xref: /linux/mm/numa_emulation.c (revision 9c5968db9e625019a0ee5226c7eebef5519d366a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NUMA emulation
4  */
5 #include <linux/kernel.h>
6 #include <linux/errno.h>
7 #include <linux/topology.h>
8 #include <linux/memblock.h>
9 #include <linux/numa_memblks.h>
10 #include <asm/numa.h>
11 #include <acpi/acpi_numa.h>
12 
13 #define FAKE_NODE_MIN_SIZE	((u64)32 << 20)
14 #define FAKE_NODE_MIN_HASH_MASK	(~(FAKE_NODE_MIN_SIZE - 1UL))
15 
16 int emu_nid_to_phys[MAX_NUMNODES];
17 static char *emu_cmdline __initdata;
18 
19 int __init numa_emu_cmdline(char *str)
20 {
21 	emu_cmdline = str;
22 	return 0;
23 }
24 
25 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
26 {
27 	int i;
28 
29 	for (i = 0; i < mi->nr_blks; i++)
30 		if (mi->blk[i].nid == nid)
31 			return i;
32 	return -ENOENT;
33 }
34 
35 static u64 __init mem_hole_size(u64 start, u64 end)
36 {
37 	unsigned long start_pfn = PFN_UP(start);
38 	unsigned long end_pfn = PFN_DOWN(end);
39 
40 	if (start_pfn < end_pfn)
41 		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
42 	return 0;
43 }
44 
45 /*
46  * Sets up nid to range from @start to @end.  The return value is -errno if
47  * something went wrong, 0 otherwise.
48  */
49 static int __init emu_setup_memblk(struct numa_meminfo *ei,
50 				   struct numa_meminfo *pi,
51 				   int nid, int phys_blk, u64 size)
52 {
53 	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
54 	struct numa_memblk *pb = &pi->blk[phys_blk];
55 
56 	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
57 		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
58 		return -EINVAL;
59 	}
60 
61 	ei->nr_blks++;
62 	eb->start = pb->start;
63 	eb->end = pb->start + size;
64 	eb->nid = nid;
65 
66 	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
67 		emu_nid_to_phys[nid] = pb->nid;
68 
69 	pb->start += size;
70 	if (pb->start >= pb->end) {
71 		WARN_ON_ONCE(pb->start > pb->end);
72 		numa_remove_memblk_from(phys_blk, pi);
73 	}
74 
75 	printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
76 	       nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
77 	return 0;
78 }
79 
80 /*
81  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
82  * to max_addr.
83  *
84  * Returns zero on success or negative on error.
85  */
86 static int __init split_nodes_interleave(struct numa_meminfo *ei,
87 					 struct numa_meminfo *pi,
88 					 u64 addr, u64 max_addr, int nr_nodes)
89 {
90 	nodemask_t physnode_mask = numa_nodes_parsed;
91 	u64 size;
92 	int big;
93 	int nid = 0;
94 	int i, ret;
95 
96 	if (nr_nodes <= 0)
97 		return -1;
98 	if (nr_nodes > MAX_NUMNODES) {
99 		pr_info("numa=fake=%d too large, reducing to %d\n",
100 			nr_nodes, MAX_NUMNODES);
101 		nr_nodes = MAX_NUMNODES;
102 	}
103 
104 	/*
105 	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
106 	 * the division in ulong number of pages and convert back.
107 	 */
108 	size = max_addr - addr - mem_hole_size(addr, max_addr);
109 	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
110 
111 	/*
112 	 * Calculate the number of big nodes that can be allocated as a result
113 	 * of consolidating the remainder.
114 	 */
115 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
116 		FAKE_NODE_MIN_SIZE;
117 
118 	size &= FAKE_NODE_MIN_HASH_MASK;
119 	if (!size) {
120 		pr_err("Not enough memory for each node.  "
121 			"NUMA emulation disabled.\n");
122 		return -1;
123 	}
124 
125 	/*
126 	 * Continue to fill physical nodes with fake nodes until there is no
127 	 * memory left on any of them.
