1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1994 Jan-Simon Pendry
5 * Copyright (c) 1994
6 * The Regents of the University of California. All rights reserved.
7 * Copyright (c) 2005, 2006, 2012 Masanori Ozawa <ozawa@ongs.co.jp>, ONGS Inc.
8 * Copyright (c) 2006, 2012 Daichi Goto <daichi@freebsd.org>
9 *
10 * This code is derived from software contributed to Berkeley by
11 * Jan-Simon Pendry.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/namei.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/dirent.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/stat.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 #include <sys/resourcevar.h>
56
57 #include <machine/atomic.h>
58
59 #include <security/mac/mac_framework.h>
60
61 #include <vm/uma.h>
62
63 #include <fs/unionfs/union.h>
64
65 #define NUNIONFSNODECACHE 16
66 #define UNIONFSHASHMASK (NUNIONFSNODECACHE - 1)
67
68 static MALLOC_DEFINE(M_UNIONFSHASH, "UNIONFS hash", "UNIONFS hash table");
69 MALLOC_DEFINE(M_UNIONFSNODE, "UNIONFS node", "UNIONFS vnode private part");
70 MALLOC_DEFINE(M_UNIONFSPATH, "UNIONFS path", "UNIONFS path private part");
71
72 static struct task unionfs_deferred_rele_task;
73 static struct mtx unionfs_deferred_rele_lock;
74 static STAILQ_HEAD(, unionfs_node) unionfs_deferred_rele_list =
75 STAILQ_HEAD_INITIALIZER(unionfs_deferred_rele_list);
76 static TASKQUEUE_DEFINE_THREAD(unionfs_rele);
77
78 unsigned int unionfs_ndeferred = 0;
79 SYSCTL_UINT(_vfs, OID_AUTO, unionfs_ndeferred, CTLFLAG_RD,
80 &unionfs_ndeferred, 0, "unionfs deferred vnode release");
81
82 static void unionfs_deferred_rele(void *, int);
83
84 /*
85 * Initialize
86 */
87 int
unionfs_init(struct vfsconf * vfsp)88 unionfs_init(struct vfsconf *vfsp)
89 {
90 UNIONFSDEBUG("unionfs_init\n"); /* printed during system boot */
91 TASK_INIT(&unionfs_deferred_rele_task, 0, unionfs_deferred_rele, NULL);
92 mtx_init(&unionfs_deferred_rele_lock, "uniondefr", NULL, MTX_DEF);
93 return (0);
94 }
95
96 /*
97 * Uninitialize
98 */
99 int
unionfs_uninit(struct vfsconf * vfsp)100 unionfs_uninit(struct vfsconf *vfsp)
101 {
102 taskqueue_quiesce(taskqueue_unionfs_rele);
103 taskqueue_free(taskqueue_unionfs_rele);
104 mtx_destroy(&unionfs_deferred_rele_lock);
105 return (0);
106 }
107
108 static void
unionfs_deferred_rele(void * arg __unused,int pending __unused)109 unionfs_deferred_rele(void *arg __unused, int pending __unused)
110 {
111 STAILQ_HEAD(, unionfs_node) local_rele_list;
112 struct unionfs_node *unp, *tunp;
113 unsigned int ndeferred;
114
115 ndeferred = 0;
116 STAILQ_INIT(&local_rele_list);
117 mtx_lock(&unionfs_deferred_rele_lock);
118 STAILQ_CONCAT(&local_rele_list, &unionfs_deferred_rele_list);
119 mtx_unlock(&unionfs_deferred_rele_lock);
120 STAILQ_FOREACH_SAFE(unp, &local_rele_list, un_rele, tunp) {
121 ++ndeferred;
122 MPASS(unp->un_dvp != NULL);
123 vrele(unp->un_dvp);
124 free(unp, M_UNIONFSNODE);
125 }
126
127 /* We expect this function to be single-threaded, thus no atomic */
128 unionfs_ndeferred += ndeferred;
129 }
130
131 static struct unionfs_node_hashhead *
unionfs_get_hashhead(struct vnode * dvp,struct vnode * lookup)132 unionfs_get_hashhead(struct vnode *dvp, struct vnode *lookup)
133 {
134 struct unionfs_node *unp;
135
136 unp = VTOUNIONFS(dvp);
137
138 return (&(unp->un_hashtbl[vfs_hash_index(lookup) & UNIONFSHASHMASK]));
139 }
140
141 /*
142 * Attempt to lookup a cached unionfs vnode by upper/lower vp
143 * from dvp, with dvp's interlock held.
144 */
145 static struct vnode *
unionfs_get_cached_vnode_locked(struct vnode * lookup,struct vnode * dvp)146 unionfs_get_cached_vnode_locked(struct vnode *lookup, struct vnode *dvp)
147 {
148 struct unionfs_node *unp;
149 struct unionfs_node_hashhead *hd;
150 struct vnode *vp;
151
152 hd = unionfs_get_hashhead(dvp, lookup);
153
154 LIST_FOREACH(unp, hd, un_hash) {
155 if (unp->un_uppervp == lookup ||
156 unp->un_lowervp == lookup) {
157 vp = UNIONFSTOV(unp);
158 VI_LOCK_FLAGS(vp, MTX_DUPOK);
159 vp->v_iflag &= ~VI_OWEINACT;
160 if (VN_IS_DOOMED(vp) ||
161 ((vp->v_iflag & VI_DOINGINACT) != 0)) {
162 VI_UNLOCK(vp);
163 vp = NULL;
164 } else {
165 vrefl(vp);
166 VI_UNLOCK(vp);
167 }
168 return (vp);
169 }
170 }
171
172 return (NULL);
173 }
174
175
176 /*
177 * Get the cached vnode.
178 */
179 static struct vnode *
unionfs_get_cached_vnode(struct vnode * uvp,struct vnode * lvp,struct vnode * dvp)180 unionfs_get_cached_vnode(struct vnode *uvp, struct vnode *lvp,
181 struct vnode *dvp)
182 {
183 struct vnode *vp;
184
185 vp = NULL;
186 VI_LOCK(dvp);
187 if (uvp != NULL)
188 vp = unionfs_get_cached_vnode_locked(uvp, dvp);
189 else if (lvp != NULL)
190 vp = unionfs_get_cached_vnode_locked(lvp, dvp);
191 VI_UNLOCK(dvp);
192
193 return (vp);
194 }
195
196 /*
197 * Add the new vnode into cache.
198 */
199 static struct vnode *
unionfs_ins_cached_vnode(struct unionfs_node * uncp,struct vnode * dvp)200 unionfs_ins_cached_vnode(struct unionfs_node *uncp,
201 struct vnode *dvp)
202 {
203 struct unionfs_node_hashhead *hd;
204 struct vnode *vp;
205
206 vp = NULL;
207 VI_LOCK(dvp);
208 if (uncp->un_uppervp != NULL) {
209 ASSERT_VOP_ELOCKED(uncp->un_uppervp, __func__);
210 KASSERT(uncp->un_uppervp->v_type == VDIR,
211 ("%s: v_type != VDIR", __func__));
212 vp = unionfs_get_cached_vnode_locked(uncp->un_uppervp, dvp);
213 } else if (uncp->un_lowervp != NULL) {
214 ASSERT_VOP_ELOCKED(uncp->un_lowervp, __func__);
215 KASSERT(uncp->un_lowervp->v_type == VDIR,
216 ("%s: v_type != VDIR", __func__));
217 vp = unionfs_get_cached_vnode_locked(uncp->un_lowervp, dvp);
218 }
219 if (vp == NULL) {
220 hd = unionfs_get_hashhead(dvp, (uncp->un_uppervp != NULL ?
221 uncp->un_uppervp : uncp->un_lowervp));
222 LIST_INSERT_HEAD(hd, uncp, un_hash);
223 }
224 VI_UNLOCK(dvp);
225
226 return (vp);
227 }
228
229 /*
230 * Remove the vnode.
