1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All Rights Reserved.
6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7 * Copyright (c) 2018 Matthew Macy
8 * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * UNIX Domain (Local) Sockets
37 *
38 * This is an implementation of UNIX (local) domain sockets. Each socket has
39 * an associated struct unpcb (UNIX protocol control block). Stream sockets
40 * may be connected to 0 or 1 other socket. Datagram sockets may be
41 * connected to 0, 1, or many other sockets. Sockets may be created and
42 * connected in pairs (socketpair(2)), or bound/connected to using the file
43 * system name space. For most purposes, only the receive socket buffer is
44 * used, as sending on one socket delivers directly to the receive socket
45 * buffer of a second socket.
46 *
47 * The implementation is substantially complicated by the fact that
48 * "ancillary data", such as file descriptors or credentials, may be passed
49 * across UNIX domain sockets. The potential for passing UNIX domain sockets
50 * over other UNIX domain sockets requires the implementation of a simple
51 * garbage collector to find and tear down cycles of disconnected sockets.
52 *
53 * TODO:
54 * RDM
55 * rethink name space problems
56 * need a proper out-of-band
57 */
58
59 #include "opt_ddb.h"
60
61 #include <sys/param.h>
62 #include <sys/capsicum.h>
63 #include <sys/domain.h>
64 #include <sys/eventhandler.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/poll.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93
94 #include <net/vnet.h>
95
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99
100 #include <security/mac/mac_framework.h>
101
102 #include <vm/uma.h>
103
104 MALLOC_DECLARE(M_FILECAPS);
105
106 static struct domain localdomain;
107
108 static uma_zone_t unp_zone;
109 static unp_gen_t unp_gencnt; /* (l) */
110 static u_int unp_count; /* (l) Count of local sockets. */
111 static ino_t unp_ino; /* Prototype for fake inode numbers. */
112 static int unp_rights; /* (g) File descriptors in flight. */
113 static struct unp_head unp_shead; /* (l) List of stream sockets. */
114 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */
115 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */
116 static struct mtx_pool *unp_vp_mtxpool;
117
118 struct unp_defer {
119 SLIST_ENTRY(unp_defer) ud_link;
120 struct file *ud_fp;
121 };
122 static SLIST_HEAD(, unp_defer) unp_defers;
123 static int unp_defers_count;
124
125 static const struct sockaddr sun_noname = {
126 .sa_len = sizeof(sun_noname),
127 .sa_family = AF_LOCAL,
128 };
129
130 /*
131 * Garbage collection of cyclic file descriptor/socket references occurs
132 * asynchronously in a taskqueue context in order to avoid recursion and
133 * reentrance in the UNIX domain socket, file descriptor, and socket layer
134 * code. See unp_gc() for a full description.
135 */
136 static struct timeout_task unp_gc_task;
137
138 /*
139 * The close of unix domain sockets attached as SCM_RIGHTS is
140 * postponed to the taskqueue, to avoid arbitrary recursion depth.
141 * The attached sockets might have another sockets attached.
142 */
143 static struct task unp_defer_task;
144
145 /*
146 * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer,
147 * however the notion of send buffer still makes sense with them. Its size is
148 * the amount of space that a send(2) syscall may copyin(9) before checking
149 * with the receive buffer of a peer. Although not linked anywhere yet,
150 * pointed to by a stack variable, effectively it is a buffer that needs to be
151 * sized.
152 *
153 * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size,
154 * and don't really want to reserve the sendspace. Their recvspace should be
155 * large enough for at least one max-size datagram plus address.
156 */
157 static u_long unpst_sendspace = 64*1024;
158 static u_long unpst_recvspace = 64*1024;
159 static u_long unpdg_maxdgram = 8*1024; /* support 8KB syslog msgs */
160 static u_long unpdg_recvspace = 16*1024;
161 static u_long unpsp_sendspace = 64*1024;
162 static u_long unpsp_recvspace = 64*1024;
163
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165 "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168 "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171 "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174 "SOCK_SEQPACKET");
175
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 &unpdg_maxdgram, 0, "Maximum datagram size.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189 "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191 &unp_defers_count, 0,
192 "File descriptors deferred to taskqueue for close.");
193
194 /*
195 * Locking and synchronization:
196 *
197 * Several types of locks exist in the local domain socket implementation:
198 * - a global linkage lock
199 * - a global connection list lock
200 * - the mtxpool lock
201 * - per-unpcb mutexes
202 *
203 * The linkage lock protects the global socket lists, the generation number
204 * counter and garbage collector state.
205 *
206 * The connection list lock protects the list of referring sockets in a datagram
207 * socket PCB. This lock is also overloaded to protect a global list of
208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209 * messages. To avoid recursion, such references are released by a dedicated
210 * thread.
211 *
212 * The mtxpool lock protects the vnode from being modified while referenced.
213 * Lock ordering rules require that it be acquired before any PCB locks.
214 *
215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216 * unpcb. This includes the unp_conn field, which either links two connected
217 * PCBs together (for connected socket types) or points at the destination
218 * socket (for connectionless socket types). The operations of creating or
219 * destroying a connection therefore involve locking multiple PCBs. To avoid
220 * lock order reversals, in some cases this involves dropping a PCB lock and
221 * using a reference counter to maintain liveness.
222 *
223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224 * allocated in pr_attach() and freed in pr_detach(). The validity of that
225 * pointer is an invariant, so no lock is required to dereference the so_pcb
226 * pointer if a valid socket reference is held by the caller. In practice,
227 * this is always true during operations performed on a socket. Each unpcb
228 * has a back-pointer to its socket, unp_socket, which will be stable under
229 * the same circumstances.
230 *
231 * This pointer may only be safely dereferenced as long as a valid reference
232 * to the unpcb is held. Typically, this reference will be from the socket,
233 * or from another unpcb when the referring unpcb's lock is held (in order
234 * that the reference not be invalidated during use). For example, to follow
235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236 * that detach is not run clearing unp_socket.
237 *
238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239 * protocols, bind() is a non-atomic operation, and connect() requires
240 * potential sleeping in the protocol, due to potentially waiting on local or
241 * distributed file systems. We try to separate "lookup" operations, which
242 * may sleep, and the IPC operations themselves, which typically can occur
243 * with relative atomicity as locks can be held over the entire operation.
244 *
245 * Another tricky issue is simultaneous multi-threaded or multi-process
246 * access to a single UNIX domain socket. These are handled by the flags
247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248 * binding, both of which involve dropping UNIX domain socket locks in order
249 * to perform namei() and other file system operations.
250 */
251 static struct rwlock unp_link_rwlock;
252 static struct mtx unp_defers_lock;
253
254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \
255 "unp_link_rwlock")
256
257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \
258 RA_LOCKED)
259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
260 RA_UNLOCKED)
261
262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock)
263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock)
264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock)
265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock)
266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
267 RA_WLOCKED)
268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock)
269
270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \
271 "unp_defer", NULL, MTX_DEF)
272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock)
273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock)
274
275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK();
277
278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \
279 "unp", "unp", \
280 MTX_DUPOK|MTX_DEF)
281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx)
282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx)
283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx)
284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx)
285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx)
286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx)
287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289
290 static int uipc_connect2(struct socket *, struct socket *);
291 static int uipc_ctloutput(struct socket *, struct sockopt *);
292 static int unp_connect(struct socket *, struct sockaddr *,
293 struct thread *);
294 static int unp_connectat(int, struct socket *, struct sockaddr *,
295 struct thread *, bool);
296 static void unp_connect2(struct socket *, struct socket *, bool);
297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void unp_dispose(struct socket *so);
299 static void unp_drop(struct unpcb *);
300 static void unp_gc(__unused void *, int);
301 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void unp_discard(struct file *);
303 static void unp_freerights(struct filedescent **, int);
304 static int unp_internalize(struct mbuf *, struct mchain *,
305 struct thread *);
306 static void unp_internalize_fp(struct file *);
307 static int unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int unp_externalize_fp(struct file *);
309 static void unp_addsockcred(struct thread *, struct mchain *, int);
310 static void unp_process_defers(void * __unused, int);
311
312 static void uipc_wrknl_lock(void *);
313 static void uipc_wrknl_unlock(void *);
314 static void uipc_wrknl_assert_lock(void *, int);
315
316 static void
unp_pcb_hold(struct unpcb * unp)317 unp_pcb_hold(struct unpcb *unp)
318 {
319 u_int old __unused;
320
321 old = refcount_acquire(&unp->unp_refcount);
322 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
323 }
324
325 static __result_use_check bool
unp_pcb_rele(struct unpcb * unp)326 unp_pcb_rele(struct unpcb *unp)
327 {
328 bool ret;
329
330 UNP_PCB_LOCK_ASSERT(unp);
331
332 if ((ret = refcount_release(&unp->unp_refcount))) {
333 UNP_PCB_UNLOCK(unp);
334 UNP_PCB_LOCK_DESTROY(unp);
335 uma_zfree(unp_zone, unp);
336 }
337 return (ret);
338 }
339
340 static void
unp_pcb_rele_notlast(struct unpcb * unp)341 unp_pcb_rele_notlast(struct unpcb *unp)
342 {
343 bool ret __unused;
344
345 ret = refcount_release(&unp->unp_refcount);
346 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
347 }
348
349 static void
unp_pcb_lock_pair(struct unpcb * unp,struct unpcb * unp2)350 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
351 {
352 UNP_PCB_UNLOCK_ASSERT(unp);
353 UNP_PCB_UNLOCK_ASSERT(unp2);
354
355 if (unp == unp2) {
356 UNP_PCB_LOCK(unp);
357 } else if ((uintptr_t)unp2 > (uintptr_t)unp) {
358 UNP_PCB_LOCK(unp);
359 UNP_PCB_LOCK(unp2);
360 } else {
361 UNP_PCB_LOCK(unp2);
362 UNP_PCB_LOCK(unp);
363 }
364 }
365
366 static void
unp_pcb_unlock_pair(struct unpcb * unp,struct unpcb * unp2)367 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
368 {
369 UNP_PCB_UNLOCK(unp);
370 if (unp != unp2)
371 UNP_PCB_UNLOCK(unp2);
372 }
373
374 /*
375 * Try to lock the connected peer of an already locked socket. In some cases
376 * this requires that we unlock the current socket. The pairbusy counter is
377 * used to block concurrent connection attempts while the lock is dropped. The
378 * caller must be careful to revalidate PCB state.
379 */
380 static struct unpcb *
unp_pcb_lock_peer(struct unpcb * unp)381 unp_pcb_lock_peer(struct unpcb *unp)
382 {
383 struct unpcb *unp2;
384
385 UNP_PCB_LOCK_ASSERT(unp);
386 unp2 = unp->unp_conn;
387 if (unp2 == NULL)
388 return (NULL);
389 if (__predict_false(unp == unp2))
390 return (unp);
391
392 UNP_PCB_UNLOCK_ASSERT(unp2);
393
394 if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
395 return (unp2);
396 if ((uintptr_t)unp2 > (uintptr_t)unp) {
397 UNP_PCB_LOCK(unp2);
398 return (unp2);
399 }
400 unp->unp_pairbusy++;
401 unp_pcb_hold(unp2);
402 UNP_PCB_UNLOCK(unp);
403
404 UNP_PCB_LOCK(unp2);
405 UNP_PCB_LOCK(unp);
406 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
407 ("%s: socket %p was reconnected", __func__, unp));
408 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
409 unp->unp_flags &= ~UNP_WAITING;
410 wakeup(unp);
411 }
412 if (unp_pcb_rele(unp2)) {
413 /* unp2 is unlocked. */
414 return (NULL);
415 }
416 if (unp->unp_conn == NULL) {
417 UNP_PCB_UNLOCK(unp2);
418 return (NULL);
419 }
420 return (unp2);
421 }
422
423 /*
424 * Try to lock peer of our socket for purposes of sending data to it.
425 */
426 static int
uipc_lock_peer(struct socket * so,struct unpcb ** unp2)427 uipc_lock_peer(struct socket *so, struct unpcb **unp2)
428 {
429 struct unpcb *unp;
430 int error;
431
432 unp = sotounpcb(so);
433 UNP_PCB_LOCK(unp);
434 *unp2 = unp_pcb_lock_peer(unp);
435 if (__predict_false(so->so_error != 0)) {
436 error = so->so_error;
437 so->so_error = 0;
438 UNP_PCB_UNLOCK(unp);
439 if (*unp2 != NULL)
440 UNP_PCB_UNLOCK(*unp2);
441 return (error);
442 }
443 if (__predict_false(*unp2 == NULL)) {
444 /*
445 * Different error code for a previously connected socket and
446 * a never connected one. The SS_ISDISCONNECTED is set in the
447 * unp_soisdisconnected() and is synchronized by the pcb lock.
448 */
449 error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN;
450 UNP_PCB_UNLOCK(unp);
451 return (error);
452 }
453 UNP_PCB_UNLOCK(unp);
454
455 return (0);
456 }
457
458 static void
uipc_abort(struct socket * so)459 uipc_abort(struct socket *so)
460 {
461 struct unpcb *unp, *unp2;
462
463 unp = sotounpcb(so);
464 KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
465 UNP_PCB_UNLOCK_ASSERT(unp);
466
467 UNP_PCB_LOCK(unp);
468 unp2 = unp->unp_conn;
469 if (unp2 != NULL) {
470 unp_pcb_hold(unp2);
471 UNP_PCB_UNLOCK(unp);
472 unp_drop(unp2);
473 } else
474 UNP_PCB_UNLOCK(unp);
475 }
476
477 static int
uipc_attach(struct socket * so,int proto,struct thread * td)478 uipc_attach(struct socket *so, int proto, struct thread *td)
479 {
480 u_long sendspace, recvspace;
481 struct unpcb *unp;
482 int error;
483 bool locked;
484
485 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
486 switch (so->so_type) {
487 case SOCK_DGRAM:
488 STAILQ_INIT(&so->so_rcv.uxdg_mb);
489 STAILQ_INIT(&so->so_snd.uxdg_mb);
490 TAILQ_INIT(&so->so_rcv.uxdg_conns);
491 /*
492 * Since send buffer is either bypassed or is a part
493 * of one-to-many receive buffer, we assign both space
494 * limits to unpdg_recvspace.
495 */
496 sendspace = recvspace = unpdg_recvspace;
497 break;
498
499 case SOCK_STREAM:
500 sendspace = unpst_sendspace;
501 recvspace = unpst_recvspace;
502 goto common;
503
504 case SOCK_SEQPACKET:
505 sendspace = unpsp_sendspace;
506 recvspace = unpsp_recvspace;
507 common:
508 /*
509 * XXXGL: we need to initialize the mutex with MTX_DUPOK.
510 * Ideally, protocols that have PR_SOCKBUF should be
511 * responsible for mutex initialization officially, and then
512 * this uglyness with mtx_destroy(); mtx_init(); would go away.
513 */
514 mtx_destroy(&so->so_rcv_mtx);
515 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF | MTX_DUPOK);
516 knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock,
517 uipc_wrknl_unlock, uipc_wrknl_assert_lock);
518 STAILQ_INIT(&so->so_rcv.uxst_mbq);
519 break;
520 default:
521 panic("uipc_attach");
522 }
523 error = soreserve(so, sendspace, recvspace);
524 if (error)
525 return (error);
526 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
527 if (unp == NULL)
528 return (ENOBUFS);
529 LIST_INIT(&unp->unp_refs);
530 UNP_PCB_LOCK_INIT(unp);
531 unp->unp_socket = so;
532 so->so_pcb = unp;
533 refcount_init(&unp->unp_refcount, 1);
534 unp->unp_mode = ACCESSPERMS;
535
536 if ((locked = UNP_LINK_WOWNED()) == false)
537 UNP_LINK_WLOCK();
538
539 unp->unp_gencnt = ++unp_gencnt;
540 unp->unp_ino = ++unp_ino;
541 unp_count++;
542 switch (so->so_type) {
543 case SOCK_STREAM:
544 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
545 break;
546
547 case SOCK_DGRAM:
548 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
549 break;
550
551 case SOCK_SEQPACKET:
552 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
553 break;
554
555 default:
556 panic("uipc_attach");
557 }
558
559 if (locked == false)
560 UNP_LINK_WUNLOCK();
561
562 return (0);
563 }
564
565 static int
uipc_bindat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)566 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
567 {
568 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
569 struct vattr vattr;
570 int error, namelen;
571 struct nameidata nd;
572 struct unpcb *unp;
573 struct vnode *vp;
574 struct mount *mp;
575 cap_rights_t rights;
576 char *buf;
577 mode_t mode;
578
579 if (nam->sa_family != AF_UNIX)
580 return (EAFNOSUPPORT);
581
582 unp = sotounpcb(so);
583 KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
584
585 if (soun->sun_len > sizeof(struct sockaddr_un))
586 return (EINVAL);
587 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
588 if (namelen <= 0)
589 return (EINVAL);
590
591 /*
592 * We don't allow simultaneous bind() calls on a single UNIX domain
593 * socket, so flag in-progress operations, and return an error if an
594 * operation is already in progress.
595 *
596 * Historically, we have not allowed a socket to be rebound, so this
597 * also returns an error. Not allowing re-binding simplifies the
598 * implementation and avoids a great many possible failure modes.
599 */
600 UNP_PCB_LOCK(unp);
601 if (unp->unp_vnode != NULL) {
602 UNP_PCB_UNLOCK(unp);
603 return (EINVAL);
604 }
605 if (unp->unp_flags & UNP_BINDING) {
606 UNP_PCB_UNLOCK(unp);
607 return (EALREADY);
608 }
609 unp->unp_flags |= UNP_BINDING;
610 mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask;
611 UNP_PCB_UNLOCK(unp);
612
613 buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
614 bcopy(soun->sun_path, buf, namelen);
615 buf[namelen] = 0;
616
617 restart:
618 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
619 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
620 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
621 error = namei(&nd);
622 if (error)
623 goto error;
624 vp = nd.ni_vp;
625 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
626 NDFREE_PNBUF(&nd);
627 if (nd.ni_dvp == vp)
628 vrele(nd.ni_dvp);
629 else
630 vput(nd.ni_dvp);
631 if (vp != NULL) {
632 vrele(vp);
633 error = EADDRINUSE;
634 goto error;
635 }
636 error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
637 if (error)
638 goto error;
639 goto restart;
640 }
641 VATTR_NULL(&vattr);
642 vattr.va_type = VSOCK;
643 vattr.va_mode = mode;
644 #ifdef MAC
645 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
646 &vattr);
647 #endif
648 if (error == 0) {
649 /*
650 * The prior lookup may have left LK_SHARED in cn_lkflags,
651 * and VOP_CREATE technically only requires the new vnode to
652 * be locked shared. Most filesystems will return the new vnode
653 * locked exclusive regardless, but we should explicitly
654 * specify that here since we require it and assert to that
655 * effect below.
