1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 1988 AT&T
29 * All Rights Reserved
30 */
31
32 #include <memory.h>
33 #include <malloc.h>
34 #include <limits.h>
35
36 #include <sgs.h>
37 #include "decl.h"
38 #include "msg.h"
39
40 /*
41 * This module is compiled twice, the second time having
42 * -D_ELF64 defined. The following set of macros, along
43 * with machelf.h, represent the differences between the
44 * two compilations. Be careful *not* to add any class-
45 * dependent code (anything that has elf32 or elf64 in the
46 * name) to this code without hiding it behind a switch-
47 * able macro like these.
48 */
49 #if defined(_ELF64)
50
51 #define FSZ_LONG ELF64_FSZ_XWORD
52 #define ELFCLASS ELFCLASS64
53 #define _elf_snode_init _elf64_snode_init
54 #define _elfxx_cookscn _elf64_cookscn
55 #define _elf_upd_lib _elf64_upd_lib
56 #define elf_fsize elf64_fsize
57 #define _elf_entsz _elf64_entsz
58 #define _elf_msize _elf64_msize
59 #define _elf_upd_usr _elf64_upd_usr
60 #define wrt wrt64
61 #define elf_xlatetof elf64_xlatetof
62 #define _elfxx_update _elf64_update
63 #define _elfxx_swap_wrimage _elf64_swap_wrimage
64
65 #else /* ELF32 */
66
67 #define FSZ_LONG ELF32_FSZ_WORD
68 #define ELFCLASS ELFCLASS32
69 #define _elf_snode_init _elf32_snode_init
70 #define _elfxx_cookscn _elf32_cookscn
71 #define _elf_upd_lib _elf32_upd_lib
72 #define elf_fsize elf32_fsize
73 #define _elf_entsz _elf32_entsz
74 #define _elf_msize _elf32_msize
75 #define _elf_upd_usr _elf32_upd_usr
76 #define wrt wrt32
77 #define elf_xlatetof elf32_xlatetof
78 #define _elfxx_update _elf32_update
79 #define _elfxx_swap_wrimage _elf32_swap_wrimage
80
81 #endif /* ELF64 */
82
83
84 #if !(defined(_LP64) && defined(_ELF64))
85 #define TEST_SIZE
86
87 /*
88 * Handle the decision of whether the current linker can handle the
89 * desired object size, and if not, which error to issue.
90 *
91 * Input is the desired size. On failure, an error has been issued
92 * and 0 is returned. On success, 1 is returned.
93 */
94 static int
test_size(Lword hi)95 test_size(Lword hi)
96 {
97 #ifndef _LP64 /* 32-bit linker */
98 /*
99 * A 32-bit libelf is limited to a 2GB output file. This limit
100 * is due to the fact that off_t is a signed value, and that
101 * libelf cannot support large file support:
102 * - ABI reasons
103 * - Memory use generally is 2x output file size anyway,
104 * so lifting the file size limit will just send
105 * you crashing into the 32-bit VM limit.
106 * If the output is an ELFCLASS64 object, or an ELFCLASS32 object
107 * under 4GB, switching to the 64-bit version of libelf will help.
108 * However, an ELFCLASS32 object must not exceed 4GB.
109 */
110 if (hi > INT_MAX) { /* Bigger than 2GB */
111 #ifndef _ELF64
112 /* ELFCLASS32 object is fundamentally too big? */
113 if (hi > UINT_MAX) {
114 _elf_seterr(EFMT_FBIG_CLASS32, 0);
115 return (0);
116 }
117 #endif /* _ELF64 */
118
119 /* Should switch to the 64-bit libelf? */
120 _elf_seterr(EFMT_FBIG_LARGEFILE, 0);
121 return (0);
122 }
123 #endif /* !_LP64 */
124
125
126 #if defined(_LP64) && !defined(_ELF64) /* 64-bit linker, ELFCLASS32 */
127 /*
128 * A 64-bit linker can produce any size output
129 * file, but if the resulting file is ELFCLASS32,
130 * it must not exceed 4GB.
131 */
132 if (hi > UINT_MAX) {
133 _elf_seterr(EFMT_FBIG_CLASS32, 0);
134 return (0);
135 }
136 #endif
137
138 return (1);
139 }
140 #endif /* TEST_SIZE */
141
142 /*
143 * Output file update
144 * These functions walk an Elf structure, update its information,
145 * and optionally write the output file. Because the application
146 * may control of the output file layout, two upd_... routines
147 * exist. They're similar but too different to merge cleanly.
