1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2015, 2016 The FreeBSD Foundation
5 * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice unmodified, this list of conditions, and the following
17 * disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #include "opt_umtx_profiling.h"
36
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mman.h>
46 #include <sys/mutex.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/resource.h>
50 #include <sys/resourcevar.h>
51 #include <sys/rwlock.h>
52 #include <sys/sbuf.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 #include <sys/sysproto.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/taskqueue.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 #include <sys/umtx.h>
63 #include <sys/umtxvar.h>
64
65 #include <security/mac/mac_framework.h>
66
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/pmap.h>
70 #include <vm/uma.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73
74 #include <machine/atomic.h>
75 #include <machine/cpu.h>
76
77 #include <compat/freebsd32/freebsd32.h>
78 #ifdef COMPAT_FREEBSD32
79 #include <compat/freebsd32/freebsd32_proto.h>
80 #endif
81
82 #define _UMUTEX_TRY 1
83 #define _UMUTEX_WAIT 2
84
85 #ifdef UMTX_PROFILING
86 #define UPROF_PERC_BIGGER(w, f, sw, sf) \
87 (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
88 #endif
89
90 #define UMTXQ_LOCKED_ASSERT(uc) mtx_assert(&(uc)->uc_lock, MA_OWNED)
91 #ifdef INVARIANTS
92 #define UMTXQ_ASSERT_LOCKED_BUSY(key) do { \
93 struct umtxq_chain *uc; \
94 \
95 uc = umtxq_getchain(key); \
96 mtx_assert(&uc->uc_lock, MA_OWNED); \
97 KASSERT(uc->uc_busy != 0, ("umtx chain is not busy")); \
98 } while (0)
99 #else
100 #define UMTXQ_ASSERT_LOCKED_BUSY(key) do {} while (0)
101 #endif
102
103 /*
104 * Don't propagate time-sharing priority, there is a security reason,
105 * a user can simply introduce PI-mutex, let thread A lock the mutex,
106 * and let another thread B block on the mutex, because B is
107 * sleeping, its priority will be boosted, this causes A's priority to
108 * be boosted via priority propagating too and will never be lowered even
109 * if it is using 100%CPU, this is unfair to other processes.
110 */
111
112 #define UPRI(td) (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
113 (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
114 PRI_MAX_TIMESHARE : (td)->td_user_pri)
115
116 #define GOLDEN_RATIO_PRIME 2654404609U
117 #ifndef UMTX_CHAINS
118 #define UMTX_CHAINS 512
119 #endif
120 #define UMTX_SHIFTS (__WORD_BIT - 9)
121
122 #define GET_SHARE(flags) \
123 (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
124
125 #define BUSY_SPINS 200
126
127 struct umtx_copyops {
128 int (*copyin_timeout)(const void *uaddr, struct timespec *tsp);
129 int (*copyin_umtx_time)(const void *uaddr, size_t size,
130 struct _umtx_time *tp);
131 int (*copyin_robust_lists)(const void *uaddr, size_t size,
132 struct umtx_robust_lists_params *rbp);
133 int (*copyout_timeout)(void *uaddr, size_t size,
134 struct timespec *tsp);
135 const size_t timespec_sz;
136 const size_t umtx_time_sz;
137 const bool compat32;
138 };
139
140 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
141 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
142 __offsetof(struct umutex32, m_spare[0]), "m_spare32");
143
144 int umtx_shm_vnobj_persistent = 0;
145 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
146 &umtx_shm_vnobj_persistent, 0,
147 "False forces destruction of umtx attached to file, on last close");
148 static int umtx_max_rb = 1000;
149 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
150 &umtx_max_rb, 0,
151 "Maximum number of robust mutexes allowed for each thread");
152
153 static uma_zone_t umtx_pi_zone;
154 static struct umtxq_chain umtxq_chains[2][UMTX_CHAINS];
155 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
156 static int umtx_pi_allocated;
157
158 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
159 "umtx debug");
160 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
161 &umtx_pi_allocated, 0, "Allocated umtx_pi");
162 static int umtx_verbose_rb = 1;
163 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
164 &umtx_verbose_rb, 0,
165 "");
166
167 #ifdef UMTX_PROFILING
168 static long max_length;
169 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
170 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
171 "umtx chain stats");
172 #endif
173
174 static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
175 const struct _umtx_time *umtxtime);
176
177 static void umtx_shm_init(void);
178 static void umtxq_sysinit(void *);
179 static void umtxq_hash(struct umtx_key *key);
180 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
181 bool rb);
182 static void umtx_thread_cleanup(struct thread *td);
183 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
184
185 #define umtxq_signal(key, nwake) umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
186
187 static struct mtx umtx_lock;
188
189 #ifdef UMTX_PROFILING
190 static void
umtx_init_profiling(void)191 umtx_init_profiling(void)
192 {
193 struct sysctl_oid *chain_oid;
194 char chain_name[10];
195 int i;
196
197 for (i = 0; i < UMTX_CHAINS; ++i) {
198 snprintf(chain_name, sizeof(chain_name), "%d", i);
199 chain_oid = SYSCTL_ADD_NODE(NULL,
200 SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
201 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
202 "umtx hash stats");
203 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
204 "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
205 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
206 "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
207 }
208 }
209
210 static int
sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)211 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
212 {
213 char buf[512];
214 struct sbuf sb;
215 struct umtxq_chain *uc;
216 u_int fract, i, j, tot, whole;
217 u_int sf0, sf1, sf2, sf3, sf4;
218 u_int si0, si1, si2, si3, si4;
219 u_int sw0, sw1, sw2, sw3, sw4;
220
221 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
222 for (i = 0; i < 2; i++) {
223 tot = 0;
224 for (j = 0; j < UMTX_CHAINS; ++j) {
225 uc = &umtxq_chains[i][j];
226 mtx_lock(&uc->uc_lock);
227 tot += uc->max_length;
228 mtx_unlock(&uc->uc_lock);
229 }
230 if (tot == 0)
231 sbuf_printf(&sb, "%u) Empty ", i);
232 else {
233 sf0 = sf1 = sf2 = sf3 = sf4 = 0;
234 si0 = si1 = si2 = si3 = si4 = 0;
235 sw0 = sw1 = sw2 = sw3 = sw4 = 0;
236 for (j = 0; j < UMTX_CHAINS; j++) {
237 uc = &umtxq_chains[i][j];
238 mtx_lock(&uc->uc_lock);
239 whole = uc->max_length * 100;
240 mtx_unlock(&uc->uc_lock);
241 fract = (whole % tot) * 100;
242 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
243 sf0 = fract;
244 si0 = j;
245 sw0 = whole;
246 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
247 sf1)) {
248 sf1 = fract;
249 si1 = j;
250 sw1 = whole;
251 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
252 sf2)) {
253 sf2 = fract;
254 si2 = j;
255 sw2 = whole;
256 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
257 sf3)) {
258 sf3 = fract;
259 si3 = j;
260 sw3 = whole;
261 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
262 sf4)) {
263 sf4 = fract;
264 si4 = j;
265 sw4 = whole;
266 }
267 }
268 sbuf_printf(&sb, "queue %u:\n", i);
269 sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
270 sf0 / tot, si0);
271 sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
272 sf1 / tot, si1);
273 sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
274 sf2 / tot, si2);
275 sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
276 sf3 / tot, si3);
277 sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
278 sf4 / tot, si4);
279 }
280 }
281 sbuf_trim(&sb);
282 sbuf_finish(&sb);
283 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
284 sbuf_delete(&sb);
285 return (0);
286 }
287
288 static int
sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)289 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
290 {
291 struct umtxq_chain *uc;
292 u_int i, j;
293 int clear, error;
294
295 clear = 0;
296 error = sysctl_handle_int(oidp, &clear, 0, req);
297 if (error != 0 || req->newptr == NULL)
298 return (error);
299
300 if (clear != 0) {
301 for (i = 0; i < 2; ++i) {
302 for (j = 0; j < UMTX_CHAINS; ++j) {
303 uc = &umtxq_chains[i][j];
304 mtx_lock(&uc->uc_lock);
305 uc->length = 0;
306 uc->max_length = 0;
307 mtx_unlock(&uc->uc_lock);
308 }
309 }
310 }
311 return (0);
312 }
313
314 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
315 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
316 sysctl_debug_umtx_chains_clear, "I",
317 "Clear umtx chains statistics");
318 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
320 sysctl_debug_umtx_chains_peaks, "A",
321 "Highest peaks in chains max length");
322 #endif
323
324 static void
umtxq_sysinit(void * arg __unused)325 umtxq_sysinit(void *arg __unused)
326 {
327 int i, j;
328
329 umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
330 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
331 for (i = 0; i < 2; ++i) {
332 for (j = 0; j < UMTX_CHAINS; ++j) {
333 mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
334 MTX_DEF | MTX_DUPOK);
335 LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
336 LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
337 LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
338 TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
339 umtxq_chains[i][j].uc_busy = 0;
340 umtxq_chains[i][j].uc_waiters = 0;
341 #ifdef UMTX_PROFILING
342 umtxq_chains[i][j].length = 0;
343 umtxq_chains[i][j].max_length = 0;
344 #endif
345 }
346 }
347 #ifdef UMTX_PROFILING
348 umtx_init_profiling();
349 #endif
350 mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
351 umtx_shm_init();
352 }
353
354 struct umtx_q *
umtxq_alloc(void)355 umtxq_alloc(void)
356 {
357 struct umtx_q *uq;
358
359 uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
360 uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
361 M_WAITOK | M_ZERO);
362 TAILQ_INIT(&uq->uq_spare_queue->head);
363 TAILQ_INIT(&uq->uq_pi_contested);
364 uq->uq_inherited_pri = PRI_MAX;
365 return (uq);
366 }
367
368 void
umtxq_free(struct umtx_q * uq)369 umtxq_free(struct umtx_q *uq)
370 {
371
372 MPASS(uq->uq_spare_queue != NULL);
373 free(uq->uq_spare_queue, M_UMTX);
374 free(uq, M_UMTX);
375 }
376
377 static inline void
umtxq_hash(struct umtx_key * key)378 umtxq_hash(struct umtx_key *key)
379 {
380 unsigned n;
381
382 n = (uintptr_t)key->info.both.a + key->info.both.b;
383 key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
384 }
385
386 struct umtxq_chain *
umtxq_getchain(struct umtx_key * key)387 umtxq_getchain(struct umtx_key *key)
388 {
389
390 if (key->type <= TYPE_SEM)
391 return (&umtxq_chains[1][key->hash]);
392 return (&umtxq_chains[0][key->hash]);
393 }
394
395 /*
396 * Set chain to busy state when following operation
397 * may be blocked (kernel mutex can not be used).
