1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/arc.h>
45 #include <sys/zfeature.h>
46 #include <sys/vdev_indirect_births.h>
47 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/abd.h>
49 #include <sys/vdev_initialize.h>
50 #include <sys/vdev_trim.h>
51 #include <sys/trace_zfs.h>
52
53 /*
54 * This file contains the necessary logic to remove vdevs from a
55 * storage pool. Currently, the only devices that can be removed
56 * are log, cache, and spare devices; and top level vdevs from a pool
57 * w/o raidz or mirrors. (Note that members of a mirror can be removed
58 * by the detach operation.)
59 *
60 * Log vdevs are removed by evacuating them and then turning the vdev
61 * into a hole vdev while holding spa config locks.
62 *
63 * Top level vdevs are removed and converted into an indirect vdev via
64 * a multi-step process:
65 *
66 * - Disable allocations from this device (spa_vdev_remove_top).
67 *
68 * - From a new thread (spa_vdev_remove_thread), copy data from
69 * the removing vdev to a different vdev. The copy happens in open
70 * context (spa_vdev_copy_impl) and issues a sync task
71 * (vdev_mapping_sync) so the sync thread can update the partial
72 * indirect mappings in core and on disk.
73 *
74 * - If a free happens during a removal, it is freed from the
75 * removing vdev, and if it has already been copied, from the new
76 * location as well (free_from_removing_vdev).
77 *
78 * - After the removal is completed, the copy thread converts the vdev
79 * into an indirect vdev (vdev_remove_complete) before instructing
80 * the sync thread to destroy the space maps and finish the removal
81 * (spa_finish_removal).
82 */
83
84 typedef struct vdev_copy_arg {
85 metaslab_t *vca_msp;
86 uint64_t vca_outstanding_bytes;
87 uint64_t vca_read_error_bytes;
88 uint64_t vca_write_error_bytes;
89 kcondvar_t vca_cv;
90 kmutex_t vca_lock;
91 } vdev_copy_arg_t;
92
93 /*
94 * The maximum amount of memory we can use for outstanding i/o while
95 * doing a device removal. This determines how much i/o we can have
96 * in flight concurrently.
97 */
98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
99
100 /*
101 * The largest contiguous segment that we will attempt to allocate when
102 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
103 * there is a performance problem with attempting to allocate large blocks,
104 * consider decreasing this.
105 *
106 * See also the accessor function spa_remove_max_segment().
107 */
108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
109
110 /*
111 * Ignore hard IO errors during device removal. When set if a device
112 * encounters hard IO error during the removal process the removal will
113 * not be cancelled. This can result in a normally recoverable block
114 * becoming permanently damaged and is not recommended.
115 */
116 static int zfs_removal_ignore_errors = 0;
117
118 /*
119 * Allow a remap segment to span free chunks of at most this size. The main
120 * impact of a larger span is that we will read and write larger, more
121 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
122 * for iops. The value here was chosen to align with
123 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
124 * reads (but there's no reason it has to be the same).
125 *
126 * Additionally, a higher span will have the following relatively minor
127 * effects:
128 * - the mapping will be smaller, since one entry can cover more allocated
129 * segments
130 * - more of the fragmentation in the removing device will be preserved
131 * - we'll do larger allocations, which may fail and fall back on smaller
132 * allocations
133 */
134 uint_t vdev_removal_max_span = 32 * 1024;
135
136 /*
137 * This is used by the test suite so that it can ensure that certain
138 * actions happen while in the middle of a removal.
139 */
140 int zfs_removal_suspend_progress = 0;
141
142 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
143
144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
145 static int spa_vdev_remove_cancel_impl(spa_t *spa);
146
147 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
149 {
150 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
151 DMU_POOL_DIRECTORY_OBJECT,
152 DMU_POOL_REMOVING, sizeof (uint64_t),
153 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
154 &spa->spa_removing_phys, tx));
155 }
156
157 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
159 {
160 for (int i = 0; i < count; i++) {
161 uint64_t guid =
162 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
163
164 if (guid == target_guid)
165 return (nvpp[i]);
166 }
167
168 return (NULL);
169 }
170
171 static void
vdev_activate(vdev_t * vd)172 vdev_activate(vdev_t *vd)
173 {
174 metaslab_group_t *mg = vd->vdev_mg;
175 spa_t *spa = vd->vdev_spa;
176 uint64_t vdev_space = spa_deflate(spa) ?
177 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
178
179 ASSERT(!vd->vdev_islog);
180 ASSERT(vd->vdev_noalloc);
181
182 metaslab_group_activate(mg);
183 metaslab_group_activate(vd->vdev_log_mg);
184
185 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
186
187 spa->spa_nonallocating_dspace -= vdev_space;
188
189 vd->vdev_noalloc = B_FALSE;
190 }
191
192 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)193 vdev_passivate(vdev_t *vd, uint64_t *txg)
194 {
195 spa_t *spa = vd->vdev_spa;
196 int error;
197
198 ASSERT(!vd->vdev_noalloc);
199
200 vdev_t *rvd = spa->spa_root_vdev;
201 metaslab_group_t *mg = vd->vdev_mg;
202 metaslab_class_t *normal = spa_normal_class(spa);
203 if (mg->mg_class == normal) {
204 /*
205 * We must check that this is not the only allocating device in
206 * the pool before passivating, otherwise we will not be able
207 * to make progress because we can't allocate from any vdevs.
208 */
209 boolean_t last = B_TRUE;
210 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
211 vdev_t *cvd = rvd->vdev_child[id];
212
213 if (cvd == vd || !vdev_is_concrete(cvd) ||
214 vdev_is_dead(cvd))
215 continue;
216
217 metaslab_class_t *mc = cvd->vdev_mg->mg_class;
218 if (mc != normal)
219 continue;
220
221 if (!cvd->vdev_noalloc) {
222 last = B_FALSE;
223 break;
224 }
225 }
226 if (last)
227 return (SET_ERROR(EINVAL));
228 }
229
230 metaslab_group_passivate(mg);
231 ASSERT(!vd->vdev_islog);
232 metaslab_group_passivate(vd->vdev_log_mg);
233
234 /*
235 * Wait for the youngest allocations and frees to sync,
236 * and then wait for the deferral of those frees to finish.
237 */
238 spa_vdev_config_exit(spa, NULL,
239 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
240
241 /*
242 * We must ensure that no "stubby" log blocks are allocated
243 * on the device to be removed. These blocks could be
244 * written at any time, including while we are in the middle
245 * of copying them.
246 */
247 error = spa_reset_logs(spa);
248
249 *txg = spa_vdev_config_enter(spa);
250
251 if (error != 0) {
252 metaslab_group_activate(mg);
253 ASSERT(!vd->vdev_islog);
254 if (vd->vdev_log_mg != NULL)
255 metaslab_group_activate(vd->vdev_log_mg);
256 return (error);
257 }
258
259 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
260 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
261 vd->vdev_noalloc = B_TRUE;
262
263 return (0);
264 }
265
266 /*
267 * Turn off allocations for a top-level device from the pool.
268 *
269 * Turning off allocations for a top-level device can take a significant
270 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
271 * functions which allow us to grab and release the spa_config_lock while
272 * still holding the namespace lock. During each step the configuration
273 * is synced out.
274 */
275 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)276 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
277 {
278 vdev_t *vd;
279 uint64_t txg;
280 int error = 0;
281
282 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
283 ASSERT(spa_writeable(spa));
284
285 txg = spa_vdev_enter(spa);
286
287 ASSERT(MUTEX_HELD(&spa_namespace_lock));
288
289 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
290
291 if (vd == NULL)
292 error = SET_ERROR(ENOENT);
293 else if (vd->vdev_mg == NULL)
294 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
295 else if (!vd->vdev_noalloc)
296 error = vdev_passivate(vd, &txg);
297
298 if (error == 0) {
299 vdev_dirty_leaves(vd, VDD_DTL, txg);
300 vdev_config_dirty(vd);
301 }
302
303 error = spa_vdev_exit(spa, NULL, txg, error);
304
305 return (error);
306 }
307
308 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)309 spa_vdev_alloc(spa_t *spa, uint64_t guid)
310 {
311 vdev_t *vd;
312 uint64_t txg;
313 int error = 0;
314
315 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
316 ASSERT(spa_writeable(spa));
317
318 txg = spa_vdev_enter(spa);
319
320 ASSERT(MUTEX_HELD(&spa_namespace_lock));
321
322 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
323
324 if (vd == NULL)
325 error = SET_ERROR(ENOENT);
326 else if (vd->vdev_mg == NULL)
327 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
328 else if (!vd->vdev_removing)
329 vdev_activate(vd);
330
331 if (error == 0) {
332 vdev_dirty_leaves(vd, VDD_DTL, txg);
333 vdev_config_dirty(vd);
334 }
335
336 (void) spa_vdev_exit(spa, NULL, txg, error);
337
338 return (error);
339 }
340
341 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)342 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
343 int count, nvlist_t *dev_to_remove)
344 {
345 nvlist_t **newdev = NULL;
346
347 if (count > 1)
348 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
349
350 for (int i = 0, j = 0; i < count; i++) {
351 if (dev[i] == dev_to_remove)
352 continue;
353 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
354 }
355
356 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
357 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
358 count - 1);
359
360 for (int i = 0; i < count - 1; i++)
361 nvlist_free(newdev[i]);
362
363 if (count > 1)
364 kmem_free(newdev, (count - 1) * sizeof (void *));
365 }
366
367 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)368 spa_vdev_removal_create(vdev_t *vd)
369 {
370 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
371 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
372 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
373 svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
374 NULL, 0, 0);
375 svr->svr_vdev_id = vd->vdev_id;
376
377 for (int i = 0; i < TXG_SIZE; i++) {
378 svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
379 NULL, 0, 0);
380 list_create(&svr->svr_new_segments[i],
381 sizeof (vdev_indirect_mapping_entry_t),
382 offsetof(vdev_indirect_mapping_entry_t, vime_node));
383 }
384
385 return (svr);
386 }
387
388 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)389 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
390 {
391 for (int i = 0; i < TXG_SIZE; i++) {
392 ASSERT0(svr->svr_bytes_done[i]);
393 ASSERT0(svr->svr_max_offset_to_sync[i]);
394 zfs_range_tree_destroy(svr->svr_frees[i]);
395 list_destroy(&svr->svr_new_segments[i]);
396 }
397
398 zfs_range_tree_destroy(svr->svr_allocd_segs);
399 mutex_destroy(&svr->svr_lock);
400 cv_destroy(&svr->svr_cv);
401 kmem_free(svr, sizeof (*svr));
402 }
403
404 /*
405 * This is called as a synctask in the txg in which we will mark this vdev
406 * as removing (in the config stored in the MOS).
