1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9 #include <linux/debugfs.h>
10 #include <linux/nmi.h>
11 #include "sched.h"
12
13 /*
14 * This allows printing both to /sys/kernel/debug/sched/debug and
15 * to the console
16 */
17 #define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25 /*
26 * Ease the printing of nsec fields:
27 */
nsec_high(unsigned long long nsec)28 static long long nsec_high(unsigned long long nsec)
29 {
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38 }
39
nsec_low(unsigned long long nsec)40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46 }
47
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50 #define SCHED_FEAT(name, enabled) \
51 #name ,
52
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56
57 #undef SCHED_FEAT
58
sched_feat_show(struct seq_file * m,void * v)59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71 }
72
73 #ifdef CONFIG_JUMP_LABEL
74
75 #define jump_label_key__true STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78 #define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84
85 #undef SCHED_FEAT
86
sched_feat_disable(int i)87 static void sched_feat_disable(int i)
88 {
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91
sched_feat_enable(int i)92 static void sched_feat_enable(int i)
93 {
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else /* !CONFIG_JUMP_LABEL: */
sched_feat_disable(int i)97 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)98 static void sched_feat_enable(int i) { };
99 #endif /* !CONFIG_JUMP_LABEL */
100
sched_feat_set(char * cmp)101 static int sched_feat_set(char *cmp)
102 {
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124 }
125
126 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129 {
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157 }
158
sched_feat_open(struct inode * inode,struct file * filp)159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161 return single_open(filp, sched_feat_show, NULL);
162 }
163
164 static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170 };
171
sched_scaling_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
173 size_t cnt, loff_t *ppos)
174 {
175 char buf[16];
176 unsigned int scaling;
177
178 if (cnt > 15)
179 cnt = 15;
180
181 if (copy_from_user(&buf, ubuf, cnt))
182 return -EFAULT;
183 buf[cnt] = '\0';
184
185 if (kstrtouint(buf, 10, &scaling))
186 return -EINVAL;
187
188 if (scaling >= SCHED_TUNABLESCALING_END)
189 return -EINVAL;
190
191 sysctl_sched_tunable_scaling = scaling;
192 if (sched_update_scaling())
193 return -EINVAL;
194
195 *ppos += cnt;
196 return cnt;
197 }
198
sched_scaling_show(struct seq_file * m,void * v)199 static int sched_scaling_show(struct seq_file *m, void *v)
200 {
201 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
202 return 0;
203 }
204
sched_scaling_open(struct inode * inode,struct file * filp)205 static int sched_scaling_open(struct inode *inode, struct file *filp)
206 {
207 return single_open(filp, sched_scaling_show, NULL);
208 }
209
210 static const struct file_operations sched_scaling_fops = {
211 .open = sched_scaling_open,
212 .write = sched_scaling_write,
213 .read = seq_read,
214 .llseek = seq_lseek,
215 .release = single_release,
216 };
217
218 #ifdef CONFIG_PREEMPT_DYNAMIC
219
sched_dynamic_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)220 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
221 size_t cnt, loff_t *ppos)
222 {
223 char buf[16];
224 int mode;
225
226 if (cnt > 15)
227 cnt = 15;
228
229 if (copy_from_user(&buf, ubuf, cnt))
230 return -EFAULT;
231
232 buf[cnt] = 0;
233 mode = sched_dynamic_mode(strstrip(buf));
234 if (mode < 0)
235 return mode;
236
237 sched_dynamic_update(mode);
238
239 *ppos += cnt;
240
241 return cnt;
242 }
243
sched_dynamic_show(struct seq_file * m,void * v)244 static int sched_dynamic_show(struct seq_file *m, void *v)
245 {
246 int i = IS_ENABLED(CONFIG_PREEMPT_RT) * 2;
247 int j;
248
249 /* Count entries in NULL terminated preempt_modes */
250 for (j = 0; preempt_modes[j]; j++)
251 ;
252 j -= !IS_ENABLED(CONFIG_ARCH_HAS_PREEMPT_LAZY);
253
254 for (; i < j; i++) {
255 if (preempt_dynamic_mode == i)
256 seq_puts(m, "(");
257 seq_puts(m, preempt_modes[i]);
258 if (preempt_dynamic_mode == i)
259 seq_puts(m, ")");
260
261 seq_puts(m, " ");
262 }
263
264 seq_puts(m, "\n");
265 return 0;
266 }
267
sched_dynamic_open(struct inode * inode,struct file * filp)268 static int sched_dynamic_open(struct inode *inode, struct file *filp)
269 {
270 return single_open(filp, sched_dynamic_show, NULL);
271 }
272
273 static const struct file_operations sched_dynamic_fops = {
274 .open = sched_dynamic_open,
275 .write = sched_dynamic_write,
276 .read = seq_read,
277 .llseek = seq_lseek,
278 .release = single_release,
279 };