398 */
399 void
umtxq_busy(struct umtx_key * key)400 umtxq_busy(struct umtx_key *key)
401 {
402 struct umtxq_chain *uc;
403
404 uc = umtxq_getchain(key);
405 mtx_assert(&uc->uc_lock, MA_OWNED);
406 if (uc->uc_busy) {
407 #ifdef SMP
408 if (smp_cpus > 1) {
409 int count = BUSY_SPINS;
410 if (count > 0) {
411 umtxq_unlock(key);
412 while (uc->uc_busy && --count > 0)
413 cpu_spinwait();
414 umtxq_lock(key);
415 }
416 }
417 #endif
418 while (uc->uc_busy) {
419 uc->uc_waiters++;
420 msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
421 uc->uc_waiters--;
422 }
423 }
424 uc->uc_busy = 1;
425 }
426
427 /*
428 * Unbusy a chain.
429 */
430 void
umtxq_unbusy(struct umtx_key * key)431 umtxq_unbusy(struct umtx_key *key)
432 {
433 struct umtxq_chain *uc;
434
435 uc = umtxq_getchain(key);
436 mtx_assert(&uc->uc_lock, MA_OWNED);
437 KASSERT(uc->uc_busy != 0, ("not busy"));
438 uc->uc_busy = 0;
439 if (uc->uc_waiters)
440 wakeup_one(uc);
441 }
442
443 void
umtxq_busy_unlocked(struct umtx_key * key)444 umtxq_busy_unlocked(struct umtx_key *key)
445 {
446 umtxq_lock(key);
447 umtxq_busy(key);
448 umtxq_unlock(key);
449 }
450
451 void
umtxq_unbusy_unlocked(struct umtx_key * key)452 umtxq_unbusy_unlocked(struct umtx_key *key)
453 {
454 umtxq_lock(key);
455 umtxq_unbusy(key);
456 umtxq_unlock(key);
457 }
458
459 static struct umtxq_queue *
umtxq_queue_lookup(struct umtx_key * key,int q)460 umtxq_queue_lookup(struct umtx_key *key, int q)
461 {
462 struct umtxq_queue *uh;
463 struct umtxq_chain *uc;
464
465 uc = umtxq_getchain(key);
466 UMTXQ_LOCKED_ASSERT(uc);
467 LIST_FOREACH(uh, &uc->uc_queue[q], link) {
468 if (umtx_key_match(&uh->key, key))
469 return (uh);
470 }
471
472 return (NULL);
473 }
474
475 void
umtxq_insert_queue(struct umtx_q * uq,int q)476 umtxq_insert_queue(struct umtx_q *uq, int q)
477 {
478 struct umtxq_queue *uh;
479 struct umtxq_chain *uc;
480
481 uc = umtxq_getchain(&uq->uq_key);
482 UMTXQ_LOCKED_ASSERT(uc);
483 KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
484 uh = umtxq_queue_lookup(&uq->uq_key, q);
485 if (uh != NULL) {
486 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
487 } else {
488 uh = uq->uq_spare_queue;
489 uh->key = uq->uq_key;
490 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
491 #ifdef UMTX_PROFILING
492 uc->length++;
493 if (uc->length > uc->max_length) {
494 uc->max_length = uc->length;
495 if (uc->max_length > max_length)
496 max_length = uc->max_length;
497 }
498 #endif
499 }
500 uq->uq_spare_queue = NULL;
501
502 TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
503 uh->length++;
504 uq->uq_flags |= UQF_UMTXQ;
505 uq->uq_cur_queue = uh;
506 return;
507 }
508
509 void
umtxq_remove_queue(struct umtx_q * uq,int q)510 umtxq_remove_queue(struct umtx_q *uq, int q)
511 {
512 struct umtxq_chain *uc;
513 struct umtxq_queue *uh;
514
515 uc = umtxq_getchain(&uq->uq_key);
516 UMTXQ_LOCKED_ASSERT(uc);
517 if (uq->uq_flags & UQF_UMTXQ) {
518 uh = uq->uq_cur_queue;
519 TAILQ_REMOVE(&uh->head, uq, uq_link);
520 uh->length--;
521 uq->uq_flags &= ~UQF_UMTXQ;
522 if (TAILQ_EMPTY(&uh->head)) {
523 KASSERT(uh->length == 0,
524 ("inconsistent umtxq_queue length"));
525 #ifdef UMTX_PROFILING
526 uc->length--;
527 #endif
528 LIST_REMOVE(uh, link);
529 } else {
530 uh = LIST_FIRST(&uc->uc_spare_queue);
531 KASSERT(uh != NULL, ("uc_spare_queue is empty"));
532 LIST_REMOVE(uh, link);
533 }
534 uq->uq_spare_queue = uh;
535 uq->uq_cur_queue = NULL;
536 }
537 }
538
539 /*
540 * Check if there are multiple waiters
541 */
542 int
umtxq_count(struct umtx_key * key)543 umtxq_count(struct umtx_key *key)
544 {
545 struct umtxq_queue *uh;
546
547 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
548 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
549 if (uh != NULL)
550 return (uh->length);
551 return (0);
552 }
553
554 /*
555 * Check if there are multiple PI waiters and returns first
556 * waiter.
557 */
558 static int
umtxq_count_pi(struct umtx_key * key,struct umtx_q ** first)559 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
560 {
561 struct umtxq_queue *uh;
562
563 *first = NULL;
564 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
565 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
566 if (uh != NULL) {
567 *first = TAILQ_FIRST(&uh->head);
568 return (uh->length);
569 }
570 return (0);
571 }
572
573 /*
574 * Wake up threads waiting on an userland object by a bit mask.
575 */
576 int
umtxq_signal_mask(struct umtx_key * key,int n_wake,u_int bitset)577 umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
578 {
579 struct umtxq_queue *uh;
580 struct umtx_q *uq, *uq_temp;
581 int ret;
582
583 ret = 0;
584 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
585 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
586 if (uh == NULL)
587 return (0);
588 TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
589 if ((uq->uq_bitset & bitset) == 0)
590 continue;
591 umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
592 wakeup_one(uq);
593 if (++ret >= n_wake)
594 break;
595 }
596 return (ret);
597 }
598
599 /*
600 * Wake up threads waiting on an userland object.
601 */
602
603 static int
umtxq_signal_queue(struct umtx_key * key,int n_wake,int q)604 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
605 {
606 struct umtxq_queue *uh;
607 struct umtx_q *uq;
608 int ret;
609
610 ret = 0;
611 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
612 uh = umtxq_queue_lookup(key, q);
613 if (uh != NULL) {
614 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
615 umtxq_remove_queue(uq, q);
616 wakeup(uq);
617 if (++ret >= n_wake)
618 return (ret);
619 }
620 }
621 return (ret);
622 }
623
624 /*
625 * Wake up specified thread.
626 */
627 static inline void
umtxq_signal_thread(struct umtx_q * uq)628 umtxq_signal_thread(struct umtx_q *uq)
629 {
630
631 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
632 umtxq_remove(uq);
633 wakeup(uq);
634 }
635
636 /*
637 * Wake up a maximum of n_wake threads that are waiting on an userland
638 * object identified by key. The remaining threads are removed from queue
639 * identified by key and added to the queue identified by key2 (requeued).
640 * The n_requeue specifies an upper limit on the number of threads that
641 * are requeued to the second queue.
642 */
643 int
umtxq_requeue(struct umtx_key * key,int n_wake,struct umtx_key * key2,int n_requeue)644 umtxq_requeue(struct umtx_key *key, int n_wake, struct umtx_key *key2,
645 int n_requeue)
646 {
647 struct umtxq_queue *uh;
648 struct umtx_q *uq, *uq_temp;
649 int ret;
650
651 ret = 0;
652 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
653 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key2));
654 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
655 if (uh == NULL)
656 return (0);
657 TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
658 if (++ret <= n_wake) {
659 umtxq_remove(uq);
660 wakeup_one(uq);
661 } else {
662 umtxq_remove(uq);
663 uq->uq_key = *key2;
664 umtxq_insert(uq);
665 if (ret - n_wake == n_requeue)
666 break;
667 }
668 }
669 return (ret);
670 }
671
672 static inline int
tstohz(const struct timespec * tsp)673 tstohz(const struct timespec *tsp)
674 {
675 struct timeval tv;
676
677 TIMESPEC_TO_TIMEVAL(&tv, tsp);
678 return tvtohz(&tv);
679 }
680
681 void
umtx_abs_timeout_init(struct umtx_abs_timeout * timo,int clockid,int absolute,const struct timespec * timeout)682 umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
683 int absolute, const struct timespec *timeout)
684 {
685
686 timo->clockid = clockid;
687 if (!absolute) {
688 timo->is_abs_real = false;
689 kern_clock_gettime(curthread, timo->clockid, &timo->cur);
690 timespecadd(&timo->cur, timeout, &timo->end);
691 } else {
692 timo->end = *timeout;
693 timo->is_abs_real = clockid == CLOCK_REALTIME ||
694 clockid == CLOCK_REALTIME_FAST ||
695 clockid == CLOCK_REALTIME_PRECISE ||
696 clockid == CLOCK_TAI ||
697 clockid == CLOCK_SECOND;
698 }
699 }
700
701 static void
umtx_abs_timeout_init2(struct umtx_abs_timeout * timo,const struct _umtx_time * umtxtime)702 umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
703 const struct _umtx_time *umtxtime)
704 {
705
706 umtx_abs_timeout_init(timo, umtxtime->_clockid,
707 (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
708 }
709
710 static void
umtx_abs_timeout_enforce_min(sbintime_t * sbt)711 umtx_abs_timeout_enforce_min(sbintime_t *sbt)
712 {
713 sbintime_t when, mint;
714
715 mint = curproc->p_umtx_min_timeout;
716 if (__predict_false(mint != 0)) {
717 when = sbinuptime() + mint;
718 if (*sbt < when)
719 *sbt = when;
720 }
721 }
722
723 static int
umtx_abs_timeout_getsbt(struct umtx_abs_timeout * timo,sbintime_t * sbt,int * flags)724 umtx_abs_timeout_getsbt(struct umtx_abs_timeout *timo, sbintime_t *sbt,
725 int *flags)
726 {
727 struct bintime bt, bbt;
728 struct timespec tts;
729 sbintime_t rem;
730
731 switch (timo->clockid) {
732
733 /* Clocks that can be converted into absolute time. */
734 case CLOCK_REALTIME:
735 case CLOCK_REALTIME_PRECISE:
736 case CLOCK_REALTIME_FAST:
737 case CLOCK_MONOTONIC:
738 case CLOCK_MONOTONIC_PRECISE:
739 case CLOCK_MONOTONIC_FAST:
740 case CLOCK_UPTIME:
741 case CLOCK_UPTIME_PRECISE:
742 case CLOCK_UPTIME_FAST:
743 case CLOCK_SECOND:
744 timespec2bintime(&timo->end, &bt);
745 switch (timo->clockid) {
746 case CLOCK_REALTIME:
747 case CLOCK_REALTIME_PRECISE:
748 case CLOCK_REALTIME_FAST:
749 case CLOCK_SECOND:
750 getboottimebin(&bbt);
751 bintime_sub(&bt, &bbt);
752 break;
753 }
754 if (bt.sec < 0)
755 return (ETIMEDOUT);
756 if (bt.sec >= (SBT_MAX >> 32)) {
757 *sbt = 0;
758 *flags = 0;
759 return (0);
760 }
761 *sbt = bttosbt(bt);
762 umtx_abs_timeout_enforce_min(sbt);
763
764 /*
765 * Check if the absolute time should be aligned to
766 * avoid firing multiple timer events in non-periodic
767 * timer mode.
