1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 * with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66 struct usb_host_endpoint {
67 struct usb_endpoint_descriptor desc;
68 struct usb_ss_ep_comp_descriptor ss_ep_comp;
69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
70 struct list_head urb_list;
71 void *hcpriv;
72 struct ep_device *ep_dev; /* For sysfs info */
73
74 unsigned char *extra; /* Extra descriptors */
75 int extralen;
76 int enabled;
77 int streams;
78 };
79
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 struct usb_interface_descriptor desc;
83
84 int extralen;
85 unsigned char *extra; /* Extra descriptors */
86
87 /* array of desc.bNumEndpoints endpoints associated with this
88 * interface setting. these will be in no particular order.
89 */
90 struct usb_host_endpoint *endpoint;
91
92 char *string; /* iInterface string, if present */
93 };
94
95 enum usb_interface_condition {
96 USB_INTERFACE_UNBOUND = 0,
97 USB_INTERFACE_BINDING,
98 USB_INTERFACE_BOUND,
99 USB_INTERFACE_UNBINDING,
100 };
101
102 int __must_check
103 usb_find_common_endpoints(struct usb_host_interface *alt,
104 struct usb_endpoint_descriptor **bulk_in,
105 struct usb_endpoint_descriptor **bulk_out,
106 struct usb_endpoint_descriptor **int_in,
107 struct usb_endpoint_descriptor **int_out);
108
109 int __must_check
110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111 struct usb_endpoint_descriptor **bulk_in,
112 struct usb_endpoint_descriptor **bulk_out,
113 struct usb_endpoint_descriptor **int_in,
114 struct usb_endpoint_descriptor **int_out);
115
116 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118 struct usb_endpoint_descriptor **bulk_in)
119 {
120 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121 }
122
123 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125 struct usb_endpoint_descriptor **bulk_out)
126 {
127 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128 }
129
130 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)131 usb_find_int_in_endpoint(struct usb_host_interface *alt,
132 struct usb_endpoint_descriptor **int_in)
133 {
134 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135 }
136
137 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)138 usb_find_int_out_endpoint(struct usb_host_interface *alt,
139 struct usb_endpoint_descriptor **int_out)
140 {
141 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142 }
143
144 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146 struct usb_endpoint_descriptor **bulk_in)
147 {
148 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149 }
150
151 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153 struct usb_endpoint_descriptor **bulk_out)
154 {
155 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156 }
157
158 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160 struct usb_endpoint_descriptor **int_in)
161 {
162 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163 }
164
165 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167 struct usb_endpoint_descriptor **int_out)
168 {
169 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170 }
171
172 enum usb_wireless_status {
173 USB_WIRELESS_STATUS_NA = 0,
174 USB_WIRELESS_STATUS_DISCONNECTED,
175 USB_WIRELESS_STATUS_CONNECTED,
176 };
177
178 /**
179 * struct usb_interface - what usb device drivers talk to
180 * @altsetting: array of interface structures, one for each alternate
181 * setting that may be selected. Each one includes a set of
182 * endpoint configurations. They will be in no particular order.
183 * @cur_altsetting: the current altsetting.
184 * @num_altsetting: number of altsettings defined.
185 * @intf_assoc: interface association descriptor
186 * @minor: the minor number assigned to this interface, if this
187 * interface is bound to a driver that uses the USB major number.
188 * If this interface does not use the USB major, this field should
189 * be unused. The driver should set this value in the probe()
190 * function of the driver, after it has been assigned a minor
191 * number from the USB core by calling usb_register_dev().
192 * @condition: binding state of the interface: not bound, binding
193 * (in probe()), bound to a driver, or unbinding (in disconnect())
194 * @sysfs_files_created: sysfs attributes exist
195 * @ep_devs_created: endpoint child pseudo-devices exist
196 * @unregistering: flag set when the interface is being unregistered
197 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
198 * capability during autosuspend.
199 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
200 * has been deferred.
201 * @needs_binding: flag set when the driver should be re-probed or unbound
202 * following a reset or suspend operation it doesn't support.
203 * @authorized: This allows to (de)authorize individual interfaces instead
204 * a whole device in contrast to the device authorization.
205 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
206 * the emitter is connected.
207 * @wireless_status_work: Used for scheduling wireless status changes
208 * from atomic context.
209 * @dev: driver model's view of this device
210 * @usb_dev: if an interface is bound to the USB major, this will point
211 * to the sysfs representation for that device.
212 * @reset_ws: Used for scheduling resets from atomic context.
213 * @resetting_device: USB core reset the device, so use alt setting 0 as
214 * current; needs bandwidth alloc after reset.
215 *
216 * USB device drivers attach to interfaces on a physical device. Each
217 * interface encapsulates a single high level function, such as feeding
218 * an audio stream to a speaker or reporting a change in a volume control.
219 * Many USB devices only have one interface. The protocol used to talk to
220 * an interface's endpoints can be defined in a usb "class" specification,
221 * or by a product's vendor. The (default) control endpoint is part of
222 * every interface, but is never listed among the interface's descriptors.
223 *
224 * The driver that is bound to the interface can use standard driver model
225 * calls such as dev_get_drvdata() on the dev member of this structure.
226 *
227 * Each interface may have alternate settings. The initial configuration
228 * of a device sets altsetting 0, but the device driver can change
229 * that setting using usb_set_interface(). Alternate settings are often
230 * used to control the use of periodic endpoints, such as by having
231 * different endpoints use different amounts of reserved USB bandwidth.
232 * All standards-conformant USB devices that use isochronous endpoints
233 * will use them in non-default settings.
234 *
235 * The USB specification says that alternate setting numbers must run from
236 * 0 to one less than the total number of alternate settings. But some
237 * devices manage to mess this up, and the structures aren't necessarily
238 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
239 * look up an alternate setting in the altsetting array based on its number.
240 */
241 struct usb_interface {
242 /* array of alternate settings for this interface,
243 * stored in no particular order */
244 struct usb_host_interface *altsetting;
245
246 struct usb_host_interface *cur_altsetting; /* the currently
247 * active alternate setting */
248 unsigned num_altsetting; /* number of alternate settings */
249
250 /* If there is an interface association descriptor then it will list
251 * the associated interfaces */
252 struct usb_interface_assoc_descriptor *intf_assoc;
253
254 int minor; /* minor number this interface is
255 * bound to */
256 enum usb_interface_condition condition; /* state of binding */
257 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
258 unsigned ep_devs_created:1; /* endpoint "devices" exist */
259 unsigned unregistering:1; /* unregistration is in progress */
260 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
261 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
262 unsigned needs_binding:1; /* needs delayed unbind/rebind */
263 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
264 unsigned authorized:1; /* used for interface authorization */
265 enum usb_wireless_status wireless_status;
266 struct work_struct wireless_status_work;
267
268 struct device dev; /* interface specific device info */
269 struct device *usb_dev;
270 struct work_struct reset_ws; /* for resets in atomic context */
271 };
272
273 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
274
usb_get_intfdata(struct usb_interface * intf)275 static inline void *usb_get_intfdata(struct usb_interface *intf)
276 {
277 return dev_get_drvdata(&intf->dev);
278 }
279
280 /**
281 * usb_set_intfdata() - associate driver-specific data with an interface
282 * @intf: USB interface
283 * @data: driver data
284 *
285 * Drivers can use this function in their probe() callbacks to associate
286 * driver-specific data with an interface.
287 *
288 * Note that there is generally no need to clear the driver-data pointer even
289 * if some drivers do so for historical or implementation-specific reasons.
290 */
usb_set_intfdata(struct usb_interface * intf,void * data)291 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
292 {
293 dev_set_drvdata(&intf->dev, data);
294 }
295
296 struct usb_interface *usb_get_intf(struct usb_interface *intf);
297 void usb_put_intf(struct usb_interface *intf);
298
299 /* Hard limit */
300 #define USB_MAXENDPOINTS 30
301 /* this maximum is arbitrary */
302 #define USB_MAXINTERFACES 32
303 #define USB_MAXIADS (USB_MAXINTERFACES/2)
304
305 bool usb_check_bulk_endpoints(
306 const struct usb_interface *intf, const u8 *ep_addrs);
307 bool usb_check_int_endpoints(
308 const struct usb_interface *intf, const u8 *ep_addrs);
309
310 /*
311 * USB Resume Timer: Every Host controller driver should drive the resume
312 * signalling on the bus for the amount of time defined by this macro.
313 *
314 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
315 *
316 * Note that the USB Specification states we should drive resume for *at least*
317 * 20 ms, but it doesn't give an upper bound. This creates two possible
318 * situations which we want to avoid:
319 *
320 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
321 * us to fail USB Electrical Tests, thus failing Certification
322 *
323 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
324 * and while we can argue that's against the USB Specification, we don't have
325 * control over which devices a certification laboratory will be using for
326 * certification. If CertLab uses a device which was tested against Windows and
327 * that happens to have relaxed resume signalling rules, we might fall into
328 * situations where we fail interoperability and electrical tests.