280
281 #endif /* CONFIG_PREEMPT_DYNAMIC */
282
283 __read_mostly bool sched_debug_verbose;
284
285 static struct dentry *sd_dentry;
286
287
sched_verbose_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)288 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
289 size_t cnt, loff_t *ppos)
290 {
291 ssize_t result;
292 bool orig;
293
294 cpus_read_lock();
295 sched_domains_mutex_lock();
296
297 orig = sched_debug_verbose;
298 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
299
300 if (sched_debug_verbose && !orig)
301 update_sched_domain_debugfs();
302 else if (!sched_debug_verbose && orig) {
303 debugfs_remove(sd_dentry);
304 sd_dentry = NULL;
305 }
306
307 sched_domains_mutex_unlock();
308 cpus_read_unlock();
309
310 return result;
311 }
312
313 static const struct file_operations sched_verbose_fops = {
314 .read = debugfs_read_file_bool,
315 .write = sched_verbose_write,
316 .open = simple_open,
317 .llseek = default_llseek,
318 };
319
320 static const struct seq_operations sched_debug_sops;
321
sched_debug_open(struct inode * inode,struct file * filp)322 static int sched_debug_open(struct inode *inode, struct file *filp)
323 {
324 return seq_open(filp, &sched_debug_sops);
325 }
326
327 static const struct file_operations sched_debug_fops = {
328 .open = sched_debug_open,
329 .read = seq_read,
330 .llseek = seq_lseek,
331 .release = seq_release,
332 };
333
334 enum dl_param {
335 DL_RUNTIME = 0,
336 DL_PERIOD,
337 };
338
339 static unsigned long fair_server_period_max = (1UL << 22) * NSEC_PER_USEC; /* ~4 seconds */
340 static unsigned long fair_server_period_min = (100) * NSEC_PER_USEC; /* 100 us */
341
sched_fair_server_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos,enum dl_param param)342 static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubuf,
343 size_t cnt, loff_t *ppos, enum dl_param param)
344 {
345 long cpu = (long) ((struct seq_file *) filp->private_data)->private;
346 struct rq *rq = cpu_rq(cpu);
347 u64 runtime, period;
348 size_t err;
349 int retval;
350 u64 value;
351
352 err = kstrtoull_from_user(ubuf, cnt, 10, &value);
353 if (err)
354 return err;
355
356 scoped_guard (rq_lock_irqsave, rq) {
357 runtime = rq->fair_server.dl_runtime;
358 period = rq->fair_server.dl_period;
359
360 switch (param) {
361 case DL_RUNTIME:
362 if (runtime == value)
363 break;
364 runtime = value;
365 break;
366 case DL_PERIOD:
367 if (value == period)
368 break;
369 period = value;
370 break;
371 }
372
373 if (runtime > period ||
374 period > fair_server_period_max ||
375 period < fair_server_period_min) {
376 return -EINVAL;
377 }
378
379 update_rq_clock(rq);
380 dl_server_stop(&rq->fair_server);
381
382 retval = dl_server_apply_params(&rq->fair_server, runtime, period, 0);
383 if (retval)
384 cnt = retval;
385
386 if (!runtime)
387 printk_deferred("Fair server disabled in CPU %d, system may crash due to starvation.\n",
388 cpu_of(rq));
389
390 if (rq->cfs.h_nr_queued)
391 dl_server_start(&rq->fair_server);
392 }
393
394 *ppos += cnt;
395 return cnt;
396 }
397
sched_fair_server_show(struct seq_file * m,void * v,enum dl_param param)398 static size_t sched_fair_server_show(struct seq_file *m, void *v, enum dl_param param)
399 {
400 unsigned long cpu = (unsigned long) m->private;
401 struct rq *rq = cpu_rq(cpu);
402 u64 value;
403
404 switch (param) {
405 case DL_RUNTIME:
406 value = rq->fair_server.dl_runtime;
407 break;
408 case DL_PERIOD:
409 value = rq->fair_server.dl_period;
410 break;
411 }
412
413 seq_printf(m, "%llu\n", value);
414 return 0;
415
416 }
417
418 static ssize_t
sched_fair_server_runtime_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)419 sched_fair_server_runtime_write(struct file *filp, const char __user *ubuf,
420 size_t cnt, loff_t *ppos)
421 {
422 return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_RUNTIME);
423 }
424
sched_fair_server_runtime_show(struct seq_file * m,void * v)425 static int sched_fair_server_runtime_show(struct seq_file *m, void *v)
426 {
427 return sched_fair_server_show(m, v, DL_RUNTIME);
428 }
429
sched_fair_server_runtime_open(struct inode * inode,struct file * filp)430 static int sched_fair_server_runtime_open(struct inode *inode, struct file *filp)
431 {
432 return single_open(filp, sched_fair_server_runtime_show, inode->i_private);
433 }
434
435 static const struct file_operations fair_server_runtime_fops = {
436 .open = sched_fair_server_runtime_open,
437 .write = sched_fair_server_runtime_write,
438 .read = seq_read,
439 .llseek = seq_lseek,
440 .release = single_release,
441 };
442
443 static ssize_t
sched_fair_server_period_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)444 sched_fair_server_period_write(struct file *filp, const char __user *ubuf,
445 size_t cnt, loff_t *ppos)