768 */
769 switch (timo->clockid) {
770 case CLOCK_REALTIME_FAST:
771 case CLOCK_MONOTONIC_FAST:
772 case CLOCK_UPTIME_FAST:
773 rem = *sbt % tc_tick_sbt;
774 if (__predict_true(rem != 0))
775 *sbt += tc_tick_sbt - rem;
776 break;
777 case CLOCK_SECOND:
778 rem = *sbt % SBT_1S;
779 if (__predict_true(rem != 0))
780 *sbt += SBT_1S - rem;
781 break;
782 }
783 *flags = C_ABSOLUTE;
784 return (0);
785
786 /* Clocks that has to be periodically polled. */
787 case CLOCK_VIRTUAL:
788 case CLOCK_PROF:
789 case CLOCK_THREAD_CPUTIME_ID:
790 case CLOCK_PROCESS_CPUTIME_ID:
791 case CLOCK_TAI: /* Boot time is not necessarily stable in TAI */
792 default:
793 kern_clock_gettime(curthread, timo->clockid, &timo->cur);
794 if (timespeccmp(&timo->end, &timo->cur, <=))
795 return (ETIMEDOUT);
796 timespecsub(&timo->end, &timo->cur, &tts);
797 *sbt = tick_sbt * tstohz(&tts);
798 *flags = C_HARDCLOCK;
799 return (0);
800 }
801 }
802
803 static uint32_t
umtx_unlock_val(uint32_t flags,bool rb)804 umtx_unlock_val(uint32_t flags, bool rb)
805 {
806
807 if (rb)
808 return (UMUTEX_RB_OWNERDEAD);
809 else if ((flags & UMUTEX_NONCONSISTENT) != 0)
810 return (UMUTEX_RB_NOTRECOV);
811 else
812 return (UMUTEX_UNOWNED);
813
814 }
815
816 /*
817 * Put thread into sleep state, before sleeping, check if
818 * thread was removed from umtx queue.
819 */
820 int
umtxq_sleep(struct umtx_q * uq,const char * wmesg,struct umtx_abs_timeout * timo)821 umtxq_sleep(struct umtx_q *uq, const char *wmesg,
822 struct umtx_abs_timeout *timo)
823 {
824 struct umtxq_chain *uc;
825 sbintime_t sbt = 0;
826 int error, flags = 0;
827
828 uc = umtxq_getchain(&uq->uq_key);
829 UMTXQ_LOCKED_ASSERT(uc);
830 for (;;) {
831 if (!(uq->uq_flags & UQF_UMTXQ)) {
832 error = 0;
833 break;
834 }
835 if (timo != NULL) {
836 if (timo->is_abs_real)
837 curthread->td_rtcgen =
838 atomic_load_acq_int(&rtc_generation);
839 error = umtx_abs_timeout_getsbt(timo, &sbt, &flags);
840 if (error != 0)
841 break;
842 }
843 error = msleep_sbt(uq, &uc->uc_lock, PCATCH | PDROP, wmesg,
844 sbt, 0, flags);
845 uc = umtxq_getchain(&uq->uq_key);
846 mtx_lock(&uc->uc_lock);
847 if (error == EINTR || error == ERESTART)
848 break;
849 if (error == EWOULDBLOCK && (flags & C_ABSOLUTE) != 0) {
850 error = ETIMEDOUT;
851 break;
852 }
853 }
854
855 curthread->td_rtcgen = 0;
856 return (error);
857 }
858
859 /*
860 * Convert userspace address into unique logical address.
861 */
862 int
umtx_key_get(const void * addr,int type,int share,struct umtx_key * key)863 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
864 {
865 struct thread *td = curthread;
866 vm_map_t map;
867 vm_map_entry_t entry;
868 vm_pindex_t pindex;
869 vm_prot_t prot;
870 boolean_t wired;
871
872 key->type = type;
873 if (share == THREAD_SHARE) {
874 key->shared = 0;
875 key->info.private.vs = td->td_proc->p_vmspace;
876 key->info.private.addr = (uintptr_t)addr;
877 } else {
878 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
879 map = &td->td_proc->p_vmspace->vm_map;
880 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
881 &entry, &key->info.shared.object, &pindex, &prot,
882 &wired) != KERN_SUCCESS) {
883 return (EFAULT);
884 }
885
886 if ((share == PROCESS_SHARE) ||
887 (share == AUTO_SHARE &&
888 VM_INHERIT_SHARE == entry->inheritance)) {
889 key->shared = 1;
890 key->info.shared.offset = (vm_offset_t)addr -
891 entry->start + entry->offset;
892 vm_object_reference(key->info.shared.object);
893 } else {
894 key->shared = 0;
895 key->info.private.vs = td->td_proc->p_vmspace;
896 key->info.private.addr = (uintptr_t)addr;
897 }
898 vm_map_lookup_done(map, entry);
899 }
900
901 umtxq_hash(key);
902 return (0);
903 }
904
905 /*
906 * Release key.
907 */
908 void
umtx_key_release(struct umtx_key * key)909 umtx_key_release(struct umtx_key *key)
910 {
911 if (key->shared)
912 vm_object_deallocate(key->info.shared.object);
913 }
914
915 #ifdef COMPAT_FREEBSD10
916 /*
917 * Lock a umtx object.
918 */
919 static int
do_lock_umtx(struct thread * td,struct umtx * umtx,u_long id,const struct timespec * timeout)920 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
921 const struct timespec *timeout)
922 {
923 struct umtx_abs_timeout timo;
924 struct umtx_q *uq;
925 u_long owner;
926 u_long old;
927 int error = 0;
928
929 uq = td->td_umtxq;
930 if (timeout != NULL)
931 umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
932
933 /*
934 * Care must be exercised when dealing with umtx structure. It
935 * can fault on any access.
936 */
937 for (;;) {
938 /*
939 * Try the uncontested case. This should be done in userland.
940 */
941 owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
942
943 /* The acquire succeeded. */
944 if (owner == UMTX_UNOWNED)
945 return (0);
946
947 /* The address was invalid. */
948 if (owner == -1)
949 return (EFAULT);
950
951 /* If no one owns it but it is contested try to acquire it. */
952 if (owner == UMTX_CONTESTED) {
953 owner = casuword(&umtx->u_owner,
954 UMTX_CONTESTED, id | UMTX_CONTESTED);
955
956 if (owner == UMTX_CONTESTED)
957 return (0);
958
959 /* The address was invalid. */
960 if (owner == -1)
961 return (EFAULT);
962
963 error = thread_check_susp(td, false);
964 if (error != 0)
965 break;
966
967 /* If this failed the lock has changed, restart. */
968 continue;
969 }
970
971 /*
972 * If we caught a signal, we have retried and now
973 * exit immediately.
974 */
975 if (error != 0)
976 break;
977
978 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
979 AUTO_SHARE, &uq->uq_key)) != 0)
980 return (error);
981
982 umtxq_lock(&uq->uq_key);
983 umtxq_busy(&uq->uq_key);
984 umtxq_insert(uq);
985 umtxq_unbusy(&uq->uq_key);
986 umtxq_unlock(&uq->uq_key);
987
988 /*
989 * Set the contested bit so that a release in user space
990 * knows to use the system call for unlock. If this fails
991 * either some one else has acquired the lock or it has been
992 * released.
993 */
994 old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
995
996 /* The address was invalid. */
997 if (old == -1) {
998 umtxq_lock(&uq->uq_key);
999 umtxq_remove(uq);
1000 umtxq_unlock(&uq->uq_key);
1001 umtx_key_release(&uq->uq_key);
1002 return (EFAULT);
1003 }
1004
1005 /*
1006 * We set the contested bit, sleep. Otherwise the lock changed
1007 * and we need to retry or we lost a race to the thread
1008 * unlocking the umtx.
1009 */
1010 umtxq_lock(&uq->uq_key);
1011 if (old == owner)
1012 error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
1013 &timo);
1014 umtxq_remove(uq);
1015 umtxq_unlock(&uq->uq_key);
1016 umtx_key_release(&uq->uq_key);
1017
1018 if (error == 0)
1019 error = thread_check_susp(td, false);
1020 }
1021
1022 if (timeout == NULL) {
1023 /* Mutex locking is restarted if it is interrupted. */
1024 if (error == EINTR)
1025 error = ERESTART;
1026 } else {
1027 /* Timed-locking is not restarted. */
1028 if (error == ERESTART)
1029 error = EINTR;
1030 }
1031 return (error);
1032 }
1033
1034 /*
1035 * Unlock a umtx object.
1036 */
1037 static int
do_unlock_umtx(struct thread * td,struct umtx * umtx,u_long id)1038 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1039 {
1040 struct umtx_key key;
1041 u_long owner;
1042 u_long old;
1043 int error;
1044 int count;
1045
1046 /*
1047 * Make sure we own this mtx.
1048 */
1049 owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1050 if (owner == -1)
1051 return (EFAULT);
1052
1053 if ((owner & ~UMTX_CONTESTED) != id)
1054 return (EPERM);
1055
1056 /* This should be done in userland */
1057 if ((owner & UMTX_CONTESTED) == 0) {
1058 old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1059 if (old == -1)
1060 return (EFAULT);
1061 if (old == owner)
1062 return (0);
1063 owner = old;
1064 }
1065
1066 /* We should only ever be in here for contested locks */
1067 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1068 &key)) != 0)
1069 return (error);
1070
1071 umtxq_lock(&key);
1072 umtxq_busy(&key);
1073 count = umtxq_count(&key);
1074 umtxq_unlock(&key);
1075
1076 /*
1077 * When unlocking the umtx, it must be marked as unowned if
1078 * there is zero or one thread only waiting for it.