329 *
330 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
331 * should cope with both LPJ calibration errors and devices not following every
332 * detail of the USB Specification.
333 */
334 #define USB_RESUME_TIMEOUT 40 /* ms */
335
336 /**
337 * struct usb_interface_cache - long-term representation of a device interface
338 * @num_altsetting: number of altsettings defined.
339 * @ref: reference counter.
340 * @altsetting: variable-length array of interface structures, one for
341 * each alternate setting that may be selected. Each one includes a
342 * set of endpoint configurations. They will be in no particular order.
343 *
344 * These structures persist for the lifetime of a usb_device, unlike
345 * struct usb_interface (which persists only as long as its configuration
346 * is installed). The altsetting arrays can be accessed through these
347 * structures at any time, permitting comparison of configurations and
348 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
349 */
350 struct usb_interface_cache {
351 unsigned num_altsetting; /* number of alternate settings */
352 struct kref ref; /* reference counter */
353
354 /* variable-length array of alternate settings for this interface,
355 * stored in no particular order */
356 struct usb_host_interface altsetting[];
357 };
358 #define ref_to_usb_interface_cache(r) \
359 container_of(r, struct usb_interface_cache, ref)
360 #define altsetting_to_usb_interface_cache(a) \
361 container_of(a, struct usb_interface_cache, altsetting[0])
362
363 /**
364 * struct usb_host_config - representation of a device's configuration
365 * @desc: the device's configuration descriptor.
366 * @string: pointer to the cached version of the iConfiguration string, if
367 * present for this configuration.
368 * @intf_assoc: list of any interface association descriptors in this config
369 * @interface: array of pointers to usb_interface structures, one for each
370 * interface in the configuration. The number of interfaces is stored
371 * in desc.bNumInterfaces. These pointers are valid only while the
372 * configuration is active.
373 * @intf_cache: array of pointers to usb_interface_cache structures, one
374 * for each interface in the configuration. These structures exist
375 * for the entire life of the device.
376 * @extra: pointer to buffer containing all extra descriptors associated
377 * with this configuration (those preceding the first interface
378 * descriptor).
379 * @extralen: length of the extra descriptors buffer.
380 *
381 * USB devices may have multiple configurations, but only one can be active
382 * at any time. Each encapsulates a different operational environment;
383 * for example, a dual-speed device would have separate configurations for
384 * full-speed and high-speed operation. The number of configurations
385 * available is stored in the device descriptor as bNumConfigurations.
386 *
387 * A configuration can contain multiple interfaces. Each corresponds to
388 * a different function of the USB device, and all are available whenever
389 * the configuration is active. The USB standard says that interfaces
390 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
391 * of devices get this wrong. In addition, the interface array is not
392 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
393 * look up an interface entry based on its number.
394 *
395 * Device drivers should not attempt to activate configurations. The choice
396 * of which configuration to install is a policy decision based on such
397 * considerations as available power, functionality provided, and the user's
398 * desires (expressed through userspace tools). However, drivers can call
399 * usb_reset_configuration() to reinitialize the current configuration and
400 * all its interfaces.
401 */
402 struct usb_host_config {
403 struct usb_config_descriptor desc;
404
405 char *string; /* iConfiguration string, if present */
406
407 /* List of any Interface Association Descriptors in this
408 * configuration. */
409 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
410
411 /* the interfaces associated with this configuration,
412 * stored in no particular order */
413 struct usb_interface *interface[USB_MAXINTERFACES];
414
415 /* Interface information available even when this is not the
416 * active configuration */
417 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
418
419 unsigned char *extra; /* Extra descriptors */
420 int extralen;
421 };
422
423 /* USB2.0 and USB3.0 device BOS descriptor set */
424 struct usb_host_bos {
425 struct usb_bos_descriptor *desc;
426
427 struct usb_ext_cap_descriptor *ext_cap;
428 struct usb_ss_cap_descriptor *ss_cap;
429 struct usb_ssp_cap_descriptor *ssp_cap;
430 struct usb_ss_container_id_descriptor *ss_id;
431 struct usb_ptm_cap_descriptor *ptm_cap;
432 };
433
434 int __usb_get_extra_descriptor(char *buffer, unsigned size,
435 unsigned char type, void **ptr, size_t min);
436 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
437 __usb_get_extra_descriptor((ifpoint)->extra, \
438 (ifpoint)->extralen, \
439 type, (void **)ptr, sizeof(**(ptr)))
440
441 /* ----------------------------------------------------------------------- */
442
443 /*
444 * Allocated per bus (tree of devices) we have:
445 */
446 struct usb_bus {
447 struct device *controller; /* host side hardware */
448 struct device *sysdev; /* as seen from firmware or bus */
449 int busnum; /* Bus number (in order of reg) */
450 const char *bus_name; /* stable id (PCI slot_name etc) */
451 u8 uses_pio_for_control; /*
452 * Does the host controller use PIO
453 * for control transfers?
454 */
455 u8 otg_port; /* 0, or number of OTG/HNP port */
456 unsigned is_b_host:1; /* true during some HNP roleswitches */
457 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
458 unsigned no_stop_on_short:1; /*
459 * Quirk: some controllers don't stop
460 * the ep queue on a short transfer
461 * with the URB_SHORT_NOT_OK flag set.
462 */
463 unsigned no_sg_constraint:1; /* no sg constraint */
464 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
465
466 int devnum_next; /* Next open device number in
467 * round-robin allocation */
468 struct mutex devnum_next_mutex; /* devnum_next mutex */
469
470 DECLARE_BITMAP(devmap, 128); /* USB device number allocation bitmap */
471 struct usb_device *root_hub; /* Root hub */
472 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
473
474 int bandwidth_allocated; /* on this bus: how much of the time
475 * reserved for periodic (intr/iso)
476 * requests is used, on average?
477 * Units: microseconds/frame.
478 * Limits: Full/low speed reserve 90%,
479 * while high speed reserves 80%.
480 */
481 int bandwidth_int_reqs; /* number of Interrupt requests */
482 int bandwidth_isoc_reqs; /* number of Isoc. requests */
483
484 unsigned resuming_ports; /* bit array: resuming root-hub ports */
485
486 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
487 struct mon_bus *mon_bus; /* non-null when associated */
488 int monitored; /* non-zero when monitored */
489 #endif
490 };
491
492 struct usb_dev_state;
493
494 /* ----------------------------------------------------------------------- */
495
496 struct usb_tt;
497
498 enum usb_link_tunnel_mode {
499 USB_LINK_UNKNOWN = 0,
500 USB_LINK_NATIVE,
501 USB_LINK_TUNNELED,
502 };
503
504 enum usb_port_connect_type {
505 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
506 USB_PORT_CONNECT_TYPE_HOT_PLUG,
507 USB_PORT_CONNECT_TYPE_HARD_WIRED,
508 USB_PORT_NOT_USED,
509 };
510
511 /*
512 * USB port quirks.
513 */
514
515 /* For the given port, prefer the old (faster) enumeration scheme. */
516 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
517
518 /* Decrease TRSTRCY to 10ms during device enumeration. */
519 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
520
521 /*
522 * USB 2.0 Link Power Management (LPM) parameters.
523 */
524 struct usb2_lpm_parameters {
525 /* Best effort service latency indicate how long the host will drive
526 * resume on an exit from L1.
527 */
528 unsigned int besl;
529
530 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
531 * When the timer counts to zero, the parent hub will initiate a LPM
532 * transition to L1.
533 */
534 int timeout;
535 };
536
537 /*
538 * USB 3.0 Link Power Management (LPM) parameters.
539 *
540 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
541 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
542 * All three are stored in nanoseconds.
543 */
544 struct usb3_lpm_parameters {
545 /*
546 * Maximum exit latency (MEL) for the host to send a packet to the
547 * device (either a Ping for isoc endpoints, or a data packet for
548 * interrupt endpoints), the hubs to decode the packet, and for all hubs
549 * in the path to transition the links to U0.
550 */
551 unsigned int mel;
552 /*
553 * Maximum exit latency for a device-initiated LPM transition to bring
554 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
555 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
556 */
557 unsigned int pel;
558
559 /*
560 * The System Exit Latency (SEL) includes PEL, and three other
561 * latencies. After a device initiates a U0 transition, it will take
562 * some time from when the device sends the ERDY to when it will finally
563 * receive the data packet. Basically, SEL should be the worse-case
564 * latency from when a device starts initiating a U0 transition to when
565 * it will get data.
566 */
567 unsigned int sel;
568 /*
569 * The idle timeout value that is currently programmed into the parent
570 * hub for this device. When the timer counts to zero, the parent hub
571 * will initiate an LPM transition to either U1 or U2.
