xref: /linux/net/unix/garbage.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET3:	Garbage Collector For AF_UNIX sockets
4  *
5  * Garbage Collector:
6  *	Copyright (C) Barak A. Pearlmutter.
7  *
8  * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9  * If it doesn't work blame me, it worked when Barak sent it.
10  *
11  * Assumptions:
12  *
13  *  - object w/ a bit
14  *  - free list
15  *
16  * Current optimizations:
17  *
18  *  - explicit stack instead of recursion
19  *  - tail recurse on first born instead of immediate push/pop
20  *  - we gather the stuff that should not be killed into tree
21  *    and stack is just a path from root to the current pointer.
22  *
23  *  Future optimizations:
24  *
25  *  - don't just push entire root set; process in place
26  *
27  *  Fixes:
28  *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29  *					Cope with changing max_files.
30  *	Al Viro		11 Oct 1998
31  *		Graph may have cycles. That is, we can send the descriptor
32  *		of foo to bar and vice versa. Current code chokes on that.
33  *		Fix: move SCM_RIGHTS ones into the separate list and then
34  *		skb_free() them all instead of doing explicit fput's.
35  *		Another problem: since fput() may block somebody may
36  *		create a new unix_socket when we are in the middle of sweep
37  *		phase. Fix: revert the logic wrt MARKED. Mark everything
38  *		upon the beginning and unmark non-junk ones.
39  *
40  *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41  *		sent to connect()'ed but still not accept()'ed sockets.
42  *		Fixed. Old code had slightly different problem here:
43  *		extra fput() in situation when we passed the descriptor via
44  *		such socket and closed it (descriptor). That would happen on
45  *		each unix_gc() until the accept(). Since the struct file in
46  *		question would go to the free list and might be reused...
47  *		That might be the reason of random oopses on filp_close()
48  *		in unrelated processes.
49  *
50  *	AV		28 Feb 1999
51  *		Kill the explicit allocation of stack. Now we keep the tree
52  *		with root in dummy + pointer (gc_current) to one of the nodes.
53  *		Stack is represented as path from gc_current to dummy. Unmark
54  *		now means "add to tree". Push == "make it a son of gc_current".
55  *		Pop == "move gc_current to parent". We keep only pointers to
56  *		parents (->gc_tree).
57  *	AV		1 Mar 1999
58  *		Damn. Added missing check for ->dead in listen queues scanning.
59  *
60  *	Miklos Szeredi 25 Jun 2007
61  *		Reimplement with a cycle collecting algorithm. This should
62  *		solve several problems with the previous code, like being racy
63  *		wrt receive and holding up unrelated socket operations.
64  */
65 
66 #include <linux/fs.h>
67 #include <linux/list.h>
68 #include <linux/skbuff.h>
69 #include <linux/socket.h>
70 #include <linux/workqueue.h>
71 #include <net/af_unix.h>
72 #include <net/scm.h>
73 #include <net/tcp_states.h>
74 
75 #include "af_unix.h"
76 
77 struct unix_vertex {
78 	struct list_head edges;
79 	struct list_head entry;
80 	struct list_head scc_entry;
81 	unsigned long out_degree;
82 	unsigned long index;
83 	unsigned long scc_index;
84 };
85 
86 struct unix_edge {
87 	struct unix_sock *predecessor;
88 	struct unix_sock *successor;
89 	struct list_head vertex_entry;
90 	struct list_head stack_entry;
91 };
92 
unix_get_socket(struct file * filp)93 struct unix_sock *unix_get_socket(struct file *filp)
94 {
95 	struct inode *inode = file_inode(filp);
96 
97 	/* Socket ? */
98 	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
99 		struct socket *sock = SOCKET_I(inode);
100 		const struct proto_ops *ops;
101 		struct sock *sk = sock->sk;
102 
103 		ops = READ_ONCE(sock->ops);
104 
105 		/* PF_UNIX ? */
106 		if (sk && ops && ops->family == PF_UNIX)
107 			return unix_sk(sk);
108 	}
109 
110 	return NULL;
111 }
112 
unix_edge_successor(struct unix_edge * edge)113 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
114 {
115 	/* If an embryo socket has a fd,
116 	 * the listener indirectly holds the fd's refcnt.
