1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11 /*
12 * Handle hardware traps and faults.
13 */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27
28 #include <asm/cpu_entry_area.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
36 #include <asm/microcode.h>
37 #include <asm/sev.h>
38 #include <asm/fred.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/nmi.h>
42
43 struct nmi_desc {
44 raw_spinlock_t lock;
45 struct list_head head;
46 };
47
48 static struct nmi_desc nmi_desc[NMI_MAX] =
49 {
50 {
51 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
52 .head = LIST_HEAD_INIT(nmi_desc[0].head),
53 },
54 {
55 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
56 .head = LIST_HEAD_INIT(nmi_desc[1].head),
57 },
58 {
59 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
60 .head = LIST_HEAD_INIT(nmi_desc[2].head),
61 },
62 {
63 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
64 .head = LIST_HEAD_INIT(nmi_desc[3].head),
65 },
66
67 };
68
69 struct nmi_stats {
70 unsigned int normal;
71 unsigned int unknown;
72 unsigned int external;
73 unsigned int swallow;
74 unsigned long recv_jiffies;
75 unsigned long idt_seq;
76 unsigned long idt_nmi_seq;
77 unsigned long idt_ignored;
78 atomic_long_t idt_calls;
79 unsigned long idt_seq_snap;
80 unsigned long idt_nmi_seq_snap;
81 unsigned long idt_ignored_snap;
82 long idt_calls_snap;
83 };
84
85 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
86
87 static int ignore_nmis __read_mostly;
88
89 int unknown_nmi_panic;
90 /*
91 * Prevent NMI reason port (0x61) being accessed simultaneously, can
92 * only be used in NMI handler.
93 */
94 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
95
setup_unknown_nmi_panic(char * str)96 static int __init setup_unknown_nmi_panic(char *str)
97 {
98 unknown_nmi_panic = 1;
99 return 1;
100 }
101 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
102
103 #define nmi_to_desc(type) (&nmi_desc[type])
104
105 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
106
nmi_warning_debugfs(void)107 static int __init nmi_warning_debugfs(void)
108 {
109 debugfs_create_u64("nmi_longest_ns", 0644,
110 arch_debugfs_dir, &nmi_longest_ns);
111 return 0;
112 }
113 fs_initcall(nmi_warning_debugfs);
114
nmi_check_duration(struct nmiaction * action,u64 duration)115 static void nmi_check_duration(struct nmiaction *action, u64 duration)
116 {
117 int remainder_ns, decimal_msecs;
118
119 if (duration < nmi_longest_ns || duration < action->max_duration)
120 return;
121
122 action->max_duration = duration;
123
124 remainder_ns = do_div(duration, (1000 * 1000));
125 decimal_msecs = remainder_ns / 1000;
126
127 printk_ratelimited(KERN_INFO
128 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
129 action->handler, duration, decimal_msecs);
130 }
131
nmi_handle(unsigned int type,struct pt_regs * regs)132 static int nmi_handle(unsigned int type, struct pt_regs *regs)
133 {
134 struct nmi_desc *desc = nmi_to_desc(type);
135 struct nmiaction *a;
136 int handled=0;
137
138 rcu_read_lock();
139
140 /*
141 * NMIs are edge-triggered, which means if you have enough
142 * of them concurrently, you can lose some because only one
143 * can be latched at any given time. Walk the whole list
144 * to handle those situations.
145 */
146 list_for_each_entry_rcu(a, &desc->head, list) {
147 int thishandled;
148 u64 delta;
149
150 delta = sched_clock();
151 thishandled = a->handler(type, regs);
152 handled += thishandled;
153 delta = sched_clock() - delta;
154 trace_nmi_handler(a->handler, (int)delta, thishandled);
155
156 nmi_check_duration(a, delta);
157 }
158
159 rcu_read_unlock();
160
161 /* return total number of NMI events handled */
162 return handled;
163 }
164 NOKPROBE_SYMBOL(nmi_handle);
165
__register_nmi_handler(unsigned int type,struct nmiaction * action)166 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
167 {
168 struct nmi_desc *desc = nmi_to_desc(type);
169 unsigned long flags;
170
171 if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
172 return -EINVAL;
173
174 raw_spin_lock_irqsave(&desc->lock, flags);
175
176 /*
177 * Indicate if there are multiple registrations on the
178 * internal NMI handler call chains (SERR and IO_CHECK).