128 	 */
129 	while (!nodes_empty(physnode_mask)) {
130 		for_each_node_mask(i, physnode_mask) {
131 			u64 dma32_end = numa_emu_dma_end();
132 			u64 start, limit, end;
133 			int phys_blk;
134 
135 			phys_blk = emu_find_memblk_by_nid(i, pi);
136 			if (phys_blk < 0) {
137 				node_clear(i, physnode_mask);
138 				continue;
139 			}
140 			start = pi->blk[phys_blk].start;
141 			limit = pi->blk[phys_blk].end;
142 			end = start + size;
143 
144 			if (nid < big)
145 				end += FAKE_NODE_MIN_SIZE;
146 
147 			/*
148 			 * Continue to add memory to this fake node if its
149 			 * non-reserved memory is less than the per-node size.
150 			 */
151 			while (end - start - mem_hole_size(start, end) < size) {
152 				end += FAKE_NODE_MIN_SIZE;
153 				if (end > limit) {
154 					end = limit;
155 					break;
156 				}
157 			}
158 
159 			/*
160 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
161 			 * non-reserved memory in ZONE_DMA32 for the next node,
162 			 * this one must extend to the boundary.
163 			 */
164 			if (end < dma32_end && dma32_end - end -
165 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
166 				end = dma32_end;
167 
168 			/*
169 			 * If there won't be enough non-reserved memory for the
170 			 * next node, this one must extend to the end of the
171 			 * physical node.
172 			 */
173 			if (limit - end - mem_hole_size(end, limit) < size)
174 				end = limit;
175 
176 			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
177 					       phys_blk,
178 					       min(end, limit) - start);
179 			if (ret < 0)
180 				return ret;
181 		}
182 	}
183 	return 0;
184 }
185 
186 /*
187  * Returns the end address of a node so that there is at least `size' amount of
188  * non-reserved memory or `max_addr' is reached.
189  */
190 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
191 {
192 	u64 end = start + size;
193 
194 	while (end - start - mem_hole_size(start, end) < size) {
195 		end += FAKE_NODE_MIN_SIZE;
196 		if (end > max_addr) {
197 			end = max_addr;
198 			break;
199 		}
200 	}
201 	return end;
202 }
203 
204 static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
205 {
206 	unsigned long max_pfn = PHYS_PFN(max_addr);
207 	unsigned long base_pfn = PHYS_PFN(base);
208 	unsigned long hole_pfns = PHYS_PFN(hole);
209 
210 	return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
211 }
212 
213 /*
214  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
215  * `addr' to `max_addr'.
216  *
217  * Returns zero on success or negative on error.
218  */
219 static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
220 					      struct numa_meminfo *pi,
221 					      u64 addr, u64 max_addr, u64 size,
222 					      int nr_nodes, struct numa_memblk *pblk,
223 					      int nid)
224 {
225 	nodemask_t physnode_mask = numa_nodes_parsed;
226 	int i, ret, uniform = 0;
227 	u64 min_size;
228 
229 	if ((!size && !nr_nodes) || (nr_nodes && !pblk))
230 		return -1;
231 
232 	/*
233 	 * In the 'uniform' case split the passed in physical node by
234 	 * nr_nodes, in the non-uniform case, ignore the passed in
235 	 * physical block and try to create nodes of at least size
236 	 * @size.
237 	 *
238 	 * In the uniform case, split the nodes strictly by physical
239 	 * capacity, i.e. ignore holes. In the non-uniform case account
240 	 * for holes and treat @size as a minimum floor.