117 	 */
118 	if (edge->successor->listener)
119 		return unix_sk(edge->successor->listener)->vertex;
120 
121 	return edge->successor->vertex;
122 }
123 
124 static bool unix_graph_maybe_cyclic;
125 static bool unix_graph_grouped;
126 
unix_update_graph(struct unix_vertex * vertex)127 static void unix_update_graph(struct unix_vertex *vertex)
128 {
129 	/* If the receiver socket is not inflight, no cyclic
130 	 * reference could be formed.
131 	 */
132 	if (!vertex)
133 		return;
134 
135 	unix_graph_maybe_cyclic = true;
136 	unix_graph_grouped = false;
137 }
138 
139 static LIST_HEAD(unix_unvisited_vertices);
140 
141 enum unix_vertex_index {
142 	UNIX_VERTEX_INDEX_MARK1,
143 	UNIX_VERTEX_INDEX_MARK2,
144 	UNIX_VERTEX_INDEX_START,
145 };
146 
147 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
148 
unix_add_edge(struct scm_fp_list * fpl,struct unix_edge * edge)149 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
150 {
151 	struct unix_vertex *vertex = edge->predecessor->vertex;
152 
153 	if (!vertex) {
154 		vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
155 		vertex->index = unix_vertex_unvisited_index;
156 		vertex->out_degree = 0;
157 		INIT_LIST_HEAD(&vertex->edges);
158 		INIT_LIST_HEAD(&vertex->scc_entry);
159 
160 		list_move_tail(&vertex->entry, &unix_unvisited_vertices);
161 		edge->predecessor->vertex = vertex;
162 	}
163 
164 	vertex->out_degree++;
165 	list_add_tail(&edge->vertex_entry, &vertex->edges);
166 
167 	unix_update_graph(unix_edge_successor(edge));
168 }
169 
unix_del_edge(struct scm_fp_list * fpl,struct unix_edge * edge)170 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
171 {
172 	struct unix_vertex *vertex = edge->predecessor->vertex;
173 
174 	if (!fpl->dead)
175 		unix_update_graph(unix_edge_successor(edge));
176 
177 	list_del(&edge->vertex_entry);
178 	vertex->out_degree--;
179 
180 	if (!vertex->out_degree) {
181 		edge->predecessor->vertex = NULL;
182 		list_move_tail(&vertex->entry, &fpl->vertices);
183 	}
184 }
185 
unix_free_vertices(struct scm_fp_list * fpl)186 static void unix_free_vertices(struct scm_fp_list *fpl)
187 {
188 	struct unix_vertex *vertex, *next_vertex;
189 
190 	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
191 		list_del(&vertex->entry);
192 		kfree(vertex);
193 	}
194 }
195 
196 static DEFINE_SPINLOCK(unix_gc_lock);
197 unsigned int unix_tot_inflight;
198 
unix_add_edges(struct scm_fp_list * fpl,struct unix_sock * receiver)199 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
200 {
201 	int i = 0, j = 0;
202 
203 	spin_lock(&unix_gc_lock);
204 
205 	if (!fpl->count_unix)
206 		goto out;
207 
208 	do {
209 		struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
210 		struct unix_edge *edge;
211 
212 		if (!inflight)
213 			continue;
214 
215 		edge = fpl->edges + i++;
216 		edge->predecessor = inflight;
217 		edge->successor = receiver;
218 
219 		unix_add_edge(fpl, edge);
220 	} while (i < fpl->count_unix);
221 
222 	receiver->scm_stat.nr_unix_fds += fpl->count_unix;
223 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
224 out:
225 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
226 
227 	spin_unlock(&unix_gc_lock);
228 
229 	fpl->inflight = true;
230 
231 	unix_free_vertices(fpl);
232 }
233 
unix_del_edges(struct scm_fp_list * fpl)234 void unix_del_edges(struct scm_fp_list *fpl)
235 {
236 	struct unix_sock *receiver;
237 	int i = 0;
238 
239 	spin_lock(&unix_gc_lock);
240 
241 	if (!fpl->count_unix)
242 		goto out;
243 
244 	do {
245 		struct unix_edge *edge = fpl->edges + i++;
246 
247 		unix_del_edge(fpl, edge);
248 	} while (i < fpl->count_unix);
249 
250 	if (!fpl->dead) {
251 		receiver = fpl->edges[0].successor;
252 		receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
253 	}
254 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
255 out:
256 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
257 
258 	spin_unlock(&unix_gc_lock);
259 
260 	fpl->inflight = false;
261 }
262 
unix_update_edges(struct unix_sock * receiver)263 void unix_update_edges(struct unix_sock *receiver)
264 {
265 	/* nr_unix_fds is only updated under unix_state_lock().
