hcd framework)
2425 * @port_num: 1-based number of port; usually bus->otg_port
2426 * Context: atomic
2427 *
2428 * Starts enumeration, with an immediate reset followed later by
2429 * hub_wq identifying and possibly configuring the device.
2430 * This is needed by OTG controller drivers, where it helps meet
2431 * HNP protocol timing requirements for starting a port reset.
2432 *
2433 * Return: 0 if successful.
2434 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2435 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2436 {
2437 struct usb_hcd *hcd;
2438 int status = -EOPNOTSUPP;
2439
2440 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2441 * boards with root hubs hooked up to internal devices (instead of
2442 * just the OTG port) may need more attention to resetting...
2443 */
2444 hcd = bus_to_hcd(bus);
2445 if (port_num && hcd->driver->start_port_reset)
2446 status = hcd->driver->start_port_reset(hcd, port_num);
2447
2448 /* allocate hub_wq shortly after (first) root port reset finishes;
2449 * it may issue others, until at least 50 msecs have passed.
2450 */
2451 if (status == 0)
2452 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2453 return status;
2454 }
2455 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2456
2457 #endif
2458
2459 /*-------------------------------------------------------------------------*/
2460
2461 /**
2462 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2463 * @irq: the IRQ being raised
2464 * @__hcd: pointer to the HCD whose IRQ is being signaled
2465 *
2466 * If the controller isn't HALTed, calls the driver's irq handler.
2467 * Checks whether the controller is now dead.
2468 *
2469 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2470 */
usb_hcd_irq(int irq,void * __hcd)2471 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2472 {
2473 struct usb_hcd *hcd = __hcd;
2474 irqreturn_t rc;
2475
2476 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2477 rc = IRQ_NONE;
2478 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2479 rc = IRQ_NONE;
2480 else
2481 rc = IRQ_HANDLED;
2482
2483 return rc;
2484 }
2485 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2486
2487 /*-------------------------------------------------------------------------*/
2488
2489 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2490 static void hcd_died_work(struct work_struct *work)
2491 {
2492 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2493 static char *env[] = {
2494 "ERROR=DEAD",
2495 NULL
2496 };
2497
2498 /* Notify user space that the host controller has died */
2499 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2500 }
2501
2502 /**
2503 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2504 * @hcd: pointer to the HCD representing the controller
2505 *
2506 * This is called by bus glue to report a USB host controller that died
2507 * while operations may still have been pending. It's called automatically
2508 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2509 *
2510 * Only call this function with the primary HCD.
2511 */
usb_hc_died(struct usb_hcd * hcd)2512 void usb_hc_died (struct usb_hcd *hcd)
2513 {
2514 unsigned long flags;
2515
2516 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2517
2518 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2519 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2520 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2521 if (hcd->rh_registered) {
2522 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2523
2524 /* make hub_wq clean up old urbs and devices */
2525 usb_set_device_state (hcd->self.root_hub,
2526 USB_STATE_NOTATTACHED);
2527 usb_kick_hub_wq(hcd->self.root_hub);
2528 }
2529 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2530 hcd = hcd->shared_hcd;
2531 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2532 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2533 if (hcd->rh_registered) {
2534 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2535
2536 /* make hub_wq clean up old urbs and devices */
2537 usb_set_device_state(hcd->self.root_hub,
2538 USB_STATE_NOTATTACHED);
2539 usb_kick_hub_wq(hcd->self.root_hub);
2540 }
2541 }
2542
2543 /* Handle the case where this function gets called with a shared HCD */
2544 if (usb_hcd_is_primary_hcd(hcd))
2545 schedule_work(&hcd->died_work);
2546 else
2547 schedule_work(&hcd->primary_hcd->died_work);
2548
2549 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2550 /* Make sure that the other roothub is also deallocated. */