656 */
657 nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
658 LK_EXCLUSIVE;
659 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
660 }
661 NDFREE_PNBUF(&nd);
662 if (error) {
663 VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
664 vn_finished_write(mp);
665 if (error == ERELOOKUP)
666 goto restart;
667 goto error;
668 }
669 vp = nd.ni_vp;
670 ASSERT_VOP_ELOCKED(vp, "uipc_bind");
671 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
672
673 UNP_PCB_LOCK(unp);
674 VOP_UNP_BIND(vp, unp);
675 unp->unp_vnode = vp;
676 unp->unp_addr = soun;
677 unp->unp_flags &= ~UNP_BINDING;
678 UNP_PCB_UNLOCK(unp);
679 vref(vp);
680 VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
681 vn_finished_write(mp);
682 free(buf, M_TEMP);
683 return (0);
684
685 error:
686 UNP_PCB_LOCK(unp);
687 unp->unp_flags &= ~UNP_BINDING;
688 UNP_PCB_UNLOCK(unp);
689 free(buf, M_TEMP);
690 return (error);
691 }
692
693 static int
uipc_bind(struct socket * so,struct sockaddr * nam,struct thread * td)694 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
695 {
696
697 return (uipc_bindat(AT_FDCWD, so, nam, td));
698 }
699
700 static int
uipc_connect(struct socket * so,struct sockaddr * nam,struct thread * td)701 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
702 {
703 int error;
704
705 KASSERT(td == curthread, ("uipc_connect: td != curthread"));
706 error = unp_connect(so, nam, td);
707 return (error);
708 }
709
710 static int
uipc_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)711 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
712 struct thread *td)
713 {
714 int error;
715
716 KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
717 error = unp_connectat(fd, so, nam, td, false);
718 return (error);
719 }
720
721 static void
uipc_close(struct socket * so)722 uipc_close(struct socket *so)
723 {
724 struct unpcb *unp, *unp2;
725 struct vnode *vp = NULL;
726 struct mtx *vplock;
727
728 unp = sotounpcb(so);
729 KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
730
731 vplock = NULL;
732 if ((vp = unp->unp_vnode) != NULL) {
733 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
734 mtx_lock(vplock);
735 }
736 UNP_PCB_LOCK(unp);
737 if (vp && unp->unp_vnode == NULL) {
738 mtx_unlock(vplock);
739 vp = NULL;
740 }
741 if (vp != NULL) {
742 VOP_UNP_DETACH(vp);
743 unp->unp_vnode = NULL;
744 }
745 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
746 unp_disconnect(unp, unp2);
747 else
748 UNP_PCB_UNLOCK(unp);
749 if (vp) {
750 mtx_unlock(vplock);
751 vrele(vp);
752 }
753 }
754
755 static int
uipc_chmod(struct socket * so,mode_t mode,struct ucred * cred __unused,struct thread * td __unused)756 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused,
757 struct thread *td __unused)
758 {
759 struct unpcb *unp;
760 int error;
761
762 if ((mode & ~ACCESSPERMS) != 0)
763 return (EINVAL);
764
765 error = 0;
766 unp = sotounpcb(so);
767 UNP_PCB_LOCK(unp);
768 if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0)
769 error = EINVAL;
770 else
771 unp->unp_mode = mode;
772 UNP_PCB_UNLOCK(unp);
773 return (error);
774 }
775
776 static int
uipc_connect2(struct socket * so1,struct socket * so2)777 uipc_connect2(struct socket *so1, struct socket *so2)
778 {
779 struct unpcb *unp, *unp2;
780
781 if (so1->so_type != so2->so_type)
782 return (EPROTOTYPE);
783
784 unp = so1->so_pcb;
785 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
786 unp2 = so2->so_pcb;
787 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
788 unp_pcb_lock_pair(unp, unp2);
789 unp_connect2(so1, so2, false);
790 unp_pcb_unlock_pair(unp, unp2);
791
792 return (0);
793 }
794
795 static void
uipc_detach(struct socket * so)796 uipc_detach(struct socket *so)
797 {
798 struct unpcb *unp, *unp2;
799 struct mtx *vplock;
800 struct vnode *vp;
801 int local_unp_rights;
802
803 unp = sotounpcb(so);
804 KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
805
806 vp = NULL;
807 vplock = NULL;
808
809 if (!SOLISTENING(so))
810 unp_dispose(so);
811
812 UNP_LINK_WLOCK();
813 LIST_REMOVE(unp, unp_link);
814 if (unp->unp_gcflag & UNPGC_DEAD)
815 LIST_REMOVE(unp, unp_dead);
816 unp->unp_gencnt = ++unp_gencnt;
817 --unp_count;
818 UNP_LINK_WUNLOCK();
819
820 UNP_PCB_UNLOCK_ASSERT(unp);
821 restart:
822 if ((vp = unp->unp_vnode) != NULL) {
823 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
824 mtx_lock(vplock);
825 }
826 UNP_PCB_LOCK(unp);
827 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
828 if (vplock)
829 mtx_unlock(vplock);
830 UNP_PCB_UNLOCK(unp);
831 goto restart;
832 }
833 if ((vp = unp->unp_vnode) != NULL) {
834 VOP_UNP_DETACH(vp);
835 unp->unp_vnode = NULL;
836 }
837 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
838 unp_disconnect(unp, unp2);
839 else
840 UNP_PCB_UNLOCK(unp);
841
842 UNP_REF_LIST_LOCK();
843 while (!LIST_EMPTY(&unp->unp_refs)) {
844 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
845
846 unp_pcb_hold(ref);
847 UNP_REF_LIST_UNLOCK();
848
849 MPASS(ref != unp);
850 UNP_PCB_UNLOCK_ASSERT(ref);
851 unp_drop(ref);
852 UNP_REF_LIST_LOCK();
853 }
854 UNP_REF_LIST_UNLOCK();
855
856 UNP_PCB_LOCK(unp);
857 local_unp_rights = unp_rights;
858 unp->unp_socket->so_pcb = NULL;
859 unp->unp_socket = NULL;
860 free(unp->unp_addr, M_SONAME);
861 unp->unp_addr = NULL;
862 if (!unp_pcb_rele(unp))
863 UNP_PCB_UNLOCK(unp);
864 if (vp) {
865 mtx_unlock(vplock);
866 vrele(vp);
867 }
868 if (local_unp_rights)
869 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
870
871 switch (so->so_type) {
872 case SOCK_STREAM:
873 case SOCK_SEQPACKET:
874 MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) &&
875 so->so_rcv.uxst_peer == NULL));
876 break;
877 case SOCK_DGRAM:
878 /*
879 * Everything should have been unlinked/freed by unp_dispose()
880 * and/or unp_disconnect().
881 */
882 MPASS(so->so_rcv.uxdg_peeked == NULL);
883 MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
884 MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
885 MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
886 }
887 }
888
889 static int
uipc_disconnect(struct socket * so)890 uipc_disconnect(struct socket *so)
891 {
892 struct unpcb *unp, *unp2;
893
894 unp = sotounpcb(so);
895 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
896
897 UNP_PCB_LOCK(unp);
898 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
899 unp_disconnect(unp, unp2);
900 else
901 UNP_PCB_UNLOCK(unp);
902 return (0);
903 }
904
905 static int
uipc_listen(struct socket * so,int backlog,struct thread * td)906 uipc_listen(struct socket *so, int backlog, struct thread *td)
907 {
908 struct unpcb *unp;
909 int error;
910
911 MPASS(so->so_type != SOCK_DGRAM);
912
913 /*
914 * Synchronize with concurrent connection attempts.
915 */
916 error = 0;
917 unp = sotounpcb(so);
918 UNP_PCB_LOCK(unp);
919 if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
920 error = EINVAL;
921 else if (unp->unp_vnode == NULL)
922 error = EDESTADDRREQ;
923 if (error != 0) {
924 UNP_PCB_UNLOCK(unp);
925 return (error);
926 }
927
928 SOCK_LOCK(so);
929 error = solisten_proto_check(so);
930 if (error == 0) {
931 cru2xt(td, &unp->unp_peercred);
932 if (!SOLISTENING(so)) {
933 (void)chgsbsize(so->so_cred->cr_uidinfo,
934 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
935 (void)chgsbsize(so->so_cred->cr_uidinfo,
936 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
937 }
938 solisten_proto(so, backlog);
939 }
940 SOCK_UNLOCK(so);
941 UNP_PCB_UNLOCK(unp);
942 return (error);
943 }
944
945 static int
uipc_peeraddr(struct socket * so,struct sockaddr * ret)946 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
947 {
948 struct unpcb *unp, *unp2;
949 const struct sockaddr *sa;
950
951 unp = sotounpcb(so);
952 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
953
954 UNP_PCB_LOCK(unp);
955 unp2 = unp_pcb_lock_peer(unp);
956 if (unp2 != NULL) {
957 if (unp2->unp_addr != NULL)
958 sa = (struct sockaddr *)unp2->unp_addr;
959 else
960 sa = &sun_noname;
961 bcopy(sa, ret, sa->sa_len);
962 unp_pcb_unlock_pair(unp, unp2);
963 } else {
964 UNP_PCB_UNLOCK(unp);
965 sa = &sun_noname;
966 bcopy(sa, ret, sa->sa_len);
967 }
968 return (0);
969 }
970
971 /*
972 * pr_sosend() called with mbuf instead of uio is a kernel thread. NFS,
973 * netgraph(4) and other subsystems can call into socket code. The
974 * function will condition the mbuf so that it can be safely put onto socket
975 * buffer and calculate its char count and mbuf count.
976 *
977 * Note: we don't support receiving control data from a kernel thread. Our
978 * pr_sosend methods have MPASS() to check that. This may change.
979 */
980 static void
uipc_reset_kernel_mbuf(struct mbuf * m,struct mchain * mc)981 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc)
982 {
983
984 M_ASSERTPKTHDR(m);
985
986 m_clrprotoflags(m);
987 m_tag_delete_chain(m, NULL);
988 m->m_pkthdr.rcvif = NULL;
989 m->m_pkthdr.flowid = 0;
990 m->m_pkthdr.csum_flags = 0;
991 m->m_pkthdr.fibnum = 0;
992 m->m_pkthdr.rsstype = 0;
993
994 mc_init_m(mc, m);
995 MPASS(m->m_pkthdr.len == mc->mc_len);
996 }
997
998 #ifdef SOCKBUF_DEBUG
999 static inline void
uipc_stream_sbcheck(struct sockbuf * sb)1000 uipc_stream_sbcheck(struct sockbuf *sb)
1001 {
1002 struct mbuf *d;
1003 u_int dacc, dccc, dctl, dmbcnt;
1004 bool notready = false;
1005
1006 dacc = dccc = dctl = dmbcnt = 0;
1007 STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) {
1008 if (d == sb->uxst_fnrdy) {
1009 MPASS(d->m_flags & M_NOTREADY);
1010 notready = true;
1011 }
1012 if (d->m_type == MT_CONTROL)
1013 dctl += d->m_len;
1014 else if (d->m_type == MT_DATA) {
1015 dccc += d->m_len;
1016 if (!notready)
1017 dacc += d->m_len;
1018 } else
1019 MPASS(0);
1020 dmbcnt += MSIZE;
1021 if (d->m_flags & M_EXT)
1022 dmbcnt += d->m_ext.ext_size;
1023 if (d->m_stailq.stqe_next == NULL)
1024 MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next);
1025 }
1026 MPASS(sb->uxst_fnrdy == NULL || notready);
1027 MPASS(dacc == sb->sb_acc);
1028 MPASS(dccc == sb->sb_ccc);
1029 MPASS(dctl == sb->sb_ctl);
1030 MPASS(dmbcnt == sb->sb_mbcnt);
1031 (void)STAILQ_EMPTY(&sb->uxst_mbq);
1032 }
1033 #define UIPC_STREAM_SBCHECK(sb) uipc_stream_sbcheck(sb)
1034 #else
1035 #define UIPC_STREAM_SBCHECK(sb) do {} while (0)
1036 #endif
1037
1038 /*
1039 * uipc_stream_sbspace() returns how much a writer can send, limited by char
1040 * count or mbuf memory use, whatever ends first.
1041 *
1042 * An obvious and legitimate reason for a socket having more data than allowed,
1043 * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer.
1044 * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed
1045 * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended
1046 * up with 'mc_mlen > mbspace'. A typical scenario would be a full buffer with
1047 * writer trying to push in a large write, and a slow reader, that reads just
1048 * a few bytes at a time. In that case writer will keep creating new mbufs
1049 * with mc_split(). These mbufs will carry little chars, but will all point at
1050 * the same cluster, thus each adding cluster size to sb_mbcnt. This means we
1051 * will count same cluster many times potentially underutilizing socket buffer.
1052 * We aren't optimizing towards ineffective readers. Classic socket buffer had
1053 * the same "feature".
1054 */
1055 static inline u_int
uipc_stream_sbspace(struct sockbuf * sb)1056 uipc_stream_sbspace(struct sockbuf *sb)
1057 {
1058 u_int space, mbspace;
1059
1060 if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl))
1061 space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl;
1062 else
1063 return (0);
1064 if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt))
1065 mbspace = sb->sb_mbmax - sb->sb_mbcnt;
1066 else
1067 return (0);
1068
1069 return (min(space, mbspace));
1070 }
1071
1072 /*
1073 * UNIX version of generic sbwait() for writes. We wait on peer's receive
1074 * buffer, using our timeout.
1075 */
1076 static int
uipc_stream_sbwait(struct socket * so,sbintime_t timeo)1077 uipc_stream_sbwait(struct socket *so, sbintime_t timeo)
1078 {
1079 struct sockbuf *sb = &so->so_rcv;
1080
1081 SOCK_RECVBUF_LOCK_ASSERT(so);
1082 sb->sb_flags |= SB_WAIT;
1083 return (msleep_sbt(&sb->sb_acc, SOCK_RECVBUF_MTX(so), PSOCK | PCATCH,
1084 "sbwait", timeo, 0, 0));
1085 }
1086
1087 static int
uipc_sosend_stream_or_seqpacket(struct socket * so,struct sockaddr * addr,struct uio * uio0,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1088 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr,
1089 struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags,
1090 struct thread *td)
1091 {
1092 struct unpcb *unp2;
1093 struct socket *so2;
1094 struct sockbuf *sb;
1095 struct uio *uio;
1096 struct mchain mc, cmc;
1097 size_t resid, sent;
1098 bool nonblock, eor, aio;
1099 int error;
1100
1101 MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL));
1102 MPASS(m == NULL || c == NULL);
1103
1104 if (__predict_false(flags & MSG_OOB))
1105 return (EOPNOTSUPP);
1106
1107 nonblock = (so->so_state & SS_NBIO) ||
1108 (flags & (MSG_DONTWAIT | MSG_NBIO));
1109 eor = flags & MSG_EOR;
1110
1111 mc = MCHAIN_INITIALIZER(&mc);
1112 cmc = MCHAIN_INITIALIZER(&cmc);
1113 sent = 0;
1114 aio = false;
1115
1116 if (m == NULL) {
1117 if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1118 goto out;
1119 /*
1120 * This function may read more data from the uio than it would
1121 * then place on socket. That would leave uio inconsistent
1122 * upon return. Normally uio is allocated on the stack of the
1123 * syscall thread and we don't care about leaving it consistent.
1124 * However, aio(9) will allocate a uio as part of job and will
1125 * use it to track progress. We detect aio(9) checking the
1126 * SB_AIO_RUNNING flag. It is safe to check it without lock
1127 * cause it is set and cleared in the same taskqueue thread.
1128 *
1129 * This check can also produce a false positive: there is
1130 * aio(9) job and also there is a syscall we are serving now.
1131 * No sane software does that, it would leave to a mess in
1132 * the socket buffer, as aio(9) doesn't grab the I/O sx(9).
1133 * But syzkaller can create this mess. For such false positive
1134 * our goal is just don't panic or leak memory.
1135 */
1136 if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) {
1137 uio = cloneuio(uio0);
1138 aio = true;
1139 } else {
1140 uio = uio0;
1141 resid = uio->uio_resid;
1142 }
1143 /*
1144 * Optimization for a case when our send fits into the receive
1145 * buffer - do the copyin before taking any locks, sized to our
1146 * send buffer. Later copyins will also take into account
1147 * space in the peer's receive buffer.
1148 */
1149 error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK,
1150 eor ? M_EOR : 0);
1151 if (__predict_false(error))
1152 goto out2;
1153 } else
1154 uipc_reset_kernel_mbuf(m, &mc);
1155
1156 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1157 if (error)
1158 goto out2;
1159
1160 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
1161 goto out3;
1162
1163 if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1164 /*
1165 * Credentials are passed only once on SOCK_STREAM and
1166 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1167 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1168 */
1169 unp_addsockcred(td, &cmc, unp2->unp_flags);
1170 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1171 }
1172
1173 /*
1174 * Cycle through the data to send and available space in the peer's
1175 * receive buffer. Put a reference on the peer socket, so that it
1176 * doesn't get freed while we sbwait(). If peer goes away, we will
1177 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's
1178 * socket destruction.
1179 */
1180 so2 = unp2->unp_socket;
1181 soref(so2);
1182 UNP_PCB_UNLOCK(unp2);
1183 sb = &so2->so_rcv;
1184 while (mc.mc_len + cmc.mc_len > 0) {
1185 struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext);
1186 u_int space;
1187
1188 SOCK_RECVBUF_LOCK(so2);
1189 restart:
1190 UIPC_STREAM_SBCHECK(sb);
1191 if (__predict_false(cmc.mc_len > sb->sb_hiwat)) {
1192 SOCK_RECVBUF_UNLOCK(so2);
1193 error = EMSGSIZE;
1194 goto out4;
1195 }
1196 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1197 SOCK_RECVBUF_UNLOCK(so2);
1198 error = EPIPE;
1199 goto out4;
1200 }
1201 /*
1202 * Wait on the peer socket receive buffer until we have enough
1203 * space to put at least control. The data is a stream and can
1204 * be put partially, but control is really a datagram.
1205 */
1206 space = uipc_stream_sbspace(sb);
1207 if (space < sb->sb_lowat || space < cmc.mc_len) {
1208 if (nonblock) {
1209 if (aio)
1210 sb->uxst_flags |= UXST_PEER_AIO;
1211 SOCK_RECVBUF_UNLOCK(so2);
1212 if (aio) {
1213 SOCK_SENDBUF_LOCK(so);
1214 so->so_snd.sb_ccc =
1215 so->so_snd.sb_hiwat - space;
1216 SOCK_SENDBUF_UNLOCK(so);
1217 }
1218 error = EWOULDBLOCK;
1219 goto out4;
1220 }
1221 if ((error = uipc_stream_sbwait(so2,
1222 so->so_snd.sb_timeo)) != 0) {
1223 SOCK_RECVBUF_UNLOCK(so2);
1224 goto out4;
1225 } else
1226 goto restart;
1227 }
1228 MPASS(space >= cmc.mc_len);
1229 space -= cmc.mc_len;
1230 if (space == 0) {
1231 /* There is space only to send control. */
1232 MPASS(!STAILQ_EMPTY(&cmc.mc_q));
1233 mcnext = mc;
1234 mc = MCHAIN_INITIALIZER(&mc);
1235 } else if (space < mc.mc_len) {
1236 /* Not enough space. */
1237 if (__predict_false(mc_split(&mc, &mcnext, space,
1238 M_NOWAIT) == ENOMEM)) {
1239 /*
1240 * If allocation failed use M_WAITOK and merge
1241 * the chain back. Next time mc_split() will
1242 * easily split at the same place. Only if we
1243 * race with setsockopt(SO_RCVBUF) shrinking
1244 * sb_hiwat can this happen more than once.