446 {
447 return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_PERIOD);
448 }
449
sched_fair_server_period_show(struct seq_file * m,void * v)450 static int sched_fair_server_period_show(struct seq_file *m, void *v)
451 {
452 return sched_fair_server_show(m, v, DL_PERIOD);
453 }
454
sched_fair_server_period_open(struct inode * inode,struct file * filp)455 static int sched_fair_server_period_open(struct inode *inode, struct file *filp)
456 {
457 return single_open(filp, sched_fair_server_period_show, inode->i_private);
458 }
459
460 static const struct file_operations fair_server_period_fops = {
461 .open = sched_fair_server_period_open,
462 .write = sched_fair_server_period_write,
463 .read = seq_read,
464 .llseek = seq_lseek,
465 .release = single_release,
466 };
467
468 static struct dentry *debugfs_sched;
469
debugfs_fair_server_init(void)470 static void debugfs_fair_server_init(void)
471 {
472 struct dentry *d_fair;
473 unsigned long cpu;
474
475 d_fair = debugfs_create_dir("fair_server", debugfs_sched);
476 if (!d_fair)
477 return;
478
479 for_each_possible_cpu(cpu) {
480 struct dentry *d_cpu;
481 char buf[32];
482
483 snprintf(buf, sizeof(buf), "cpu%lu", cpu);
484 d_cpu = debugfs_create_dir(buf, d_fair);
485
486 debugfs_create_file("runtime", 0644, d_cpu, (void *) cpu, &fair_server_runtime_fops);
487 debugfs_create_file("period", 0644, d_cpu, (void *) cpu, &fair_server_period_fops);
488 }
489 }
490
sched_init_debug(void)491 static __init int sched_init_debug(void)
492 {
493 struct dentry __maybe_unused *numa;
494
495 debugfs_sched = debugfs_create_dir("sched", NULL);
496
497 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
498 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
499 #ifdef CONFIG_PREEMPT_DYNAMIC
500 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
501 #endif
502
503 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
504
505 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
506 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
507
508 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
509 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
510 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
511
512 sched_domains_mutex_lock();
513 update_sched_domain_debugfs();
514 sched_domains_mutex_unlock();
515
516 #ifdef CONFIG_NUMA_BALANCING
517 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
518
519 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
520 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
521 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
522 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
523 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
524 #endif /* CONFIG_NUMA_BALANCING */
525
526 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
527
528 debugfs_fair_server_init();
529
530 return 0;
531 }
532 late_initcall(sched_init_debug);
533
534 static cpumask_var_t sd_sysctl_cpus;
535
sd_flags_show(struct seq_file * m,void * v)536 static int sd_flags_show(struct seq_file *m, void *v)
537 {
538 unsigned long flags = *(unsigned int *)m->private;
539 int idx;
540
541 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
542 seq_puts(m, sd_flag_debug[idx].name);
543 seq_puts(m, " ");
544 }
545 seq_puts(m, "\n");
546
547 return 0;
548 }
549
sd_flags_open(struct inode * inode,struct file * file)550 static int sd_flags_open(struct inode *inode, struct file *file)
551 {
552 return single_open(file, sd_flags_show, inode->i_private);
553 }
554
555 static const struct file_operations sd_flags_fops = {
556 .open = sd_flags_open,
557 .read = seq_read,
558 .llseek = seq_lseek,
559 .release = single_release,
560 };
561
register_sd(struct sched_domain * sd,struct dentry * parent)562 static void register_sd(struct sched_domain *sd, struct dentry *parent)
563 {
564 #define SDM(type, mode, member) \
565 debugfs_create_##type(#member, mode, parent, &sd->member)
566
567 SDM(ulong, 0644, min_interval);
568 SDM(ulong, 0644, max_interval);
569 SDM(u64, 0644, max_newidle_lb_cost);
570 SDM(u32, 0644, busy_factor);
571 SDM(u32, 0644, imbalance_pct);
572 SDM(u32, 0644, cache_nice_tries);
573 SDM(str, 0444, name);
574
575 #undef SDM
576
577 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
578 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
579 debugfs_create_u32("level", 0444, parent, (u32 *)&sd->level);
580
581 if (sd->flags & SD_ASYM_PACKING)
582 debugfs_create_u32("group_asym_prefer_cpu", 0444, parent,
583 (u32 *)&sd->groups->asym_prefer_cpu);
584 }
585
update_sched_domain_debugfs(void)586 void update_sched_domain_debugfs(void)
587 {
588 int cpu, i;
589
590 /*
591 * This can unfortunately be invoked before sched_debug_init() creates
592 * the debug directory. Don't touch sd_sysctl_cpus until then.