1079 * Otherwise, it must be marked as contested.
1080 */
1081 old = casuword(&umtx->u_owner, owner,
1082 count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1083 umtxq_lock(&key);
1084 umtxq_signal(&key,1);
1085 umtxq_unbusy(&key);
1086 umtxq_unlock(&key);
1087 umtx_key_release(&key);
1088 if (old == -1)
1089 return (EFAULT);
1090 if (old != owner)
1091 return (EINVAL);
1092 return (0);
1093 }
1094
1095 #ifdef COMPAT_FREEBSD32
1096
1097 /*
1098 * Lock a umtx object.
1099 */
1100 static int
do_lock_umtx32(struct thread * td,uint32_t * m,uint32_t id,const struct timespec * timeout)1101 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1102 const struct timespec *timeout)
1103 {
1104 struct umtx_abs_timeout timo;
1105 struct umtx_q *uq;
1106 uint32_t owner;
1107 uint32_t old;
1108 int error = 0;
1109
1110 uq = td->td_umtxq;
1111
1112 if (timeout != NULL)
1113 umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1114
1115 /*
1116 * Care must be exercised when dealing with umtx structure. It
1117 * can fault on any access.
1118 */
1119 for (;;) {
1120 /*
1121 * Try the uncontested case. This should be done in userland.
1122 */
1123 owner = casuword32(m, UMUTEX_UNOWNED, id);
1124
1125 /* The acquire succeeded. */
1126 if (owner == UMUTEX_UNOWNED)
1127 return (0);
1128
1129 /* The address was invalid. */
1130 if (owner == -1)
1131 return (EFAULT);
1132
1133 /* If no one owns it but it is contested try to acquire it. */
1134 if (owner == UMUTEX_CONTESTED) {
1135 owner = casuword32(m,
1136 UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1137 if (owner == UMUTEX_CONTESTED)
1138 return (0);
1139
1140 /* The address was invalid. */
1141 if (owner == -1)
1142 return (EFAULT);
1143
1144 error = thread_check_susp(td, false);
1145 if (error != 0)
1146 break;
1147
1148 /* If this failed the lock has changed, restart. */
1149 continue;
1150 }
1151
1152 /*
1153 * If we caught a signal, we have retried and now
1154 * exit immediately.
1155 */
1156 if (error != 0)
1157 return (error);
1158
1159 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1160 AUTO_SHARE, &uq->uq_key)) != 0)
1161 return (error);
1162
1163 umtxq_lock(&uq->uq_key);
1164 umtxq_busy(&uq->uq_key);
1165 umtxq_insert(uq);
1166 umtxq_unbusy(&uq->uq_key);
1167 umtxq_unlock(&uq->uq_key);
1168
1169 /*
1170 * Set the contested bit so that a release in user space
1171 * knows to use the system call for unlock. If this fails
1172 * either some one else has acquired the lock or it has been
1173 * released.
1174 */
1175 old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1176
1177 /* The address was invalid. */
1178 if (old == -1) {
1179 umtxq_lock(&uq->uq_key);
1180 umtxq_remove(uq);
1181 umtxq_unlock(&uq->uq_key);
1182 umtx_key_release(&uq->uq_key);
1183 return (EFAULT);
1184 }
1185
1186 /*
1187 * We set the contested bit, sleep. Otherwise the lock changed
1188 * and we need to retry or we lost a race to the thread
1189 * unlocking the umtx.
1190 */
1191 umtxq_lock(&uq->uq_key);
1192 if (old == owner)
1193 error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1194 NULL : &timo);
1195 umtxq_remove(uq);
1196 umtxq_unlock(&uq->uq_key);
1197 umtx_key_release(&uq->uq_key);
1198
1199 if (error == 0)
1200 error = thread_check_susp(td, false);
1201 }
1202
1203 if (timeout == NULL) {
1204 /* Mutex locking is restarted if it is interrupted. */
1205 if (error == EINTR)
1206 error = ERESTART;
1207 } else {
1208 /* Timed-locking is not restarted. */
1209 if (error == ERESTART)
1210 error = EINTR;
1211 }
1212 return (error);
1213 }
1214
1215 /*
1216 * Unlock a umtx object.
1217 */
1218 static int
do_unlock_umtx32(struct thread * td,uint32_t * m,uint32_t id)1219 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1220 {
1221 struct umtx_key key;
1222 uint32_t owner;
1223 uint32_t old;
1224 int error;
1225 int count;
1226
1227 /*
1228 * Make sure we own this mtx.
1229 */
1230 owner = fuword32(m);
1231 if (owner == -1)
1232 return (EFAULT);
1233
1234 if ((owner & ~UMUTEX_CONTESTED) != id)
1235 return (EPERM);
1236
1237 /* This should be done in userland */
1238 if ((owner & UMUTEX_CONTESTED) == 0) {
1239 old = casuword32(m, owner, UMUTEX_UNOWNED);
1240 if (old == -1)
1241 return (EFAULT);
1242 if (old == owner)
1243 return (0);
1244 owner = old;
1245 }
1246
1247 /* We should only ever be in here for contested locks */
1248 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1249 &key)) != 0)
1250 return (error);
1251
1252 umtxq_lock(&key);
1253 umtxq_busy(&key);
1254 count = umtxq_count(&key);
1255 umtxq_unlock(&key);
1256
1257 /*
1258 * When unlocking the umtx, it must be marked as unowned if
1259 * there is zero or one thread only waiting for it.
1260 * Otherwise, it must be marked as contested.
1261 */
1262 old = casuword32(m, owner,
1263 count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1264 umtxq_lock(&key);
1265 umtxq_signal(&key,1);
1266 umtxq_unbusy(&key);
1267 umtxq_unlock(&key);
1268 umtx_key_release(&key);
1269 if (old == -1)
1270 return (EFAULT);
1271 if (old != owner)
1272 return (EINVAL);
1273 return (0);
1274 }
1275 #endif /* COMPAT_FREEBSD32 */
1276 #endif /* COMPAT_FREEBSD10 */
1277
1278 /*
1279 * Fetch and compare value, sleep on the address if value is not changed.
1280 */
1281 static int
do_wait(struct thread * td,void * addr,u_long id,struct _umtx_time * timeout,int compat32,int is_private)1282 do_wait(struct thread *td, void *addr, u_long id,
1283 struct _umtx_time *timeout, int compat32, int is_private)
1284 {
1285 struct umtx_abs_timeout timo;
1286 struct umtx_q *uq;
1287 u_long tmp;
1288 uint32_t tmp32;
1289 int error = 0;
1290
1291 uq = td->td_umtxq;
1292 if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1293 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1294 return (error);
1295
1296 if (timeout != NULL)
1297 umtx_abs_timeout_init2(&timo, timeout);
1298
1299 umtxq_lock(&uq->uq_key);
1300 umtxq_insert(uq);
1301 umtxq_unlock(&uq->uq_key);
1302 if (compat32 == 0) {
1303 error = fueword(addr, &tmp);
1304 if (error != 0)
1305 error = EFAULT;
1306 } else {
1307 error = fueword32(addr, &tmp32);
1308 if (error == 0)
1309 tmp = tmp32;
1310 else
1311 error = EFAULT;
1312 }
1313 umtxq_lock(&uq->uq_key);
1314 if (error == 0) {
1315 if (tmp == id)
1316 error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1317 NULL : &timo);
1318 if ((uq->uq_flags & UQF_UMTXQ) == 0)
1319 error = 0;
1320 else
1321 umtxq_remove(uq);
1322 } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1323 umtxq_remove(uq);
1324 }
1325 umtxq_unlock(&uq->uq_key);
1326 umtx_key_release(&uq->uq_key);
1327 if (error == ERESTART)
1328 error = EINTR;
1329 return (error);
1330 }
1331
1332 /*
1333 * Wake up threads sleeping on the specified address.
1334 */
1335 int
kern_umtx_wake(struct thread * td,void * uaddr,int n_wake,int is_private)1336 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1337 {
1338 struct umtx_key key;
1339 int ret;
1340
1341 if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1342 is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1343 return (ret);
1344 umtxq_lock(&key);
1345 umtxq_signal(&key, n_wake);
1346 umtxq_unlock(&key);
1347 umtx_key_release(&key);
1348 return (0);
1349 }
1350
1351 /*
1352 * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1353 */
1354 static int
do_lock_normal(struct thread * td,struct umutex * m,uint32_t flags,struct _umtx_time * timeout,int mode)1355 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1356 struct _umtx_time *timeout, int mode)
1357 {
1358 struct umtx_abs_timeout timo;
1359 struct umtx_q *uq;
1360 uint32_t owner, old, id;
1361 int error, rv;
1362
1363 id = td->td_tid;
1364 uq = td->td_umtxq;
1365 error = 0;
1366 if (timeout != NULL)
1367 umtx_abs_timeout_init2(&timo, timeout);
1368
1369 /*
1370 * Care must be exercised when dealing with umtx structure. It
1371 * can fault on any access.
1372 */
1373 for (;;) {
1374 rv = fueword32(&m->m_owner, &owner);
1375 if (rv == -1)
1376 return (EFAULT);
1377 if (mode == _UMUTEX_WAIT) {
1378 if (owner == UMUTEX_UNOWNED ||
1379 owner == UMUTEX_CONTESTED ||
1380 owner == UMUTEX_RB_OWNERDEAD ||
1381 owner == UMUTEX_RB_NOTRECOV)
1382 return (0);
1383 } else {
1384 /*
1385 * Robust mutex terminated. Kernel duty is to
1386 * return EOWNERDEAD to the userspace. The
1387 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1388 * by the common userspace code.
1389 */
1390 if (owner == UMUTEX_RB_OWNERDEAD) {
1391 rv = casueword32(&m->m_owner,
1392 UMUTEX_RB_OWNERDEAD, &owner,
1393 id | UMUTEX_CONTESTED);
1394 if (rv == -1)
1395 return (EFAULT);
1396 if (rv == 0) {
1397 MPASS(owner == UMUTEX_RB_OWNERDEAD);
1398 return (EOWNERDEAD); /* success */
1399 }
1400 MPASS(rv == 1);
1401 rv = thread_check_susp(td, false);
1402 if (rv != 0)
1403 return (rv);
1404 continue;
1405 }
1406 if (owner == UMUTEX_RB_NOTRECOV)
1407 return (ENOTRECOVERABLE);
1408
1409 /*
1410 * Try the uncontested case. This should be
1411 * done in userland.