231 */
232 static void
unionfs_rem_cached_vnode(struct unionfs_node * unp,struct vnode * dvp)233 unionfs_rem_cached_vnode(struct unionfs_node *unp, struct vnode *dvp)
234 {
235 KASSERT(unp != NULL, ("%s: null node", __func__));
236 KASSERT(dvp != NULL,
237 ("%s: null parent vnode", __func__));
238
239 VI_LOCK(dvp);
240 if (unp->un_hash.le_prev != NULL) {
241 LIST_REMOVE(unp, un_hash);
242 unp->un_hash.le_next = NULL;
243 unp->un_hash.le_prev = NULL;
244 }
245 VI_UNLOCK(dvp);
246 }
247
248 /*
249 * Common cleanup handling for unionfs_nodeget
250 * Upper, lower, and parent directory vnodes are expected to be referenced by
251 * the caller. Upper and lower vnodes, if non-NULL, are also expected to be
252 * exclusively locked by the caller.
253 * This function will return with the caller's locks and references undone.
254 */
255 static void
unionfs_nodeget_cleanup(struct vnode * vp,struct unionfs_node * unp)256 unionfs_nodeget_cleanup(struct vnode *vp, struct unionfs_node *unp)
257 {
258
259 /*
260 * Lock and reset the default vnode lock; vgone() expects a locked
261 * vnode, and we're going to reset the vnode ops.
262 */
263 lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
264
265 /*
266 * Clear out private data and reset the vnode ops to avoid use of
267 * unionfs vnode ops on a partially constructed vnode.
268 */
269 VI_LOCK(vp);
270 vp->v_data = NULL;
271 vp->v_vnlock = &vp->v_lock;
272 vp->v_op = &dead_vnodeops;
273 VI_UNLOCK(vp);
274 vgone(vp);
275 vput(vp);
276
277 if (unp->un_dvp != NULL)
278 vrele(unp->un_dvp);
279 if (unp->un_uppervp != NULL) {
280 vput(unp->un_uppervp);
281 if (unp->un_lowervp != NULL)
282 vrele(unp->un_lowervp);
283 } else if (unp->un_lowervp != NULL)
284 vput(unp->un_lowervp);
285 if (unp->un_hashtbl != NULL)
286 hashdestroy(unp->un_hashtbl, M_UNIONFSHASH, UNIONFSHASHMASK);
287 free(unp->un_path, M_UNIONFSPATH);
288 free(unp, M_UNIONFSNODE);
289 }
290
291 /*
292 * Make a new or get existing unionfs node.
293 *
294 * uppervp and lowervp should be unlocked. Because if new unionfs vnode is
295 * locked, uppervp or lowervp is locked too. In order to prevent dead lock,
296 * you should not lock plurality simultaneously.
297 */
298 int
unionfs_nodeget(struct mount * mp,struct vnode * uppervp,struct vnode * lowervp,struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp)299 unionfs_nodeget(struct mount *mp, struct vnode *uppervp,
300 struct vnode *lowervp, struct vnode *dvp, struct vnode **vpp,
301 struct componentname *cnp)
302 {
303 char *path;
304 struct unionfs_mount *ump;
305 struct unionfs_node *unp;
306 struct vnode *vp;
307 u_long hashmask;
308 int error;
309 int lkflags;
310 __enum_uint8(vtype) vt;
311
312 error = 0;
313 ump = MOUNTTOUNIONFSMOUNT(mp);
314 lkflags = (cnp ? cnp->cn_lkflags : 0);
315 path = (cnp ? cnp->cn_nameptr : NULL);
316 *vpp = NULL;
317
318 if (uppervp == NULL && lowervp == NULL)
319 panic("%s: upper and lower are both null", __func__);
320
321 vt = (uppervp != NULL ? uppervp->v_type : lowervp->v_type);
322
323 /* If it has no ISLASTCN flag, path check is skipped. */
324 if (cnp && !(cnp->cn_flags & ISLASTCN))
325 path = NULL;
326
327 /* check the cache */
328 if (dvp != NULL && vt == VDIR) {
329 vp = unionfs_get_cached_vnode(uppervp, lowervp, dvp);
330 if (vp != NULL) {
331 *vpp = vp;
332 if (lkflags != 0)
333 vn_lock(*vpp, lkflags | LK_RETRY);
334 return (0);
335 }
336 }
337
338 unp = malloc(sizeof(struct unionfs_node),
339 M_UNIONFSNODE, M_WAITOK | M_ZERO);
340
341 error = getnewvnode("unionfs", mp, &unionfs_vnodeops, &vp);
342 if (error != 0) {
343 free(unp, M_UNIONFSNODE);
344 return (error);
345 }
346 if (dvp != NULL)
347 vref(dvp);
348 if (uppervp != NULL)
349 vref(uppervp);
350 if (lowervp != NULL)
351 vref(lowervp);
352
353 if (vt == VDIR) {
354 unp->un_hashtbl = hashinit(NUNIONFSNODECACHE, M_UNIONFSHASH,
355 &hashmask);
356 KASSERT(hashmask == UNIONFSHASHMASK,
357 ("unexpected unionfs hash mask 0x%lx", hashmask));
358 }
359
360 unp->un_vnode = vp;
361 unp->un_uppervp = uppervp;
362 unp->un_lowervp = lowervp;
363 unp->un_dvp = dvp;
364 if (uppervp != NULL)
365 vp->v_vnlock = uppervp->v_vnlock;
366 else
367 vp->v_vnlock = lowervp->v_vnlock;
368
369 if (path != NULL) {
370 unp->un_path = malloc(cnp->cn_namelen + 1,
371 M_UNIONFSPATH, M_WAITOK | M_ZERO);
372 bcopy(cnp->cn_nameptr, unp->un_path, cnp->cn_namelen);
373 unp->un_path[cnp->cn_namelen] = '\0';
374 unp->un_pathlen = cnp->cn_namelen;
375 }
376 vp->v_type = vt;
377 vp->v_data = unp;
378
379 /*
380 * TODO: This is an imperfect check, as there's no guarantee that
381 * the underlying filesystems will always return vnode pointers
382 * for the root inodes that match our cached values. To reduce
383 * the likelihood of failure, for example in the case where either
384 * vnode has been forcibly doomed, we check both pointers and set
385 * VV_ROOT if either matches.
386 */
387 if (ump->um_uppervp == uppervp || ump->um_lowervp == lowervp)
388 vp->v_vflag |= VV_ROOT;
389 KASSERT(dvp != NULL || (vp->v_vflag & VV_ROOT) != 0,
390 ("%s: NULL dvp for non-root vp %p", __func__, vp));
391
392
393 /*
394 * NOTE: There is still a possibility for cross-filesystem locking here.
395 * If dvp has an upper FS component and is locked, while the new vnode
396 * created here only has a lower-layer FS component, then we will end
397 * up taking a lower-FS lock while holding an upper-FS lock.
398 * That situation could be dealt with here using vn_lock_pair().
399 * However, that would only address one instance out of many in which
400 * a child vnode lock is taken while holding a lock on its parent
401 * directory. This is done in many places in common VFS code, as well as
402 * a few places within unionfs (which could lead to the same cross-FS
403 * locking issue if, for example, the upper FS is another nested unionfs
404 * instance). Additionally, it is unclear under what circumstances this
405 * specific lock sequence (a directory on one FS followed by a child of
406 * its 'peer' directory on another FS) would present the practical
407 * possibility of deadlock due to some other agent on the system
408 * attempting to lock those two specific vnodes in the opposite order.
409 */
410 if (uppervp != NULL)
411 vn_lock(uppervp, LK_EXCLUSIVE | LK_RETRY);
412 else
413 vn_lock(lowervp, LK_EXCLUSIVE | LK_RETRY);
414 error = insmntque1(vp, mp);
415 if (error != 0) {
416 unionfs_nodeget_cleanup(vp, unp);
417 return (error);
418 }
419 /*
420 * lowervp and uppervp should only be doomed by a forced unmount of
421 * their respective filesystems, but that can only happen if the
422 * unionfs instance is first unmounted. We also effectively hold the
423 * lock on the new unionfs vnode at this point. Therefore, if a
424 * unionfs umount has not yet reached the point at which the above
425 * insmntque1() would fail, then its vflush() call will end up
426 * blocked on our vnode lock, effectively also preventing unmount
427 * of the underlying filesystems.
