1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13
14 #include "sb_regs.h"
15 #include "tb.h"
16
17 #define USB4_DATA_RETRIES 3
18 #define USB4_DATA_DWORDS 16
19
20 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
21 #define USB4_NVM_READ_OFFSET_SHIFT 2
22 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
23 #define USB4_NVM_READ_LENGTH_SHIFT 24
24
25 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
26 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
27
28 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
29 #define USB4_DROM_ADDRESS_SHIFT 2
30 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
31 #define USB4_DROM_SIZE_SHIFT 15
32
33 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
34
35 #define USB4_BA_LENGTH_MASK GENMASK(7, 0)
36 #define USB4_BA_INDEX_MASK GENMASK(15, 0)
37
38 enum usb4_ba_index {
39 USB4_BA_MAX_USB3 = 0x1,
40 USB4_BA_MIN_DP_AUX = 0x2,
41 USB4_BA_MIN_DP_MAIN = 0x3,
42 USB4_BA_MAX_PCIE = 0x4,
43 USB4_BA_MAX_HI = 0x5,
44 };
45
46 #define USB4_BA_VALUE_MASK GENMASK(31, 16)
47 #define USB4_BA_VALUE_SHIFT 16
48
49 /* Delays in us used with usb4_port_wait_for_bit() */
50 #define USB4_PORT_DELAY 50
51 #define USB4_PORT_SB_DELAY 1000
52
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 u32 *metadata, u8 *status,
55 const void *tx_data, size_t tx_dwords,
56 void *rx_data, size_t rx_dwords)
57 {
58 u32 val;
59 int ret;
60
61 if (metadata) {
62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 if (ret)
64 return ret;
65 }
66 if (tx_dwords) {
67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 tx_dwords);
69 if (ret)
70 return ret;
71 }
72
73 val = opcode | ROUTER_CS_26_OV;
74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 if (ret)
76 return ret;
77
78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 if (ret)
80 return ret;
81
82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 if (ret)
84 return ret;
85
86 if (val & ROUTER_CS_26_ONS)
87 return -EOPNOTSUPP;
88
89 if (status)
90 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 ROUTER_CS_26_STATUS_SHIFT;
92
93 if (metadata) {
94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 if (ret)
96 return ret;
97 }
98 if (rx_dwords) {
99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 rx_dwords);
101 if (ret)
102 return ret;
103 }
104
105 return 0;
106 }
107
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 u8 *status, const void *tx_data, size_t tx_dwords,
110 void *rx_data, size_t rx_dwords)
111 {
112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113
114 if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
115 return -EINVAL;
116
117 /*
118 * If the connection manager implementation provides USB4 router
119 * operation proxy callback, call it here instead of running the
120 * operation natively.
121 */
122 if (cm_ops->usb4_switch_op) {
123 int ret;
124
125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 tx_data, tx_dwords, rx_data,
127 rx_dwords);
128 if (ret != -EOPNOTSUPP)
129 return ret;
130
131 /*
132 * If the proxy was not supported then run the native
133 * router operation instead.
134 */
135 }
136
137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 tx_dwords, rx_data, rx_dwords);
139 }
140
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 u32 *metadata, u8 *status)
143 {
144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145 }
146
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 u32 *metadata, u8 *status,
149 const void *tx_data, size_t tx_dwords,
150 void *rx_data, size_t rx_dwords)
151 {
152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 tx_dwords, rx_data, rx_dwords);
154 }
155
156 /**
157 * usb4_switch_check_wakes() - Check for wakes and notify PM core about them
158 * @sw: Router whose wakes to check
159 *
160 * Checks wakes occurred during suspend and notify the PM core about them.
161 */
usb4_switch_check_wakes(struct tb_switch * sw)162 void usb4_switch_check_wakes(struct tb_switch *sw)
163 {
164 bool wakeup_usb4 = false;
165 struct usb4_port *usb4;
166 struct tb_port *port;
167 bool wakeup = false;
168 u32 val;
169
170 if (tb_route(sw)) {
171 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
172 return;
173
174 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
175 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
176 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
177
178 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
179 }
180
181 /*
182 * Check for any downstream ports for USB4 wake,
183 * connection wake and disconnection wake.
184 */
185 tb_switch_for_each_port(sw, port) {
186 if (!port->cap_usb4)
187 continue;
188
189 if (tb_port_read(port, &val, TB_CFG_PORT,
190 port->cap_usb4 + PORT_CS_18, 1))
191 break;
192
193 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
194 (val & PORT_CS_18_WOU4S) ? "yes" : "no",
195 (val & PORT_CS_18_WOCS) ? "yes" : "no",
196 (val & PORT_CS_18_WODS) ? "yes" : "no");
197
198 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
199 PORT_CS_18_WODS);
200
201 usb4 = port->usb4;
202 if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
203 pm_wakeup_event(&usb4->dev, 0);
204
205 wakeup |= wakeup_usb4;
206 }
207
208 if (wakeup)
209 pm_wakeup_event(&sw->dev, 0);
210 }
211
link_is_usb4(struct tb_port * port)212 static bool link_is_usb4(struct tb_port *port)
213 {
214 u32 val;
215
216 if (!port->cap_usb4)
217 return false;
218
219 if (tb_port_read(port, &val, TB_CFG_PORT,
220 port->cap_usb4 + PORT_CS_18, 1))
221 return false;
222
223 return !(val & PORT_CS_18_TCM);
224 }
225
226 /**
227 * usb4_switch_setup() - Additional setup for USB4 device
228 * @sw: USB4 router to setup
229 *
230 * USB4 routers need additional settings in order to enable all the
231 * tunneling. This function enables USB and PCIe tunneling if it can be
232 * enabled (e.g the parent switch also supports them). If USB tunneling
233 * is not available for some reason (like that there is Thunderbolt 3
234 * switch upstream) then the internal xHCI controller is enabled
235 * instead.
236 *
237 * This does not set the configuration valid bit of the router. To do
238 * that call usb4_switch_configuration_valid().
239 */
usb4_switch_setup(struct tb_switch * sw)240 int usb4_switch_setup(struct tb_switch *sw)
241 {
242 struct tb_switch *parent = tb_switch_parent(sw);
243 struct tb_port *down;
244 bool tbt3, xhci;
245 u32 val = 0;
246 int ret;
247
248 if (!tb_route(sw))
249 return 0;
250
251 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
252 if (ret)
253 return ret;
254
255 down = tb_switch_downstream_port(sw);
256 sw->link_usb4 = link_is_usb4(down);
257 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
258
259 xhci = val & ROUTER_CS_6_HCI;
260 tbt3 = !(val & ROUTER_CS_6_TNS);
261
262 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
263 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
264
265 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
266 if (ret)
267 return ret;
268
269 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
270 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
271 val |= ROUTER_CS_5_UTO;
272 xhci = false;
273 }
274
275 /*
276 * Only enable PCIe tunneling if the parent router supports it
277 * and it is not disabled.
278 */
279 if (tb_acpi_may_tunnel_pcie() &&
280 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
281 val |= ROUTER_CS_5_PTO;
282 /*
283 * xHCI can be enabled if PCIe tunneling is supported
284 * and the parent does not have any USB3 dowstream
285 * adapters (so we cannot do USB 3.x tunneling).
286 */
287 if (xhci)
288 val |= ROUTER_CS_5_HCO;
289 }
290
291 /* TBT3 supported by the CM */
292 val &= ~ROUTER_CS_5_CNS;
293
294 return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
295 }
296
297 /**
298 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
299 * @sw: USB4 router
300 *
301 * Sets configuration valid bit for the router. Must be called before
302 * any tunnels can be set through the router and after
303 * usb4_switch_setup() has been called. Can be called to host and device
304 * routers (does nothing for the latter).
305 *
306 * Returns %0 in success and negative errno otherwise.
307 */
usb4_switch_configuration_valid(struct tb_switch * sw)308 int usb4_switch_configuration_valid(struct tb_switch *sw)
309 {
310 u32 val;
311 int ret;
312
313 if (!tb_route(sw))
314 return 0;
315
316 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
317 if (ret)
318 return ret;
319
320 val |= ROUTER_CS_5_CV;
321
322 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
323 if (ret)
324 return ret;
325
326 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
327 ROUTER_CS_6_CR, 50);
328 }
329
330 /**
331 * usb4_switch_read_uid() - Read UID from USB4 router
332 * @sw: USB4 router
333 * @uid: UID is stored here
334 *
335 * Reads 64-bit UID from USB4 router config space.
336 */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)337 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
338 {
339 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
340 }
341
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)342 static int usb4_switch_drom_read_block(void *data,
343 unsigned int dwaddress, void *buf,
344 size_t dwords)
345 {
346 struct tb_switch *sw = data;
347 u8 status = 0;
348 u32 metadata;
349 int ret;
350
351 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
352 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
353 USB4_DROM_ADDRESS_MASK;
354
355 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
356 &status, NULL, 0, buf, dwords);
357 if (ret)
358 return ret;
359
360 return status ? -EIO : 0;
361 }
362
363 /**
364 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
365 * @sw: USB4 router
366 * @address: Byte address inside DROM to start reading
367 * @buf: Buffer where the DROM content is stored
368 * @size: Number of bytes to read from DROM
369 *
370 * Uses USB4 router operations to read router DROM. For devices this
371 * should always work but for hosts it may return %-EOPNOTSUPP in which
372 * case the host router does not have DROM.
373 */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)374 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
375 size_t size)
376 {
377 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
378 usb4_switch_drom_read_block, sw);
379 }
380
381 /**
382 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
383 * @sw: USB4 router
384 *
385 * Checks whether conditions are met so that lane bonding can be
386 * established with the upstream router. Call only for device routers.
387 */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)388 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
389 {
390 struct tb_port *up;
391 int ret;
392 u32 val;
393
394 up = tb_upstream_port(sw);
395 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
396 if (ret)
397 return false;
398
399 return !!(val & PORT_CS_18_BE);
400 }
401
402 /**
403 * usb4_switch_set_wake() - Enabled/disable wake
404 * @sw: USB4 router
405 * @flags: Wakeup flags (%0 to disable)
406 *
407 * Enables/disables router to wake up from sleep.
408 */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)409 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
410 {
411 struct usb4_port *usb4;
412 struct tb_port *port;
413 u64 route = tb_route(sw);
414 u32 val;
415 int ret;
416
417 /*
418 * Enable wakes coming from all USB4 downstream ports (from
419 * child routers). For device routers do this also for the
420 * upstream USB4 port.