1412 */
1413 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1414 &owner, id);
1415 /* The address was invalid. */
1416 if (rv == -1)
1417 return (EFAULT);
1418
1419 /* The acquire succeeded. */
1420 if (rv == 0) {
1421 MPASS(owner == UMUTEX_UNOWNED);
1422 return (0);
1423 }
1424
1425 /*
1426 * If no one owns it but it is contested try
1427 * to acquire it.
1428 */
1429 MPASS(rv == 1);
1430 if (owner == UMUTEX_CONTESTED) {
1431 rv = casueword32(&m->m_owner,
1432 UMUTEX_CONTESTED, &owner,
1433 id | UMUTEX_CONTESTED);
1434 /* The address was invalid. */
1435 if (rv == -1)
1436 return (EFAULT);
1437 if (rv == 0) {
1438 MPASS(owner == UMUTEX_CONTESTED);
1439 return (0);
1440 }
1441 if (rv == 1) {
1442 rv = thread_check_susp(td, false);
1443 if (rv != 0)
1444 return (rv);
1445 }
1446
1447 /*
1448 * If this failed the lock has
1449 * changed, restart.
1450 */
1451 continue;
1452 }
1453
1454 /* rv == 1 but not contested, likely store failure */
1455 rv = thread_check_susp(td, false);
1456 if (rv != 0)
1457 return (rv);
1458 }
1459
1460 if (mode == _UMUTEX_TRY)
1461 return (EBUSY);
1462
1463 /*
1464 * If we caught a signal, we have retried and now
1465 * exit immediately.
1466 */
1467 if (error != 0)
1468 return (error);
1469
1470 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1471 GET_SHARE(flags), &uq->uq_key)) != 0)
1472 return (error);
1473
1474 umtxq_lock(&uq->uq_key);
1475 umtxq_busy(&uq->uq_key);
1476 umtxq_insert(uq);
1477 umtxq_unlock(&uq->uq_key);
1478
1479 /*
1480 * Set the contested bit so that a release in user space
1481 * knows to use the system call for unlock. If this fails
1482 * either some one else has acquired the lock or it has been
1483 * released.
1484 */
1485 rv = casueword32(&m->m_owner, owner, &old,
1486 owner | UMUTEX_CONTESTED);
1487
1488 /* The address was invalid or casueword failed to store. */
1489 if (rv == -1 || rv == 1) {
1490 umtxq_lock(&uq->uq_key);
1491 umtxq_remove(uq);
1492 umtxq_unbusy(&uq->uq_key);
1493 umtxq_unlock(&uq->uq_key);
1494 umtx_key_release(&uq->uq_key);
1495 if (rv == -1)
1496 return (EFAULT);
1497 if (rv == 1) {
1498 rv = thread_check_susp(td, false);
1499 if (rv != 0)
1500 return (rv);
1501 }
1502 continue;
1503 }
1504
1505 /*
1506 * We set the contested bit, sleep. Otherwise the lock changed
1507 * and we need to retry or we lost a race to the thread
1508 * unlocking the umtx.
1509 */
1510 umtxq_lock(&uq->uq_key);
1511 umtxq_unbusy(&uq->uq_key);
1512 MPASS(old == owner);
1513 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1514 NULL : &timo);
1515 umtxq_remove(uq);
1516 umtxq_unlock(&uq->uq_key);
1517 umtx_key_release(&uq->uq_key);
1518
1519 if (error == 0)
1520 error = thread_check_susp(td, false);
1521 }
1522
1523 return (0);
1524 }
1525
1526 /*
1527 * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1528 */
1529 static int
do_unlock_normal(struct thread * td,struct umutex * m,uint32_t flags,bool rb)1530 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1531 {
1532 struct umtx_key key;
1533 uint32_t owner, old, id, newlock;
1534 int error, count;
1535
1536 id = td->td_tid;
1537
1538 again:
1539 /*
1540 * Make sure we own this mtx.
1541 */
1542 error = fueword32(&m->m_owner, &owner);
1543 if (error == -1)
1544 return (EFAULT);
1545
1546 if ((owner & ~UMUTEX_CONTESTED) != id)
1547 return (EPERM);
1548
1549 newlock = umtx_unlock_val(flags, rb);
1550 if ((owner & UMUTEX_CONTESTED) == 0) {
1551 error = casueword32(&m->m_owner, owner, &old, newlock);
1552 if (error == -1)
1553 return (EFAULT);
1554 if (error == 1) {
1555 error = thread_check_susp(td, false);
1556 if (error != 0)
1557 return (error);
1558 goto again;
1559 }
1560 MPASS(old == owner);
1561 return (0);
1562 }
1563
1564 /* We should only ever be in here for contested locks */
1565 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1566 &key)) != 0)
1567 return (error);
1568
1569 umtxq_lock(&key);
1570 umtxq_busy(&key);
1571 count = umtxq_count(&key);
1572 umtxq_unlock(&key);
1573
1574 /*
1575 * When unlocking the umtx, it must be marked as unowned if
1576 * there is zero or one thread only waiting for it.
1577 * Otherwise, it must be marked as contested.
1578 */
1579 if (count > 1)
1580 newlock |= UMUTEX_CONTESTED;
1581 error = casueword32(&m->m_owner, owner, &old, newlock);
1582 umtxq_lock(&key);
1583 umtxq_signal(&key, 1);
1584 umtxq_unbusy(&key);
1585 umtxq_unlock(&key);
1586 umtx_key_release(&key);
1587 if (error == -1)
1588 return (EFAULT);
1589 if (error == 1) {
1590 if (old != owner)
1591 return (EINVAL);
1592 error = thread_check_susp(td, false);
1593 if (error != 0)
1594 return (error);
1595 goto again;
1596 }
1597 return (0);
1598 }
1599
1600 /*
1601 * Check if the mutex is available and wake up a waiter,
1602 * only for simple mutex.
1603 */
1604 static int
do_wake_umutex(struct thread * td,struct umutex * m)1605 do_wake_umutex(struct thread *td, struct umutex *m)
1606 {
1607 struct umtx_key key;
1608 uint32_t owner;
1609 uint32_t flags;
1610 int error;
1611 int count;
1612
1613 again:
1614 error = fueword32(&m->m_owner, &owner);
1615 if (error == -1)
1616 return (EFAULT);
1617
1618 if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1619 owner != UMUTEX_RB_NOTRECOV)
1620 return (0);
1621
1622 error = fueword32(&m->m_flags, &flags);
1623 if (error == -1)
1624 return (EFAULT);
1625
1626 /* We should only ever be in here for contested locks */
1627 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1628 &key)) != 0)
1629 return (error);
1630
1631 umtxq_lock(&key);
1632 umtxq_busy(&key);
1633 count = umtxq_count(&key);
1634 umtxq_unlock(&key);
1635
1636 if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1637 owner != UMUTEX_RB_NOTRECOV) {
1638 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1639 UMUTEX_UNOWNED);
1640 if (error == -1) {
1641 error = EFAULT;
1642 } else if (error == 1) {
1643 umtxq_lock(&key);
1644 umtxq_unbusy(&key);
1645 umtxq_unlock(&key);
1646 umtx_key_release(&key);
1647 error = thread_check_susp(td, false);
1648 if (error != 0)
1649 return (error);
1650 goto again;
1651 }
1652 }
1653
1654 umtxq_lock(&key);
1655 if (error == 0 && count != 0) {
1656 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1657 owner == UMUTEX_RB_OWNERDEAD ||
1658 owner == UMUTEX_RB_NOTRECOV);
1659 umtxq_signal(&key, 1);
1660 }
1661 umtxq_unbusy(&key);
1662 umtxq_unlock(&key);
1663 umtx_key_release(&key);
1664 return (error);
1665 }
1666
1667 /*
1668 * Check if the mutex has waiters and tries to fix contention bit.
1669 */
1670 static int
do_wake2_umutex(struct thread * td,struct umutex * m,uint32_t flags)1671 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1672 {
1673 struct umtx_key key;
1674 uint32_t owner, old;
1675 int type;
1676 int error;
1677 int count;
1678
1679 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1680 UMUTEX_ROBUST)) {
1681 case 0:
1682 case UMUTEX_ROBUST:
1683 type = TYPE_NORMAL_UMUTEX;
1684 break;
1685 case UMUTEX_PRIO_INHERIT:
1686 type = TYPE_PI_UMUTEX;
1687 break;
1688 case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1689 type = TYPE_PI_ROBUST_UMUTEX;
1690 break;
1691 case UMUTEX_PRIO_PROTECT:
1692 type = TYPE_PP_UMUTEX;
1693 break;
1694 case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1695 type = TYPE_PP_ROBUST_UMUTEX;
1696 break;
1697 default:
1698 return (EINVAL);
1699 }
1700 if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1701 return (error);
1702
1703 owner = 0;
1704 umtxq_lock(&key);
1705 umtxq_busy(&key);
1706 count = umtxq_count(&key);
1707 umtxq_unlock(&key);
1708
1709 error = fueword32(&m->m_owner, &owner);
1710 if (error == -1)
1711 error = EFAULT;
1712
1713 /*
1714 * Only repair contention bit if there is a waiter, this means
1715 * the mutex is still being referenced by userland code,
1716 * otherwise don't update any memory.
1717 */
1718 while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1719 (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1720 error = casueword32(&m->m_owner, owner, &old,
1721 owner | UMUTEX_CONTESTED);
1722 if (error == -1) {
1723 error = EFAULT;
1724 break;
1725 }
1726 if (error == 0) {
1727 MPASS(old == owner);
1728 break;
1729 }
1730 owner = old;
1731 error = thread_check_susp(td, false);
1732 }
1733
1734 umtxq_lock(&key);
1735 if (error == EFAULT) {
1736 umtxq_signal(&key, INT_MAX);
1737 } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1738 owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1739 umtxq_signal(&key, 1);
1740 umtxq_unbusy(&key);
1741 umtxq_unlock(&key);
1742 umtx_key_release(&key);
1743 return (error);
1744 }
1745
1746 struct umtx_pi *
umtx_pi_alloc(int flags)1747 umtx_pi_alloc(int flags)
1748 {
1749 struct umtx_pi *pi;
1750
1751 pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1752 if (pi == NULL)
1753 return (NULL);
1754
1755 TAILQ_INIT(&pi->pi_blocked);
1756 atomic_add_int(&umtx_pi_allocated, 1);
1757 return (pi);
1758 }
1759
1760 void
umtx_pi_free(struct umtx_pi * pi)1761 umtx_pi_free(struct umtx_pi *pi)
1762 {
1763 uma_zfree(umtx_pi_zone, pi);
1764 atomic_add_int(&umtx_pi_allocated, -1);
1765 }
1766
1767 /*
1768 * Adjust the thread's position on a pi_state after its priority has been
1769 * changed.