179 */
180 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
181 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
182
183 /*
184 * some handlers need to be executed first otherwise a fake
185 * event confuses some handlers (kdump uses this flag)
186 */
187 if (action->flags & NMI_FLAG_FIRST)
188 list_add_rcu(&action->list, &desc->head);
189 else
190 list_add_tail_rcu(&action->list, &desc->head);
191
192 raw_spin_unlock_irqrestore(&desc->lock, flags);
193 return 0;
194 }
195 EXPORT_SYMBOL(__register_nmi_handler);
196
unregister_nmi_handler(unsigned int type,const char * name)197 void unregister_nmi_handler(unsigned int type, const char *name)
198 {
199 struct nmi_desc *desc = nmi_to_desc(type);
200 struct nmiaction *n, *found = NULL;
201 unsigned long flags;
202
203 raw_spin_lock_irqsave(&desc->lock, flags);
204
205 list_for_each_entry_rcu(n, &desc->head, list) {
206 /*
207 * the name passed in to describe the nmi handler
208 * is used as the lookup key
209 */
210 if (!strcmp(n->name, name)) {
211 WARN(in_nmi(),
212 "Trying to free NMI (%s) from NMI context!\n", n->name);
213 list_del_rcu(&n->list);
214 found = n;
215 break;
216 }
217 }
218
219 raw_spin_unlock_irqrestore(&desc->lock, flags);
220 if (found) {
221 synchronize_rcu();
222 INIT_LIST_HEAD(&found->list);
223 }
224 }
225 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
226
227 static void
pci_serr_error(unsigned char reason,struct pt_regs * regs)228 pci_serr_error(unsigned char reason, struct pt_regs *regs)
229 {
230 /* check to see if anyone registered against these types of errors */
231 if (nmi_handle(NMI_SERR, regs))
232 return;
233
234 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
235 reason, smp_processor_id());
236
237 if (panic_on_unrecovered_nmi)
238 nmi_panic(regs, "NMI: Not continuing");
239
240 pr_emerg("Dazed and confused, but trying to continue\n");
241
242 /* Clear and disable the PCI SERR error line. */
243 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
244 outb(reason, NMI_REASON_PORT);
245 }
246 NOKPROBE_SYMBOL(pci_serr_error);
247
248 static void
io_check_error(unsigned char reason,struct pt_regs * regs)249 io_check_error(unsigned char reason, struct pt_regs *regs)
250 {
251 unsigned long i;
252
253 /* check to see if anyone registered against these types of errors */
254 if (nmi_handle(NMI_IO_CHECK, regs))
255 return;
256
257 pr_emerg(
258 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259 reason, smp_processor_id());
260 show_regs(regs);
261
262 if (panic_on_io_nmi) {
263 nmi_panic(regs, "NMI IOCK error: Not continuing");
264
265 /*
266 * If we end up here, it means we have received an NMI while
267 * processing panic(). Simply return without delaying and
268 * re-enabling NMIs.
269 */
270 return;
271 }
272
273 /* Re-enable the IOCK line, wait for a few seconds */
274 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
275 outb(reason, NMI_REASON_PORT);
276
277 i = 20000;
278 while (--i) {
279 touch_nmi_watchdog();
280 udelay(100);
281 }
282
283 reason &= ~NMI_REASON_CLEAR_IOCHK;
284 outb(reason, NMI_REASON_PORT);
285 }
286 NOKPROBE_SYMBOL(io_check_error);
287
288 static void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)289 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
290 {
291 int handled;
292
293 /*
294 * Use 'false' as back-to-back NMIs are dealt with one level up.
295 * Of course this makes having multiple 'unknown' handlers useless
296 * as only the first one is ever run (unless it can actually determine
297 * if it caused the NMI)
298 */
299 handled = nmi_handle(NMI_UNKNOWN, regs);
300 if (handled) {
301 __this_cpu_add(nmi_stats.unknown, handled);
302 return;
303 }
304
305 __this_cpu_add(nmi_stats.unknown, 1);
306
307 pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308 reason, smp_processor_id());
309
310 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
311 nmi_panic(regs, "NMI: Not continuing");
312
313 pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
314 }
315 NOKPROBE_SYMBOL(unknown_nmi_error);
316
317 static DEFINE_PER_CPU(bool, swallow_nmi);
318 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319
default_do_nmi(struct pt_regs * regs)320 static noinstr void default_do_nmi(struct pt_regs *regs)
321 {
322 unsigned char reason = 0;
323 int handled;
324 bool b2b = false;
325
326 /*
327 * CPU-specific NMI must be processed before non-CPU-specific
328 * NMI, otherwise we may lose it, because the CPU-specific
329 * NMI can not be detected/processed on other CPUs.