407 *
408 * It begins the evacuation of a toplevel vdev by:
409 * - initializing the spa_removing_phys which tracks this removal
410 * - computing the amount of space to remove for accounting purposes
411 * - dirtying all dbufs in the spa_config_object
412 * - creating the spa_vdev_removal
413 * - starting the spa_vdev_remove_thread
414 */
415 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)416 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
417 {
418 int vdev_id = (uintptr_t)arg;
419 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
420 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
421 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
422 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
423 spa_vdev_removal_t *svr = NULL;
424 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
425
426 ASSERT0(vdev_get_nparity(vd));
427 svr = spa_vdev_removal_create(vd);
428
429 ASSERT(vd->vdev_removing);
430 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
431
432 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
433 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
434 /*
435 * By activating the OBSOLETE_COUNTS feature, we prevent
436 * the pool from being downgraded and ensure that the
437 * refcounts are precise.
438 */
439 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
440 uint64_t one = 1;
441 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
442 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
443 &one, tx));
444 boolean_t are_precise __maybe_unused;
445 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
446 ASSERT3B(are_precise, ==, B_TRUE);
447 }
448
449 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
450 vd->vdev_indirect_mapping =
451 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
452 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
453 vd->vdev_indirect_births =
454 vdev_indirect_births_open(mos, vic->vic_births_object);
455 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
456 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
457 spa->spa_removing_phys.sr_end_time = 0;
458 spa->spa_removing_phys.sr_state = DSS_SCANNING;
459 spa->spa_removing_phys.sr_to_copy = 0;
460 spa->spa_removing_phys.sr_copied = 0;
461
462 /*
463 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
464 * there may be space in the defer tree, which is free, but still
465 * counted in vs_alloc.
466 */
467 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
468 metaslab_t *ms = vd->vdev_ms[i];
469 if (ms->ms_sm == NULL)
470 continue;
471
472 spa->spa_removing_phys.sr_to_copy +=
473 metaslab_allocated_space(ms);
474
475 /*
476 * Space which we are freeing this txg does not need to
477 * be copied.
478 */
479 spa->spa_removing_phys.sr_to_copy -=
480 zfs_range_tree_space(ms->ms_freeing);
481
482 ASSERT0(zfs_range_tree_space(ms->ms_freed));
483 for (int t = 0; t < TXG_SIZE; t++)
484 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
485 }
486
487 /*
488 * Sync tasks are called before metaslab_sync(), so there should
489 * be no already-synced metaslabs in the TXG_CLEAN list.
490 */
491 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
492
493 spa_sync_removing_state(spa, tx);
494
495 /*
496 * All blocks that we need to read the most recent mapping must be
497 * stored on concrete vdevs. Therefore, we must dirty anything that
498 * is read before spa_remove_init(). Specifically, the
499 * spa_config_object. (Note that although we already modified the
500 * spa_config_object in spa_sync_removing_state, that may not have
501 * modified all blocks of the object.)
502 */
503 dmu_object_info_t doi;
504 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
505 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
506 dmu_buf_t *dbuf;
507 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
508 offset, FTAG, &dbuf, 0));
509 dmu_buf_will_dirty(dbuf, tx);
510 offset += dbuf->db_size;
511 dmu_buf_rele(dbuf, FTAG);
512 }
513
514 /*
515 * Now that we've allocated the im_object, dirty the vdev to ensure
516 * that the object gets written to the config on disk.
517 */
518 vdev_config_dirty(vd);
519
520 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
521 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
522 (u_longlong_t)dmu_tx_get_txg(tx),
523 (u_longlong_t)vic->vic_mapping_object);
524
525 spa_history_log_internal(spa, "vdev remove started", tx,
526 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
527 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
528 /*
529 * Setting spa_vdev_removal causes subsequent frees to call
530 * free_from_removing_vdev(). Note that we don't need any locking
531 * because we are the sync thread, and metaslab_free_impl() is only
532 * called from syncing context (potentially from a zio taskq thread,
533 * but in any case only when there are outstanding free i/os, which
534 * there are not).
535 */
536 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
537 spa->spa_vdev_removal = svr;
538 svr->svr_thread = thread_create(NULL, 0,
539 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
540 }
541
542 /*
543 * When we are opening a pool, we must read the mapping for each
544 * indirect vdev in order from most recently removed to least
545 * recently removed. We do this because the blocks for the mapping
546 * of older indirect vdevs may be stored on more recently removed vdevs.
547 * In order to read each indirect mapping object, we must have
548 * initialized all more recently removed vdevs.
549 */
550 int
spa_remove_init(spa_t * spa)551 spa_remove_init(spa_t *spa)
552 {
553 int error;
554
555 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
556 DMU_POOL_DIRECTORY_OBJECT,
557 DMU_POOL_REMOVING, sizeof (uint64_t),
558 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
559 &spa->spa_removing_phys);
560
561 if (error == ENOENT) {
562 spa->spa_removing_phys.sr_state = DSS_NONE;
563 spa->spa_removing_phys.sr_removing_vdev = -1;
564 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
565 spa->spa_indirect_vdevs_loaded = B_TRUE;
566 return (0);
567 } else if (error != 0) {
568 return (error);
569 }
570
571 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
572 /*
573 * We are currently removing a vdev. Create and
574 * initialize a spa_vdev_removal_t from the bonus
575 * buffer of the removing vdevs vdev_im_object, and
576 * initialize its partial mapping.
577 */
578 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
579 vdev_t *vd = vdev_lookup_top(spa,
580 spa->spa_removing_phys.sr_removing_vdev);
581
582 if (vd == NULL) {
583 spa_config_exit(spa, SCL_STATE, FTAG);
584 return (EINVAL);
585 }
586
587 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
588
589 ASSERT(vdev_is_concrete(vd));
590 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
591 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
592 ASSERT(vd->vdev_removing);
593
594 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
595 spa->spa_meta_objset, vic->vic_mapping_object);
596 vd->vdev_indirect_births = vdev_indirect_births_open(
597 spa->spa_meta_objset, vic->vic_births_object);
598 spa_config_exit(spa, SCL_STATE, FTAG);
599
600 spa->spa_vdev_removal = svr;
601 }
602
603 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
604 uint64_t indirect_vdev_id =
605 spa->spa_removing_phys.sr_prev_indirect_vdev;
606 while (indirect_vdev_id != UINT64_MAX) {
607 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
608 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
609
610 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
611 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
612 spa->spa_meta_objset, vic->vic_mapping_object);
613 vd->vdev_indirect_births = vdev_indirect_births_open(
614 spa->spa_meta_objset, vic->vic_births_object);
615
616 indirect_vdev_id = vic->vic_prev_indirect_vdev;
617 }
618 spa_config_exit(spa, SCL_STATE, FTAG);
619
620 /*
621 * Now that we've loaded all the indirect mappings, we can allow
622 * reads from other blocks (e.g. via predictive prefetch).
623 */
624 spa->spa_indirect_vdevs_loaded = B_TRUE;
625 return (0);
626 }
627
628 void
spa_restart_removal(spa_t * spa)629 spa_restart_removal(spa_t *spa)
630 {
631 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
632
633 if (svr == NULL)
634 return;
635
636 /*
637 * In general when this function is called there is no
638 * removal thread running. The only scenario where this
639 * is not true is during spa_import() where this function
640 * is called twice [once from spa_import_impl() and
641 * spa_async_resume()]. Thus, in the scenario where we
642 * import a pool that has an ongoing removal we don't
643 * want to spawn a second thread.
644 */
645 if (svr->svr_thread != NULL)
646 return;
647
648 if (!spa_writeable(spa))
649 return;
650
651 zfs_dbgmsg("restarting removal of %llu",
652 (u_longlong_t)svr->svr_vdev_id);
653 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
654 0, &p0, TS_RUN, minclsyspri);
655 }
656
657 /*
658 * Process freeing from a device which is in the middle of being removed.
659 * We must handle this carefully so that we attempt to copy freed data,
660 * and we correctly free already-copied data.
661 */
662 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)663 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
664 {
665 spa_t *spa = vd->vdev_spa;
666 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
667 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
668 uint64_t txg = spa_syncing_txg(spa);
669 uint64_t max_offset_yet = 0;
670
671 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
672 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
673 vdev_indirect_mapping_object(vim));
674 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
675
676 mutex_enter(&svr->svr_lock);
677
678 /*
679 * Remove the segment from the removing vdev's spacemap. This
680 * ensures that we will not attempt to copy this space (if the
681 * removal thread has not yet visited it), and also ensures
682 * that we know what is actually allocated on the new vdevs
683 * (needed if we cancel the removal).
684 *
685 * Note: we must do the metaslab_free_concrete() with the svr_lock
686 * held, so that the remove_thread can not load this metaslab and then
687 * visit this offset between the time that we metaslab_free_concrete()
688 * and when we check to see if it has been visited.
689 *
690 * Note: The checkpoint flag is set to false as having/taking
691 * a checkpoint and removing a device can't happen at the same
692 * time.
693 */
694 ASSERT(!spa_has_checkpoint(spa));
695 metaslab_free_concrete(vd, offset, size, B_FALSE);
696
697 uint64_t synced_size = 0;
698 uint64_t synced_offset = 0;
699 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
700 if (offset < max_offset_synced) {
701 /*
702 * The mapping for this offset is already on disk.