2551 }
2552 EXPORT_SYMBOL_GPL (usb_hc_died);
2553
2554 /*-------------------------------------------------------------------------*/
2555
init_giveback_urb_bh(struct giveback_urb_bh * bh)2556 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2557 {
2558
2559 spin_lock_init(&bh->lock);
2560 INIT_LIST_HEAD(&bh->head);
2561 INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2562 }
2563
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2564 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2565 struct device *sysdev, struct device *dev, const char *bus_name,
2566 struct usb_hcd *primary_hcd)
2567 {
2568 struct usb_hcd *hcd;
2569
2570 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2571 if (!hcd)
2572 return NULL;
2573 if (primary_hcd == NULL) {
2574 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2575 GFP_KERNEL);
2576 if (!hcd->address0_mutex) {
2577 kfree(hcd);
2578 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2579 return NULL;
2580 }
2581 mutex_init(hcd->address0_mutex);
2582 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2583 GFP_KERNEL);
2584 if (!hcd->bandwidth_mutex) {
2585 kfree(hcd->address0_mutex);
2586 kfree(hcd);
2587 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2588 return NULL;
2589 }
2590 mutex_init(hcd->bandwidth_mutex);
2591 dev_set_drvdata(dev, hcd);
2592 } else {
2593 mutex_lock(&usb_port_peer_mutex);
2594 hcd->address0_mutex = primary_hcd->address0_mutex;
2595 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2596 hcd->primary_hcd = primary_hcd;
2597 primary_hcd->primary_hcd = primary_hcd;
2598 hcd->shared_hcd = primary_hcd;
2599 primary_hcd->shared_hcd = hcd;
2600 mutex_unlock(&usb_port_peer_mutex);
2601 }
2602
2603 kref_init(&hcd->kref);
2604
2605 usb_bus_init(&hcd->self);
2606 hcd->self.controller = dev;
2607 hcd->self.sysdev = sysdev;
2608 hcd->self.bus_name = bus_name;
2609
2610 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2611 #ifdef CONFIG_PM
2612 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2613 #endif
2614
2615 INIT_WORK(&hcd->died_work, hcd_died_work);
2616
2617 hcd->driver = driver;
2618 hcd->speed = driver->flags & HCD_MASK;
2619 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2620 "USB Host Controller";
2621 return hcd;
2622 }
2623 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2624
2625 /**
2626 * usb_create_shared_hcd - create and initialize an HCD structure
2627 * @driver: HC driver that will use this hcd
2628 * @dev: device for this HC, stored in hcd->self.controller
2629 * @bus_name: value to store in hcd->self.bus_name
2630 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2631 * PCI device. Only allocate certain resources for the primary HCD
2632 *
2633 * Context: task context, might sleep.
2634 *
2635 * Allocate a struct usb_hcd, with extra space at the end for the
2636 * HC driver's private data. Initialize the generic members of the
2637 * hcd structure.
2638 *
2639 * Return: On success, a pointer to the created and initialized HCD structure.
2640 * On failure (e.g. if memory is unavailable), %NULL.
2641 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2642 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2643 struct device *dev, const char *bus_name,
2644 struct usb_hcd *primary_hcd)
2645 {
2646 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2647 }
2648 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2649
2650 /**
2651 * usb_create_hcd - create and initialize an HCD structure
2652 * @driver: HC driver that will use this hcd
2653 * @dev: device for this HC, stored in hcd->self.controller
2654 * @bus_name: value to store in hcd->self.bus_name
2655 *
2656 * Context: task context, might sleep.
2657 *
2658 * Allocate a struct usb_hcd, with extra space at the end for the
2659 * HC driver's private data. Initialize the generic members of the
2660 * hcd structure.
2661 *
2662 * Return: On success, a pointer to the created and initialized HCD
2663 * structure. On failure (e.g. if memory is unavailable), %NULL.
2664 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2665 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2666 struct device *dev, const char *bus_name)
2667 {
2668 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2669 }
2670 EXPORT_SYMBOL_GPL(usb_create_hcd);
2671
2672 /*
2673 * Roothubs that share one PCI device must also share the bandwidth mutex.
2674 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2675 * deallocated.