421 */
422 tb_switch_for_each_port(sw, port) {
423 if (!tb_port_is_null(port))
424 continue;
425 if (!route && tb_is_upstream_port(port))
426 continue;
427 if (!port->cap_usb4)
428 continue;
429
430 ret = tb_port_read(port, &val, TB_CFG_PORT,
431 port->cap_usb4 + PORT_CS_19, 1);
432 if (ret)
433 return ret;
434
435 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
436
437 if (tb_is_upstream_port(port)) {
438 val |= PORT_CS_19_WOU4;
439 } else {
440 bool configured = val & PORT_CS_19_PC;
441 usb4 = port->usb4;
442
443 if (((flags & TB_WAKE_ON_CONNECT) |
444 device_may_wakeup(&usb4->dev)) && !configured)
445 val |= PORT_CS_19_WOC;
446 if (((flags & TB_WAKE_ON_DISCONNECT) |
447 device_may_wakeup(&usb4->dev)) && configured)
448 val |= PORT_CS_19_WOD;
449 if ((flags & TB_WAKE_ON_USB4) && configured)
450 val |= PORT_CS_19_WOU4;
451 }
452
453 ret = tb_port_write(port, &val, TB_CFG_PORT,
454 port->cap_usb4 + PORT_CS_19, 1);
455 if (ret)
456 return ret;
457 }
458
459 /*
460 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
461 * needed for device routers.
462 */
463 if (route) {
464 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
465 if (ret)
466 return ret;
467
468 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
469 if (flags & TB_WAKE_ON_USB3)
470 val |= ROUTER_CS_5_WOU;
471 if (flags & TB_WAKE_ON_PCIE)
472 val |= ROUTER_CS_5_WOP;
473 if (flags & TB_WAKE_ON_DP)
474 val |= ROUTER_CS_5_WOD;
475
476 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
477 if (ret)
478 return ret;
479 }
480
481 return 0;
482 }
483
484 /**
485 * usb4_switch_set_sleep() - Prepare the router to enter sleep
486 * @sw: USB4 router
487 *
488 * Sets sleep bit for the router. Returns when the router sleep ready
489 * bit has been asserted.
490 */
usb4_switch_set_sleep(struct tb_switch * sw)491 int usb4_switch_set_sleep(struct tb_switch *sw)
492 {
493 int ret;
494 u32 val;
495
496 /* Set sleep bit and wait for sleep ready to be asserted */
497 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
498 if (ret)
499 return ret;
500
501 val |= ROUTER_CS_5_SLP;
502
503 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
504 if (ret)
505 return ret;
506
507 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
508 ROUTER_CS_6_SLPR, 500);
509 }
510
511 /**
512 * usb4_switch_nvm_sector_size() - Return router NVM sector size
513 * @sw: USB4 router
514 *
515 * If the router supports NVM operations this function returns the NVM
516 * sector size in bytes. If NVM operations are not supported returns
517 * %-EOPNOTSUPP.
518 */
usb4_switch_nvm_sector_size(struct tb_switch * sw)519 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
520 {
521 u32 metadata;
522 u8 status;
523 int ret;
524
525 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
526 &status);
527 if (ret)
528 return ret;
529
530 if (status)
531 return status == 0x2 ? -EOPNOTSUPP : -EIO;
532
533 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
534 }
535
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)536 static int usb4_switch_nvm_read_block(void *data,
537 unsigned int dwaddress, void *buf, size_t dwords)
538 {
539 struct tb_switch *sw = data;
540 u8 status = 0;
541 u32 metadata;
542 int ret;
543
544 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
545 USB4_NVM_READ_LENGTH_MASK;
546 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
547 USB4_NVM_READ_OFFSET_MASK;
548
549 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
550 &status, NULL, 0, buf, dwords);
551 if (ret)
552 return ret;
553
554 return status ? -EIO : 0;
555 }
556
557 /**
558 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
559 * @sw: USB4 router
560 * @address: Starting address in bytes
561 * @buf: Read data is placed here
562 * @size: How many bytes to read
563 *
564 * Reads NVM contents of the router. If NVM is not supported returns
565 * %-EOPNOTSUPP.
566 */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)567 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
568 size_t size)
569 {
570 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
571 usb4_switch_nvm_read_block, sw);
572 }
573
574 /**
575 * usb4_switch_nvm_set_offset() - Set NVM write offset
576 * @sw: USB4 router
577 * @address: Start offset
578 *
579 * Explicitly sets NVM write offset. Normally when writing to NVM this
580 * is done automatically by usb4_switch_nvm_write().
581 *
582 * Returns %0 in success and negative errno if there was a failure.
583 */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)584 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
585 {
586 u32 metadata, dwaddress;
587 u8 status = 0;
588 int ret;
589
590 dwaddress = address / 4;
591 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
592 USB4_NVM_SET_OFFSET_MASK;
593
594 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
595 &status);
596 if (ret)
597 return ret;
598
599 return status ? -EIO : 0;
600 }
601
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)602 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
603 const void *buf, size_t dwords)
604 {
605 struct tb_switch *sw = data;
606 u8 status;
607 int ret;
608
609 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
610 buf, dwords, NULL, 0);
611 if (ret)
612 return ret;
613
614 return status ? -EIO : 0;
615 }
616
617 /**
618 * usb4_switch_nvm_write() - Write to the router NVM
619 * @sw: USB4 router
620 * @address: Start address where to write in bytes
621 * @buf: Pointer to the data to write
622 * @size: Size of @buf in bytes
623 *
624 * Writes @buf to the router NVM using USB4 router operations. If NVM
625 * write is not supported returns %-EOPNOTSUPP.
626 */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)627 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
628 const void *buf, size_t size)
629 {
630 int ret;
631
632 ret = usb4_switch_nvm_set_offset(sw, address);
633 if (ret)
634 return ret;
635
636 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
637 usb4_switch_nvm_write_next_block, sw);
638 }
639
640 /**
641 * usb4_switch_nvm_authenticate() - Authenticate new NVM
642 * @sw: USB4 router
643 *
644 * After the new NVM has been written via usb4_switch_nvm_write(), this
645 * function triggers NVM authentication process. The router gets power
646 * cycled and if the authentication is successful the new NVM starts
647 * running. In case of failure returns negative errno.
648 *
649 * The caller should call usb4_switch_nvm_authenticate_status() to read
650 * the status of the authentication after power cycle. It should be the
651 * first router operation to avoid the status being lost.
652 */
usb4_switch_nvm_authenticate(struct tb_switch * sw)653 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
654 {
655 int ret;
656
657 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
658 switch (ret) {
659 /*
660 * The router is power cycled once NVM_AUTH is started so it is
661 * expected to get any of the following errors back.
662 */
663 case -EACCES:
664 case -ENOTCONN:
665 case -ETIMEDOUT:
666 return 0;
667
668 default:
669 return ret;
670 }
671 }
672
673 /**
674 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
675 * @sw: USB4 router
676 * @status: Status code of the operation
677 *
678 * The function checks if there is status available from the last NVM
679 * authenticate router operation. If there is status then %0 is returned
680 * and the status code is placed in @status. Returns negative errno in case
681 * of failure.
682 *
683 * Must be called before any other router operation.
684 */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)685 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
686 {
687 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
688 u16 opcode;
689 u32 val;
690 int ret;
691
692 if (cm_ops->usb4_switch_nvm_authenticate_status) {
693 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
694 if (ret != -EOPNOTSUPP)
695 return ret;
696 }
697
698 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
699 if (ret)
700 return ret;
701
702 /* Check that the opcode is correct */
703 opcode = val & ROUTER_CS_26_OPCODE_MASK;
704 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
705 if (val & ROUTER_CS_26_OV)
706 return -EBUSY;
707 if (val & ROUTER_CS_26_ONS)
708 return -EOPNOTSUPP;
709
710 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
711 ROUTER_CS_26_STATUS_SHIFT;
712 } else {
713 *status = 0;
714 }
715
716 return 0;
717 }
718
719 /**
720 * usb4_switch_credits_init() - Read buffer allocation parameters
721 * @sw: USB4 router
722 *
723 * Reads @sw buffer allocation parameters and initializes @sw buffer
724 * allocation fields accordingly. Specifically @sw->credits_allocation
725 * is set to %true if these parameters can be used in tunneling.
726 *
727 * Returns %0 on success and negative errno otherwise.
728 */
usb4_switch_credits_init(struct tb_switch * sw)729 int usb4_switch_credits_init(struct tb_switch *sw)
730 {
731 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
732 int ret, length, i, nports;
733 const struct tb_port *port;
734 u32 data[USB4_DATA_DWORDS];
735 u32 metadata = 0;
736 u8 status = 0;
737
738 memset(data, 0, sizeof(data));
739 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
740 &status, NULL, 0, data, ARRAY_SIZE(data));
741 if (ret)
742 return ret;
743 if (status)
744 return -EIO;
745
746 length = metadata & USB4_BA_LENGTH_MASK;
747 if (WARN_ON(length > ARRAY_SIZE(data)))
748 return -EMSGSIZE;
749
750 max_usb3 = -1;
751 min_dp_aux = -1;
752 min_dp_main = -1;
753 max_pcie = -1;
754 max_dma = -1;
755
756 tb_sw_dbg(sw, "credit allocation parameters:\n");
757
758 for (i = 0; i < length; i++) {
759 u16 index, value;
760
761 index = data[i] & USB4_BA_INDEX_MASK;
762 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
763
764 switch (index) {
765 case USB4_BA_MAX_USB3:
766 tb_sw_dbg(sw, " USB3: %u\n", value);
767 max_usb3 = value;
768 break;
769 case USB4_BA_MIN_DP_AUX:
770 tb_sw_dbg(sw, " DP AUX: %u\n", value);
771 min_dp_aux = value;
772 break;
773 case USB4_BA_MIN_DP_MAIN:
774 tb_sw_dbg(sw, " DP main: %u\n", value);
775 min_dp_main = value;
776 break;
777 case USB4_BA_MAX_PCIE:
778 tb_sw_dbg(sw, " PCIe: %u\n", value);
779 max_pcie = value;
780 break;
781 case USB4_BA_MAX_HI:
782 tb_sw_dbg(sw, " DMA: %u\n", value);
783 max_dma = value;
784 break;
785 default:
786 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
787 index);
788 break;
789 }
790 }
791
792 /*
793 * Validate the buffer allocation preferences. If we find
794 * issues, log a warning and fall back using the hard-coded
795 * values.