593 */
594 if (!debugfs_sched)
595 return;
596
597 if (!sched_debug_verbose)
598 return;
599
600 if (!cpumask_available(sd_sysctl_cpus)) {
601 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
602 return;
603 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
604 }
605
606 if (!sd_dentry) {
607 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
608
609 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */
610 if (cpumask_empty(sd_sysctl_cpus))
611 cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
612 }
613
614 for_each_cpu(cpu, sd_sysctl_cpus) {
615 struct sched_domain *sd;
616 struct dentry *d_cpu;
617 char buf[32];
618
619 snprintf(buf, sizeof(buf), "cpu%d", cpu);
620 debugfs_lookup_and_remove(buf, sd_dentry);
621 d_cpu = debugfs_create_dir(buf, sd_dentry);
622
623 i = 0;
624 for_each_domain(cpu, sd) {
625 struct dentry *d_sd;
626
627 snprintf(buf, sizeof(buf), "domain%d", i);
628 d_sd = debugfs_create_dir(buf, d_cpu);
629
630 register_sd(sd, d_sd);
631 i++;
632 }
633
634 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
635 }
636 }
637
dirty_sched_domain_sysctl(int cpu)638 void dirty_sched_domain_sysctl(int cpu)
639 {
640 if (cpumask_available(sd_sysctl_cpus))
641 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
642 }
643
644 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)645 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
646 {
647 struct sched_entity *se = tg->se[cpu];
648
649 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
650 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
651 #F, (long long)schedstat_val(stats->F))
652 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
653 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
654 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
655
656 if (!se)
657 return;
658
659 PN(se->exec_start);
660 PN(se->vruntime);
661 PN(se->sum_exec_runtime);
662
663 if (schedstat_enabled()) {
664 struct sched_statistics *stats;
665 stats = __schedstats_from_se(se);
666
667 PN_SCHEDSTAT(wait_start);
668 PN_SCHEDSTAT(sleep_start);
669 PN_SCHEDSTAT(block_start);
670 PN_SCHEDSTAT(sleep_max);
671 PN_SCHEDSTAT(block_max);
672 PN_SCHEDSTAT(exec_max);
673 PN_SCHEDSTAT(slice_max);
674 PN_SCHEDSTAT(wait_max);
675 PN_SCHEDSTAT(wait_sum);
676 P_SCHEDSTAT(wait_count);
677 }
678
679 P(se->load.weight);
680 P(se->avg.load_avg);
681 P(se->avg.util_avg);
682 P(se->avg.runnable_avg);
683
684 #undef PN_SCHEDSTAT
685 #undef PN
686 #undef P_SCHEDSTAT
687 #undef P
688 }
689 #endif /* CONFIG_FAIR_GROUP_SCHED */
690
691 #ifdef CONFIG_CGROUP_SCHED
692 static DEFINE_SPINLOCK(sched_debug_lock);
693 static char group_path[PATH_MAX];
694
task_group_path(struct task_group * tg,char * path,int plen)695 static void task_group_path(struct task_group *tg, char *path, int plen)
696 {
697 if (autogroup_path(tg, path, plen))
698 return;
699
700 cgroup_path(tg->css.cgroup, path, plen);
701 }
702
703 /*
704 * Only 1 SEQ_printf_task_group_path() caller can use the full length
705 * group_path[] for cgroup path. Other simultaneous callers will have
706 * to use a shorter stack buffer. A "..." suffix is appended at the end
707 * of the stack buffer so that it will show up in case the output length
708 * matches the given buffer size to indicate possible path name truncation.