2676 *
2677 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2678 * freed. When hcd_release() is called for either hcd in a peer set,
2679 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2680 */
hcd_release(struct kref * kref)2681 static void hcd_release(struct kref *kref)
2682 {
2683 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2684
2685 mutex_lock(&usb_port_peer_mutex);
2686 if (hcd->shared_hcd) {
2687 struct usb_hcd *peer = hcd->shared_hcd;
2688
2689 peer->shared_hcd = NULL;
2690 peer->primary_hcd = NULL;
2691 } else {
2692 kfree(hcd->address0_mutex);
2693 kfree(hcd->bandwidth_mutex);
2694 }
2695 mutex_unlock(&usb_port_peer_mutex);
2696 kfree(hcd);
2697 }
2698
usb_get_hcd(struct usb_hcd * hcd)2699 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2700 {
2701 if (hcd)
2702 kref_get (&hcd->kref);
2703 return hcd;
2704 }
2705 EXPORT_SYMBOL_GPL(usb_get_hcd);
2706
usb_put_hcd(struct usb_hcd * hcd)2707 void usb_put_hcd (struct usb_hcd *hcd)
2708 {
2709 if (hcd)
2710 kref_put (&hcd->kref, hcd_release);
2711 }
2712 EXPORT_SYMBOL_GPL(usb_put_hcd);
2713
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2714 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2715 {
2716 if (!hcd->primary_hcd)
2717 return 1;
2718 return hcd == hcd->primary_hcd;
2719 }
2720 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2721
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2722 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2723 {
2724 if (!hcd->driver->find_raw_port_number)
2725 return port1;
2726
2727 return hcd->driver->find_raw_port_number(hcd, port1);
2728 }
2729
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2730 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2731 unsigned int irqnum, unsigned long irqflags)
2732 {
2733 int retval;
2734
2735 if (hcd->driver->irq) {
2736
2737 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2738 hcd->driver->description, hcd->self.busnum);
2739 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2740 hcd->irq_descr, hcd);
2741 if (retval != 0) {
2742 dev_err(hcd->self.controller,
2743 "request interrupt %d failed\n",
2744 irqnum);
2745 return retval;
2746 }
2747 hcd->irq = irqnum;
2748 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2749 (hcd->driver->flags & HCD_MEMORY) ?
2750 "io mem" : "io port",
2751 (unsigned long long)hcd->rsrc_start);
2752 } else {
2753 hcd->irq = 0;
2754 if (hcd->rsrc_start)
2755 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2756 (hcd->driver->flags & HCD_MEMORY) ?
2757 "io mem" : "io port",
2758 (unsigned long long)hcd->rsrc_start);
2759 }
2760 return 0;
2761 }
2762
2763 /*
2764 * Before we free this root hub, flush in-flight peering attempts
2765 * and disable peer lookups
2766 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2767 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2768 {
2769 struct usb_device *rhdev;
2770
2771 mutex_lock(&usb_port_peer_mutex);
2772 rhdev = hcd->self.root_hub;
2773 hcd->self.root_hub = NULL;
2774 mutex_unlock(&usb_port_peer_mutex);
2775 usb_put_dev(rhdev);
2776 }
2777
2778 /**
2779 * usb_stop_hcd - Halt the HCD
2780 * @hcd: the usb_hcd that has to be halted
2781 *
2782 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2783 */
usb_stop_hcd(struct usb_hcd * hcd)2784 static void usb_stop_hcd(struct usb_hcd *hcd)
2785 {
2786 hcd->rh_pollable = 0;
2787 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2788 timer_delete_sync(&hcd->rh_timer);
2789
2790 hcd->driver->stop(hcd);
2791 hcd->state = HC_STATE_HALT;
2792
2793 /* In case the HCD restarted the timer, stop it again. */
2794 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2795 timer_delete_sync(&hcd->rh_timer);
2796 }
2797
2798 /**
2799 * usb_add_hcd - finish generic HCD structure initialization and register
2800 * @hcd: the usb_hcd structure to initialize
2801 * @irqnum: Interrupt line to allocate
2802 * @irqflags: Interrupt type flags
2803 *
2804 * Finish the remaining parts of generic HCD initialization: allocate the
2805 * buffers of consistent memory, register the bus, request the IRQ line,
2806 * and call the driver's reset() and start() routines.