266 	 * If it's 0 here, the embryo socket is not part of the
267 	 * inflight graph, and GC will not see it, so no lock needed.
268 	 */
269 	if (!receiver->scm_stat.nr_unix_fds) {
270 		receiver->listener = NULL;
271 	} else {
272 		spin_lock(&unix_gc_lock);
273 		unix_update_graph(unix_sk(receiver->listener)->vertex);
274 		receiver->listener = NULL;
275 		spin_unlock(&unix_gc_lock);
276 	}
277 }
278 
unix_prepare_fpl(struct scm_fp_list * fpl)279 int unix_prepare_fpl(struct scm_fp_list *fpl)
280 {
281 	struct unix_vertex *vertex;
282 	int i;
283 
284 	if (!fpl->count_unix)
285 		return 0;
286 
287 	for (i = 0; i < fpl->count_unix; i++) {
288 		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
289 		if (!vertex)
290 			goto err;
291 
292 		list_add(&vertex->entry, &fpl->vertices);
293 	}
294 
295 	fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
296 				    GFP_KERNEL_ACCOUNT);
297 	if (!fpl->edges)
298 		goto err;
299 
300 	return 0;
301 
302 err:
303 	unix_free_vertices(fpl);
304 	return -ENOMEM;
305 }
306 
unix_destroy_fpl(struct scm_fp_list * fpl)307 void unix_destroy_fpl(struct scm_fp_list *fpl)
308 {
309 	if (fpl->inflight)
310 		unix_del_edges(fpl);
311 
312 	kvfree(fpl->edges);
313 	unix_free_vertices(fpl);
314 }
315 
unix_vertex_dead(struct unix_vertex * vertex)316 static bool unix_vertex_dead(struct unix_vertex *vertex)
317 {
318 	struct unix_edge *edge;
319 	struct unix_sock *u;
320 	long total_ref;
321 
322 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
323 		struct unix_vertex *next_vertex = unix_edge_successor(edge);
324 
325 		/* The vertex's fd can be received by a non-inflight socket. */
326 		if (!next_vertex)
327 			return false;
328 
329 		/* The vertex's fd can be received by an inflight socket in
330 		 * another SCC.
331 		 */
332 		if (next_vertex->scc_index != vertex->scc_index)
333 			return false;
334 	}
335 
336 	/* No receiver exists out of the same SCC. */
337 
338 	edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
339 	u = edge->predecessor;
340 	total_ref = file_count(u->sk.sk_socket->file);
341 
342 	/* If not close()d, total_ref > out_degree. */
343 	if (total_ref != vertex->out_degree)
344 		return false;
345 
346 	return true;
347 }
348 
unix_collect_skb(struct list_head * scc,struct sk_buff_head * hitlist)349 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
350 {
351 	struct unix_vertex *vertex;
352 
353 	list_for_each_entry_reverse(vertex, scc, scc_entry) {
354 		struct sk_buff_head *queue;
355 		struct unix_edge *edge;
356 		struct unix_sock *u;
357 
358 		edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
359 		u = edge->predecessor;
360 		queue = &u->sk.sk_receive_queue;
361 
362 		spin_lock(&queue->lock);
363 
364 		if (u->sk.sk_state == TCP_LISTEN) {
365 			struct sk_buff *skb;
366 
367 			skb_queue_walk(queue, skb) {
368 				struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
369 
370 				spin_lock(&embryo_queue->lock);
371 				skb_queue_splice_init(embryo_queue, hitlist);
372 				spin_unlock(&embryo_queue->lock);
373 			}
374 		} else {
375 			skb_queue_splice_init(queue, hitlist);
376 		}
377 
378 		spin_unlock(&queue->lock);
379 	}
380 }
381 
unix_scc_cyclic(struct list_head * scc)382 static bool unix_scc_cyclic(struct list_head *scc)
383 {
384 	struct unix_vertex *vertex;
385 	struct unix_edge *edge;
386 
387 	/* SCC containing multiple vertices ? */
388 	if (!list_is_singular(scc))
389 		return true;
390 
391 	vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
392 
393 	/* Self-reference or a embryo-listener circle ? */
394 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
395 		if (unix_edge_successor(edge) == vertex)
396 			return true;
397 	}
398 
399 	return false;