241 	 */
242 	if (!nr_nodes)
243 		nr_nodes = MAX_NUMNODES;
244 	else {
245 		nodes_clear(physnode_mask);
246 		node_set(pblk->nid, physnode_mask);
247 		uniform = 1;
248 	}
249 
250 	if (uniform) {
251 		min_size = uniform_size(max_addr, addr, 0, nr_nodes);
252 		size = min_size;
253 	} else {
254 		/*
255 		 * The limit on emulated nodes is MAX_NUMNODES, so the
256 		 * size per node is increased accordingly if the
257 		 * requested size is too small.  This creates a uniform
258 		 * distribution of node sizes across the entire machine
259 		 * (but not necessarily over physical nodes).
260 		 */
261 		min_size = uniform_size(max_addr, addr,
262 				mem_hole_size(addr, max_addr), nr_nodes);
263 	}
264 	min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
265 	if (size < min_size) {
266 		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
267 			size >> 20, min_size >> 20);
268 		size = min_size;
269 	}
270 	size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
271 
272 	/*
273 	 * Fill physical nodes with fake nodes of size until there is no memory
274 	 * left on any of them.
275 	 */
276 	while (!nodes_empty(physnode_mask)) {
277 		for_each_node_mask(i, physnode_mask) {
278 			u64 dma32_end = numa_emu_dma_end();
279 			u64 start, limit, end;
280 			int phys_blk;
281 
282 			phys_blk = emu_find_memblk_by_nid(i, pi);
283 			if (phys_blk < 0) {
284 				node_clear(i, physnode_mask);
285 				continue;
286 			}
287 
288 			start = pi->blk[phys_blk].start;
289 			limit = pi->blk[phys_blk].end;
290 
291 			if (uniform)
292 				end = start + size;
293 			else
294 				end = find_end_of_node(start, limit, size);
295 			/*
296 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
297 			 * non-reserved memory in ZONE_DMA32 for the next node,
298 			 * this one must extend to the boundary.
299 			 */
300 			if (end < dma32_end && dma32_end - end -
301 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
302 				end = dma32_end;
303 
304 			/*
305 			 * If there won't be enough non-reserved memory for the
306 			 * next node, this one must extend to the end of the
307 			 * physical node.
308 			 */
309 			if ((limit - end - mem_hole_size(end, limit) < size)
310 					&& !uniform)
311 				end = limit;
312 
313 			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
314 					       phys_blk,
315 					       min(end, limit) - start);
316 			if (ret < 0)
317 				return ret;
318 		}
319 	}
320 	return nid;
321 }
322 
323 static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
324 					      struct numa_meminfo *pi,
325 					      u64 addr, u64 max_addr, u64 size)
326 {
327 	return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
328 			0, NULL, 0);
329 }
330 
331 static int __init setup_emu2phys_nid(int *dfl_phys_nid)
332 {
333 	int i, max_emu_nid = 0;
334 
335 	*dfl_phys_nid = NUMA_NO_NODE;
336 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
337 		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
338 			max_emu_nid = i;
339 			if (*dfl_phys_nid == NUMA_NO_NODE)
340 				*dfl_phys_nid = emu_nid_to_phys[i];
341 		}
342 	}
343 
344 	return max_emu_nid;
345 }
346 
347 /**
348  * numa_emulation - Emulate NUMA nodes
349  * @numa_meminfo: NUMA configuration to massage
350  * @numa_dist_cnt: The size of the physical NUMA distance table
351  *
352  * Emulate NUMA nodes according to the numa=fake kernel parameter.
353  * @numa_meminfo contains the physical memory configuration and is modified
354  * to reflect the emulated configuration on success.  @numa_dist_cnt is
355  * used to determine the size of the physical distance table.
356  *
357  * On success, the following modifications are made.
358  *
359  * - @numa_meminfo is updated to reflect the emulated nodes.
360  *
361  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
362  *   emulated nodes.
363  *
364  * - NUMA distance table is rebuilt to represent distances between emulated
365  *   nodes.  The distances are determined considering how emulated nodes
366  *   are mapped to physical nodes and match the actual distances.
367  *
368  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
369  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
370  *
371  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
372  * identity mapping and no other modification is made.