703 * Free from the new location.
704 *
705 * Note that we use svr_max_synced_offset because it is
706 * updated atomically with respect to the in-core mapping.
707 * By contrast, vim_max_offset is not.
708 *
709 * This block may be split between a synced entry and an
710 * in-flight or unvisited entry. Only process the synced
711 * portion of it here.
712 */
713 synced_size = MIN(size, max_offset_synced - offset);
714 synced_offset = offset;
715
716 ASSERT3U(max_offset_yet, <=, max_offset_synced);
717 max_offset_yet = max_offset_synced;
718
719 DTRACE_PROBE3(remove__free__synced,
720 spa_t *, spa,
721 uint64_t, offset,
722 uint64_t, synced_size);
723
724 size -= synced_size;
725 offset += synced_size;
726 }
727
728 /*
729 * Look at all in-flight txgs starting from the currently syncing one
730 * and see if a section of this free is being copied. By starting from
731 * this txg and iterating forward, we might find that this region
732 * was copied in two different txgs and handle it appropriately.
733 */
734 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
735 int txgoff = (txg + i) & TXG_MASK;
736 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
737 /*
738 * The mapping for this offset is in flight, and
739 * will be synced in txg+i.
740 */
741 uint64_t inflight_size = MIN(size,
742 svr->svr_max_offset_to_sync[txgoff] - offset);
743
744 DTRACE_PROBE4(remove__free__inflight,
745 spa_t *, spa,
746 uint64_t, offset,
747 uint64_t, inflight_size,
748 uint64_t, txg + i);
749
750 /*
751 * We copy data in order of increasing offset.
752 * Therefore the max_offset_to_sync[] must increase
753 * (or be zero, indicating that nothing is being
754 * copied in that txg).
755 */
756 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
757 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
758 >=, max_offset_yet);
759 max_offset_yet =
760 svr->svr_max_offset_to_sync[txgoff];
761 }
762
763 /*
764 * We've already committed to copying this segment:
765 * we have allocated space elsewhere in the pool for
766 * it and have an IO outstanding to copy the data. We
767 * cannot free the space before the copy has
768 * completed, or else the copy IO might overwrite any
769 * new data. To free that space, we record the
770 * segment in the appropriate svr_frees tree and free
771 * the mapped space later, in the txg where we have
772 * completed the copy and synced the mapping (see
773 * vdev_mapping_sync).
774 */
775 zfs_range_tree_add(svr->svr_frees[txgoff],
776 offset, inflight_size);
777 size -= inflight_size;
778 offset += inflight_size;
779
780 /*
781 * This space is already accounted for as being
782 * done, because it is being copied in txg+i.
783 * However, if i!=0, then it is being copied in
784 * a future txg. If we crash after this txg
785 * syncs but before txg+i syncs, then the space
786 * will be free. Therefore we must account
787 * for the space being done in *this* txg
788 * (when it is freed) rather than the future txg
789 * (when it will be copied).
790 */
791 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
792 inflight_size);
793 svr->svr_bytes_done[txgoff] -= inflight_size;
794 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
795 }
796 }
797 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
798
799 if (size > 0) {
800 /*
801 * The copy thread has not yet visited this offset. Ensure
802 * that it doesn't.
803 */
804
805 DTRACE_PROBE3(remove__free__unvisited,
806 spa_t *, spa,
807 uint64_t, offset,
808 uint64_t, size);
809
810 if (svr->svr_allocd_segs != NULL)
811 zfs_range_tree_clear(svr->svr_allocd_segs, offset,
812 size);
813
814 /*
815 * Since we now do not need to copy this data, for
816 * accounting purposes we have done our job and can count
817 * it as completed.
818 */
819 svr->svr_bytes_done[txg & TXG_MASK] += size;
820 }
821 mutex_exit(&svr->svr_lock);
822
823 /*
824 * Now that we have dropped svr_lock, process the synced portion
825 * of this free.
826 */
827 if (synced_size > 0) {
828 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
829
830 /*
831 * Note: this can only be called from syncing context,
832 * and the vdev_indirect_mapping is only changed from the
833 * sync thread, so we don't need svr_lock while doing
834 * metaslab_free_impl_cb.
835 */
836 boolean_t checkpoint = B_FALSE;
837 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
838 metaslab_free_impl_cb, &checkpoint);
839 }
840 }
841
842 /*
843 * Stop an active removal and update the spa_removing phys.
844 */
845 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)846 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
847 {
848 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
849 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
850
851 /* Ensure the removal thread has completed before we free the svr. */
852 spa_vdev_remove_suspend(spa);
853
854 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
855
856 if (state == DSS_FINISHED) {
857 spa_removing_phys_t *srp = &spa->spa_removing_phys;
858 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
859 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
860
861 if (srp->sr_prev_indirect_vdev != -1) {
862 vdev_t *pvd;
863 pvd = vdev_lookup_top(spa,
864 srp->sr_prev_indirect_vdev);
865 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
866 }
867
868 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
869 srp->sr_prev_indirect_vdev = vd->vdev_id;
870 }
871 spa->spa_removing_phys.sr_state = state;
872 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
873
874 spa->spa_vdev_removal = NULL;
875 spa_vdev_removal_destroy(svr);
876
877 spa_sync_removing_state(spa, tx);
878 spa_notify_waiters(spa);
879
880 vdev_config_dirty(spa->spa_root_vdev);
881 }
882
883 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)884 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
885 {
886 vdev_t *vd = arg;
887 vdev_indirect_mark_obsolete(vd, offset, size);
888 boolean_t checkpoint = B_FALSE;
889 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
890 metaslab_free_impl_cb, &checkpoint);
891 }
892
893 /*
894 * On behalf of the removal thread, syncs an incremental bit more of
895 * the indirect mapping to disk and updates the in-memory mapping.
896 * Called as a sync task in every txg that the removal thread makes progress.
897 */
898 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)899 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
900 {
901 spa_vdev_removal_t *svr = arg;
902 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
903 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
904 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
905 uint64_t txg = dmu_tx_get_txg(tx);
906 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
907
908 ASSERT(vic->vic_mapping_object != 0);
909 ASSERT3U(txg, ==, spa_syncing_txg(spa));
910
911 vdev_indirect_mapping_add_entries(vim,
912 &svr->svr_new_segments[txg & TXG_MASK], tx);
913 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
914 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
915
916 /*
917 * Free the copied data for anything that was freed while the
918 * mapping entries were in flight.
919 */
920 mutex_enter(&svr->svr_lock);
921 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
922 free_mapped_segment_cb, vd);
923 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
924 vdev_indirect_mapping_max_offset(vim));
925 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
926 mutex_exit(&svr->svr_lock);
927
928 spa_sync_removing_state(spa, tx);
929 }
930
931 typedef struct vdev_copy_segment_arg {
932 spa_t *vcsa_spa;
933 dva_t *vcsa_dest_dva;
934 uint64_t vcsa_txg;
935 zfs_range_tree_t *vcsa_obsolete_segs;
936 } vdev_copy_segment_arg_t;
937
938 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)939 unalloc_seg(void *arg, uint64_t start, uint64_t size)
940 {
941 vdev_copy_segment_arg_t *vcsa = arg;
942 spa_t *spa = vcsa->vcsa_spa;
943 blkptr_t bp = { { { {0} } } };
944
945 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
946 BP_SET_LSIZE(&bp, size);
947 BP_SET_PSIZE(&bp, size);
948 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
949 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
950 BP_SET_TYPE(&bp, DMU_OT_NONE);
951 BP_SET_LEVEL(&bp, 0);
952 BP_SET_DEDUP(&bp, 0);
953 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
954
955 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
956 DVA_SET_OFFSET(&bp.blk_dva[0],
957 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
958 DVA_SET_ASIZE(&bp.blk_dva[0], size);
959
960 zio_free(spa, vcsa->vcsa_txg, &bp);
961 }
962
963 /*
964 * All reads and writes associated with a call to spa_vdev_copy_segment()
965 * are done.
966 */
967 static void
spa_vdev_copy_segment_done(zio_t * zio)968 spa_vdev_copy_segment_done(zio_t *zio)
969 {
970 vdev_copy_segment_arg_t *vcsa = zio->io_private;
971
972 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
973 unalloc_seg, vcsa);
974 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
975 kmem_free(vcsa, sizeof (*vcsa));
976
977 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
978 }
979
980 /*
981 * The write of the new location is done.
982 */
983 static void
spa_vdev_copy_segment_write_done(zio_t * zio)984 spa_vdev_copy_segment_write_done(zio_t *zio)
985 {
986 vdev_copy_arg_t *vca = zio->io_private;
987
988 abd_free(zio->io_abd);
989
990 mutex_enter(&vca->vca_lock);
991 vca->vca_outstanding_bytes -= zio->io_size;
992
993 if (zio->io_error != 0)
994 vca->vca_write_error_bytes += zio->io_size;
995
996 cv_signal(&vca->vca_cv);
997 mutex_exit(&vca->vca_lock);
998 }
999
1000 /*
1001 * The read of the old location is done. The parent zio is the write to
1002 * the new location. Allow it to start.
1003 */
1004 static void
spa_vdev_copy_segment_read_done(zio_t * zio)1005 spa_vdev_copy_segment_read_done(zio_t *zio)
1006 {
1007 vdev_copy_arg_t *vca = zio->io_private;
1008
1009 if (zio->io_error != 0) {
1010 mutex_enter(&vca->vca_lock);
1011 vca->vca_read_error_bytes += zio->io_size;
1012 mutex_exit(&vca->vca_lock);
1013 }
1014
1015 zio_nowait(zio_unique_parent(zio));
1016 }
1017
1018 /*
1019 * If the old and new vdevs are mirrors, we will read both sides of the old
1020 * mirror, and write each copy to the corresponding side of the new mirror.
