xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/FunctionExtras.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file provides a collection of function (or more generally, callable)
10 /// type erasure utilities supplementing those provided by the standard library
11 /// in `<function>`.
12 ///
13 /// It provides `unique_function`, which works like `std::function` but supports
14 /// move-only callable objects and const-qualification.
15 ///
16 /// Future plans:
17 /// - Add a `function` that provides ref-qualified support, which doesn't work
18 ///   with `std::function`.
19 /// - Provide support for specifying multiple signatures to type erase callable
20 ///   objects with an overload set, such as those produced by generic lambdas.
21 /// - Expand to include a copyable utility that directly replaces std::function
22 ///   but brings the above improvements.
23 ///
24 /// Note that LLVM's utilities are greatly simplified by not supporting
25 /// allocators.
26 ///
27 /// If the standard library ever begins to provide comparable facilities we can
28 /// consider switching to those.
29 ///
30 //===----------------------------------------------------------------------===//
31 
32 #ifndef LLVM_ADT_FUNCTIONEXTRAS_H
33 #define LLVM_ADT_FUNCTIONEXTRAS_H
34 
35 #include "llvm/ADT/PointerIntPair.h"
36 #include "llvm/ADT/PointerUnion.h"
37 #include "llvm/ADT/STLForwardCompat.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/MemAlloc.h"
40 #include "llvm/Support/type_traits.h"
41 #include <cstring>
42 #include <memory>
43 #include <type_traits>
44 
45 namespace llvm {
46 
47 /// unique_function is a type-erasing functor similar to std::function.
48 ///
49 /// It can hold move-only function objects, like lambdas capturing unique_ptrs.
50 /// Accordingly, it is movable but not copyable.
51 ///
52 /// It supports const-qualification:
53 /// - unique_function<int() const> has a const operator().
54 ///   It can only hold functions which themselves have a const operator().
55 /// - unique_function<int()> has a non-const operator().
56 ///   It can hold functions with a non-const operator(), like mutable lambdas.
57 template <typename FunctionT> class unique_function;
58 
59 namespace detail {
60 
61 template <typename T>
62 using EnableIfTrivial =
63     std::enable_if_t<std::is_trivially_move_constructible<T>::value &&
64                      std::is_trivially_destructible<T>::value>;
65 template <typename CallableT, typename ThisT>
66 using EnableUnlessSameType =
67     std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
68 template <typename CallableT, typename Ret, typename... Params>
69 using EnableIfCallable = std::enable_if_t<std::disjunction<
70     std::is_void<Ret>,
71     std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)),
72                  Ret>,
73     std::is_same<const decltype(std::declval<CallableT>()(
74                      std::declval<Params>()...)),
75                  Ret>,
76     std::is_convertible<decltype(std::declval<CallableT>()(
77                             std::declval<Params>()...)),
78                         Ret>>::value>;
79 
80 template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
81 protected:
82   static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
83 
84   template <typename T, class = void>
85   struct IsSizeLessThanThresholdT : std::false_type {};
86 
87   template <typename T>
88   struct IsSizeLessThanThresholdT<
89       T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
90 
91   // Provide a type function to map parameters that won't observe extra copies
92   // or moves and which are small enough to likely pass in register to values
93   // and all other types to l-value reference types. We use this to compute the
94   // types used in our erased call utility to minimize copies and moves unless
95   // doing so would force things unnecessarily into memory.
96   //
97   // The heuristic used is related to common ABI register passing conventions.
98   // It doesn't have to be exact though, and in one way it is more strict
99   // because we want to still be able to observe either moves *or* copies.
100   template <typename T> struct AdjustedParamTBase {
101     static_assert(!std::is_reference<T>::value,
102                   "references should be handled by template specialization");
103     using type =
104         std::conditional_t<std::is_trivially_copy_constructible<T>::value &&
105                                std::is_trivially_move_constructible<T>::value &&
106                                IsSizeLessThanThresholdT<T>::value,
107                            T, T &>;
108   };
109 
110   // This specialization ensures that 'AdjustedParam<V<T>&>' or
111   // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
112   // an incomplete type and V a templated type.
113   template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
114   template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
115 
116   template <typename T>
117   using AdjustedParamT = typename AdjustedParamTBase<T>::type;
118 
119   // The type of the erased function pointer we use as a callback to dispatch to
120   // the stored callable when it is trivial to move and destroy.
121   using CallPtrT = ReturnT (*)(void *CallableAddr,
122                                AdjustedParamT<ParamTs>... Params);
123   using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
124   using DestroyPtrT = void (*)(void *CallableAddr);
125 
126   /// A struct to hold a single trivial callback with sufficient alignment for
127   /// our bitpacking.
128   struct alignas(8) TrivialCallback {
129     CallPtrT CallPtr;
130   };
131 
132   /// A struct we use to aggregate three callbacks when we need full set of
133   /// operations.