148 *
149 * The library defines a "dirty" bit to force parts of the file
150 * to be written on update. These routines ignore the dirty bit
151 * and do everything. A minimal update routine might be useful
152 * someday.
153 */
154
155 static size_t
_elf_upd_lib(Elf * elf)156 _elf_upd_lib(Elf * elf)
157 {
158 NOTE(ASSUMING_PROTECTED(*elf))
159 Lword hi;
160 Lword hibit;
161 Elf_Scn * s;
162 register Lword sz;
163 Ehdr * eh = elf->ed_ehdr;
164 unsigned ver = eh->e_version;
165 register char *p = (char *)eh->e_ident;
166 size_t scncnt;
167
168 /*
169 * Ehdr and Phdr table go first
170 */
171 p[EI_MAG0] = ELFMAG0;
172 p[EI_MAG1] = ELFMAG1;
173 p[EI_MAG2] = ELFMAG2;
174 p[EI_MAG3] = ELFMAG3;
175 p[EI_CLASS] = ELFCLASS;
176 /* LINTED */
177 p[EI_VERSION] = (Byte)ver;
178 hi = elf_fsize(ELF_T_EHDR, 1, ver);
179 /* LINTED */
180 eh->e_ehsize = (Half)hi;
181 if (eh->e_phnum != 0) {
182 /* LINTED */
183 eh->e_phentsize = (Half)elf_fsize(ELF_T_PHDR, 1, ver);
184 /* LINTED */
185 eh->e_phoff = (Off)hi;
186 hi += eh->e_phentsize * eh->e_phnum;
187 } else {
188 eh->e_phoff = 0;
189 eh->e_phentsize = 0;
190 }
191
192 /*
193 * Obtain the first section header. Typically, this section has NULL
194 * contents, however in the case of Extended ELF Sections this section
195 * is used to hold an alternative e_shnum, e_shstrndx and e_phnum.
196 * On initial allocation (see _elf_snode) the elements of this section
197 * would have been zeroed. The e_shnum is initialized later, after the
198 * section header count has been determined. The e_shstrndx and
199 * e_phnum may have already been initialized by the caller (for example,
200 * gelf_update_shdr() in mcs(1)).
201 */
202 if ((s = elf->ed_hdscn) == 0) {
203 eh->e_shnum = 0;
204 scncnt = 0;
205 } else {
206 s = s->s_next;
207 scncnt = 1;
208 }
209
210 /*
211 * Loop through sections. Compute section size before changing hi.
212 * Allow null buffers for NOBITS.
213 */
214 hibit = 0;
215 for (; s != 0; s = s->s_next) {
216 register Dnode *d;
217 register Lword fsz, j;
218 Shdr *sh = s->s_shdr;
219
220 scncnt++;
221 if (sh->sh_type == SHT_NULL) {
222 *sh = _elf_snode_init.sb_shdr;
223 continue;
224 }
225
226 if ((s->s_myflags & SF_READY) == 0)
227 (void) _elfxx_cookscn(s);
228
229 sh->sh_addralign = 1;
230 if ((sz = (Lword)_elf_entsz(elf, sh->sh_type, ver)) != 0)
231 /* LINTED */
232 sh->sh_entsize = (Half)sz;
233 sz = 0;
234 for (d = s->s_hdnode; d != 0; d = d->db_next) {
235 if ((fsz = elf_fsize(d->db_data.d_type,
236 1, ver)) == 0)
237 return (0);
238
239 j = _elf_msize(d->db_data.d_type, ver);
240 fsz *= (d->db_data.d_size / j);
241 d->db_osz = (size_t)fsz;
242 if ((j = d->db_data.d_align) > 1) {
243 if (j > sh->sh_addralign)
244 sh->sh_addralign = (Xword)j;
245
246 if (sz % j != 0)
247 sz += j - sz % j;
248 }
249 d->db_data.d_off = (off_t)sz;
250 d->db_xoff = sz;
251 sz += fsz;
252 }
253
254 sh->sh_size = (Xword) sz;
255 /*
256 * We want to take into account the offsets for NOBITS
257 * sections and let the "sh_offsets" point to where
258 * the section would 'conceptually' fit within
259 * the file (as required by the ABI).