373  */
374 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
375 {
376 	static struct numa_meminfo ei __initdata;
377 	static struct numa_meminfo pi __initdata;
378 	const u64 max_addr = PFN_PHYS(max_pfn);
379 	u8 *phys_dist = NULL;
380 	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
381 	int max_emu_nid, dfl_phys_nid;
382 	int i, j, ret;
383 	nodemask_t physnode_mask = numa_nodes_parsed;
384 
385 	if (!emu_cmdline)
386 		goto no_emu;
387 
388 	memset(&ei, 0, sizeof(ei));
389 	pi = *numa_meminfo;
390 
391 	for (i = 0; i < MAX_NUMNODES; i++)
392 		emu_nid_to_phys[i] = NUMA_NO_NODE;
393 
394 	/*
395 	 * If the numa=fake command-line contains a 'M' or 'G', it represents
396 	 * the fixed node size.  Otherwise, if it is just a single number N,
397 	 * split the system RAM into N fake nodes.
398 	 */
399 	if (strchr(emu_cmdline, 'U')) {
400 		unsigned long n;
401 		int nid = 0;
402 
403 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
404 		ret = -1;
405 		for_each_node_mask(i, physnode_mask) {
406 			/*
407 			 * The reason we pass in blk[0] is due to
408 			 * numa_remove_memblk_from() called by
409 			 * emu_setup_memblk() will delete entry 0
410 			 * and then move everything else up in the pi.blk
411 			 * array. Therefore we should always be looking
412 			 * at blk[0].
413 			 */
414 			ret = split_nodes_size_interleave_uniform(&ei, &pi,
415 					pi.blk[0].start, pi.blk[0].end, 0,
416 					n, &pi.blk[0], nid);
417 			if (ret < 0)
418 				break;
419 			if (ret < n) {
420 				pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
421 						__func__, i, ret, n);
422 				ret = -1;
423 				break;
424 			}
425 			nid = ret;
426 		}
427 	} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
428 		u64 size;
429 
430 		size = memparse(emu_cmdline, &emu_cmdline);
431 		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
432 	} else {
433 		unsigned long n;
434 
435 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
436 		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
437 	}
438 	if (*emu_cmdline == ':')
439 		emu_cmdline++;
440 
441 	if (ret < 0)
442 		goto no_emu;
443 
444 	if (numa_cleanup_meminfo(&ei) < 0) {
445 		pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
446 		goto no_emu;
447 	}
448 
449 	/* copy the physical distance table */
450 	if (numa_dist_cnt) {
451 		phys_dist = memblock_alloc(phys_size, PAGE_SIZE);
452 		if (!phys_dist) {
453 			pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
454 			goto no_emu;
455 		}
456 
457 		for (i = 0; i < numa_dist_cnt; i++)
458 			for (j = 0; j < numa_dist_cnt; j++)
459 				phys_dist[i * numa_dist_cnt + j] =
460 					node_distance(i, j);
461 	}
462 
463 	/*
464 	 * Determine the max emulated nid and the default phys nid to use
465 	 * for unmapped nodes.
466 	 */
467 	max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
468 
469 	/* Make sure numa_nodes_parsed only contains emulated nodes */
470 	nodes_clear(numa_nodes_parsed);
471 	for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
472 		if (ei.blk[i].start != ei.blk[i].end &&
473 		    ei.blk[i].nid != NUMA_NO_NODE)
474 			node_set(ei.blk[i].nid, numa_nodes_parsed);
475 
476 	/* fix pxm_to_node_map[] and node_to_pxm_map[] to avoid collision
477 	 * with faked numa nodes, particularly during later memory hotplug
478 	 * handling, and also update numa_nodes_parsed accordingly.