428 */
429 VNASSERT(lowervp == NULL || !VN_IS_DOOMED(lowervp), vp,
430 ("%s: doomed lowervp %p", __func__, lowervp));
431 VNASSERT(uppervp == NULL || !VN_IS_DOOMED(uppervp), vp,
432 ("%s: doomed lowervp %p", __func__, uppervp));
433
434 vn_set_state(vp, VSTATE_CONSTRUCTED);
435
436 if (dvp != NULL && vt == VDIR)
437 *vpp = unionfs_ins_cached_vnode(unp, dvp);
438 if (*vpp != NULL) {
439 unionfs_nodeget_cleanup(vp, unp);
440 if (lkflags != 0)
441 vn_lock(*vpp, lkflags | LK_RETRY);
442 return (0);
443 } else
444 *vpp = vp;
445
446 if ((lkflags & LK_SHARED) != 0)
447 vn_lock(vp, LK_DOWNGRADE);
448 else if ((lkflags & LK_EXCLUSIVE) == 0)
449 VOP_UNLOCK(vp);
450
451 return (0);
452 }
453
454 /*
455 * Clean up the unionfs node.
456 */
457 void
unionfs_noderem(struct vnode * vp)458 unionfs_noderem(struct vnode *vp)
459 {
460 struct unionfs_node *unp, *unp_t1, *unp_t2;
461 struct unionfs_node_hashhead *hd;
462 struct unionfs_node_status *unsp, *unsp_tmp;
463 struct vnode *lvp;
464 struct vnode *uvp;
465 struct vnode *dvp;
466 int count;
467 int writerefs;
468 bool unlock_lvp;
469
470 /*
471 * The root vnode lock may be recursed during unmount, because
472 * it may share the same lock as the unionfs mount's covered vnode,
473 * which is locked across VFS_UNMOUNT(). This lock will then be
474 * recursively taken during the vflush() issued by unionfs_unmount().
475 * But we still only need to lock the unionfs lock once, because only
476 * one of those lock operations was taken against a unionfs vnode and
477 * will be undone against a unionfs vnode.
478 */
479 KASSERT(vp->v_vnlock->lk_recurse == 0 || (vp->v_vflag & VV_ROOT) != 0,
480 ("%s: vnode %p locked recursively", __func__, vp));
481
482 unp = VTOUNIONFS(vp);
483 VNASSERT(unp != NULL, vp, ("%s: already reclaimed", __func__));
484 lvp = unp->un_lowervp;
485 uvp = unp->un_uppervp;
486 dvp = unp->un_dvp;
487 unlock_lvp = (uvp == NULL);
488
489 /*
490 * Lock the lower vnode in addition to the upper vnode lock in order
491 * to synchronize against any unionfs_lock() operation which may still
492 * hold the lower vnode lock. We do not need to do this for the root
493 * vnode, as the root vnode should always have both upper and lower
494 * base vnodes for its entire lifecycled, so unionfs_lock() should
495 * never attempt to lock its lower vnode in the first place.
496 * Moreover, during unmount of a non-"below" unionfs mount, the lower
497 * root vnode will already be locked as it is the covered vnode.
498 */
499 if (uvp != NULL && lvp != NULL && (vp->v_vflag & VV_ROOT) == 0) {
500 vn_lock_pair(uvp, true, LK_EXCLUSIVE, lvp, false, LK_EXCLUSIVE);
501 unlock_lvp = true;
502 }
503
504 if (lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
505 panic("%s: failed to acquire lock for vnode lock", __func__);
506 /*
507 * Use the interlock to protect the clearing of v_data to
508 * prevent faults in unionfs_lock().
509 */
510 VI_LOCK(vp);
511 unp->un_lowervp = unp->un_uppervp = NULL;
512 vp->v_vnlock = &(vp->v_lock);
513 vp->v_data = NULL;
514 vp->v_object = NULL;
515 if (unp->un_hashtbl != NULL) {
516 /*
517 * Clear out any cached child vnodes. This should only
518 * be necessary during forced unmount, when the vnode may
519 * be reclaimed with a non-zero use count. Otherwise the
520 * reference held by each child should prevent reclamation.
521 */
522 for (count = 0; count <= UNIONFSHASHMASK; count++) {
523 hd = unp->un_hashtbl + count;
524 LIST_FOREACH_SAFE(unp_t1, hd, un_hash, unp_t2) {
525 LIST_REMOVE(unp_t1, un_hash);
526 unp_t1->un_hash.le_next = NULL;
527 unp_t1->un_hash.le_prev = NULL;
528 }
529 }
530 }
531 VI_UNLOCK(vp);
532
533 writerefs = atomic_load_int(&vp->v_writecount);
534 VNASSERT(writerefs >= 0, vp,
535 ("%s: write count %d, unexpected text ref", __func__, writerefs));
536 /*
537 * If we were opened for write, we leased the write reference
538 * to the lower vnode. If this is a reclamation due to the
539 * forced unmount, undo the reference now.
540 */
541 if (writerefs > 0) {
542 VNASSERT(uvp != NULL, vp,
543 ("%s: write reference without upper vnode", __func__));
544 VOP_ADD_WRITECOUNT(uvp, -writerefs);
545 }
546 if (uvp != NULL)
547 vput(uvp);
548 if (unlock_lvp)
549 vput(lvp);
550 else if (lvp != NULL)
551 vrele(lvp);
552
553 if (dvp != NULL)
554 unionfs_rem_cached_vnode(unp, dvp);
555
556 if (unp->un_path != NULL) {
557 free(unp->un_path, M_UNIONFSPATH);
558 unp->un_path = NULL;
559 unp->un_pathlen = 0;
560 }
561
562 if (unp->un_hashtbl != NULL) {
563 hashdestroy(unp->un_hashtbl, M_UNIONFSHASH, UNIONFSHASHMASK);
564 }
565
566 LIST_FOREACH_SAFE(unsp, &(unp->un_unshead), uns_list, unsp_tmp) {
567 LIST_REMOVE(unsp, uns_list);
568 free(unsp, M_TEMP);
569 }
570 if (dvp != NULL) {
571 mtx_lock(&unionfs_deferred_rele_lock);
572 STAILQ_INSERT_TAIL(&unionfs_deferred_rele_list, unp, un_rele);
573 mtx_unlock(&unionfs_deferred_rele_lock);
574 taskqueue_enqueue(taskqueue_unionfs_rele,
575 &unionfs_deferred_rele_task);
576 } else
577 free(unp, M_UNIONFSNODE);
578 }
579
580 /*
581 * Find the unionfs node status object for the vnode corresponding to unp,
582 * for the process that owns td. Return NULL if no such object exists.
583 */
584 struct unionfs_node_status *
unionfs_find_node_status(struct unionfs_node * unp,struct thread * td)585 unionfs_find_node_status(struct unionfs_node *unp, struct thread *td)
586 {
587 struct unionfs_node_status *unsp;
588 pid_t pid;
589
590 MPASS(td != NULL);
591 pid = td->td_proc->p_pid;
592
593 ASSERT_VOP_ELOCKED(UNIONFSTOV(unp), __func__);
594
595 LIST_FOREACH(unsp, &(unp->un_unshead), uns_list) {
596 if (unsp->uns_pid == pid) {
597 return (unsp);
598 }
599 }
600
601 return (NULL);
602 }
603
604 /*
605 * Get the unionfs node status object for the vnode corresponding to unp,
606 * for the process that owns td. Allocate a new status object if one
607 * does not already exist.
608 */
609 void
unionfs_get_node_status(struct unionfs_node * unp,struct thread * td,struct unionfs_node_status ** unspp)610 unionfs_get_node_status(struct unionfs_node *unp, struct thread *td,
611 struct unionfs_node_status **unspp)
612 {
613 struct unionfs_node_status *unsp;
614 pid_t pid;
615
616 MPASS(td != NULL);
617 pid = td->td_proc->p_pid;
618
619 KASSERT(NULL != unspp, ("%s: NULL status", __func__));
620 unsp = unionfs_find_node_status(unp, td);
621 if (unsp == NULL) {
622 /* create a new unionfs node status */
623 unsp = malloc(sizeof(struct unionfs_node_status),
624 M_TEMP, M_WAITOK | M_ZERO);
625
626 unsp->uns_pid = pid;
627 LIST_INSERT_HEAD(&(unp->un_unshead), unsp, uns_list);
628 }
629
630 *unspp = unsp;
631 }
632
633 /*
634 * Remove the unionfs node status, if you can.
635 * You need exclusive lock this vnode.