709 */
710 #define SEQ_printf_task_group_path(m, tg, fmt...) \
711 { \
712 if (spin_trylock(&sched_debug_lock)) { \
713 task_group_path(tg, group_path, sizeof(group_path)); \
714 SEQ_printf(m, fmt, group_path); \
715 spin_unlock(&sched_debug_lock); \
716 } else { \
717 char buf[128]; \
718 char *bufend = buf + sizeof(buf) - 3; \
719 task_group_path(tg, buf, bufend - buf); \
720 strcpy(bufend - 1, "..."); \
721 SEQ_printf(m, fmt, buf); \
722 } \
723 }
724 #endif
725
726 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)727 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
728 {
729 if (task_current(rq, p))
730 SEQ_printf(m, ">R");
731 else
732 SEQ_printf(m, " %c", task_state_to_char(p));
733
734 SEQ_printf(m, " %15s %5d %9Ld.%06ld %c %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
735 p->comm, task_pid_nr(p),
736 SPLIT_NS(p->se.vruntime),
737 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
738 SPLIT_NS(p->se.deadline),
739 p->se.custom_slice ? 'S' : ' ',
740 SPLIT_NS(p->se.slice),
741 SPLIT_NS(p->se.sum_exec_runtime),
742 (long long)(p->nvcsw + p->nivcsw),
743 p->prio);
744
745 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld",
746 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
747 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
748 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
749
750 #ifdef CONFIG_NUMA_BALANCING
751 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
752 #endif
753 #ifdef CONFIG_CGROUP_SCHED
754 SEQ_printf_task_group_path(m, task_group(p), " %s")
755 #endif
756
757 SEQ_printf(m, "\n");
758 }
759
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)760 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
761 {
762 struct task_struct *g, *p;
763
764 SEQ_printf(m, "\n");
765 SEQ_printf(m, "runnable tasks:\n");
766 SEQ_printf(m, " S task PID vruntime eligible "
767 "deadline slice sum-exec switches "
768 "prio wait-time sum-sleep sum-block"
769 #ifdef CONFIG_NUMA_BALANCING
770 " node group-id"
771 #endif
772 #ifdef CONFIG_CGROUP_SCHED
773 " group-path"
774 #endif
775 "\n");
776 SEQ_printf(m, "-------------------------------------------------------"
777 "------------------------------------------------------"
778 "------------------------------------------------------"
779 #ifdef CONFIG_NUMA_BALANCING
780 "--------------"
781 #endif
782 #ifdef CONFIG_CGROUP_SCHED
783 "--------------"
784 #endif
785 "\n");
786
787 rcu_read_lock();
788 for_each_process_thread(g, p) {
789 if (task_cpu(p) != rq_cpu)
790 continue;
791
792 print_task(m, rq, p);
793 }
794 rcu_read_unlock();
795 }
796
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)797 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
798 {
799 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
800 struct sched_entity *last, *first, *root;
801 struct rq *rq = cpu_rq(cpu);
802 unsigned long flags;
803
804 #ifdef CONFIG_FAIR_GROUP_SCHED
805 SEQ_printf(m, "\n");
806 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
807 #else
808 SEQ_printf(m, "\n");
809 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
810 #endif
811
812 raw_spin_rq_lock_irqsave(rq, flags);
813 root = __pick_root_entity(cfs_rq);
814 if (root)
815 left_vruntime = root->min_vruntime;
816 first = __pick_first_entity(cfs_rq);
817 if (first)
818 left_deadline = first->deadline;
819 last = __pick_last_entity(cfs_rq);
820 if (last)
821 right_vruntime = last->vruntime;
822 min_vruntime = cfs_rq->min_vruntime;
823 raw_spin_rq_unlock_irqrestore(rq, flags);
824
825 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline",
826 SPLIT_NS(left_deadline));
827 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
828 SPLIT_NS(left_vruntime));
829 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
830 SPLIT_NS(min_vruntime));
831 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
832 SPLIT_NS(avg_vruntime(cfs_rq)));
833 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
834 SPLIT_NS(right_vruntime));
835 spread = right_vruntime - left_vruntime;
836 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
837 SEQ_printf(m, " .%-30s: %d\n", "nr_queued", cfs_rq->nr_queued);
838 SEQ_printf(m, " .%-30s: %d\n", "h_nr_runnable", cfs_rq->h_nr_runnable);
839 SEQ_printf(m, " .%-30s: %d\n", "h_nr_queued", cfs_rq->h_nr_queued);
840 SEQ_printf(m, " .%-30s: %d\n", "h_nr_idle", cfs_rq->h_nr_idle);
841 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
842 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
843 cfs_rq->avg.load_avg);
844 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
845 cfs_rq->avg.runnable_avg);
846 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
847 cfs_rq->avg.util_avg);
848 SEQ_printf(m, " .%-30s: %u\n", "util_est",
849 cfs_rq->avg.util_est);
850 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
851 cfs_rq->removed.load_avg);
852 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
853 cfs_rq->removed.util_avg);
854 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
855 cfs_rq->removed.runnable_avg);
856 #ifdef CONFIG_FAIR_GROUP_SCHED
857 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
858 cfs_rq->tg_load_avg_contrib);
859 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