1245 */
1246 SOCK_RECVBUF_UNLOCK(so2);
1247 (void)mc_split(&mc, &mcnext, space, M_WAITOK);
1248 mc_concat(&mc, &mcnext);
1249 SOCK_RECVBUF_LOCK(so2);
1250 goto restart;
1251 }
1252 MPASS(mc.mc_len == space);
1253 }
1254 if (!STAILQ_EMPTY(&cmc.mc_q)) {
1255 STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q);
1256 sb->sb_ctl += cmc.mc_len;
1257 sb->sb_mbcnt += cmc.mc_mlen;
1258 cmc.mc_len = 0;
1259 }
1260 sent += mc.mc_len;
1261 if (sb->uxst_fnrdy == NULL)
1262 sb->sb_acc += mc.mc_len;
1263 sb->sb_ccc += mc.mc_len;
1264 sb->sb_mbcnt += mc.mc_mlen;
1265 STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
1266 UIPC_STREAM_SBCHECK(sb);
1267 space = uipc_stream_sbspace(sb);
1268 sorwakeup_locked(so2);
1269 if (!STAILQ_EMPTY(&mcnext.mc_q)) {
1270 /*
1271 * Such assignment is unsafe in general, but it is
1272 * safe with !STAILQ_EMPTY(&mcnext.mc_q). In C++ we
1273 * could reload = for STAILQs :)
1274 */
1275 mc = mcnext;
1276 } else if (uio != NULL && uio->uio_resid > 0) {
1277 /*
1278 * Copyin sum of peer's receive buffer space and our
1279 * sb_hiwat, which is our virtual send buffer size.
1280 * See comment above unpst_sendspace declaration.
1281 * We are reading sb_hiwat locklessly, cause a) we
1282 * don't care about an application that does send(2)
1283 * and setsockopt(2) racing internally, and for an
1284 * application that does this in sequence we will see
1285 * the correct value cause sbsetopt() uses buffer lock
1286 * and we also have already acquired it at least once.
1287 */
1288 error = mc_uiotomc(&mc, uio, space +
1289 atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK,
1290 eor ? M_EOR : 0);
1291 if (__predict_false(error))
1292 goto out4;
1293 } else
1294 mc = MCHAIN_INITIALIZER(&mc);
1295 }
1296
1297 MPASS(STAILQ_EMPTY(&mc.mc_q));
1298
1299 td->td_ru.ru_msgsnd++;
1300 out4:
1301 sorele(so2);
1302 out3:
1303 SOCK_IO_SEND_UNLOCK(so);
1304 out2:
1305 if (aio) {
1306 freeuio(uio);
1307 uioadvance(uio0, sent);
1308 } else if (uio != NULL)
1309 uio->uio_resid = resid - sent;
1310 if (!mc_empty(&cmc))
1311 unp_scan(mc_first(&cmc), unp_freerights);
1312 out:
1313 mc_freem(&mc);
1314 mc_freem(&cmc);
1315
1316 return (error);
1317 }
1318
1319 /*
1320 * Wakeup a writer, used by recv(2) and shutdown(2).
1321 *
1322 * @param so Points to a connected stream socket with receive buffer locked
1323 *
1324 * In a blocking mode peer is sleeping on our receive buffer, and we need just
1325 * wakeup(9) on it. But to wake up various event engines, we need to reach
1326 * over to peer's selinfo. This can be safely done as the socket buffer
1327 * receive lock is protecting us from the peer going away.
1328 */
1329 static void
uipc_wakeup_writer(struct socket * so)1330 uipc_wakeup_writer(struct socket *so)
1331 {
1332 struct sockbuf *sb = &so->so_rcv;
1333 struct selinfo *sel;
1334
1335 SOCK_RECVBUF_LOCK_ASSERT(so);
1336 MPASS(sb->uxst_peer != NULL);
1337
1338 sel = &sb->uxst_peer->so_wrsel;
1339
1340 if (sb->uxst_flags & UXST_PEER_SEL) {
1341 selwakeuppri(sel, PSOCK);
1342 /*
1343 * XXXGL: sowakeup() does SEL_WAITING() without locks.
1344 */
1345 if (!SEL_WAITING(sel))
1346 sb->uxst_flags &= ~UXST_PEER_SEL;
1347 }
1348 if (sb->sb_flags & SB_WAIT) {
1349 sb->sb_flags &= ~SB_WAIT;
1350 wakeup(&sb->sb_acc);
1351 }
1352 KNOTE_LOCKED(&sel->si_note, 0);
1353 SOCK_RECVBUF_UNLOCK(so);
1354 }
1355
1356 static void
uipc_cantrcvmore(struct socket * so)1357 uipc_cantrcvmore(struct socket *so)
1358 {
1359
1360 SOCK_RECVBUF_LOCK(so);
1361 so->so_rcv.sb_state |= SBS_CANTRCVMORE;
1362 selwakeuppri(&so->so_rdsel, PSOCK);
1363 KNOTE_LOCKED(&so->so_rdsel.si_note, 0);
1364 if (so->so_rcv.uxst_peer != NULL)
1365 uipc_wakeup_writer(so);
1366 else
1367 SOCK_RECVBUF_UNLOCK(so);
1368 }
1369
1370 static int
uipc_soreceive_stream_or_seqpacket(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)1371 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa,
1372 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1373 {
1374 struct sockbuf *sb = &so->so_rcv;
1375 struct mbuf *control, *m, *first, *last, *next;
1376 u_int ctl, space, datalen, mbcnt, lastlen;
1377 int error, flags;
1378 bool nonblock, waitall, peek;
1379
1380 MPASS(mp0 == NULL);
1381
1382 if (psa != NULL)
1383 *psa = NULL;
1384 if (controlp != NULL)
1385 *controlp = NULL;
1386
1387 flags = flagsp != NULL ? *flagsp : 0;
1388 nonblock = (so->so_state & SS_NBIO) ||
1389 (flags & (MSG_DONTWAIT | MSG_NBIO));
1390 peek = flags & MSG_PEEK;
1391 waitall = (flags & MSG_WAITALL) && !peek;
1392
1393 /*
1394 * This check may fail only on a socket that never went through
1395 * connect(2). We can check this locklessly, cause: a) for a new born
1396 * socket we don't care about applications that may race internally
1397 * between connect(2) and recv(2), and b) for a dying socket if we
1398 * miss update by unp_sosidisconnected(), we would still get the check
1399 * correct. For dying socket we would observe SBS_CANTRCVMORE later.
1400 */
1401 if (__predict_false((atomic_load_short(&so->so_state) &
1402 (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0))
1403 return (ENOTCONN);
1404
1405 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1406 if (__predict_false(error))
1407 return (error);
1408
1409 restart:
1410 SOCK_RECVBUF_LOCK(so);
1411 UIPC_STREAM_SBCHECK(sb);
1412 while (sb->sb_acc < sb->sb_lowat &&
1413 (sb->sb_ctl == 0 || controlp == NULL)) {
1414 if (so->so_error) {
1415 error = so->so_error;
1416 if (!peek)
1417 so->so_error = 0;
1418 SOCK_RECVBUF_UNLOCK(so);
1419 SOCK_IO_RECV_UNLOCK(so);
1420 return (error);
1421 }
1422 if (sb->sb_state & SBS_CANTRCVMORE) {
1423 SOCK_RECVBUF_UNLOCK(so);
1424 SOCK_IO_RECV_UNLOCK(so);
1425 return (0);
1426 }
1427 if (nonblock) {
1428 SOCK_RECVBUF_UNLOCK(so);
1429 SOCK_IO_RECV_UNLOCK(so);
1430 return (EWOULDBLOCK);
1431 }
1432 error = sbwait(so, SO_RCV);
1433 if (error) {
1434 SOCK_RECVBUF_UNLOCK(so);
1435 SOCK_IO_RECV_UNLOCK(so);
1436 return (error);
1437 }
1438 }
1439
1440 MPASS(STAILQ_FIRST(&sb->uxst_mbq));
1441 MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0);
1442
1443 mbcnt = 0;
1444 ctl = 0;
1445 first = STAILQ_FIRST(&sb->uxst_mbq);
1446 if (first->m_type == MT_CONTROL) {
1447 control = first;
1448 STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) {
1449 if (first->m_type != MT_CONTROL)
1450 break;
1451 ctl += first->m_len;
1452 mbcnt += MSIZE;
1453 if (first->m_flags & M_EXT)
1454 mbcnt += first->m_ext.ext_size;
1455 }
1456 } else
1457 control = NULL;
1458
1459 /*
1460 * Find split point for the next copyout. On exit from the loop:
1461 * last == NULL - socket to be flushed
1462 * last != NULL
1463 * lastlen > last->m_len - uio to be filled, last to be adjusted
1464 * lastlen == 0 - MT_CONTROL, M_EOR or M_NOTREADY encountered
1465 */
1466 space = uio->uio_resid;
1467 datalen = 0;
1468 for (m = first, last = sb->uxst_fnrdy, lastlen = 0;
1469 m != sb->uxst_fnrdy;
1470 m = STAILQ_NEXT(m, m_stailq)) {
1471 if (m->m_type != MT_DATA) {
1472 last = m;
1473 lastlen = 0;
1474 break;
1475 }
1476 if (space >= m->m_len) {
1477 space -= m->m_len;
1478 datalen += m->m_len;
1479 mbcnt += MSIZE;
1480 if (m->m_flags & M_EXT)
1481 mbcnt += m->m_ext.ext_size;
1482 if (m->m_flags & M_EOR) {
1483 last = STAILQ_NEXT(m, m_stailq);
1484 lastlen = 0;
1485 flags |= MSG_EOR;
1486 break;
1487 }
1488 } else {
1489 datalen += space;
1490 last = m;
1491 lastlen = space;
1492 break;
1493 }
1494 }
1495
1496 UIPC_STREAM_SBCHECK(sb);
1497 if (!peek) {
1498 if (last == NULL)
1499 STAILQ_INIT(&sb->uxst_mbq);
1500 else {
1501 STAILQ_FIRST(&sb->uxst_mbq) = last;
1502 MPASS(last->m_len > lastlen);
1503 last->m_len -= lastlen;
1504 last->m_data += lastlen;
1505 }
1506 MPASS(sb->sb_acc >= datalen);
1507 sb->sb_acc -= datalen;
1508 sb->sb_ccc -= datalen;
1509 MPASS(sb->sb_ctl >= ctl);
1510 sb->sb_ctl -= ctl;
1511 MPASS(sb->sb_mbcnt >= mbcnt);
1512 sb->sb_mbcnt -= mbcnt;
1513 UIPC_STREAM_SBCHECK(sb);
1514 if (__predict_true(sb->uxst_peer != NULL)) {
1515 struct unpcb *unp2;
1516 bool aio;
1517
1518 if ((aio = sb->uxst_flags & UXST_PEER_AIO))
1519 sb->uxst_flags &= ~UXST_PEER_AIO;
1520
1521 uipc_wakeup_writer(so);
1522 /*
1523 * XXXGL: need to go through uipc_lock_peer() after
1524 * the receive buffer lock dropped, it was protecting
1525 * us from unp_soisdisconnected(). The aio workarounds
1526 * should be refactored to the aio(4) side.
1527 */
1528 if (aio && uipc_lock_peer(so, &unp2) == 0) {
1529 struct socket *so2 = unp2->unp_socket;
1530
1531 SOCK_SENDBUF_LOCK(so2);
1532 so2->so_snd.sb_ccc -= datalen;
1533 sowakeup_aio(so2, SO_SND);
1534 SOCK_SENDBUF_UNLOCK(so2);
1535 UNP_PCB_UNLOCK(unp2);
1536 }
1537 } else
1538 SOCK_RECVBUF_UNLOCK(so);
1539 } else
1540 SOCK_RECVBUF_UNLOCK(so);
1541
1542 while (control != NULL && control->m_type == MT_CONTROL) {
1543 if (!peek) {
1544 /*
1545 * unp_externalize() failure must abort entire read(2).
1546 * Such failure should also free the problematic
1547 * control, but link back the remaining data to the head
1548 * of the buffer, so that socket is not left in a state
1549 * where it can't progress forward with reading.
1550 * Probability of such a failure is really low, so it
1551 * is fine that we need to perform pretty complex
1552 * operation here to reconstruct the buffer.
1553 */
1554 error = unp_externalize(control, controlp, flags);
1555 control = m_free(control);
1556 if (__predict_false(error && control != NULL)) {
1557 struct mchain cmc;
1558
1559 mc_init_m(&cmc, control);
1560
1561 SOCK_RECVBUF_LOCK(so);
1562 if (__predict_false(
1563 (sb->sb_state & SBS_CANTRCVMORE) ||
1564 cmc.mc_len + sb->sb_ccc + sb->sb_ctl >
1565 sb->sb_hiwat)) {
1566 /*
1567 * While the lock was dropped and we
1568 * were failing in unp_externalize(),
1569 * the peer could has a) disconnected,
1570 * b) filled the buffer so that we
1571 * can't prepend data back.
1572 * These are two edge conditions that
1573 * we just can't handle, so lose the
1574 * data and return the error.
1575 */
1576 SOCK_RECVBUF_UNLOCK(so);
1577 SOCK_IO_RECV_UNLOCK(so);
1578 unp_scan(mc_first(&cmc),
1579 unp_freerights);
1580 mc_freem(&cmc);
1581 return (error);
1582 }
1583
1584 UIPC_STREAM_SBCHECK(sb);
1585 /* XXXGL: STAILQ_PREPEND */
1586 STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq);
1587 STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf);
1588
1589 sb->sb_ctl = sb->sb_acc = sb->sb_ccc =
1590 sb->sb_mbcnt = 0;
1591 STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) {
1592 if (m->m_type == MT_DATA) {
1593 sb->sb_acc += m->m_len;
1594 sb->sb_ccc += m->m_len;
1595 } else {
1596 sb->sb_ctl += m->m_len;
1597 }
1598 sb->sb_mbcnt += MSIZE;
1599 if (m->m_flags & M_EXT)
1600 sb->sb_mbcnt +=
1601 m->m_ext.ext_size;
1602 }
1603 UIPC_STREAM_SBCHECK(sb);
1604 SOCK_RECVBUF_UNLOCK(so);
1605 SOCK_IO_RECV_UNLOCK(so);
1606 return (error);
1607 }
1608 if (controlp != NULL) {
1609 while (*controlp != NULL)
1610 controlp = &(*controlp)->m_next;
1611 }
1612 } else {
1613 /*
1614 * XXXGL
1615 *
1616 * In MSG_PEEK case control is not externalized. This
1617 * means we are leaking some kernel pointers to the
1618 * userland. They are useless to a law-abiding
1619 * application, but may be useful to a malware. This
1620 * is what the historical implementation in the
1621 * soreceive_generic() did. To be improved?
1622 */
1623 if (controlp != NULL) {
1624 *controlp = m_copym(control, 0, control->m_len,
1625 M_WAITOK);
1626 controlp = &(*controlp)->m_next;
1627 }
1628 control = STAILQ_NEXT(control, m_stailq);
1629 }
1630 }
1631
1632 for (m = first; m != last; m = next) {
1633 next = STAILQ_NEXT(m, m_stailq);
1634 error = uiomove(mtod(m, char *), m->m_len, uio);
1635 if (__predict_false(error)) {
1636 SOCK_IO_RECV_UNLOCK(so);
1637 if (!peek)
1638 for (; m != last; m = next) {
1639 next = STAILQ_NEXT(m, m_stailq);
1640 m_free(m);
1641 }
1642 return (error);
1643 }
1644 if (!peek)
1645 m_free(m);
1646 }
1647 if (last != NULL && lastlen > 0) {
1648 if (!peek) {
1649 MPASS(!(m->m_flags & M_PKTHDR));
1650 MPASS(last->m_data - M_START(last) >= lastlen);
1651 error = uiomove(mtod(last, char *) - lastlen,
1652 lastlen, uio);
1653 } else
1654 error = uiomove(mtod(last, char *), lastlen, uio);
1655 if (__predict_false(error)) {
1656 SOCK_IO_RECV_UNLOCK(so);
1657 return (error);
1658 }
1659 }
1660 if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0)
1661 goto restart;
1662 SOCK_IO_RECV_UNLOCK(so);
1663
1664 if (flagsp != NULL)
1665 *flagsp |= flags;
1666
1667 uio->uio_td->td_ru.ru_msgrcv++;
1668
1669 return (0);
1670 }
1671
1672 static int
uipc_sopoll_stream_or_seqpacket(struct socket * so,int events,struct thread * td)1673 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events,
1674 struct thread *td)
1675 {
1676 struct unpcb *unp = sotounpcb(so);
1677 int revents;
1678
1679 UNP_PCB_LOCK(unp);
1680 if (SOLISTENING(so)) {
1681 /* The above check is safe, since conversion to listening uses
1682 * both protocol and socket lock.
1683 */
1684 SOCK_LOCK(so);
1685 if (!(events & (POLLIN | POLLRDNORM)))
1686 revents = 0;
1687 else if (!TAILQ_EMPTY(&so->sol_comp))
1688 revents = events & (POLLIN | POLLRDNORM);
1689 else if (so->so_error)
1690 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
1691 else {
1692 selrecord(td, &so->so_rdsel);
1693 revents = 0;
1694 }
1695 SOCK_UNLOCK(so);
1696 } else {
1697 if (so->so_state & SS_ISDISCONNECTED)
1698 revents = POLLHUP;
1699 else
1700 revents = 0;
1701 if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) {
1702 SOCK_RECVBUF_LOCK(so);
1703 if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat ||
1704 so->so_error || so->so_rerror)
1705 revents |= events & (POLLIN | POLLRDNORM);
1706 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1707 revents |= events &
1708 (POLLIN | POLLRDNORM | POLLRDHUP);
1709 if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) {
1710 selrecord(td, &so->so_rdsel);
1711 so->so_rcv.sb_flags |= SB_SEL;
1712 }
1713 SOCK_RECVBUF_UNLOCK(so);
1714 }
1715 if (events & (POLLOUT | POLLWRNORM)) {
1716 struct socket *so2 = so->so_rcv.uxst_peer;
1717
1718 if (so2 != NULL) {
1719 struct sockbuf *sb = &so2->so_rcv;
1720
1721 SOCK_RECVBUF_LOCK(so2);
1722 if (uipc_stream_sbspace(sb) >= sb->sb_lowat)
1723 revents |= events &
1724 (POLLOUT | POLLWRNORM);
1725 if (sb->sb_state & SBS_CANTRCVMORE)
1726 revents |= POLLHUP;
1727 if (!(revents & (POLLOUT | POLLWRNORM))) {
1728 so2->so_rcv.uxst_flags |= UXST_PEER_SEL;
1729 selrecord(td, &so->so_wrsel);
1730 }
1731 SOCK_RECVBUF_UNLOCK(so2);
1732 } else
1733 selrecord(td, &so->so_wrsel);
1734 }
1735 }
1736 UNP_PCB_UNLOCK(unp);
1737 return (revents);
1738 }
1739
1740 static void
uipc_wrknl_lock(void * arg)1741 uipc_wrknl_lock(void *arg)
1742 {
1743 struct socket *so = arg;
1744 struct unpcb *unp = sotounpcb(so);
1745
1746 retry:
1747 if (SOLISTENING(so)) {
1748 SOLISTEN_LOCK(so);
1749 } else {
1750 UNP_PCB_LOCK(unp);
1751 if (__predict_false(SOLISTENING(so))) {
1752 UNP_PCB_UNLOCK(unp);
1753 goto retry;
1754 }
1755 if (so->so_rcv.uxst_peer != NULL)
1756 SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer);
1757 }
1758 }
1759
1760 static void
uipc_wrknl_unlock(void * arg)1761 uipc_wrknl_unlock(void *arg)
1762 {
1763 struct socket *so = arg;
1764 struct unpcb *unp = sotounpcb(so);
1765
1766 if (SOLISTENING(so))
1767 SOLISTEN_UNLOCK(so);
1768 else {
1769 if (so->so_rcv.uxst_peer != NULL)
1770 SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer);
1771 UNP_PCB_UNLOCK(unp);
1772 }
1773 }
1774
1775 static void
uipc_wrknl_assert_lock(void * arg,int what)1776 uipc_wrknl_assert_lock(void *arg, int what)
1777 {
1778 struct socket *so = arg;
1779
1780 if (SOLISTENING(so)) {
1781 if (what == LA_LOCKED)
1782 SOLISTEN_LOCK_ASSERT(so);
1783 else
1784 SOLISTEN_UNLOCK_ASSERT(so);
1785 } else {
1786 /*
1787 * The pr_soreceive method will put a note without owning the
1788 * unp lock, so we can't assert it here. But we can safely
1789 * dereference uxst_peer pointer, since receive buffer lock
1790 * is assumed to be held here.
