1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/jiffies.h>
16 #include <linux/kobject.h>
17 #include <linux/list.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/random.h>
22 #include <linux/rwsem.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/workqueue.h>
27
28 #include <linux/atomic.h>
29 #include <asm/byteorder.h>
30
31 #include "core.h"
32
33 #define ROOT_DIR_OFFSET 5
34
fw_csr_iterator_init(struct fw_csr_iterator * ci,const u32 * p)35 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
36 {
37 ci->p = p + 1;
38 ci->end = ci->p + (p[0] >> 16);
39 }
40 EXPORT_SYMBOL(fw_csr_iterator_init);
41
fw_csr_iterator_next(struct fw_csr_iterator * ci,int * key,int * value)42 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
43 {
44 *key = *ci->p >> 24;
45 *value = *ci->p & 0xffffff;
46
47 return ci->p++ < ci->end;
48 }
49 EXPORT_SYMBOL(fw_csr_iterator_next);
50
search_directory(const u32 * directory,int search_key)51 static const u32 *search_directory(const u32 *directory, int search_key)
52 {
53 struct fw_csr_iterator ci;
54 int key, value;
55
56 search_key |= CSR_DIRECTORY;
57
58 fw_csr_iterator_init(&ci, directory);
59 while (fw_csr_iterator_next(&ci, &key, &value)) {
60 if (key == search_key)
61 return ci.p - 1 + value;
62 }
63
64 return NULL;
65 }
66
search_leaf(const u32 * directory,int search_key)67 static const u32 *search_leaf(const u32 *directory, int search_key)
68 {
69 struct fw_csr_iterator ci;
70 int last_key = 0, key, value;
71
72 fw_csr_iterator_init(&ci, directory);
73 while (fw_csr_iterator_next(&ci, &key, &value)) {
74 if (last_key == search_key &&
75 key == (CSR_DESCRIPTOR | CSR_LEAF))
76 return ci.p - 1 + value;
77
78 last_key = key;
79 }
80
81 return NULL;
82 }
83
textual_leaf_to_string(const u32 * block,char * buf,size_t size)84 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
85 {
86 unsigned int quadlets, i;
87 char c;
88
89 if (!size || !buf)
90 return -EINVAL;
91
92 quadlets = min(block[0] >> 16, 256U);
93 if (quadlets < 2)
94 return -ENODATA;
95
96 if (block[1] != 0 || block[2] != 0)
97 /* unknown language/character set */
98 return -ENODATA;
99
100 block += 3;
101 quadlets -= 2;
102 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
103 c = block[i / 4] >> (24 - 8 * (i % 4));
104 if (c == '\0')
105 break;
106 buf[i] = c;
107 }
108 buf[i] = '\0';
109
110 return i;
111 }
112
113 /**
114 * fw_csr_string() - reads a string from the configuration ROM
115 * @directory: e.g. root directory or unit directory
116 * @key: the key of the preceding directory entry
117 * @buf: where to put the string
118 * @size: size of @buf, in bytes
119 *
120 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
121 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
122 * and the zero byte fit into @size.
123 *
124 * Returns strlen(buf) or a negative error code.
125 */
fw_csr_string(const u32 * directory,int key,char * buf,size_t size)126 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
127 {
128 const u32 *leaf = search_leaf(directory, key);
129 if (!leaf)
130 return -ENOENT;
131
132 return textual_leaf_to_string(leaf, buf, size);
133 }
134 EXPORT_SYMBOL(fw_csr_string);
135
get_ids(const u32 * directory,int * id)136 static void get_ids(const u32 *directory, int *id)
137 {
138 struct fw_csr_iterator ci;
139 int key, value;
140
141 fw_csr_iterator_init(&ci, directory);
142 while (fw_csr_iterator_next(&ci, &key, &value)) {
143 switch (key) {
144 case CSR_VENDOR: id[0] = value; break;
145 case CSR_MODEL: id[1] = value; break;
146 case CSR_SPECIFIER_ID: id[2] = value; break;
147 case CSR_VERSION: id[3] = value; break;
148 }
149 }
150 }
151
get_modalias_ids(const struct fw_unit * unit,int * id)152 static void get_modalias_ids(const struct fw_unit *unit, int *id)
153 {
154 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
155 const u32 *directories[] = {NULL, NULL, NULL};
156 const u32 *vendor_directory;
157 int i;
158
159 directories[0] = root_directory;
160
161 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
162 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
163 vendor_directory = search_directory(root_directory, CSR_VENDOR);
164 if (!vendor_directory) {
165 directories[1] = unit->directory;
166 } else {
167 directories[1] = vendor_directory;
168 directories[2] = unit->directory;
169 }
170
171 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
172 get_ids(directories[i], id);
173 }
174
match_ids(const struct ieee1394_device_id * id_table,int * id)175 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
176 {
177 int match = 0;
178
179 if (id[0] == id_table->vendor_id)
180 match |= IEEE1394_MATCH_VENDOR_ID;
181 if (id[1] == id_table->model_id)
182 match |= IEEE1394_MATCH_MODEL_ID;
183 if (id[2] == id_table->specifier_id)
184 match |= IEEE1394_MATCH_SPECIFIER_ID;
185 if (id[3] == id_table->version)
186 match |= IEEE1394_MATCH_VERSION;
187
188 return (match & id_table->match_flags) == id_table->match_flags;
189 }
190
unit_match(struct device * dev,const struct device_driver * drv)191 static const struct ieee1394_device_id *unit_match(struct device *dev,