796 */
797
798 /* Host router must report baMaxHI */
799 if (!tb_route(sw) && max_dma < 0) {
800 tb_sw_warn(sw, "host router is missing baMaxHI\n");
801 goto err_invalid;
802 }
803
804 nports = 0;
805 tb_switch_for_each_port(sw, port) {
806 if (tb_port_is_null(port))
807 nports++;
808 }
809
810 /* Must have DP buffer allocation (multiple USB4 ports) */
811 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
812 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
813 goto err_invalid;
814 }
815
816 tb_switch_for_each_port(sw, port) {
817 if (tb_port_is_dpout(port) && min_dp_main < 0) {
818 tb_sw_warn(sw, "missing baMinDPmain");
819 goto err_invalid;
820 }
821 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
822 min_dp_aux < 0) {
823 tb_sw_warn(sw, "missing baMinDPaux");
824 goto err_invalid;
825 }
826 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
827 max_usb3 < 0) {
828 tb_sw_warn(sw, "missing baMaxUSB3");
829 goto err_invalid;
830 }
831 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
832 max_pcie < 0) {
833 tb_sw_warn(sw, "missing baMaxPCIe");
834 goto err_invalid;
835 }
836 }
837
838 /*
839 * Buffer allocation passed the validation so we can use it in
840 * path creation.
841 */
842 sw->credit_allocation = true;
843 if (max_usb3 > 0)
844 sw->max_usb3_credits = max_usb3;
845 if (min_dp_aux > 0)
846 sw->min_dp_aux_credits = min_dp_aux;
847 if (min_dp_main > 0)
848 sw->min_dp_main_credits = min_dp_main;
849 if (max_pcie > 0)
850 sw->max_pcie_credits = max_pcie;
851 if (max_dma > 0)
852 sw->max_dma_credits = max_dma;
853
854 return 0;
855
856 err_invalid:
857 return -EINVAL;
858 }
859
860 /**
861 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
862 * @sw: USB4 router
863 * @in: DP IN adapter
864 *
865 * For DP tunneling this function can be used to query availability of
866 * DP IN resource. Returns true if the resource is available for DP
867 * tunneling, false otherwise.
868 */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)869 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
870 {
871 u32 metadata = in->port;
872 u8 status;
873 int ret;
874
875 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
876 &status);
877 /*
878 * If DP resource allocation is not supported assume it is
879 * always available.
880 */
881 if (ret == -EOPNOTSUPP)
882 return true;
883 if (ret)
884 return false;
885
886 return !status;
887 }
888
889 /**
890 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
891 * @sw: USB4 router
892 * @in: DP IN adapter
893 *
894 * Allocates DP IN resource for DP tunneling using USB4 router
895 * operations. If the resource was allocated returns %0. Otherwise
896 * returns negative errno, in particular %-EBUSY if the resource is
897 * already allocated.
898 */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)899 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
900 {
901 u32 metadata = in->port;
902 u8 status;
903 int ret;
904
905 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
906 &status);
907 if (ret == -EOPNOTSUPP)
908 return 0;
909 if (ret)
910 return ret;
911
912 return status ? -EBUSY : 0;
913 }
914
915 /**
916 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
917 * @sw: USB4 router
918 * @in: DP IN adapter
919 *
920 * Releases the previously allocated DP IN resource.
921 */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)922 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
923 {
924 u32 metadata = in->port;
925 u8 status;
926 int ret;
927
928 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
929 &status);
930 if (ret == -EOPNOTSUPP)
931 return 0;
932 if (ret)
933 return ret;
934
935 return status ? -EIO : 0;
936 }
937
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)938 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
939 {
940 struct tb_port *p;
941 int usb4_idx = 0;
942
943 /* Assume port is primary */
944 tb_switch_for_each_port(sw, p) {
945 if (!tb_port_is_null(p))
946 continue;
947 if (tb_is_upstream_port(p))
948 continue;
949 if (!p->link_nr) {
950 if (p == port)
951 break;
952 usb4_idx++;
953 }
954 }
955
956 return usb4_idx;
957 }
958
959 /**
960 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
961 * @sw: USB4 router
962 * @port: USB4 port
963 *
964 * USB4 routers have direct mapping between USB4 ports and PCIe
965 * downstream adapters where the PCIe topology is extended. This
966 * function returns the corresponding downstream PCIe adapter or %NULL
967 * if no such mapping was possible.
968 */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)969 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
970 const struct tb_port *port)
971 {
972 int usb4_idx = usb4_port_idx(sw, port);
973 struct tb_port *p;
974 int pcie_idx = 0;
975
976 /* Find PCIe down port matching usb4_port */
977 tb_switch_for_each_port(sw, p) {
978 if (!tb_port_is_pcie_down(p))
979 continue;
980
981 if (pcie_idx == usb4_idx)
982 return p;
983
984 pcie_idx++;
985 }
986
987 return NULL;
988 }
989
990 /**
991 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
992 * @sw: USB4 router
993 * @port: USB4 port
994 *
995 * USB4 routers have direct mapping between USB4 ports and USB 3.x
996 * downstream adapters where the USB 3.x topology is extended. This
997 * function returns the corresponding downstream USB 3.x adapter or
998 * %NULL if no such mapping was possible.
999 */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)1000 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1001 const struct tb_port *port)
1002 {
1003 int usb4_idx = usb4_port_idx(sw, port);
1004 struct tb_port *p;
1005 int usb_idx = 0;
1006
1007 /* Find USB3 down port matching usb4_port */
1008 tb_switch_for_each_port(sw, p) {
1009 if (!tb_port_is_usb3_down(p))
1010 continue;
1011
1012 if (usb_idx == usb4_idx)
1013 return p;
1014
1015 usb_idx++;
1016 }
1017
1018 return NULL;
1019 }
1020
1021 /**
1022 * usb4_switch_add_ports() - Add USB4 ports for this router
1023 * @sw: USB4 router
1024 *
1025 * For USB4 router finds all USB4 ports and registers devices for each.
1026 * Can be called to any router.
1027 *
1028 * Return %0 in case of success and negative errno in case of failure.
1029 */
usb4_switch_add_ports(struct tb_switch * sw)1030 int usb4_switch_add_ports(struct tb_switch *sw)
1031 {
1032 struct tb_port *port;
1033
1034 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1035 return 0;
1036
1037 tb_switch_for_each_port(sw, port) {
1038 struct usb4_port *usb4;
1039
1040 if (!tb_port_is_null(port))
1041 continue;
1042 if (!port->cap_usb4)
1043 continue;
1044
1045 usb4 = usb4_port_device_add(port);
1046 if (IS_ERR(usb4)) {
1047 usb4_switch_remove_ports(sw);
1048 return PTR_ERR(usb4);
1049 }
1050
1051 port->usb4 = usb4;
1052 }
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1059 * @sw: USB4 router
1060 *
1061 * Unregisters previously registered USB4 ports.
1062 */
usb4_switch_remove_ports(struct tb_switch * sw)1063 void usb4_switch_remove_ports(struct tb_switch *sw)
1064 {
1065 struct tb_port *port;
1066
1067 tb_switch_for_each_port(sw, port) {
1068 if (port->usb4) {
1069 usb4_port_device_remove(port->usb4);
1070 port->usb4 = NULL;
1071 }
1072 }
1073 }
1074
1075 /**
1076 * usb4_port_unlock() - Unlock USB4 downstream port
1077 * @port: USB4 port to unlock
1078 *
1079 * Unlocks USB4 downstream port so that the connection manager can
1080 * access the router below this port.
1081 */
usb4_port_unlock(struct tb_port * port)1082 int usb4_port_unlock(struct tb_port *port)
1083 {
1084 int ret;
1085 u32 val;
1086
1087 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1088 if (ret)
1089 return ret;
1090
1091 val &= ~ADP_CS_4_LCK;
1092 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1093 }
1094
1095 /**
1096 * usb4_port_hotplug_enable() - Enables hotplug for a port
1097 * @port: USB4 port to operate on
1098 *
1099 * Enables hot plug events on a given port. This is only intended
1100 * to be used on lane, DP-IN, and DP-OUT adapters.
1101 */
usb4_port_hotplug_enable(struct tb_port * port)1102 int usb4_port_hotplug_enable(struct tb_port *port)
1103 {
1104 int ret;
1105 u32 val;
1106
1107 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1108 if (ret)
1109 return ret;
1110
1111 val &= ~ADP_CS_5_DHP;
1112 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1113 }
1114
1115 /**
1116 * usb4_port_reset() - Issue downstream port reset
1117 * @port: USB4 port to reset
1118 *
1119 * Issues downstream port reset to @port.
1120 */
usb4_port_reset(struct tb_port * port)1121 int usb4_port_reset(struct tb_port *port)
1122 {
1123 int ret;
1124 u32 val;
1125
1126 if (!port->cap_usb4)
1127 return -EINVAL;
1128
1129 ret = tb_port_read(port, &val, TB_CFG_PORT,
1130 port->cap_usb4 + PORT_CS_19, 1);
1131 if (ret)
1132 return ret;
1133
1134 val |= PORT_CS_19_DPR;
1135
1136 ret = tb_port_write(port, &val, TB_CFG_PORT,
1137 port->cap_usb4 + PORT_CS_19, 1);
1138 if (ret)
1139 return ret;
1140
1141 fsleep(10000);
1142
1143 ret = tb_port_read(port, &val, TB_CFG_PORT,
1144 port->cap_usb4 + PORT_CS_19, 1);
1145 if (ret)
1146 return ret;
1147
1148 val &= ~PORT_CS_19_DPR;
1149
1150 return tb_port_write(port, &val, TB_CFG_PORT,
1151 port->cap_usb4 + PORT_CS_19, 1);
1152 }
1153
usb4_port_set_configured(struct tb_port * port,bool configured)1154 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1155 {
1156 int ret;
1157 u32 val;
1158
1159 if (!port->cap_usb4)
1160 return -EINVAL;
1161
1162 ret = tb_port_read(port, &val, TB_CFG_PORT,
1163 port->cap_usb4 + PORT_CS_19, 1);
1164 if (ret)
1165 return ret;
1166
1167 if (configured)
1168 val |= PORT_CS_19_PC;
1169 else
1170 val &= ~PORT_CS_19_PC;
1171
1172 return tb_port_write(port, &val, TB_CFG_PORT,
1173 port->cap_usb4 + PORT_CS_19, 1);
1174 }
1175
1176 /**
1177 * usb4_port_configure() - Set USB4 port configured
1178 * @port: USB4 router
1179 *
1180 * Sets the USB4 link to be configured for power management purposes.
1181 */
usb4_port_configure(struct tb_port * port)1182 int usb4_port_configure(struct tb_port *port)
1183 {
1184 return usb4_port_set_configured(port, true);
1185 }
1186
1187 /**
1188 * usb4_port_unconfigure() - Set USB4 port unconfigured
1189 * @port: USB4 router
1190 *
1191 * Sets the USB4 link to be unconfigured for power management purposes.