1770 */
1771 static int
umtx_pi_adjust_thread(struct umtx_pi * pi,struct thread * td)1772 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1773 {
1774 struct umtx_q *uq, *uq1, *uq2;
1775 struct thread *td1;
1776
1777 mtx_assert(&umtx_lock, MA_OWNED);
1778 if (pi == NULL)
1779 return (0);
1780
1781 uq = td->td_umtxq;
1782
1783 /*
1784 * Check if the thread needs to be moved on the blocked chain.
1785 * It needs to be moved if either its priority is lower than
1786 * the previous thread or higher than the next thread.
1787 */
1788 uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1789 uq2 = TAILQ_NEXT(uq, uq_lockq);
1790 if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1791 (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1792 /*
1793 * Remove thread from blocked chain and determine where
1794 * it should be moved to.
1795 */
1796 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1797 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1798 td1 = uq1->uq_thread;
1799 MPASS(td1->td_proc->p_magic == P_MAGIC);
1800 if (UPRI(td1) > UPRI(td))
1801 break;
1802 }
1803
1804 if (uq1 == NULL)
1805 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1806 else
1807 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1808 }
1809 return (1);
1810 }
1811
1812 static struct umtx_pi *
umtx_pi_next(struct umtx_pi * pi)1813 umtx_pi_next(struct umtx_pi *pi)
1814 {
1815 struct umtx_q *uq_owner;
1816
1817 if (pi->pi_owner == NULL)
1818 return (NULL);
1819 uq_owner = pi->pi_owner->td_umtxq;
1820 if (uq_owner == NULL)
1821 return (NULL);
1822 return (uq_owner->uq_pi_blocked);
1823 }
1824
1825 /*
1826 * Floyd's Cycle-Finding Algorithm.
1827 */
1828 static bool
umtx_pi_check_loop(struct umtx_pi * pi)1829 umtx_pi_check_loop(struct umtx_pi *pi)
1830 {
1831 struct umtx_pi *pi1; /* fast iterator */
1832
1833 mtx_assert(&umtx_lock, MA_OWNED);
1834 if (pi == NULL)
1835 return (false);
1836 pi1 = pi;
1837 for (;;) {
1838 pi = umtx_pi_next(pi);
1839 if (pi == NULL)
1840 break;
1841 pi1 = umtx_pi_next(pi1);
1842 if (pi1 == NULL)
1843 break;
1844 pi1 = umtx_pi_next(pi1);
1845 if (pi1 == NULL)
1846 break;
1847 if (pi == pi1)
1848 return (true);
1849 }
1850 return (false);
1851 }
1852
1853 /*
1854 * Propagate priority when a thread is blocked on POSIX
1855 * PI mutex.
1856 */
1857 static void
umtx_propagate_priority(struct thread * td)1858 umtx_propagate_priority(struct thread *td)
1859 {
1860 struct umtx_q *uq;
1861 struct umtx_pi *pi;
1862 int pri;
1863
1864 mtx_assert(&umtx_lock, MA_OWNED);
1865 pri = UPRI(td);
1866 uq = td->td_umtxq;
1867 pi = uq->uq_pi_blocked;
1868 if (pi == NULL)
1869 return;
1870 if (umtx_pi_check_loop(pi))
1871 return;
1872
1873 for (;;) {
1874 td = pi->pi_owner;
1875 if (td == NULL || td == curthread)
1876 return;
1877
1878 MPASS(td->td_proc != NULL);
1879 MPASS(td->td_proc->p_magic == P_MAGIC);
1880
1881 thread_lock(td);
1882 if (td->td_lend_user_pri > pri)
1883 sched_lend_user_prio(td, pri);
1884 else {
1885 thread_unlock(td);
1886 break;
1887 }
1888 thread_unlock(td);
1889
1890 /*
1891 * Pick up the lock that td is blocked on.
1892 */
1893 uq = td->td_umtxq;
1894 pi = uq->uq_pi_blocked;
1895 if (pi == NULL)
1896 break;
1897 /* Resort td on the list if needed. */
1898 umtx_pi_adjust_thread(pi, td);
1899 }
1900 }
1901
1902 /*
1903 * Unpropagate priority for a PI mutex when a thread blocked on
1904 * it is interrupted by signal or resumed by others.
1905 */
1906 static void
umtx_repropagate_priority(struct umtx_pi * pi)1907 umtx_repropagate_priority(struct umtx_pi *pi)
1908 {
1909 struct umtx_q *uq, *uq_owner;
1910 struct umtx_pi *pi2;
1911 int pri;
1912
1913 mtx_assert(&umtx_lock, MA_OWNED);
1914
1915 if (umtx_pi_check_loop(pi))
1916 return;
1917 while (pi != NULL && pi->pi_owner != NULL) {
1918 pri = PRI_MAX;
1919 uq_owner = pi->pi_owner->td_umtxq;
1920
1921 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1922 uq = TAILQ_FIRST(&pi2->pi_blocked);
1923 if (uq != NULL) {
1924 if (pri > UPRI(uq->uq_thread))
1925 pri = UPRI(uq->uq_thread);
1926 }
1927 }
1928
1929 if (pri > uq_owner->uq_inherited_pri)
1930 pri = uq_owner->uq_inherited_pri;
1931 thread_lock(pi->pi_owner);
1932 sched_lend_user_prio(pi->pi_owner, pri);
1933 thread_unlock(pi->pi_owner);
1934 if ((pi = uq_owner->uq_pi_blocked) != NULL)
1935 umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1936 }
1937 }
1938
1939 /*
1940 * Insert a PI mutex into owned list.
1941 */
1942 static void
umtx_pi_setowner(struct umtx_pi * pi,struct thread * owner)1943 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1944 {
1945 struct umtx_q *uq_owner;
1946
1947 uq_owner = owner->td_umtxq;
1948 mtx_assert(&umtx_lock, MA_OWNED);
1949 MPASS(pi->pi_owner == NULL);
1950 pi->pi_owner = owner;
1951 TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1952 }
1953
1954 /*
1955 * Disown a PI mutex, and remove it from the owned list.
1956 */
1957 static void
umtx_pi_disown(struct umtx_pi * pi)1958 umtx_pi_disown(struct umtx_pi *pi)
1959 {
1960
1961 mtx_assert(&umtx_lock, MA_OWNED);
1962 TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1963 pi->pi_owner = NULL;
1964 }
1965
1966 /*
1967 * Claim ownership of a PI mutex.
1968 */
1969 int
umtx_pi_claim(struct umtx_pi * pi,struct thread * owner)1970 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1971 {
1972 struct umtx_q *uq;
1973 int pri;
1974
1975 mtx_lock(&umtx_lock);
1976 if (pi->pi_owner == owner) {
1977 mtx_unlock(&umtx_lock);
1978 return (0);
1979 }
1980
1981 if (pi->pi_owner != NULL) {
1982 /*
1983 * userland may have already messed the mutex, sigh.
1984 */
1985 mtx_unlock(&umtx_lock);
1986 return (EPERM);
1987 }
1988 umtx_pi_setowner(pi, owner);
1989 uq = TAILQ_FIRST(&pi->pi_blocked);
1990 if (uq != NULL) {
1991 pri = UPRI(uq->uq_thread);
1992 thread_lock(owner);
1993 if (pri < UPRI(owner))
1994 sched_lend_user_prio(owner, pri);
1995 thread_unlock(owner);
1996 }
1997 mtx_unlock(&umtx_lock);
1998 return (0);
1999 }
2000
2001 /*
2002 * Adjust a thread's order position in its blocked PI mutex,
2003 * this may result new priority propagating process.
2004 */
2005 void
umtx_pi_adjust(struct thread * td,u_char oldpri)2006 umtx_pi_adjust(struct thread *td, u_char oldpri)
2007 {
2008 struct umtx_q *uq;
2009 struct umtx_pi *pi;
2010
2011 uq = td->td_umtxq;
2012 mtx_lock(&umtx_lock);
2013 /*
2014 * Pick up the lock that td is blocked on.
2015 */
2016 pi = uq->uq_pi_blocked;
2017 if (pi != NULL) {
2018 umtx_pi_adjust_thread(pi, td);
2019 umtx_repropagate_priority(pi);
2020 }
2021 mtx_unlock(&umtx_lock);
2022 }
2023
2024 /*
2025 * Sleep on a PI mutex.
2026 */
2027 int
umtxq_sleep_pi(struct umtx_q * uq,struct umtx_pi * pi,uint32_t owner,const char * wmesg,struct umtx_abs_timeout * timo,bool shared)2028 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
2029 const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
2030 {
2031 struct thread *td, *td1;
2032 struct umtx_q *uq1;
2033 int error, pri;
2034 #ifdef INVARIANTS
2035 struct umtxq_chain *uc;
2036
2037 uc = umtxq_getchain(&pi->pi_key);
2038 #endif
2039 error = 0;
2040 td = uq->uq_thread;
2041 KASSERT(td == curthread, ("inconsistent uq_thread"));
2042 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2043 KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2044 umtxq_insert(uq);
2045 mtx_lock(&umtx_lock);
2046 if (pi->pi_owner == NULL) {
2047 mtx_unlock(&umtx_lock);
2048 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2049 mtx_lock(&umtx_lock);
2050 if (td1 != NULL) {
2051 if (pi->pi_owner == NULL)
2052 umtx_pi_setowner(pi, td1);
2053 PROC_UNLOCK(td1->td_proc);
2054 }
2055 }
2056
2057 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2058 pri = UPRI(uq1->uq_thread);
2059 if (pri > UPRI(td))
2060 break;
2061 }
2062
2063 if (uq1 != NULL)
2064 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2065 else
2066 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2067
2068 uq->uq_pi_blocked = pi;
2069 thread_lock(td);
2070 td->td_flags |= TDF_UPIBLOCKED;
2071 thread_unlock(td);
2072 umtx_propagate_priority(td);
2073 mtx_unlock(&umtx_lock);
2074 umtxq_unbusy(&uq->uq_key);
2075
2076 error = umtxq_sleep(uq, wmesg, timo);
2077 umtxq_remove(uq);
2078
2079 mtx_lock(&umtx_lock);
2080 uq->uq_pi_blocked = NULL;
2081 thread_lock(td);
2082 td->td_flags &= ~TDF_UPIBLOCKED;
2083 thread_unlock(td);
2084 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2085 umtx_repropagate_priority(pi);
2086 mtx_unlock(&umtx_lock);
2087 umtxq_unlock(&uq->uq_key);
2088
2089 return (error);
2090 }
2091
2092 /*
2093 * Add reference count for a PI mutex.