860 atomic_long_read(&cfs_rq->tg->load_avg));
861 #endif /* CONFIG_FAIR_GROUP_SCHED */
862 #ifdef CONFIG_CFS_BANDWIDTH
863 SEQ_printf(m, " .%-30s: %d\n", "throttled",
864 cfs_rq->throttled);
865 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
866 cfs_rq->throttle_count);
867 #endif
868
869 #ifdef CONFIG_FAIR_GROUP_SCHED
870 print_cfs_group_stats(m, cpu, cfs_rq->tg);
871 #endif
872 }
873
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)874 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
875 {
876 #ifdef CONFIG_RT_GROUP_SCHED
877 SEQ_printf(m, "\n");
878 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
879 #else
880 SEQ_printf(m, "\n");
881 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
882 #endif
883
884 #define P(x) \
885 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
886 #define PU(x) \
887 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
888 #define PN(x) \
889 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
890
891 PU(rt_nr_running);
892
893 #ifdef CONFIG_RT_GROUP_SCHED
894 P(rt_throttled);
895 PN(rt_time);
896 PN(rt_runtime);
897 #endif
898
899 #undef PN
900 #undef PU
901 #undef P
902 }
903
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)904 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
905 {
906 struct dl_bw *dl_bw;
907
908 SEQ_printf(m, "\n");
909 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
910
911 #define PU(x) \
912 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
913
914 PU(dl_nr_running);
915 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
916 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
917 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
918
919 #undef PU
920 }
921
print_cpu(struct seq_file * m,int cpu)922 static void print_cpu(struct seq_file *m, int cpu)
923 {
924 struct rq *rq = cpu_rq(cpu);
925
926 #ifdef CONFIG_X86
927 {
928 unsigned int freq = cpu_khz ? : 1;
929
930 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
931 cpu, freq / 1000, (freq % 1000));
932 }
933 #else /* !CONFIG_X86: */
934 SEQ_printf(m, "cpu#%d\n", cpu);
935 #endif /* !CONFIG_X86 */
936
937 #define P(x) \
938 do { \
939 if (sizeof(rq->x) == 4) \
940 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \
941 else \
942 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
943 } while (0)
944
945 #define PN(x) \
946 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
947
948 P(nr_running);
949 P(nr_switches);
950 P(nr_uninterruptible);
951 PN(next_balance);
952 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
953 PN(clock);
954 PN(clock_task);
955 #undef P
956 #undef PN
957
958 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
959 P64(avg_idle);
960 P64(max_idle_balance_cost);
961 #undef P64
962
963 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
964 if (schedstat_enabled()) {
965 P(yld_count);
966 P(sched_count);
967 P(sched_goidle);
968 P(ttwu_count);
969 P(ttwu_local);
970 }
971 #undef P
972
973 print_cfs_stats(m, cpu);
974 print_rt_stats(m, cpu);
975 print_dl_stats(m, cpu);
976
977 print_rq(m, rq, cpu);
978 SEQ_printf(m, "\n");
979 }
980
981 static const char *sched_tunable_scaling_names[] = {
982 "none",
983 "logarithmic",
984 "linear"
985 };
986
sched_debug_header(struct seq_file * m)987 static void sched_debug_header(struct seq_file *m)
988 {
989 u64 ktime, sched_clk, cpu_clk;
990 unsigned long flags;
991
992 local_irq_save(flags);
993 ktime = ktime_to_ns(ktime_get());
994 sched_clk = sched_clock();
995 cpu_clk = local_clock();
996 local_irq_restore(flags);
997
998 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
999 init_utsname()->release,
1000 (int)strcspn(init_utsname()->version, " "),
1001 init_utsname()->version);
1002
1003 #define P(x) \
1004 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
1005 #define PN(x) \
1006 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
1007 PN(ktime);
1008 PN(sched_clk);
1009 PN(cpu_clk);
1010 P(jiffies);
1011 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1012 P(sched_clock_stable());
1013 #endif
1014 #undef PN
1015 #undef P
1016
1017 SEQ_printf(m, "\n");
1018 SEQ_printf(m, "sysctl_sched\n");
1019
1020 #define P(x) \
1021 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
1022 #define PN(x) \
1023 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
1024 PN(sysctl_sched_base_slice);
1025 P(sysctl_sched_features);
1026 #undef PN
1027 #undef P
1028
1029 SEQ_printf(m, " .%-40s: %d (%s)\n",
1030 "sysctl_sched_tunable_scaling",
1031 sysctl_sched_tunable_scaling,
1032 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
1033 SEQ_printf(m, "\n");
1034 }
1035
sched_debug_show(struct seq_file * m,void * v)1036 static int sched_debug_show(struct seq_file *m, void *v)
1037 {
1038 int cpu = (unsigned long)(v - 2);
1039
1040 if (cpu != -1)
1041 print_cpu(m, cpu);
1042 else
1043 sched_debug_header(m);
1044
1045 return 0;
1046 }
1047
sysrq_sched_debug_show(void)1048 void sysrq_sched_debug_show(void)
1049 {
1050 int cpu;
1051
1052 sched_debug_header(NULL);
1053 for_each_online_cpu(cpu) {
1054 /*
1055 * Need to reset softlockup watchdogs on all CPUs, because
1056 * another CPU might be blocked waiting for us to process
1057 * an IPI or stop_machine.