260 *
261 * But - we must also make sure that the NOBITS does
262 * not take up any actual space in the file. We preserve
263 * the actual offset into the file in the 'hibit' variable.
264 * When we come to the first non-NOBITS section after a
265 * encountering a NOBITS section the hi counter is restored
266 * to its proper place in the file.
267 */
268 if (sh->sh_type == SHT_NOBITS) {
269 if (hibit == 0)
270 hibit = hi;
271 } else {
272 if (hibit) {
273 hi = hibit;
274 hibit = 0;
275 }
276 }
277 j = sh->sh_addralign;
278 if ((fsz = hi % j) != 0)
279 hi += j - fsz;
280
281 /* LINTED */
282 sh->sh_offset = (Off)hi;
283 hi += sz;
284 }
285
286 /*
287 * if last section was a 'NOBITS' section then we need to
288 * restore the 'hi' counter to point to the end of the last
289 * non 'NOBITS' section.
290 */
291 if (hibit) {
292 hi = hibit;
293 hibit = 0;
294 }
295
296 /*
297 * Shdr table last
298 */
299 if (scncnt != 0) {
300 if (hi % FSZ_LONG != 0)
301 hi += FSZ_LONG - hi % FSZ_LONG;
302 /* LINTED */
303 eh->e_shoff = (Off)hi;
304 /*
305 * If we are using 'extended sections' then the
306 * e_shnum is stored in the sh_size field of the
307 * first section header.
308 *
309 * NOTE: we set e_shnum to '0' because it's specified
310 * this way in the gABI, and in the hopes that
311 * this will cause less problems to unaware
312 * tools then if we'd set it to SHN_XINDEX (0xffff).
313 */
314 if (scncnt < SHN_LORESERVE)
315 eh->e_shnum = scncnt;
316 else {
317 Shdr *sh;
318 sh = (Shdr *)elf->ed_hdscn->s_shdr;
319 sh->sh_size = scncnt;
320 eh->e_shnum = 0;
321 }
322 /* LINTED */
323 eh->e_shentsize = (Half)elf_fsize(ELF_T_SHDR, 1, ver);
324 hi += eh->e_shentsize * scncnt;
325 } else {
326 eh->e_shoff = 0;
327 eh->e_shentsize = 0;
328 }
329
330 #ifdef TEST_SIZE
331 if (test_size(hi) == 0)
332 return (0);
333 #endif
334
335 return ((size_t)hi);
336 }
337
338
339
340 static size_t
_elf_upd_usr(Elf * elf)341 _elf_upd_usr(Elf * elf)
342 {
343 NOTE(ASSUMING_PROTECTED(*elf))
344 Lword hi;
345 Elf_Scn * s;
346 register Lword sz;
347 Ehdr * eh = elf->ed_ehdr;
348 unsigned ver = eh->e_version;
349 register char *p = (char *)eh->e_ident;
350 size_t scncnt;
351
352 /*
353 * Ehdr and Phdr table go first
354 */
355 p[EI_MAG0] = ELFMAG0;
356 p[EI_MAG1] = ELFMAG1;
357 p[EI_MAG2] = ELFMAG2;
358 p[EI_MAG3] = ELFMAG3;
359 p[EI_CLASS] = ELFCLASS;
360 /* LINTED */
361 p[EI_VERSION] = (Byte)ver;
362 hi = elf_fsize(ELF_T_EHDR, 1, ver);
363 /* LINTED */
364 eh->e_ehsize = (Half)hi;
365
366 /*
367 * If phnum is zero, phoff "should" be zero too,
368 * but the application is responsible for it.
369 * Allow a non-zero value here and update the
370 * hi water mark accordingly.
371 */
372
373 if (eh->e_phnum != 0)
374 /* LINTED */
375 eh->e_phentsize = (Half)elf_fsize(ELF_T_PHDR, 1, ver);
376 else
377 eh->e_phentsize = 0;
378 if ((sz = eh->e_phoff + eh->e_phentsize * eh->e_phnum) > hi)
379 hi = sz;
380
381 /*
382 * Loop through sections, skipping index zero.
383 * Compute section size before changing hi.
384 * Allow null buffers for NOBITS.