1021 * If the old and new vdevs have a different number of children, we will do
1022 * this as best as possible. Since we aren't verifying checksums, this
1023 * ensures that as long as there's a good copy of the data, we'll have a
1024 * good copy after the removal, even if there's silent damage to one side
1025 * of the mirror. If we're removing a mirror that has some silent damage,
1026 * we'll have exactly the same damage in the new location (assuming that
1027 * the new location is also a mirror).
1028 *
1029 * We accomplish this by creating a tree of zio_t's, with as many writes as
1030 * there are "children" of the new vdev (a non-redundant vdev counts as one
1031 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1032 * read from a child of the old vdev. Typically there will be the same
1033 * number of children of the old and new vdevs. However, if there are more
1034 * children of the new vdev, some child(ren) of the old vdev will be issued
1035 * multiple reads. If there are more children of the old vdev, some copies
1036 * will be dropped.
1037 *
1038 * For example, the tree of zio_t's for a 2-way mirror is:
1039 *
1040 * null
1041 * / \
1042 * write(new vdev, child 0) write(new vdev, child 1)
1043 * | |
1044 * read(old vdev, child 0) read(old vdev, child 1)
1045 *
1046 * Child zio's complete before their parents complete. However, zio's
1047 * created with zio_vdev_child_io() may be issued before their children
1048 * complete. In this case we need to make sure that the children (reads)
1049 * complete before the parents (writes) are *issued*. We do this by not
1050 * calling zio_nowait() on each write until its corresponding read has
1051 * completed.
1052 *
1053 * The spa_config_lock must be held while zio's created by
1054 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1055 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1056 * zio is needed to release the spa_config_lock after all the reads and
1057 * writes complete. (Note that we can't grab the config lock for each read,
1058 * because it is not reentrant - we could deadlock with a thread waiting
1059 * for a write lock.)
1060 */
1061 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1062 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1063 vdev_t *source_vd, uint64_t source_offset,
1064 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1065 {
1066 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1067
1068 /*
1069 * If the destination child in unwritable then there is no point
1070 * in issuing the source reads which cannot be written.
1071 */
1072 if (!vdev_writeable(dest_child_vd))
1073 return;
1074
1075 mutex_enter(&vca->vca_lock);
1076 vca->vca_outstanding_bytes += size;
1077 mutex_exit(&vca->vca_lock);
1078
1079 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1080
1081 vdev_t *source_child_vd = NULL;
1082 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1083 /*
1084 * Source and dest are both mirrors. Copy from the same
1085 * child id as we are copying to (wrapping around if there
1086 * are more dest children than source children). If the
1087 * preferred source child is unreadable select another.
1088 */
1089 for (int i = 0; i < source_vd->vdev_children; i++) {
1090 source_child_vd = source_vd->vdev_child[
1091 (dest_id + i) % source_vd->vdev_children];
1092 if (vdev_readable(source_child_vd))
1093 break;
1094 }
1095 } else {
1096 source_child_vd = source_vd;
1097 }
1098
1099 /*
1100 * There should always be at least one readable source child or
1101 * the pool would be in a suspended state. Somehow selecting an
1102 * unreadable child would result in IO errors, the removal process
1103 * being cancelled, and the pool reverting to its pre-removal state.
1104 */
1105 ASSERT3P(source_child_vd, !=, NULL);
1106
1107 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1108 dest_child_vd, dest_offset, abd, size,
1109 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1110 ZIO_FLAG_CANFAIL,
1111 spa_vdev_copy_segment_write_done, vca);
1112
1113 zio_nowait(zio_vdev_child_io(write_zio, NULL,
1114 source_child_vd, source_offset, abd, size,
1115 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1116 ZIO_FLAG_CANFAIL,
1117 spa_vdev_copy_segment_read_done, vca));
1118 }
1119
1120 /*
1121 * Allocate a new location for this segment, and create the zio_t's to
1122 * read from the old location and write to the new location.
1123 */
1124 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1125 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1126 uint64_t maxalloc, uint64_t txg,
1127 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1128 {
1129 metaslab_group_t *mg = vd->vdev_mg;
1130 spa_t *spa = vd->vdev_spa;
1131 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1132 vdev_indirect_mapping_entry_t *entry;
1133 dva_t dst = {{ 0 }};
1134 uint64_t start = zfs_range_tree_min(segs);
1135 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1136
1137 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1138 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1139
1140 uint64_t size = zfs_range_tree_span(segs);
1141 if (zfs_range_tree_span(segs) > maxalloc) {
1142 /*
1143 * We can't allocate all the segments. Prefer to end
1144 * the allocation at the end of a segment, thus avoiding
1145 * additional split blocks.
1146 */
1147 zfs_range_seg_max_t search;
1148 zfs_btree_index_t where;
1149 zfs_rs_set_start(&search, segs, start + maxalloc);
1150 zfs_rs_set_end(&search, segs, start + maxalloc);
1151 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1152 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1153 &where);
1154 if (rs != NULL) {
1155 size = zfs_rs_get_end(rs, segs) - start;
1156 } else {
1157 /*
1158 * There are no segments that end before maxalloc.
1159 * I.e. the first segment is larger than maxalloc,
1160 * so we must split it.
1161 */
1162 size = maxalloc;
1163 }
1164 }
1165 ASSERT3U(size, <=, maxalloc);
1166 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1167
1168 /*
1169 * An allocation class might not have any remaining vdevs or space
1170 */
1171 metaslab_class_t *mc = mg->mg_class;
1172 if (mc->mc_groups == 0)
1173 mc = spa_normal_class(spa);
1174 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1175 0, zal, 0);
1176 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1177 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1178 &dst, 0, NULL, txg, 0, zal, 0);
1179 }
1180 if (error != 0)
1181 return (error);
1182
1183 /*
1184 * Determine the ranges that are not actually needed. Offsets are
1185 * relative to the start of the range to be copied (i.e. relative to the
1186 * local variable "start").
1187 */
1188 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL,
1189 ZFS_RANGE_SEG64, NULL, 0, 0);
1190
1191 zfs_btree_index_t where;
1192 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1193 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1194 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1195 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1196 if (zfs_rs_get_start(rs, segs) >= start + size) {
1197 break;
1198 } else {
1199 zfs_range_tree_add(obsolete_segs,
1200 prev_seg_end - start,
1201 zfs_rs_get_start(rs, segs) - prev_seg_end);
1202 }
1203 prev_seg_end = zfs_rs_get_end(rs, segs);
1204 }
1205 /* We don't end in the middle of an obsolete range */
1206 ASSERT3U(start + size, <=, prev_seg_end);
1207
1208 zfs_range_tree_clear(segs, start, size);
1209
1210 /*
1211 * We can't have any padding of the allocated size, otherwise we will
1212 * misunderstand what's allocated, and the size of the mapping. We
1213 * prevent padding by ensuring that all devices in the pool have the
1214 * same ashift, and the allocation size is a multiple of the ashift.
1215 */
1216 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1217
1218 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1219 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1220 entry->vime_mapping.vimep_dst = dst;
1221 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1222 entry->vime_obsolete_count =
1223 zfs_range_tree_space(obsolete_segs);
1224 }
1225
1226 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1227 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1228 vcsa->vcsa_obsolete_segs = obsolete_segs;
1229 vcsa->vcsa_spa = spa;
1230 vcsa->vcsa_txg = txg;
1231
1232 /*
1233 * See comment before spa_vdev_copy_one_child().
1234 */
1235 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1236 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1237 spa_vdev_copy_segment_done, vcsa, 0);
1238 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1239 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1240 for (int i = 0; i < dest_vd->vdev_children; i++) {
1241 vdev_t *child = dest_vd->vdev_child[i];
1242 spa_vdev_copy_one_child(vca, nzio, vd, start,
1243 child, DVA_GET_OFFSET(&dst), i, size);
1244 }
1245 } else {
1246 spa_vdev_copy_one_child(vca, nzio, vd, start,
1247 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1248 }
1249 zio_nowait(nzio);
1250
1251 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1252 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1253 vdev_dirty(vd, 0, NULL, txg);
1254
1255 return (0);
1256 }
1257
1258 /*
1259 * Complete the removal of a toplevel vdev. This is called as a
1260 * synctask in the same txg that we will sync out the new config (to the
1261 * MOS object) which indicates that this vdev is indirect.
1262 */
1263 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1264 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1265 {
1266 spa_vdev_removal_t *svr = arg;
1267 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1268 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1269
1270 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1271
1272 for (int i = 0; i < TXG_SIZE; i++) {
1273 ASSERT0(svr->svr_bytes_done[i]);
1274 }
1275
1276 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1277 spa->spa_removing_phys.sr_to_copy);
1278
1279 vdev_destroy_spacemaps(vd, tx);
1280
1281 /* destroy leaf zaps, if any */
1282 ASSERT3P(svr->svr_zaplist, !=, NULL);
1283 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1284 pair != NULL;
1285 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1286 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1287 }
1288 fnvlist_free(svr->svr_zaplist);
1289
1290 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1291 /* vd->vdev_path is not available here */
1292 spa_history_log_internal(spa, "vdev remove completed", tx,
1293 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1294 }
1295
1296 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1297 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1298 {
1299 ASSERT3P(zlist, !=, NULL);
1300 ASSERT0(vdev_get_nparity(vd));
1301
1302 if (vd->vdev_leaf_zap != 0) {
1303 char zkey[32];
1304 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1305 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1306 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1307 }
1308
1309 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1310 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1311 }
1312 }
1313
1314 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1315 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1316 {
1317 vdev_t *ivd;
1318 dmu_tx_t *tx;
1319 spa_t *spa = vd->vdev_spa;
1320 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1321
1322 /*
1323 * First, build a list of leaf zaps to be destroyed.
1324 * This is passed to the sync context thread,
1325 * which does the actual unlinking.