1791 */
1792 if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL)
1793 SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer);
1794 }
1795 }
1796
1797 static void
uipc_filt_sowdetach(struct knote * kn)1798 uipc_filt_sowdetach(struct knote *kn)
1799 {
1800 struct socket *so = kn->kn_fp->f_data;
1801
1802 uipc_wrknl_lock(so);
1803 knlist_remove(&so->so_wrsel.si_note, kn, 1);
1804 uipc_wrknl_unlock(so);
1805 }
1806
1807 static int
uipc_filt_sowrite(struct knote * kn,long hint)1808 uipc_filt_sowrite(struct knote *kn, long hint)
1809 {
1810 struct socket *so = kn->kn_fp->f_data, *so2;
1811 struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1812
1813 if (SOLISTENING(so))
1814 return (0);
1815
1816 if (unp2 == NULL) {
1817 if (so->so_state & SS_ISDISCONNECTED) {
1818 kn->kn_flags |= EV_EOF;
1819 kn->kn_fflags = so->so_error;
1820 return (1);
1821 } else
1822 return (0);
1823 }
1824
1825 so2 = unp2->unp_socket;
1826 SOCK_RECVBUF_LOCK_ASSERT(so2);
1827 kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1828
1829 if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) {
1830 kn->kn_flags |= EV_EOF;
1831 return (1);
1832 } else if (kn->kn_sfflags & NOTE_LOWAT)
1833 return (kn->kn_data >= kn->kn_sdata);
1834 else
1835 return (kn->kn_data >= so2->so_rcv.sb_lowat);
1836 }
1837
1838 static int
uipc_filt_soempty(struct knote * kn,long hint)1839 uipc_filt_soempty(struct knote *kn, long hint)
1840 {
1841 struct socket *so = kn->kn_fp->f_data, *so2;
1842 struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1843
1844 if (SOLISTENING(so) || unp2 == NULL)
1845 return (1);
1846
1847 so2 = unp2->unp_socket;
1848 SOCK_RECVBUF_LOCK_ASSERT(so2);
1849 kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1850
1851 return (kn->kn_data == 0 ? 1 : 0);
1852 }
1853
1854 static const struct filterops uipc_write_filtops = {
1855 .f_isfd = 1,
1856 .f_detach = uipc_filt_sowdetach,
1857 .f_event = uipc_filt_sowrite,
1858 .f_copy = knote_triv_copy,
1859 };
1860 static const struct filterops uipc_empty_filtops = {
1861 .f_isfd = 1,
1862 .f_detach = uipc_filt_sowdetach,
1863 .f_event = uipc_filt_soempty,
1864 .f_copy = knote_triv_copy,
1865 };
1866
1867 static int
uipc_kqfilter_stream_or_seqpacket(struct socket * so,struct knote * kn)1868 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn)
1869 {
1870 struct unpcb *unp = sotounpcb(so);
1871 struct knlist *knl;
1872
1873 switch (kn->kn_filter) {
1874 case EVFILT_READ:
1875 return (sokqfilter_generic(so, kn));
1876 case EVFILT_WRITE:
1877 kn->kn_fop = &uipc_write_filtops;
1878 break;
1879 case EVFILT_EMPTY:
1880 kn->kn_fop = &uipc_empty_filtops;
1881 break;
1882 default:
1883 return (EINVAL);
1884 }
1885
1886 knl = &so->so_wrsel.si_note;
1887 UNP_PCB_LOCK(unp);
1888 if (SOLISTENING(so)) {
1889 SOLISTEN_LOCK(so);
1890 knlist_add(knl, kn, 1);
1891 SOLISTEN_UNLOCK(so);
1892 } else {
1893 struct socket *so2 = so->so_rcv.uxst_peer;
1894
1895 if (so2 != NULL)
1896 SOCK_RECVBUF_LOCK(so2);
1897 knlist_add(knl, kn, 1);
1898 if (so2 != NULL)
1899 SOCK_RECVBUF_UNLOCK(so2);
1900 }
1901 UNP_PCB_UNLOCK(unp);
1902 return (0);
1903 }
1904
1905 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1906 static inline bool
uipc_dgram_sbspace(struct sockbuf * sb,u_int cc,u_int mbcnt)1907 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1908 {
1909 u_int bleft, mleft;
1910
1911 /*
1912 * Negative space may happen if send(2) is followed by
1913 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1914 */
1915 if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1916 sb->sb_mbmax < sb->uxdg_mbcnt))
1917 return (false);
1918
1919 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1920 return (false);
1921
1922 bleft = sb->sb_hiwat - sb->uxdg_cc;
1923 mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1924
1925 return (bleft >= cc && mleft >= mbcnt);
1926 }
1927
1928 /*
1929 * PF_UNIX/SOCK_DGRAM send
1930 *
1931 * Allocate a record consisting of 3 mbufs in the sequence of
1932 * from -> control -> data and append it to the socket buffer.
1933 *
1934 * The first mbuf carries sender's name and is a pkthdr that stores
1935 * overall length of datagram, its memory consumption and control length.
1936 */
1937 #define ctllen PH_loc.thirtytwo[1]
1938 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1939 offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1940 static int
uipc_sosend_dgram(struct socket * so,struct sockaddr * addr,struct uio * uio,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1941 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1942 struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1943 {
1944 struct unpcb *unp, *unp2;
1945 const struct sockaddr *from;
1946 struct socket *so2;
1947 struct sockbuf *sb;
1948 struct mchain cmc = MCHAIN_INITIALIZER(&cmc);
1949 struct mbuf *f;
1950 u_int cc, ctl, mbcnt;
1951 u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1952 int error;
1953
1954 MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1955
1956 error = 0;
1957 f = NULL;
1958
1959 if (__predict_false(flags & MSG_OOB)) {
1960 error = EOPNOTSUPP;
1961 goto out;
1962 }
1963 if (m == NULL) {
1964 if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1965 error = EMSGSIZE;
1966 goto out;
1967 }
1968 m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1969 if (__predict_false(m == NULL)) {
1970 error = EFAULT;
1971 goto out;
1972 }
1973 f = m_gethdr(M_WAITOK, MT_SONAME);
1974 cc = m->m_pkthdr.len;
1975 mbcnt = MSIZE + m->m_pkthdr.memlen;
1976 if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1977 goto out;
1978 } else {
1979 struct mchain mc;
1980
1981 uipc_reset_kernel_mbuf(m, &mc);
1982 cc = mc.mc_len;
1983 mbcnt = mc.mc_mlen;
1984 if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1985 error = EMSGSIZE;
1986 goto out;
1987 }
1988 if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1989 error = ENOBUFS;
1990 goto out;
1991 }
1992 }
1993
1994 unp = sotounpcb(so);
1995 MPASS(unp);
1996
1997 /*
1998 * XXXGL: would be cool to fully remove so_snd out of the equation
1999 * and avoid this lock, which is not only extraneous, but also being
2000 * released, thus still leaving possibility for a race. We can easily
2001 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
2002 * is more difficult to invent something to handle so_error.
2003 */
2004 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2005 if (error)
2006 goto out2;
2007 SOCK_SENDBUF_LOCK(so);
2008 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2009 SOCK_SENDBUF_UNLOCK(so);
2010 error = EPIPE;
2011 goto out3;
2012 }
2013 if (so->so_error != 0) {
2014 error = so->so_error;
2015 so->so_error = 0;
2016 SOCK_SENDBUF_UNLOCK(so);
2017 goto out3;
2018 }
2019 if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
2020 SOCK_SENDBUF_UNLOCK(so);
2021 error = EDESTADDRREQ;
2022 goto out3;
2023 }
2024 SOCK_SENDBUF_UNLOCK(so);
2025
2026 if (addr != NULL) {
2027 if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
2028 goto out3;
2029 UNP_PCB_LOCK_ASSERT(unp);
2030 unp2 = unp->unp_conn;
2031 UNP_PCB_LOCK_ASSERT(unp2);
2032 } else {
2033 UNP_PCB_LOCK(unp);
2034 unp2 = unp_pcb_lock_peer(unp);
2035 if (unp2 == NULL) {
2036 UNP_PCB_UNLOCK(unp);
2037 error = ENOTCONN;
2038 goto out3;
2039 }
2040 }
2041
2042 if (unp2->unp_flags & UNP_WANTCRED_MASK)
2043 unp_addsockcred(td, &cmc, unp2->unp_flags);
2044 if (unp->unp_addr != NULL)
2045 from = (struct sockaddr *)unp->unp_addr;
2046 else
2047 from = &sun_noname;
2048 f->m_len = from->sa_len;
2049 MPASS(from->sa_len <= MLEN);
2050 bcopy(from, mtod(f, void *), from->sa_len);
2051
2052 /*
2053 * Concatenate mbufs: from -> control -> data.
2054 * Save overall cc and mbcnt in "from" mbuf.
2055 */
2056 if (!STAILQ_EMPTY(&cmc.mc_q)) {
2057 f->m_next = mc_first(&cmc);
2058 mc_last(&cmc)->m_next = m;
2059 /* XXXGL: This is dirty as well as rollback after ENOBUFS. */
2060 STAILQ_INIT(&cmc.mc_q);
2061 } else
2062 f->m_next = m;
2063 m = NULL;
2064 ctl = f->m_len + cmc.mc_len;
2065 mbcnt += cmc.mc_mlen;
2066 #ifdef INVARIANTS
2067 dcc = dctl = dmbcnt = 0;
2068 for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
2069 if (mb->m_type == MT_DATA)
2070 dcc += mb->m_len;
2071 else
2072 dctl += mb->m_len;
2073 dmbcnt += MSIZE;
2074 if (mb->m_flags & M_EXT)
2075 dmbcnt += mb->m_ext.ext_size;
2076 }
2077 MPASS(dcc == cc);
2078 MPASS(dctl == ctl);
2079 MPASS(dmbcnt == mbcnt);
2080 #endif
2081 f->m_pkthdr.len = cc + ctl;
2082 f->m_pkthdr.memlen = mbcnt;
2083 f->m_pkthdr.ctllen = ctl;
2084
2085 /*
2086 * Destination socket buffer selection.
2087 *
2088 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
2089 * destination address is supplied, create a temporary connection for
2090 * the run time of the function (see call to unp_connectat() above and
2091 * to unp_disconnect() below). We distinguish them by condition of
2092 * (addr != NULL). We intentionally avoid adding 'bool connected' for
2093 * that condition, since, again, through the run time of this code we
2094 * are always connected. For such "unconnected" sends, the destination
2095 * buffer would be the receive buffer of destination socket so2.
2096 *
2097 * For connected sends, data lands on the send buffer of the sender's
2098 * socket "so". Then, if we just added the very first datagram
2099 * on this send buffer, we need to add the send buffer on to the
2100 * receiving socket's buffer list. We put ourselves on top of the
2101 * list. Such logic gives infrequent senders priority over frequent
2102 * senders.
2103 *
2104 * Note on byte count management. As long as event methods kevent(2),
2105 * select(2) are not protocol specific (yet), we need to maintain
2106 * meaningful values on the receive buffer. So, the receive buffer
2107 * would accumulate counters from all connected buffers potentially
2108 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
2109 */
2110 so2 = unp2->unp_socket;
2111 sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
2112 SOCK_RECVBUF_LOCK(so2);
2113 if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
2114 if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
2115 TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
2116 uxdg_clist);
2117 STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
2118 sb->uxdg_cc += cc + ctl;
2119 sb->uxdg_ctl += ctl;
2120 sb->uxdg_mbcnt += mbcnt;
2121 so2->so_rcv.sb_acc += cc + ctl;
2122 so2->so_rcv.sb_ccc += cc + ctl;
2123 so2->so_rcv.sb_ctl += ctl;
2124 so2->so_rcv.sb_mbcnt += mbcnt;
2125 sorwakeup_locked(so2);
2126 f = NULL;
2127 } else {
2128 soroverflow_locked(so2);
2129 error = ENOBUFS;
2130 if (f->m_next->m_type == MT_CONTROL) {
2131 STAILQ_FIRST(&cmc.mc_q) = f->m_next;
2132 f->m_next = NULL;
2133 }
2134 }
2135
2136 if (addr != NULL)
2137 unp_disconnect(unp, unp2);
2138 else
2139 unp_pcb_unlock_pair(unp, unp2);
2140
2141 td->td_ru.ru_msgsnd++;
2142
2143 out3:
2144 SOCK_IO_SEND_UNLOCK(so);
2145 out2:
2146 if (!mc_empty(&cmc))
2147 unp_scan(mc_first(&cmc), unp_freerights);
2148 out:
2149 if (f)
2150 m_freem(f);
2151 mc_freem(&cmc);
2152 if (m)
2153 m_freem(m);
2154
2155 return (error);
2156 }
2157
2158 /*
2159 * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
2160 * The mbuf has already been unlinked from the uxdg_mb of socket buffer
2161 * and needs to be linked onto uxdg_peeked of receive socket buffer.
2162 */
2163 static int
uipc_peek_dgram(struct socket * so,struct mbuf * m,struct sockaddr ** psa,struct uio * uio,struct mbuf ** controlp,int * flagsp)2164 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
2165 struct uio *uio, struct mbuf **controlp, int *flagsp)
2166 {
2167 ssize_t len = 0;
2168 int error;
2169
2170 so->so_rcv.uxdg_peeked = m;
2171 so->so_rcv.uxdg_cc += m->m_pkthdr.len;
2172 so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
2173 so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
2174 SOCK_RECVBUF_UNLOCK(so);
2175
2176 KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2177 if (psa != NULL)
2178 *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2179
2180 m = m->m_next;
2181 KASSERT(m, ("%s: no data or control after soname", __func__));
2182
2183 /*
2184 * With MSG_PEEK the control isn't executed, just copied.
2185 */
2186 while (m != NULL && m->m_type == MT_CONTROL) {
2187 if (controlp != NULL) {
2188 *controlp = m_copym(m, 0, m->m_len, M_WAITOK);
2189 controlp = &(*controlp)->m_next;
2190 }
2191 m = m->m_next;
2192 }
2193 KASSERT(m == NULL || m->m_type == MT_DATA,
2194 ("%s: not MT_DATA mbuf %p", __func__, m));
2195 while (m != NULL && uio->uio_resid > 0) {
2196 len = uio->uio_resid;
2197 if (len > m->m_len)
2198 len = m->m_len;
2199 error = uiomove(mtod(m, char *), (int)len, uio);
2200 if (error) {
2201 SOCK_IO_RECV_UNLOCK(so);
2202 return (error);
2203 }
2204 if (len == m->m_len)
2205 m = m->m_next;
2206 }
2207 SOCK_IO_RECV_UNLOCK(so);
2208
2209 if (flagsp != NULL) {
2210 if (m != NULL) {
2211 if (*flagsp & MSG_TRUNC) {
2212 /* Report real length of the packet */
2213 uio->uio_resid -= m_length(m, NULL) - len;
2214 }
2215 *flagsp |= MSG_TRUNC;
2216 } else
2217 *flagsp &= ~MSG_TRUNC;
2218 }
2219
2220 return (0);
2221 }
2222
2223 /*
2224 * PF_UNIX/SOCK_DGRAM receive
2225 */
2226 static int
uipc_soreceive_dgram(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)2227 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2228 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2229 {
2230 struct sockbuf *sb = NULL;
2231 struct mbuf *m;
2232 int flags, error;
2233 ssize_t len = 0;
2234 bool nonblock;
2235
2236 MPASS(mp0 == NULL);
2237
2238 if (psa != NULL)
2239 *psa = NULL;
2240 if (controlp != NULL)
2241 *controlp = NULL;
2242
2243 flags = flagsp != NULL ? *flagsp : 0;
2244 nonblock = (so->so_state & SS_NBIO) ||
2245 (flags & (MSG_DONTWAIT | MSG_NBIO));
2246
2247 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2248 if (__predict_false(error))
2249 return (error);
2250
2251 /*
2252 * Loop blocking while waiting for a datagram. Prioritize connected
2253 * peers over unconnected sends. Set sb to selected socket buffer
2254 * containing an mbuf on exit from the wait loop. A datagram that
2255 * had already been peeked at has top priority.
2256 */
2257 SOCK_RECVBUF_LOCK(so);
2258 while ((m = so->so_rcv.uxdg_peeked) == NULL &&
2259 (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
2260 (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
2261 if (so->so_error) {
2262 error = so->so_error;
2263 if (!(flags & MSG_PEEK))
2264 so->so_error = 0;
2265 SOCK_RECVBUF_UNLOCK(so);
2266 SOCK_IO_RECV_UNLOCK(so);
2267 return (error);
2268 }
2269 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2270 uio->uio_resid == 0) {
2271 SOCK_RECVBUF_UNLOCK(so);
2272 SOCK_IO_RECV_UNLOCK(so);
2273 return (0);
2274 }
2275 if (nonblock) {
2276 SOCK_RECVBUF_UNLOCK(so);
2277 SOCK_IO_RECV_UNLOCK(so);
2278 return (EWOULDBLOCK);
2279 }
2280 error = sbwait(so, SO_RCV);
2281 if (error) {
2282 SOCK_RECVBUF_UNLOCK(so);
2283 SOCK_IO_RECV_UNLOCK(so);
2284 return (error);
2285 }
2286 }
2287
2288 if (sb == NULL)
2289 sb = &so->so_rcv;
2290 else if (m == NULL)
2291 m = STAILQ_FIRST(&sb->uxdg_mb);
2292 else
2293 MPASS(m == so->so_rcv.uxdg_peeked);
2294
2295 MPASS(sb->uxdg_cc > 0);
2296 M_ASSERTPKTHDR(m);
2297 KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2298
2299 if (uio->uio_td)
2300 uio->uio_td->td_ru.ru_msgrcv++;
2301
2302 if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
2303 STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
2304 if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
2305 TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
2306 } else
2307 so->so_rcv.uxdg_peeked = NULL;
2308
2309 sb->uxdg_cc -= m->m_pkthdr.len;
2310 sb->uxdg_ctl -= m->m_pkthdr.ctllen;
2311 sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
2312
2313 if (__predict_false(flags & MSG_PEEK))
2314 return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
2315
2316 so->so_rcv.sb_acc -= m->m_pkthdr.len;
2317 so->so_rcv.sb_ccc -= m->m_pkthdr.len;
2318 so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
2319 so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
2320 SOCK_RECVBUF_UNLOCK(so);
2321
2322 if (psa != NULL)
2323 *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2324 m = m_free(m);
2325 KASSERT(m, ("%s: no data or control after soname", __func__));
2326
2327 /*
2328 * Packet to copyout() is now in 'm' and it is disconnected from the
2329 * queue.
2330 *
2331 * Process one or more MT_CONTROL mbufs present before any data mbufs
2332 * in the first mbuf chain on the socket buffer. We call into the
2333 * unp_externalize() to perform externalization (or freeing if
2334 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
2335 * without MT_DATA mbufs.