572 */
573 int timeout;
574 };
575
576 /**
577 * struct usb_device - kernel's representation of a USB device
578 * @devnum: device number; address on a USB bus
579 * @devpath: device ID string for use in messages (e.g., /port/...)
580 * @route: tree topology hex string for use with xHCI
581 * @state: device state: configured, not attached, etc.
582 * @speed: device speed: high/full/low (or error)
583 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
584 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
585 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
586 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
587 * @ttport: device port on that tt hub
588 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
589 * @parent: our hub, unless we're the root
590 * @bus: bus we're part of
591 * @ep0: endpoint 0 data (default control pipe)
592 * @dev: generic device interface
593 * @descriptor: USB device descriptor
594 * @bos: USB device BOS descriptor set
595 * @config: all of the device's configs
596 * @actconfig: the active configuration
597 * @ep_in: array of IN endpoints
598 * @ep_out: array of OUT endpoints
599 * @rawdescriptors: raw descriptors for each config
600 * @bus_mA: Current available from the bus
601 * @portnum: parent port number (origin 1)
602 * @level: number of USB hub ancestors
603 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
604 * @can_submit: URBs may be submitted
605 * @persist_enabled: USB_PERSIST enabled for this device
606 * @reset_in_progress: the device is being reset
607 * @have_langid: whether string_langid is valid
608 * @authorized: policy has said we can use it;
609 * (user space) policy determines if we authorize this device to be
610 * used or not. By default, wired USB devices are authorized.
611 * WUSB devices are not, until we authorize them from user space.
612 * FIXME -- complete doc
613 * @authenticated: Crypto authentication passed
614 * @tunnel_mode: Connection native or tunneled over USB4
615 * @lpm_capable: device supports LPM
616 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
617 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
618 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
619 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
620 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
621 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
622 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
623 * @string_langid: language ID for strings
624 * @product: iProduct string, if present (static)
625 * @manufacturer: iManufacturer string, if present (static)
626 * @serial: iSerialNumber string, if present (static)
627 * @filelist: usbfs files that are open to this device
628 * @maxchild: number of ports if hub
629 * @quirks: quirks of the whole device
630 * @urbnum: number of URBs submitted for the whole device
631 * @active_duration: total time device is not suspended
632 * @connect_time: time device was first connected
633 * @do_remote_wakeup: remote wakeup should be enabled
634 * @reset_resume: needs reset instead of resume
635 * @port_is_suspended: the upstream port is suspended (L2 or U3)
636 * @slot_id: Slot ID assigned by xHCI
637 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
638 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
639 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
640 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
641 * to keep track of the number of functions that require USB 3.0 Link Power
642 * Management to be disabled for this usb_device. This count should only
643 * be manipulated by those functions, with the bandwidth_mutex is held.
644 * @hub_delay: cached value consisting of:
645 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
646 * Will be used as wValue for SetIsochDelay requests.
647 * @use_generic_driver: ask driver core to reprobe using the generic driver.
648 *
649 * Notes:
650 * Usbcore drivers should not set usbdev->state directly. Instead use
651 * usb_set_device_state().
652 */
653 struct usb_device {
654 int devnum;
655 char devpath[16];
656 u32 route;
657 enum usb_device_state state;
658 enum usb_device_speed speed;
659 unsigned int rx_lanes;
660 unsigned int tx_lanes;
661 enum usb_ssp_rate ssp_rate;
662
663 struct usb_tt *tt;
664 int ttport;
665
666 unsigned int toggle[2];
667
668 struct usb_device *parent;
669 struct usb_bus *bus;
670 struct usb_host_endpoint ep0;
671
672 struct device dev;
673
674 struct usb_device_descriptor descriptor;
675 struct usb_host_bos *bos;
676 struct usb_host_config *config;
677
678 struct usb_host_config *actconfig;
679 struct usb_host_endpoint *ep_in[16];
680 struct usb_host_endpoint *ep_out[16];
681
682 char **rawdescriptors;
683
684 unsigned short bus_mA;
685 u8 portnum;
686 u8 level;
687 u8 devaddr;
688
689 unsigned can_submit:1;
690 unsigned persist_enabled:1;
691 unsigned reset_in_progress:1;
692 unsigned have_langid:1;
693 unsigned authorized:1;
694 unsigned authenticated:1;
695 unsigned lpm_capable:1;
696 unsigned lpm_devinit_allow:1;
697 unsigned usb2_hw_lpm_capable:1;
698 unsigned usb2_hw_lpm_besl_capable:1;
699 unsigned usb2_hw_lpm_enabled:1;
700 unsigned usb2_hw_lpm_allowed:1;
701 unsigned usb3_lpm_u1_enabled:1;
702 unsigned usb3_lpm_u2_enabled:1;
703 int string_langid;
704
705 /* static strings from the device */
706 char *product;
707 char *manufacturer;
708 char *serial;
709
710 struct list_head filelist;
711
712 int maxchild;
713
714 u32 quirks;
715 atomic_t urbnum;
716
717 unsigned long active_duration;
718
719 unsigned long connect_time;
720
721 unsigned do_remote_wakeup:1;
722 unsigned reset_resume:1;
723 unsigned port_is_suspended:1;
724 enum usb_link_tunnel_mode tunnel_mode;
725
726 int slot_id;
727 struct usb2_lpm_parameters l1_params;
728 struct usb3_lpm_parameters u1_params;
729 struct usb3_lpm_parameters u2_params;
730 unsigned lpm_disable_count;
731
732 u16 hub_delay;
733 unsigned use_generic_driver:1;
734 };
735
736 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
737
__intf_to_usbdev(struct usb_interface * intf)738 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
739 {
740 return to_usb_device(intf->dev.parent);
741 }
__intf_to_usbdev_const(const struct usb_interface * intf)742 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
743 {
744 return to_usb_device((const struct device *)intf->dev.parent);
745 }
746
747 #define interface_to_usbdev(intf) \
748 _Generic((intf), \
749 const struct usb_interface *: __intf_to_usbdev_const, \
750 struct usb_interface *: __intf_to_usbdev)(intf)
751
752 extern struct usb_device *usb_get_dev(struct usb_device *dev);
753 extern void usb_put_dev(struct usb_device *dev);
754 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
755 int port1);
756
757 /**
758 * usb_hub_for_each_child - iterate over all child devices on the hub
759 * @hdev: USB device belonging to the usb hub
760 * @port1: portnum associated with child device
761 * @child: child device pointer
762 */
763 #define usb_hub_for_each_child(hdev, port1, child) \
764 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
765 port1 <= hdev->maxchild; \
766 child = usb_hub_find_child(hdev, ++port1)) \
767 if (!child) continue; else
768
769 /* USB device locking */
770 #define usb_lock_device(udev) device_lock(&(udev)->dev)
771 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
772 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
773 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
774 extern int usb_lock_device_for_reset(struct usb_device *udev,
775 const struct usb_interface *iface);
776
777 /* USB port reset for device reinitialization */
778 extern int usb_reset_device(struct usb_device *dev);
779 extern void usb_queue_reset_device(struct usb_interface *dev);
780
781 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
782
783 #ifdef CONFIG_ACPI
784 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
785 bool enable);
786 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
787 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
788 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)789 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
790 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)791 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
792 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)793 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
794 { return 0; }
795 #endif
796
797 /* USB autosuspend and autoresume */
798 #ifdef CONFIG_PM
799 extern void usb_enable_autosuspend(struct usb_device *udev);
800 extern void usb_disable_autosuspend(struct usb_device *udev);
801
802 extern int usb_autopm_get_interface(struct usb_interface *intf);
803 extern void usb_autopm_put_interface(struct usb_interface *intf);
804 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
805 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
806 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
807 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
808
usb_mark_last_busy(struct usb_device * udev)809 static inline void usb_mark_last_busy(struct usb_device *udev)
810 {
811 pm_runtime_mark_last_busy(&udev->dev);
812 }
813
814 #else
815
usb_enable_autosuspend(struct usb_device * udev)816 static inline int usb_enable_autosuspend(struct usb_device *udev)
817 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)818 static inline int usb_disable_autosuspend(struct usb_device *udev)
819 { return 0; }
820
usb_autopm_get_interface(struct usb_interface * intf)821 static inline int usb_autopm_get_interface(struct usb_interface *intf)
822 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)823 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
824 { return 0; }
825
usb_autopm_put_interface(struct usb_interface * intf)826 static inline void usb_autopm_put_interface(struct usb_interface *intf)
827 { }
usb_autopm_put_interface_async(struct usb_interface * intf)828 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
829 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)830 static inline void usb_autopm_get_interface_no_resume(
831 struct usb_interface *intf)
832 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)833 static inline void usb_autopm_put_interface_no_suspend(
834 struct usb_interface *intf)
835 { }
usb_mark_last_busy(struct usb_device * udev)836 static inline void usb_mark_last_busy(struct usb_device *udev)
837 { }
838 #endif
839
840 extern int usb_disable_lpm(struct usb_device *udev);
841 extern void usb_enable_lpm(struct usb_device *udev);
842 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
843 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
844 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
845
846 extern int usb_disable_ltm(struct usb_device *udev);
847 extern void usb_enable_ltm(struct usb_device *udev);
848
usb_device_supports_ltm(struct usb_device * udev)849 static inline bool usb_device_supports_ltm(struct usb_device *udev)
850 {
851 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
852 return false;
853 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
854 }
855
usb_device_no_sg_constraint(struct usb_device * udev)856 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
857 {
858 return udev && udev->bus && udev->bus->no_sg_constraint;
859 }
860
861
862 /*-------------------------------------------------------------------------*/
863
864 /* for drivers using iso endpoints */
865 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
866
867 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
868 extern int usb_alloc_streams(struct usb_interface *interface,
869 struct usb_host_endpoint **eps, unsigned int num_eps,
870 unsigned int num_streams, gfp_t mem_flags);
871
872 /* Reverts a group of bulk endpoints back to not using stream IDs. */
873 extern int usb_free_streams(struct usb_interface *interface,
874 struct usb_host_endpoint **eps, unsigned int num_eps,
875 gfp_t mem_flags);
876
877 /* used these for multi-interface device registration */
878 extern int usb_driver_claim_interface(struct usb_driver *driver,
879 struct usb_interface *iface, void *data);
880
881 /**
882 * usb_interface_claimed - returns true iff an interface is claimed
883 * @iface: the interface being checked
884 *
885 * Return: %true (nonzero) iff the interface is claimed, else %false
886 * (zero).