1326 */
1327 svr->svr_zaplist = fnvlist_alloc();
1328 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1329
1330 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1331 ivd->vdev_removing = 0;
1332
1333 vd->vdev_leaf_zap = 0;
1334
1335 vdev_remove_child(ivd, vd);
1336 vdev_compact_children(ivd);
1337
1338 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1339
1340 mutex_enter(&svr->svr_lock);
1341 svr->svr_thread = NULL;
1342 cv_broadcast(&svr->svr_cv);
1343 mutex_exit(&svr->svr_lock);
1344
1345 /* After this, we can not use svr. */
1346 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1347 dsl_sync_task_nowait(spa->spa_dsl_pool,
1348 vdev_remove_complete_sync, svr, tx);
1349 dmu_tx_commit(tx);
1350 }
1351
1352 /*
1353 * Complete the removal of a toplevel vdev. This is called in open
1354 * context by the removal thread after we have copied all vdev's data.
1355 */
1356 static void
vdev_remove_complete(spa_t * spa)1357 vdev_remove_complete(spa_t *spa)
1358 {
1359 uint64_t txg;
1360
1361 /*
1362 * Wait for any deferred frees to be synced before we call
1363 * vdev_metaslab_fini()
1364 */
1365 txg_wait_synced(spa->spa_dsl_pool, 0);
1366 txg = spa_vdev_enter(spa);
1367 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1368 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1369 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1370 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1371 vdev_rebuild_stop_wait(vd);
1372 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1373 uint64_t vdev_space = spa_deflate(spa) ?
1374 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1375
1376 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1377 ESC_ZFS_VDEV_REMOVE_DEV);
1378
1379 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1380 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1381
1382 ASSERT3U(0, !=, vdev_space);
1383 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1384
1385 /* the vdev is no longer part of the dspace */
1386 spa->spa_nonallocating_dspace -= vdev_space;
1387
1388 /*
1389 * Discard allocation state.
1390 */
1391 if (vd->vdev_mg != NULL) {
1392 vdev_metaslab_fini(vd);
1393 metaslab_group_destroy(vd->vdev_mg);
1394 vd->vdev_mg = NULL;
1395 }
1396 if (vd->vdev_log_mg != NULL) {
1397 ASSERT0(vd->vdev_ms_count);
1398 metaslab_group_destroy(vd->vdev_log_mg);
1399 vd->vdev_log_mg = NULL;
1400 }
1401 ASSERT0(vd->vdev_stat.vs_space);
1402 ASSERT0(vd->vdev_stat.vs_dspace);
1403
1404 vdev_remove_replace_with_indirect(vd, txg);
1405
1406 /*
1407 * We now release the locks, allowing spa_sync to run and finish the
1408 * removal via vdev_remove_complete_sync in syncing context.
1409 *
1410 * Note that we hold on to the vdev_t that has been replaced. Since
1411 * it isn't part of the vdev tree any longer, it can't be concurrently
1412 * manipulated, even while we don't have the config lock.
1413 */
1414 (void) spa_vdev_exit(spa, NULL, txg, 0);
1415
1416 /*
1417 * Top ZAP should have been transferred to the indirect vdev in
1418 * vdev_remove_replace_with_indirect.
1419 */
1420 ASSERT0(vd->vdev_top_zap);
1421
1422 /*
1423 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1424 */
1425 ASSERT0(vd->vdev_leaf_zap);
1426
1427 txg = spa_vdev_enter(spa);
1428 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1429 /*
1430 * Request to update the config and the config cachefile.
1431 */
1432 vdev_config_dirty(spa->spa_root_vdev);
1433 (void) spa_vdev_exit(spa, vd, txg, 0);
1434
1435 if (ev != NULL)
1436 spa_event_post(ev);
1437 }
1438
1439 /*
1440 * Evacuates a segment of size at most max_alloc from the vdev
1441 * via repeated calls to spa_vdev_copy_segment. If an allocation
1442 * fails, the pool is probably too fragmented to handle such a
1443 * large size, so decrease max_alloc so that the caller will not try
1444 * this size again this txg.
1445 */
1446 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1447 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1448 uint64_t *max_alloc, dmu_tx_t *tx)
1449 {
1450 uint64_t txg = dmu_tx_get_txg(tx);
1451 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1452
1453 mutex_enter(&svr->svr_lock);
1454
1455 /*
1456 * Determine how big of a chunk to copy. We can allocate up
1457 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1458 * bytes of unallocated space at a time. "segs" will track the
1459 * allocated segments that we are copying. We may also be copying
1460 * free segments (of up to vdev_removal_max_span bytes).
1461 */
1462 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1463 NULL, 0, 0);
1464 for (;;) {
1465 zfs_range_tree_t *rt = svr->svr_allocd_segs;
1466 zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1467
1468 if (rs == NULL)
1469 break;
1470
1471 uint64_t seg_length;
1472
1473 if (zfs_range_tree_is_empty(segs)) {
1474 /* need to truncate the first seg based on max_alloc */
1475 seg_length = MIN(zfs_rs_get_end(rs, rt) -
1476 zfs_rs_get_start(rs, rt), *max_alloc);
1477 } else {
1478 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1479 > vdev_removal_max_span) {
1480 /*
1481 * Including this segment would cause us to
1482 * copy a larger unneeded chunk than is allowed.
1483 */
1484 break;
1485 } else if (zfs_rs_get_end(rs, rt) -
1486 zfs_range_tree_min(segs) > *max_alloc) {
1487 /*
1488 * This additional segment would extend past
1489 * max_alloc. Rather than splitting this
1490 * segment, leave it for the next mapping.
1491 */
1492 break;
1493 } else {
1494 seg_length = zfs_rs_get_end(rs, rt) -
1495 zfs_rs_get_start(rs, rt);
1496 }
1497 }
1498
1499 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1500 zfs_range_tree_remove(svr->svr_allocd_segs,
1501 zfs_rs_get_start(rs, rt), seg_length);
1502 }
1503
1504 if (zfs_range_tree_is_empty(segs)) {
1505 mutex_exit(&svr->svr_lock);
1506 zfs_range_tree_destroy(segs);
1507 return;
1508 }
1509
1510 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1511 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1512 svr, tx);
1513 }
1514
1515 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1516
1517 /*
1518 * Note: this is the amount of *allocated* space
1519 * that we are taking care of each txg.
1520 */
1521 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1522
1523 mutex_exit(&svr->svr_lock);
1524
1525 zio_alloc_list_t zal;
1526 metaslab_trace_init(&zal);
1527 uint64_t thismax = SPA_MAXBLOCKSIZE;
1528 while (!zfs_range_tree_is_empty(segs)) {
1529 int error = spa_vdev_copy_segment(vd,
1530 segs, thismax, txg, vca, &zal);
1531
1532 if (error == ENOSPC) {
1533 /*
1534 * Cut our segment in half, and don't try this
1535 * segment size again this txg. Note that the
1536 * allocation size must be aligned to the highest
1537 * ashift in the pool, so that the allocation will
1538 * not be padded out to a multiple of the ashift,
1539 * which could cause us to think that this mapping
1540 * is larger than we intended.
1541 */
1542 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1543 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1544 uint64_t attempted =
1545 MIN(zfs_range_tree_span(segs), thismax);
1546 thismax = P2ROUNDUP(attempted / 2,
1547 1 << spa->spa_max_ashift);
1548 /*
1549 * The minimum-size allocation can not fail.
1550 */
1551 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1552 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1553 } else {
1554 ASSERT0(error);
1555
1556 /*
1557 * We've performed an allocation, so reset the
1558 * alloc trace list.
1559 */
1560 metaslab_trace_fini(&zal);
1561 metaslab_trace_init(&zal);
1562 }
1563 }
1564 metaslab_trace_fini(&zal);
1565 zfs_range_tree_destroy(segs);
1566 }
1567
1568 /*
1569 * The size of each removal mapping is limited by the tunable
1570 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1571 * pool's ashift, so that we don't try to split individual sectors regardless
1572 * of the tunable value. (Note that device removal requires that all devices
1573 * have the same ashift, so there's no difference between spa_min_ashift and
1574 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1575 */
1576 uint64_t
spa_remove_max_segment(spa_t * spa)1577 spa_remove_max_segment(spa_t *spa)
1578 {
1579 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1580 }
1581
1582 /*
1583 * The removal thread operates in open context. It iterates over all
1584 * allocated space in the vdev, by loading each metaslab's spacemap.
1585 * For each contiguous segment of allocated space (capping the segment
1586 * size at SPA_MAXBLOCKSIZE), we:
1587 * - Allocate space for it on another vdev.
1588 * - Create a new mapping from the old location to the new location
1589 * (as a record in svr_new_segments).
1590 * - Initiate a physical read zio to get the data off the removing disk.
1591 * - In the read zio's done callback, initiate a physical write zio to
1592 * write it to the new vdev.
1593 * Note that all of this will take effect when a particular TXG syncs.
1594 * The sync thread ensures that all the phys reads and writes for the syncing
1595 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1596 * (see vdev_mapping_sync()).
1597 */
1598 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1599 spa_vdev_remove_thread(void *arg)
1600 {
1601 spa_t *spa = arg;
1602 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1603 vdev_copy_arg_t vca;
1604 uint64_t max_alloc = spa_remove_max_segment(spa);
1605 uint64_t last_txg = 0;
1606
1607 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1608 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1609 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1610 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1611
1612 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1613 ASSERT(vdev_is_concrete(vd));
1614 ASSERT(vd->vdev_removing);
1615 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1616 ASSERT(vim != NULL);
1617
1618 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1619 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1620 vca.vca_outstanding_bytes = 0;
1621 vca.vca_read_error_bytes = 0;
1622 vca.vca_write_error_bytes = 0;
1623
1624 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1625 NULL, 0, 0);
1626
1627 mutex_enter(&svr->svr_lock);
1628
1629 /*
1630 * Start from vim_max_offset so we pick up where we left off
1631 * if we are restarting the removal after opening the pool.
1632 */
1633 uint64_t msi;
1634 for (msi = start_offset >> vd->vdev_ms_shift;
1635 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1636 metaslab_t *msp = vd->vdev_ms[msi];
1637 ASSERT3U(msi, <=, vd->vdev_ms_count);
1638
1639 again:
1640 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1641 mutex_exit(&svr->svr_lock);
1642
1643 mutex_enter(&msp->ms_sync_lock);
1644 mutex_enter(&msp->ms_lock);
1645
1646 /*
1647 * Assert nothing in flight -- ms_*tree is empty.