2336 */
2337 while (m != NULL && m->m_type == MT_CONTROL) {
2338 error = unp_externalize(m, controlp, flags);
2339 m = m_free(m);
2340 if (error != 0) {
2341 SOCK_IO_RECV_UNLOCK(so);
2342 unp_scan(m, unp_freerights);
2343 m_freem(m);
2344 return (error);
2345 }
2346 if (controlp != NULL) {
2347 while (*controlp != NULL)
2348 controlp = &(*controlp)->m_next;
2349 }
2350 }
2351 KASSERT(m == NULL || m->m_type == MT_DATA,
2352 ("%s: not MT_DATA mbuf %p", __func__, m));
2353 while (m != NULL && uio->uio_resid > 0) {
2354 len = uio->uio_resid;
2355 if (len > m->m_len)
2356 len = m->m_len;
2357 error = uiomove(mtod(m, char *), (int)len, uio);
2358 if (error) {
2359 SOCK_IO_RECV_UNLOCK(so);
2360 m_freem(m);
2361 return (error);
2362 }
2363 if (len == m->m_len)
2364 m = m_free(m);
2365 else {
2366 m->m_data += len;
2367 m->m_len -= len;
2368 }
2369 }
2370 SOCK_IO_RECV_UNLOCK(so);
2371
2372 if (m != NULL) {
2373 if (flagsp != NULL) {
2374 if (flags & MSG_TRUNC) {
2375 /* Report real length of the packet */
2376 uio->uio_resid -= m_length(m, NULL);
2377 }
2378 *flagsp |= MSG_TRUNC;
2379 }
2380 m_freem(m);
2381 } else if (flagsp != NULL)
2382 *flagsp &= ~MSG_TRUNC;
2383
2384 return (0);
2385 }
2386
2387 static int
uipc_sendfile_wait(struct socket * so,off_t need,int * space)2388 uipc_sendfile_wait(struct socket *so, off_t need, int *space)
2389 {
2390 struct unpcb *unp2;
2391 struct socket *so2;
2392 struct sockbuf *sb;
2393 bool nonblock, sockref;
2394 int error;
2395
2396 MPASS(so->so_type == SOCK_STREAM);
2397 MPASS(need > 0);
2398 MPASS(space != NULL);
2399
2400 nonblock = so->so_state & SS_NBIO;
2401 sockref = false;
2402
2403 if (__predict_false((so->so_state & SS_ISCONNECTED) == 0))
2404 return (ENOTCONN);
2405
2406 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2407 return (error);
2408
2409 so2 = unp2->unp_socket;
2410 sb = &so2->so_rcv;
2411 SOCK_RECVBUF_LOCK(so2);
2412 UNP_PCB_UNLOCK(unp2);
2413 while ((*space = uipc_stream_sbspace(sb)) < need &&
2414 (*space < so->so_snd.sb_hiwat / 2)) {
2415 UIPC_STREAM_SBCHECK(sb);
2416 if (nonblock) {
2417 SOCK_RECVBUF_UNLOCK(so2);
2418 return (EAGAIN);
2419 }
2420 if (!sockref)
2421 soref(so2);
2422 error = uipc_stream_sbwait(so2, so->so_snd.sb_timeo);
2423 if (error == 0 &&
2424 __predict_false(sb->sb_state & SBS_CANTRCVMORE))
2425 error = EPIPE;
2426 if (error) {
2427 SOCK_RECVBUF_UNLOCK(so2);
2428 sorele(so2);
2429 return (error);
2430 }
2431 }
2432 UIPC_STREAM_SBCHECK(sb);
2433 SOCK_RECVBUF_UNLOCK(so2);
2434 if (sockref)
2435 sorele(so2);
2436
2437 return (0);
2438 }
2439
2440 /*
2441 * Although this is a pr_send method, for unix(4) it is called only via
2442 * sendfile(2) path. This means we can be sure that mbufs are clear of
2443 * any extra flags and don't require any conditioning.
2444 */
2445 static int
uipc_sendfile(struct socket * so,int flags,struct mbuf * m,struct sockaddr * from,struct mbuf * control,struct thread * td)2446 uipc_sendfile(struct socket *so, int flags, struct mbuf *m,
2447 struct sockaddr *from, struct mbuf *control, struct thread *td)
2448 {
2449 struct mchain mc;
2450 struct unpcb *unp2;
2451 struct socket *so2;
2452 struct sockbuf *sb;
2453 bool notready, wakeup;
2454 int error;
2455
2456 MPASS(so->so_type == SOCK_STREAM);
2457 MPASS(from == NULL && control == NULL);
2458 KASSERT(!(m->m_flags & M_EXTPG),
2459 ("unix(4): TLS sendfile(2) not supported"));
2460
2461 notready = flags & PRUS_NOTREADY;
2462
2463 if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) {
2464 error = ENOTCONN;
2465 goto out;
2466 }
2467
2468 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2469 goto out;
2470
2471 mc_init_m(&mc, m);
2472
2473 so2 = unp2->unp_socket;
2474 sb = &so2->so_rcv;
2475 SOCK_RECVBUF_LOCK(so2);
2476 UNP_PCB_UNLOCK(unp2);
2477 UIPC_STREAM_SBCHECK(sb);
2478 sb->sb_ccc += mc.mc_len;
2479 sb->sb_mbcnt += mc.mc_mlen;
2480 if (sb->uxst_fnrdy == NULL) {
2481 if (notready) {
2482 wakeup = false;
2483 STAILQ_FOREACH(m, &mc.mc_q, m_stailq) {
2484 if (m->m_flags & M_NOTREADY) {
2485 sb->uxst_fnrdy = m;
2486 break;
2487 } else {
2488 sb->sb_acc += m->m_len;
2489 wakeup = true;
2490 }
2491 }
2492 } else {
2493 wakeup = true;
2494 sb->sb_acc += mc.mc_len;
2495 }
2496 } else {
2497 wakeup = false;
2498 }
2499 STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
2500 UIPC_STREAM_SBCHECK(sb);
2501 if (wakeup)
2502 sorwakeup_locked(so2);
2503 else
2504 SOCK_RECVBUF_UNLOCK(so2);
2505
2506 return (0);
2507 out:
2508 /*
2509 * In case of not ready data, uipc_ready() is responsible
2510 * for freeing memory.
2511 */
2512 if (m != NULL && !notready)
2513 m_freem(m);
2514
2515 return (error);
2516 }
2517
2518 static int
uipc_sbready(struct sockbuf * sb,struct mbuf * m,int count)2519 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count)
2520 {
2521 bool blocker;
2522
2523 /* assert locked */
2524
2525 blocker = (sb->uxst_fnrdy == m);
2526 STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) {
2527 if (count > 0) {
2528 MPASS(m->m_flags & M_NOTREADY);
2529 m->m_flags &= ~M_NOTREADY;
2530 if (blocker)
2531 sb->sb_acc += m->m_len;
2532 count--;
2533 } else if (m->m_flags & M_NOTREADY)
2534 break;
2535 else if (blocker)
2536 sb->sb_acc += m->m_len;
2537 }
2538 if (blocker) {
2539 sb->uxst_fnrdy = m;
2540 return (0);
2541 } else
2542 return (EINPROGRESS);
2543 }
2544
2545 static bool
uipc_ready_scan(struct socket * so,struct mbuf * m,int count,int * errorp)2546 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
2547 {
2548 struct mbuf *mb;
2549 struct sockbuf *sb;
2550
2551 SOCK_LOCK(so);
2552 if (SOLISTENING(so)) {
2553 SOCK_UNLOCK(so);
2554 return (false);
2555 }
2556 mb = NULL;
2557 sb = &so->so_rcv;
2558 SOCK_RECVBUF_LOCK(so);
2559 if (sb->uxst_fnrdy != NULL) {
2560 STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) {
2561 if (mb == m) {
2562 *errorp = uipc_sbready(sb, m, count);
2563 break;
2564 }
2565 }
2566 }
2567 SOCK_RECVBUF_UNLOCK(so);
2568 SOCK_UNLOCK(so);
2569 return (mb != NULL);
2570 }
2571
2572 static int
uipc_ready(struct socket * so,struct mbuf * m,int count)2573 uipc_ready(struct socket *so, struct mbuf *m, int count)
2574 {
2575 struct unpcb *unp, *unp2;
2576 int error;
2577
2578 MPASS(so->so_type == SOCK_STREAM);
2579
2580 if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) {
2581 struct socket *so2;
2582 struct sockbuf *sb;
2583
2584 so2 = unp2->unp_socket;
2585 sb = &so2->so_rcv;
2586 SOCK_RECVBUF_LOCK(so2);
2587 UNP_PCB_UNLOCK(unp2);
2588 UIPC_STREAM_SBCHECK(sb);
2589 error = uipc_sbready(sb, m, count);
2590 UIPC_STREAM_SBCHECK(sb);
2591 if (error == 0)
2592 sorwakeup_locked(so2);
2593 else
2594 SOCK_RECVBUF_UNLOCK(so2);
2595 } else {
2596 /*
2597 * The receiving socket has been disconnected, but may still
2598 * be valid. In this case, the not-ready mbufs are still
2599 * present in its socket buffer, so perform an exhaustive
2600 * search before giving up and freeing the mbufs.
2601 */
2602 UNP_LINK_RLOCK();
2603 LIST_FOREACH(unp, &unp_shead, unp_link) {
2604 if (uipc_ready_scan(unp->unp_socket, m, count, &error))
2605 break;
2606 }
2607 UNP_LINK_RUNLOCK();
2608
2609 if (unp == NULL) {
2610 for (int i = 0; i < count; i++)
2611 m = m_free(m);
2612 return (ECONNRESET);
2613 }
2614 }
2615 return (error);
2616 }
2617
2618 static int
uipc_sense(struct socket * so,struct stat * sb)2619 uipc_sense(struct socket *so, struct stat *sb)
2620 {
2621 struct unpcb *unp;
2622
2623 unp = sotounpcb(so);
2624 KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
2625
2626 sb->st_blksize = so->so_snd.sb_hiwat;
2627 sb->st_dev = NODEV;
2628 sb->st_ino = unp->unp_ino;
2629 return (0);
2630 }
2631
2632 static int
uipc_shutdown(struct socket * so,enum shutdown_how how)2633 uipc_shutdown(struct socket *so, enum shutdown_how how)
2634 {
2635 struct unpcb *unp = sotounpcb(so);
2636 int error;
2637
2638 SOCK_LOCK(so);
2639 if (SOLISTENING(so)) {
2640 if (how != SHUT_WR) {
2641 so->so_error = ECONNABORTED;
2642 solisten_wakeup(so); /* unlocks so */
2643 } else
2644 SOCK_UNLOCK(so);
2645 return (ENOTCONN);
2646 } else if ((so->so_state &
2647 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2648 /*
2649 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
2650 * invoked on a datagram sockets, however historically we would
2651 * actually tear socket down. This is known to be leveraged by
2652 * some applications to unblock process waiting in recv(2) by
2653 * other process that it shares that socket with. Try to meet
2654 * both backward-compatibility and POSIX requirements by forcing
2655 * ENOTCONN but still flushing buffers and performing wakeup(9).
2656 *
2657 * XXXGL: it remains unknown what applications expect this
2658 * behavior and is this isolated to unix/dgram or inet/dgram or
2659 * both. See: D10351, D3039.
2660 */
2661 error = ENOTCONN;
2662 if (so->so_type != SOCK_DGRAM) {
2663 SOCK_UNLOCK(so);
2664 return (error);
2665 }
2666 } else
2667 error = 0;
2668 SOCK_UNLOCK(so);
2669
2670 switch (how) {
2671 case SHUT_RD:
2672 if (so->so_type == SOCK_DGRAM)
2673 socantrcvmore(so);
2674 else
2675 uipc_cantrcvmore(so);
2676 unp_dispose(so);
2677 break;
2678 case SHUT_RDWR:
2679 if (so->so_type == SOCK_DGRAM)
2680 socantrcvmore(so);
2681 else
2682 uipc_cantrcvmore(so);
2683 unp_dispose(so);
2684 /* FALLTHROUGH */
2685 case SHUT_WR:
2686 if (so->so_type == SOCK_DGRAM) {
2687 socantsendmore(so);
2688 } else {
2689 UNP_PCB_LOCK(unp);
2690 if (unp->unp_conn != NULL)
2691 uipc_cantrcvmore(unp->unp_conn->unp_socket);
2692 UNP_PCB_UNLOCK(unp);
2693 }
2694 }
2695 wakeup(&so->so_timeo);
2696
2697 return (error);
2698 }
2699
2700 static int
uipc_sockaddr(struct socket * so,struct sockaddr * ret)2701 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
2702 {
2703 struct unpcb *unp;
2704 const struct sockaddr *sa;
2705
2706 unp = sotounpcb(so);
2707 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
2708
2709 UNP_PCB_LOCK(unp);
2710 if (unp->unp_addr != NULL)
2711 sa = (struct sockaddr *) unp->unp_addr;
2712 else
2713 sa = &sun_noname;
2714 bcopy(sa, ret, sa->sa_len);
2715 UNP_PCB_UNLOCK(unp);
2716 return (0);
2717 }
2718
2719 static int
uipc_ctloutput(struct socket * so,struct sockopt * sopt)2720 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
2721 {
2722 struct unpcb *unp;
2723 struct xucred xu;
2724 int error, optval;
2725
2726 if (sopt->sopt_level != SOL_LOCAL)
2727 return (EINVAL);
2728
2729 unp = sotounpcb(so);
2730 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
2731 error = 0;
2732 switch (sopt->sopt_dir) {
2733 case SOPT_GET:
2734 switch (sopt->sopt_name) {
2735 case LOCAL_PEERCRED:
2736 UNP_PCB_LOCK(unp);
2737 if (unp->unp_flags & UNP_HAVEPC)
2738 xu = unp->unp_peercred;
2739 else {
2740 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2741 error = ENOTCONN;
2742 else
2743 error = EINVAL;
2744 }
2745 UNP_PCB_UNLOCK(unp);
2746 if (error == 0)
2747 error = sooptcopyout(sopt, &xu, sizeof(xu));
2748 break;
2749
2750 case LOCAL_CREDS:
2751 /* Unlocked read. */
2752 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
2753 error = sooptcopyout(sopt, &optval, sizeof(optval));
2754 break;
2755
2756 case LOCAL_CREDS_PERSISTENT:
2757 /* Unlocked read. */
2758 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
2759 error = sooptcopyout(sopt, &optval, sizeof(optval));
2760 break;
2761
2762 default:
2763 error = EOPNOTSUPP;
2764 break;
2765 }
2766 break;
2767
2768 case SOPT_SET:
2769 switch (sopt->sopt_name) {
2770 case LOCAL_CREDS:
2771 case LOCAL_CREDS_PERSISTENT:
2772 error = sooptcopyin(sopt, &optval, sizeof(optval),
2773 sizeof(optval));
2774 if (error)
2775 break;
2776
2777 #define OPTSET(bit, exclusive) do { \
2778 UNP_PCB_LOCK(unp); \
2779 if (optval) { \
2780 if ((unp->unp_flags & (exclusive)) != 0) { \
2781 UNP_PCB_UNLOCK(unp); \
2782 error = EINVAL; \
2783 break; \
2784 } \
2785 unp->unp_flags |= (bit); \
2786 } else \
2787 unp->unp_flags &= ~(bit); \
2788 UNP_PCB_UNLOCK(unp); \
2789 } while (0)
2790
2791 switch (sopt->sopt_name) {
2792 case LOCAL_CREDS:
2793 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
2794 break;
2795
2796 case LOCAL_CREDS_PERSISTENT:
2797 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
2798 break;
2799
2800 default:
2801 break;
2802 }
2803 break;
2804 #undef OPTSET
2805 default:
2806 error = ENOPROTOOPT;
2807 break;
2808 }
2809 break;
2810
2811 default:
2812 error = EOPNOTSUPP;
2813 break;
2814 }
2815 return (error);
2816 }
2817
2818 static int
unp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)2819 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
2820 {
2821
2822 return (unp_connectat(AT_FDCWD, so, nam, td, false));
2823 }
2824
2825 static int
unp_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td,bool return_locked)2826 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
2827 struct thread *td, bool return_locked)
2828 {
2829 struct mtx *vplock;
2830 struct sockaddr_un *soun;
2831 struct vnode *vp;
2832 struct socket *so2;
2833 struct unpcb *unp, *unp2, *unp3;
2834 struct nameidata nd;
2835 char buf[SOCK_MAXADDRLEN];
2836 struct sockaddr *sa;
2837 cap_rights_t rights;
2838 int error, len;
2839 bool connreq;
2840
2841 CURVNET_ASSERT_SET();
2842
2843 if (nam->sa_family != AF_UNIX)
2844 return (EAFNOSUPPORT);
2845 if (nam->sa_len > sizeof(struct sockaddr_un))
2846 return (EINVAL);
2847 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2848 if (len <= 0)
2849 return (EINVAL);
2850 soun = (struct sockaddr_un *)nam;
2851 bcopy(soun->sun_path, buf, len);
2852 buf[len] = 0;
2853
2854 error = 0;
2855 unp = sotounpcb(so);
2856 UNP_PCB_LOCK(unp);
2857 for (;;) {
2858 /*
2859 * Wait for connection state to stabilize. If a connection
2860 * already exists, give up. For datagram sockets, which permit
2861 * multiple consecutive connect(2) calls, upper layers are
2862 * responsible for disconnecting in advance of a subsequent
2863 * connect(2), but this is not synchronized with PCB connection
2864 * state.
2865 *
2866 * Also make sure that no threads are currently attempting to
2867 * lock the peer socket, to ensure that unp_conn cannot
2868 * transition between two valid sockets while locks are dropped.
2869 */
2870 if (SOLISTENING(so))
2871 error = EOPNOTSUPP;
2872 else if (unp->unp_conn != NULL)
2873 error = EISCONN;
2874 else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
2875 error = EALREADY;
2876 }
2877 if (error != 0) {
2878 UNP_PCB_UNLOCK(unp);
2879 return (error);
2880 }
2881 if (unp->unp_pairbusy > 0) {
2882 unp->unp_flags |= UNP_WAITING;
2883 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
2884 continue;
2885 }
2886 break;
2887 }
2888 unp->unp_flags |= UNP_CONNECTING;
2889 UNP_PCB_UNLOCK(unp);
2890
2891 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
2892 if (connreq)
2893 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
2894 else
2895 sa = NULL;
2896 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
2897 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
2898 error = namei(&nd);
2899 if (error)
2900 vp = NULL;
2901 else
2902 vp = nd.ni_vp;
2903 ASSERT_VOP_LOCKED(vp, "unp_connect");
2904 if (error)
2905 goto bad;
2906 NDFREE_PNBUF(&nd);
2907
2908 if (vp->v_type != VSOCK) {
2909 error = ENOTSOCK;
2910 goto bad;
2911 }
2912 #ifdef MAC
2913 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
2914 if (error)
2915 goto bad;
2916 #endif
2917 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
2918 if (error)
2919 goto bad;
2920
2921 unp = sotounpcb(so);
2922 KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
2923
2924 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
2925 mtx_lock(vplock);
2926 VOP_UNP_CONNECT(vp, &unp2);
2927 if (unp2 == NULL) {
2928 error = ECONNREFUSED;
2929 goto bad2;
2930 }
2931 so2 = unp2->unp_socket;
2932 if (so->so_type != so2->so_type) {
2933 error = EPROTOTYPE;
2934 goto bad2;
2935 }
2936 if (connreq) {
2937 if (SOLISTENING(so2))
2938 so2 = solisten_clone(so2);
2939 else
2940 so2 = NULL;
2941 if (so2 == NULL) {
2942 error = ECONNREFUSED;
2943 goto bad2;
2944 }
2945 if ((error = uipc_attach(so2, 0, NULL)) != 0) {
2946 sodealloc(so2);
2947 goto bad2;
2948 }
2949 unp3 = sotounpcb(so2);
2950 unp_pcb_lock_pair(unp2, unp3);
2951 if (unp2->unp_addr != NULL) {
2952 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
2953 unp3->unp_addr = (struct sockaddr_un *) sa;
2954 sa = NULL;
2955 }
2956
2957 unp_copy_peercred(td, unp3, unp, unp2);
2958
2959 UNP_PCB_UNLOCK(unp2);
2960 unp2 = unp3;
2961
2962 /*
2963 * It is safe to block on the PCB lock here since unp2 is
2964 * nascent and cannot be connected to any other sockets.