887 *
888 * Note:
889 * Callers must own the driver model's usb bus readlock. So driver
890 * probe() entries don't need extra locking, but other call contexts
891 * may need to explicitly claim that lock.
892 *
893 */
usb_interface_claimed(struct usb_interface * iface)894 static inline int usb_interface_claimed(struct usb_interface *iface)
895 {
896 return (iface->dev.driver != NULL);
897 }
898
899 extern void usb_driver_release_interface(struct usb_driver *driver,
900 struct usb_interface *iface);
901
902 int usb_set_wireless_status(struct usb_interface *iface,
903 enum usb_wireless_status status);
904
905 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
906 const struct usb_device_id *id);
907 extern int usb_match_one_id(struct usb_interface *interface,
908 const struct usb_device_id *id);
909
910 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
911 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
912 int minor);
913 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
914 unsigned ifnum);
915 extern struct usb_host_interface *usb_altnum_to_altsetting(
916 const struct usb_interface *intf, unsigned int altnum);
917 extern struct usb_host_interface *usb_find_alt_setting(
918 struct usb_host_config *config,
919 unsigned int iface_num,
920 unsigned int alt_num);
921
922 /* port claiming functions */
923 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
924 struct usb_dev_state *owner);
925 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
926 struct usb_dev_state *owner);
927
928 /**
929 * usb_make_path - returns stable device path in the usb tree
930 * @dev: the device whose path is being constructed
931 * @buf: where to put the string
932 * @size: how big is "buf"?
933 *
934 * Return: Length of the string (> 0) or negative if size was too small.
935 *
936 * Note:
937 * This identifier is intended to be "stable", reflecting physical paths in
938 * hardware such as physical bus addresses for host controllers or ports on
939 * USB hubs. That makes it stay the same until systems are physically
940 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
941 * controllers. Adding and removing devices, including virtual root hubs
942 * in host controller driver modules, does not change these path identifiers;
943 * neither does rebooting or re-enumerating. These are more useful identifiers
944 * than changeable ("unstable") ones like bus numbers or device addresses.
945 *
946 * With a partial exception for devices connected to USB 2.0 root hubs, these
947 * identifiers are also predictable. So long as the device tree isn't changed,
948 * plugging any USB device into a given hub port always gives it the same path.
949 * Because of the use of "companion" controllers, devices connected to ports on
950 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
951 * high speed, and a different one if they are full or low speed.
952 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)953 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
954 {
955 int actual;
956 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
957 dev->devpath);
958 return (actual >= (int)size) ? -1 : actual;
959 }
960
961 /*-------------------------------------------------------------------------*/
962
963 #define USB_DEVICE_ID_MATCH_DEVICE \
964 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
965 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
966 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
967 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
968 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
969 #define USB_DEVICE_ID_MATCH_DEV_INFO \
970 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
971 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
972 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
973 #define USB_DEVICE_ID_MATCH_INT_INFO \
974 (USB_DEVICE_ID_MATCH_INT_CLASS | \
975 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
976 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
977
978 /**
979 * USB_DEVICE - macro used to describe a specific usb device
980 * @vend: the 16 bit USB Vendor ID
981 * @prod: the 16 bit USB Product ID
982 *
983 * This macro is used to create a struct usb_device_id that matches a
984 * specific device.
985 */
986 #define USB_DEVICE(vend, prod) \
987 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
988 .idVendor = (vend), \
989 .idProduct = (prod)
990 /**
991 * USB_DEVICE_VER - describe a specific usb device with a version range
992 * @vend: the 16 bit USB Vendor ID
993 * @prod: the 16 bit USB Product ID
994 * @lo: the bcdDevice_lo value
995 * @hi: the bcdDevice_hi value
996 *
997 * This macro is used to create a struct usb_device_id that matches a
998 * specific device, with a version range.
999 */
1000 #define USB_DEVICE_VER(vend, prod, lo, hi) \
1001 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1002 .idVendor = (vend), \
1003 .idProduct = (prod), \
1004 .bcdDevice_lo = (lo), \
1005 .bcdDevice_hi = (hi)
1006
1007 /**
1008 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1009 * @vend: the 16 bit USB Vendor ID
1010 * @prod: the 16 bit USB Product ID
1011 * @cl: bInterfaceClass value
1012 *
1013 * This macro is used to create a struct usb_device_id that matches a
1014 * specific interface class of devices.
1015 */
1016 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1017 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1018 USB_DEVICE_ID_MATCH_INT_CLASS, \
1019 .idVendor = (vend), \
1020 .idProduct = (prod), \
1021 .bInterfaceClass = (cl)
1022
1023 /**
1024 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1025 * @vend: the 16 bit USB Vendor ID
1026 * @prod: the 16 bit USB Product ID
1027 * @pr: bInterfaceProtocol value
1028 *
1029 * This macro is used to create a struct usb_device_id that matches a
1030 * specific interface protocol of devices.
1031 */
1032 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1033 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1034 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1035 .idVendor = (vend), \
1036 .idProduct = (prod), \
1037 .bInterfaceProtocol = (pr)
1038
1039 /**
1040 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1041 * @vend: the 16 bit USB Vendor ID
1042 * @prod: the 16 bit USB Product ID
1043 * @num: bInterfaceNumber value
1044 *
1045 * This macro is used to create a struct usb_device_id that matches a
1046 * specific interface number of devices.
1047 */
1048 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1049 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1050 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1051 .idVendor = (vend), \
1052 .idProduct = (prod), \
1053 .bInterfaceNumber = (num)
1054
1055 /**
1056 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1057 * @cl: bDeviceClass value
1058 * @sc: bDeviceSubClass value
1059 * @pr: bDeviceProtocol value
1060 *
1061 * This macro is used to create a struct usb_device_id that matches a
1062 * specific class of devices.
1063 */
1064 #define USB_DEVICE_INFO(cl, sc, pr) \
1065 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1066 .bDeviceClass = (cl), \
1067 .bDeviceSubClass = (sc), \
1068 .bDeviceProtocol = (pr)
1069
1070 /**
1071 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1072 * @cl: bInterfaceClass value
1073 * @sc: bInterfaceSubClass value
1074 * @pr: bInterfaceProtocol value
1075 *
1076 * This macro is used to create a struct usb_device_id that matches a
1077 * specific class of interfaces.
1078 */
1079 #define USB_INTERFACE_INFO(cl, sc, pr) \
1080 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1081 .bInterfaceClass = (cl), \
1082 .bInterfaceSubClass = (sc), \
1083 .bInterfaceProtocol = (pr)
1084
1085 /**
1086 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1087 * @vend: the 16 bit USB Vendor ID
1088 * @prod: the 16 bit USB Product ID
1089 * @cl: bInterfaceClass value
1090 * @sc: bInterfaceSubClass value
1091 * @pr: bInterfaceProtocol value
1092 *
1093 * This macro is used to create a struct usb_device_id that matches a
1094 * specific device with a specific class of interfaces.