192 const struct device_driver *drv)
193 {
194 const struct ieee1394_device_id *id_table =
195 container_of_const(drv, struct fw_driver, driver)->id_table;
196 int id[] = {0, 0, 0, 0};
197
198 get_modalias_ids(fw_unit(dev), id);
199
200 for (; id_table->match_flags != 0; id_table++)
201 if (match_ids(id_table, id))
202 return id_table;
203
204 return NULL;
205 }
206
207 static bool is_fw_unit(const struct device *dev);
208
fw_unit_match(struct device * dev,const struct device_driver * drv)209 static int fw_unit_match(struct device *dev, const struct device_driver *drv)
210 {
211 /* We only allow binding to fw_units. */
212 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
213 }
214
fw_unit_probe(struct device * dev)215 static int fw_unit_probe(struct device *dev)
216 {
217 struct fw_driver *driver =
218 container_of(dev->driver, struct fw_driver, driver);
219
220 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
221 }
222
fw_unit_remove(struct device * dev)223 static void fw_unit_remove(struct device *dev)
224 {
225 struct fw_driver *driver =
226 container_of(dev->driver, struct fw_driver, driver);
227
228 driver->remove(fw_unit(dev));
229 }
230
get_modalias(const struct fw_unit * unit,char * buffer,size_t buffer_size)231 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
232 {
233 int id[] = {0, 0, 0, 0};
234
235 get_modalias_ids(unit, id);
236
237 return snprintf(buffer, buffer_size,
238 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
239 id[0], id[1], id[2], id[3]);
240 }
241
fw_unit_uevent(const struct device * dev,struct kobj_uevent_env * env)242 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
243 {
244 const struct fw_unit *unit = fw_unit(dev);
245 char modalias[64];
246
247 get_modalias(unit, modalias, sizeof(modalias));
248
249 if (add_uevent_var(env, "MODALIAS=%s", modalias))
250 return -ENOMEM;
251
252 return 0;
253 }
254
255 const struct bus_type fw_bus_type = {
256 .name = "firewire",
257 .match = fw_unit_match,
258 .probe = fw_unit_probe,
259 .remove = fw_unit_remove,
260 };
261 EXPORT_SYMBOL(fw_bus_type);
262
fw_device_enable_phys_dma(struct fw_device * device)263 int fw_device_enable_phys_dma(struct fw_device *device)
264 {
265 int generation = device->generation;
266
267 /* device->node_id, accessed below, must not be older than generation */
268 smp_rmb();
269
270 return device->card->driver->enable_phys_dma(device->card,
271 device->node_id,
272 generation);
273 }
274 EXPORT_SYMBOL(fw_device_enable_phys_dma);
275
276 struct config_rom_attribute {
277 struct device_attribute attr;
278 u32 key;
279 };
280
show_immediate(struct device * dev,struct device_attribute * dattr,char * buf)281 static ssize_t show_immediate(struct device *dev,
282 struct device_attribute *dattr, char *buf)
283 {
284 struct config_rom_attribute *attr =
285 container_of(dattr, struct config_rom_attribute, attr);
286 struct fw_csr_iterator ci;
287 const u32 *directories[] = {NULL, NULL};
288 int i, value = -1;
289
290 guard(rwsem_read)(&fw_device_rwsem);
291
292 if (is_fw_unit(dev)) {
293 directories[0] = fw_unit(dev)->directory;
294 } else {
295 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
296 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
297
298 if (!vendor_directory) {
299 directories[0] = root_directory;
300 } else {
301 // Legacy layout of configuration ROM described in Annex 1 of
302 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
303 // Association, TA Document 1999027)'.
304 directories[0] = vendor_directory;
305 directories[1] = root_directory;
306 }
307 }
308
309 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
310 int key, val;
311
312 fw_csr_iterator_init(&ci, directories[i]);
313 while (fw_csr_iterator_next(&ci, &key, &val)) {
314 if (attr->key == key)
315 value = val;
316 }
317 }
318
319 if (value < 0)
320 return -ENOENT;
321
322 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
323 return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
324 }
325
326 #define IMMEDIATE_ATTR(name, key) \
327 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
328
show_text_leaf(struct device * dev,struct device_attribute * dattr,char * buf)329 static ssize_t show_text_leaf(struct device *dev,
330 struct device_attribute *dattr, char *buf)
331 {
332 struct config_rom_attribute *attr =
333 container_of(dattr, struct config_rom_attribute, attr);
334 const u32 *directories[] = {NULL, NULL};
335 size_t bufsize;
336 char dummy_buf[2];
337 int i, ret = -ENOENT;
338
339 guard(rwsem_read)(&fw_device_rwsem);
340
341 if (is_fw_unit(dev)) {
342 directories[0] = fw_unit(dev)->directory;
343 } else {
344 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
345 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
346
347 if (!vendor_directory) {
348 directories[0] = root_directory;
349 } else {
350 // Legacy layout of configuration ROM described in Annex 1 of
351 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
352 // Trading Association, TA Document 1999027)'.