1648 */
1649 for (int i = 0; i < TXG_SIZE; i++) {
1650 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1651 }
1652
1653 /*
1654 * If the metaslab has ever been synced (ms_sm != NULL),
1655 * read the allocated segments from the space map object
1656 * into svr_allocd_segs. Since we do this while holding
1657 * ms_lock and ms_sync_lock, concurrent frees (which
1658 * would have modified the space map) will wait for us
1659 * to finish loading the spacemap, and then take the
1660 * appropriate action (see free_from_removing_vdev()).
1661 */
1662 if (msp->ms_sm != NULL)
1663 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1664
1665 /*
1666 * We could not hold svr_lock while loading space map, or we
1667 * could hit deadlock in a ZIO pipeline, having to wait for
1668 * it. But we can not block for it here under metaslab locks,
1669 * or it would be a lock ordering violation.
1670 */
1671 if (!mutex_tryenter(&svr->svr_lock)) {
1672 mutex_exit(&msp->ms_lock);
1673 mutex_exit(&msp->ms_sync_lock);
1674 zfs_range_tree_vacate(segs, NULL, NULL);
1675 mutex_enter(&svr->svr_lock);
1676 goto again;
1677 }
1678
1679 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs);
1680 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1681 zfs_range_tree_add, svr->svr_allocd_segs);
1682 zfs_range_tree_walk(msp->ms_unflushed_frees,
1683 zfs_range_tree_remove, svr->svr_allocd_segs);
1684 zfs_range_tree_walk(msp->ms_freeing,
1685 zfs_range_tree_remove, svr->svr_allocd_segs);
1686
1687 mutex_exit(&msp->ms_lock);
1688 mutex_exit(&msp->ms_sync_lock);
1689
1690 /*
1691 * When we are resuming from a paused removal (i.e.
1692 * when importing a pool with a removal in progress),
1693 * discard any state that we have already processed.
1694 */
1695 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1696
1697 vca.vca_msp = msp;
1698 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1699 (u_longlong_t)zfs_btree_numnodes(
1700 &svr->svr_allocd_segs->rt_root),
1701 (u_longlong_t)msp->ms_id);
1702
1703 while (!svr->svr_thread_exit &&
1704 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1705
1706 mutex_exit(&svr->svr_lock);
1707
1708 /*
1709 * We need to periodically drop the config lock so that
1710 * writers can get in. Additionally, we can't wait
1711 * for a txg to sync while holding a config lock
1712 * (since a waiting writer could cause a 3-way deadlock
1713 * with the sync thread, which also gets a config
1714 * lock for reader). So we can't hold the config lock
1715 * while calling dmu_tx_assign().
1716 */
1717 spa_config_exit(spa, SCL_CONFIG, FTAG);
1718
1719 /*
1720 * This delay will pause the removal around the point
1721 * specified by zfs_removal_suspend_progress. We do this
1722 * solely from the test suite or during debugging.
1723 */
1724 while (zfs_removal_suspend_progress &&
1725 !svr->svr_thread_exit)
1726 delay(hz);
1727
1728 mutex_enter(&vca.vca_lock);
1729 while (vca.vca_outstanding_bytes >
1730 zfs_remove_max_copy_bytes) {
1731 cv_wait(&vca.vca_cv, &vca.vca_lock);
1732 }
1733 mutex_exit(&vca.vca_lock);
1734
1735 dmu_tx_t *tx =
1736 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1737
1738 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
1739 uint64_t txg = dmu_tx_get_txg(tx);
1740
1741 /*
1742 * Reacquire the vdev_config lock. The vdev_t
1743 * that we're removing may have changed, e.g. due
1744 * to a vdev_attach or vdev_detach.
1745 */
1746 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1747 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1748
1749 if (txg != last_txg)
1750 max_alloc = spa_remove_max_segment(spa);
1751 last_txg = txg;
1752
1753 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1754
1755 dmu_tx_commit(tx);
1756 mutex_enter(&svr->svr_lock);
1757 }
1758
1759 mutex_enter(&vca.vca_lock);
1760 if (zfs_removal_ignore_errors == 0 &&
1761 (vca.vca_read_error_bytes > 0 ||
1762 vca.vca_write_error_bytes > 0)) {
1763 svr->svr_thread_exit = B_TRUE;
1764 }
1765 mutex_exit(&vca.vca_lock);
1766 }
1767
1768 mutex_exit(&svr->svr_lock);
1769
1770 spa_config_exit(spa, SCL_CONFIG, FTAG);
1771
1772 zfs_range_tree_destroy(segs);
1773
1774 /*
1775 * Wait for all copies to finish before cleaning up the vca.
1776 */
1777 txg_wait_synced(spa->spa_dsl_pool, 0);
1778 ASSERT0(vca.vca_outstanding_bytes);
1779
1780 mutex_destroy(&vca.vca_lock);
1781 cv_destroy(&vca.vca_cv);
1782
1783 if (svr->svr_thread_exit) {
1784 mutex_enter(&svr->svr_lock);
1785 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1786 svr->svr_thread = NULL;
1787 cv_broadcast(&svr->svr_cv);
1788 mutex_exit(&svr->svr_lock);
1789
1790 /*
1791 * During the removal process an unrecoverable read or write
1792 * error was encountered. The removal process must be
1793 * cancelled or this damage may become permanent.
1794 */
1795 if (zfs_removal_ignore_errors == 0 &&
1796 (vca.vca_read_error_bytes > 0 ||
1797 vca.vca_write_error_bytes > 0)) {
1798 zfs_dbgmsg("canceling removal due to IO errors: "
1799 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1800 (u_longlong_t)vca.vca_read_error_bytes,
1801 (u_longlong_t)vca.vca_write_error_bytes);
1802 spa_vdev_remove_cancel_impl(spa);
1803 }
1804 } else {
1805 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1806 vdev_remove_complete(spa);
1807 }
1808
1809 thread_exit();
1810 }
1811
1812 void
spa_vdev_remove_suspend(spa_t * spa)1813 spa_vdev_remove_suspend(spa_t *spa)
1814 {
1815 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1816
1817 if (svr == NULL)
1818 return;
1819
1820 mutex_enter(&svr->svr_lock);
1821 svr->svr_thread_exit = B_TRUE;
1822 while (svr->svr_thread != NULL)
1823 cv_wait(&svr->svr_cv, &svr->svr_lock);
1824 svr->svr_thread_exit = B_FALSE;
1825 mutex_exit(&svr->svr_lock);
1826 }
1827
1828 /*
1829 * Return true if the "allocating" property has been set to "off"
1830 */
1831 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1832 vdev_prop_allocating_off(vdev_t *vd)
1833 {
1834 uint64_t objid = vd->vdev_top_zap;
1835 uint64_t allocating = 1;
1836
1837 /* no vdev property object => no props */
1838 if (objid != 0) {
1839 spa_t *spa = vd->vdev_spa;
1840 objset_t *mos = spa->spa_meta_objset;
1841
1842 mutex_enter(&spa->spa_props_lock);
1843 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1844 1, &allocating);
1845 mutex_exit(&spa->spa_props_lock);
1846 }
1847 return (allocating == 0);
1848 }
1849
1850 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1851 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1852 {
1853 (void) arg;
1854 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1855
1856 if (spa->spa_vdev_removal == NULL)
1857 return (ENOTACTIVE);
1858 return (0);
1859 }
1860
1861 /*
1862 * Cancel a removal by freeing all entries from the partial mapping
1863 * and marking the vdev as no longer being removing.
1864 */
1865 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1866 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1867 {
1868 (void) arg;
1869 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1870 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1871 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1872 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1873 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1874 objset_t *mos = spa->spa_meta_objset;
1875
1876 ASSERT3P(svr->svr_thread, ==, NULL);
1877
1878 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1879
1880 boolean_t are_precise;
1881 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1882 if (are_precise) {
1883 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1884 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1885 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1886 }
1887
1888 uint64_t obsolete_sm_object;
1889 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1890 if (obsolete_sm_object != 0) {
1891 ASSERT(vd->vdev_obsolete_sm != NULL);
1892 ASSERT3U(obsolete_sm_object, ==,
1893 space_map_object(vd->vdev_obsolete_sm));
1894
1895 space_map_free(vd->vdev_obsolete_sm, tx);
1896 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1897 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1898 space_map_close(vd->vdev_obsolete_sm);
1899 vd->vdev_obsolete_sm = NULL;
1900 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1901 }
1902 for (int i = 0; i < TXG_SIZE; i++) {
1903 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1904 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1905 vdev_indirect_mapping_max_offset(vim));
1906 }
1907
1908 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1909 metaslab_t *msp = vd->vdev_ms[msi];
1910
1911 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1912 break;
1913
1914 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1915
1916 mutex_enter(&msp->ms_lock);
1917
1918 /*
1919 * Assert nothing in flight -- ms_*tree is empty.
1920 */
1921 for (int i = 0; i < TXG_SIZE; i++)
1922 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1923 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1924 ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1925 ASSERT0(zfs_range_tree_space(msp->ms_freed));
1926
1927 if (msp->ms_sm != NULL) {
1928 mutex_enter(&svr->svr_lock);
1929 VERIFY0(space_map_load(msp->ms_sm,
1930 svr->svr_allocd_segs, SM_ALLOC));
1931
1932 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1933 zfs_range_tree_add, svr->svr_allocd_segs);
1934 zfs_range_tree_walk(msp->ms_unflushed_frees,
1935 zfs_range_tree_remove, svr->svr_allocd_segs);
1936 zfs_range_tree_walk(msp->ms_freeing,
1937 zfs_range_tree_remove, svr->svr_allocd_segs);
1938
1939 /*
1940 * Clear everything past what has been synced,
1941 * because we have not allocated mappings for it yet.