636 */
637 void
unionfs_tryrem_node_status(struct unionfs_node * unp,struct unionfs_node_status * unsp)638 unionfs_tryrem_node_status(struct unionfs_node *unp,
639 struct unionfs_node_status *unsp)
640 {
641 KASSERT(NULL != unsp, ("%s: NULL status", __func__));
642 ASSERT_VOP_ELOCKED(UNIONFSTOV(unp), __func__);
643
644 if (0 < unsp->uns_lower_opencnt || 0 < unsp->uns_upper_opencnt)
645 return;
646
647 LIST_REMOVE(unsp, uns_list);
648 free(unsp, M_TEMP);
649 }
650
651 /*
652 * Create upper node attr.
653 */
654 void
unionfs_create_uppervattr_core(struct unionfs_mount * ump,struct vattr * lva,struct vattr * uva,struct thread * td)655 unionfs_create_uppervattr_core(struct unionfs_mount *ump, struct vattr *lva,
656 struct vattr *uva, struct thread *td)
657 {
658 VATTR_NULL(uva);
659 uva->va_type = lva->va_type;
660 uva->va_atime = lva->va_atime;
661 uva->va_mtime = lva->va_mtime;
662 uva->va_ctime = lva->va_ctime;
663
664 switch (ump->um_copymode) {
665 case UNIONFS_TRANSPARENT:
666 uva->va_mode = lva->va_mode;
667 uva->va_uid = lva->va_uid;
668 uva->va_gid = lva->va_gid;
669 break;
670 case UNIONFS_MASQUERADE:
671 if (ump->um_uid == lva->va_uid) {
672 uva->va_mode = lva->va_mode & 077077;
673 uva->va_mode |= (lva->va_type == VDIR ?
674 ump->um_udir : ump->um_ufile) & 0700;
675 uva->va_uid = lva->va_uid;
676 uva->va_gid = lva->va_gid;
677 } else {
678 uva->va_mode = (lva->va_type == VDIR ?
679 ump->um_udir : ump->um_ufile);
680 uva->va_uid = ump->um_uid;
681 uva->va_gid = ump->um_gid;
682 }
683 break;
684 default: /* UNIONFS_TRADITIONAL */
685 uva->va_mode = 0777 & ~td->td_proc->p_pd->pd_cmask;
686 uva->va_uid = ump->um_uid;
687 uva->va_gid = ump->um_gid;
688 break;
689 }
690 }
691
692 /*
693 * Create upper node attr.
694 */
695 int
unionfs_create_uppervattr(struct unionfs_mount * ump,struct vnode * lvp,struct vattr * uva,struct ucred * cred,struct thread * td)696 unionfs_create_uppervattr(struct unionfs_mount *ump, struct vnode *lvp,
697 struct vattr *uva, struct ucred *cred, struct thread *td)
698 {
699 struct vattr lva;
700 int error;
701
702 if ((error = VOP_GETATTR(lvp, &lva, cred)))
703 return (error);
704
705 unionfs_create_uppervattr_core(ump, &lva, uva, td);
706
707 return (error);
708 }
709
710 /*
711 * relookup
712 *
713 * dvp should be locked on entry and will be locked on return.
714 *
715 * If an error is returned, *vpp will be invalid, otherwise it will hold a
716 * locked, referenced vnode. If *vpp == dvp then remember that only one
717 * LK_EXCLUSIVE lock is held.
718 */
719 int
unionfs_relookup(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct componentname * cn,struct thread * td,char * path,int pathlen,u_long nameiop)720 unionfs_relookup(struct vnode *dvp, struct vnode **vpp,
721 struct componentname *cnp, struct componentname *cn, struct thread *td,
722 char *path, int pathlen, u_long nameiop)
723 {
724 int error;
725 bool refstart;
726
727 cn->cn_namelen = pathlen;
728 cn->cn_pnbuf = path;
729 cn->cn_nameiop = nameiop;
730 cn->cn_flags = (LOCKPARENT | LOCKLEAF | ISLASTCN);
731 cn->cn_lkflags = LK_EXCLUSIVE;
732 cn->cn_cred = cnp->cn_cred;
733 cn->cn_nameptr = cn->cn_pnbuf;
734
735 refstart = false;
736 if (nameiop == DELETE) {
737 cn->cn_flags |= (cnp->cn_flags & DOWHITEOUT);
738 } else if (nameiop == RENAME) {
739 refstart = true;
740 } else if (nameiop == CREATE) {
741 cn->cn_flags |= NOCACHE;
742 }
743
744 vref(dvp);
745 VOP_UNLOCK(dvp);
746
747 if ((error = vfs_relookup(dvp, vpp, cn, refstart))) {
748 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
749 } else
750 vrele(dvp);
751
752 KASSERT(cn->cn_pnbuf == path, ("%s: cn_pnbuf changed", __func__));
753
754 return (error);
755 }
756
757 /*
758 * Update the unionfs_node.
759 *
760 * uvp is new locked upper vnode. unionfs vnode's lock will be exchanged to the
761 * uvp's lock and lower's lock will be unlocked.
762 */
763 static void
unionfs_node_update(struct unionfs_node * unp,struct vnode * uvp,struct thread * td)764 unionfs_node_update(struct unionfs_node *unp, struct vnode *uvp,
765 struct thread *td)
766 {
767 struct unionfs_node_hashhead *hd;
768 struct vnode *vp;
769 struct vnode *lvp;
770 struct vnode *dvp;
771 unsigned count, lockrec;
772
773 vp = UNIONFSTOV(unp);
774 lvp = unp->un_lowervp;
775 ASSERT_VOP_ELOCKED(lvp, __func__);
776 ASSERT_VOP_ELOCKED(uvp, __func__);
777 dvp = unp->un_dvp;
778
779 VNASSERT(vp->v_writecount == 0, vp,
780 ("%s: non-zero writecount", __func__));
781 /*
782 * Update the upper vnode's lock state to match the lower vnode,
783 * and then switch the unionfs vnode's lock to the upper vnode.
784 */
785 lockrec = lvp->v_vnlock->lk_recurse;
786 for (count = 0; count < lockrec; count++)
787 vn_lock(uvp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
788 VI_LOCK(vp);
789 unp->un_uppervp = uvp;
790 vp->v_vnlock = uvp->v_vnlock;
791 VI_UNLOCK(vp);
792
793 for (count = 0; count < lockrec + 1; count++)
794 VOP_UNLOCK(lvp);
795 /*
796 * Re-cache the unionfs vnode against the upper vnode
797 */
798 if (dvp != NULL && vp->v_type == VDIR) {
799 VI_LOCK(dvp);
800 if (unp->un_hash.le_prev != NULL) {
801 LIST_REMOVE(unp, un_hash);
802 hd = unionfs_get_hashhead(dvp, uvp);
803 LIST_INSERT_HEAD(hd, unp, un_hash);
804 }
805 VI_UNLOCK(unp->un_dvp);
806 }
807 }
808
809 /*
810 * Mark a unionfs operation as being in progress, sleeping if the
811 * same operation is already in progress.
812 * This is useful, for example, during copy-up operations in which
813 * we may drop the target vnode lock, but we want to avoid the
814 * possibility of a concurrent copy-up on the same vnode triggering
815 * a spurious failure.
816 */
817 int
unionfs_set_in_progress_flag(struct vnode * vp,unsigned int flag)818 unionfs_set_in_progress_flag(struct vnode *vp, unsigned int flag)
819 {
820 struct unionfs_node *unp;
821 int error;
822
823 error = 0;
824 ASSERT_VOP_ELOCKED(vp, __func__);
825 VI_LOCK(vp);
826 unp = VTOUNIONFS(vp);
827 while (error == 0 && (unp->un_flag & flag) != 0) {
828 VOP_UNLOCK(vp);
829 error = msleep(vp, VI_MTX(vp), PCATCH | PDROP, "unioncp", 0);
830 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
831 VI_LOCK(vp);
832 if (error == 0) {
833 /*
834 * If we waited on a concurrent copy-up and that
835 * copy-up was successful, return a non-fatal
836 * indication that the desired operation is already
837 * complete. If we waited on a concurrent lookup,
838 * return ERELOOKUP to indicate the VFS cache should
839 * be re-queried to avoid creating a duplicate unionfs
840 * vnode.