400 }
401 
402 static LIST_HEAD(unix_visited_vertices);
403 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
404 
__unix_walk_scc(struct unix_vertex * vertex,unsigned long * last_index,struct sk_buff_head * hitlist)405 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index,
406 			    struct sk_buff_head *hitlist)
407 {
408 	LIST_HEAD(vertex_stack);
409 	struct unix_edge *edge;
410 	LIST_HEAD(edge_stack);
411 
412 next_vertex:
413 	/* Push vertex to vertex_stack and mark it as on-stack
414 	 * (index >= UNIX_VERTEX_INDEX_START).
415 	 * The vertex will be popped when finalising SCC later.
416 	 */
417 	list_add(&vertex->scc_entry, &vertex_stack);
418 
419 	vertex->index = *last_index;
420 	vertex->scc_index = *last_index;
421 	(*last_index)++;
422 
423 	/* Explore neighbour vertices (receivers of the current vertex's fd). */
424 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
425 		struct unix_vertex *next_vertex = unix_edge_successor(edge);
426 
427 		if (!next_vertex)
428 			continue;
429 
430 		if (next_vertex->index == unix_vertex_unvisited_index) {
431 			/* Iterative deepening depth first search
432 			 *
433 			 *   1. Push a forward edge to edge_stack and set
434 			 *      the successor to vertex for the next iteration.
435 			 */
436 			list_add(&edge->stack_entry, &edge_stack);
437 
438 			vertex = next_vertex;
439 			goto next_vertex;
440 
441 			/*   2. Pop the edge directed to the current vertex
442 			 *      and restore the ancestor for backtracking.
443 			 */
444 prev_vertex:
445 			edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
446 			list_del_init(&edge->stack_entry);
447 
448 			next_vertex = vertex;
449 			vertex = edge->predecessor->vertex;
450 
451 			/* If the successor has a smaller scc_index, two vertices
452 			 * are in the same SCC, so propagate the smaller scc_index
453 			 * to skip SCC finalisation.
454 			 */
455 			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
456 		} else if (next_vertex->index != unix_vertex_grouped_index) {
457 			/* Loop detected by a back/cross edge.
458 			 *
459 			 * The successor is on vertex_stack, so two vertices are in
460 			 * the same SCC.  If the successor has a smaller *scc_index*,
461 			 * propagate it to skip SCC finalisation.
462 			 */
463 			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
464 		} else {
465 			/* The successor was already grouped as another SCC */
466 		}
467 	}
468 
469 	if (vertex->index == vertex->scc_index) {
470 		struct unix_vertex *v;
471 		struct list_head scc;
472 		bool scc_dead = true;
473 
474 		/* SCC finalised.
475 		 *
476 		 * If the scc_index was not updated, all the vertices above on
477 		 * vertex_stack are in the same SCC.  Group them using scc_entry.
478 		 */
479 		__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
480 
481 		list_for_each_entry_reverse(v, &scc, scc_entry) {
482 			/* Don't restart DFS from this vertex in unix_walk_scc(). */
483 			list_move_tail(&v->entry, &unix_visited_vertices);
484 
485 			/* Mark vertex as off-stack. */
486 			v->index = unix_vertex_grouped_index;
487 
488 			if (scc_dead)
489 				scc_dead = unix_vertex_dead(v);
490 		}
491 
492 		if (scc_dead)
493 			unix_collect_skb(&scc, hitlist);
494 		else if (!unix_graph_maybe_cyclic)
495 			unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
496 
497 		list_del(&scc);
498 	}
499 
500 	/* Need backtracking ? */
501 	if (!list_empty(&edge_stack))
502 		goto prev_vertex;
503 }
504 
unix_walk_scc(struct sk_buff_head * hitlist)505 static void unix_walk_scc(struct sk_buff_head *hitlist)
506 {
507 	unsigned long last_index = UNIX_VERTEX_INDEX_START;
508 
509 	unix_graph_maybe_cyclic = false;
510 
511 	/* Visit every vertex exactly once.