1942 */
1943 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1944 uint64_t sm_end = msp->ms_sm->sm_start +
1945 msp->ms_sm->sm_size;
1946 if (sm_end > syncd)
1947 zfs_range_tree_clear(svr->svr_allocd_segs,
1948 syncd, sm_end - syncd);
1949
1950 mutex_exit(&svr->svr_lock);
1951 }
1952 mutex_exit(&msp->ms_lock);
1953
1954 mutex_enter(&svr->svr_lock);
1955 zfs_range_tree_vacate(svr->svr_allocd_segs,
1956 free_mapped_segment_cb, vd);
1957 mutex_exit(&svr->svr_lock);
1958 }
1959
1960 /*
1961 * Note: this must happen after we invoke free_mapped_segment_cb,
1962 * because it adds to the obsolete_segments.
1963 */
1964 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1965
1966 ASSERT3U(vic->vic_mapping_object, ==,
1967 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1968 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1969 vd->vdev_indirect_mapping = NULL;
1970 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1971 vic->vic_mapping_object = 0;
1972
1973 ASSERT3U(vic->vic_births_object, ==,
1974 vdev_indirect_births_object(vd->vdev_indirect_births));
1975 vdev_indirect_births_close(vd->vdev_indirect_births);
1976 vd->vdev_indirect_births = NULL;
1977 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1978 vic->vic_births_object = 0;
1979
1980 /*
1981 * We may have processed some frees from the removing vdev in this
1982 * txg, thus increasing svr_bytes_done; discard that here to
1983 * satisfy the assertions in spa_vdev_removal_destroy().
1984 * Note that future txg's can not have any bytes_done, because
1985 * future TXG's are only modified from open context, and we have
1986 * already shut down the copying thread.
1987 */
1988 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1989 spa_finish_removal(spa, DSS_CANCELED, tx);
1990
1991 vd->vdev_removing = B_FALSE;
1992
1993 if (!vdev_prop_allocating_off(vd)) {
1994 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1995 vdev_activate(vd);
1996 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1997 }
1998
1999 vdev_config_dirty(vd);
2000
2001 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
2002 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
2003 spa_history_log_internal(spa, "vdev remove canceled", tx,
2004 "%s vdev %llu %s", spa_name(spa),
2005 (u_longlong_t)vd->vdev_id,
2006 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
2007 }
2008
2009 static int
spa_vdev_remove_cancel_impl(spa_t * spa)2010 spa_vdev_remove_cancel_impl(spa_t *spa)
2011 {
2012 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
2013 spa_vdev_remove_cancel_sync, NULL, 0,
2014 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2015 return (error);
2016 }
2017
2018 int
spa_vdev_remove_cancel(spa_t * spa)2019 spa_vdev_remove_cancel(spa_t *spa)
2020 {
2021 spa_vdev_remove_suspend(spa);
2022
2023 if (spa->spa_vdev_removal == NULL)
2024 return (ENOTACTIVE);
2025
2026 return (spa_vdev_remove_cancel_impl(spa));
2027 }
2028
2029 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2030 svr_sync(spa_t *spa, dmu_tx_t *tx)
2031 {
2032 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2033 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2034
2035 if (svr == NULL)
2036 return;
2037
2038 /*
2039 * This check is necessary so that we do not dirty the
2040 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2041 * is nothing to do. Dirtying it every time would prevent us
2042 * from syncing-to-convergence.
2043 */
2044 if (svr->svr_bytes_done[txgoff] == 0)
2045 return;
2046
2047 /*
2048 * Update progress accounting.
2049 */
2050 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2051 svr->svr_bytes_done[txgoff] = 0;
2052
2053 spa_sync_removing_state(spa, tx);
2054 }
2055
2056 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2057 vdev_remove_make_hole_and_free(vdev_t *vd)
2058 {
2059 uint64_t id = vd->vdev_id;
2060 spa_t *spa = vd->vdev_spa;
2061 vdev_t *rvd = spa->spa_root_vdev;
2062
2063 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2064 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2065
2066 vdev_free(vd);
2067
2068 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2069 vdev_add_child(rvd, vd);
2070 vdev_config_dirty(rvd);
2071
2072 /*
2073 * Reassess the health of our root vdev.
2074 */
2075 vdev_reopen(rvd);
2076 }
2077
2078 /*
2079 * Remove a log device. The config lock is held for the specified TXG.
2080 */
2081 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2082 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2083 {
2084 metaslab_group_t *mg = vd->vdev_mg;
2085 spa_t *spa = vd->vdev_spa;
2086 int error = 0;
2087
2088 ASSERT(vd->vdev_islog);
2089 ASSERT(vd == vd->vdev_top);
2090 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2091 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2092
2093 /*
2094 * Stop allocating from this vdev.
2095 */
2096 metaslab_group_passivate(mg);
2097
2098 /*
2099 * Wait for the youngest allocations and frees to sync,
2100 * and then wait for the deferral of those frees to finish.
2101 */
2102 spa_vdev_config_exit(spa, NULL,
2103 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2104
2105 /*
2106 * Cancel any initialize or TRIM which was in progress.
2107 */
2108 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2109 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2110 vdev_autotrim_stop_wait(vd);
2111
2112 /*
2113 * Evacuate the device. We don't hold the config lock as
2114 * writer since we need to do I/O but we do keep the
2115 * spa_namespace_lock held. Once this completes the device
2116 * should no longer have any blocks allocated on it.
2117 */
2118 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2119 if (vd->vdev_stat.vs_alloc != 0)
2120 error = spa_reset_logs(spa);
2121
2122 *txg = spa_vdev_config_enter(spa);
2123
2124 if (error != 0) {
2125 metaslab_group_activate(mg);
2126 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2127 return (error);
2128 }
2129 ASSERT0(vd->vdev_stat.vs_alloc);
2130
2131 /*
2132 * The evacuation succeeded. Remove any remaining MOS metadata
2133 * associated with this vdev, and wait for these changes to sync.
2134 */
2135 vd->vdev_removing = B_TRUE;
2136
2137 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2138 vdev_config_dirty(vd);
2139
2140 /*
2141 * When the log space map feature is enabled we look at
2142 * the vdev's top_zap to find the on-disk flush data of
2143 * the metaslab we just flushed. Thus, while removing a
2144 * log vdev we make sure to call vdev_metaslab_fini()
2145 * first, which removes all metaslabs of this vdev from
2146 * spa_metaslabs_by_flushed before vdev_remove_empty()
2147 * destroys the top_zap of this log vdev.
2148 *
2149 * This avoids the scenario where we flush a metaslab
2150 * from the log vdev being removed that doesn't have a
2151 * top_zap and end up failing to lookup its on-disk flush
2152 * data.
2153 *
2154 * We don't call metaslab_group_destroy() right away
2155 * though (it will be called in vdev_free() later) as
2156 * during metaslab_sync() of metaslabs from other vdevs
2157 * we may touch the metaslab group of this vdev through
2158 * metaslab_class_histogram_verify()
2159 */
2160 vdev_metaslab_fini(vd);
2161
2162 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2163 *txg = spa_vdev_config_enter(spa);
2164
2165 sysevent_t *ev = spa_event_create(spa, vd, NULL,
2166 ESC_ZFS_VDEV_REMOVE_DEV);
2167 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2168 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2169
2170 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2171 ASSERT0(vd->vdev_top_zap);
2172 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2173 ASSERT0(vd->vdev_leaf_zap);
2174
2175 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2176
2177 if (list_link_active(&vd->vdev_state_dirty_node))
2178 vdev_state_clean(vd);
2179 if (list_link_active(&vd->vdev_config_dirty_node))
2180 vdev_config_clean(vd);
2181
2182 ASSERT0(vd->vdev_stat.vs_alloc);
2183
2184 /*
2185 * Clean up the vdev namespace.
2186 */
2187 vdev_remove_make_hole_and_free(vd);
2188
2189 if (ev != NULL)
2190 spa_event_post(ev);
2191
2192 return (0);
2193 }
2194
2195 static int
spa_vdev_remove_top_check(vdev_t * vd)2196 spa_vdev_remove_top_check(vdev_t *vd)
2197 {
2198 spa_t *spa = vd->vdev_spa;
2199
2200 if (vd != vd->vdev_top)
2201 return (SET_ERROR(ENOTSUP));
2202
2203 if (!vdev_is_concrete(vd))
2204 return (SET_ERROR(ENOTSUP));
2205
2206 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2207 return (SET_ERROR(ENOTSUP));
2208
2209 /*
2210 * This device is already being removed
2211 */
2212 if (vd->vdev_removing)
2213 return (SET_ERROR(EALREADY));
2214
2215 metaslab_class_t *mc = vd->vdev_mg->mg_class;
2216 metaslab_class_t *normal = spa_normal_class(spa);
2217 if (mc != normal) {
2218 /*
2219 * Space allocated from the special (or dedup) class is
2220 * included in the DMU's space usage, but it's not included
2221 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2222 * there is always at least as much free space in the normal
2223 * class, as is allocated from the special (and dedup) class.
2224 * As a backup check, we will return ENOSPC if this is
2225 * violated. See also spa_update_dspace().
2226 */
2227 uint64_t available = metaslab_class_get_space(normal) -
2228 metaslab_class_get_alloc(normal);
2229 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2230 if (available < vd->vdev_stat.vs_alloc)
2231 return (SET_ERROR(ENOSPC));
2232 } else if (!vd->vdev_noalloc) {
2233 /* available space in the pool's normal class */
2234 uint64_t available = dsl_dir_space_available(
2235 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2236 if (available < vd->vdev_stat.vs_dspace)
2237 return (SET_ERROR(ENOSPC));
2238 }
2239
2240 /*
2241 * There can not be a removal in progress.
2242 */
2243 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2244 return (SET_ERROR(EBUSY));
2245
2246 /*
2247 * The device must have all its data.
2248 */
2249 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2250 !vdev_dtl_empty(vd, DTL_OUTAGE))
2251 return (SET_ERROR(EBUSY));
2252
2253 /*
2254 * The device must be healthy.