1095 *
1096 * This is especially useful when explicitly matching devices that have
1097 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1098 */
1099 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1100 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1101 | USB_DEVICE_ID_MATCH_DEVICE, \
1102 .idVendor = (vend), \
1103 .idProduct = (prod), \
1104 .bInterfaceClass = (cl), \
1105 .bInterfaceSubClass = (sc), \
1106 .bInterfaceProtocol = (pr)
1107
1108 /**
1109 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1110 * @vend: the 16 bit USB Vendor ID
1111 * @cl: bInterfaceClass value
1112 * @sc: bInterfaceSubClass value
1113 * @pr: bInterfaceProtocol value
1114 *
1115 * This macro is used to create a struct usb_device_id that matches a
1116 * specific vendor with a specific class of interfaces.
1117 *
1118 * This is especially useful when explicitly matching devices that have
1119 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1120 */
1121 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1122 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1123 | USB_DEVICE_ID_MATCH_VENDOR, \
1124 .idVendor = (vend), \
1125 .bInterfaceClass = (cl), \
1126 .bInterfaceSubClass = (sc), \
1127 .bInterfaceProtocol = (pr)
1128
1129 /* ----------------------------------------------------------------------- */
1130
1131 /* Stuff for dynamic usb ids */
1132 struct usb_dynids {
1133 spinlock_t lock;
1134 struct list_head list;
1135 };
1136
1137 struct usb_dynid {
1138 struct list_head node;
1139 struct usb_device_id id;
1140 };
1141
1142 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1143 const struct usb_device_id *id_table,
1144 struct device_driver *driver,
1145 const char *buf, size_t count);
1146
1147 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1148
1149 /**
1150 * struct usb_driver - identifies USB interface driver to usbcore
1151 * @name: The driver name should be unique among USB drivers,
1152 * and should normally be the same as the module name.
1153 * @probe: Called to see if the driver is willing to manage a particular
1154 * interface on a device. If it is, probe returns zero and uses
1155 * usb_set_intfdata() to associate driver-specific data with the
1156 * interface. It may also use usb_set_interface() to specify the
1157 * appropriate altsetting. If unwilling to manage the interface,
1158 * return -ENODEV, if genuine IO errors occurred, an appropriate
1159 * negative errno value.
1160 * @disconnect: Called when the interface is no longer accessible, usually
1161 * because its device has been (or is being) disconnected or the
1162 * driver module is being unloaded.
1163 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1164 * the "usbfs" filesystem. This lets devices provide ways to
1165 * expose information to user space regardless of where they
1166 * do (or don't) show up otherwise in the filesystem.
1167 * @suspend: Called when the device is going to be suspended by the
1168 * system either from system sleep or runtime suspend context. The
1169 * return value will be ignored in system sleep context, so do NOT
1170 * try to continue using the device if suspend fails in this case.
1171 * Instead, let the resume or reset-resume routine recover from
1172 * the failure.
1173 * @resume: Called when the device is being resumed by the system.
1174 * @reset_resume: Called when the suspended device has been reset instead
1175 * of being resumed.
1176 * @pre_reset: Called by usb_reset_device() when the device is about to be
1177 * reset. This routine must not return until the driver has no active
1178 * URBs for the device, and no more URBs may be submitted until the
1179 * post_reset method is called.
1180 * @post_reset: Called by usb_reset_device() after the device
1181 * has been reset
1182 * @shutdown: Called at shut-down time to quiesce the device.
1183 * @id_table: USB drivers use ID table to support hotplugging.
1184 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1185 * or your driver's probe function will never get called.
1186 * @dev_groups: Attributes attached to the device that will be created once it
1187 * is bound to the driver.
1188 * @dynids: used internally to hold the list of dynamically added device
1189 * ids for this driver.
1190 * @driver: The driver-model core driver structure.
1191 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1192 * added to this driver by preventing the sysfs file from being created.
1193 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1194 * for interfaces bound to this driver.
1195 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1196 * endpoints before calling the driver's disconnect method.
1197 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1198 * to initiate lower power link state transitions when an idle timeout
1199 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1200 *
1201 * USB interface drivers must provide a name, probe() and disconnect()
1202 * methods, and an id_table. Other driver fields are optional.
1203 *
1204 * The id_table is used in hotplugging. It holds a set of descriptors,
1205 * and specialized data may be associated with each entry. That table
1206 * is used by both user and kernel mode hotplugging support.
1207 *
1208 * The probe() and disconnect() methods are called in a context where
1209 * they can sleep, but they should avoid abusing the privilege. Most
1210 * work to connect to a device should be done when the device is opened,
1211 * and undone at the last close. The disconnect code needs to address
1212 * concurrency issues with respect to open() and close() methods, as
1213 * well as forcing all pending I/O requests to complete (by unlinking
1214 * them as necessary, and blocking until the unlinks complete).
1215 */
1216 struct usb_driver {
1217 const char *name;
1218
1219 int (*probe) (struct usb_interface *intf,
1220 const struct usb_device_id *id);
1221
1222 void (*disconnect) (struct usb_interface *intf);
1223
1224 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1225 void *buf);
1226
1227 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1228 int (*resume) (struct usb_interface *intf);
1229 int (*reset_resume)(struct usb_interface *intf);
1230
1231 int (*pre_reset)(struct usb_interface *intf);
1232 int (*post_reset)(struct usb_interface *intf);
1233
1234 void (*shutdown)(struct usb_interface *intf);
1235
1236 const struct usb_device_id *id_table;
1237 const struct attribute_group **dev_groups;
1238
1239 struct usb_dynids dynids;
1240 struct device_driver driver;
1241 unsigned int no_dynamic_id:1;
1242 unsigned int supports_autosuspend:1;
1243 unsigned int disable_hub_initiated_lpm:1;
1244 unsigned int soft_unbind:1;
1245 };
1246 #define to_usb_driver(d) container_of(d, struct usb_driver, driver)
1247
1248 /**
1249 * struct usb_device_driver - identifies USB device driver to usbcore
1250 * @name: The driver name should be unique among USB drivers,
1251 * and should normally be the same as the module name.
1252 * @match: If set, used for better device/driver matching.
1253 * @probe: Called to see if the driver is willing to manage a particular
1254 * device. If it is, probe returns zero and uses dev_set_drvdata()
1255 * to associate driver-specific data with the device. If unwilling
1256 * to manage the device, return a negative errno value.
1257 * @disconnect: Called when the device is no longer accessible, usually
1258 * because it has been (or is being) disconnected or the driver's
1259 * module is being unloaded.
1260 * @suspend: Called when the device is going to be suspended by the system.
1261 * @resume: Called when the device is being resumed by the system.
1262 * @choose_configuration: If non-NULL, called instead of the default
1263 * usb_choose_configuration(). If this returns an error then we'll go
1264 * on to call the normal usb_choose_configuration().
1265 * @dev_groups: Attributes attached to the device that will be created once it
1266 * is bound to the driver.
1267 * @driver: The driver-model core driver structure.
1268 * @id_table: used with @match() to select better matching driver at
1269 * probe() time.
1270 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1271 * for devices bound to this driver.
1272 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1273 * resume and suspend functions will be called in addition to the driver's
1274 * own, so this part of the setup does not need to be replicated.
1275 *
1276 * USB drivers must provide all the fields listed above except driver,
1277 * match, and id_table.
1278 */
1279 struct usb_device_driver {
1280 const char *name;
1281
1282 bool (*match) (struct usb_device *udev);
1283 int (*probe) (struct usb_device *udev);
1284 void (*disconnect) (struct usb_device *udev);
1285
1286 int (*suspend) (struct usb_device *udev, pm_message_t message);
1287 int (*resume) (struct usb_device *udev, pm_message_t message);
1288
1289 int (*choose_configuration) (struct usb_device *udev);
1290
1291 const struct attribute_group **dev_groups;
1292 struct device_driver driver;
1293 const struct usb_device_id *id_table;
1294 unsigned int supports_autosuspend:1;
1295 unsigned int generic_subclass:1;
1296 };
1297 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1298 driver)
1299
1300 /**
1301 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1302 * @name: the usb class device name for this driver. Will show up in sysfs.
1303 * @devnode: Callback to provide a naming hint for a possible
1304 * device node to create.
1305 * @fops: pointer to the struct file_operations of this driver.
1306 * @minor_base: the start of the minor range for this driver.
1307 *
1308 * This structure is used for the usb_register_dev() and
1309 * usb_deregister_dev() functions, to consolidate a number of the
1310 * parameters used for them.