1058 */
1059 touch_nmi_watchdog();
1060 touch_all_softlockup_watchdogs();
1061 print_cpu(NULL, cpu);
1062 }
1063 }
1064
1065 /*
1066 * This iterator needs some explanation.
1067 * It returns 1 for the header position.
1068 * This means 2 is CPU 0.
1069 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
1070 * to use cpumask_* to iterate over the CPUs.
1071 */
sched_debug_start(struct seq_file * file,loff_t * offset)1072 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
1073 {
1074 unsigned long n = *offset;
1075
1076 if (n == 0)
1077 return (void *) 1;
1078
1079 n--;
1080
1081 if (n > 0)
1082 n = cpumask_next(n - 1, cpu_online_mask);
1083 else
1084 n = cpumask_first(cpu_online_mask);
1085
1086 *offset = n + 1;
1087
1088 if (n < nr_cpu_ids)
1089 return (void *)(unsigned long)(n + 2);
1090
1091 return NULL;
1092 }
1093
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)1094 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
1095 {
1096 (*offset)++;
1097 return sched_debug_start(file, offset);
1098 }
1099
sched_debug_stop(struct seq_file * file,void * data)1100 static void sched_debug_stop(struct seq_file *file, void *data)
1101 {
1102 }
1103
1104 static const struct seq_operations sched_debug_sops = {
1105 .start = sched_debug_start,
1106 .next = sched_debug_next,
1107 .stop = sched_debug_stop,
1108 .show = sched_debug_show,
1109 };
1110
1111 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
1112 #define __P(F) __PS(#F, F)
1113 #define P(F) __PS(#F, p->F)
1114 #define PM(F, M) __PS(#F, p->F & (M))
1115 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
1116 #define __PN(F) __PSN(#F, F)
1117 #define PN(F) __PSN(#F, p->F)
1118
1119
1120 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)1121 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1122 unsigned long tpf, unsigned long gsf, unsigned long gpf)
1123 {
1124 SEQ_printf(m, "numa_faults node=%d ", node);
1125 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
1126 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
1127 }
1128 #endif
1129
1130
sched_show_numa(struct task_struct * p,struct seq_file * m)1131 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
1132 {
1133 #ifdef CONFIG_NUMA_BALANCING
1134 if (p->mm)
1135 P(mm->numa_scan_seq);
1136
1137 P(numa_pages_migrated);
1138 P(numa_preferred_nid);
1139 P(total_numa_faults);
1140 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
1141 task_node(p), task_numa_group_id(p));
1142 show_numa_stats(p, m);
1143 #endif /* CONFIG_NUMA_BALANCING */
1144 }
1145
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)1146 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
1147 struct seq_file *m)
1148 {
1149 unsigned long nr_switches;
1150
1151 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
1152 get_nr_threads(p));
1153 SEQ_printf(m,
1154 "---------------------------------------------------------"
1155 "----------\n");
1156
1157 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
1158 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1159
1160 PN(se.exec_start);
1161 PN(se.vruntime);
1162 PN(se.sum_exec_runtime);
1163
1164 nr_switches = p->nvcsw + p->nivcsw;
1165
1166 P(se.nr_migrations);
1167
1168 if (schedstat_enabled()) {
1169 u64 avg_atom, avg_per_cpu;
1170
1171 PN_SCHEDSTAT(sum_sleep_runtime);