2094 */
2095 void
umtx_pi_ref(struct umtx_pi * pi)2096 umtx_pi_ref(struct umtx_pi *pi)
2097 {
2098
2099 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2100 pi->pi_refcount++;
2101 }
2102
2103 /*
2104 * Decrease reference count for a PI mutex, if the counter
2105 * is decreased to zero, its memory space is freed.
2106 */
2107 void
umtx_pi_unref(struct umtx_pi * pi)2108 umtx_pi_unref(struct umtx_pi *pi)
2109 {
2110 struct umtxq_chain *uc;
2111
2112 uc = umtxq_getchain(&pi->pi_key);
2113 UMTXQ_LOCKED_ASSERT(uc);
2114 KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2115 if (--pi->pi_refcount == 0) {
2116 mtx_lock(&umtx_lock);
2117 if (pi->pi_owner != NULL)
2118 umtx_pi_disown(pi);
2119 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2120 ("blocked queue not empty"));
2121 mtx_unlock(&umtx_lock);
2122 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2123 umtx_pi_free(pi);
2124 }
2125 }
2126
2127 /*
2128 * Find a PI mutex in hash table.
2129 */
2130 struct umtx_pi *
umtx_pi_lookup(struct umtx_key * key)2131 umtx_pi_lookup(struct umtx_key *key)
2132 {
2133 struct umtxq_chain *uc;
2134 struct umtx_pi *pi;
2135
2136 uc = umtxq_getchain(key);
2137 UMTXQ_LOCKED_ASSERT(uc);
2138
2139 TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2140 if (umtx_key_match(&pi->pi_key, key)) {
2141 return (pi);
2142 }
2143 }
2144 return (NULL);
2145 }
2146
2147 /*
2148 * Insert a PI mutex into hash table.
2149 */
2150 void
umtx_pi_insert(struct umtx_pi * pi)2151 umtx_pi_insert(struct umtx_pi *pi)
2152 {
2153 struct umtxq_chain *uc;
2154
2155 uc = umtxq_getchain(&pi->pi_key);
2156 UMTXQ_LOCKED_ASSERT(uc);
2157 TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2158 }
2159
2160 /*
2161 * Drop a PI mutex and wakeup a top waiter.
2162 */
2163 int
umtx_pi_drop(struct thread * td,struct umtx_key * key,bool rb,int * count)2164 umtx_pi_drop(struct thread *td, struct umtx_key *key, bool rb, int *count)
2165 {
2166 struct umtx_q *uq_first, *uq_first2, *uq_me;
2167 struct umtx_pi *pi, *pi2;
2168 int pri;
2169
2170 UMTXQ_ASSERT_LOCKED_BUSY(key);
2171 *count = umtxq_count_pi(key, &uq_first);
2172 if (uq_first != NULL) {
2173 mtx_lock(&umtx_lock);
2174 pi = uq_first->uq_pi_blocked;
2175 KASSERT(pi != NULL, ("pi == NULL?"));
2176 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2177 mtx_unlock(&umtx_lock);
2178 /* userland messed the mutex */
2179 return (EPERM);
2180 }
2181 uq_me = td->td_umtxq;
2182 if (pi->pi_owner == td)
2183 umtx_pi_disown(pi);
2184 /* get highest priority thread which is still sleeping. */
2185 uq_first = TAILQ_FIRST(&pi->pi_blocked);
2186 while (uq_first != NULL &&
2187 (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2188 uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2189 }
2190 pri = PRI_MAX;
2191 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2192 uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2193 if (uq_first2 != NULL) {
2194 if (pri > UPRI(uq_first2->uq_thread))
2195 pri = UPRI(uq_first2->uq_thread);
2196 }
2197 }
2198 thread_lock(td);
2199 sched_lend_user_prio(td, pri);
2200 thread_unlock(td);
2201 mtx_unlock(&umtx_lock);
2202 if (uq_first)
2203 umtxq_signal_thread(uq_first);
2204 } else {
2205 pi = umtx_pi_lookup(key);
2206 /*
2207 * A umtx_pi can exist if a signal or timeout removed the
2208 * last waiter from the umtxq, but there is still
2209 * a thread in do_lock_pi() holding the umtx_pi.
2210 */
2211 if (pi != NULL) {
2212 /*
2213 * The umtx_pi can be unowned, such as when a thread
2214 * has just entered do_lock_pi(), allocated the
2215 * umtx_pi, and unlocked the umtxq.
2216 * If the current thread owns it, it must disown it.
2217 */
2218 mtx_lock(&umtx_lock);
2219 if (pi->pi_owner == td)
2220 umtx_pi_disown(pi);
2221 mtx_unlock(&umtx_lock);
2222 }
2223 }
2224 return (0);
2225 }
2226
2227 /*
2228 * Lock a PI mutex.
2229 */
2230 static int
do_lock_pi(struct thread * td,struct umutex * m,uint32_t flags,struct _umtx_time * timeout,int try)2231 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2232 struct _umtx_time *timeout, int try)
2233 {
2234 struct umtx_abs_timeout timo;
2235 struct umtx_q *uq;
2236 struct umtx_pi *pi, *new_pi;
2237 uint32_t id, old_owner, owner, old;
2238 int error, rv;
2239
2240 id = td->td_tid;
2241 uq = td->td_umtxq;
2242
2243 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2244 TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2245 &uq->uq_key)) != 0)
2246 return (error);
2247
2248 if (timeout != NULL)
2249 umtx_abs_timeout_init2(&timo, timeout);
2250
2251 umtxq_lock(&uq->uq_key);
2252 pi = umtx_pi_lookup(&uq->uq_key);
2253 if (pi == NULL) {
2254 new_pi = umtx_pi_alloc(M_NOWAIT);
2255 if (new_pi == NULL) {
2256 umtxq_unlock(&uq->uq_key);
2257 new_pi = umtx_pi_alloc(M_WAITOK);
2258 umtxq_lock(&uq->uq_key);
2259 pi = umtx_pi_lookup(&uq->uq_key);
2260 if (pi != NULL) {
2261 umtx_pi_free(new_pi);
2262 new_pi = NULL;
2263 }
2264 }
2265 if (new_pi != NULL) {
2266 new_pi->pi_key = uq->uq_key;
2267 umtx_pi_insert(new_pi);
2268 pi = new_pi;
2269 }
2270 }
2271 umtx_pi_ref(pi);
2272 umtxq_unlock(&uq->uq_key);
2273
2274 /*
2275 * Care must be exercised when dealing with umtx structure. It
2276 * can fault on any access.
2277 */
2278 for (;;) {
2279 /*
2280 * Try the uncontested case. This should be done in userland.
2281 */
2282 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2283 /* The address was invalid. */
2284 if (rv == -1) {
2285 error = EFAULT;
2286 break;
2287 }
2288 /* The acquire succeeded. */
2289 if (rv == 0) {
2290 MPASS(owner == UMUTEX_UNOWNED);
2291 error = 0;
2292 break;
2293 }
2294
2295 if (owner == UMUTEX_RB_NOTRECOV) {
2296 error = ENOTRECOVERABLE;
2297 break;
2298 }
2299
2300 /*
2301 * Nobody owns it, but the acquire failed. This can happen
2302 * with ll/sc atomics.
2303 */
2304 if (owner == UMUTEX_UNOWNED) {
2305 error = thread_check_susp(td, true);
2306 if (error != 0)
2307 break;
2308 continue;
2309 }
2310
2311 /*
2312 * Avoid overwriting a possible error from sleep due
2313 * to the pending signal with suspension check result.
2314 */
2315 if (error == 0) {
2316 error = thread_check_susp(td, true);
2317 if (error != 0)
2318 break;
2319 }
2320
2321 /* If no one owns it but it is contested try to acquire it. */
2322 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2323 old_owner = owner;
2324 rv = casueword32(&m->m_owner, owner, &owner,
2325 id | UMUTEX_CONTESTED);
2326 /* The address was invalid. */
2327 if (rv == -1) {
2328 error = EFAULT;
2329 break;
2330 }
2331 if (rv == 1) {
2332 if (error == 0) {
2333 error = thread_check_susp(td, true);
2334 if (error != 0)
2335 break;
2336 }
2337
2338 /*
2339 * If this failed the lock could
2340 * changed, restart.
2341 */
2342 continue;
2343 }
2344
2345 MPASS(rv == 0);
2346 MPASS(owner == old_owner);
2347 umtxq_lock(&uq->uq_key);
2348 umtxq_busy(&uq->uq_key);
2349 error = umtx_pi_claim(pi, td);
2350 umtxq_unbusy(&uq->uq_key);
2351 umtxq_unlock(&uq->uq_key);
2352 if (error != 0) {
2353 /*
2354 * Since we're going to return an
2355 * error, restore the m_owner to its
2356 * previous, unowned state to avoid
2357 * compounding the problem.
2358 */
2359 (void)casuword32(&m->m_owner,
2360 id | UMUTEX_CONTESTED, old_owner);
2361 }
2362 if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2363 error = EOWNERDEAD;
2364 break;
2365 }
2366
2367 if ((owner & ~UMUTEX_CONTESTED) == id) {
2368 error = EDEADLK;
2369 break;
2370 }
2371
2372 if (try != 0) {
2373 error = EBUSY;
2374 break;
2375 }
2376
2377 /*
2378 * If we caught a signal, we have retried and now
2379 * exit immediately.
2380 */
2381 if (error != 0)
2382 break;
2383
2384 umtxq_busy_unlocked(&uq->uq_key);
2385
2386 /*
2387 * Set the contested bit so that a release in user space
2388 * knows to use the system call for unlock. If this fails
2389 * either some one else has acquired the lock or it has been
2390 * released.
2391 */
2392 rv = casueword32(&m->m_owner, owner, &old, owner |
2393 UMUTEX_CONTESTED);
2394
2395 /* The address was invalid. */
2396 if (rv == -1) {
2397 umtxq_unbusy_unlocked(&uq->uq_key);
2398 error = EFAULT;
2399 break;
2400 }
2401 if (rv == 1) {
2402 umtxq_unbusy_unlocked(&uq->uq_key);
2403 error = thread_check_susp(td, true);
2404 if (error != 0)
2405 break;
2406
2407 /*
2408 * The lock changed and we need to retry or we
2409 * lost a race to the thread unlocking the
2410 * umtx. Note that the UMUTEX_RB_OWNERDEAD
2411 * value for owner is impossible there.