2965 */
2966 UNP_PCB_LOCK(unp);
2967 #ifdef MAC
2968 mac_socketpeer_set_from_socket(so, so2);
2969 mac_socketpeer_set_from_socket(so2, so);
2970 #endif
2971 } else {
2972 unp_pcb_lock_pair(unp, unp2);
2973 }
2974 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2975 sotounpcb(so2) == unp2,
2976 ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2977 unp_connect2(so, so2, connreq);
2978 if (connreq)
2979 (void)solisten_enqueue(so2, SS_ISCONNECTED);
2980 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2981 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2982 unp->unp_flags &= ~UNP_CONNECTING;
2983 if (!return_locked)
2984 unp_pcb_unlock_pair(unp, unp2);
2985 bad2:
2986 mtx_unlock(vplock);
2987 bad:
2988 if (vp != NULL) {
2989 /*
2990 * If we are returning locked (called via uipc_sosend_dgram()),
2991 * we need to be sure that vput() won't sleep. This is
2992 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2993 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2994 */
2995 MPASS(!(return_locked && connreq));
2996 vput(vp);
2997 }
2998 free(sa, M_SONAME);
2999 if (__predict_false(error)) {
3000 UNP_PCB_LOCK(unp);
3001 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
3002 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
3003 unp->unp_flags &= ~UNP_CONNECTING;
3004 UNP_PCB_UNLOCK(unp);
3005 }
3006 return (error);
3007 }
3008
3009 /*
3010 * Set socket peer credentials at connection time.
3011 *
3012 * The client's PCB credentials are copied from its process structure. The
3013 * server's PCB credentials are copied from the socket on which it called
3014 * listen(2). uipc_listen cached that process's credentials at the time.
3015 */
3016 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)3017 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
3018 struct unpcb *server_unp, struct unpcb *listen_unp)
3019 {
3020 cru2xt(td, &client_unp->unp_peercred);
3021 client_unp->unp_flags |= UNP_HAVEPC;
3022
3023 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
3024 sizeof(server_unp->unp_peercred));
3025 server_unp->unp_flags |= UNP_HAVEPC;
3026 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
3027 }
3028
3029 /*
3030 * unix/stream & unix/seqpacket version of soisconnected().
3031 *
3032 * The crucial thing we are doing here is setting up the uxst_peer linkage,
3033 * holding unp and receive buffer locks of the both sockets. The disconnect
3034 * procedure does the same. This gives as a safe way to access the peer in the
3035 * send(2) and recv(2) during the socket lifetime.
3036 *
3037 * The less important thing is event notification of the fact that a socket is
3038 * now connected. It is unusual for a software to put a socket into event
3039 * mechanism before connect(2), but is supposed to be supported. Note that
3040 * there can not be any sleeping I/O on the socket, yet, only presence in the
3041 * select/poll/kevent.
3042 *
3043 * This function can be called via two call paths:
3044 * 1) socketpair(2) - in this case socket has not been yet reported to userland
3045 * and just can't have any event notifications mechanisms set up. The
3046 * 'wakeup' boolean is always false.
3047 * 2) connect(2) of existing socket to a recent clone of a listener:
3048 * 2.1) Socket that connect(2)s will have 'wakeup' true. An application
3049 * could have already put it into event mechanism, is it shall be
3050 * reported as readable and as writable.
3051 * 2.2) Socket that was just cloned with solisten_clone(). Same as 1).
3052 */
3053 static void
unp_soisconnected(struct socket * so,bool wakeup)3054 unp_soisconnected(struct socket *so, bool wakeup)
3055 {
3056 struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket;
3057 struct sockbuf *sb;
3058
3059 SOCK_LOCK_ASSERT(so);
3060 UNP_PCB_LOCK_ASSERT(sotounpcb(so));
3061 UNP_PCB_LOCK_ASSERT(sotounpcb(so2));
3062 SOCK_RECVBUF_LOCK_ASSERT(so);
3063 SOCK_RECVBUF_LOCK_ASSERT(so2);
3064
3065 MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3066 MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
3067 SS_ISDISCONNECTING)) == 0);
3068 MPASS(so->so_qstate == SQ_NONE);
3069
3070 so->so_state &= ~SS_ISDISCONNECTED;
3071 so->so_state |= SS_ISCONNECTED;
3072
3073 sb = &so2->so_rcv;
3074 sb->uxst_peer = so;
3075
3076 if (wakeup) {
3077 KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
3078 sb = &so->so_rcv;
3079 selwakeuppri(sb->sb_sel, PSOCK);
3080 SOCK_SENDBUF_LOCK_ASSERT(so);
3081 sb = &so->so_snd;
3082 selwakeuppri(sb->sb_sel, PSOCK);
3083 SOCK_SENDBUF_UNLOCK(so);
3084 }
3085 }
3086
3087 static void
unp_connect2(struct socket * so,struct socket * so2,bool wakeup)3088 unp_connect2(struct socket *so, struct socket *so2, bool wakeup)
3089 {
3090 struct unpcb *unp;
3091 struct unpcb *unp2;
3092
3093 MPASS(so2->so_type == so->so_type);
3094 unp = sotounpcb(so);
3095 KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
3096 unp2 = sotounpcb(so2);
3097 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
3098
3099 UNP_PCB_LOCK_ASSERT(unp);
3100 UNP_PCB_LOCK_ASSERT(unp2);
3101 KASSERT(unp->unp_conn == NULL,
3102 ("%s: socket %p is already connected", __func__, unp));
3103
3104 unp->unp_conn = unp2;
3105 unp_pcb_hold(unp2);
3106 unp_pcb_hold(unp);
3107 switch (so->so_type) {
3108 case SOCK_DGRAM:
3109 UNP_REF_LIST_LOCK();
3110 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
3111 UNP_REF_LIST_UNLOCK();
3112 soisconnected(so);
3113 break;
3114
3115 case SOCK_STREAM:
3116 case SOCK_SEQPACKET:
3117 KASSERT(unp2->unp_conn == NULL,
3118 ("%s: socket %p is already connected", __func__, unp2));
3119 unp2->unp_conn = unp;
3120 SOCK_LOCK(so);
3121 SOCK_LOCK(so2);
3122 if (wakeup) /* Avoid LOR with receive buffer lock. */
3123 SOCK_SENDBUF_LOCK(so);
3124 SOCK_RECVBUF_LOCK(so);
3125 SOCK_RECVBUF_LOCK(so2);
3126 unp_soisconnected(so, wakeup); /* Will unlock send buffer. */
3127 unp_soisconnected(so2, false);
3128 SOCK_RECVBUF_UNLOCK(so);
3129 SOCK_RECVBUF_UNLOCK(so2);
3130 SOCK_UNLOCK(so);
3131 SOCK_UNLOCK(so2);
3132 break;
3133
3134 default:
3135 panic("unp_connect2");
3136 }
3137 }
3138
3139 static void
unp_soisdisconnected(struct socket * so)3140 unp_soisdisconnected(struct socket *so)
3141 {
3142 SOCK_LOCK_ASSERT(so);
3143 SOCK_RECVBUF_LOCK_ASSERT(so);
3144 MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3145 MPASS(!SOLISTENING(so));
3146 MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING |
3147 SS_ISDISCONNECTED)) == 0);
3148 MPASS(so->so_state & SS_ISCONNECTED);
3149
3150 so->so_state |= SS_ISDISCONNECTED;
3151 so->so_state &= ~SS_ISCONNECTED;
3152 so->so_rcv.uxst_peer = NULL;
3153 socantrcvmore_locked(so);
3154 }
3155
3156 static void
unp_disconnect(struct unpcb * unp,struct unpcb * unp2)3157 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
3158 {
3159 struct socket *so, *so2;
3160 struct mbuf *m = NULL;
3161 #ifdef INVARIANTS
3162 struct unpcb *unptmp;
3163 #endif
3164
3165 UNP_PCB_LOCK_ASSERT(unp);
3166 UNP_PCB_LOCK_ASSERT(unp2);
3167 KASSERT(unp->unp_conn == unp2,
3168 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
3169
3170 unp->unp_conn = NULL;
3171 so = unp->unp_socket;
3172 so2 = unp2->unp_socket;
3173 switch (unp->unp_socket->so_type) {
3174 case SOCK_DGRAM:
3175 /*
3176 * Remove our send socket buffer from the peer's receive buffer.
3177 * Move the data to the receive buffer only if it is empty.
3178 * This is a protection against a scenario where a peer
3179 * connects, floods and disconnects, effectively blocking
3180 * sendto() from unconnected sockets.
3181 */
3182 SOCK_RECVBUF_LOCK(so2);
3183 if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
3184 TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
3185 uxdg_clist);
3186 if (__predict_true((so2->so_rcv.sb_state &
3187 SBS_CANTRCVMORE) == 0) &&
3188 STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
3189 STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
3190 &so->so_snd.uxdg_mb);
3191 so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
3192 so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
3193 so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
3194 } else {
3195 m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
3196 STAILQ_INIT(&so->so_snd.uxdg_mb);
3197 so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
3198 so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
3199 so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
3200 so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
3201 }
3202 /* Note: so may reconnect. */
3203 so->so_snd.uxdg_cc = 0;
3204 so->so_snd.uxdg_ctl = 0;
3205 so->so_snd.uxdg_mbcnt = 0;
3206 }
3207 SOCK_RECVBUF_UNLOCK(so2);
3208 UNP_REF_LIST_LOCK();
3209 #ifdef INVARIANTS
3210 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
3211 if (unptmp == unp)
3212 break;
3213 }
3214 KASSERT(unptmp != NULL,
3215 ("%s: %p not found in reflist of %p", __func__, unp, unp2));
3216 #endif
3217 LIST_REMOVE(unp, unp_reflink);
3218 UNP_REF_LIST_UNLOCK();
3219 if (so) {
3220 SOCK_LOCK(so);
3221 so->so_state &= ~SS_ISCONNECTED;
3222 SOCK_UNLOCK(so);
3223 }
3224 break;
3225
3226 case SOCK_STREAM:
3227 case SOCK_SEQPACKET:
3228 SOCK_LOCK(so);
3229 SOCK_LOCK(so2);
3230 SOCK_RECVBUF_LOCK(so);
3231 SOCK_RECVBUF_LOCK(so2);
3232 unp_soisdisconnected(so);
3233 MPASS(unp2->unp_conn == unp);
3234 unp2->unp_conn = NULL;
3235 unp_soisdisconnected(so2);
3236 SOCK_UNLOCK(so);
3237 SOCK_UNLOCK(so2);
3238 break;
3239 }
3240
3241 if (unp == unp2) {
3242 unp_pcb_rele_notlast(unp);
3243 if (!unp_pcb_rele(unp))
3244 UNP_PCB_UNLOCK(unp);
3245 } else {
3246 if (!unp_pcb_rele(unp))
3247 UNP_PCB_UNLOCK(unp);
3248 if (!unp_pcb_rele(unp2))
3249 UNP_PCB_UNLOCK(unp2);
3250 }
3251
3252 if (m != NULL) {
3253 unp_scan(m, unp_freerights);
3254 m_freemp(m);
3255 }
3256 }
3257
3258 /*
3259 * unp_pcblist() walks the global list of struct unpcb's to generate a
3260 * pointer list, bumping the refcount on each unpcb. It then copies them out
3261 * sequentially, validating the generation number on each to see if it has
3262 * been detached. All of this is necessary because copyout() may sleep on
3263 * disk I/O.
3264 */
3265 static int
unp_pcblist(SYSCTL_HANDLER_ARGS)3266 unp_pcblist(SYSCTL_HANDLER_ARGS)
3267 {
3268 struct unpcb *unp, **unp_list;
3269 unp_gen_t gencnt;
3270 struct xunpgen *xug;
3271 struct unp_head *head;
3272 struct xunpcb *xu;
3273 u_int i;
3274 int error, n;
3275
3276 switch ((intptr_t)arg1) {
3277 case SOCK_STREAM:
3278 head = &unp_shead;
3279 break;
3280
3281 case SOCK_DGRAM:
3282 head = &unp_dhead;
3283 break;
3284
3285 case SOCK_SEQPACKET:
3286 head = &unp_sphead;
3287 break;
3288
3289 default:
3290 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
3291 }
3292
3293 /*
3294 * The process of preparing the PCB list is too time-consuming and
3295 * resource-intensive to repeat twice on every request.
3296 */
3297 if (req->oldptr == NULL) {
3298 n = unp_count;
3299 req->oldidx = 2 * (sizeof *xug)
3300 + (n + n/8) * sizeof(struct xunpcb);
3301 return (0);
3302 }
3303
3304 if (req->newptr != NULL)
3305 return (EPERM);
3306
3307 /*
3308 * OK, now we're committed to doing something.
3309 */
3310 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
3311 UNP_LINK_RLOCK();
3312 gencnt = unp_gencnt;
3313 n = unp_count;
3314 UNP_LINK_RUNLOCK();
3315
3316 xug->xug_len = sizeof *xug;
3317 xug->xug_count = n;
3318 xug->xug_gen = gencnt;
3319 xug->xug_sogen = so_gencnt;
3320 error = SYSCTL_OUT(req, xug, sizeof *xug);
3321 if (error) {
3322 free(xug, M_TEMP);
3323 return (error);
3324 }
3325
3326 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
3327
3328 UNP_LINK_RLOCK();
3329 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
3330 unp = LIST_NEXT(unp, unp_link)) {
3331 UNP_PCB_LOCK(unp);
3332 if (unp->unp_gencnt <= gencnt) {
3333 if (cr_cansee(req->td->td_ucred,
3334 unp->unp_socket->so_cred)) {
3335 UNP_PCB_UNLOCK(unp);
3336 continue;
3337 }
3338 unp_list[i++] = unp;
3339 unp_pcb_hold(unp);
3340 }
3341 UNP_PCB_UNLOCK(unp);
3342 }
3343 UNP_LINK_RUNLOCK();
3344 n = i; /* In case we lost some during malloc. */
3345
3346 error = 0;
3347 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
3348 for (i = 0; i < n; i++) {
3349 unp = unp_list[i];
3350 UNP_PCB_LOCK(unp);
3351 if (unp_pcb_rele(unp))
3352 continue;
3353
3354 if (unp->unp_gencnt <= gencnt) {
3355 xu->xu_len = sizeof *xu;
3356 xu->xu_unpp = (uintptr_t)unp;
3357 /*
3358 * XXX - need more locking here to protect against
3359 * connect/disconnect races for SMP.
3360 */
3361 if (unp->unp_addr != NULL)
3362 bcopy(unp->unp_addr, &xu->xu_addr,
3363 unp->unp_addr->sun_len);
3364 else
3365 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
3366 if (unp->unp_conn != NULL &&
3367 unp->unp_conn->unp_addr != NULL)
3368 bcopy(unp->unp_conn->unp_addr,
3369 &xu->xu_caddr,
3370 unp->unp_conn->unp_addr->sun_len);
3371 else
3372 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
3373 xu->unp_vnode = (uintptr_t)unp->unp_vnode;
3374 xu->unp_conn = (uintptr_t)unp->unp_conn;
3375 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
3376 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
3377 xu->unp_gencnt = unp->unp_gencnt;
3378 sotoxsocket(unp->unp_socket, &xu->xu_socket);
3379 UNP_PCB_UNLOCK(unp);
3380 error = SYSCTL_OUT(req, xu, sizeof *xu);
3381 } else {
3382 UNP_PCB_UNLOCK(unp);
3383 }
3384 }
3385 free(xu, M_TEMP);
3386 if (!error) {
3387 /*
3388 * Give the user an updated idea of our state. If the
3389 * generation differs from what we told her before, she knows
3390 * that something happened while we were processing this
3391 * request, and it might be necessary to retry.
3392 */
3393 xug->xug_gen = unp_gencnt;
3394 xug->xug_sogen = so_gencnt;
3395 xug->xug_count = unp_count;
3396 error = SYSCTL_OUT(req, xug, sizeof *xug);
3397 }
3398 free(unp_list, M_TEMP);
3399 free(xug, M_TEMP);
3400 return (error);
3401 }
3402
3403 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
3404 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3405 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
3406 "List of active local datagram sockets");
3407 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
3408 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3409 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
3410 "List of active local stream sockets");
3411 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
3412 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3413 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
3414 "List of active local seqpacket sockets");
3415
3416 static void
unp_drop(struct unpcb * unp)3417 unp_drop(struct unpcb *unp)
3418 {
3419 struct socket *so;
3420 struct unpcb *unp2;
3421
3422 /*
3423 * Regardless of whether the socket's peer dropped the connection
3424 * with this socket by aborting or disconnecting, POSIX requires
3425 * that ECONNRESET is returned on next connected send(2) in case of
3426 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM.
3427 */
3428 UNP_PCB_LOCK(unp);
3429 if ((so = unp->unp_socket) != NULL)
3430 so->so_error =
3431 so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE;
3432 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
3433 /* Last reference dropped in unp_disconnect(). */
3434 unp_pcb_rele_notlast(unp);
3435 unp_disconnect(unp, unp2);
3436 } else if (!unp_pcb_rele(unp)) {
3437 UNP_PCB_UNLOCK(unp);
3438 }
3439 }
3440
3441 static void
unp_freerights(struct filedescent ** fdep,int fdcount)3442 unp_freerights(struct filedescent **fdep, int fdcount)
3443 {
3444 struct file *fp;
3445 int i;
3446
3447 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
3448
3449 for (i = 0; i < fdcount; i++) {
3450 fp = fdep[i]->fde_file;
3451 filecaps_free(&fdep[i]->fde_caps);
3452 unp_discard(fp);
3453 }
3454 free(fdep[0], M_FILECAPS);
3455 }
3456
3457 static bool
restrict_rights(struct file * fp,struct thread * td)3458 restrict_rights(struct file *fp, struct thread *td)
3459 {
3460 struct prison *prison1, *prison2;
3461
3462 prison1 = fp->f_cred->cr_prison;
3463 prison2 = td->td_ucred->cr_prison;
3464 return (prison1 != prison2 && prison1->pr_root != prison2->pr_root &&
3465 prison2 != &prison0);
3466 }
3467
3468 static int
unp_externalize(struct mbuf * control,struct mbuf ** controlp,int flags)3469 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
3470 {
3471 struct thread *td = curthread; /* XXX */
3472 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
3473 int *fdp;
3474 struct filedesc *fdesc = td->td_proc->p_fd;
3475 struct filedescent **fdep;
3476 void *data;
3477 socklen_t clen = control->m_len, datalen;
3478 int error, fdflags, newfds;
3479 u_int newlen;
3480
3481 UNP_LINK_UNLOCK_ASSERT();
3482
3483 fdflags = ((flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0) |
3484 ((flags & MSG_CMSG_CLOFORK) ? O_CLOFORK : 0);
3485
3486 error = 0;
3487 if (controlp != NULL) /* controlp == NULL => free control messages */
3488 *controlp = NULL;
3489 while (cm != NULL) {
3490 MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
3491
3492 data = CMSG_DATA(cm);
3493 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
3494 if (cm->cmsg_level == SOL_SOCKET
3495 && cm->cmsg_type == SCM_RIGHTS) {
3496 newfds = datalen / sizeof(*fdep);
3497 if (newfds == 0)
3498 goto next;
3499 fdep = data;
3500
3501 /* If we're not outputting the descriptors free them. */
3502 if (error || controlp == NULL) {
3503 unp_freerights(fdep, newfds);
3504 goto next;
3505 }
3506 FILEDESC_XLOCK(fdesc);
3507
3508 /*
3509 * Now change each pointer to an fd in the global
3510 * table to an integer that is the index to the local
3511 * fd table entry that we set up to point to the
3512 * global one we are transferring.