1311 */
1312 struct usb_class_driver {
1313 char *name;
1314 char *(*devnode)(const struct device *dev, umode_t *mode);
1315 const struct file_operations *fops;
1316 int minor_base;
1317 };
1318
1319 /*
1320 * use these in module_init()/module_exit()
1321 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1322 */
1323 extern int usb_register_driver(struct usb_driver *, struct module *,
1324 const char *);
1325
1326 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1327 #define usb_register(driver) \
1328 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1329
1330 extern void usb_deregister(struct usb_driver *);
1331
1332 /**
1333 * module_usb_driver() - Helper macro for registering a USB driver
1334 * @__usb_driver: usb_driver struct
1335 *
1336 * Helper macro for USB drivers which do not do anything special in module
1337 * init/exit. This eliminates a lot of boilerplate. Each module may only
1338 * use this macro once, and calling it replaces module_init() and module_exit()
1339 */
1340 #define module_usb_driver(__usb_driver) \
1341 module_driver(__usb_driver, usb_register, \
1342 usb_deregister)
1343
1344 extern int usb_register_device_driver(struct usb_device_driver *,
1345 struct module *);
1346 extern void usb_deregister_device_driver(struct usb_device_driver *);
1347
1348 extern int usb_register_dev(struct usb_interface *intf,
1349 struct usb_class_driver *class_driver);
1350 extern void usb_deregister_dev(struct usb_interface *intf,
1351 struct usb_class_driver *class_driver);
1352
1353 extern int usb_disabled(void);
1354
1355 /* ----------------------------------------------------------------------- */
1356
1357 /*
1358 * URB support, for asynchronous request completions
1359 */
1360
1361 /*
1362 * urb->transfer_flags:
1363 *
1364 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1365 */
1366 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1367 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1368 * slot in the schedule */
1369 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1370 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1371 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1372 * needed */
1373 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1374
1375 /* The following flags are used internally by usbcore and HCDs */
1376 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1377 #define URB_DIR_OUT 0
1378 #define URB_DIR_MASK URB_DIR_IN
1379
1380 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1381 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1382 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1383 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1384 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1385 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1386 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1387 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1388
1389 struct usb_iso_packet_descriptor {
1390 unsigned int offset;
1391 unsigned int length; /* expected length */
1392 unsigned int actual_length;
1393 int status;
1394 };
1395
1396 struct urb;
1397
1398 struct usb_anchor {
1399 struct list_head urb_list;
1400 wait_queue_head_t wait;
1401 spinlock_t lock;
1402 atomic_t suspend_wakeups;
1403 unsigned int poisoned:1;
1404 };
1405
init_usb_anchor(struct usb_anchor * anchor)1406 static inline void init_usb_anchor(struct usb_anchor *anchor)
1407 {
1408 memset(anchor, 0, sizeof(*anchor));
1409 INIT_LIST_HEAD(&anchor->urb_list);
1410 init_waitqueue_head(&anchor->wait);
1411 spin_lock_init(&anchor->lock);
1412 }
1413
1414 typedef void (*usb_complete_t)(struct urb *);
1415
1416 /**
1417 * struct urb - USB Request Block
1418 * @urb_list: For use by current owner of the URB.
1419 * @anchor_list: membership in the list of an anchor
1420 * @anchor: to anchor URBs to a common mooring
1421 * @ep: Points to the endpoint's data structure. Will eventually
1422 * replace @pipe.
1423 * @pipe: Holds endpoint number, direction, type, and more.
1424 * Create these values with the eight macros available;
1425 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1426 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1427 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1428 * numbers range from zero to fifteen. Note that "in" endpoint two
1429 * is a different endpoint (and pipe) from "out" endpoint two.
1430 * The current configuration controls the existence, type, and
1431 * maximum packet size of any given endpoint.
1432 * @stream_id: the endpoint's stream ID for bulk streams
1433 * @dev: Identifies the USB device to perform the request.
1434 * @status: This is read in non-iso completion functions to get the
1435 * status of the particular request. ISO requests only use it
1436 * to tell whether the URB was unlinked; detailed status for
1437 * each frame is in the fields of the iso_frame-desc.
1438 * @transfer_flags: A variety of flags may be used to affect how URB
1439 * submission, unlinking, or operation are handled. Different
1440 * kinds of URB can use different flags.
1441 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1442 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1443 * (however, do not leave garbage in transfer_buffer even then).
1444 * This buffer must be suitable for DMA; allocate it with
1445 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1446 * of this buffer will be modified. This buffer is used for the data
1447 * stage of control transfers.
1448 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1449 * the device driver is saying that it provided this DMA address,
1450 * which the host controller driver should use in preference to the
1451 * transfer_buffer.
1452 * @sg: scatter gather buffer list, the buffer size of each element in
1453 * the list (except the last) must be divisible by the endpoint's
1454 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1455 * @num_mapped_sgs: (internal) number of mapped sg entries
1456 * @num_sgs: number of entries in the sg list
1457 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1458 * be broken up into chunks according to the current maximum packet
1459 * size for the endpoint, which is a function of the configuration
1460 * and is encoded in the pipe. When the length is zero, neither
1461 * transfer_buffer nor transfer_dma is used.
1462 * @actual_length: This is read in non-iso completion functions, and
1463 * it tells how many bytes (out of transfer_buffer_length) were
1464 * transferred. It will normally be the same as requested, unless
1465 * either an error was reported or a short read was performed.
1466 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1467 * short reads be reported as errors.
1468 * @setup_packet: Only used for control transfers, this points to eight bytes
1469 * of setup data. Control transfers always start by sending this data
1470 * to the device. Then transfer_buffer is read or written, if needed.
1471 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1472 * this field; setup_packet must point to a valid buffer.
1473 * @start_frame: Returns the initial frame for isochronous transfers.
1474 * @number_of_packets: Lists the number of ISO transfer buffers.
1475 * @interval: Specifies the polling interval for interrupt or isochronous
1476 * transfers. The units are frames (milliseconds) for full and low
1477 * speed devices, and microframes (1/8 millisecond) for highspeed
1478 * and SuperSpeed devices.
1479 * @error_count: Returns the number of ISO transfers that reported errors.
1480 * @context: For use in completion functions. This normally points to
1481 * request-specific driver context.
1482 * @complete: Completion handler. This URB is passed as the parameter to the
1483 * completion function. The completion function may then do what
1484 * it likes with the URB, including resubmitting or freeing it.
1485 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1486 * collect the transfer status for each buffer.
1487 *
1488 * This structure identifies USB transfer requests. URBs must be allocated by
1489 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1490 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1491 * are submitted using usb_submit_urb(), and pending requests may be canceled
1492 * using usb_unlink_urb() or usb_kill_urb().
1493 *
1494 * Data Transfer Buffers:
1495 *
1496 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1497 * taken from the general page pool. That is provided by transfer_buffer
1498 * (control requests also use setup_packet), and host controller drivers
1499 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1500 * mapping operations can be expensive on some platforms (perhaps using a dma
1501 * bounce buffer or talking to an IOMMU),
1502 * although they're cheap on commodity x86 and ppc hardware.
1503 *
1504 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1505 * which tells the host controller driver that no such mapping is needed for
1506 * the transfer_buffer since
1507 * the device driver is DMA-aware. For example, a device driver might
1508 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1509 * When this transfer flag is provided, host controller drivers will
1510 * attempt to use the dma address found in the transfer_dma
1511 * field rather than determining a dma address themselves.
1512 *
1513 * Note that transfer_buffer must still be set if the controller
1514 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1515 * to root hub. If you have to transfer between highmem zone and the device
1516 * on such controller, create a bounce buffer or bail out with an error.
1517 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1518 * capable, assign NULL to it, so that usbmon knows not to use the value.
1519 * The setup_packet must always be set, so it cannot be located in highmem.
1520 *
1521 * Initialization:
1522 *
1523 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1524 * zero), and complete fields. All URBs must also initialize
1525 * transfer_buffer and transfer_buffer_length. They may provide the
1526 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1527 * to be treated as errors; that flag is invalid for write requests.
1528 *
1529 * Bulk URBs may
1530 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1531 * should always terminate with a short packet, even if it means adding an
1532 * extra zero length packet.
1533 *
1534 * Control URBs must provide a valid pointer in the setup_packet field.
1535 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1536 * beforehand.
1537 *
1538 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1539 * or, for highspeed devices, 125 microsecond units)
1540 * to poll for transfers. After the URB has been submitted, the interval
1541 * field reflects how the transfer was actually scheduled.
1542 * The polling interval may be more frequent than requested.
1543 * For example, some controllers have a maximum interval of 32 milliseconds,
1544 * while others support intervals of up to 1024 milliseconds.
1545 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1546 * endpoints, as well as high speed interrupt endpoints, the encoding of
1547 * the transfer interval in the endpoint descriptor is logarithmic.
1548 * Device drivers must convert that value to linear units themselves.)
1549 *
1550 * If an isochronous endpoint queue isn't already running, the host
1551 * controller will schedule a new URB to start as soon as bandwidth
1552 * utilization allows. If the queue is running then a new URB will be
1553 * scheduled to start in the first transfer slot following the end of the
1554 * preceding URB, if that slot has not already expired. If the slot has
1555 * expired (which can happen when IRQ delivery is delayed for a long time),
1556 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1557 * is clear then the URB will be scheduled to start in the expired slot,
1558 * implying that some of its packets will not be transferred; if the flag
1559 * is set then the URB will be scheduled in the first unexpired slot,
1560 * breaking the queue's synchronization. Upon URB completion, the
1561 * start_frame field will be set to the (micro)frame number in which the
1562 * transfer was scheduled. Ranges for frame counter values are HC-specific
1563 * and can go from as low as 256 to as high as 65536 frames.