353 directories[0] = root_directory;
354 directories[1] = vendor_directory;
355 }
356 }
357
358 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
359 if (buf) {
360 bufsize = PAGE_SIZE - 1;
361 } else {
362 buf = dummy_buf;
363 bufsize = 1;
364 }
365
366 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
367 int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
368 // Detected.
369 if (result >= 0) {
370 ret = result;
371 } else if (i == 0 && attr->key == CSR_VENDOR) {
372 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
373 // in the root directory follows to the directory entry for vendor ID
374 // instead of the immediate value for vendor ID.
375 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
376 bufsize);
377 if (result >= 0)
378 ret = result;
379 }
380 }
381
382 if (ret < 0)
383 return ret;
384
385 // Strip trailing whitespace and add newline.
386 while (ret > 0 && isspace(buf[ret - 1]))
387 ret--;
388 strcpy(buf + ret, "\n");
389 ret++;
390
391 return ret;
392 }
393
394 #define TEXT_LEAF_ATTR(name, key) \
395 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
396
397 static struct config_rom_attribute config_rom_attributes[] = {
398 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
399 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
400 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
401 IMMEDIATE_ATTR(version, CSR_VERSION),
402 IMMEDIATE_ATTR(model, CSR_MODEL),
403 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
404 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
405 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
406 };
407
init_fw_attribute_group(struct device * dev,struct device_attribute * attrs,struct fw_attribute_group * group)408 static void init_fw_attribute_group(struct device *dev,
409 struct device_attribute *attrs,
410 struct fw_attribute_group *group)
411 {
412 struct device_attribute *attr;
413 int i, j;
414
415 for (j = 0; attrs[j].attr.name != NULL; j++)
416 group->attrs[j] = &attrs[j].attr;
417
418 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
419 attr = &config_rom_attributes[i].attr;
420 if (attr->show(dev, attr, NULL) < 0)
421 continue;
422 group->attrs[j++] = &attr->attr;
423 }
424
425 group->attrs[j] = NULL;
426 group->groups[0] = &group->group;
427 group->groups[1] = NULL;
428 group->group.attrs = group->attrs;
429 dev->groups = (const struct attribute_group **) group->groups;
430 }
431
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)432 static ssize_t modalias_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434 {
435 struct fw_unit *unit = fw_unit(dev);
436 int length;
437
438 length = get_modalias(unit, buf, PAGE_SIZE);
439 strcpy(buf + length, "\n");
440
441 return length + 1;
442 }
443
rom_index_show(struct device * dev,struct device_attribute * attr,char * buf)444 static ssize_t rom_index_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
446 {
447 struct fw_device *device = fw_device(dev->parent);
448 struct fw_unit *unit = fw_unit(dev);
449
450 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
451 }
452
453 static struct device_attribute fw_unit_attributes[] = {
454 __ATTR_RO(modalias),
455 __ATTR_RO(rom_index),
456 __ATTR_NULL,
457 };
458
config_rom_show(struct device * dev,struct device_attribute * attr,char * buf)459 static ssize_t config_rom_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461 {
462 struct fw_device *device = fw_device(dev);
463 size_t length;
464
465 guard(rwsem_read)(&fw_device_rwsem);
466
467 length = device->config_rom_length * 4;
468 memcpy(buf, device->config_rom, length);
469
470 return length;
471 }
472
guid_show(struct device * dev,struct device_attribute * attr,char * buf)473 static ssize_t guid_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
475 {
476 struct fw_device *device = fw_device(dev);
477
478 guard(rwsem_read)(&fw_device_rwsem);
479
480 return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
481 }
482
is_local_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t is_local_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct fw_device *device = fw_device(dev);
487
488 return sysfs_emit(buf, "%u\n", device->is_local);
489 }
490
units_sprintf(char * buf,const u32 * directory)491 static int units_sprintf(char *buf, const u32 *directory)
492 {
493 struct fw_csr_iterator ci;
494 int key, value;
495 int specifier_id = 0;
496 int version = 0;
497
498 fw_csr_iterator_init(&ci, directory);
499 while (fw_csr_iterator_next(&ci, &key, &value)) {
500 switch (key) {
501 case CSR_SPECIFIER_ID:
502 specifier_id = value;
503 break;
504 case CSR_VERSION:
505 version = value;
506 break;
507 }
508 }
509
510 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
511 }
512
units_show(struct device * dev,struct device_attribute * attr,char * buf)513 static ssize_t units_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct fw_device *device = fw_device(dev);
517 struct fw_csr_iterator ci;
518 int key, value, i = 0;
519
520 guard(rwsem_read)(&fw_device_rwsem);
521
522 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
523 while (fw_csr_iterator_next(&ci, &key, &value)) {
524 if (key != (CSR_UNIT | CSR_DIRECTORY))
525 continue;
526 i += units_sprintf(&buf[i], ci.p + value - 1);
527 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
528 break;
529 }
530
531 if (i)
532 buf[i - 1] = '\n';
533
534 return i;
535 }
536
537 static struct device_attribute fw_device_attributes[] = {
538 __ATTR_RO(config_rom),
539 __ATTR_RO(guid),
540 __ATTR_RO(is_local),
541 __ATTR_RO(units),
542 __ATTR_NULL,
543 };
544
read_rom(struct fw_device * device,int generation,int index,u32 * data)545 static int read_rom(struct fw_device *device,
546 int generation, int index, u32 *data)
547 {
548 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
549 int i, rcode;
550
551 /* device->node_id, accessed below, must not be older than generation */
552 smp_rmb();
553
554 for (i = 10; i < 100; i += 10) {
555 rcode = fw_run_transaction(device->card,
556 TCODE_READ_QUADLET_REQUEST, device->node_id,
557 generation, device->max_speed, offset, data, 4);
558 if (rcode != RCODE_BUSY)
559 break;
560 msleep(i);
561 }
562 be32_to_cpus(data);
563
564 return rcode;
565 }
566
567 // By quadlet unit.