385 */
386
387 if ((s = elf->ed_hdscn) == 0) {
388 eh->e_shnum = 0;
389 scncnt = 0;
390 } else {
391 scncnt = 1;
392 s = s->s_next;
393 }
394 for (; s != 0; s = s->s_next) {
395 register Dnode *d;
396 register Lword fsz, j;
397 Shdr *sh = s->s_shdr;
398
399 if ((s->s_myflags & SF_READY) == 0)
400 (void) _elfxx_cookscn(s);
401
402 ++scncnt;
403 sz = 0;
404 for (d = s->s_hdnode; d != 0; d = d->db_next) {
405 if ((fsz = elf_fsize(d->db_data.d_type, 1,
406 ver)) == 0)
407 return (0);
408 j = _elf_msize(d->db_data.d_type, ver);
409 fsz *= (d->db_data.d_size / j);
410 d->db_osz = (size_t)fsz;
411
412 if ((sh->sh_type != SHT_NOBITS) &&
413 ((j = (d->db_data.d_off + d->db_osz)) > sz))
414 sz = j;
415 }
416 if (sh->sh_size < sz) {
417 _elf_seterr(EFMT_SCNSZ, 0);
418 return (0);
419 }
420 if ((sh->sh_type != SHT_NOBITS) &&
421 (hi < sh->sh_offset + sh->sh_size))
422 hi = sh->sh_offset + sh->sh_size;
423 }
424
425 /*
426 * Shdr table last. Comment above for phnum/phoff applies here.
427 */
428 if (scncnt != 0) {
429 /* LINTED */
430 eh->e_shentsize = (Half)elf_fsize(ELF_T_SHDR, 1, ver);
431 if (scncnt < SHN_LORESERVE) {
432 eh->e_shnum = scncnt;
433 } else {
434 Shdr *sh;
435 sh = (Shdr *)elf->ed_hdscn->s_shdr;
436 sh->sh_size = scncnt;
437 eh->e_shnum = 0;
438 }
439 } else {
440 eh->e_shentsize = 0;
441 }
442
443 if ((sz = eh->e_shoff + eh->e_shentsize * scncnt) > hi)
444 hi = sz;
445
446 #ifdef TEST_SIZE
447 if (test_size(hi) == 0)
448 return (0);
449 #endif
450
451 return ((size_t)hi);
452 }
453
454
455 static size_t
wrt(Elf * elf,Xword outsz,unsigned fill,int update_cmd)456 wrt(Elf * elf, Xword outsz, unsigned fill, int update_cmd)
457 {
458 NOTE(ASSUMING_PROTECTED(*elf))
459 Elf_Data dst, src;
460 unsigned flag;
461 Xword hi, sz;
462 char *image;
463 Elf_Scn *s;
464 Ehdr *eh = elf->ed_ehdr;
465 unsigned ver = eh->e_version;
466 unsigned encode;
467 int byte;
468 _elf_execfill_func_t *execfill_func;
469
470 /*
471 * If this is an ELF_C_WRIMAGE write, then we encode into the
472 * byte order of the system we are running on rather than that of
473 * of the object. For ld.so.1, this is the same order, but
474 * for 'ld', it might not be in the case where we are cross
475 * linking an object for a different target. In this later case,
476 * the linker-host byte order is necessary so that the linker can
477 * manipulate the resulting image. It is expected that the linker
478 * will call elf_swap_wrimage() if necessary to convert the image
479 * to the target byte order.
480 */
481 encode = (update_cmd == ELF_C_WRIMAGE) ? _elf_sys_encoding() :
482 eh->e_ident[EI_DATA];
483
484 /*
485 * Two issues can cause trouble for the output file.
486 * First, begin() with ELF_C_RDWR opens a file for both
487 * read and write. On the write update(), the library
488 * has to read everything it needs before truncating
489 * the file. Second, using mmap for both read and write
490 * is too tricky. Consequently, the library disables mmap
491 * on the read side. Using mmap for the output saves swap
492 * space, because that mapping is SHARED, not PRIVATE.
493 *
494 * If the file is write-only, there can be nothing of
495 * interest to bother with.
496 *
497 * The following reads the entire file, which might be
498 * more than necessary. Better safe than sorry.