2255 */
2256 if (!vdev_readable(vd))
2257 return (SET_ERROR(EIO));
2258
2259 /*
2260 * All vdevs in normal class must have the same ashift.
2261 */
2262 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2263 return (SET_ERROR(EINVAL));
2264 }
2265
2266 /*
2267 * A removed special/dedup vdev must have same ashift as normal class.
2268 */
2269 ASSERT(!vd->vdev_islog);
2270 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2271 vd->vdev_ashift != spa->spa_max_ashift) {
2272 return (SET_ERROR(EINVAL));
2273 }
2274
2275 /*
2276 * All vdevs in normal class must have the same ashift
2277 * and not be raidz or draid.
2278 */
2279 vdev_t *rvd = spa->spa_root_vdev;
2280 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2281 vdev_t *cvd = rvd->vdev_child[id];
2282
2283 /*
2284 * A removed special/dedup vdev must have the same ashift
2285 * across all vdevs in its class.
2286 */
2287 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2288 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2289 cvd->vdev_ashift != vd->vdev_ashift) {
2290 return (SET_ERROR(EINVAL));
2291 }
2292 if (cvd->vdev_ashift != 0 &&
2293 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2294 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2295 if (!vdev_is_concrete(cvd))
2296 continue;
2297 if (vdev_get_nparity(cvd) != 0)
2298 return (SET_ERROR(EINVAL));
2299 /*
2300 * Need the mirror to be mirror of leaf vdevs only
2301 */
2302 if (cvd->vdev_ops == &vdev_mirror_ops) {
2303 for (uint64_t cid = 0;
2304 cid < cvd->vdev_children; cid++) {
2305 if (!cvd->vdev_child[cid]->vdev_ops->
2306 vdev_op_leaf)
2307 return (SET_ERROR(EINVAL));
2308 }
2309 }
2310 }
2311
2312 return (0);
2313 }
2314
2315 /*
2316 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2317 * The config lock is held for the specified TXG. Once initiated,
2318 * evacuation of all allocated space (copying it to other vdevs) happens
2319 * in the background (see spa_vdev_remove_thread()), and can be canceled
2320 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2321 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2322 */
2323 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2324 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2325 {
2326 spa_t *spa = vd->vdev_spa;
2327 boolean_t set_noalloc = B_FALSE;
2328 int error;
2329
2330 /*
2331 * Check for errors up-front, so that we don't waste time
2332 * passivating the metaslab group and clearing the ZIL if there
2333 * are errors.
2334 */
2335 error = spa_vdev_remove_top_check(vd);
2336
2337 /*
2338 * Stop allocating from this vdev. Note that we must check
2339 * that this is not the only device in the pool before
2340 * passivating, otherwise we will not be able to make
2341 * progress because we can't allocate from any vdevs.
2342 * The above check for sufficient free space serves this
2343 * purpose.
2344 */
2345 if (error == 0 && !vd->vdev_noalloc) {
2346 set_noalloc = B_TRUE;
2347 error = vdev_passivate(vd, txg);
2348 }
2349
2350 if (error != 0)
2351 return (error);
2352
2353 /*
2354 * We stop any initializing and TRIM that is currently in progress
2355 * but leave the state as "active". This will allow the process to
2356 * resume if the removal is canceled sometime later.
2357 */
2358
2359 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2360
2361 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2362 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2363 vdev_autotrim_stop_wait(vd);
2364
2365 *txg = spa_vdev_config_enter(spa);
2366
2367 /*
2368 * Things might have changed while the config lock was dropped
2369 * (e.g. space usage). Check for errors again.
2370 */
2371 error = spa_vdev_remove_top_check(vd);
2372
2373 if (error != 0) {
2374 if (set_noalloc)
2375 vdev_activate(vd);
2376 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2377 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2378 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2379 return (error);
2380 }
2381
2382 vd->vdev_removing = B_TRUE;
2383
2384 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2385 vdev_config_dirty(vd);
2386 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2387 dsl_sync_task_nowait(spa->spa_dsl_pool,
2388 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2389 dmu_tx_commit(tx);
2390
2391 return (0);
2392 }
2393
2394 /*
2395 * Remove a device from the pool.
2396 *
2397 * Removing a device from the vdev namespace requires several steps
2398 * and can take a significant amount of time. As a result we use
2399 * the spa_vdev_config_[enter/exit] functions which allow us to
2400 * grab and release the spa_config_lock while still holding the namespace
2401 * lock. During each step the configuration is synced out.
2402 */
2403 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2404 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2405 {
2406 vdev_t *vd;
2407 nvlist_t **spares, **l2cache, *nv;
2408 uint64_t txg = 0;
2409 uint_t nspares, nl2cache;
2410 int error = 0, error_log;
2411 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2412 sysevent_t *ev = NULL;
2413 const char *vd_type = NULL;
2414 char *vd_path = NULL;
2415
2416 ASSERT(spa_writeable(spa));
2417
2418 if (!locked)
2419 txg = spa_vdev_enter(spa);
2420
2421 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2422 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2423 error = (spa_has_checkpoint(spa)) ?
2424 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2425
2426 if (!locked)
2427 return (spa_vdev_exit(spa, NULL, txg, error));
2428
2429 return (error);
2430 }
2431
2432 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2433
2434 if (spa->spa_spares.sav_vdevs != NULL &&
2435 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2436 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2437 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2438 /*
2439 * Only remove the hot spare if it's not currently in use
2440 * in this pool.
2441 */
2442 if (vd == NULL || unspare) {
2443 const char *type;
2444 boolean_t draid_spare = B_FALSE;
2445
2446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2447 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2448 draid_spare = B_TRUE;
2449
2450 if (vd == NULL && draid_spare) {
2451 error = SET_ERROR(ENOTSUP);
2452 } else {
2453 if (vd == NULL)
2454 vd = spa_lookup_by_guid(spa,
2455 guid, B_TRUE);
2456 ev = spa_event_create(spa, vd, NULL,
2457 ESC_ZFS_VDEV_REMOVE_AUX);
2458
2459 vd_type = VDEV_TYPE_SPARE;
2460 vd_path = spa_strdup(fnvlist_lookup_string(
2461 nv, ZPOOL_CONFIG_PATH));
2462 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2463 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2464 spa_load_spares(spa);
2465 spa->spa_spares.sav_sync = B_TRUE;
2466 }
2467 } else {
2468 error = SET_ERROR(EBUSY);
2469 }
2470 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2471 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2472 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2473 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2474 vd_type = VDEV_TYPE_L2CACHE;
2475 vd_path = spa_strdup(fnvlist_lookup_string(
2476 nv, ZPOOL_CONFIG_PATH));
2477 /*
2478 * Cache devices can always be removed.
2479 */
2480 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2481
2482 /*
2483 * Stop trimming the cache device. We need to release the
2484 * config lock to allow the syncing of TRIM transactions
2485 * without releasing the spa_namespace_lock. The same
2486 * strategy is employed in spa_vdev_remove_top().
2487 */
2488 spa_vdev_config_exit(spa, NULL,
2489 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2490 mutex_enter(&vd->vdev_trim_lock);
2491 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2492 mutex_exit(&vd->vdev_trim_lock);
2493 txg = spa_vdev_config_enter(spa);
2494
2495 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2496 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2497 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2498 spa_load_l2cache(spa);
2499 spa->spa_l2cache.sav_sync = B_TRUE;
2500 } else if (vd != NULL && vd->vdev_islog) {
2501 ASSERT(!locked);
2502 vd_type = VDEV_TYPE_LOG;
2503 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2504 vd->vdev_path : "-");
2505 error = spa_vdev_remove_log(vd, &txg);
2506 } else if (vd != NULL) {
2507 ASSERT(!locked);
2508 error = spa_vdev_remove_top(vd, &txg);
2509 } else {
2510 /*
2511 * There is no vdev of any kind with the specified guid.
2512 */
2513 error = SET_ERROR(ENOENT);
2514 }
2515
2516 error_log = error;
2517
2518 if (!locked)
2519 error = spa_vdev_exit(spa, NULL, txg, error);
2520
2521 /*
2522 * Logging must be done outside the spa config lock. Otherwise,
2523 * this code path could end up holding the spa config lock while
2524 * waiting for a txg_sync so it can write to the internal log.
2525 * Doing that would prevent the txg sync from actually happening,
2526 * causing a deadlock.
2527 */
2528 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2529 spa_history_log_internal(spa, "vdev remove", NULL,
2530 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2531 }
2532 if (vd_path != NULL)
2533 spa_strfree(vd_path);
2534
2535 if (ev != NULL)
2536 spa_event_post(ev);
2537
2538 return (error);
2539 }
2540
2541 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2542 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2543 {
2544 prs->prs_state = spa->spa_removing_phys.sr_state;
2545
2546 if (prs->prs_state == DSS_NONE)
2547 return (SET_ERROR(ENOENT));
2548
2549 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2550 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2551 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2552 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2553 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2554
2555 prs->prs_mapping_memory = 0;
2556 uint64_t indirect_vdev_id =
2557 spa->spa_removing_phys.sr_prev_indirect_vdev;
2558 while (indirect_vdev_id != -1) {
2559 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2560 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2561 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2562
2563 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2564 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2565 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2566 }
2567
2568 return (0);
2569 }
2570
2571 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2572 "Ignore hard IO errors when removing device");
2573
2574 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2575 "Largest contiguous segment to allocate when removing device");
2576
2577 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2578 "Largest span of free chunks a remap segment can span");
2579
2580 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2581 "Pause device removal after this many bytes are copied "
2582 "(debug use only - causes removal to hang)");
2583
2584 EXPORT_SYMBOL(free_from_removing_vdev);
2585 EXPORT_SYMBOL(spa_removal_get_stats);
2586 EXPORT_SYMBOL(spa_remove_init);
2587 EXPORT_SYMBOL(spa_restart_removal);
2588 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2589 EXPORT_SYMBOL(spa_vdev_remove);
2590 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2591 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2592 EXPORT_SYMBOL(svr_sync);
2593