568 #define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
569
570 /*
571 * Read the bus info block, perform a speed probe, and read all of the rest of
572 * the config ROM. We do all this with a cached bus generation. If the bus
573 * generation changes under us, read_config_rom will fail and get retried.
574 * It's better to start all over in this case because the node from which we
575 * are reading the ROM may have changed the ROM during the reset.
576 * Returns either a result code or a negative error code.
577 */
read_config_rom(struct fw_device * device,int generation)578 static int read_config_rom(struct fw_device *device, int generation)
579 {
580 struct fw_card *card = device->card;
581 const u32 *old_rom, *new_rom;
582 u32 *rom, *stack;
583 u32 sp, key;
584 int i, end, length, ret;
585
586 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
587 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
588 if (rom == NULL)
589 return -ENOMEM;
590
591 stack = &rom[MAX_CONFIG_ROM_SIZE];
592 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
593
594 device->max_speed = SCODE_100;
595
596 /* First read the bus info block. */
597 for (i = 0; i < 5; i++) {
598 ret = read_rom(device, generation, i, &rom[i]);
599 if (ret != RCODE_COMPLETE)
600 goto out;
601 /*
602 * As per IEEE1212 7.2, during initialization, devices can
603 * reply with a 0 for the first quadlet of the config
604 * rom to indicate that they are booting (for example,
605 * if the firmware is on the disk of a external
606 * harddisk). In that case we just fail, and the
607 * retry mechanism will try again later.
608 */
609 if (i == 0 && rom[i] == 0) {
610 ret = RCODE_BUSY;
611 goto out;
612 }
613 }
614
615 device->max_speed = device->node->max_speed;
616
617 /*
618 * Determine the speed of
619 * - devices with link speed less than PHY speed,
620 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
621 * - all devices if there are 1394b repeaters.
622 * Note, we cannot use the bus info block's link_spd as starting point
623 * because some buggy firmwares set it lower than necessary and because
624 * 1394-1995 nodes do not have the field.
625 */
626 if ((rom[2] & 0x7) < device->max_speed ||
627 device->max_speed == SCODE_BETA ||
628 card->beta_repeaters_present) {
629 u32 dummy;
630
631 /* for S1600 and S3200 */
632 if (device->max_speed == SCODE_BETA)
633 device->max_speed = card->link_speed;
634
635 while (device->max_speed > SCODE_100) {
636 if (read_rom(device, generation, 0, &dummy) ==
637 RCODE_COMPLETE)
638 break;
639 device->max_speed--;
640 }
641 }
642
643 /*
644 * Now parse the config rom. The config rom is a recursive
645 * directory structure so we parse it using a stack of
646 * references to the blocks that make up the structure. We
647 * push a reference to the root directory on the stack to
648 * start things off.
649 */
650 length = i;
651 sp = 0;
652 stack[sp++] = 0xc0000005;
653 while (sp > 0) {
654 /*
655 * Pop the next block reference of the stack. The
656 * lower 24 bits is the offset into the config rom,
657 * the upper 8 bits are the type of the reference the
658 * block.
659 */
660 key = stack[--sp];
661 i = key & 0xffffff;
662 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
663 ret = -ENXIO;
664 goto out;
665 }
666
667 /* Read header quadlet for the block to get the length. */
668 ret = read_rom(device, generation, i, &rom[i]);
669 if (ret != RCODE_COMPLETE)
670 goto out;
671 end = i + (rom[i] >> 16) + 1;
672 if (end > MAX_CONFIG_ROM_SIZE) {
673 /*
674 * This block extends outside the config ROM which is
675 * a firmware bug. Ignore this whole block, i.e.
676 * simply set a fake block length of 0.
677 */
678 fw_err(card, "skipped invalid ROM block %x at %llx\n",
679 rom[i],
680 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
681 rom[i] = 0;
682 end = i;
683 }
684 i++;
685
686 /*
687 * Now read in the block. If this is a directory
688 * block, check the entries as we read them to see if
689 * it references another block, and push it in that case.
690 */
691 for (; i < end; i++) {
692 ret = read_rom(device, generation, i, &rom[i]);
693 if (ret != RCODE_COMPLETE)
694 goto out;
695
696 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
697 continue;
698 /*
699 * Offset points outside the ROM. May be a firmware
700 * bug or an Extended ROM entry (IEEE 1212-2001 clause
701 * 7.7.18). Simply overwrite this pointer here by a
702 * fake immediate entry so that later iterators over
703 * the ROM don't have to check offsets all the time.