499 */
500
501 if ((elf->ed_myflags & EDF_READ) &&
502 (_elf_vm(elf, (size_t)0, elf->ed_fsz) != OK_YES))
503 return (0);
504
505 flag = elf->ed_myflags & EDF_WRALLOC;
506 if ((image = _elf_outmap(elf->ed_fd, outsz, &flag)) == 0)
507 return (0);
508
509 if (flag == 0)
510 elf->ed_myflags |= EDF_IMALLOC;
511
512 /*
513 * If an error occurs below, a "dirty" bit may be cleared
514 * improperly. To save a second pass through the file,
515 * this code sets the dirty bit on the elf descriptor
516 * when an error happens, assuming that will "cover" any
517 * accidents.
518 */
519
520 /*
521 * Hi is needed only when 'fill' is non-zero.
522 * Fill is non-zero only when the library
523 * calculates file/section/data buffer offsets.
524 * The lib guarantees they increase monotonically.
525 * That guarantees proper filling below.
526 */
527
528
529 /*
530 * Ehdr first
531 */
532
533 src.d_buf = (Elf_Void *)eh;
534 src.d_type = ELF_T_EHDR;
535 src.d_size = sizeof (Ehdr);
536 src.d_version = EV_CURRENT;
537 dst.d_buf = (Elf_Void *)image;
538 dst.d_size = eh->e_ehsize;
539 dst.d_version = ver;
540 if (elf_xlatetof(&dst, &src, encode) == 0)
541 return (0);
542 elf->ed_ehflags &= ~ELF_F_DIRTY;
543 hi = eh->e_ehsize;
544
545 /*
546 * Phdr table if one exists
547 */
548
549 if (eh->e_phnum != 0) {
550 unsigned work;
551 /*
552 * Unlike other library data, phdr table is
553 * in the user version. Change src buffer
554 * version here, fix it after translation.
555 */
556
557 src.d_buf = (Elf_Void *)elf->ed_phdr;
558 src.d_type = ELF_T_PHDR;
559 src.d_size = elf->ed_phdrsz;
560 ELFACCESSDATA(work, _elf_work)
561 src.d_version = work;
562 dst.d_buf = (Elf_Void *)(image + eh->e_phoff);
563 dst.d_size = eh->e_phnum * eh->e_phentsize;
564 hi = (Xword)(eh->e_phoff + dst.d_size);
565 if (elf_xlatetof(&dst, &src, encode) == 0) {
566 elf->ed_uflags |= ELF_F_DIRTY;
567 return (0);
568 }
569 elf->ed_phflags &= ~ELF_F_DIRTY;
570 src.d_version = EV_CURRENT;
571 }
572
573 /*
574 * Loop through sections
575 */
576
577 ELFACCESSDATA(byte, _elf_byte);
578 ELFACCESSDATA(execfill_func, _elf_execfill_func);
579 for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
580 register Dnode *d, *prevd;
581 Xword off = 0;
582 Shdr *sh = s->s_shdr;
583 char *start = image + sh->sh_offset;
584 char *here;
585 _elf_execfill_func_t *execfill;
586
587 /* Only use the execfill function on SHF_EXECINSTR sections */
588 execfill = (sh->sh_flags & SHF_EXECINSTR) ?
589 execfill_func : NULL;
590
591 /*
592 * Just "clean" DIRTY flag for "empty" sections. Even if
593 * NOBITS needs padding, the next thing in the
594 * file will provide it. (And if this NOBITS is
595 * the last thing in the file, no padding needed.)
596 */
597 if ((sh->sh_type == SHT_NOBITS) ||
598 (sh->sh_type == SHT_NULL)) {
599 d = s->s_hdnode, prevd = 0;
600 for (; d != 0; prevd = d, d = d->db_next)
601 d->db_uflags &= ~ELF_F_DIRTY;
602 continue;
603 }
604 /*
605 * Clear out the memory between the end of the last
606 * section and the begining of this section.
607 */
608 if (fill && (sh->sh_offset > hi)) {
609 sz = sh->sh_offset - hi;
610 (void) memset(start - sz, byte, sz);
611 }
612
613
614 for (d = s->s_hdnode, prevd = 0;
615 d != 0; prevd = d, d = d->db_next) {
616 d->db_uflags &= ~ELF_F_DIRTY;
617 here = start + d->db_data.d_off;
618
619 /*
620 * Clear out the memory between the end of the
621 * last update and the start of this data buffer.
622 *
623 * These buffers represent input sections that have
624 * been concatenated into an output section, so if
625 * the output section is executable (SHF_EXECINSTR)
626 * and a fill function has been registered, use the
627 * function. Otherwise, use the fill byte.