1192 */
usb4_port_unconfigure(struct tb_port * port)1193 void usb4_port_unconfigure(struct tb_port *port)
1194 {
1195 usb4_port_set_configured(port, false);
1196 }
1197
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1198 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1199 {
1200 int ret;
1201 u32 val;
1202
1203 if (!port->cap_usb4)
1204 return -EINVAL;
1205
1206 ret = tb_port_read(port, &val, TB_CFG_PORT,
1207 port->cap_usb4 + PORT_CS_19, 1);
1208 if (ret)
1209 return ret;
1210
1211 if (configured)
1212 val |= PORT_CS_19_PID;
1213 else
1214 val &= ~PORT_CS_19_PID;
1215
1216 return tb_port_write(port, &val, TB_CFG_PORT,
1217 port->cap_usb4 + PORT_CS_19, 1);
1218 }
1219
1220 /**
1221 * usb4_port_configure_xdomain() - Configure port for XDomain
1222 * @port: USB4 port connected to another host
1223 * @xd: XDomain that is connected to the port
1224 *
1225 * Marks the USB4 port as being connected to another host and updates
1226 * the link type. Returns %0 in success and negative errno in failure.
1227 */
usb4_port_configure_xdomain(struct tb_port * port,struct tb_xdomain * xd)1228 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1229 {
1230 xd->link_usb4 = link_is_usb4(port);
1231 return usb4_set_xdomain_configured(port, true);
1232 }
1233
1234 /**
1235 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1236 * @port: USB4 port that was connected to another host
1237 *
1238 * Clears USB4 port from being marked as XDomain.
1239 */
usb4_port_unconfigure_xdomain(struct tb_port * port)1240 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1241 {
1242 usb4_set_xdomain_configured(port, false);
1243 }
1244
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec,unsigned long delay_usec)1245 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1246 u32 value, int timeout_msec, unsigned long delay_usec)
1247 {
1248 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1249
1250 do {
1251 u32 val;
1252 int ret;
1253
1254 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1255 if (ret)
1256 return ret;
1257
1258 if ((val & bit) == value)
1259 return 0;
1260
1261 fsleep(delay_usec);
1262 } while (ktime_before(ktime_get(), timeout));
1263
1264 return -ETIMEDOUT;
1265 }
1266
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1267 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1268 {
1269 if (dwords > USB4_DATA_DWORDS)
1270 return -EINVAL;
1271
1272 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1273 dwords);
1274 }
1275
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1276 static int usb4_port_write_data(struct tb_port *port, const void *data,
1277 size_t dwords)
1278 {
1279 if (dwords > USB4_DATA_DWORDS)
1280 return -EINVAL;
1281
1282 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1283 dwords);
1284 }
1285
1286 /**
1287 * usb4_port_sb_read() - Read from sideband register
1288 * @port: USB4 port to read
1289 * @target: Sideband target
1290 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1291 * @reg: Sideband register index
1292 * @buf: Buffer where the sideband data is copied
1293 * @size: Size of @buf
1294 *
1295 * Reads data from sideband register @reg and copies it into @buf.
1296 * Returns %0 in case of success and negative errno in case of failure.
1297 */
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1298 int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, u8 index,
1299 u8 reg, void *buf, u8 size)
1300 {
1301 size_t dwords = DIV_ROUND_UP(size, 4);
1302 int ret;
1303 u32 val;
1304
1305 if (!port->cap_usb4)
1306 return -EINVAL;
1307
1308 val = reg;
1309 val |= size << PORT_CS_1_LENGTH_SHIFT;
1310 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1311 if (target == USB4_SB_TARGET_RETIMER)
1312 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1313 val |= PORT_CS_1_PND;
1314
1315 ret = tb_port_write(port, &val, TB_CFG_PORT,
1316 port->cap_usb4 + PORT_CS_1, 1);
1317 if (ret)
1318 return ret;
1319
1320 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1321 PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1322 if (ret)
1323 return ret;
1324
1325 ret = tb_port_read(port, &val, TB_CFG_PORT,
1326 port->cap_usb4 + PORT_CS_1, 1);
1327 if (ret)
1328 return ret;
1329
1330 if (val & PORT_CS_1_NR)
1331 return -ENODEV;
1332 if (val & PORT_CS_1_RC)
1333 return -EIO;
1334
1335 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1336 }
1337
1338 /**
1339 * usb4_port_sb_write() - Write to sideband register
1340 * @port: USB4 port to write
1341 * @target: Sideband target
1342 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1343 * @reg: Sideband register index
1344 * @buf: Data to write
1345 * @size: Size of @buf
1346 *
1347 * Writes @buf to sideband register @reg. Returns %0 in case of success
1348 * and negative errno in case of failure.
1349 */
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1350 int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1351 u8 index, u8 reg, const void *buf, u8 size)
1352 {
1353 size_t dwords = DIV_ROUND_UP(size, 4);
1354 int ret;
1355 u32 val;
1356
1357 if (!port->cap_usb4)
1358 return -EINVAL;
1359
1360 if (buf) {
1361 ret = usb4_port_write_data(port, buf, dwords);
1362 if (ret)
1363 return ret;
1364 }
1365
1366 val = reg;
1367 val |= size << PORT_CS_1_LENGTH_SHIFT;
1368 val |= PORT_CS_1_WNR_WRITE;
1369 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1370 if (target == USB4_SB_TARGET_RETIMER)
1371 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1372 val |= PORT_CS_1_PND;
1373
1374 ret = tb_port_write(port, &val, TB_CFG_PORT,
1375 port->cap_usb4 + PORT_CS_1, 1);
1376 if (ret)
1377 return ret;
1378
1379 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1380 PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1381 if (ret)
1382 return ret;
1383
1384 ret = tb_port_read(port, &val, TB_CFG_PORT,
1385 port->cap_usb4 + PORT_CS_1, 1);
1386 if (ret)
1387 return ret;
1388
1389 if (val & PORT_CS_1_NR)
1390 return -ENODEV;
1391 if (val & PORT_CS_1_RC)
1392 return -EIO;
1393
1394 return 0;
1395 }
1396
usb4_port_sb_opcode_err_to_errno(u32 val)1397 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1398 {
1399 switch (val) {
1400 case 0:
1401 return 0;
1402 case USB4_SB_OPCODE_ERR:
1403 return -EAGAIN;
1404 case USB4_SB_OPCODE_ONS:
1405 return -EOPNOTSUPP;
1406 default:
1407 return -EIO;
1408 }
1409 }
1410
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1411 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1412 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1413 {
1414 ktime_t timeout;
1415 u32 val;
1416 int ret;
1417
1418 val = opcode;
1419 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1420 sizeof(val));
1421 if (ret)
1422 return ret;
1423
1424 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1425
1426 do {
1427 /* Check results */
1428 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1429 &val, sizeof(val));
1430 if (ret)
1431 return ret;
1432
1433 if (val != opcode)
1434 return usb4_port_sb_opcode_err_to_errno(val);
1435
1436 fsleep(USB4_PORT_SB_DELAY);
1437 } while (ktime_before(ktime_get(), timeout));
1438
1439 return -ETIMEDOUT;
1440 }
1441
usb4_port_set_router_offline(struct tb_port * port,bool offline)1442 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1443 {
1444 u32 val = !offline;
1445 int ret;
1446
1447 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1448 USB4_SB_METADATA, &val, sizeof(val));
1449 if (ret)
1450 return ret;
1451
1452 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1453 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1454 USB4_SB_OPCODE, &val, sizeof(val));
1455 }
1456
1457 /**
1458 * usb4_port_router_offline() - Put the USB4 port to offline mode
1459 * @port: USB4 port
1460 *
1461 * This function puts the USB4 port into offline mode. In this mode the
1462 * port does not react on hotplug events anymore. This needs to be
1463 * called before retimer access is done when the USB4 links is not up.
1464 *
1465 * Returns %0 in case of success and negative errno if there was an
1466 * error.
1467 */
usb4_port_router_offline(struct tb_port * port)1468 int usb4_port_router_offline(struct tb_port *port)
1469 {
1470 return usb4_port_set_router_offline(port, true);
1471 }
1472
1473 /**
1474 * usb4_port_router_online() - Put the USB4 port back to online
1475 * @port: USB4 port
1476 *
1477 * Makes the USB4 port functional again.
1478 */
usb4_port_router_online(struct tb_port * port)1479 int usb4_port_router_online(struct tb_port *port)
1480 {
1481 return usb4_port_set_router_offline(port, false);
1482 }
1483
1484 /**
1485 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1486 * @port: USB4 port
1487 *
1488 * This forces the USB4 port to send broadcast RT transaction which
1489 * makes the retimers on the link to assign index to themselves. Returns
1490 * %0 in case of success and negative errno if there was an error.
1491 */
usb4_port_enumerate_retimers(struct tb_port * port)1492 int usb4_port_enumerate_retimers(struct tb_port *port)
1493 {
1494 u32 val;
1495
1496 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1497 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1498 USB4_SB_OPCODE, &val, sizeof(val));
1499 }
1500
1501 /**
1502 * usb4_port_clx_supported() - Check if CLx is supported by the link
1503 * @port: Port to check for CLx support for
1504 *
1505 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1506 * active cables (if connected on the link).
1507 */
usb4_port_clx_supported(struct tb_port * port)1508 bool usb4_port_clx_supported(struct tb_port *port)
1509 {
1510 int ret;
1511 u32 val;
1512
1513 ret = tb_port_read(port, &val, TB_CFG_PORT,
1514 port->cap_usb4 + PORT_CS_18, 1);
1515 if (ret)
1516 return false;
1517
1518 return !!(val & PORT_CS_18_CPS);
1519 }
1520
1521 /**
1522 * usb4_port_asym_supported() - If the port supports asymmetric link
1523 * @port: USB4 port
1524 *
1525 * Checks if the port and the cable supports asymmetric link and returns
1526 * %true in that case.
1527 */
usb4_port_asym_supported(struct tb_port * port)1528 bool usb4_port_asym_supported(struct tb_port *port)
1529 {
1530 u32 val;
1531
1532 if (!port->cap_usb4)
1533 return false;
1534
1535 if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1536 return false;
1537
1538 return !!(val & PORT_CS_18_CSA);
1539 }
1540
1541 /**
1542 * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1543 * @port: USB4 port
1544 * @width: Asymmetric width to configure
1545 *
1546 * Sets USB4 port link width to @width. Can be called for widths where
1547 * usb4_port_asym_width_supported() returned @true.