330 */
331
332 /*
333 * Back-to-back NMIs are interesting because they can either
334 * be two NMI or more than two NMIs (any thing over two is dropped
335 * due to NMI being edge-triggered). If this is the second half
336 * of the back-to-back NMI, assume we dropped things and process
337 * more handlers. Otherwise reset the 'swallow' NMI behaviour
338 */
339 if (regs->ip == __this_cpu_read(last_nmi_rip))
340 b2b = true;
341 else
342 __this_cpu_write(swallow_nmi, false);
343
344 __this_cpu_write(last_nmi_rip, regs->ip);
345
346 instrumentation_begin();
347
348 if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
349 goto out;
350
351 handled = nmi_handle(NMI_LOCAL, regs);
352 __this_cpu_add(nmi_stats.normal, handled);
353 if (handled) {
354 /*
355 * There are cases when a NMI handler handles multiple
356 * events in the current NMI. One of these events may
357 * be queued for in the next NMI. Because the event is
358 * already handled, the next NMI will result in an unknown
359 * NMI. Instead lets flag this for a potential NMI to
360 * swallow.
361 */
362 if (handled > 1)
363 __this_cpu_write(swallow_nmi, true);
364 goto out;
365 }
366
367 /*
368 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
369 *
370 * Another CPU may be processing panic routines while holding
371 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
372 * and if so, call its callback directly. If there is no CPU preparing
373 * crash dump, we simply loop here.
374 */
375 while (!raw_spin_trylock(&nmi_reason_lock)) {
376 run_crash_ipi_callback(regs);
377 cpu_relax();
378 }
379
380 reason = x86_platform.get_nmi_reason();
381
382 if (reason & NMI_REASON_MASK) {
383 if (reason & NMI_REASON_SERR)
384 pci_serr_error(reason, regs);
385 else if (reason & NMI_REASON_IOCHK)
386 io_check_error(reason, regs);
387 #ifdef CONFIG_X86_32
388 /*
389 * Reassert NMI in case it became active
390 * meanwhile as it's edge-triggered:
391 */
392 reassert_nmi();
393 #endif
394 __this_cpu_add(nmi_stats.external, 1);
395 raw_spin_unlock(&nmi_reason_lock);
396 goto out;
397 }
398 raw_spin_unlock(&nmi_reason_lock);
399
400 /*
401 * Only one NMI can be latched at a time. To handle
402 * this we may process multiple nmi handlers at once to
403 * cover the case where an NMI is dropped. The downside
404 * to this approach is we may process an NMI prematurely,
405 * while its real NMI is sitting latched. This will cause
406 * an unknown NMI on the next run of the NMI processing.
407 *
408 * We tried to flag that condition above, by setting the
409 * swallow_nmi flag when we process more than one event.
410 * This condition is also only present on the second half
411 * of a back-to-back NMI, so we flag that condition too.
412 *
413 * If both are true, we assume we already processed this
414 * NMI previously and we swallow it. Otherwise we reset
415 * the logic.
416 *
417 * There are scenarios where we may accidentally swallow
418 * a 'real' unknown NMI. For example, while processing
419 * a perf NMI another perf NMI comes in along with a
420 * 'real' unknown NMI. These two NMIs get combined into
421 * one (as described above). When the next NMI gets
422 * processed, it will be flagged by perf as handled, but
423 * no one will know that there was a 'real' unknown NMI sent
424 * also. As a result it gets swallowed. Or if the first
425 * perf NMI returns two events handled then the second
426 * NMI will get eaten by the logic below, again losing a
427 * 'real' unknown NMI. But this is the best we can do
428 * for now.
429 */
430 if (b2b && __this_cpu_read(swallow_nmi))
431 __this_cpu_add(nmi_stats.swallow, 1);
432 else
433 unknown_nmi_error(reason, regs);
434
435 out:
436 instrumentation_end();
437 }
438
439 /*
440 * NMIs can page fault or hit breakpoints which will cause it to lose
441 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
442 *
443 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
444 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
445 * if the outer NMI came from kernel mode, but we can still nest if the
446 * outer NMI came from user mode.