628 */
629 if (fill && (d->db_data.d_off > off)) {
630 sz = (Xword)(d->db_data.d_off - off);
631 if (execfill != NULL)
632 (* execfill)(start,
633 here - start - sz, sz);
634 else
635 (void) memset(here - sz, byte, sz);
636 }
637
638 if ((d->db_myflags & DBF_READY) == 0) {
639 SCNLOCK(s);
640 if (_elf_locked_getdata(s, &prevd->db_data) !=
641 &d->db_data) {
642 elf->ed_uflags |= ELF_F_DIRTY;
643 SCNUNLOCK(s);
644 return (0);
645 }
646 SCNUNLOCK(s);
647 }
648 dst.d_buf = (Elf_Void *)here;
649 dst.d_size = d->db_osz;
650
651 /*
652 * Copy the translated bits out to the destination
653 * image.
654 */
655 if (elf_xlatetof(&dst, &d->db_data, encode) == 0) {
656 elf->ed_uflags |= ELF_F_DIRTY;
657 return (0);
658 }
659
660 off = (Xword)(d->db_data.d_off + dst.d_size);
661 }
662 hi = sh->sh_offset + sh->sh_size;
663 }
664
665 /*
666 * Shdr table last
667 */
668
669 if (fill && (eh->e_shoff > hi)) {
670 sz = eh->e_shoff - hi;
671 (void) memset(image + hi, byte, sz);
672 }
673
674 src.d_type = ELF_T_SHDR;
675 src.d_size = sizeof (Shdr);
676 dst.d_buf = (Elf_Void *)(image + eh->e_shoff);
677 dst.d_size = eh->e_shentsize;
678 for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
679 assert((uintptr_t)dst.d_buf < ((uintptr_t)image + outsz));
680 s->s_shflags &= ~ELF_F_DIRTY;
681 s->s_uflags &= ~ELF_F_DIRTY;
682 src.d_buf = s->s_shdr;
683
684 if (elf_xlatetof(&dst, &src, encode) == 0) {
685 elf->ed_uflags |= ELF_F_DIRTY;
686 return (0);
687 }
688
689 dst.d_buf = (char *)dst.d_buf + eh->e_shentsize;
690 }
691 /*
692 * ELF_C_WRIMAGE signifyes that we build the memory image, but
693 * that we do not actually write it to disk. This is used
694 * by ld(1) to build up a full image of an elf file and then
695 * to process the file before it's actually written out to
696 * disk. This saves ld(1) the overhead of having to write
697 * the image out to disk twice.
698 */
699 if (update_cmd == ELF_C_WRIMAGE) {
700 elf->ed_uflags &= ~ELF_F_DIRTY;
701 elf->ed_wrimage = image;
702 elf->ed_wrimagesz = outsz;
703 return (outsz);
704 }
705
706 if (_elf_outsync(elf->ed_fd, image, outsz,
707 ((elf->ed_myflags & EDF_IMALLOC) ? 0 : 1)) != 0) {
708 elf->ed_uflags &= ~ELF_F_DIRTY;
709 elf->ed_myflags &= ~EDF_IMALLOC;
710 return (outsz);
711 }
712
713 elf->ed_uflags |= ELF_F_DIRTY;
714 return (0);
715 }
716
717
718
719
720 /*
721 * The following is a private interface between the linkers (ld & ld.so.1)
722 * and libelf:
723 *
724 * elf_update(elf, ELF_C_WRIMAGE)
725 * This will cause full image representing the elf file
726 * described by the elf pointer to be built in memory. If the
727 * elf pointer has a valid file descriptor associated with it
728 * we will attempt to build the memory image from mmap()'ed
729 * storage. If the elf descriptor does not have a valid
730 * file descriptor (opened with elf_begin(0, ELF_C_IMAGE, 0))
731 * then the image will be allocated from dynamic memory (malloc()).
732 *
733 * elf_update() will return the size of the memory image built
734 * when sucessful.
735 *
736 * When a subsequent call to elf_update() with ELF_C_WRITE as
737 * the command is performed it will sync the image created
738 * by ELF_C_WRIMAGE to disk (if fd available) and
739 * free the memory allocated.