3513 */
3514 newlen = newfds * sizeof(int);
3515 *controlp = sbcreatecontrol(NULL, newlen,
3516 SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
3517
3518 fdp = (int *)
3519 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
3520 if ((error = fdallocn(td, 0, fdp, newfds))) {
3521 FILEDESC_XUNLOCK(fdesc);
3522 unp_freerights(fdep, newfds);
3523 m_freem(*controlp);
3524 *controlp = NULL;
3525 goto next;
3526 }
3527 for (int i = 0; i < newfds; i++, fdp++) {
3528 struct file *fp;
3529
3530 fp = fdep[i]->fde_file;
3531 _finstall(fdesc, fp, *fdp, fdflags |
3532 (restrict_rights(fp, td) ?
3533 O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps);
3534 unp_externalize_fp(fp);
3535 }
3536
3537 /*
3538 * The new type indicates that the mbuf data refers to
3539 * kernel resources that may need to be released before
3540 * the mbuf is freed.
3541 */
3542 m_chtype(*controlp, MT_EXTCONTROL);
3543 FILEDESC_XUNLOCK(fdesc);
3544 free(fdep[0], M_FILECAPS);
3545 } else {
3546 /* We can just copy anything else across. */
3547 if (error || controlp == NULL)
3548 goto next;
3549 *controlp = sbcreatecontrol(NULL, datalen,
3550 cm->cmsg_type, cm->cmsg_level, M_WAITOK);
3551 bcopy(data,
3552 CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
3553 datalen);
3554 }
3555 controlp = &(*controlp)->m_next;
3556
3557 next:
3558 if (CMSG_SPACE(datalen) < clen) {
3559 clen -= CMSG_SPACE(datalen);
3560 cm = (struct cmsghdr *)
3561 ((caddr_t)cm + CMSG_SPACE(datalen));
3562 } else {
3563 clen = 0;
3564 cm = NULL;
3565 }
3566 }
3567
3568 return (error);
3569 }
3570
3571 static void
unp_zone_change(void * tag)3572 unp_zone_change(void *tag)
3573 {
3574
3575 uma_zone_set_max(unp_zone, maxsockets);
3576 }
3577
3578 #ifdef INVARIANTS
3579 static void
unp_zdtor(void * mem,int size __unused,void * arg __unused)3580 unp_zdtor(void *mem, int size __unused, void *arg __unused)
3581 {
3582 struct unpcb *unp;
3583
3584 unp = mem;
3585
3586 KASSERT(LIST_EMPTY(&unp->unp_refs),
3587 ("%s: unpcb %p has lingering refs", __func__, unp));
3588 KASSERT(unp->unp_socket == NULL,
3589 ("%s: unpcb %p has socket backpointer", __func__, unp));
3590 KASSERT(unp->unp_vnode == NULL,
3591 ("%s: unpcb %p has vnode references", __func__, unp));
3592 KASSERT(unp->unp_conn == NULL,
3593 ("%s: unpcb %p is still connected", __func__, unp));
3594 KASSERT(unp->unp_addr == NULL,
3595 ("%s: unpcb %p has leaked addr", __func__, unp));
3596 }
3597 #endif
3598
3599 static void
unp_init(void * arg __unused)3600 unp_init(void *arg __unused)
3601 {
3602 uma_dtor dtor;
3603
3604 #ifdef INVARIANTS
3605 dtor = unp_zdtor;
3606 #else
3607 dtor = NULL;
3608 #endif
3609 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
3610 NULL, NULL, UMA_ALIGN_CACHE, 0);
3611 uma_zone_set_max(unp_zone, maxsockets);
3612 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
3613 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
3614 NULL, EVENTHANDLER_PRI_ANY);
3615 LIST_INIT(&unp_dhead);
3616 LIST_INIT(&unp_shead);
3617 LIST_INIT(&unp_sphead);
3618 SLIST_INIT(&unp_defers);
3619 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
3620 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
3621 UNP_LINK_LOCK_INIT();
3622 UNP_DEFERRED_LOCK_INIT();
3623 unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF);
3624 }
3625 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
3626
3627 static void
unp_internalize_cleanup_rights(struct mbuf * control)3628 unp_internalize_cleanup_rights(struct mbuf *control)
3629 {
3630 struct cmsghdr *cp;
3631 struct mbuf *m;
3632 void *data;
3633 socklen_t datalen;
3634
3635 for (m = control; m != NULL; m = m->m_next) {
3636 cp = mtod(m, struct cmsghdr *);
3637 if (cp->cmsg_level != SOL_SOCKET ||
3638 cp->cmsg_type != SCM_RIGHTS)
3639 continue;
3640 data = CMSG_DATA(cp);
3641 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
3642 unp_freerights(data, datalen / sizeof(struct filedesc *));
3643 }
3644 }
3645
3646 static int
unp_internalize(struct mbuf * control,struct mchain * mc,struct thread * td)3647 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td)
3648 {
3649 struct proc *p;
3650 struct filedesc *fdesc;
3651 struct bintime *bt;
3652 struct cmsghdr *cm;
3653 struct cmsgcred *cmcred;
3654 struct mbuf *m;
3655 struct filedescent *fde, **fdep, *fdev;
3656 struct file *fp;
3657 struct timeval *tv;
3658 struct timespec *ts;
3659 void *data;
3660 socklen_t clen, datalen;
3661 int i, j, error, *fdp, oldfds;
3662 u_int newlen;
3663
3664 MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */
3665 UNP_LINK_UNLOCK_ASSERT();
3666
3667 p = td->td_proc;
3668 fdesc = p->p_fd;
3669 error = 0;
3670 *mc = MCHAIN_INITIALIZER(mc);
3671 for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
3672 data = CMSG_DATA(cm);
3673
3674 clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
3675 clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
3676 (char *)cm + cm->cmsg_len >= (char *)data;
3677
3678 clen -= min(CMSG_SPACE(datalen), clen),
3679 cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
3680 data = CMSG_DATA(cm)) {
3681 datalen = (char *)cm + cm->cmsg_len - (char *)data;
3682 switch (cm->cmsg_type) {
3683 case SCM_CREDS:
3684 m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS,
3685 SOL_SOCKET, M_WAITOK);
3686 cmcred = (struct cmsgcred *)
3687 CMSG_DATA(mtod(m, struct cmsghdr *));
3688 cmcred->cmcred_pid = p->p_pid;
3689 cmcred->cmcred_uid = td->td_ucred->cr_ruid;
3690 cmcred->cmcred_gid = td->td_ucred->cr_rgid;
3691 cmcred->cmcred_euid = td->td_ucred->cr_uid;
3692 _Static_assert(CMGROUP_MAX >= 1,
3693 "Room needed for the effective GID.");
3694 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups + 1,
3695 CMGROUP_MAX);
3696 cmcred->cmcred_groups[0] = td->td_ucred->cr_gid;
3697 for (i = 1; i < cmcred->cmcred_ngroups; i++)
3698 cmcred->cmcred_groups[i] =
3699 td->td_ucred->cr_groups[i - 1];
3700 break;
3701
3702 case SCM_RIGHTS:
3703 oldfds = datalen / sizeof (int);
3704 if (oldfds == 0)
3705 continue;
3706 /* On some machines sizeof pointer is bigger than
3707 * sizeof int, so we need to check if data fits into
3708 * single mbuf. We could allocate several mbufs, and
3709 * unp_externalize() should even properly handle that.
3710 * But it is not worth to complicate the code for an
3711 * insane scenario of passing over 200 file descriptors
3712 * at once.
3713 */
3714 newlen = oldfds * sizeof(fdep[0]);
3715 if (CMSG_SPACE(newlen) > MCLBYTES) {
3716 error = EMSGSIZE;
3717 goto out;
3718 }
3719 /*
3720 * Check that all the FDs passed in refer to legal
3721 * files. If not, reject the entire operation.
3722 */
3723 fdp = data;
3724 FILEDESC_SLOCK(fdesc);
3725 for (i = 0; i < oldfds; i++, fdp++) {
3726 fp = fget_noref(fdesc, *fdp);
3727 if (fp == NULL) {
3728 FILEDESC_SUNLOCK(fdesc);
3729 error = EBADF;
3730 goto out;
3731 }
3732 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
3733 FILEDESC_SUNLOCK(fdesc);
3734 error = EOPNOTSUPP;
3735 goto out;
3736 }
3737 }
3738
3739 /*
3740 * Now replace the integer FDs with pointers to the
3741 * file structure and capability rights.
3742 */
3743 m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS,
3744 SOL_SOCKET, M_WAITOK);
3745 fdp = data;
3746 for (i = 0; i < oldfds; i++, fdp++) {
3747 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
3748 fdp = data;
3749 for (j = 0; j < i; j++, fdp++) {
3750 fdrop(fdesc->fd_ofiles[*fdp].
3751 fde_file, td);
3752 }
3753 FILEDESC_SUNLOCK(fdesc);
3754 error = EBADF;
3755 goto out;
3756 }
3757 }
3758 fdp = data;
3759 fdep = (struct filedescent **)
3760 CMSG_DATA(mtod(m, struct cmsghdr *));
3761 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
3762 M_WAITOK);
3763 for (i = 0; i < oldfds; i++, fdev++, fdp++) {
3764 fde = &fdesc->fd_ofiles[*fdp];
3765 fdep[i] = fdev;
3766 fdep[i]->fde_file = fde->fde_file;
3767 filecaps_copy(&fde->fde_caps,
3768 &fdep[i]->fde_caps, true);
3769 unp_internalize_fp(fdep[i]->fde_file);
3770 }
3771 FILEDESC_SUNLOCK(fdesc);
3772 break;
3773
3774 case SCM_TIMESTAMP:
3775 m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP,
3776 SOL_SOCKET, M_WAITOK);
3777 tv = (struct timeval *)
3778 CMSG_DATA(mtod(m, struct cmsghdr *));
3779 microtime(tv);
3780 break;
3781
3782 case SCM_BINTIME:
3783 m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME,
3784 SOL_SOCKET, M_WAITOK);
3785 bt = (struct bintime *)
3786 CMSG_DATA(mtod(m, struct cmsghdr *));
3787 bintime(bt);
3788 break;
3789
3790 case SCM_REALTIME:
3791 m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME,
3792 SOL_SOCKET, M_WAITOK);
3793 ts = (struct timespec *)
3794 CMSG_DATA(mtod(m, struct cmsghdr *));
3795 nanotime(ts);
3796 break;
3797
3798 case SCM_MONOTONIC:
3799 m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC,
3800 SOL_SOCKET, M_WAITOK);
3801 ts = (struct timespec *)
3802 CMSG_DATA(mtod(m, struct cmsghdr *));
3803 nanouptime(ts);
3804 break;
3805
3806 default:
3807 error = EINVAL;
3808 goto out;
3809 }
3810
3811 mc_append(mc, m);
3812 }
3813 if (clen > 0)
3814 error = EINVAL;
3815
3816 out:
3817 if (error != 0)
3818 unp_internalize_cleanup_rights(mc_first(mc));
3819 m_freem(control);
3820 return (error);
3821 }
3822
3823 static void
unp_addsockcred(struct thread * td,struct mchain * mc,int mode)3824 unp_addsockcred(struct thread *td, struct mchain *mc, int mode)
3825 {
3826 struct mbuf *m, *n, *n_prev;
3827 const struct cmsghdr *cm;
3828 int ngroups, i, cmsgtype;
3829 size_t ctrlsz;
3830
3831 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
3832 if (mode & UNP_WANTCRED_ALWAYS) {
3833 ctrlsz = SOCKCRED2SIZE(ngroups);
3834 cmsgtype = SCM_CREDS2;
3835 } else {
3836 ctrlsz = SOCKCREDSIZE(ngroups);
3837 cmsgtype = SCM_CREDS;
3838 }
3839
3840 /* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */
3841 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
3842 if (m == NULL)
3843 return;
3844 MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
3845
3846 if (mode & UNP_WANTCRED_ALWAYS) {
3847 struct sockcred2 *sc;
3848
3849 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3850 sc->sc_version = 0;
3851 sc->sc_pid = td->td_proc->p_pid;
3852 sc->sc_uid = td->td_ucred->cr_ruid;
3853 sc->sc_euid = td->td_ucred->cr_uid;
3854 sc->sc_gid = td->td_ucred->cr_rgid;
3855 sc->sc_egid = td->td_ucred->cr_gid;
3856 sc->sc_ngroups = ngroups;
3857 for (i = 0; i < sc->sc_ngroups; i++)
3858 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3859 } else {
3860 struct sockcred *sc;
3861
3862 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3863 sc->sc_uid = td->td_ucred->cr_ruid;
3864 sc->sc_euid = td->td_ucred->cr_uid;
3865 sc->sc_gid = td->td_ucred->cr_rgid;
3866 sc->sc_egid = td->td_ucred->cr_gid;
3867 sc->sc_ngroups = ngroups;
3868 for (i = 0; i < sc->sc_ngroups; i++)
3869 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3870 }
3871
3872 /*
3873 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
3874 * created SCM_CREDS control message (struct sockcred) has another
3875 * format.
3876 */
3877 if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS)
3878 STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) {
3879 cm = mtod(n, struct cmsghdr *);
3880 if (cm->cmsg_level == SOL_SOCKET &&
3881 cm->cmsg_type == SCM_CREDS) {
3882 mc_remove(mc, n);
3883 m_free(n);
3884 }
3885 }
3886
3887 /* Prepend it to the head. */
3888 mc_prepend(mc, m);
3889 }
3890
3891 static struct unpcb *
fptounp(struct file * fp)3892 fptounp(struct file *fp)
3893 {
3894 struct socket *so;
3895
3896 if (fp->f_type != DTYPE_SOCKET)
3897 return (NULL);
3898 if ((so = fp->f_data) == NULL)
3899 return (NULL);
3900 if (so->so_proto->pr_domain != &localdomain)
3901 return (NULL);
3902 return sotounpcb(so);
3903 }
3904
3905 static void
unp_discard(struct file * fp)3906 unp_discard(struct file *fp)
3907 {
3908 struct unp_defer *dr;
3909
3910 if (unp_externalize_fp(fp)) {
3911 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
3912 dr->ud_fp = fp;
3913 UNP_DEFERRED_LOCK();
3914 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
3915 UNP_DEFERRED_UNLOCK();
3916 atomic_add_int(&unp_defers_count, 1);
3917 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
3918 } else
3919 closef_nothread(fp);
3920 }
3921
3922 static void
unp_process_defers(void * arg __unused,int pending)3923 unp_process_defers(void *arg __unused, int pending)
3924 {
3925 struct unp_defer *dr;
3926 SLIST_HEAD(, unp_defer) drl;
3927 int count;
3928
3929 SLIST_INIT(&drl);
3930 for (;;) {
3931 UNP_DEFERRED_LOCK();
3932 if (SLIST_FIRST(&unp_defers) == NULL) {
3933 UNP_DEFERRED_UNLOCK();
3934 break;
3935 }
3936 SLIST_SWAP(&unp_defers, &drl, unp_defer);
3937 UNP_DEFERRED_UNLOCK();
3938 count = 0;
3939 while ((dr = SLIST_FIRST(&drl)) != NULL) {
3940 SLIST_REMOVE_HEAD(&drl, ud_link);
3941 closef_nothread(dr->ud_fp);
3942 free(dr, M_TEMP);
3943 count++;
3944 }
3945 atomic_add_int(&unp_defers_count, -count);
3946 }
3947 }
3948
3949 static void
unp_internalize_fp(struct file * fp)3950 unp_internalize_fp(struct file *fp)
3951 {
3952 struct unpcb *unp;
3953
3954 UNP_LINK_WLOCK();
3955 if ((unp = fptounp(fp)) != NULL) {
3956 unp->unp_file = fp;
3957 unp->unp_msgcount++;
3958 }
3959 unp_rights++;
3960 UNP_LINK_WUNLOCK();
3961 }
3962
3963 static int
unp_externalize_fp(struct file * fp)3964 unp_externalize_fp(struct file *fp)
3965 {
3966 struct unpcb *unp;
3967 int ret;
3968
3969 UNP_LINK_WLOCK();
3970 if ((unp = fptounp(fp)) != NULL) {
3971 unp->unp_msgcount--;
3972 ret = 1;
3973 } else
3974 ret = 0;
3975 unp_rights--;
3976 UNP_LINK_WUNLOCK();
3977 return (ret);
3978 }
3979
3980 /*
3981 * unp_defer indicates whether additional work has been defered for a future
3982 * pass through unp_gc(). It is thread local and does not require explicit
3983 * synchronization.
3984 */
3985 static int unp_marked;
3986
3987 static void
unp_remove_dead_ref(struct filedescent ** fdep,int fdcount)3988 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
3989 {
3990 struct unpcb *unp;
3991 struct file *fp;
3992 int i;
3993
3994 /*
3995 * This function can only be called from the gc task.
3996 */
3997 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3998 ("%s: not on gc callout", __func__));
3999 UNP_LINK_LOCK_ASSERT();
4000
4001 for (i = 0; i < fdcount; i++) {
4002 fp = fdep[i]->fde_file;
4003 if ((unp = fptounp(fp)) == NULL)
4004 continue;
4005 if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4006 continue;
4007 unp->unp_gcrefs--;
4008 }
4009 }
4010
4011 static void
unp_restore_undead_ref(struct filedescent ** fdep,int fdcount)4012 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
4013 {
4014 struct unpcb *unp;
4015 struct file *fp;
4016 int i;
4017
4018 /*
4019 * This function can only be called from the gc task.
4020 */
4021 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4022 ("%s: not on gc callout", __func__));
4023 UNP_LINK_LOCK_ASSERT();
4024
4025 for (i = 0; i < fdcount; i++) {
4026 fp = fdep[i]->fde_file;
4027 if ((unp = fptounp(fp)) == NULL)
4028 continue;
4029 if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4030 continue;
4031 unp->unp_gcrefs++;
4032 unp_marked++;
4033 }
4034 }
4035
4036 static void
unp_scan_socket(struct socket * so,void (* op)(struct filedescent **,int))4037 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
4038 {
4039 struct sockbuf *sb;
4040
4041 SOCK_LOCK_ASSERT(so);
4042
4043 if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
4044 return;
4045
4046 SOCK_RECVBUF_LOCK(so);
4047 switch (so->so_type) {
4048 case SOCK_DGRAM:
4049 unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
4050 unp_scan(so->so_rcv.uxdg_peeked, op);
4051 TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
4052 unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
4053 break;
4054 case SOCK_STREAM:
4055 case SOCK_SEQPACKET:
4056 unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op);
4057 break;
4058 }
4059 SOCK_RECVBUF_UNLOCK(so);
4060 }
4061
4062 static void
unp_gc_scan(struct unpcb * unp,void (* op)(struct filedescent **,int))4063 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
4064 {
4065 struct socket *so, *soa;
4066
4067 so = unp->unp_socket;
4068 SOCK_LOCK(so);
4069 if (SOLISTENING(so)) {
4070 /*
4071 * Mark all sockets in our accept queue.