512 	 * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
513 	 */
514 	while (!list_empty(&unix_unvisited_vertices)) {
515 		struct unix_vertex *vertex;
516 
517 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
518 		__unix_walk_scc(vertex, &last_index, hitlist);
519 	}
520 
521 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
522 	swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
523 
524 	unix_graph_grouped = true;
525 }
526 
unix_walk_scc_fast(struct sk_buff_head * hitlist)527 static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
528 {
529 	unix_graph_maybe_cyclic = false;
530 
531 	while (!list_empty(&unix_unvisited_vertices)) {
532 		struct unix_vertex *vertex;
533 		struct list_head scc;
534 		bool scc_dead = true;
535 
536 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
537 		list_add(&scc, &vertex->scc_entry);
538 
539 		list_for_each_entry_reverse(vertex, &scc, scc_entry) {
540 			list_move_tail(&vertex->entry, &unix_visited_vertices);
541 
542 			if (scc_dead)
543 				scc_dead = unix_vertex_dead(vertex);
544 		}
545 
546 		if (scc_dead)
547 			unix_collect_skb(&scc, hitlist);
548 		else if (!unix_graph_maybe_cyclic)
549 			unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
550 
551 		list_del(&scc);
552 	}
553 
554 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
555 }
556 
557 static bool gc_in_progress;
558 
__unix_gc(struct work_struct * work)559 static void __unix_gc(struct work_struct *work)
560 {
561 	struct sk_buff_head hitlist;
562 	struct sk_buff *skb;
563 
564 	spin_lock(&unix_gc_lock);
565 
566 	if (!unix_graph_maybe_cyclic) {
567 		spin_unlock(&unix_gc_lock);
568 		goto skip_gc;
569 	}
570 
571 	__skb_queue_head_init(&hitlist);
572 
573 	if (unix_graph_grouped)
574 		unix_walk_scc_fast(&hitlist);
575 	else
576 		unix_walk_scc(&hitlist);
577 
578 	spin_unlock(&unix_gc_lock);
579 
580 	skb_queue_walk(&hitlist, skb) {
581 		if (UNIXCB(skb).fp)
582 			UNIXCB(skb).fp->dead = true;
583 	}
584 
585 	__skb_queue_purge_reason(&hitlist, SKB_DROP_REASON_SOCKET_CLOSE);
586 skip_gc:
587 	WRITE_ONCE(gc_in_progress, false);
588 }
589 
590 static DECLARE_WORK(unix_gc_work, __unix_gc);
591 
unix_gc(void)592 void unix_gc(void)
593 {
594 	WRITE_ONCE(gc_in_progress, true);
595 	queue_work(system_unbound_wq, &unix_gc_work);
596 }
597 
598 #define UNIX_INFLIGHT_TRIGGER_GC 16000
599 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
600 
wait_for_unix_gc(struct scm_fp_list * fpl)601 void wait_for_unix_gc(struct scm_fp_list *fpl)
602 {
603 	/* If number of inflight sockets is insane,
604 	 * force a garbage collect right now.
605 	 *
606 	 * Paired with the WRITE_ONCE() in unix_inflight(),
607 	 * unix_notinflight(), and __unix_gc().
608 	 */
609 	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
610 	    !READ_ONCE(gc_in_progress))
611 		unix_gc();
612 
613 	/* Penalise users who want to send AF_UNIX sockets
614 	 * but whose sockets have not been received yet.
615 	 */
616 	if (!fpl || !fpl->count_unix ||
617 	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
618 		return;
619 
620 	if (READ_ONCE(gc_in_progress))
621 		flush_work(&unix_gc_work);
622 }
623