447 *
448 * To handle these nested NMIs, we have three states:
449 *
450 * 1) not running
451 * 2) executing
452 * 3) latched
453 *
454 * When no NMI is in progress, it is in the "not running" state.
455 * When an NMI comes in, it goes into the "executing" state.
456 * Normally, if another NMI is triggered, it does not interrupt
457 * the running NMI and the HW will simply latch it so that when
458 * the first NMI finishes, it will restart the second NMI.
459 * (Note, the latch is binary, thus multiple NMIs triggering,
460 * when one is running, are ignored. Only one NMI is restarted.)
461 *
462 * If an NMI executes an iret, another NMI can preempt it. We do not
463 * want to allow this new NMI to run, but we want to execute it when the
464 * first one finishes. We set the state to "latched", and the exit of
465 * the first NMI will perform a dec_return, if the result is zero
466 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
467 * dec_return would have set the state to NMI_EXECUTING (what we want it
468 * to be when we are running). In this case, we simply jump back to
469 * rerun the NMI handler again, and restart the 'latched' NMI.
470 *
471 * No trap (breakpoint or page fault) should be hit before nmi_restart,
472 * thus there is no race between the first check of state for NOT_RUNNING
473 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
474 * at this point.
475 *
476 * In case the NMI takes a page fault, we need to save off the CR2
477 * because the NMI could have preempted another page fault and corrupt
478 * the CR2 that is about to be read. As nested NMIs must be restarted
479 * and they can not take breakpoints or page faults, the update of the
480 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
481 * Otherwise, there would be a race of another nested NMI coming in
482 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
483 */
484 enum nmi_states {
485 NMI_NOT_RUNNING = 0,
486 NMI_EXECUTING,
487 NMI_LATCHED,
488 };
489 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
490 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
491 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
492
DEFINE_IDTENTRY_RAW(exc_nmi)493 DEFINE_IDTENTRY_RAW(exc_nmi)
494 {
495 irqentry_state_t irq_state;
496 struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
497
498 /*
499 * Re-enable NMIs right here when running as an SEV-ES guest. This might
500 * cause nested NMIs, but those can be handled safely.
501 */
502 sev_es_nmi_complete();
503 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
504 raw_atomic_long_inc(&nsp->idt_calls);
505
506 if (arch_cpu_is_offline(smp_processor_id())) {
507 if (microcode_nmi_handler_enabled())
508 microcode_offline_nmi_handler();
509 return;
510 }
511
512 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
513 this_cpu_write(nmi_state, NMI_LATCHED);
514 return;
515 }
516 this_cpu_write(nmi_state, NMI_EXECUTING);
517 this_cpu_write(nmi_cr2, read_cr2());
518
519 nmi_restart:
520 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
521 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
522 WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
523 WRITE_ONCE(nsp->recv_jiffies, jiffies);
524 }
525
526 /*
527 * Needs to happen before DR7 is accessed, because the hypervisor can
528 * intercept DR7 reads/writes, turning those into #VC exceptions.