740 */
741
742 off_t
_elfxx_update(Elf * elf,Elf_Cmd cmd)743 _elfxx_update(Elf * elf, Elf_Cmd cmd)
744 {
745 size_t sz;
746 unsigned u;
747 Ehdr *eh = elf->ed_ehdr;
748
749 if (elf == 0)
750 return (-1);
751
752 ELFWLOCK(elf)
753 switch (cmd) {
754 default:
755 _elf_seterr(EREQ_UPDATE, 0);
756 ELFUNLOCK(elf)
757 return (-1);
758
759 case ELF_C_WRIMAGE:
760 if ((elf->ed_myflags & EDF_WRITE) == 0) {
761 _elf_seterr(EREQ_UPDWRT, 0);
762 ELFUNLOCK(elf)
763 return (-1);
764 }
765 break;
766 case ELF_C_WRITE:
767 if ((elf->ed_myflags & EDF_WRITE) == 0) {
768 _elf_seterr(EREQ_UPDWRT, 0);
769 ELFUNLOCK(elf)
770 return (-1);
771 }
772 if (elf->ed_wrimage) {
773 if (elf->ed_myflags & EDF_WRALLOC) {
774 free(elf->ed_wrimage);
775 /*
776 * The size is still returned even
777 * though nothing is actually written
778 * out. This is just to be consistant
779 * with the rest of the interface.
780 */
781 sz = elf->ed_wrimagesz;
782 elf->ed_wrimage = 0;
783 elf->ed_wrimagesz = 0;
784 ELFUNLOCK(elf);
785 return ((off_t)sz);
786 }
787 sz = _elf_outsync(elf->ed_fd, elf->ed_wrimage,
788 elf->ed_wrimagesz,
789 (elf->ed_myflags & EDF_IMALLOC ? 0 : 1));
790 elf->ed_myflags &= ~EDF_IMALLOC;
791 elf->ed_wrimage = 0;
792 elf->ed_wrimagesz = 0;
793 ELFUNLOCK(elf);
794 return ((off_t)sz);
795 }
796 /* FALLTHROUGH */
797 case ELF_C_NULL:
798 break;
799 }
800
801 if (eh == 0) {
802 _elf_seterr(ESEQ_EHDR, 0);
803 ELFUNLOCK(elf)
804 return (-1);
805 }
806
807 if ((u = eh->e_version) > EV_CURRENT) {
808 _elf_seterr(EREQ_VER, 0);
809 ELFUNLOCK(elf)
810 return (-1);
811 }
812
813 if (u == EV_NONE)
814 eh->e_version = EV_CURRENT;
815
816 if ((u = eh->e_ident[EI_DATA]) == ELFDATANONE) {
817 unsigned encode;
818
819 ELFACCESSDATA(encode, _elf_encode)
820 if (encode == ELFDATANONE) {
821 _elf_seterr(EREQ_ENCODE, 0);
822 ELFUNLOCK(elf)
823 return (-1);
824 }
825 /* LINTED */
826 eh->e_ident[EI_DATA] = (Byte)encode;
827 }
828
829 u = 1;
830 if (elf->ed_uflags & ELF_F_LAYOUT) {
831 sz = _elf_upd_usr(elf);
832 u = 0;
833 } else
834 sz = _elf_upd_lib(elf);
835
836 if ((sz != 0) && ((cmd == ELF_C_WRITE) || (cmd == ELF_C_WRIMAGE)))
837 sz = wrt(elf, (Xword)sz, u, cmd);
838
839 if (sz == 0) {
840 ELFUNLOCK(elf)
841 return (-1);
842 }
843
844 ELFUNLOCK(elf)
845 return ((off_t)sz);
846 }
847
848
849 /*
850 * When wrt() processes an ELF_C_WRIMAGE request, the resulting image
851 * gets the byte order (encoding) of the platform running the linker
852 * rather than that of the target host. This allows the linker to modify
853 * the image, prior to flushing it to the output file. This routine
854 * is used to re-translate such an image into the byte order of the
855 * target host.