841 */
842 unp = VTOUNIONFS(vp);
843 if (unp == NULL)
844 error = ENOENT;
845 else if (flag == UNIONFS_COPY_IN_PROGRESS &&
846 unp->un_uppervp != NULL)
847 error = EJUSTRETURN;
848 else if (flag == UNIONFS_LOOKUP_IN_PROGRESS)
849 error = ERELOOKUP;
850 }
851 }
852 if (error == 0)
853 unp->un_flag |= flag;
854 VI_UNLOCK(vp);
855
856 return (error);
857 }
858
859 void
unionfs_clear_in_progress_flag(struct vnode * vp,unsigned int flag)860 unionfs_clear_in_progress_flag(struct vnode *vp, unsigned int flag)
861 {
862 struct unionfs_node *unp;
863
864 ASSERT_VOP_ELOCKED(vp, __func__);
865 unp = VTOUNIONFS(vp);
866 VI_LOCK(vp);
867 if (unp != NULL) {
868 VNASSERT((unp->un_flag & flag) != 0, vp,
869 ("%s: copy not in progress", __func__));
870 unp->un_flag &= ~flag;
871 }
872 wakeup(vp);
873 VI_UNLOCK(vp);
874 }
875
876 /*
877 * Create a new shadow dir.
878 *
879 * dvp and vp are unionfs vnodes representing a parent directory and
880 * child file, should be locked on entry, and will be locked on return.
881 *
882 * If no error returned, unp will be updated.
883 */
884 int
unionfs_mkshadowdir(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct thread * td)885 unionfs_mkshadowdir(struct vnode *dvp, struct vnode *vp,
886 struct componentname *cnp, struct thread *td)
887 {
888 struct vnode *lvp;
889 struct vnode *uvp;
890 struct vnode *udvp;
891 struct vattr va;
892 struct vattr lva;
893 struct nameidata nd;
894 struct mount *mp;
895 struct ucred *cred;
896 struct ucred *credbk;
897 struct uidinfo *rootinfo;
898 struct unionfs_mount *ump;
899 struct unionfs_node *dunp;
900 struct unionfs_node *unp;
901 int error;
902
903 ASSERT_VOP_ELOCKED(dvp, __func__);
904 ASSERT_VOP_ELOCKED(vp, __func__);
905 ump = MOUNTTOUNIONFSMOUNT(vp->v_mount);
906 unp = VTOUNIONFS(vp);
907 if (unp->un_uppervp != NULL)
908 return (EEXIST);
909 dunp = VTOUNIONFS(dvp);
910 udvp = dunp->un_uppervp;
911
912 error = unionfs_set_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
913 if (error == EJUSTRETURN)
914 return (0);
915 else if (error != 0)
916 return (error);
917
918 lvp = unp->un_lowervp;
919 uvp = NULL;
920 credbk = cnp->cn_cred;
921
922 /* Authority change to root */
923 rootinfo = uifind((uid_t)0);
924 cred = crdup(cnp->cn_cred);
925 change_euid(cred, rootinfo);
926 change_ruid(cred, rootinfo);
927 change_svuid(cred, (uid_t)0);
928 uifree(rootinfo);
929 cnp->cn_cred = cred;
930
931 memset(&nd.ni_cnd, 0, sizeof(struct componentname));
932 NDPREINIT(&nd);
933
934 if ((error = VOP_GETATTR(lvp, &lva, cnp->cn_cred)))
935 goto unionfs_mkshadowdir_finish;
936
937 vref(udvp);
938 VOP_UNLOCK(vp);
939 if ((error = unionfs_relookup(udvp, &uvp, cnp, &nd.ni_cnd, td,
940 cnp->cn_nameptr, cnp->cn_namelen, CREATE))) {
941 /*
942 * When handling error cases here, we drop udvp's lock and
943 * then jump to exit code that relocks dvp, which in most
944 * cases will effectively relock udvp. However, this is
945 * not guaranteed to be the case, as various calls made
946 * here (such as unionfs_relookup() above and VOP_MKDIR()
947 * below) may unlock and then relock udvp, allowing dvp to
948 * be reclaimed in the meantime. In such a situation dvp
949 * will no longer share its lock with udvp. Since
950 * performance isn't a concern for these error cases, it
951 * makes more sense to reuse the common code that locks
952 * dvp on exit than to explicitly check for reclamation
953 * of dvp.
954 */
955 vput(udvp);
956 goto unionfs_mkshadowdir_relock;
957 }
958 if (uvp != NULL) {
959 if (udvp == uvp)
960 vrele(uvp);
961 else
962 vput(uvp);
963
964 error = EEXIST;
965 vput(udvp);
966 goto unionfs_mkshadowdir_relock;
967 }
968
969 if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH))) {
970 vput(udvp);
971 goto unionfs_mkshadowdir_relock;
972 }
973 unionfs_create_uppervattr_core(ump, &lva, &va, td);
974
975 /*
976 * Temporarily NUL-terminate the current pathname component.
977 * This function may be called during lookup operations in which
978 * the current pathname component is not the leaf, meaning that
979 * the NUL terminator is some distance beyond the end of the current
980 * component. This *should* be fine, as cn_namelen will still
981 * correctly indicate the length of only the current component,
982 * but ZFS in particular does not respect cn_namelen in its VOP_MKDIR
983 * implementation.
984 * Note that this assumes nd.ni_cnd.cn_pnbuf was allocated by
985 * something like a local namei() operation and the temporary
986 * NUL-termination will not have an effect on other threads.
987 */
988 char *pathend = &nd.ni_cnd.cn_nameptr[nd.ni_cnd.cn_namelen];
989 char pathterm = *pathend;
990 *pathend = '\0';
991 error = VOP_MKDIR(udvp, &uvp, &nd.ni_cnd, &va);
992 *pathend = pathterm;
993 if (error != 0) {
994 /*
995 * See the comment after unionfs_relookup() above for an
996 * explanation of why we unlock udvp here only to relock
997 * dvp on exit.
998 */
999 vput(udvp);
1000 vn_finished_write(mp);
1001 goto unionfs_mkshadowdir_relock;
1002 }
1003
1004 /*
1005 * XXX The bug which cannot set uid/gid was corrected.
1006 * Ignore errors.
1007 */
1008 va.va_type = VNON;
1009 /*
1010 * VOP_SETATTR() may transiently drop uvp's lock, so it's
1011 * important to call it before unionfs_node_update() transfers
1012 * the unionfs vnode's lock from lvp to uvp; otherwise the
1013 * unionfs vnode itself would be transiently unlocked and
1014 * potentially doomed.
1015 */
1016 VOP_SETATTR(uvp, &va, nd.ni_cnd.cn_cred);
1017
1018 /*
1019 * uvp may become doomed during VOP_VPUT_PAIR() if the implementation
1020 * must temporarily drop uvp's lock. However, since we hold a
1021 * reference to uvp from the VOP_MKDIR() call above, this would require
1022 * a forcible unmount of uvp's filesystem, which in turn can only
1023 * happen if our unionfs instance is first forcibly unmounted. We'll
1024 * therefore catch this case in the NULL check of unp below.
1025 */
1026 VOP_VPUT_PAIR(udvp, &uvp, false);
1027 vn_finished_write(mp);
1028 vn_lock_pair(vp, false, LK_EXCLUSIVE, uvp, true, LK_EXCLUSIVE);
1029 unp = VTOUNIONFS(vp);
1030 if (unp == NULL) {
1031 vput(uvp);
1032 error = ENOENT;
1033 } else
1034 unionfs_node_update(unp, uvp, td);
1035 VOP_UNLOCK(vp);
1036
1037 unionfs_mkshadowdir_relock:
1038 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1039 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1040 if (error == 0 && (VN_IS_DOOMED(dvp) || VN_IS_DOOMED(vp)))
1041 error = ENOENT;
1042
1043 unionfs_mkshadowdir_finish:
1044 unionfs_clear_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
1045 cnp->cn_cred = credbk;
1046 crfree(cred);
1047
1048 return (error);
1049 }
1050
1051 static inline void
unionfs_forward_vop_ref(struct vnode * basevp,int * lkflags)1052 unionfs_forward_vop_ref(struct vnode *basevp, int *lkflags)
1053 {
1054 ASSERT_VOP_LOCKED(basevp, __func__);
1055 *lkflags = VOP_ISLOCKED(basevp);
1056 vref(basevp);
1057 }
1058
1059 /*
1060 * Prepare unionfs to issue a forwarded VOP to either the upper or lower
1061 * FS. This should be used for any VOP which may drop the vnode lock;
1062 * it is not required otherwise.