1172 PN_SCHEDSTAT(sum_block_runtime);
1173 PN_SCHEDSTAT(wait_start);
1174 PN_SCHEDSTAT(sleep_start);
1175 PN_SCHEDSTAT(block_start);
1176 PN_SCHEDSTAT(sleep_max);
1177 PN_SCHEDSTAT(block_max);
1178 PN_SCHEDSTAT(exec_max);
1179 PN_SCHEDSTAT(slice_max);
1180 PN_SCHEDSTAT(wait_max);
1181 PN_SCHEDSTAT(wait_sum);
1182 P_SCHEDSTAT(wait_count);
1183 PN_SCHEDSTAT(iowait_sum);
1184 P_SCHEDSTAT(iowait_count);
1185 P_SCHEDSTAT(nr_migrations_cold);
1186 P_SCHEDSTAT(nr_failed_migrations_affine);
1187 P_SCHEDSTAT(nr_failed_migrations_running);
1188 P_SCHEDSTAT(nr_failed_migrations_hot);
1189 P_SCHEDSTAT(nr_forced_migrations);
1190 P_SCHEDSTAT(nr_wakeups);
1191 P_SCHEDSTAT(nr_wakeups_sync);
1192 P_SCHEDSTAT(nr_wakeups_migrate);
1193 P_SCHEDSTAT(nr_wakeups_local);
1194 P_SCHEDSTAT(nr_wakeups_remote);
1195 P_SCHEDSTAT(nr_wakeups_affine);
1196 P_SCHEDSTAT(nr_wakeups_affine_attempts);
1197 P_SCHEDSTAT(nr_wakeups_passive);
1198 P_SCHEDSTAT(nr_wakeups_idle);
1199
1200 avg_atom = p->se.sum_exec_runtime;
1201 if (nr_switches)
1202 avg_atom = div64_ul(avg_atom, nr_switches);
1203 else
1204 avg_atom = -1LL;
1205
1206 avg_per_cpu = p->se.sum_exec_runtime;
1207 if (p->se.nr_migrations) {
1208 avg_per_cpu = div64_u64(avg_per_cpu,
1209 p->se.nr_migrations);
1210 } else {
1211 avg_per_cpu = -1LL;
1212 }
1213
1214 __PN(avg_atom);
1215 __PN(avg_per_cpu);
1216
1217 #ifdef CONFIG_SCHED_CORE
1218 PN_SCHEDSTAT(core_forceidle_sum);
1219 #endif
1220 }
1221
1222 __P(nr_switches);
1223 __PS("nr_voluntary_switches", p->nvcsw);
1224 __PS("nr_involuntary_switches", p->nivcsw);
1225
1226 P(se.load.weight);
1227 P(se.avg.load_sum);
1228 P(se.avg.runnable_sum);
1229 P(se.avg.util_sum);
1230 P(se.avg.load_avg);
1231 P(se.avg.runnable_avg);
1232 P(se.avg.util_avg);
1233 P(se.avg.last_update_time);
1234 PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
1235 #ifdef CONFIG_UCLAMP_TASK
1236 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1237 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1238 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1239 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1240 #endif /* CONFIG_UCLAMP_TASK */
1241 P(policy);
1242 P(prio);
1243 if (task_has_dl_policy(p)) {
1244 P(dl.runtime);
1245 P(dl.deadline);
1246 } else if (fair_policy(p->policy)) {
1247 P(se.slice);
1248 }
1249 #ifdef CONFIG_SCHED_CLASS_EXT
1250 __PS("ext.enabled", task_on_scx(p));
1251 #endif
1252 #undef PN_SCHEDSTAT
1253 #undef P_SCHEDSTAT
1254
1255 {
1256 unsigned int this_cpu = raw_smp_processor_id();
1257 u64 t0, t1;
1258
1259 t0 = cpu_clock(this_cpu);
1260 t1 = cpu_clock(this_cpu);
1261 __PS("clock-delta", t1-t0);
1262 }
1263
1264 sched_show_numa(p, m);
1265 }
1266
proc_sched_set_task(struct task_struct * p)1267 void proc_sched_set_task(struct task_struct *p)
1268 {
1269 #ifdef CONFIG_SCHEDSTATS
1270 memset(&p->stats, 0, sizeof(p->stats));
1271 #endif
1272 }
1273
resched_latency_warn(int cpu,u64 latency)1274 void resched_latency_warn(int cpu, u64 latency)
1275 {
1276 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1277
1278 if (likely(!__ratelimit(&latency_check_ratelimit)))
1279 return;
1280
1281 pr_err("sched: CPU %d need_resched set for > %llu ns (%d ticks) without schedule\n",
1282 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1283 dump_stack();
1284 }
1285