856 */
857 int
_elfxx_swap_wrimage(Elf * elf)858 _elfxx_swap_wrimage(Elf *elf)
859 {
860 Elf_Data dst, src;
861 Elf_Scn *s;
862 Ehdr *eh;
863 Half e_phnum;
864 unsigned ver;
865 unsigned encode;
866
867 /*
868 * Ehdr first
869 */
870
871 ELFWLOCK(elf);
872 eh = elf->ed_ehdr;
873 e_phnum = eh->e_phnum;
874 ver = eh->e_version;
875 encode = eh->e_ident[EI_DATA];
876
877 src.d_buf = dst.d_buf = (Elf_Void *)eh;
878 src.d_type = dst.d_type = ELF_T_EHDR;
879 src.d_size = dst.d_size = sizeof (Ehdr);
880 src.d_version = dst.d_version = ver;
881 if (elf_xlatetof(&dst, &src, encode) == 0) {
882 ELFUNLOCK(elf);
883 return (1);
884 }
885
886 /*
887 * Phdr table if one exists
888 */
889
890 if (e_phnum != 0) {
891 unsigned work;
892 /*
893 * Unlike other library data, phdr table is
894 * in the user version.
895 */
896
897 src.d_buf = dst.d_buf = (Elf_Void *)elf->ed_phdr;
898 src.d_type = dst.d_type = ELF_T_PHDR;
899 src.d_size = dst.d_size = elf->ed_phdrsz;
900 ELFACCESSDATA(work, _elf_work)
901 src.d_version = dst.d_version = work;
902 if (elf_xlatetof(&dst, &src, encode) == 0) {
903 ELFUNLOCK(elf);
904 return (1);
905 }
906 }
907
908 /*
909 * Loop through sections
910 */
911
912 for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
913 register Dnode *d, *prevd;
914 Shdr *sh = s->s_shdr;
915
916 if ((sh->sh_type == SHT_NOBITS) || (sh->sh_type == SHT_NULL))
917 continue;
918
919 for (d = s->s_hdnode, prevd = 0;
920 d != 0; prevd = d, d = d->db_next) {
921
922 if ((d->db_myflags & DBF_READY) == 0) {
923 SCNLOCK(s);
924 if (_elf_locked_getdata(s, &prevd->db_data) !=
925 &d->db_data) {
926 SCNUNLOCK(s);
927 ELFUNLOCK(elf);
928 return (1);
929 }
930 SCNUNLOCK(s);
931 }
932
933 dst = d->db_data;
934 if (elf_xlatetof(&dst, &d->db_data, encode) == 0) {
935 ELFUNLOCK(elf);
936 return (1);
937 }
938 }
939 }
940
941 /*
942 * Shdr table
943 */
944
945 src.d_type = dst.d_type = ELF_T_SHDR;
946 src.d_version = dst.d_version = ver;
947 for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
948 src.d_buf = dst.d_buf = s->s_shdr;
949 src.d_size = dst.d_size = sizeof (Shdr);
950 if (elf_xlatetof(&dst, &src, encode) == 0) {
951 ELFUNLOCK(elf);
952 return (1);
953 }
954 }
955
956 ELFUNLOCK(elf);
957 return (0);
958 }
959
960
961
962 #ifndef _ELF64
963 /* class-independent, only needs to be compiled once */
964
965 off_t
elf_update(Elf * elf,Elf_Cmd cmd)966 elf_update(Elf *elf, Elf_Cmd cmd)
967 {
968 if (elf == 0)
969 return (-1);
970
971 if (elf->ed_class == ELFCLASS32)
972 return (_elf32_update(elf, cmd));
973 else if (elf->ed_class == ELFCLASS64) {
974 return (_elf64_update(elf, cmd));
975 }
976
977 _elf_seterr(EREQ_CLASS, 0);
978 return (-1);
979 }
980
981 int
_elf_swap_wrimage(Elf * elf)982 _elf_swap_wrimage(Elf *elf)
983 {
984 if (elf == 0)
985 return (0);
986
987 if (elf->ed_class == ELFCLASS32)
988 return (_elf32_swap_wrimage(elf));
989
990 if (elf->ed_class == ELFCLASS64)
991 return (_elf64_swap_wrimage(elf));
992
993 _elf_seterr(EREQ_CLASS, 0);
994 return (0);
995 }
996
997 /*
998 * 4106312, 4106398, This is an ad-hoc means for the 32-bit
999 * Elf64 version of libld.so.3 to get around the limitation
1000 * of a 32-bit d_off field. This is only intended to be
1001 * used by libld to relocate symbols in large NOBITS sections.
1002 */
1003 Elf64_Off
_elf_getxoff(Elf_Data * d)1004 _elf_getxoff(Elf_Data * d)
1005 {
1006 return (((Dnode *)d)->db_xoff);
1007 }
1008 #endif /* !_ELF64 */
1009