479 	 */
480 	ret = fix_pxm_node_maps(max_emu_nid);
481 	if (ret < 0)
482 		goto no_emu;
483 
484 	/* commit */
485 	*numa_meminfo = ei;
486 
487 	numa_emu_update_cpu_to_node(emu_nid_to_phys, max_emu_nid + 1);
488 
489 	/* make sure all emulated nodes are mapped to a physical node */
490 	for (i = 0; i < max_emu_nid + 1; i++)
491 		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
492 			emu_nid_to_phys[i] = dfl_phys_nid;
493 
494 	/* transform distance table */
495 	numa_reset_distance();
496 	for (i = 0; i < max_emu_nid + 1; i++) {
497 		for (j = 0; j < max_emu_nid + 1; j++) {
498 			int physi = emu_nid_to_phys[i];
499 			int physj = emu_nid_to_phys[j];
500 			int dist;
501 
502 			if (get_option(&emu_cmdline, &dist) == 2)
503 				;
504 			else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
505 				dist = physi == physj ?
506 					LOCAL_DISTANCE : REMOTE_DISTANCE;
507 			else
508 				dist = phys_dist[physi * numa_dist_cnt + physj];
509 
510 			numa_set_distance(i, j, dist);
511 		}
512 	}
513 	for (i = 0; i < numa_distance_cnt; i++) {
514 		for (j = 0; j < numa_distance_cnt; j++) {
515 			int physi, physj;
516 			u8 dist;
517 
518 			/* distance between fake nodes is already ok */
519 			if (emu_nid_to_phys[i] != NUMA_NO_NODE &&
520 			    emu_nid_to_phys[j] != NUMA_NO_NODE)
521 				continue;
522 			if (emu_nid_to_phys[i] != NUMA_NO_NODE)
523 				physi = emu_nid_to_phys[i];
524 			else
525 				physi = i - max_emu_nid;
526 			if (emu_nid_to_phys[j] != NUMA_NO_NODE)
527 				physj = emu_nid_to_phys[j];
528 			else
529 				physj = j - max_emu_nid;
530 			dist = phys_dist[physi * numa_dist_cnt + physj];
531 			numa_set_distance(i, j, dist);
532 		}
533 	}
534 
535 	/* free the copied physical distance table */
536 	memblock_free(phys_dist, phys_size);
537 	return;
538 
539 no_emu:
540 	numa_nodes_parsed = physnode_mask;
541 	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
542 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
543 		emu_nid_to_phys[i] = i;
544 }
545 
546 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
547 void numa_add_cpu(unsigned int cpu)
548 {
549 	int physnid, nid;
550 
551 	nid = early_cpu_to_node(cpu);
552 	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
553 
554 	physnid = emu_nid_to_phys[nid];
555 
556 	/*
557 	 * Map the cpu to each emulated node that is allocated on the physical
558 	 * node of the cpu's apic id.
559 	 */
560 	for_each_online_node(nid)
561 		if (emu_nid_to_phys[nid] == physnid)
562 			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
563 }
564 
565 void numa_remove_cpu(unsigned int cpu)
566 {
567 	int i;
568 
569 	for_each_online_node(i)
570 		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
571 }
572 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
573 static void numa_set_cpumask(unsigned int cpu, bool enable)
574 {
575 	int nid, physnid;
576 
577 	nid = early_cpu_to_node(cpu);
578 	if (nid == NUMA_NO_NODE) {
579 		/* early_cpu_to_node() already emits a warning and trace */
580 		return;
581 	}
582 
583 	physnid = emu_nid_to_phys[nid];
584 
585 	for_each_online_node(nid) {
586 		if (emu_nid_to_phys[nid] != physnid)
587 			continue;
588 
589 		debug_cpumask_set_cpu(cpu, nid, enable);
590 	}
591 }
592 
593 void numa_add_cpu(unsigned int cpu)
594 {
595 	numa_set_cpumask(cpu, true);
596 }
597 
598 void numa_remove_cpu(unsigned int cpu)
599 {
600 	numa_set_cpumask(cpu, false);
601 }
602 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
603