1548 */
usb4_port_asym_set_link_width(struct tb_port * port,enum tb_link_width width)1549 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1550 {
1551 u32 val;
1552 int ret;
1553
1554 if (!port->cap_phy)
1555 return -EINVAL;
1556
1557 ret = tb_port_read(port, &val, TB_CFG_PORT,
1558 port->cap_phy + LANE_ADP_CS_1, 1);
1559 if (ret)
1560 return ret;
1561
1562 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1563 switch (width) {
1564 case TB_LINK_WIDTH_DUAL:
1565 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1566 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1567 break;
1568 case TB_LINK_WIDTH_ASYM_TX:
1569 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1570 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1571 break;
1572 case TB_LINK_WIDTH_ASYM_RX:
1573 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1574 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1575 break;
1576 default:
1577 return -EINVAL;
1578 }
1579
1580 return tb_port_write(port, &val, TB_CFG_PORT,
1581 port->cap_phy + LANE_ADP_CS_1, 1);
1582 }
1583
1584 /**
1585 * usb4_port_asym_start() - Start symmetry change and wait for completion
1586 * @port: USB4 port
1587 *
1588 * Start symmetry change of the link to asymmetric or symmetric
1589 * (according to what was previously set in tb_port_set_link_width().
1590 * Wait for completion of the change.
1591 *
1592 * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1593 * a negative errno in case of a failure.
1594 */
usb4_port_asym_start(struct tb_port * port)1595 int usb4_port_asym_start(struct tb_port *port)
1596 {
1597 int ret;
1598 u32 val;
1599
1600 ret = tb_port_read(port, &val, TB_CFG_PORT,
1601 port->cap_usb4 + PORT_CS_19, 1);
1602 if (ret)
1603 return ret;
1604
1605 val &= ~PORT_CS_19_START_ASYM;
1606 val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1607
1608 ret = tb_port_write(port, &val, TB_CFG_PORT,
1609 port->cap_usb4 + PORT_CS_19, 1);
1610 if (ret)
1611 return ret;
1612
1613 /*
1614 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1615 * port started the symmetry transition.
1616 */
1617 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1618 PORT_CS_19_START_ASYM, 0, 1000,
1619 USB4_PORT_DELAY);
1620 if (ret)
1621 return ret;
1622
1623 /* Then wait for the transtion to be completed */
1624 return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1625 PORT_CS_18_TIP, 0, 5000, USB4_PORT_DELAY);
1626 }
1627
1628 /**
1629 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1630 * @port: USB4 port
1631 * @target: Sideband target
1632 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1633 * @caps: Array with at least two elements to hold the results
1634 *
1635 * Reads the USB4 port lane margining capabilities into @caps.
1636 */
usb4_port_margining_caps(struct tb_port * port,enum usb4_sb_target target,u8 index,u32 * caps)1637 int usb4_port_margining_caps(struct tb_port *port, enum usb4_sb_target target,
1638 u8 index, u32 *caps)
1639 {
1640 int ret;
1641
1642 ret = usb4_port_sb_op(port, target, index,
1643 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1644 if (ret)
1645 return ret;
1646
1647 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, caps,
1648 sizeof(*caps) * 2);
1649 }
1650
1651 /**
1652 * usb4_port_hw_margin() - Run hardware lane margining on port
1653 * @port: USB4 port
1654 * @target: Sideband target
1655 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1656 * @params: Parameters for USB4 hardware margining
1657 * @results: Array with at least two elements to hold the results
1658 *
1659 * Runs hardware lane margining on USB4 port and returns the result in
1660 * @results.
1661 */
usb4_port_hw_margin(struct tb_port * port,enum usb4_sb_target target,u8 index,const struct usb4_port_margining_params * params,u32 * results)1662 int usb4_port_hw_margin(struct tb_port *port, enum usb4_sb_target target,
1663 u8 index, const struct usb4_port_margining_params *params,
1664 u32 *results)
1665 {
1666 u32 val;
1667 int ret;
1668
1669 if (WARN_ON_ONCE(!params))
1670 return -EINVAL;
1671
1672 val = params->lanes;
1673 if (params->time)
1674 val |= USB4_MARGIN_HW_TIME;
1675 if (params->right_high)
1676 val |= USB4_MARGIN_HW_RH;
1677 if (params->ber_level)
1678 val |= FIELD_PREP(USB4_MARGIN_HW_BER_MASK, params->ber_level);
1679 if (params->optional_voltage_offset_range)
1680 val |= USB4_MARGIN_HW_OPT_VOLTAGE;
1681
1682 ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val,
1683 sizeof(val));
1684 if (ret)
1685 return ret;
1686
1687 ret = usb4_port_sb_op(port, target, index,
1688 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1689 if (ret)
1690 return ret;
1691
1692 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results,
1693 sizeof(*results) * 2);
1694 }
1695
1696 /**
1697 * usb4_port_sw_margin() - Run software lane margining on port
1698 * @port: USB4 port
1699 * @target: Sideband target
1700 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1701 * @params: Parameters for USB4 software margining
1702 * @results: Data word for the operation completion data
1703 *
1704 * Runs software lane margining on USB4 port. Read back the error
1705 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1706 * success and negative errno otherwise.
1707 */
usb4_port_sw_margin(struct tb_port * port,enum usb4_sb_target target,u8 index,const struct usb4_port_margining_params * params,u32 * results)1708 int usb4_port_sw_margin(struct tb_port *port, enum usb4_sb_target target,
1709 u8 index, const struct usb4_port_margining_params *params,
1710 u32 *results)
1711 {
1712 u32 val;
1713 int ret;
1714
1715 if (WARN_ON_ONCE(!params))
1716 return -EINVAL;
1717
1718 val = params->lanes;
1719 if (params->time)
1720 val |= USB4_MARGIN_SW_TIME;
1721 if (params->optional_voltage_offset_range)
1722 val |= USB4_MARGIN_SW_OPT_VOLTAGE;
1723 if (params->right_high)
1724 val |= USB4_MARGIN_SW_RH;
1725 val |= FIELD_PREP(USB4_MARGIN_SW_COUNTER_MASK, params->error_counter);
1726 val |= FIELD_PREP(USB4_MARGIN_SW_VT_MASK, params->voltage_time_offset);
1727
1728 ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val,
1729 sizeof(val));
1730 if (ret)
1731 return ret;
1732
1733 ret = usb4_port_sb_op(port, target, index,
1734 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1735 if (ret)
1736 return ret;
1737
1738 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results,
1739 sizeof(*results));
1740
1741 }
1742
1743 /**
1744 * usb4_port_sw_margin_errors() - Read the software margining error counters
1745 * @port: USB4 port
1746 * @target: Sideband target
1747 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1748 * @errors: Error metadata is copied here.
1749 *
1750 * This reads back the software margining error counters from the port.
1751 * Returns %0 in success and negative errno otherwise.
1752 */
usb4_port_sw_margin_errors(struct tb_port * port,enum usb4_sb_target target,u8 index,u32 * errors)1753 int usb4_port_sw_margin_errors(struct tb_port *port, enum usb4_sb_target target,
1754 u8 index, u32 *errors)
1755 {
1756 int ret;
1757
1758 ret = usb4_port_sb_op(port, target, index,
1759 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1760 if (ret)
1761 return ret;
1762
1763 return usb4_port_sb_read(port, target, index, USB4_SB_METADATA, errors,
1764 sizeof(*errors));
1765 }
1766
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1767 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1768 enum usb4_sb_opcode opcode,
1769 int timeout_msec)
1770 {
1771 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1772 timeout_msec);
1773 }
1774
1775 /**
1776 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1777 * @port: USB4 port
1778 * @index: Retimer index
1779 *
1780 * Enables sideband channel transations on SBTX. Can be used when USB4
1781 * link does not go up, for example if there is no device connected.
1782 */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1783 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1784 {
1785 int ret;
1786
1787 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1788 500);
1789
1790 if (ret != -ENODEV)
1791 return ret;
1792
1793 /*
1794 * Per the USB4 retimer spec, the retimer is not required to
1795 * send an RT (Retimer Transaction) response for the first
1796 * SET_INBOUND_SBTX command
1797 */
1798 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1799 500);
1800 }
1801
1802 /**
1803 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1804 * @port: USB4 port
1805 * @index: Retimer index
1806 *
1807 * Disables sideband channel transations on SBTX. The reverse of
1808 * usb4_port_retimer_set_inbound_sbtx().
1809 */
usb4_port_retimer_unset_inbound_sbtx(struct tb_port * port,u8 index)1810 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1811 {
1812 return usb4_port_retimer_op(port, index,
1813 USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1814 }
1815
1816 /**
1817 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1818 * @port: USB4 port
1819 * @index: Retimer index
1820 *
1821 * If the retimer at @index is last one (connected directly to the
1822 * Type-C port) this function returns %1. If it is not returns %0. If
1823 * the retimer is not present returns %-ENODEV. Otherwise returns
1824 * negative errno.
1825 */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1826 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1827 {
1828 u32 metadata;
1829 int ret;
1830
1831 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1832 500);
1833 if (ret)
1834 return ret;
1835
1836 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1837 USB4_SB_METADATA, &metadata, sizeof(metadata));
1838 return ret ? ret : metadata & 1;
1839 }
1840
1841 /**
1842 * usb4_port_retimer_is_cable() - Is the retimer cable retimer
1843 * @port: USB4 port
1844 * @index: Retimer index
1845 *
1846 * If the retimer at @index is last cable retimer this function returns
1847 * %1 and %0 if it is on-board retimer. In case a retimer is not present
1848 * at @index returns %-ENODEV. Otherwise returns negative errno.
1849 */
usb4_port_retimer_is_cable(struct tb_port * port,u8 index)1850 int usb4_port_retimer_is_cable(struct tb_port *port, u8 index)
1851 {
1852 u32 metadata;
1853 int ret;
1854
1855 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_CABLE_RETIMER,
1856 500);
1857 if (ret)
1858 return ret;
1859
1860 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1861 USB4_SB_METADATA, &metadata, sizeof(metadata));
1862 return ret ? ret : metadata & 1;
1863 }
1864
1865 /**
1866 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1867 * @port: USB4 port
1868 * @index: Retimer index
1869 *
1870 * Reads NVM sector size (in bytes) of a retimer at @index. This
1871 * operation can be used to determine whether the retimer supports NVM
1872 * upgrade for example. Returns sector size in bytes or negative errno
1873 * in case of error. Specifically returns %-ENODEV if there is no
1874 * retimer at @index.
1875 */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1876 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1877 {
1878 u32 metadata;
1879 int ret;
1880
1881 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1882 500);
1883 if (ret)
1884 return ret;
1885
1886 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1887 USB4_SB_METADATA, &metadata, sizeof(metadata));
1888 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1889 }
1890
1891 /**
1892 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1893 * @port: USB4 port
1894 * @index: Retimer index
1895 * @address: Start offset
1896 *
1897 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1898 * done automatically by usb4_port_retimer_nvm_write().
1899 *
1900 * Returns %0 in success and negative errno if there was a failure.