704 */
705 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
706 fw_err(card,
707 "skipped unsupported ROM entry %x at %llx\n",
708 rom[i],
709 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
710 rom[i] = 0;
711 continue;
712 }
713 stack[sp++] = i + rom[i];
714 }
715 if (length < i)
716 length = i;
717 }
718
719 old_rom = device->config_rom;
720 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
721 if (new_rom == NULL) {
722 ret = -ENOMEM;
723 goto out;
724 }
725
726 scoped_guard(rwsem_write, &fw_device_rwsem) {
727 device->config_rom = new_rom;
728 device->config_rom_length = length;
729 }
730
731 kfree(old_rom);
732 ret = RCODE_COMPLETE;
733 device->max_rec = rom[2] >> 12 & 0xf;
734 device->cmc = rom[2] >> 30 & 1;
735 device->irmc = rom[2] >> 31 & 1;
736 out:
737 kfree(rom);
738
739 return ret;
740 }
741
fw_unit_release(struct device * dev)742 static void fw_unit_release(struct device *dev)
743 {
744 struct fw_unit *unit = fw_unit(dev);
745
746 fw_device_put(fw_parent_device(unit));
747 kfree(unit);
748 }
749
750 static struct device_type fw_unit_type = {
751 .uevent = fw_unit_uevent,
752 .release = fw_unit_release,
753 };
754
is_fw_unit(const struct device * dev)755 static bool is_fw_unit(const struct device *dev)
756 {
757 return dev->type == &fw_unit_type;
758 }
759
create_units(struct fw_device * device)760 static void create_units(struct fw_device *device)
761 {
762 struct fw_csr_iterator ci;
763 struct fw_unit *unit;
764 int key, value, i;
765
766 i = 0;
767 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
768 while (fw_csr_iterator_next(&ci, &key, &value)) {
769 if (key != (CSR_UNIT | CSR_DIRECTORY))
770 continue;
771
772 /*
773 * Get the address of the unit directory and try to
774 * match the drivers id_tables against it.
775 */
776 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
777 if (unit == NULL)
778 continue;
779
780 unit->directory = ci.p + value - 1;
781 unit->device.bus = &fw_bus_type;
782 unit->device.type = &fw_unit_type;
783 unit->device.parent = &device->device;
784 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
785
786 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
787 ARRAY_SIZE(fw_unit_attributes) +
788 ARRAY_SIZE(config_rom_attributes));
789 init_fw_attribute_group(&unit->device,
790 fw_unit_attributes,
791 &unit->attribute_group);
792
793 fw_device_get(device);
794 if (device_register(&unit->device) < 0) {
795 put_device(&unit->device);
796 continue;
797 }
798 }
799 }
800
shutdown_unit(struct device * device,void * data)801 static int shutdown_unit(struct device *device, void *data)
802 {
803 device_unregister(device);
804
805 return 0;
806 }
807
808 /*
809 * fw_device_rwsem acts as dual purpose mutex:
810 * - serializes accesses to fw_device.config_rom/.config_rom_length and
811 * fw_unit.directory, unless those accesses happen at safe occasions
812 */
813 DECLARE_RWSEM(fw_device_rwsem);
814
815 DEFINE_XARRAY_ALLOC(fw_device_xa);
816 int fw_cdev_major;
817
fw_device_get_by_devt(dev_t devt)818 struct fw_device *fw_device_get_by_devt(dev_t devt)
819 {
820 struct fw_device *device;
821
822 device = xa_load(&fw_device_xa, MINOR(devt));
823 if (device)
824 fw_device_get(device);
825
826 return device;
827 }
828
829 struct workqueue_struct *fw_workqueue;
830 EXPORT_SYMBOL(fw_workqueue);
831
fw_schedule_device_work(struct fw_device * device,unsigned long delay)832 static void fw_schedule_device_work(struct fw_device *device,
833 unsigned long delay)
834 {
835 queue_delayed_work(fw_workqueue, &device->work, delay);
836 }
837
838 /*
839 * These defines control the retry behavior for reading the config
840 * rom. It shouldn't be necessary to tweak these; if the device
841 * doesn't respond to a config rom read within 10 seconds, it's not
842 * going to respond at all. As for the initial delay, a lot of
843 * devices will be able to respond within half a second after bus
844 * reset. On the other hand, it's not really worth being more
845 * aggressive than that, since it scales pretty well; if 10 devices
846 * are plugged in, they're all getting read within one second.
847 */
848
849 #define MAX_RETRIES 10
850 #define RETRY_DELAY (3 * HZ)
851 #define INITIAL_DELAY (HZ / 2)
852 #define SHUTDOWN_DELAY (2 * HZ)
853
fw_device_shutdown(struct work_struct * work)854 static void fw_device_shutdown(struct work_struct *work)
855 {
856 struct fw_device *device = from_work(device, work, work.work);
857
858 if (time_before64(get_jiffies_64(),
859 device->card->reset_jiffies + SHUTDOWN_DELAY)
860 && !list_empty(&device->card->link)) {
861 fw_schedule_device_work(device, SHUTDOWN_DELAY);
862 return;
863 }
864
865 if (atomic_cmpxchg(&device->state,
866 FW_DEVICE_GONE,
867 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
868 return;
869
870 fw_device_cdev_remove(device);
871 device_for_each_child(&device->device, NULL, shutdown_unit);
872 device_unregister(&device->device);
873
874 xa_erase(&fw_device_xa, MINOR(device->device.devt));
875
876 fw_device_put(device);
877 }
878
fw_device_release(struct device * dev)879 static void fw_device_release(struct device *dev)
880 {
881 struct fw_device *device = fw_device(dev);
882 struct fw_card *card = device->card;
883
884 /*
885 * Take the card lock so we don't set this to NULL while a
886 * FW_NODE_UPDATED callback is being handled or while the
887 * bus manager work looks at this node.