1564 *
1565 * Isochronous URBs have a different data transfer model, in part because
1566 * the quality of service is only "best effort". Callers provide specially
1567 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1568 * at the end. Each such packet is an individual ISO transfer. Isochronous
1569 * URBs are normally queued, submitted by drivers to arrange that
1570 * transfers are at least double buffered, and then explicitly resubmitted
1571 * in completion handlers, so
1572 * that data (such as audio or video) streams at as constant a rate as the
1573 * host controller scheduler can support.
1574 *
1575 * Completion Callbacks:
1576 *
1577 * The completion callback is made in_interrupt(), and one of the first
1578 * things that a completion handler should do is check the status field.
1579 * The status field is provided for all URBs. It is used to report
1580 * unlinked URBs, and status for all non-ISO transfers. It should not
1581 * be examined before the URB is returned to the completion handler.
1582 *
1583 * The context field is normally used to link URBs back to the relevant
1584 * driver or request state.
1585 *
1586 * When the completion callback is invoked for non-isochronous URBs, the
1587 * actual_length field tells how many bytes were transferred. This field
1588 * is updated even when the URB terminated with an error or was unlinked.
1589 *
1590 * ISO transfer status is reported in the status and actual_length fields
1591 * of the iso_frame_desc array, and the number of errors is reported in
1592 * error_count. Completion callbacks for ISO transfers will normally
1593 * (re)submit URBs to ensure a constant transfer rate.
1594 *
1595 * Note that even fields marked "public" should not be touched by the driver
1596 * when the urb is owned by the hcd, that is, since the call to
1597 * usb_submit_urb() till the entry into the completion routine.
1598 */
1599 struct urb {
1600 /* private: usb core and host controller only fields in the urb */
1601 struct kref kref; /* reference count of the URB */
1602 int unlinked; /* unlink error code */
1603 void *hcpriv; /* private data for host controller */
1604 atomic_t use_count; /* concurrent submissions counter */
1605 atomic_t reject; /* submissions will fail */
1606
1607 /* public: documented fields in the urb that can be used by drivers */
1608 struct list_head urb_list; /* list head for use by the urb's
1609 * current owner */
1610 struct list_head anchor_list; /* the URB may be anchored */
1611 struct usb_anchor *anchor;
1612 struct usb_device *dev; /* (in) pointer to associated device */
1613 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1614 unsigned int pipe; /* (in) pipe information */
1615 unsigned int stream_id; /* (in) stream ID */
1616 int status; /* (return) non-ISO status */
1617 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1618 void *transfer_buffer; /* (in) associated data buffer */
1619 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1620 struct scatterlist *sg; /* (in) scatter gather buffer list */
1621 int num_mapped_sgs; /* (internal) mapped sg entries */
1622 int num_sgs; /* (in) number of entries in the sg list */
1623 u32 transfer_buffer_length; /* (in) data buffer length */
1624 u32 actual_length; /* (return) actual transfer length */
1625 unsigned char *setup_packet; /* (in) setup packet (control only) */
1626 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1627 int start_frame; /* (modify) start frame (ISO) */
1628 int number_of_packets; /* (in) number of ISO packets */
1629 int interval; /* (modify) transfer interval
1630 * (INT/ISO) */
1631 int error_count; /* (return) number of ISO errors */
1632 void *context; /* (in) context for completion */
1633 usb_complete_t complete; /* (in) completion routine */
1634 struct usb_iso_packet_descriptor iso_frame_desc[];
1635 /* (in) ISO ONLY */
1636 };
1637
1638 /* ----------------------------------------------------------------------- */
1639
1640 /**
1641 * usb_fill_control_urb - initializes a control urb
1642 * @urb: pointer to the urb to initialize.
1643 * @dev: pointer to the struct usb_device for this urb.
1644 * @pipe: the endpoint pipe
1645 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1646 * suitable for DMA.
1647 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1648 * suitable for DMA.
1649 * @buffer_length: length of the transfer buffer
1650 * @complete_fn: pointer to the usb_complete_t function
1651 * @context: what to set the urb context to.
1652 *
1653 * Initializes a control urb with the proper information needed to submit
1654 * it to a device.
1655 *
1656 * The transfer buffer and the setup_packet buffer will most likely be filled
1657 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1658 * allocating it via kmalloc() or equivalent, even for very small buffers.
1659 * If the buffers are embedded in a bigger structure, there is a risk that
1660 * the buffer itself, the previous fields and/or the next fields are corrupted
1661 * due to cache incoherencies; or slowed down if they are evicted from the
1662 * cache. For more information, check &struct urb.
1663 *
1664 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1665 static inline void usb_fill_control_urb(struct urb *urb,
1666 struct usb_device *dev,
1667 unsigned int pipe,
1668 unsigned char *setup_packet,
1669 void *transfer_buffer,
1670 int buffer_length,
1671 usb_complete_t complete_fn,
1672 void *context)
1673 {
1674 urb->dev = dev;
1675 urb->pipe = pipe;
1676 urb->setup_packet = setup_packet;
1677 urb->transfer_buffer = transfer_buffer;
1678 urb->transfer_buffer_length = buffer_length;
1679 urb->complete = complete_fn;
1680 urb->context = context;
1681 }
1682
1683 /**
1684 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1685 * @urb: pointer to the urb to initialize.
1686 * @dev: pointer to the struct usb_device for this urb.
1687 * @pipe: the endpoint pipe
1688 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1689 * suitable for DMA.
1690 * @buffer_length: length of the transfer buffer
1691 * @complete_fn: pointer to the usb_complete_t function
1692 * @context: what to set the urb context to.
1693 *
1694 * Initializes a bulk urb with the proper information needed to submit it
1695 * to a device.
1696 *
1697 * Refer to usb_fill_control_urb() for a description of the requirements for
1698 * transfer_buffer.
1699 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1700 static inline void usb_fill_bulk_urb(struct urb *urb,
1701 struct usb_device *dev,
1702 unsigned int pipe,
1703 void *transfer_buffer,
1704 int buffer_length,
1705 usb_complete_t complete_fn,
1706 void *context)
1707 {
1708 urb->dev = dev;
1709 urb->pipe = pipe;
1710 urb->transfer_buffer = transfer_buffer;
1711 urb->transfer_buffer_length = buffer_length;
1712 urb->complete = complete_fn;
1713 urb->context = context;
1714 }
1715
1716 /**
1717 * usb_fill_int_urb - macro to help initialize a interrupt urb
1718 * @urb: pointer to the urb to initialize.
1719 * @dev: pointer to the struct usb_device for this urb.
1720 * @pipe: the endpoint pipe
1721 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1722 * suitable for DMA.
1723 * @buffer_length: length of the transfer buffer
1724 * @complete_fn: pointer to the usb_complete_t function
1725 * @context: what to set the urb context to.
1726 * @interval: what to set the urb interval to, encoded like
1727 * the endpoint descriptor's bInterval value.
1728 *
1729 * Initializes a interrupt urb with the proper information needed to submit
1730 * it to a device.
1731 *
1732 * Refer to usb_fill_control_urb() for a description of the requirements for
1733 * transfer_buffer.
1734 *
1735 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1736 * encoding of the endpoint interval, and express polling intervals in
1737 * microframes (eight per millisecond) rather than in frames (one per
1738 * millisecond).
1739 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1740 static inline void usb_fill_int_urb(struct urb *urb,
1741 struct usb_device *dev,
1742 unsigned int pipe,
1743 void *transfer_buffer,
1744 int buffer_length,
1745 usb_complete_t complete_fn,
1746 void *context,
1747 int interval)
1748 {
1749 urb->dev = dev;
1750 urb->pipe = pipe;
1751 urb->transfer_buffer = transfer_buffer;
1752 urb->transfer_buffer_length = buffer_length;
1753 urb->complete = complete_fn;
1754 urb->context = context;
1755
1756 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1757 /* make sure interval is within allowed range */
1758 interval = clamp(interval, 1, 16);
1759
1760 urb->interval = 1 << (interval - 1);
1761 } else {
1762 urb->interval = interval;
1763 }
1764
1765 urb->start_frame = -1;
1766 }
1767
1768 extern void usb_init_urb(struct urb *urb);
1769 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1770 extern void usb_free_urb(struct urb *urb);
1771 #define usb_put_urb usb_free_urb
1772 extern struct urb *usb_get_urb(struct urb *urb);
1773 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1774 extern int usb_unlink_urb(struct urb *urb);
1775 extern void usb_kill_urb(struct urb *urb);
1776 extern void usb_poison_urb(struct urb *urb);
1777 extern void usb_unpoison_urb(struct urb *urb);
1778 extern void usb_block_urb(struct urb *urb);
1779 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1780 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1781 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1782 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1783 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1784 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1785 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1786 extern void usb_unanchor_urb(struct urb *urb);
1787 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1788 unsigned int timeout);
1789 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1790 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1791 extern int usb_anchor_empty(struct usb_anchor *anchor);
1792
1793 #define usb_unblock_urb usb_unpoison_urb
1794
1795 /**
1796 * usb_urb_dir_in - check if an URB describes an IN transfer
1797 * @urb: URB to be checked
1798 *
1799 * Return: 1 if @urb describes an IN transfer (device-to-host),
1800 * otherwise 0.