1901 */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1902 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1903 unsigned int address)
1904 {
1905 u32 metadata, dwaddress;
1906 int ret;
1907
1908 dwaddress = address / 4;
1909 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1910 USB4_NVM_SET_OFFSET_MASK;
1911
1912 ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1913 USB4_SB_METADATA, &metadata, sizeof(metadata));
1914 if (ret)
1915 return ret;
1916
1917 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1918 500);
1919 }
1920
1921 struct retimer_info {
1922 struct tb_port *port;
1923 u8 index;
1924 };
1925
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1926 static int usb4_port_retimer_nvm_write_next_block(void *data,
1927 unsigned int dwaddress, const void *buf, size_t dwords)
1928
1929 {
1930 const struct retimer_info *info = data;
1931 struct tb_port *port = info->port;
1932 u8 index = info->index;
1933 int ret;
1934
1935 ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1936 USB4_SB_DATA, buf, dwords * 4);
1937 if (ret)
1938 return ret;
1939
1940 return usb4_port_retimer_op(port, index,
1941 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1942 }
1943
1944 /**
1945 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1946 * @port: USB4 port
1947 * @index: Retimer index
1948 * @address: Byte address where to start the write
1949 * @buf: Data to write
1950 * @size: Size in bytes how much to write
1951 *
1952 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1953 * upgrade. Returns %0 if the data was written successfully and negative
1954 * errno in case of failure. Specifically returns %-ENODEV if there is
1955 * no retimer at @index.
1956 */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1957 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1958 const void *buf, size_t size)
1959 {
1960 struct retimer_info info = { .port = port, .index = index };
1961 int ret;
1962
1963 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1964 if (ret)
1965 return ret;
1966
1967 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1968 usb4_port_retimer_nvm_write_next_block, &info);
1969 }
1970
1971 /**
1972 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1973 * @port: USB4 port
1974 * @index: Retimer index
1975 *
1976 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1977 * this function can be used to trigger the NVM upgrade process. If
1978 * successful the retimer restarts with the new NVM and may not have the
1979 * index set so one needs to call usb4_port_enumerate_retimers() to
1980 * force index to be assigned.
1981 */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1982 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1983 {
1984 u32 val;
1985
1986 /*
1987 * We need to use the raw operation here because once the
1988 * authentication completes the retimer index is not set anymore
1989 * so we do not get back the status now.
1990 */
1991 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1992 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1993 USB4_SB_OPCODE, &val, sizeof(val));
1994 }
1995
1996 /**
1997 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1998 * @port: USB4 port
1999 * @index: Retimer index
2000 * @status: Raw status code read from metadata
2001 *
2002 * This can be called after usb4_port_retimer_nvm_authenticate() and
2003 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
2004 *
2005 * Returns %0 if the authentication status was successfully read. The
2006 * completion metadata (the result) is then stored into @status. If
2007 * reading the status fails, returns negative errno.
2008 */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)2009 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
2010 u32 *status)
2011 {
2012 u32 metadata, val;
2013 int ret;
2014
2015 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2016 USB4_SB_OPCODE, &val, sizeof(val));
2017 if (ret)
2018 return ret;
2019
2020 ret = usb4_port_sb_opcode_err_to_errno(val);
2021 switch (ret) {
2022 case 0:
2023 *status = 0;
2024 return 0;
2025
2026 case -EAGAIN:
2027 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2028 USB4_SB_METADATA, &metadata,
2029 sizeof(metadata));
2030 if (ret)
2031 return ret;
2032
2033 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
2034 return 0;
2035
2036 default:
2037 return ret;
2038 }
2039 }
2040
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)2041 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
2042 void *buf, size_t dwords)
2043 {
2044 const struct retimer_info *info = data;
2045 struct tb_port *port = info->port;
2046 u8 index = info->index;
2047 u32 metadata;
2048 int ret;
2049
2050 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
2051 if (dwords < USB4_DATA_DWORDS)
2052 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
2053
2054 ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
2055 USB4_SB_METADATA, &metadata, sizeof(metadata));
2056 if (ret)
2057 return ret;
2058
2059 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
2060 if (ret)
2061 return ret;
2062
2063 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2064 USB4_SB_DATA, buf, dwords * 4);
2065 }
2066
2067 /**
2068 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2069 * @port: USB4 port
2070 * @index: Retimer index
2071 * @address: NVM address (in bytes) to start reading
2072 * @buf: Data read from NVM is stored here
2073 * @size: Number of bytes to read
2074 *
2075 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2076 * read was successful and negative errno in case of failure.
2077 * Specifically returns %-ENODEV if there is no retimer at @index.
2078 */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)2079 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2080 unsigned int address, void *buf, size_t size)
2081 {
2082 struct retimer_info info = { .port = port, .index = index };
2083
2084 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2085 usb4_port_retimer_nvm_read_block, &info);
2086 }
2087
2088 static inline unsigned int
usb4_usb3_port_max_bandwidth(const struct tb_port * port,unsigned int bw)2089 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2090 {
2091 /* Take the possible bandwidth limitation into account */
2092 if (port->max_bw)
2093 return min(bw, port->max_bw);
2094 return bw;
2095 }
2096
2097 /**
2098 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2099 * @port: USB3 adapter port
2100 *
2101 * Return maximum supported link rate of a USB3 adapter in Mb/s.
2102 * Negative errno in case of error.
2103 */
usb4_usb3_port_max_link_rate(struct tb_port * port)2104 int usb4_usb3_port_max_link_rate(struct tb_port *port)
2105 {
2106 int ret, lr;
2107 u32 val;
2108
2109 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2110 return -EINVAL;
2111
2112 ret = tb_port_read(port, &val, TB_CFG_PORT,
2113 port->cap_adap + ADP_USB3_CS_4, 1);
2114 if (ret)
2115 return ret;
2116
2117 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2118 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2119
2120 return usb4_usb3_port_max_bandwidth(port, ret);
2121 }
2122
usb4_usb3_port_cm_request(struct tb_port * port,bool request)2123 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2124 {
2125 int ret;
2126 u32 val;
2127
2128 if (!tb_port_is_usb3_down(port))
2129 return -EINVAL;
2130 if (tb_route(port->sw))
2131 return -EINVAL;
2132
2133 ret = tb_port_read(port, &val, TB_CFG_PORT,
2134 port->cap_adap + ADP_USB3_CS_2, 1);
2135 if (ret)
2136 return ret;
2137
2138 if (request)
2139 val |= ADP_USB3_CS_2_CMR;
2140 else
2141 val &= ~ADP_USB3_CS_2_CMR;
2142
2143 ret = tb_port_write(port, &val, TB_CFG_PORT,
2144 port->cap_adap + ADP_USB3_CS_2, 1);
2145 if (ret)
2146 return ret;
2147
2148 /*
2149 * We can use val here directly as the CMR bit is in the same place
2150 * as HCA. Just mask out others.
2151 */
2152 val &= ADP_USB3_CS_2_CMR;
2153 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2154 ADP_USB3_CS_1_HCA, val, 1500,
2155 USB4_PORT_DELAY);
2156 }
2157
usb4_usb3_port_set_cm_request(struct tb_port * port)2158 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2159 {
2160 return usb4_usb3_port_cm_request(port, true);
2161 }
2162
usb4_usb3_port_clear_cm_request(struct tb_port * port)2163 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2164 {
2165 return usb4_usb3_port_cm_request(port, false);
2166 }
2167
usb3_bw_to_mbps(u32 bw,u8 scale)2168 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2169 {
2170 unsigned long uframes;
2171
2172 uframes = bw * 512UL << scale;
2173 return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2174 }
2175
mbps_to_usb3_bw(unsigned int mbps,u8 scale)2176 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2177 {
2178 unsigned long uframes;
2179
2180 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2181 uframes = ((unsigned long)mbps * MEGA) / 8000;
2182 return DIV_ROUND_UP(uframes, 512UL << scale);
2183 }
2184
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2185 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2186 int *upstream_bw,
2187 int *downstream_bw)
2188 {
2189 u32 val, bw, scale;
2190 int ret;
2191
2192 ret = tb_port_read(port, &val, TB_CFG_PORT,
2193 port->cap_adap + ADP_USB3_CS_2, 1);
2194 if (ret)
2195 return ret;
2196
2197 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2198 port->cap_adap + ADP_USB3_CS_3, 1);
2199 if (ret)
2200 return ret;
2201
2202 scale &= ADP_USB3_CS_3_SCALE_MASK;
2203
2204 bw = val & ADP_USB3_CS_2_AUBW_MASK;
2205 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2206
2207 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2208 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2209
2210 return 0;
2211 }
2212
2213 /**
2214 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2215 * @port: USB3 adapter port
2216 * @upstream_bw: Allocated upstream bandwidth is stored here
2217 * @downstream_bw: Allocated downstream bandwidth is stored here
2218 *
2219 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2220 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2221 * errno in failure.
2222 */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2223 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2224 int *downstream_bw)
2225 {
2226 int ret;
2227
2228 ret = usb4_usb3_port_set_cm_request(port);
2229 if (ret)
2230 return ret;
2231
2232 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2233 downstream_bw);
2234 usb4_usb3_port_clear_cm_request(port);
2235
2236 return ret;
2237 }
2238
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2239 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2240 int *upstream_bw,
2241 int *downstream_bw)
2242 {
2243 u32 val, bw, scale;
2244 int ret;
2245
2246 ret = tb_port_read(port, &val, TB_CFG_PORT,
2247 port->cap_adap + ADP_USB3_CS_1, 1);
2248 if (ret)
2249 return ret;
2250
2251 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2252 port->cap_adap + ADP_USB3_CS_3, 1);
2253 if (ret)
2254 return ret;
2255
2256 scale &= ADP_USB3_CS_3_SCALE_MASK;
2257
2258 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2259 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2260
2261 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2262 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2263
2264 return 0;
2265 }
2266
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)2267 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2268 int upstream_bw,
2269 int downstream_bw)
2270 {
2271 u32 val, ubw, dbw, scale;
2272 int ret, max_bw;
2273
2274 /* Figure out suitable scale */
2275 scale = 0;
2276 max_bw = max(upstream_bw, downstream_bw);
2277 while (scale < 64) {
2278 if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2279 break;
2280 scale++;
2281 }
2282
2283 if (WARN_ON(scale >= 64))
2284 return -EINVAL;
2285
2286 ret = tb_port_write(port, &scale, TB_CFG_PORT,
2287 port->cap_adap + ADP_USB3_CS_3, 1);
2288 if (ret)
2289 return ret;
2290
2291 ubw = mbps_to_usb3_bw(upstream_bw, scale);
2292 dbw = mbps_to_usb3_bw(downstream_bw, scale);
2293
2294 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2295
2296 ret = tb_port_read(port, &val, TB_CFG_PORT,
2297 port->cap_adap + ADP_USB3_CS_2, 1);
2298 if (ret)
2299 return ret;
2300
2301 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2302 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2303 val |= ubw;
2304
2305 return tb_port_write(port, &val, TB_CFG_PORT,
2306 port->cap_adap + ADP_USB3_CS_2, 1);
2307 }
2308
2309 /**
2310 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2311 * @port: USB3 adapter port
2312 * @upstream_bw: New upstream bandwidth
2313 * @downstream_bw: New downstream bandwidth
2314 *
2315 * This can be used to set how much bandwidth is allocated for the USB3
2316 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2317 * new values programmed to the USB3 adapter allocation registers. If
2318 * the values are lower than what is currently consumed the allocation
2319 * is set to what is currently consumed instead (consumed bandwidth
2320 * cannot be taken away by CM). The actual new values are returned in
2321 * @upstream_bw and @downstream_bw.