2807 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2808 int usb_add_hcd(struct usb_hcd *hcd,
2809 unsigned int irqnum, unsigned long irqflags)
2810 {
2811 int retval;
2812 struct usb_device *rhdev;
2813 struct usb_hcd *shared_hcd;
2814 int skip_phy_initialization;
2815
2816 if (usb_hcd_is_primary_hcd(hcd))
2817 skip_phy_initialization = hcd->skip_phy_initialization;
2818 else
2819 skip_phy_initialization = hcd->primary_hcd->skip_phy_initialization;
2820
2821 if (!skip_phy_initialization) {
2822 if (usb_hcd_is_primary_hcd(hcd)) {
2823 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2824 if (IS_ERR(hcd->phy_roothub))
2825 return PTR_ERR(hcd->phy_roothub);
2826 } else {
2827 hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2828 if (IS_ERR(hcd->phy_roothub))
2829 return PTR_ERR(hcd->phy_roothub);
2830 }
2831
2832 retval = usb_phy_roothub_init(hcd->phy_roothub);
2833 if (retval)
2834 return retval;
2835
2836 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2837 PHY_MODE_USB_HOST_SS);
2838 if (retval)
2839 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2840 PHY_MODE_USB_HOST);
2841 if (retval)
2842 goto err_usb_phy_roothub_power_on;
2843
2844 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2845 if (retval)
2846 goto err_usb_phy_roothub_power_on;
2847 }
2848
2849 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2850
2851 switch (authorized_default) {
2852 case USB_AUTHORIZE_NONE:
2853 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2854 break;
2855
2856 case USB_AUTHORIZE_INTERNAL:
2857 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2858 break;
2859
2860 case USB_AUTHORIZE_ALL:
2861 case USB_AUTHORIZE_WIRED:
2862 default:
2863 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2864 break;
2865 }
2866
2867 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2868
2869 /* per default all interfaces are authorized */
2870 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2871
2872 /* HC is in reset state, but accessible. Now do the one-time init,
2873 * bottom up so that hcds can customize the root hubs before hub_wq
2874 * starts talking to them. (Note, bus id is assigned early too.)
2875 */
2876 retval = hcd_buffer_create(hcd);
2877 if (retval != 0) {
2878 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2879 goto err_create_buf;
2880 }
2881
2882 retval = usb_register_bus(&hcd->self);
2883 if (retval < 0)
2884 goto err_register_bus;
2885
2886 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2887 if (rhdev == NULL) {
2888 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2889 retval = -ENOMEM;
2890 goto err_allocate_root_hub;
2891 }
2892 mutex_lock(&usb_port_peer_mutex);
2893 hcd->self.root_hub = rhdev;
2894 mutex_unlock(&usb_port_peer_mutex);
2895
2896 rhdev->rx_lanes = 1;
2897 rhdev->tx_lanes = 1;
2898 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2899
2900 switch (hcd->speed) {
2901 case HCD_USB11:
2902 rhdev->speed = USB_SPEED_FULL;
2903 break;
2904 case HCD_USB2:
2905 rhdev->speed = USB_SPEED_HIGH;
2906 break;
2907 case HCD_USB3:
2908 rhdev->speed = USB_SPEED_SUPER;
2909 break;
2910 case HCD_USB32:
2911 rhdev->rx_lanes = 2;
2912 rhdev->tx_lanes = 2;
2913 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2914 rhdev->speed = USB_SPEED_SUPER_PLUS;
2915 break;
2916 case HCD_USB31:
2917 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2918 rhdev->speed = USB_SPEED_SUPER_PLUS;
2919 break;
2920 default:
2921 retval = -EINVAL;
2922 goto err_set_rh_speed;
2923 }
2924
2925 /* wakeup flag init defaults to "everything works" for root hubs,
2926 * but drivers can override it in reset() if needed, along with
2927 * recording the overall controller's system wakeup capability.
2928 */
2929 device_set_wakeup_capable(&rhdev->dev, 1);
2930
2931 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2932 * registered. But since the controller can die at any time,
2933 * let's initialize the flag before touching the hardware.
2934 */
2935 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2936
2937 /* "reset" is misnamed; its role is now one-time init. the controller
2938 * should already have been reset (and boot firmware kicked off etc).