1801 */
usb_urb_dir_in(struct urb * urb)1802 static inline int usb_urb_dir_in(struct urb *urb)
1803 {
1804 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1805 }
1806
1807 /**
1808 * usb_urb_dir_out - check if an URB describes an OUT transfer
1809 * @urb: URB to be checked
1810 *
1811 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1812 * otherwise 0.
1813 */
usb_urb_dir_out(struct urb * urb)1814 static inline int usb_urb_dir_out(struct urb *urb)
1815 {
1816 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1817 }
1818
1819 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1820 int usb_urb_ep_type_check(const struct urb *urb);
1821
1822 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1823 gfp_t mem_flags, dma_addr_t *dma);
1824 void usb_free_coherent(struct usb_device *dev, size_t size,
1825 void *addr, dma_addr_t dma);
1826
1827 /*-------------------------------------------------------------------*
1828 * SYNCHRONOUS CALL SUPPORT *
1829 *-------------------------------------------------------------------*/
1830
1831 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1832 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1833 void *data, __u16 size, int timeout);
1834 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1835 void *data, int len, int *actual_length, int timeout);
1836 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1837 void *data, int len, int *actual_length,
1838 int timeout);
1839
1840 /* wrappers around usb_control_msg() for the most common standard requests */
1841 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1842 __u8 requesttype, __u16 value, __u16 index,
1843 const void *data, __u16 size, int timeout,
1844 gfp_t memflags);
1845 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1846 __u8 requesttype, __u16 value, __u16 index,
1847 void *data, __u16 size, int timeout,
1848 gfp_t memflags);
1849 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1850 unsigned char descindex, void *buf, int size);
1851 extern int usb_get_status(struct usb_device *dev,
1852 int recip, int type, int target, void *data);
1853
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1854 static inline int usb_get_std_status(struct usb_device *dev,
1855 int recip, int target, void *data)
1856 {
1857 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1858 data);
1859 }
1860
usb_get_ptm_status(struct usb_device * dev,void * data)1861 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1862 {
1863 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1864 0, data);
1865 }
1866
1867 extern int usb_string(struct usb_device *dev, int index,
1868 char *buf, size_t size);
1869 extern char *usb_cache_string(struct usb_device *udev, int index);
1870
1871 /* wrappers that also update important state inside usbcore */
1872 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1873 extern int usb_reset_configuration(struct usb_device *dev);
1874 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1875 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1876
1877 /* this request isn't really synchronous, but it belongs with the others */
1878 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1879
1880 /* choose and set configuration for device */
1881 extern int usb_choose_configuration(struct usb_device *udev);
1882 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1883
1884 /*
1885 * timeouts, in milliseconds, used for sending/receiving control messages
1886 * they typically complete within a few frames (msec) after they're issued
1887 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1888 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1889 */
1890 #define USB_CTRL_GET_TIMEOUT 5000
1891 #define USB_CTRL_SET_TIMEOUT 5000
1892
1893
1894 /**
1895 * struct usb_sg_request - support for scatter/gather I/O
1896 * @status: zero indicates success, else negative errno
1897 * @bytes: counts bytes transferred.
1898 *
1899 * These requests are initialized using usb_sg_init(), and then are used
1900 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1901 * members of the request object aren't for driver access.
1902 *
1903 * The status and bytecount values are valid only after usb_sg_wait()
1904 * returns. If the status is zero, then the bytecount matches the total
1905 * from the request.
1906 *
1907 * After an error completion, drivers may need to clear a halt condition
1908 * on the endpoint.
1909 */
1910 struct usb_sg_request {
1911 int status;
1912 size_t bytes;
1913
1914 /* private:
1915 * members below are private to usbcore,
1916 * and are not provided for driver access!
1917 */
1918 spinlock_t lock;
1919
1920 struct usb_device *dev;
1921 int pipe;
1922
1923 int entries;
1924 struct urb **urbs;
1925
1926 int count;
1927 struct completion complete;
1928 };
1929
1930 int usb_sg_init(
1931 struct usb_sg_request *io,
1932 struct usb_device *dev,
1933 unsigned pipe,
1934 unsigned period,
1935 struct scatterlist *sg,
1936 int nents,
1937 size_t length,
1938 gfp_t mem_flags
1939 );
1940 void usb_sg_cancel(struct usb_sg_request *io);
1941 void usb_sg_wait(struct usb_sg_request *io);
1942
1943
1944 /* ----------------------------------------------------------------------- */
1945
1946 /*
1947 * For various legacy reasons, Linux has a small cookie that's paired with
1948 * a struct usb_device to identify an endpoint queue. Queue characteristics
1949 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1950 * an unsigned int encoded as:
1951 *
1952 * - direction: bit 7 (0 = Host-to-Device [Out],
1953 * 1 = Device-to-Host [In] ...
1954 * like endpoint bEndpointAddress)
1955 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1956 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1957 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1958 * 10 = control, 11 = bulk)
1959 *
1960 * Given the device address and endpoint descriptor, pipes are redundant.
1961 */
1962
1963 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1964 /* (yet ... they're the values used by usbfs) */
1965 #define PIPE_ISOCHRONOUS 0
1966 #define PIPE_INTERRUPT 1
1967 #define PIPE_CONTROL 2
1968 #define PIPE_BULK 3
1969
1970 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1971 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1972
1973 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1974 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1975
1976 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1977 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1978 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1979 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1980 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1981
__create_pipe(struct usb_device * dev,unsigned int endpoint)1982 static inline unsigned int __create_pipe(struct usb_device *dev,
1983 unsigned int endpoint)
1984 {
1985 return (dev->devnum << 8) | (endpoint << 15);
1986 }
1987
1988 /* Create various pipes... */
1989 #define usb_sndctrlpipe(dev, endpoint) \
1990 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1991 #define usb_rcvctrlpipe(dev, endpoint) \
1992 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1993 #define usb_sndisocpipe(dev, endpoint) \
1994 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1995 #define usb_rcvisocpipe(dev, endpoint) \
1996 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1997 #define usb_sndbulkpipe(dev, endpoint) \
1998 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1999 #define usb_rcvbulkpipe(dev, endpoint) \
2000 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2001 #define usb_sndintpipe(dev, endpoint) \
2002 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2003 #define usb_rcvintpipe(dev, endpoint) \
2004 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2005
2006 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2007 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2008 {
2009 struct usb_host_endpoint **eps;
2010 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2011 return eps[usb_pipeendpoint(pipe)];
2012 }
2013
usb_maxpacket(struct usb_device * udev,int pipe)2014 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2015 {
2016 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2017
2018 if (!ep)
2019 return 0;
2020
2021 /* NOTE: only 0x07ff bits are for packet size... */
2022 return usb_endpoint_maxp(&ep->desc);
2023 }
2024
2025 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2026 static inline int usb_translate_errors(int error_code)
2027 {
2028 switch (error_code) {
2029 case 0:
2030 case -ENOMEM:
2031 case -ENODEV:
2032 case -EOPNOTSUPP:
2033 return error_code;
2034 default:
2035 return -EIO;
2036 }
2037 }
2038
2039 /* Events from the usb core */
2040 #define USB_DEVICE_ADD 0x0001
2041 #define USB_DEVICE_REMOVE 0x0002
2042 #define USB_BUS_ADD 0x0003
2043 #define USB_BUS_REMOVE 0x0004
2044 extern void usb_register_notify(struct notifier_block *nb);
2045 extern void usb_unregister_notify(struct notifier_block *nb);
2046
2047 /* debugfs stuff */
2048 extern struct dentry *usb_debug_root;
2049
2050 /* LED triggers */
2051 enum usb_led_event {
2052 USB_LED_EVENT_HOST = 0,
2053 USB_LED_EVENT_GADGET = 1,
2054 };
2055
2056 #ifdef CONFIG_USB_LED_TRIG
2057 extern void usb_led_activity(enum usb_led_event ev);
2058 #else
usb_led_activity(enum usb_led_event ev)2059 static inline void usb_led_activity(enum usb_led_event ev) {}
2060 #endif
2061
2062 #endif /* __KERNEL__ */
2063
2064 #endif
2065