888 */
889 scoped_guard(spinlock_irqsave, &card->lock)
890 device->node->data = NULL;
891
892 fw_node_put(device->node);
893 kfree(device->config_rom);
894 kfree(device);
895 fw_card_put(card);
896 }
897
898 static struct device_type fw_device_type = {
899 .release = fw_device_release,
900 };
901
is_fw_device(const struct device * dev)902 static bool is_fw_device(const struct device *dev)
903 {
904 return dev->type == &fw_device_type;
905 }
906
update_unit(struct device * dev,void * data)907 static int update_unit(struct device *dev, void *data)
908 {
909 struct fw_unit *unit = fw_unit(dev);
910 struct fw_driver *driver = (struct fw_driver *)dev->driver;
911
912 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
913 device_lock(dev);
914 driver->update(unit);
915 device_unlock(dev);
916 }
917
918 return 0;
919 }
920
fw_device_update(struct work_struct * work)921 static void fw_device_update(struct work_struct *work)
922 {
923 struct fw_device *device = from_work(device, work, work.work);
924
925 fw_device_cdev_update(device);
926 device_for_each_child(&device->device, NULL, update_unit);
927 }
928
929 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
930
set_broadcast_channel(struct fw_device * device,int generation)931 static void set_broadcast_channel(struct fw_device *device, int generation)
932 {
933 struct fw_card *card = device->card;
934 __be32 data;
935 int rcode;
936
937 if (!card->broadcast_channel_allocated)
938 return;
939
940 /*
941 * The Broadcast_Channel Valid bit is required by nodes which want to
942 * transmit on this channel. Such transmissions are practically
943 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
944 * to be IRM capable and have a max_rec of 8 or more. We use this fact
945 * to narrow down to which nodes we send Broadcast_Channel updates.
946 */
947 if (!device->irmc || device->max_rec < 8)
948 return;
949
950 /*
951 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
952 * Perform a read test first.
953 */
954 if (device->bc_implemented == BC_UNKNOWN) {
955 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
956 device->node_id, generation, device->max_speed,
957 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
958 &data, 4);
959 switch (rcode) {
960 case RCODE_COMPLETE:
961 if (data & cpu_to_be32(1 << 31)) {
962 device->bc_implemented = BC_IMPLEMENTED;
963 break;
964 }
965 fallthrough; /* to case address error */
966 case RCODE_ADDRESS_ERROR:
967 device->bc_implemented = BC_UNIMPLEMENTED;
968 }
969 }
970
971 if (device->bc_implemented == BC_IMPLEMENTED) {
972 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
973 BROADCAST_CHANNEL_VALID);
974 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
975 device->node_id, generation, device->max_speed,
976 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
977 &data, 4);
978 }
979 }
980
fw_device_set_broadcast_channel(struct device * dev,void * gen)981 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
982 {
983 if (is_fw_device(dev))
984 set_broadcast_channel(fw_device(dev), (long)gen);
985
986 return 0;
987 }
988
compare_configuration_rom(struct device * dev,const void * data)989 static int compare_configuration_rom(struct device *dev, const void *data)
990 {
991 const struct fw_device *old = fw_device(dev);
992 const u32 *config_rom = data;
993
994 if (!is_fw_device(dev))
995 return 0;
996
997 // Compare the bus information block and root_length/root_crc.
998 return !memcmp(old->config_rom, config_rom, 6 * 4);
999 }
1000
fw_device_init(struct work_struct * work)1001 static void fw_device_init(struct work_struct *work)
1002 {
1003 struct fw_device *device = from_work(device, work, work.work);
1004 struct fw_card *card = device->card;
1005 struct device *found;
1006 u32 minor;
1007 int ret;
1008
1009 /*
1010 * All failure paths here set node->data to NULL, so that we
1011 * don't try to do device_for_each_child() on a kfree()'d
1012 * device.
1013 */
1014
1015 ret = read_config_rom(device, device->generation);
1016 if (ret != RCODE_COMPLETE) {
1017 if (device->config_rom_retries < MAX_RETRIES &&
1018 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1019 device->config_rom_retries++;
1020 fw_schedule_device_work(device, RETRY_DELAY);
1021 } else {
1022 if (device->node->link_on)
1023 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1024 device->node_id,
1025 fw_rcode_string(ret));
1026 if (device->node == card->root_node)
1027 fw_schedule_bm_work(card, 0);
1028 fw_device_release(&device->device);
1029 }
1030 return;
1031 }
1032
1033 // If a device was pending for deletion because its node went away but its bus info block
1034 // and root directory header matches that of a newly discovered device, revive the
1035 // existing fw_device. The newly allocated fw_device becomes obsolete instead.
1036 //
1037 // serialize config_rom access.