2939 */
2940 if (hcd->driver->reset) {
2941 retval = hcd->driver->reset(hcd);
2942 if (retval < 0) {
2943 dev_err(hcd->self.controller, "can't setup: %d\n",
2944 retval);
2945 goto err_hcd_driver_setup;
2946 }
2947 }
2948 hcd->rh_pollable = 1;
2949
2950 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2951 if (retval)
2952 goto err_hcd_driver_setup;
2953
2954 /* NOTE: root hub and controller capabilities may not be the same */
2955 if (device_can_wakeup(hcd->self.controller)
2956 && device_can_wakeup(&hcd->self.root_hub->dev))
2957 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2958
2959 /* initialize BHs */
2960 init_giveback_urb_bh(&hcd->high_prio_bh);
2961 hcd->high_prio_bh.high_prio = true;
2962 init_giveback_urb_bh(&hcd->low_prio_bh);
2963
2964 /* enable irqs just before we start the controller,
2965 * if the BIOS provides legacy PCI irqs.
2966 */
2967 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2968 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2969 if (retval)
2970 goto err_request_irq;
2971 }
2972
2973 hcd->state = HC_STATE_RUNNING;
2974 retval = hcd->driver->start(hcd);
2975 if (retval < 0) {
2976 dev_err(hcd->self.controller, "startup error %d\n", retval);
2977 goto err_hcd_driver_start;
2978 }
2979
2980 /* starting here, usbcore will pay attention to the shared HCD roothub */
2981 shared_hcd = hcd->shared_hcd;
2982 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2983 retval = register_root_hub(shared_hcd);
2984 if (retval != 0)
2985 goto err_register_root_hub;
2986
2987 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2988 usb_hcd_poll_rh_status(shared_hcd);
2989 }
2990
2991 /* starting here, usbcore will pay attention to this root hub */
2992 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2993 retval = register_root_hub(hcd);
2994 if (retval != 0)
2995 goto err_register_root_hub;
2996
2997 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2998 usb_hcd_poll_rh_status(hcd);
2999 }
3000
3001 return retval;
3002
3003 err_register_root_hub:
3004 usb_stop_hcd(hcd);
3005 err_hcd_driver_start:
3006 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3007 free_irq(irqnum, hcd);
3008 err_request_irq:
3009 err_hcd_driver_setup:
3010 err_set_rh_speed:
3011 usb_put_invalidate_rhdev(hcd);
3012 err_allocate_root_hub:
3013 usb_deregister_bus(&hcd->self);
3014 err_register_bus:
3015 hcd_buffer_destroy(hcd);
3016 err_create_buf:
3017 usb_phy_roothub_power_off(hcd->phy_roothub);
3018 err_usb_phy_roothub_power_on:
3019 usb_phy_roothub_exit(hcd->phy_roothub);
3020
3021 return retval;
3022 }
3023 EXPORT_SYMBOL_GPL(usb_add_hcd);
3024
3025 /**
3026 * usb_remove_hcd - shutdown processing for generic HCDs
3027 * @hcd: the usb_hcd structure to remove
3028 *
3029 * Context: task context, might sleep.
3030 *
3031 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3032 * invoking the HCD's stop() method.
3033 */
usb_remove_hcd(struct usb_hcd * hcd)3034 void usb_remove_hcd(struct usb_hcd *hcd)
3035 {
3036 struct usb_device *rhdev;
3037 bool rh_registered;
3038
3039 if (!hcd) {
3040 pr_debug("%s: hcd is NULL\n", __func__);
3041 return;
3042 }
3043 rhdev = hcd->self.root_hub;
3044
3045 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3046
3047 usb_get_dev(rhdev);
3048 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3049 if (HC_IS_RUNNING (hcd->state))
3050 hcd->state = HC_STATE_QUIESCING;
3051
3052 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3053 spin_lock_irq (&hcd_root_hub_lock);
3054 rh_registered = hcd->rh_registered;
3055 hcd->rh_registered = 0;
3056 spin_unlock_irq (&hcd_root_hub_lock);
3057
3058 #ifdef CONFIG_PM
3059 cancel_work_sync(&hcd->wakeup_work);
3060 #endif
3061 cancel_work_sync(&hcd->died_work);
3062
3063 mutex_lock(&usb_bus_idr_lock);
3064 if (rh_registered)
3065 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3066 mutex_unlock(&usb_bus_idr_lock);
3067
3068 /*
3069 * flush_work() isn't needed here because:
3070 * - driver's disconnect() called from usb_disconnect() should
3071 * make sure its URBs are completed during the disconnect()
3072 * callback
3073 *
3074 * - it is too late to run complete() here since driver may have
3075 * been removed already now
3076 */
3077
3078 /* Prevent any more root-hub status calls from the timer.