1063 * The unionfs vnode shares its lock with the base-layer vnode(s); if the
1064 * base FS must transiently drop its vnode lock, the unionfs vnode may
1065 * effectively become unlocked. During that window, a concurrent forced
1066 * unmount may doom the unionfs vnode, which leads to two significant
1067 * issues:
1068 * 1) Completion of, and return from, the unionfs VOP with the unionfs
1069 * vnode completely unlocked. When the unionfs vnode becomes doomed
1070 * it stops sharing its lock with the base vnode, so even if the
1071 * forwarded VOP reacquires the base vnode lock the unionfs vnode
1072 * lock will no longer be held. This can lead to violation of the
1073 * caller's sychronization requirements as well as various failed
1074 * locking assertions when DEBUG_VFS_LOCKS is enabled.
1075 * 2) Loss of reference on the base vnode. The caller is expected to
1076 * hold a v_usecount reference on the unionfs vnode, while the
1077 * unionfs vnode holds a reference on the base-layer vnode(s). But
1078 * these references are released when the unionfs vnode becomes
1079 * doomed, violating the base layer's expectation that its caller
1080 * must hold a reference to prevent vnode recycling.
1081 *
1082 * basevp1 and basevp2 represent two base-layer vnodes which are
1083 * expected to be locked when this function is called. basevp2
1084 * may be NULL, but if not NULL basevp1 and basevp2 should represent
1085 * a parent directory and a filed linked to it, respectively.
1086 * lkflags1 and lkflags2 are output parameters that will store the
1087 * current lock status of basevp1 and basevp2, respectively. They
1088 * are intended to be passed as the lkflags1 and lkflags2 parameters
1089 * in the subsequent call to unionfs_forward_vop_finish_pair().
1090 * lkflags2 may be NULL iff basevp2 is NULL.
1091 */
1092 void
unionfs_forward_vop_start_pair(struct vnode * basevp1,int * lkflags1,struct vnode * basevp2,int * lkflags2)1093 unionfs_forward_vop_start_pair(struct vnode *basevp1, int *lkflags1,
1094 struct vnode *basevp2, int *lkflags2)
1095 {
1096 /*
1097 * Take an additional reference on the base-layer vnodes to
1098 * avoid loss of reference if the unionfs vnodes are doomed.
1099 */
1100 unionfs_forward_vop_ref(basevp1, lkflags1);
1101 if (basevp2 != NULL)
1102 unionfs_forward_vop_ref(basevp2, lkflags2);
1103 }
1104
1105 static inline bool
unionfs_forward_vop_rele(struct vnode * unionvp,struct vnode * basevp,int lkflags)1106 unionfs_forward_vop_rele(struct vnode *unionvp, struct vnode *basevp,
1107 int lkflags)
1108 {
1109 bool unionvp_doomed;
1110
1111 if (__predict_false(VTOUNIONFS(unionvp) == NULL)) {
1112 if ((lkflags & LK_EXCLUSIVE) != 0)
1113 ASSERT_VOP_ELOCKED(basevp, __func__);
1114 else
1115 ASSERT_VOP_LOCKED(basevp, __func__);
1116 unionvp_doomed = true;
1117 } else {
1118 vrele(basevp);
1119 unionvp_doomed = false;
1120 }
1121
1122 return (unionvp_doomed);
1123 }
1124
1125
1126 /*
1127 * Indicate completion of a forwarded VOP previously prepared by
1128 * unionfs_forward_vop_start_pair().
1129 * basevp1 and basevp2 must be the same values passed to the prior
1130 * call to unionfs_forward_vop_start_pair(). unionvp1 and unionvp2
1131 * must be the unionfs vnodes that were initially above basevp1 and
1132 * basevp2, respectively.
1133 * basevp1 and basevp2 (if not NULL) must be locked when this function
1134 * is called, while unionvp1 and/or unionvp2 may be unlocked if either
1135 * unionfs vnode has become doomed.
1136 * lkflags1 and lkflag2 represent the locking flags that should be
1137 * used to re-lock unionvp1 and unionvp2, respectively, if either
1138 * vnode has become doomed.
1139 *
1140 * Returns true if any unionfs vnode was found to be doomed, false
1141 * otherwise.
1142 */
1143 bool
unionfs_forward_vop_finish_pair(struct vnode * unionvp1,struct vnode * basevp1,int lkflags1,struct vnode * unionvp2,struct vnode * basevp2,int lkflags2)1144 unionfs_forward_vop_finish_pair(
1145 struct vnode *unionvp1, struct vnode *basevp1, int lkflags1,
1146 struct vnode *unionvp2, struct vnode *basevp2, int lkflags2)
1147 {
1148 bool vp1_doomed, vp2_doomed;
1149
1150 /*
1151 * If either vnode is found to have been doomed, set
1152 * a flag indicating that it needs to be re-locked.
1153 * Otherwise, simply drop the base-vnode reference that
1154 * was taken in unionfs_forward_vop_start().
1155 */
1156 vp1_doomed = unionfs_forward_vop_rele(unionvp1, basevp1, lkflags1);
1157
1158 if (unionvp2 != NULL)
1159 vp2_doomed = unionfs_forward_vop_rele(unionvp2, basevp2, lkflags2);
1160 else
1161 vp2_doomed = false;
1162
1163 /*
1164 * If any of the unionfs vnodes need to be re-locked, that
1165 * means the unionfs vnode's lock is now de-coupled from the
1166 * corresponding base vnode. We therefore need to drop the
1167 * base vnode lock (since nothing else will after this point),
1168 * and also release the reference taken in
1169 * unionfs_forward_vop_start_pair().
1170 */
1171 if (__predict_false(vp1_doomed && vp2_doomed))
1172 VOP_VPUT_PAIR(basevp1, &basevp2, true);
1173 else if (__predict_false(vp1_doomed)) {
1174 /*
1175 * If basevp1 needs to be unlocked, then we may not
1176 * be able to safely unlock it with basevp2 still locked,
1177 * for the same reason that an ordinary VFS call would
1178 * need to use VOP_VPUT_PAIR() here. We might be able
1179 * to use VOP_VPUT_PAIR(..., false) here, but then we
1180 * would need to deal with the possibility of basevp2
1181 * changing out from under us, which could result in
1182 * either the unionfs vnode becoming doomed or its
1183 * upper/lower vp no longer matching basevp2. Either
1184 * scenario would require at least re-locking the unionfs
1185 * vnode anyway.
1186 */
1187 if (unionvp2 != NULL) {
1188 VOP_UNLOCK(unionvp2);
1189 vp2_doomed = true;
1190 }
1191 vput(basevp1);
1192 } else if (__predict_false(vp2_doomed))
1193 vput(basevp2);
1194
1195 if (__predict_false(vp1_doomed || vp2_doomed))
1196 vn_lock_pair(unionvp1, !vp1_doomed, lkflags1,
1197 unionvp2, !vp2_doomed, lkflags2);
1198
1199 return (vp1_doomed || vp2_doomed);
1200 }
1201
1202 /*
1203 * Create a new whiteout.
1204 *
1205 * dvp and vp are unionfs vnodes representing a parent directory and
1206 * child file, should be locked on entry, and will be locked on return.
1207 */
1208 int
unionfs_mkwhiteout(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct thread * td,char * path,int pathlen)1209 unionfs_mkwhiteout(struct vnode *dvp, struct vnode *vp,
1210 struct componentname *cnp, struct thread *td, char *path, int pathlen)
1211 {
1212 struct vnode *udvp;
1213 struct vnode *wvp;
1214 struct nameidata nd;
1215 struct mount *mp;
1216 int error;
1217 bool dvp_locked;
1218
1219 ASSERT_VOP_ELOCKED(dvp, __func__);
1220 ASSERT_VOP_ELOCKED(vp, __func__);
1221
1222 udvp = VTOUNIONFS(dvp)->un_uppervp;
1223 wvp = NULL;
1224 NDPREINIT(&nd);
1225 vref(udvp);
1226 VOP_UNLOCK(vp);
1227 if ((error = unionfs_relookup(udvp, &wvp, cnp, &nd.ni_cnd, td, path,
1228 pathlen, CREATE))) {
1229 goto unionfs_mkwhiteout_cleanup;
1230 }
1231 if (wvp != NULL) {
1232 if (udvp == wvp)
1233 vrele(wvp);
1234 else
1235 vput(wvp);
1236
1237 if (nd.ni_cnd.cn_flags & ISWHITEOUT)
1238 error = 0;
1239 else
1240 error = EEXIST;
1241 goto unionfs_mkwhiteout_cleanup;
1242 }
1243
1244 if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)))
1245 goto unionfs_mkwhiteout_cleanup;
1246 error = VOP_WHITEOUT(udvp, &nd.ni_cnd, CREATE);
1247 vn_finished_write(mp);
1248
1249 unionfs_mkwhiteout_cleanup:
1250 if (VTOUNIONFS(dvp) == NULL) {
1251 vput(udvp);
1252 dvp_locked = false;
1253 } else {
1254 vrele(udvp);
1255 dvp_locked = true;
1256 }
1257 vn_lock_pair(dvp, dvp_locked, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE);
1258 return (error);
1259 }
1260
1261 /*
1262 * Create a new vnode for create a new shadow file.