2322 *
2323 * Returns %0 in case of success and negative errno if there was a
2324 * failure.
2325 */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2326 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2327 int *downstream_bw)
2328 {
2329 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2330
2331 ret = usb4_usb3_port_set_cm_request(port);
2332 if (ret)
2333 return ret;
2334
2335 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2336 &consumed_down);
2337 if (ret)
2338 goto err_request;
2339
2340 /* Don't allow it go lower than what is consumed */
2341 allocate_up = max(*upstream_bw, consumed_up);
2342 allocate_down = max(*downstream_bw, consumed_down);
2343
2344 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2345 allocate_down);
2346 if (ret)
2347 goto err_request;
2348
2349 *upstream_bw = allocate_up;
2350 *downstream_bw = allocate_down;
2351
2352 err_request:
2353 usb4_usb3_port_clear_cm_request(port);
2354 return ret;
2355 }
2356
2357 /**
2358 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2359 * @port: USB3 adapter port
2360 * @upstream_bw: New allocated upstream bandwidth
2361 * @downstream_bw: New allocated downstream bandwidth
2362 *
2363 * Releases USB3 allocated bandwidth down to what is actually consumed.
2364 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2365 *
2366 * Returns 0% in success and negative errno in case of failure.
2367 */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2368 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2369 int *downstream_bw)
2370 {
2371 int ret, consumed_up, consumed_down;
2372
2373 ret = usb4_usb3_port_set_cm_request(port);
2374 if (ret)
2375 return ret;
2376
2377 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2378 &consumed_down);
2379 if (ret)
2380 goto err_request;
2381
2382 /*
2383 * Always keep 900 Mb/s to make sure xHCI has at least some
2384 * bandwidth available for isochronous traffic.
2385 */
2386 if (consumed_up < 900)
2387 consumed_up = 900;
2388 if (consumed_down < 900)
2389 consumed_down = 900;
2390
2391 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2392 consumed_down);
2393 if (ret)
2394 goto err_request;
2395
2396 *upstream_bw = consumed_up;
2397 *downstream_bw = consumed_down;
2398
2399 err_request:
2400 usb4_usb3_port_clear_cm_request(port);
2401 return ret;
2402 }
2403
is_usb4_dpin(const struct tb_port * port)2404 static bool is_usb4_dpin(const struct tb_port *port)
2405 {
2406 if (!tb_port_is_dpin(port))
2407 return false;
2408 if (!tb_switch_is_usb4(port->sw))
2409 return false;
2410 return true;
2411 }
2412
2413 /**
2414 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2415 * @port: DP IN adapter
2416 * @cm_id: CM ID to assign
2417 *
2418 * Sets CM ID for the @port. Returns %0 on success and negative errno
2419 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2420 * support this.
2421 */
usb4_dp_port_set_cm_id(struct tb_port * port,int cm_id)2422 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2423 {
2424 u32 val;
2425 int ret;
2426
2427 if (!is_usb4_dpin(port))
2428 return -EOPNOTSUPP;
2429
2430 ret = tb_port_read(port, &val, TB_CFG_PORT,
2431 port->cap_adap + ADP_DP_CS_2, 1);
2432 if (ret)
2433 return ret;
2434
2435 val &= ~ADP_DP_CS_2_CM_ID_MASK;
2436 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2437
2438 return tb_port_write(port, &val, TB_CFG_PORT,
2439 port->cap_adap + ADP_DP_CS_2, 1);
2440 }
2441
2442 /**
2443 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2444 * supported
2445 * @port: DP IN adapter to check
2446 *
2447 * Can be called to any DP IN adapter. Returns true if the adapter
2448 * supports USB4 bandwidth allocation mode, false otherwise.
2449 */
usb4_dp_port_bandwidth_mode_supported(struct tb_port * port)2450 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2451 {
2452 int ret;
2453 u32 val;
2454
2455 if (!is_usb4_dpin(port))
2456 return false;
2457
2458 ret = tb_port_read(port, &val, TB_CFG_PORT,
2459 port->cap_adap + DP_LOCAL_CAP, 1);
2460 if (ret)
2461 return false;
2462
2463 return !!(val & DP_COMMON_CAP_BW_MODE);
2464 }
2465
2466 /**
2467 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2468 * enabled
2469 * @port: DP IN adapter to check
2470 *
2471 * Can be called to any DP IN adapter. Returns true if the bandwidth
2472 * allocation mode has been enabled, false otherwise.
2473 */
usb4_dp_port_bandwidth_mode_enabled(struct tb_port * port)2474 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2475 {
2476 int ret;
2477 u32 val;
2478
2479 if (!is_usb4_dpin(port))
2480 return false;
2481
2482 ret = tb_port_read(port, &val, TB_CFG_PORT,
2483 port->cap_adap + ADP_DP_CS_8, 1);
2484 if (ret)
2485 return false;
2486
2487 return !!(val & ADP_DP_CS_8_DPME);
2488 }
2489
2490 /**
2491 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2492 * bandwidth allocation mode
2493 * @port: DP IN adapter
2494 * @supported: Does the CM support bandwidth allocation mode
2495 *
2496 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2497 * of the DP IN adapter. Returns %0 in success and negative errno
2498 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2499 * does not support this.
2500 */
usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port * port,bool supported)2501 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2502 bool supported)
2503 {
2504 u32 val;
2505 int ret;
2506
2507 if (!is_usb4_dpin(port))
2508 return -EOPNOTSUPP;
2509
2510 ret = tb_port_read(port, &val, TB_CFG_PORT,
2511 port->cap_adap + ADP_DP_CS_2, 1);
2512 if (ret)
2513 return ret;
2514
2515 if (supported)
2516 val |= ADP_DP_CS_2_CMMS;
2517 else
2518 val &= ~ADP_DP_CS_2_CMMS;
2519
2520 return tb_port_write(port, &val, TB_CFG_PORT,
2521 port->cap_adap + ADP_DP_CS_2, 1);
2522 }
2523
2524 /**
2525 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2526 * @port: DP IN adapter
2527 *
2528 * Reads bandwidth allocation Group ID from the DP IN adapter and
2529 * returns it. If the adapter does not support setting Group_ID
2530 * %-EOPNOTSUPP is returned.
2531 */
usb4_dp_port_group_id(struct tb_port * port)2532 int usb4_dp_port_group_id(struct tb_port *port)
2533 {
2534 u32 val;
2535 int ret;
2536
2537 if (!is_usb4_dpin(port))
2538 return -EOPNOTSUPP;
2539
2540 ret = tb_port_read(port, &val, TB_CFG_PORT,
2541 port->cap_adap + ADP_DP_CS_2, 1);
2542 if (ret)
2543 return ret;
2544
2545 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2546 }
2547
2548 /**
2549 * usb4_dp_port_set_group_id() - Set adapter Group ID
2550 * @port: DP IN adapter
2551 * @group_id: Group ID for the adapter
2552 *
2553 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2554 * Returns %0 in case of success and negative errno otherwise.
2555 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2556 * this.
2557 */
usb4_dp_port_set_group_id(struct tb_port * port,int group_id)2558 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2559 {
2560 u32 val;
2561 int ret;
2562
2563 if (!is_usb4_dpin(port))
2564 return -EOPNOTSUPP;
2565
2566 ret = tb_port_read(port, &val, TB_CFG_PORT,
2567 port->cap_adap + ADP_DP_CS_2, 1);
2568 if (ret)
2569 return ret;
2570
2571 val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2572 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2573
2574 return tb_port_write(port, &val, TB_CFG_PORT,
2575 port->cap_adap + ADP_DP_CS_2, 1);
2576 }
2577
2578 /**
2579 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2580 * @port: DP IN adapter
2581 * @rate: Non-reduced rate in Mb/s is placed here
2582 * @lanes: Non-reduced lanes are placed here
2583 *
2584 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2585 * %0 in success and negative errno otherwise. Specifically returns
2586 * %-EOPNOTSUPP if the adapter does not support this.
2587 */
usb4_dp_port_nrd(struct tb_port * port,int * rate,int * lanes)2588 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2589 {
2590 u32 val, tmp;
2591 int ret;
2592
2593 if (!is_usb4_dpin(port))
2594 return -EOPNOTSUPP;
2595
2596 ret = tb_port_read(port, &val, TB_CFG_PORT,
2597 port->cap_adap + ADP_DP_CS_2, 1);
2598 if (ret)
2599 return ret;
2600
2601 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2602 switch (tmp) {
2603 case DP_COMMON_CAP_RATE_RBR:
2604 *rate = 1620;
2605 break;
2606 case DP_COMMON_CAP_RATE_HBR:
2607 *rate = 2700;
2608 break;
2609 case DP_COMMON_CAP_RATE_HBR2:
2610 *rate = 5400;
2611 break;
2612 case DP_COMMON_CAP_RATE_HBR3:
2613 *rate = 8100;
2614 break;
2615 }
2616
2617 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2618 switch (tmp) {
2619 case DP_COMMON_CAP_1_LANE:
2620 *lanes = 1;
2621 break;
2622 case DP_COMMON_CAP_2_LANES:
2623 *lanes = 2;
2624 break;
2625 case DP_COMMON_CAP_4_LANES:
2626 *lanes = 4;
2627 break;
2628 }
2629
2630 return 0;
2631 }
2632
2633 /**
2634 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2635 * @port: DP IN adapter
2636 * @rate: Non-reduced rate in Mb/s
2637 * @lanes: Non-reduced lanes
2638 *
2639 * Before the capabilities reduction this function can be used to set
2640 * the non-reduced values for the DP IN adapter. Returns %0 in success
2641 * and negative errno otherwise. If the adapter does not support this
2642 * %-EOPNOTSUPP is returned.