134   struct alignas(8) NonTrivialCallbacks {
135     CallPtrT CallPtr;
136     MovePtrT MovePtr;
137     DestroyPtrT DestroyPtr;
138   };
139 
140   // Create a pointer union between either a pointer to a static trivial call
141   // pointer in a struct or a pointer to a static struct of the call, move, and
142   // destroy pointers.
143   using CallbackPointerUnionT =
144       PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
145 
146   // The main storage buffer. This will either have a pointer to out-of-line
147   // storage or an inline buffer storing the callable.
148   union StorageUnionT {
149     // For out-of-line storage we keep a pointer to the underlying storage and
150     // the size. This is enough to deallocate the memory.
151     struct OutOfLineStorageT {
152       void *StoragePtr;
153       size_t Size;
154       size_t Alignment;
155     } OutOfLineStorage;
156     static_assert(
157         sizeof(OutOfLineStorageT) <= InlineStorageSize,
158         "Should always use all of the out-of-line storage for inline storage!");
159 
160     // For in-line storage, we just provide an aligned character buffer. We
161     // provide three pointers worth of storage here.
162     // This is mutable as an inlined `const unique_function<void() const>` may
163     // still modify its own mutable members.
164     alignas(void *) mutable std::byte InlineStorage[InlineStorageSize];
165   } StorageUnion;
166 
167   // A compressed pointer to either our dispatching callback or our table of
168   // dispatching callbacks and the flag for whether the callable itself is
169   // stored inline or not.
170   PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
171 
172   bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
173 
174   bool isTrivialCallback() const {
175     return isa<TrivialCallback *>(CallbackAndInlineFlag.getPointer());
176   }
177 
178   CallPtrT getTrivialCallback() const {
179     return cast<TrivialCallback *>(CallbackAndInlineFlag.getPointer())->CallPtr;
180   }
181 
182   NonTrivialCallbacks *getNonTrivialCallbacks() const {
183     return cast<NonTrivialCallbacks *>(CallbackAndInlineFlag.getPointer());
184   }
185 
186   CallPtrT getCallPtr() const {
187     return isTrivialCallback() ? getTrivialCallback()
188                                : getNonTrivialCallbacks()->CallPtr;
189   }
190 
191   // These three functions are only const in the narrow sense. They return
192   // mutable pointers to function state.
193   // This allows unique_function<T const>::operator() to be const, even if the
194   // underlying functor may be internally mutable.
195   //
196   // const callers must ensure they're only used in const-correct ways.
197   void *getCalleePtr() const {
198     return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
199   }
200   void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
201   void *getOutOfLineStorage() const {
202     return StorageUnion.OutOfLineStorage.StoragePtr;
203   }
204 
205   size_t getOutOfLineStorageSize() const {
206     return StorageUnion.OutOfLineStorage.Size;
207   }
208   size_t getOutOfLineStorageAlignment() const {
209     return StorageUnion.OutOfLineStorage.Alignment;
210   }
211 
212   void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
213     StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
214   }
215 
216   template <typename CalledAsT>
217   static ReturnT CallImpl(void *CallableAddr,
218                           AdjustedParamT<ParamTs>... Params) {
219     auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
220     return Func(std::forward<ParamTs>(Params)...);
221   }
222 
223   template <typename CallableT>
224   static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
225     new (LHSCallableAddr)
226         CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
227   }
228 
229   template <typename CallableT>
230   static void DestroyImpl(void *CallableAddr) noexcept {
231     reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
232   }
233 
234   // The pointers to call/move/destroy functions are determined for each
235   // callable type (and called-as type, which determines the overload chosen).
236   // (definitions are out-of-line).
237 
238   // By default, we need an object that contains all the different
239   // type erased behaviors needed. Create a static instance of the struct type
240   // here and each instance will contain a pointer to it.
241   // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
242   template <typename CallableT, typename CalledAs, typename Enable = void>
243   struct CallbacksHolder {
244     static NonTrivialCallbacks Callbacks;
245   };
246   // See if we can create a trivial callback. We need the callable to be
247   // trivially moved and trivially destroyed so that we don't have to store
248   // type erased callbacks for those operations.
249   template <typename CallableT, typename CalledAs>
250   struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
251     static TrivialCallback Callbacks;
252   };
253 
254   // A simple tag type so the call-as type to be passed to the constructor.
255   template <typename T> struct CalledAs {};
256 
257   // Essentially the "main" unique_function constructor, but subclasses
258   // provide the qualified type to be used for the call.
259   // (We always store a T, even if the call will use a pointer to const T).
260   template <typename CallableT, typename CalledAsT>
261   UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
262     bool IsInlineStorage = true;
263     void *CallableAddr = getInlineStorage();
264     if (sizeof(CallableT) > InlineStorageSize ||
265         alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
266       IsInlineStorage = false;
267       // Allocate out-of-line storage. FIXME: Use an explicit alignment
268       // parameter in C++17 mode.