1263 *
1264 * If an error is returned, *vpp will be invalid, otherwise it will hold a
1265 * locked, referenced and opened vnode.
1266 *
1267 * unp is never updated.
1268 */
1269 static int
unionfs_vn_create_on_upper(struct vnode ** vpp,struct vnode * udvp,struct vnode * vp,struct vattr * uvap,struct thread * td)1270 unionfs_vn_create_on_upper(struct vnode **vpp, struct vnode *udvp,
1271 struct vnode *vp, struct vattr *uvap, struct thread *td)
1272 {
1273 struct unionfs_mount *ump;
1274 struct unionfs_node *unp;
1275 struct vnode *uvp;
1276 struct vnode *lvp;
1277 struct ucred *cred;
1278 struct vattr lva;
1279 struct nameidata nd;
1280 int fmode;
1281 int error;
1282
1283 ASSERT_VOP_ELOCKED(vp, __func__);
1284 unp = VTOUNIONFS(vp);
1285 ump = MOUNTTOUNIONFSMOUNT(UNIONFSTOV(unp)->v_mount);
1286 uvp = NULL;
1287 lvp = unp->un_lowervp;
1288 cred = td->td_ucred;
1289 fmode = FFLAGS(O_WRONLY | O_CREAT | O_TRUNC | O_EXCL);
1290 error = 0;
1291
1292 if ((error = VOP_GETATTR(lvp, &lva, cred)) != 0)
1293 return (error);
1294 unionfs_create_uppervattr_core(ump, &lva, uvap, td);
1295
1296 if (unp->un_path == NULL)
1297 panic("%s: NULL un_path", __func__);
1298
1299 nd.ni_cnd.cn_namelen = unp->un_pathlen;
1300 nd.ni_cnd.cn_pnbuf = unp->un_path;
1301 nd.ni_cnd.cn_nameiop = CREATE;
1302 nd.ni_cnd.cn_flags = LOCKPARENT | LOCKLEAF | ISLASTCN;
1303 nd.ni_cnd.cn_lkflags = LK_EXCLUSIVE;
1304 nd.ni_cnd.cn_cred = cred;
1305 nd.ni_cnd.cn_nameptr = nd.ni_cnd.cn_pnbuf;
1306 NDPREINIT(&nd);
1307
1308 vref(udvp);
1309 VOP_UNLOCK(vp);
1310 if ((error = vfs_relookup(udvp, &uvp, &nd.ni_cnd, false)) != 0) {
1311 vrele(udvp);
1312 return (error);
1313 }
1314
1315 if (uvp != NULL) {
1316 if (uvp == udvp)
1317 vrele(uvp);
1318 else
1319 vput(uvp);
1320 error = EEXIST;
1321 goto unionfs_vn_create_on_upper_cleanup;
1322 }
1323
1324 if ((error = VOP_CREATE(udvp, &uvp, &nd.ni_cnd, uvap)) != 0)
1325 goto unionfs_vn_create_on_upper_cleanup;
1326
1327 if ((error = VOP_OPEN(uvp, fmode, cred, td, NULL)) != 0) {
1328 vput(uvp);
1329 goto unionfs_vn_create_on_upper_cleanup;
1330 }
1331 error = VOP_ADD_WRITECOUNT(uvp, 1);
1332 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1333 __func__, uvp, uvp->v_writecount);
1334 if (error == 0) {
1335 *vpp = uvp;
1336 } else {
1337 VOP_CLOSE(uvp, fmode, cred, td);
1338 }
1339
1340 unionfs_vn_create_on_upper_cleanup:
1341 vput(udvp);
1342 return (error);
1343 }
1344
1345 /*
1346 * Copy from lvp to uvp.
1347 *
1348 * lvp and uvp should be locked and opened on entry and will be locked and
1349 * opened on return.
1350 */
1351 static int
unionfs_copyfile_core(struct vnode * lvp,struct vnode * uvp,struct ucred * cred,struct thread * td)1352 unionfs_copyfile_core(struct vnode *lvp, struct vnode *uvp,
1353 struct ucred *cred, struct thread *td)
1354 {
1355 char *buf;
1356 struct uio uio;
1357 struct iovec iov;
1358 off_t offset;
1359 int count;
1360 int error;
1361 int bufoffset;
1362
1363 error = 0;
1364 memset(&uio, 0, sizeof(uio));
1365
1366 uio.uio_td = td;
1367 uio.uio_segflg = UIO_SYSSPACE;
1368 uio.uio_offset = 0;
1369
1370 buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
1371
1372 while (error == 0) {
1373 offset = uio.uio_offset;
1374
1375 uio.uio_iov = &iov;
1376 uio.uio_iovcnt = 1;
1377 iov.iov_base = buf;
1378 iov.iov_len = MAXBSIZE;
1379 uio.uio_resid = iov.iov_len;
1380 uio.uio_rw = UIO_READ;
1381
1382 if ((error = VOP_READ(lvp, &uio, 0, cred)) != 0)
1383 break;
1384 if ((count = MAXBSIZE - uio.uio_resid) == 0)
1385 break;
1386
1387 bufoffset = 0;
1388 while (bufoffset < count) {
1389 uio.uio_iov = &iov;
1390 uio.uio_iovcnt = 1;
1391 iov.iov_base = buf + bufoffset;
1392 iov.iov_len = count - bufoffset;
1393 uio.uio_offset = offset + bufoffset;
1394 uio.uio_resid = iov.iov_len;
1395 uio.uio_rw = UIO_WRITE;
1396
1397 if ((error = VOP_WRITE(uvp, &uio, 0, cred)) != 0)
1398 break;
1399
1400 bufoffset += (count - bufoffset) - uio.uio_resid;
1401 }
1402
1403 uio.uio_offset = offset + bufoffset;
1404 }
1405
1406 free(buf, M_TEMP);
1407
1408 return (error);
1409 }
1410
1411 /*
1412 * Copy file from lower to upper.
1413 *
1414 * If you need copy of the contents, set 1 to docopy. Otherwise, set 0 to
1415 * docopy.
1416 *
1417 * vp is a unionfs vnode that should be locked on entry and will be
1418 * locked on return.
1419 *
1420 * If no error returned, unp will be updated.
1421 */
1422 int
unionfs_copyfile(struct vnode * vp,int docopy,struct ucred * cred,struct thread * td)1423 unionfs_copyfile(struct vnode *vp, int docopy, struct ucred *cred,
1424 struct thread *td)
1425 {
1426 struct unionfs_node *unp;
1427 struct unionfs_node *dunp;
1428 struct mount *mp;
1429 struct vnode *udvp;
1430 struct vnode *lvp;
1431 struct vnode *uvp;
1432 struct vattr uva;
1433 int error;
1434
1435 ASSERT_VOP_ELOCKED(vp, __func__);
1436 unp = VTOUNIONFS(vp);
1437 lvp = unp->un_lowervp;
1438 uvp = NULL;
1439
1440 if ((UNIONFSTOV(unp)->v_mount->mnt_flag & MNT_RDONLY))
1441 return (EROFS);
1442 if (unp->un_dvp == NULL)
1443 return (EINVAL);
1444 if (unp->un_uppervp != NULL)
1445 return (EEXIST);
1446
1447 udvp = NULL;
1448 VI_LOCK(unp->un_dvp);
1449 dunp = VTOUNIONFS(unp->un_dvp);
1450 if (dunp != NULL)
1451 udvp = dunp->un_uppervp;
1452 VI_UNLOCK(unp->un_dvp);
1453
1454 if (udvp == NULL)
1455 return (EROFS);
1456 if ((udvp->v_mount->mnt_flag & MNT_RDONLY))
1457 return (EROFS);
1458 ASSERT_VOP_UNLOCKED(udvp, __func__);
1459
1460 error = unionfs_set_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
1461 if (error == EJUSTRETURN)
1462 return (0);
1463 else if (error != 0)
1464 return (error);
1465
1466 error = VOP_ACCESS(lvp, VREAD, cred, td);
1467 if (error != 0)
1468 goto unionfs_copyfile_cleanup;
1469
1470 if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)) != 0)
1471 goto unionfs_copyfile_cleanup;
1472 error = unionfs_vn_create_on_upper(&uvp, udvp, vp, &uva, td);
1473 if (error != 0) {
1474 vn_finished_write(mp);
1475 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1476 goto unionfs_copyfile_cleanup;
1477 }
1478
1479 /*
1480 * Note that it's still possible for e.g. VOP_WRITE to relock
1481 * uvp below while holding vp[=lvp] locked. Replacing
1482 * unionfs_copyfile_core with vn_generic_copy_file_range() will
1483 * allow us to avoid the problem by moving this vn_lock_pair()
1484 * call much later.