2643 */
usb4_dp_port_set_nrd(struct tb_port * port,int rate,int lanes)2644 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2645 {
2646 u32 val;
2647 int ret;
2648
2649 if (!is_usb4_dpin(port))
2650 return -EOPNOTSUPP;
2651
2652 ret = tb_port_read(port, &val, TB_CFG_PORT,
2653 port->cap_adap + ADP_DP_CS_2, 1);
2654 if (ret)
2655 return ret;
2656
2657 val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2658
2659 switch (rate) {
2660 case 1620:
2661 break;
2662 case 2700:
2663 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2664 & ADP_DP_CS_2_NRD_MLR_MASK;
2665 break;
2666 case 5400:
2667 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2668 & ADP_DP_CS_2_NRD_MLR_MASK;
2669 break;
2670 case 8100:
2671 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2672 & ADP_DP_CS_2_NRD_MLR_MASK;
2673 break;
2674 default:
2675 return -EINVAL;
2676 }
2677
2678 val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2679
2680 switch (lanes) {
2681 case 1:
2682 break;
2683 case 2:
2684 val |= DP_COMMON_CAP_2_LANES;
2685 break;
2686 case 4:
2687 val |= DP_COMMON_CAP_4_LANES;
2688 break;
2689 default:
2690 return -EINVAL;
2691 }
2692
2693 return tb_port_write(port, &val, TB_CFG_PORT,
2694 port->cap_adap + ADP_DP_CS_2, 1);
2695 }
2696
2697 /**
2698 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2699 * @port: DP IN adapter
2700 *
2701 * Reads the programmed granularity from @port. If the DP IN adapter does
2702 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2703 * errno in other error cases.
2704 */
usb4_dp_port_granularity(struct tb_port * port)2705 int usb4_dp_port_granularity(struct tb_port *port)
2706 {
2707 u32 val;
2708 int ret;
2709
2710 if (!is_usb4_dpin(port))
2711 return -EOPNOTSUPP;
2712
2713 ret = tb_port_read(port, &val, TB_CFG_PORT,
2714 port->cap_adap + ADP_DP_CS_2, 1);
2715 if (ret)
2716 return ret;
2717
2718 val &= ADP_DP_CS_2_GR_MASK;
2719 val >>= ADP_DP_CS_2_GR_SHIFT;
2720
2721 switch (val) {
2722 case ADP_DP_CS_2_GR_0_25G:
2723 return 250;
2724 case ADP_DP_CS_2_GR_0_5G:
2725 return 500;
2726 case ADP_DP_CS_2_GR_1G:
2727 return 1000;
2728 }
2729
2730 return -EINVAL;
2731 }
2732
2733 /**
2734 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2735 * @port: DP IN adapter
2736 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2737 *
2738 * Sets the granularity used with the estimated, allocated and requested
2739 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2740 * adapter does not support this %-EOPNOTSUPP is returned.
2741 */
usb4_dp_port_set_granularity(struct tb_port * port,int granularity)2742 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2743 {
2744 u32 val;
2745 int ret;
2746
2747 if (!is_usb4_dpin(port))
2748 return -EOPNOTSUPP;
2749
2750 ret = tb_port_read(port, &val, TB_CFG_PORT,
2751 port->cap_adap + ADP_DP_CS_2, 1);
2752 if (ret)
2753 return ret;
2754
2755 val &= ~ADP_DP_CS_2_GR_MASK;
2756
2757 switch (granularity) {
2758 case 250:
2759 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2760 break;
2761 case 500:
2762 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2763 break;
2764 case 1000:
2765 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2766 break;
2767 default:
2768 return -EINVAL;
2769 }
2770
2771 return tb_port_write(port, &val, TB_CFG_PORT,
2772 port->cap_adap + ADP_DP_CS_2, 1);
2773 }
2774
2775 /**
2776 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2777 * @port: DP IN adapter
2778 * @bw: Estimated bandwidth in Mb/s.
2779 *
2780 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2781 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2782 * down to the closest granularity multiplier. Returns %0 in success
2783 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2784 * the adapter does not support this.
2785 */
usb4_dp_port_set_estimated_bandwidth(struct tb_port * port,int bw)2786 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2787 {
2788 u32 val, granularity;
2789 int ret;
2790
2791 if (!is_usb4_dpin(port))
2792 return -EOPNOTSUPP;
2793
2794 ret = usb4_dp_port_granularity(port);
2795 if (ret < 0)
2796 return ret;
2797 granularity = ret;
2798
2799 ret = tb_port_read(port, &val, TB_CFG_PORT,
2800 port->cap_adap + ADP_DP_CS_2, 1);
2801 if (ret)
2802 return ret;
2803
2804 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2805 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2806
2807 return tb_port_write(port, &val, TB_CFG_PORT,
2808 port->cap_adap + ADP_DP_CS_2, 1);
2809 }
2810
2811 /**
2812 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2813 * @port: DP IN adapter
2814 *
2815 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2816 * account the programmed granularity). Returns negative errno in case
2817 * of error.
2818 */
usb4_dp_port_allocated_bandwidth(struct tb_port * port)2819 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2820 {
2821 u32 val, granularity;
2822 int ret;
2823
2824 if (!is_usb4_dpin(port))
2825 return -EOPNOTSUPP;
2826
2827 ret = usb4_dp_port_granularity(port);
2828 if (ret < 0)
2829 return ret;
2830 granularity = ret;
2831
2832 ret = tb_port_read(port, &val, TB_CFG_PORT,
2833 port->cap_adap + DP_STATUS, 1);
2834 if (ret)
2835 return ret;
2836
2837 val &= DP_STATUS_ALLOCATED_BW_MASK;
2838 val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2839
2840 return val * granularity;
2841 }
2842
__usb4_dp_port_set_cm_ack(struct tb_port * port,bool ack)2843 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2844 {
2845 u32 val;
2846 int ret;
2847
2848 ret = tb_port_read(port, &val, TB_CFG_PORT,
2849 port->cap_adap + ADP_DP_CS_2, 1);
2850 if (ret)
2851 return ret;
2852
2853 if (ack)
2854 val |= ADP_DP_CS_2_CA;
2855 else
2856 val &= ~ADP_DP_CS_2_CA;
2857
2858 return tb_port_write(port, &val, TB_CFG_PORT,
2859 port->cap_adap + ADP_DP_CS_2, 1);
2860 }
2861
usb4_dp_port_set_cm_ack(struct tb_port * port)2862 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2863 {
2864 return __usb4_dp_port_set_cm_ack(port, true);
2865 }
2866
usb4_dp_port_wait_and_clear_cm_ack(struct tb_port * port,int timeout_msec)2867 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2868 int timeout_msec)
2869 {
2870 ktime_t end;
2871 u32 val;
2872 int ret;
2873
2874 ret = __usb4_dp_port_set_cm_ack(port, false);
2875 if (ret)
2876 return ret;
2877
2878 end = ktime_add_ms(ktime_get(), timeout_msec);
2879 do {
2880 ret = tb_port_read(port, &val, TB_CFG_PORT,
2881 port->cap_adap + ADP_DP_CS_8, 1);
2882 if (ret)
2883 return ret;
2884
2885 if (!(val & ADP_DP_CS_8_DR))
2886 break;
2887
2888 usleep_range(50, 100);
2889 } while (ktime_before(ktime_get(), end));
2890
2891 if (val & ADP_DP_CS_8_DR) {
2892 tb_port_warn(port, "timeout waiting for DPTX request to clear\n");
2893 return -ETIMEDOUT;
2894 }
2895
2896 ret = tb_port_read(port, &val, TB_CFG_PORT,
2897 port->cap_adap + ADP_DP_CS_2, 1);
2898 if (ret)
2899 return ret;
2900
2901 val &= ~ADP_DP_CS_2_CA;
2902 return tb_port_write(port, &val, TB_CFG_PORT,
2903 port->cap_adap + ADP_DP_CS_2, 1);
2904 }
2905
2906 /**
2907 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2908 * @port: DP IN adapter
2909 * @bw: New allocated bandwidth in Mb/s
2910 *
2911 * Communicates the new allocated bandwidth with the DPCD (graphics
2912 * driver). Takes into account the programmed granularity. Returns %0 in
2913 * success and negative errno in case of error.
2914 */
usb4_dp_port_allocate_bandwidth(struct tb_port * port,int bw)2915 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2916 {
2917 u32 val, granularity;
2918 int ret;
2919
2920 if (!is_usb4_dpin(port))
2921 return -EOPNOTSUPP;
2922
2923 ret = usb4_dp_port_granularity(port);
2924 if (ret < 0)
2925 return ret;
2926 granularity = ret;
2927
2928 ret = tb_port_read(port, &val, TB_CFG_PORT,
2929 port->cap_adap + DP_STATUS, 1);
2930 if (ret)
2931 return ret;
2932
2933 val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2934 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2935
2936 ret = tb_port_write(port, &val, TB_CFG_PORT,
2937 port->cap_adap + DP_STATUS, 1);
2938 if (ret)
2939 return ret;
2940
2941 ret = usb4_dp_port_set_cm_ack(port);
2942 if (ret)
2943 return ret;
2944
2945 return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2946 }
2947
2948 /**
2949 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2950 * @port: DP IN adapter
2951 *
2952 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2953 * in Mb/s. Takes the programmed granularity into account. In case of
2954 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2955 * the adapter does not support bandwidth allocation mode, and %ENODATA
2956 * if there is no active bandwidth request from the graphics driver.
2957 */
usb4_dp_port_requested_bandwidth(struct tb_port * port)2958 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2959 {
2960 u32 val, granularity;
2961 int ret;
2962
2963 if (!is_usb4_dpin(port))
2964 return -EOPNOTSUPP;
2965
2966 ret = usb4_dp_port_granularity(port);
2967 if (ret < 0)
2968 return ret;
2969 granularity = ret;
2970
2971 ret = tb_port_read(port, &val, TB_CFG_PORT,
2972 port->cap_adap + ADP_DP_CS_8, 1);
2973 if (ret)
2974 return ret;
2975
2976 if (!(val & ADP_DP_CS_8_DR))
2977 return -ENODATA;
2978
2979 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2980 }
2981
2982 /**
2983 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2984 * @port: PCIe adapter
2985 * @enable: Enable/disable extended encapsulation
2986 *
2987 * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2988 * needs to make sure both adapters support this before enabling. Returns %0 on
2989 * success and negative errno otherwise.
2990 */
usb4_pci_port_set_ext_encapsulation(struct tb_port * port,bool enable)2991 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2992 {
2993 u32 val;
2994 int ret;
2995
2996 if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2997 return -EINVAL;
2998
2999 ret = tb_port_read(port, &val, TB_CFG_PORT,
3000 port->cap_adap + ADP_PCIE_CS_1, 1);
3001 if (ret)
3002 return ret;
3003
3004 if (enable)
3005 val |= ADP_PCIE_CS_1_EE;
3006 else
3007 val &= ~ADP_PCIE_CS_1_EE;
3008
3009 return tb_port_write(port, &val, TB_CFG_PORT,
3010 port->cap_adap + ADP_PCIE_CS_1, 1);
3011 }
3012