529 */
530 sev_es_ist_enter(regs);
531
532 this_cpu_write(nmi_dr7, local_db_save());
533
534 irq_state = irqentry_nmi_enter(regs);
535
536 inc_irq_stat(__nmi_count);
537
538 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
539 WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
540 } else if (!ignore_nmis) {
541 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
542 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
543 WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
544 }
545 default_do_nmi(regs);
546 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
547 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
548 WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
549 }
550 }
551
552 irqentry_nmi_exit(regs, irq_state);
553
554 local_db_restore(this_cpu_read(nmi_dr7));
555
556 sev_es_ist_exit();
557
558 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
559 write_cr2(this_cpu_read(nmi_cr2));
560 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
561 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
562 WARN_ON_ONCE(nsp->idt_seq & 0x1);
563 WRITE_ONCE(nsp->recv_jiffies, jiffies);
564 }
565 if (this_cpu_dec_return(nmi_state))
566 goto nmi_restart;
567 }
568
569 #if IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)570 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
571 {
572 exc_nmi(regs);
573 }
574 #if IS_MODULE(CONFIG_KVM_INTEL)
575 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
576 #endif
577 #endif
578
579 #ifdef CONFIG_NMI_CHECK_CPU
580
581 static char *nmi_check_stall_msg[] = {
582 /* */
583 /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler. */
584 /* | +------ cpu_is_offline(cpu) */
585 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */
586 /* | | | NMI handler has been invoked. */
587 /* | | | */
588 /* V V V */
589 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
590 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
591 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
592 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
593 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
594 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
595 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
596 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
597 };
598
nmi_backtrace_stall_snap(const struct cpumask * btp)599 void nmi_backtrace_stall_snap(const struct cpumask *btp)
600 {
601 int cpu;
602 struct nmi_stats *nsp;
603
604 for_each_cpu(cpu, btp) {
605 nsp = per_cpu_ptr(&nmi_stats, cpu);
606 nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
607 nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
608 nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
609 nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
610 }
611 }
612
nmi_backtrace_stall_check(const struct cpumask * btp)613 void nmi_backtrace_stall_check(const struct cpumask *btp)
614 {
615 int cpu;
616 int idx;
617 unsigned long nmi_seq;
618 unsigned long j = jiffies;
619 char *modp;
620 char *msgp;
621 char *msghp;
622 struct nmi_stats *nsp;
623
624 for_each_cpu(cpu, btp) {
625 nsp = per_cpu_ptr(&nmi_stats, cpu);
626 modp = "";
627 msghp = "";
628 nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
629 if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
630 msgp = "CPU entered NMI handler function, but has not exited";
631 } else if (nsp->idt_nmi_seq_snap == nmi_seq ||
632 nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
633 idx = ((nmi_seq & 0x1) << 2) |
634 (cpu_is_offline(cpu) << 1) |
635 (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
636 msgp = nmi_check_stall_msg[idx];
637 if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
638 modp = ", but OK because ignore_nmis was set";
639 if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
640 msghp = " (CPU exited one NMI handler function)";
641 else if (nmi_seq & 0x1)
642 msghp = " (CPU currently in NMI handler function)";
643 else
644 msghp = " (CPU was never in an NMI handler function)";
645 } else {
646 msgp = "CPU is handling NMIs";
647 }
648 pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
649 pr_alert("%s: last activity: %lu jiffies ago.\n",
650 __func__, j - READ_ONCE(nsp->recv_jiffies));
651 }
652 }
653
654 #endif
655
656 #ifdef CONFIG_X86_FRED
657 /*
658 * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
659 * event delivery, i.e., there is no problem of transient states.
660 * And NMI unblocking only happens when the stack frame indicates
661 * that so should happen.
662 *
663 * Thus, the NMI entry stub for FRED is really straightforward and
664 * as simple as most exception handlers. As such, #DB is allowed
665 * during NMI handling.
666 */
DEFINE_FREDENTRY_NMI(exc_nmi)667 DEFINE_FREDENTRY_NMI(exc_nmi)
668 {
669 irqentry_state_t irq_state;
670
671 if (arch_cpu_is_offline(smp_processor_id())) {
672 if (microcode_nmi_handler_enabled())
673 microcode_offline_nmi_handler();
674 return;
675 }
676
677 /*
678 * Save CR2 for eventual restore to cover the case where the NMI
679 * hits the VMENTER/VMEXIT region where guest CR2 is life. This
680 * prevents guest state corruption in case that the NMI handler
681 * takes a page fault.
682 */
683 this_cpu_write(nmi_cr2, read_cr2());
684
685 irq_state = irqentry_nmi_enter(regs);
686
687 inc_irq_stat(__nmi_count);
688 default_do_nmi(regs);
689
690 irqentry_nmi_exit(regs, irq_state);
691
692 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
693 write_cr2(this_cpu_read(nmi_cr2));
694 }
695 #endif
696
stop_nmi(void)697 void stop_nmi(void)
698 {
699 ignore_nmis++;
700 }
701
restart_nmi(void)702 void restart_nmi(void)
703 {
704 ignore_nmis--;
705 }
706
707 /* reset the back-to-back NMI logic */
local_touch_nmi(void)708 void local_touch_nmi(void)
709 {
710 __this_cpu_write(last_nmi_rip, 0);
711 }
712 EXPORT_SYMBOL_GPL(local_touch_nmi);
713