1485 */
1486 vn_lock_pair(vp, false, LK_EXCLUSIVE, uvp, true, LK_EXCLUSIVE);
1487 unp = VTOUNIONFS(vp);
1488 if (unp == NULL) {
1489 error = ENOENT;
1490 goto unionfs_copyfile_cleanup;
1491 }
1492
1493 if (docopy != 0) {
1494 error = VOP_OPEN(lvp, FREAD, cred, td, NULL);
1495 if (error == 0) {
1496 error = unionfs_copyfile_core(lvp, uvp, cred, td);
1497 VOP_CLOSE(lvp, FREAD, cred, td);
1498 }
1499 }
1500 VOP_CLOSE(uvp, FWRITE, cred, td);
1501 VOP_ADD_WRITECOUNT_CHECKED(uvp, -1);
1502 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1503 __func__, uvp, uvp->v_writecount);
1504
1505 vn_finished_write(mp);
1506
1507 if (error == 0) {
1508 /* Reset the attributes. Ignore errors. */
1509 uva.va_type = VNON;
1510 VOP_SETATTR(uvp, &uva, cred);
1511 unionfs_node_update(unp, uvp, td);
1512 }
1513
1514 unionfs_copyfile_cleanup:
1515 unionfs_clear_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
1516 return (error);
1517 }
1518
1519 /*
1520 * Determine if the unionfs view of a directory is empty such that
1521 * an rmdir operation can be permitted.
1522 *
1523 * We assume the VOP_RMDIR() against the upper layer vnode will take
1524 * care of this check for us where the upper FS is concerned, so here
1525 * we concentrate on the lower FS. We need to check for the presence
1526 * of files other than "." and ".." in the lower FS directory and
1527 * then cross-check any files we find against the upper FS to see if
1528 * a whiteout is present (in which case we treat the lower file as
1529 * non-present).
1530 *
1531 * The logic here is based heavily on vn_dir_check_empty().
1532 *
1533 * vp should be a locked unionfs node, and vp's lowervp should also be
1534 * locked.
1535 */
1536 int
unionfs_check_rmdir(struct vnode * vp,struct ucred * cred,struct thread * td)1537 unionfs_check_rmdir(struct vnode *vp, struct ucred *cred, struct thread *td)
1538 {
1539 struct vnode *uvp;
1540 struct vnode *lvp;
1541 struct vnode *tvp;
1542 char *dirbuf;
1543 size_t dirbuflen, len;
1544 off_t off;
1545 struct dirent *dp;
1546 struct componentname cn;
1547 struct vattr va;
1548 int error;
1549 int eofflag;
1550
1551 eofflag = 0;
1552 lvp = UNIONFSVPTOLOWERVP(vp);
1553 uvp = UNIONFSVPTOUPPERVP(vp);
1554
1555 /*
1556 * Note that the locking here still isn't ideal: We expect the caller
1557 * to hold both the upper and lower layer locks as well as the upper
1558 * parent directory lock, which it can do in a manner that avoids
1559 * deadlock. However, if the cross-check logic below needs to call
1560 * VOP_LOOKUP(), that may relock the upper vnode and lock any found
1561 * child vnode in a way that doesn't protect against deadlock given
1562 * the other held locks. Beyond that, the various other VOPs we issue
1563 * below, such as VOP_OPEN() and VOP_READDIR(), may also re-lock the
1564 * lower vnode.
1565 * We might instead just handoff between the upper vnode lock
1566 * (and its parent directory lock) and the lower vnode lock as needed,
1567 * so that the lower lock is never held at the same time as the upper
1568 * locks, but that opens up a wider window in which the upper
1569 * directory (and also the lower directory if it isn't truly
1570 * read-only) may change while the relevant lock is dropped. But
1571 * since re-locking may happen here and open up such a window anyway,
1572 * perhaps that is a worthwile tradeoff? Or perhaps we can ultimately
1573 * do sufficient tracking of empty state within the unionfs vnode
1574 * (in conjunction with upcalls from the lower FSes to notify us
1575 * of out-of-band state changes) that we can avoid these costly checks
1576 * altogether.
1577 */
1578 ASSERT_VOP_LOCKED(lvp, __func__);
1579 ASSERT_VOP_ELOCKED(uvp, __func__);
1580
1581 if ((error = VOP_GETATTR(uvp, &va, cred)) != 0)
1582 return (error);
1583 if (va.va_flags & OPAQUE)
1584 return (0);
1585
1586 #ifdef MAC
1587 if ((error = mac_vnode_check_open(cred, lvp, VEXEC | VREAD)) != 0)
1588 return (error);
1589 #endif
1590 if ((error = VOP_ACCESS(lvp, VEXEC | VREAD, cred, td)) != 0)
1591 return (error);
1592 if ((error = VOP_OPEN(lvp, FREAD, cred, td, NULL)) != 0)
1593 return (error);
1594 if ((error = VOP_GETATTR(lvp, &va, cred)) != 0)
1595 return (error);
1596
1597 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
1598 if (dirbuflen < va.va_blocksize)
1599 dirbuflen = va.va_blocksize;
1600 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
1601
1602 len = 0;
1603 off = 0;
1604 eofflag = 0;
1605
1606 for (;;) {
1607 error = vn_dir_next_dirent(lvp, td, dirbuf, dirbuflen,
1608 &dp, &len, &off, &eofflag);
1609 if (error != 0)
1610 break;
1611
1612 if (len == 0) {
1613 /* EOF */
1614 error = 0;
1615 break;
1616 }
1617
1618 if (dp->d_type == DT_WHT)
1619 continue;
1620
1621 /*
1622 * Any file in the directory which is not '.' or '..' indicates
1623 * the directory is not empty.
1624 */
1625 switch (dp->d_namlen) {
1626 case 2:
1627 if (dp->d_name[1] != '.') {
1628 /* Can't be '..' (nor '.') */
1629 break;
1630 }
1631 /* FALLTHROUGH */
1632 case 1:
1633 if (dp->d_name[0] != '.') {
1634 /* Can't be '..' nor '.' */
1635 break;
1636 }
1637 continue;
1638 default:
1639 break;
1640 }
1641
1642 cn.cn_namelen = dp->d_namlen;
1643 cn.cn_pnbuf = NULL;
1644 cn.cn_nameptr = dp->d_name;
1645 cn.cn_nameiop = LOOKUP;
1646 cn.cn_flags = LOCKPARENT | LOCKLEAF | RDONLY | ISLASTCN;
1647 cn.cn_lkflags = LK_EXCLUSIVE;
1648 cn.cn_cred = cred;
1649
1650 error = VOP_LOOKUP(uvp, &tvp, &cn);
1651 if (tvp != NULL)
1652 vput(tvp);
1653 if (error != 0 && error != ENOENT && error != EJUSTRETURN)
1654 break;
1655 else if ((cn.cn_flags & ISWHITEOUT) == 0) {
1656 error = ENOTEMPTY;
1657 break;
1658 } else
1659 error = 0;
1660 }
1661
1662 VOP_CLOSE(lvp, FREAD, cred, td);
1663 free(dirbuf, M_TEMP);
1664 return (error);
1665 }
1666