269       auto Size = sizeof(CallableT);
270       auto Alignment = alignof(CallableT);
271       CallableAddr = allocate_buffer(Size, Alignment);
272       setOutOfLineStorage(CallableAddr, Size, Alignment);
273     }
274 
275     // Now move into the storage.
276     new (CallableAddr) CallableT(std::move(Callable));
277     CallbackAndInlineFlag.setPointerAndInt(
278         &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage);
279   }
280 
281   ~UniqueFunctionBase() {
282     if (!CallbackAndInlineFlag.getPointer())
283       return;
284 
285     // Cache this value so we don't re-check it after type-erased operations.
286     bool IsInlineStorage = isInlineStorage();
287 
288     if (!isTrivialCallback())
289       getNonTrivialCallbacks()->DestroyPtr(
290           IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
291 
292     if (!IsInlineStorage)
293       deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
294                         getOutOfLineStorageAlignment());
295   }
296 
297   UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
298     // Copy the callback and inline flag.
299     CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
300 
301     // If the RHS is empty, just copying the above is sufficient.
302     if (!RHS)
303       return;
304 
305     if (!isInlineStorage()) {
306       // The out-of-line case is easiest to move.
307       StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
308     } else if (isTrivialCallback()) {
309       // Move is trivial, just memcpy the bytes across.
310       memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
311     } else {
312       // Non-trivial move, so dispatch to a type-erased implementation.
313       getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
314                                         RHS.getInlineStorage());
315     }
316 
317     // Clear the old callback and inline flag to get back to as-if-null.
318     RHS.CallbackAndInlineFlag = {};
319 
320 #if !defined(NDEBUG) && !LLVM_ADDRESS_SANITIZER_BUILD
321     // In debug builds without ASan, we also scribble across the rest of the
322     // storage. Scribbling under AddressSanitizer (ASan) is disabled to prevent
323     // overwriting poisoned objects (e.g., annotated short strings).
324     memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
325 #endif
326   }
327 
328   UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
329     if (this == &RHS)
330       return *this;
331 
332     // Because we don't try to provide any exception safety guarantees we can
333     // implement move assignment very simply by first destroying the current
334     // object and then move-constructing over top of it.
335     this->~UniqueFunctionBase();
336     new (this) UniqueFunctionBase(std::move(RHS));
337     return *this;
338   }
339 
340   UniqueFunctionBase() = default;
341 
342 public:
343   explicit operator bool() const {
344     return (bool)CallbackAndInlineFlag.getPointer();
345   }
346 };
347 
348 template <typename R, typename... P>
349 template <typename CallableT, typename CalledAsT, typename Enable>
350 typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
351     R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
352     &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
353 
354 template <typename R, typename... P>
355 template <typename CallableT, typename CalledAsT>
356 typename UniqueFunctionBase<R, P...>::TrivialCallback
357     UniqueFunctionBase<R, P...>::CallbacksHolder<
358         CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
359         &CallImpl<CalledAsT>};
360 
361 } // namespace detail
362 
363 template <typename R, typename... P>
364 class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
365   using Base = detail::UniqueFunctionBase<R, P...>;
366 
367 public:
368   unique_function() = default;
369   unique_function(std::nullptr_t) {}
370   unique_function(unique_function &&) = default;
371   unique_function(const unique_function &) = delete;
372   unique_function &operator=(unique_function &&) = default;
373   unique_function &operator=(const unique_function &) = delete;
374 
375   template <typename CallableT>
376   unique_function(
377       CallableT Callable,
378       detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
379       detail::EnableIfCallable<CallableT, R, P...> * = nullptr)
380       : Base(std::forward<CallableT>(Callable),
381              typename Base::template CalledAs<CallableT>{}) {}
382 
383   R operator()(P... Params) {
384     return this->getCallPtr()(this->getCalleePtr(), Params...);
385   }
386 };
387 
388 template <typename R, typename... P>
389 class unique_function<R(P...) const>
390     : public detail::UniqueFunctionBase<R, P...> {
391   using Base = detail::UniqueFunctionBase<R, P...>;
392 
393 public:
394   unique_function() = default;
395   unique_function(std::nullptr_t) {}
396   unique_function(unique_function &&) = default;
397   unique_function(const unique_function &) = delete;
398   unique_function &operator=(unique_function &&) = default;
399   unique_function &operator=(const unique_function &) = delete;
400 
401   template <typename CallableT>
402   unique_function(
403       CallableT Callable,
404       detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
405       detail::EnableIfCallable<const CallableT, R, P...> * = nullptr)
406       : Base(std::forward<CallableT>(Callable),
407              typename Base::template CalledAs<const CallableT>{}) {}
408 
409   R operator()(P... Params) const {
410     return this->getCallPtr()(this->getCalleePtr(), Params...);
411   }
412 };
413 
414 } // end namespace llvm
415 
416 #endif // LLVM_ADT_FUNCTIONEXTRAS_H
417