3079 * The HCD might still restart the timer (if a port status change
3080 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3081 * the hub_status_data() callback.
3082 */
3083 usb_stop_hcd(hcd);
3084
3085 if (usb_hcd_is_primary_hcd(hcd)) {
3086 if (hcd->irq > 0)
3087 free_irq(hcd->irq, hcd);
3088 }
3089
3090 usb_deregister_bus(&hcd->self);
3091 hcd_buffer_destroy(hcd);
3092
3093 usb_phy_roothub_power_off(hcd->phy_roothub);
3094 usb_phy_roothub_exit(hcd->phy_roothub);
3095
3096 usb_put_invalidate_rhdev(hcd);
3097 hcd->flags = 0;
3098 }
3099 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3100
3101 void
usb_hcd_platform_shutdown(struct platform_device * dev)3102 usb_hcd_platform_shutdown(struct platform_device *dev)
3103 {
3104 struct usb_hcd *hcd = platform_get_drvdata(dev);
3105
3106 /* No need for pm_runtime_put(), we're shutting down */
3107 pm_runtime_get_sync(&dev->dev);
3108
3109 if (hcd->driver->shutdown)
3110 hcd->driver->shutdown(hcd);
3111 }
3112 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3113
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3114 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3115 dma_addr_t dma, size_t size)
3116 {
3117 int err;
3118 void *local_mem;
3119
3120 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3121 dev_to_node(hcd->self.sysdev),
3122 dev_name(hcd->self.sysdev));
3123 if (IS_ERR(hcd->localmem_pool))
3124 return PTR_ERR(hcd->localmem_pool);
3125
3126 /*
3127 * if a physical SRAM address was passed, map it, otherwise
3128 * allocate system memory as a buffer.
3129 */
3130 if (phys_addr)
3131 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3132 size, MEMREMAP_WC);
3133 else
3134 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3135 GFP_KERNEL,
3136 DMA_ATTR_WRITE_COMBINE);
3137
3138 if (IS_ERR_OR_NULL(local_mem)) {
3139 if (!local_mem)
3140 return -ENOMEM;
3141
3142 return PTR_ERR(local_mem);
3143 }
3144
3145 /*
3146 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3147 * It's not backed by system memory and thus there's no kernel mapping
3148 * for it.
3149 */
3150 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3151 dma, size, dev_to_node(hcd->self.sysdev));
3152 if (err < 0) {
3153 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3154 err);
3155 return err;
3156 }
3157
3158 return 0;
3159 }
3160 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3161
3162 /*-------------------------------------------------------------------------*/
3163
3164 #if IS_ENABLED(CONFIG_USB_MON)
3165
3166 const struct usb_mon_operations *mon_ops;
3167
3168 /*
3169 * The registration is unlocked.
3170 * We do it this way because we do not want to lock in hot paths.
3171 *
3172 * Notice that the code is minimally error-proof. Because usbmon needs
3173 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3174 */
3175
usb_mon_register(const struct usb_mon_operations * ops)3176 int usb_mon_register(const struct usb_mon_operations *ops)
3177 {
3178
3179 if (mon_ops)
3180 return -EBUSY;
3181
3182 mon_ops = ops;
3183 mb();
3184 return 0;
3185 }
3186 EXPORT_SYMBOL_GPL (usb_mon_register);
3187
usb_mon_deregister(void)3188 void usb_mon_deregister (void)
3189 {
3190
3191 if (mon_ops == NULL) {
3192 printk(KERN_ERR "USB: monitor was not registered\n");
3193 return;
3194 }
3195 mon_ops = NULL;
3196 mb();
3197 }
3198 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3199
3200 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3201