1038 scoped_guard(rwsem_read, &fw_device_rwsem) {
1039 found = device_find_child(card->device, device->config_rom,
1040 compare_configuration_rom);
1041 }
1042 if (found) {
1043 struct fw_device *reused = fw_device(found);
1044
1045 if (atomic_cmpxchg(&reused->state,
1046 FW_DEVICE_GONE,
1047 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1048 // serialize node access
1049 scoped_guard(spinlock_irq, &card->lock) {
1050 struct fw_node *current_node = device->node;
1051 struct fw_node *obsolete_node = reused->node;
1052
1053 device->node = obsolete_node;
1054 device->node->data = device;
1055 reused->node = current_node;
1056 reused->node->data = reused;
1057
1058 reused->max_speed = device->max_speed;
1059 reused->node_id = current_node->node_id;
1060 smp_wmb(); /* update node_id before generation */
1061 reused->generation = card->generation;
1062 reused->config_rom_retries = 0;
1063 fw_notice(card, "rediscovered device %s\n",
1064 dev_name(found));
1065
1066 reused->workfn = fw_device_update;
1067 fw_schedule_device_work(reused, 0);
1068
1069 if (current_node == card->root_node)
1070 fw_schedule_bm_work(card, 0);
1071 }
1072
1073 put_device(found);
1074 fw_device_release(&device->device);
1075
1076 return;
1077 }
1078
1079 put_device(found);
1080 }
1081
1082 device_initialize(&device->device);
1083
1084 fw_device_get(device);
1085
1086 // The index of allocated entry is used for minor identifier of device node.
1087 ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1088 if (ret < 0)
1089 goto error;
1090
1091 device->device.bus = &fw_bus_type;
1092 device->device.type = &fw_device_type;
1093 device->device.parent = card->device;
1094 device->device.devt = MKDEV(fw_cdev_major, minor);
1095 dev_set_name(&device->device, "fw%d", minor);
1096
1097 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1098 ARRAY_SIZE(fw_device_attributes) +
1099 ARRAY_SIZE(config_rom_attributes));
1100 init_fw_attribute_group(&device->device,
1101 fw_device_attributes,
1102 &device->attribute_group);
1103
1104 if (device_add(&device->device)) {
1105 fw_err(card, "failed to add device\n");
1106 goto error_with_cdev;
1107 }
1108
1109 create_units(device);
1110
1111 /*
1112 * Transition the device to running state. If it got pulled
1113 * out from under us while we did the initialization work, we
1114 * have to shut down the device again here. Normally, though,
1115 * fw_node_event will be responsible for shutting it down when
1116 * necessary. We have to use the atomic cmpxchg here to avoid
1117 * racing with the FW_NODE_DESTROYED case in
1118 * fw_node_event().
1119 */
1120 if (atomic_cmpxchg(&device->state,
1121 FW_DEVICE_INITIALIZING,
1122 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1123 device->workfn = fw_device_shutdown;
1124 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1125 } else {
1126 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1127 dev_name(&device->device),
1128 device->config_rom[3], device->config_rom[4],
1129 1 << device->max_speed);
1130 device->config_rom_retries = 0;
1131
1132 set_broadcast_channel(device, device->generation);
1133
1134 add_device_randomness(&device->config_rom[3], 8);
1135 }
1136
1137 /*
1138 * Reschedule the IRM work if we just finished reading the
1139 * root node config rom. If this races with a bus reset we
1140 * just end up running the IRM work a couple of extra times -
1141 * pretty harmless.
1142 */
1143 if (device->node == card->root_node)
1144 fw_schedule_bm_work(card, 0);
1145
1146 return;
1147
1148 error_with_cdev:
1149 xa_erase(&fw_device_xa, minor);
1150 error:
1151 fw_device_put(device); // fw_device_xa's reference.
1152
1153 put_device(&device->device); /* our reference */
1154 }
1155
1156 /* Reread and compare bus info block and header of root directory */
reread_config_rom(struct fw_device * device,int generation,bool * changed)1157 static int reread_config_rom(struct fw_device *device, int generation,
1158 bool *changed)
1159 {
1160 u32 q;
1161 int i, rcode;
1162
1163 for (i = 0; i < 6; i++) {
1164 rcode = read_rom(device, generation, i, &q);
1165 if (rcode != RCODE_COMPLETE)
1166 return rcode;
1167
1168 if (i == 0 && q == 0)
1169 /* inaccessible (see read_config_rom); retry later */
1170 return RCODE_BUSY;
1171
1172 if (q != device->config_rom[i]) {
1173 *changed = true;
1174 return RCODE_COMPLETE;
1175 }
1176 }
1177
1178 *changed = false;
1179 return RCODE_COMPLETE;
1180 }
1181
fw_device_refresh(struct work_struct * work)1182 static void fw_device_refresh(struct work_struct *work)
1183 {
1184 struct fw_device *device = from_work(device, work, work.work);
1185 struct fw_card *card = device->card;
1186 int ret, node_id = device->node_id;
1187 bool changed;
1188
1189 ret = reread_config_rom(device, device->generation, &changed);
1190 if (ret != RCODE_COMPLETE)
1191 goto failed_config_rom;
1192
1193 if (!changed) {
1194 if (atomic_cmpxchg(&device->state,
1195 FW_DEVICE_INITIALIZING,
1196 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1197 goto gone;
1198
1199 fw_device_update(work);
1200 device->config_rom_retries = 0;
1201 goto out;
1202 }
1203
1204 /*
1205 * Something changed. We keep things simple and don't investigate
1206 * further. We just destroy all previous units and create new ones.