4072 */
4073 TAILQ_FOREACH(soa, &so->sol_comp, so_list)
4074 unp_scan_socket(soa, op);
4075 } else {
4076 /*
4077 * Mark all sockets we reference with RIGHTS.
4078 */
4079 unp_scan_socket(so, op);
4080 }
4081 SOCK_UNLOCK(so);
4082 }
4083
4084 static int unp_recycled;
4085 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
4086 "Number of unreachable sockets claimed by the garbage collector.");
4087
4088 static int unp_taskcount;
4089 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
4090 "Number of times the garbage collector has run.");
4091
4092 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
4093 "Number of active local sockets.");
4094
4095 static void
unp_gc(__unused void * arg,int pending)4096 unp_gc(__unused void *arg, int pending)
4097 {
4098 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
4099 NULL };
4100 struct unp_head **head;
4101 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */
4102 struct file *f, **unref;
4103 struct unpcb *unp, *unptmp;
4104 int i, total, unp_unreachable;
4105
4106 LIST_INIT(&unp_deadhead);
4107 unp_taskcount++;
4108 UNP_LINK_RLOCK();
4109 /*
4110 * First determine which sockets may be in cycles.
4111 */
4112 unp_unreachable = 0;
4113
4114 for (head = heads; *head != NULL; head++)
4115 LIST_FOREACH(unp, *head, unp_link) {
4116 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
4117 ("%s: unp %p has unexpected gc flags 0x%x",
4118 __func__, unp, (unsigned int)unp->unp_gcflag));
4119
4120 f = unp->unp_file;
4121
4122 /*
4123 * Check for an unreachable socket potentially in a
4124 * cycle. It must be in a queue as indicated by
4125 * msgcount, and this must equal the file reference
4126 * count. Note that when msgcount is 0 the file is
4127 * NULL.
4128 */
4129 if (f != NULL && unp->unp_msgcount != 0 &&
4130 refcount_load(&f->f_count) == unp->unp_msgcount) {
4131 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
4132 unp->unp_gcflag |= UNPGC_DEAD;
4133 unp->unp_gcrefs = unp->unp_msgcount;
4134 unp_unreachable++;
4135 }
4136 }
4137
4138 /*
4139 * Scan all sockets previously marked as potentially being in a cycle
4140 * and remove the references each socket holds on any UNPGC_DEAD
4141 * sockets in its queue. After this step, all remaining references on
4142 * sockets marked UNPGC_DEAD should not be part of any cycle.
4143 */
4144 LIST_FOREACH(unp, &unp_deadhead, unp_dead)
4145 unp_gc_scan(unp, unp_remove_dead_ref);
4146
4147 /*
4148 * If a socket still has a non-negative refcount, it cannot be in a
4149 * cycle. In this case increment refcount of all children iteratively.
4150 * Stop the scan once we do a complete loop without discovering
4151 * a new reachable socket.
4152 */
4153 do {
4154 unp_marked = 0;
4155 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
4156 if (unp->unp_gcrefs > 0) {
4157 unp->unp_gcflag &= ~UNPGC_DEAD;
4158 LIST_REMOVE(unp, unp_dead);
4159 KASSERT(unp_unreachable > 0,
4160 ("%s: unp_unreachable underflow.",
4161 __func__));
4162 unp_unreachable--;
4163 unp_gc_scan(unp, unp_restore_undead_ref);
4164 }
4165 } while (unp_marked);
4166
4167 UNP_LINK_RUNLOCK();
4168
4169 if (unp_unreachable == 0)
4170 return;
4171
4172 /*
4173 * Allocate space for a local array of dead unpcbs.
4174 * TODO: can this path be simplified by instead using the local
4175 * dead list at unp_deadhead, after taking out references
4176 * on the file object and/or unpcb and dropping the link lock?
4177 */
4178 unref = malloc(unp_unreachable * sizeof(struct file *),
4179 M_TEMP, M_WAITOK);
4180
4181 /*
4182 * Iterate looking for sockets which have been specifically marked
4183 * as unreachable and store them locally.
4184 */
4185 UNP_LINK_RLOCK();
4186 total = 0;
4187 LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
4188 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
4189 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
4190 unp->unp_gcflag &= ~UNPGC_DEAD;
4191 f = unp->unp_file;
4192 if (unp->unp_msgcount == 0 || f == NULL ||
4193 refcount_load(&f->f_count) != unp->unp_msgcount ||
4194 !fhold(f))
4195 continue;
4196 unref[total++] = f;
4197 KASSERT(total <= unp_unreachable,
4198 ("%s: incorrect unreachable count.", __func__));
4199 }
4200 UNP_LINK_RUNLOCK();
4201
4202 /*
4203 * Now flush all sockets, free'ing rights. This will free the
4204 * struct files associated with these sockets but leave each socket
4205 * with one remaining ref.
4206 */
4207 for (i = 0; i < total; i++) {
4208 struct socket *so;
4209
4210 so = unref[i]->f_data;
4211 CURVNET_SET(so->so_vnet);
4212 socantrcvmore(so);
4213 unp_dispose(so);
4214 CURVNET_RESTORE();
4215 }
4216
4217 /*
4218 * And finally release the sockets so they can be reclaimed.
4219 */
4220 for (i = 0; i < total; i++)
4221 fdrop(unref[i], NULL);
4222 unp_recycled += total;
4223 free(unref, M_TEMP);
4224 }
4225
4226 /*
4227 * Synchronize against unp_gc, which can trip over data as we are freeing it.
4228 */
4229 static void
unp_dispose(struct socket * so)4230 unp_dispose(struct socket *so)
4231 {
4232 struct sockbuf *sb;
4233 struct unpcb *unp;
4234 struct mbuf *m;
4235 int error __diagused;
4236
4237 MPASS(!SOLISTENING(so));
4238
4239 unp = sotounpcb(so);
4240 UNP_LINK_WLOCK();
4241 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
4242 UNP_LINK_WUNLOCK();
4243
4244 /*
4245 * Grab our special mbufs before calling sbrelease().
4246 */
4247 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
4248 MPASS(!error);
4249 SOCK_RECVBUF_LOCK(so);
4250 switch (so->so_type) {
4251 case SOCK_DGRAM:
4252 while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
4253 STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
4254 TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
4255 /* Note: socket of sb may reconnect. */
4256 sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
4257 }
4258 sb = &so->so_rcv;
4259 if (sb->uxdg_peeked != NULL) {
4260 STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
4261 m_stailqpkt);
4262 sb->uxdg_peeked = NULL;
4263 }
4264 m = STAILQ_FIRST(&sb->uxdg_mb);
4265 STAILQ_INIT(&sb->uxdg_mb);
4266 break;
4267 case SOCK_STREAM:
4268 case SOCK_SEQPACKET:
4269 sb = &so->so_rcv;
4270 m = STAILQ_FIRST(&sb->uxst_mbq);
4271 STAILQ_INIT(&sb->uxst_mbq);
4272 sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0;
4273 /*
4274 * Trim M_NOTREADY buffers from the free list. They are
4275 * referenced by the I/O thread.
4276 */
4277 if (sb->uxst_fnrdy != NULL) {
4278 struct mbuf *n, *prev;
4279
4280 while (m != NULL && m->m_flags & M_NOTREADY)
4281 m = m->m_next;
4282 for (prev = n = m; n != NULL; n = n->m_next) {
4283 if (n->m_flags & M_NOTREADY)
4284 prev->m_next = n->m_next;
4285 else
4286 prev = n;
4287 }
4288 sb->uxst_fnrdy = NULL;
4289 }
4290 break;
4291 }
4292 /*
4293 * Mark sb with SBS_CANTRCVMORE. This is needed to prevent
4294 * uipc_sosend_*() or unp_disconnect() adding more data to the socket.
4295 * We came here either through shutdown(2) or from the final sofree().
4296 * The sofree() case is simple as it guarantees that no more sends will
4297 * happen, however we can race with unp_disconnect() from our peer.
4298 * The shutdown(2) case is more exotic. It would call into
4299 * unp_dispose() only if socket is SS_ISCONNECTED. This is possible if
4300 * we did connect(2) on this socket and we also had it bound with
4301 * bind(2) and receive connections from other sockets. Because
4302 * uipc_shutdown() violates POSIX (see comment there) this applies to
4303 * SOCK_DGRAM as well. For SOCK_DGRAM this SBS_CANTRCVMORE will have
4304 * affect not only on the peer we connect(2)ed to, but also on all of
4305 * the peers who had connect(2)ed to us. Their sends would end up
4306 * with ENOBUFS.
4307 */
4308 sb->sb_state |= SBS_CANTRCVMORE;
4309 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
4310 RLIM_INFINITY);
4311 SOCK_RECVBUF_UNLOCK(so);
4312 SOCK_IO_RECV_UNLOCK(so);
4313
4314 if (m != NULL) {
4315 unp_scan(m, unp_freerights);
4316 m_freemp(m);
4317 }
4318 }
4319
4320 static void
unp_scan(struct mbuf * m0,void (* op)(struct filedescent **,int))4321 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
4322 {
4323 struct mbuf *m;
4324 struct cmsghdr *cm;
4325 void *data;
4326 socklen_t clen, datalen;
4327
4328 while (m0 != NULL) {
4329 for (m = m0; m; m = m->m_next) {
4330 if (m->m_type != MT_CONTROL)
4331 continue;
4332
4333 cm = mtod(m, struct cmsghdr *);
4334 clen = m->m_len;
4335
4336 while (cm != NULL) {
4337 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
4338 break;
4339
4340 data = CMSG_DATA(cm);
4341 datalen = (caddr_t)cm + cm->cmsg_len
4342 - (caddr_t)data;
4343
4344 if (cm->cmsg_level == SOL_SOCKET &&
4345 cm->cmsg_type == SCM_RIGHTS) {
4346 (*op)(data, datalen /
4347 sizeof(struct filedescent *));
4348 }
4349
4350 if (CMSG_SPACE(datalen) < clen) {
4351 clen -= CMSG_SPACE(datalen);
4352 cm = (struct cmsghdr *)
4353 ((caddr_t)cm + CMSG_SPACE(datalen));
4354 } else {
4355 clen = 0;
4356 cm = NULL;
4357 }
4358 }
4359 }
4360 m0 = m0->m_nextpkt;
4361 }
4362 }
4363
4364 /*
4365 * Definitions of protocols supported in the LOCAL domain.
4366 */
4367 static struct protosw streamproto = {
4368 .pr_type = SOCK_STREAM,
4369 .pr_flags = PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4370 .pr_ctloutput = &uipc_ctloutput,
4371 .pr_abort = uipc_abort,
4372 .pr_accept = uipc_peeraddr,
4373 .pr_attach = uipc_attach,
4374 .pr_bind = uipc_bind,
4375 .pr_bindat = uipc_bindat,
4376 .pr_connect = uipc_connect,
4377 .pr_connectat = uipc_connectat,
4378 .pr_connect2 = uipc_connect2,
4379 .pr_detach = uipc_detach,
4380 .pr_disconnect = uipc_disconnect,
4381 .pr_listen = uipc_listen,
4382 .pr_peeraddr = uipc_peeraddr,
4383 .pr_send = uipc_sendfile,
4384 .pr_sendfile_wait = uipc_sendfile_wait,
4385 .pr_ready = uipc_ready,
4386 .pr_sense = uipc_sense,
4387 .pr_shutdown = uipc_shutdown,
4388 .pr_sockaddr = uipc_sockaddr,
4389 .pr_sosend = uipc_sosend_stream_or_seqpacket,
4390 .pr_soreceive = uipc_soreceive_stream_or_seqpacket,
4391 .pr_sopoll = uipc_sopoll_stream_or_seqpacket,
4392 .pr_kqfilter = uipc_kqfilter_stream_or_seqpacket,
4393 .pr_close = uipc_close,
4394 .pr_chmod = uipc_chmod,
4395 };
4396
4397 static struct protosw dgramproto = {
4398 .pr_type = SOCK_DGRAM,
4399 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
4400 .pr_ctloutput = &uipc_ctloutput,
4401 .pr_abort = uipc_abort,
4402 .pr_accept = uipc_peeraddr,
4403 .pr_attach = uipc_attach,
4404 .pr_bind = uipc_bind,
4405 .pr_bindat = uipc_bindat,
4406 .pr_connect = uipc_connect,
4407 .pr_connectat = uipc_connectat,
4408 .pr_connect2 = uipc_connect2,
4409 .pr_detach = uipc_detach,
4410 .pr_disconnect = uipc_disconnect,
4411 .pr_peeraddr = uipc_peeraddr,
4412 .pr_sosend = uipc_sosend_dgram,
4413 .pr_sense = uipc_sense,
4414 .pr_shutdown = uipc_shutdown,
4415 .pr_sockaddr = uipc_sockaddr,
4416 .pr_soreceive = uipc_soreceive_dgram,
4417 .pr_close = uipc_close,
4418 .pr_chmod = uipc_chmod,
4419 };
4420
4421 static struct protosw seqpacketproto = {
4422 .pr_type = SOCK_SEQPACKET,
4423 .pr_flags = PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4424 .pr_ctloutput = &uipc_ctloutput,
4425 .pr_abort = uipc_abort,
4426 .pr_accept = uipc_peeraddr,
4427 .pr_attach = uipc_attach,
4428 .pr_bind = uipc_bind,
4429 .pr_bindat = uipc_bindat,
4430 .pr_connect = uipc_connect,
4431 .pr_connectat = uipc_connectat,
4432 .pr_connect2 = uipc_connect2,
4433 .pr_detach = uipc_detach,
4434 .pr_disconnect = uipc_disconnect,
4435 .pr_listen = uipc_listen,
4436 .pr_peeraddr = uipc_peeraddr,
4437 .pr_sense = uipc_sense,
4438 .pr_shutdown = uipc_shutdown,
4439 .pr_sockaddr = uipc_sockaddr,
4440 .pr_sosend = uipc_sosend_stream_or_seqpacket,
4441 .pr_soreceive = uipc_soreceive_stream_or_seqpacket,
4442 .pr_sopoll = uipc_sopoll_stream_or_seqpacket,
4443 .pr_kqfilter = uipc_kqfilter_stream_or_seqpacket,
4444 .pr_close = uipc_close,
4445 .pr_chmod = uipc_chmod,
4446 };
4447
4448 static struct domain localdomain = {
4449 .dom_family = AF_LOCAL,
4450 .dom_name = "local",
4451 .dom_nprotosw = 3,
4452 .dom_protosw = {
4453 &streamproto,
4454 &dgramproto,
4455 &seqpacketproto,
4456 }
4457 };
4458 DOMAIN_SET(local);
4459
4460 /*
4461 * A helper function called by VFS before socket-type vnode reclamation.
4462 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
4463 * use count.
4464 */
4465 void
vfs_unp_reclaim(struct vnode * vp)4466 vfs_unp_reclaim(struct vnode *vp)
4467 {
4468 struct unpcb *unp;
4469 int active;
4470 struct mtx *vplock;
4471
4472 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
4473 KASSERT(vp->v_type == VSOCK,
4474 ("vfs_unp_reclaim: vp->v_type != VSOCK"));
4475
4476 active = 0;
4477 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
4478 mtx_lock(vplock);
4479 VOP_UNP_CONNECT(vp, &unp);
4480 if (unp == NULL)
4481 goto done;
4482 UNP_PCB_LOCK(unp);
4483 if (unp->unp_vnode == vp) {
4484 VOP_UNP_DETACH(vp);
4485 unp->unp_vnode = NULL;
4486 active = 1;
4487 }
4488 UNP_PCB_UNLOCK(unp);
4489 done:
4490 mtx_unlock(vplock);
4491 if (active)
4492 vunref(vp);
4493 }
4494
4495 #ifdef DDB
4496 static void
db_print_indent(int indent)4497 db_print_indent(int indent)
4498 {
4499 int i;
4500
4501 for (i = 0; i < indent; i++)
4502 db_printf(" ");
4503 }
4504
4505 static void
db_print_unpflags(int unp_flags)4506 db_print_unpflags(int unp_flags)
4507 {
4508 int comma;
4509
4510 comma = 0;
4511 if (unp_flags & UNP_HAVEPC) {
4512 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
4513 comma = 1;
4514 }
4515 if (unp_flags & UNP_WANTCRED_ALWAYS) {
4516 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
4517 comma = 1;
4518 }
4519 if (unp_flags & UNP_WANTCRED_ONESHOT) {
4520 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
4521 comma = 1;
4522 }
4523 if (unp_flags & UNP_CONNECTING) {
4524 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
4525 comma = 1;
4526 }
4527 if (unp_flags & UNP_BINDING) {
4528 db_printf("%sUNP_BINDING", comma ? ", " : "");
4529 comma = 1;
4530 }
4531 }
4532
4533 static void
db_print_xucred(int indent,struct xucred * xu)4534 db_print_xucred(int indent, struct xucred *xu)
4535 {
4536 int comma, i;
4537
4538 db_print_indent(indent);
4539 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n",
4540 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
4541 db_print_indent(indent);
4542 db_printf("cr_groups: ");
4543 comma = 0;
4544 for (i = 0; i < xu->cr_ngroups; i++) {
4545 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
4546 comma = 1;
4547 }
4548 db_printf("\n");
4549 }
4550
4551 static void
db_print_unprefs(int indent,struct unp_head * uh)4552 db_print_unprefs(int indent, struct unp_head *uh)
4553 {
4554 struct unpcb *unp;
4555 int counter;
4556
4557 counter = 0;
4558 LIST_FOREACH(unp, uh, unp_reflink) {
4559 if (counter % 4 == 0)
4560 db_print_indent(indent);
4561 db_printf("%p ", unp);
4562 if (counter % 4 == 3)
4563 db_printf("\n");
4564 counter++;
4565 }
4566 if (counter != 0 && counter % 4 != 0)
4567 db_printf("\n");
4568 }
4569
DB_SHOW_COMMAND(unpcb,db_show_unpcb)4570 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
4571 {
4572 struct unpcb *unp;
4573
4574 if (!have_addr) {
4575 db_printf("usage: show unpcb <addr>\n");
4576 return;
4577 }
4578 unp = (struct unpcb *)addr;
4579
4580 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket,
4581 unp->unp_vnode);
4582
4583 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino,
4584 unp->unp_conn);
4585
4586 db_printf("unp_refs:\n");
4587 db_print_unprefs(2, &unp->unp_refs);
4588
4589 /* XXXRW: Would be nice to print the full address, if any. */
4590 db_printf("unp_addr: %p\n", unp->unp_addr);
4591
4592 db_printf("unp_gencnt: %llu\n",
4593 (unsigned long long)unp->unp_gencnt);
4594
4595 db_printf("unp_flags: %x (", unp->unp_flags);
4596 db_print_unpflags(unp->unp_flags);
4597 db_printf(")\n");
4598
4599 db_printf("unp_peercred:\n");
4600 db_print_xucred(2, &unp->unp_peercred);
4601
4602 db_printf("unp_refcount: %u\n", unp->unp_refcount);
4603 }
4604 #endif
4605