1207 */
1208 device_for_each_child(&device->device, NULL, shutdown_unit);
1209
1210 ret = read_config_rom(device, device->generation);
1211 if (ret != RCODE_COMPLETE)
1212 goto failed_config_rom;
1213
1214 fw_device_cdev_update(device);
1215 create_units(device);
1216
1217 /* Userspace may want to re-read attributes. */
1218 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1219
1220 if (atomic_cmpxchg(&device->state,
1221 FW_DEVICE_INITIALIZING,
1222 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1223 goto gone;
1224
1225 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1226 device->config_rom_retries = 0;
1227 goto out;
1228
1229 failed_config_rom:
1230 if (device->config_rom_retries < MAX_RETRIES &&
1231 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1232 device->config_rom_retries++;
1233 fw_schedule_device_work(device, RETRY_DELAY);
1234 return;
1235 }
1236
1237 fw_notice(card, "giving up on refresh of device %s: %s\n",
1238 dev_name(&device->device), fw_rcode_string(ret));
1239 gone:
1240 atomic_set(&device->state, FW_DEVICE_GONE);
1241 device->workfn = fw_device_shutdown;
1242 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1243 out:
1244 if (node_id == card->root_node->node_id)
1245 fw_schedule_bm_work(card, 0);
1246 }
1247
fw_device_workfn(struct work_struct * work)1248 static void fw_device_workfn(struct work_struct *work)
1249 {
1250 struct fw_device *device = from_work(device, to_delayed_work(work), work);
1251 device->workfn(work);
1252 }
1253
fw_node_event(struct fw_card * card,struct fw_node * node,int event)1254 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1255 {
1256 struct fw_device *device;
1257
1258 switch (event) {
1259 case FW_NODE_CREATED:
1260 /*
1261 * Attempt to scan the node, regardless whether its self ID has
1262 * the L (link active) flag set or not. Some broken devices
1263 * send L=0 but have an up-and-running link; others send L=1
1264 * without actually having a link.
1265 */
1266 create:
1267 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1268 if (device == NULL)
1269 break;
1270
1271 /*
1272 * Do minimal initialization of the device here, the
1273 * rest will happen in fw_device_init().
1274 *
1275 * Attention: A lot of things, even fw_device_get(),
1276 * cannot be done before fw_device_init() finished!
1277 * You can basically just check device->state and
1278 * schedule work until then, but only while holding
1279 * card->lock.
1280 */
1281 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1282 device->card = fw_card_get(card);
1283 device->node = fw_node_get(node);
1284 device->node_id = node->node_id;
1285 device->generation = card->generation;
1286 device->is_local = node == card->local_node;
1287 mutex_init(&device->client_list_mutex);
1288 INIT_LIST_HEAD(&device->client_list);
1289
1290 /*
1291 * Set the node data to point back to this device so
1292 * FW_NODE_UPDATED callbacks can update the node_id
1293 * and generation for the device.
1294 */
1295 node->data = device;
1296
1297 /*
1298 * Many devices are slow to respond after bus resets,
1299 * especially if they are bus powered and go through
1300 * power-up after getting plugged in. We schedule the
1301 * first config rom scan half a second after bus reset.
1302 */
1303 device->workfn = fw_device_init;
1304 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1305 fw_schedule_device_work(device, INITIAL_DELAY);
1306 break;
1307
1308 case FW_NODE_INITIATED_RESET:
1309 case FW_NODE_LINK_ON:
1310 device = node->data;
1311 if (device == NULL)
1312 goto create;
1313
1314 device->node_id = node->node_id;
1315 smp_wmb(); /* update node_id before generation */
1316 device->generation = card->generation;
1317 if (atomic_cmpxchg(&device->state,
1318 FW_DEVICE_RUNNING,
1319 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1320 device->workfn = fw_device_refresh;
1321 fw_schedule_device_work(device,
1322 device->is_local ? 0 : INITIAL_DELAY);
1323 }
1324 break;
1325
1326 case FW_NODE_UPDATED:
1327 device = node->data;
1328 if (device == NULL)
1329 break;
1330
1331 device->node_id = node->node_id;
1332 smp_wmb(); /* update node_id before generation */
1333 device->generation = card->generation;
1334 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1335 device->workfn = fw_device_update;
1336 fw_schedule_device_work(device, 0);
1337 }
1338 break;
1339
1340 case FW_NODE_DESTROYED:
1341 case FW_NODE_LINK_OFF:
1342 if (!node->data)
1343 break;
1344
1345 /*
1346 * Destroy the device associated with the node. There
1347 * are two cases here: either the device is fully
1348 * initialized (FW_DEVICE_RUNNING) or we're in the
1349 * process of reading its config rom
1350 * (FW_DEVICE_INITIALIZING). If it is fully
1351 * initialized we can reuse device->work to schedule a
1352 * full fw_device_shutdown(). If not, there's work
1353 * scheduled to read it's config rom, and we just put
1354 * the device in shutdown state to have that code fail
1355 * to create the device.
1356 */
1357 device = node->data;
1358 if (atomic_xchg(&device->state,
1359 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1360 device->workfn = fw_device_shutdown;
1361 fw_schedule_device_work(device,
1362 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1363 }
1364 break;
1365 }
1366 }
1367
1368 #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1369 #include "device-attribute-test.c"
1370 #endif
1371