2412 */
2413 continue;
2414 }
2415
2416 umtxq_lock(&uq->uq_key);
2417
2418 /* We set the contested bit, sleep. */
2419 MPASS(old == owner);
2420 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2421 "umtxpi", timeout == NULL ? NULL : &timo,
2422 (flags & USYNC_PROCESS_SHARED) != 0);
2423 if (error != 0)
2424 continue;
2425
2426 error = thread_check_susp(td, false);
2427 if (error != 0)
2428 break;
2429 }
2430
2431 umtxq_lock(&uq->uq_key);
2432 umtx_pi_unref(pi);
2433 umtxq_unlock(&uq->uq_key);
2434
2435 umtx_key_release(&uq->uq_key);
2436 return (error);
2437 }
2438
2439 /*
2440 * Unlock a PI mutex.
2441 */
2442 static int
do_unlock_pi(struct thread * td,struct umutex * m,uint32_t flags,bool rb)2443 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2444 {
2445 struct umtx_key key;
2446 uint32_t id, new_owner, old, owner;
2447 int count, error;
2448
2449 id = td->td_tid;
2450
2451 usrloop:
2452 /*
2453 * Make sure we own this mtx.
2454 */
2455 error = fueword32(&m->m_owner, &owner);
2456 if (error == -1)
2457 return (EFAULT);
2458
2459 if ((owner & ~UMUTEX_CONTESTED) != id)
2460 return (EPERM);
2461
2462 new_owner = umtx_unlock_val(flags, rb);
2463
2464 /* This should be done in userland */
2465 if ((owner & UMUTEX_CONTESTED) == 0) {
2466 error = casueword32(&m->m_owner, owner, &old, new_owner);
2467 if (error == -1)
2468 return (EFAULT);
2469 if (error == 1) {
2470 error = thread_check_susp(td, true);
2471 if (error != 0)
2472 return (error);
2473 goto usrloop;
2474 }
2475 if (old == owner)
2476 return (0);
2477 owner = old;
2478 }
2479
2480 /* We should only ever be in here for contested locks */
2481 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2482 TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2483 &key)) != 0)
2484 return (error);
2485
2486 umtxq_lock(&key);
2487 umtxq_busy(&key);
2488 error = umtx_pi_drop(td, &key, rb, &count);
2489 if (error != 0) {
2490 umtxq_unbusy(&key);
2491 umtxq_unlock(&key);
2492 umtx_key_release(&key);
2493 /* userland messed the mutex */
2494 return (error);
2495 }
2496 umtxq_unlock(&key);
2497
2498 /*
2499 * When unlocking the umtx, it must be marked as unowned if
2500 * there is zero or one thread only waiting for it.
2501 * Otherwise, it must be marked as contested.
2502 */
2503
2504 if (count > 1)
2505 new_owner |= UMUTEX_CONTESTED;
2506 again:
2507 error = casueword32(&m->m_owner, owner, &old, new_owner);
2508 if (error == 1) {
2509 error = thread_check_susp(td, false);
2510 if (error == 0)
2511 goto again;
2512 }
2513 umtxq_unbusy_unlocked(&key);
2514 umtx_key_release(&key);
2515 if (error == -1)
2516 return (EFAULT);
2517 if (error == 0 && old != owner)
2518 return (EINVAL);
2519 return (error);
2520 }
2521
2522 /*
2523 * Lock a PP mutex.
2524 */
2525 static int
do_lock_pp(struct thread * td,struct umutex * m,uint32_t flags,struct _umtx_time * timeout,int try)2526 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2527 struct _umtx_time *timeout, int try)
2528 {
2529 struct umtx_abs_timeout timo;
2530 struct umtx_q *uq, *uq2;
2531 struct umtx_pi *pi;
2532 uint32_t ceiling;
2533 uint32_t owner, id;
2534 int error, pri, old_inherited_pri, new_pri, rv;
2535 bool su;
2536
2537 id = td->td_tid;
2538 uq = td->td_umtxq;
2539 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2540 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2541 &uq->uq_key)) != 0)
2542 return (error);
2543
2544 if (timeout != NULL)
2545 umtx_abs_timeout_init2(&timo, timeout);
2546
2547 su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2548 for (;;) {
2549 old_inherited_pri = uq->uq_inherited_pri;
2550 umtxq_busy_unlocked(&uq->uq_key);
2551
2552 rv = fueword32(&m->m_ceilings[0], &ceiling);
2553 if (rv == -1) {
2554 error = EFAULT;
2555 goto out;
2556 }
2557 ceiling = RTP_PRIO_MAX - ceiling;
2558 if (ceiling > RTP_PRIO_MAX) {
2559 error = EINVAL;
2560 goto out;
2561 }
2562 new_pri = PRI_MIN_REALTIME + ceiling;
2563
2564 if (td->td_base_user_pri < new_pri) {
2565 error = EINVAL;
2566 goto out;
2567 }
2568 if (su) {
2569 mtx_lock(&umtx_lock);
2570 if (new_pri < uq->uq_inherited_pri) {
2571 uq->uq_inherited_pri = new_pri;
2572 thread_lock(td);
2573 if (new_pri < UPRI(td))
2574 sched_lend_user_prio(td, new_pri);
2575 thread_unlock(td);
2576 }
2577 mtx_unlock(&umtx_lock);
2578 }
2579
2580 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2581 id | UMUTEX_CONTESTED);
2582 /* The address was invalid. */
2583 if (rv == -1) {
2584 error = EFAULT;
2585 break;
2586 }
2587 if (rv == 0) {
2588 MPASS(owner == UMUTEX_CONTESTED);
2589 error = 0;
2590 break;
2591 }
2592 /* rv == 1 */
2593 if (owner == UMUTEX_RB_OWNERDEAD) {
2594 rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2595 &owner, id | UMUTEX_CONTESTED);
2596 if (rv == -1) {
2597 error = EFAULT;
2598 break;
2599 }
2600 if (rv == 0) {
2601 MPASS(owner == UMUTEX_RB_OWNERDEAD);
2602 error = EOWNERDEAD; /* success */
2603 break;
2604 }
2605
2606 /*
2607 * rv == 1, only check for suspension if we
2608 * did not already catched a signal. If we
2609 * get an error from the check, the same
2610 * condition is checked by the umtxq_sleep()
2611 * call below, so we should obliterate the
2612 * error to not skip the last loop iteration.
2613 */
2614 if (error == 0) {
2615 error = thread_check_susp(td, false);
2616 if (error == 0 && try == 0) {
2617 umtxq_unbusy_unlocked(&uq->uq_key);
2618 continue;
2619 }
2620 error = 0;
2621 }
2622 } else if (owner == UMUTEX_RB_NOTRECOV) {
2623 error = ENOTRECOVERABLE;
2624 } else if (owner == UMUTEX_CONTESTED) {
2625 /* Spurious failure, retry. */
2626 umtxq_unbusy_unlocked(&uq->uq_key);
2627 continue;
2628 }
2629
2630 if (try != 0)
2631 error = EBUSY;
2632
2633 /*
2634 * If we caught a signal, we have retried and now
2635 * exit immediately.
2636 */
2637 if (error != 0)
2638 break;
2639
2640 umtxq_lock(&uq->uq_key);
2641 umtxq_insert(uq);
2642 umtxq_unbusy(&uq->uq_key);
2643 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2644 NULL : &timo);
2645 umtxq_remove(uq);
2646 umtxq_unlock(&uq->uq_key);
2647
2648 mtx_lock(&umtx_lock);
2649 uq->uq_inherited_pri = old_inherited_pri;
2650 pri = PRI_MAX;
2651 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2652 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2653 if (uq2 != NULL) {
2654 if (pri > UPRI(uq2->uq_thread))
2655 pri = UPRI(uq2->uq_thread);
2656 }
2657 }
2658 if (pri > uq->uq_inherited_pri)
2659 pri = uq->uq_inherited_pri;
2660 thread_lock(td);
2661 sched_lend_user_prio(td, pri);
2662 thread_unlock(td);
2663 mtx_unlock(&umtx_lock);
2664 }
2665
2666 if (error != 0 && error != EOWNERDEAD) {
2667 mtx_lock(&umtx_lock);
2668 uq->uq_inherited_pri = old_inherited_pri;
2669 pri = PRI_MAX;
2670 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2671 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2672 if (uq2 != NULL) {
2673 if (pri > UPRI(uq2->uq_thread))
2674 pri = UPRI(uq2->uq_thread);
2675 }
2676 }
2677 if (pri > uq->uq_inherited_pri)
2678 pri = uq->uq_inherited_pri;
2679 thread_lock(td);
2680 sched_lend_user_prio(td, pri);
2681 thread_unlock(td);
2682 mtx_unlock(&umtx_lock);
2683 }
2684
2685 out:
2686 umtxq_unbusy_unlocked(&uq->uq_key);
2687 umtx_key_release(&uq->uq_key);
2688 return (error);
2689 }
2690
2691 /*
2692 * Unlock a PP mutex.
2693 */
2694 static int
do_unlock_pp(struct thread * td,struct umutex * m,uint32_t flags,bool rb)2695 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2696 {
2697 struct umtx_key key;
2698 struct umtx_q *uq, *uq2;
2699 struct umtx_pi *pi;
2700 uint32_t id, owner, rceiling;
2701 int error, pri, new_inherited_pri;
2702 bool su;
2703
2704 id = td->td_tid;
2705 uq = td->td_umtxq;
2706 su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2707
2708 /*
2709 * Make sure we own this mtx.
2710 */
2711 error = fueword32(&m->m_owner, &owner);
2712 if (error == -1)
2713 return (EFAULT);
2714
2715 if ((owner & ~UMUTEX_CONTESTED) != id)
2716 return (EPERM);
2717
2718 error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2719 if (error != 0)
2720 return (error);
2721
2722 if (rceiling == -1)
2723 new_inherited_pri = PRI_MAX;
2724 else {
2725 rceiling = RTP_PRIO_MAX - rceiling;
2726 if (rceiling > RTP_PRIO_MAX)
2727 return (EINVAL);
2728 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2729 }
2730
2731 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2732 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2733 &key)) != 0)
2734 return (error);
2735 umtxq_busy_unlocked(&key);
2736
2737 /*
2738 * For priority protected mutex, always set unlocked state
2739 * to UMUTEX_CONTESTED, so that userland always enters kernel
2740 * to lock the mutex, it is necessary because thread priority
2741 * has to be adjusted for such mutex.
2742 */
2743 error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2744 UMUTEX_CONTESTED);
2745
2746 umtxq_lock(&key);
2747 if (error == 0)
2748 umtxq_signal(&key, 1);
2749 umtxq_unbusy(&key);
2750 umtxq_unlock(&key);
2751
2752 if (error == -1)
2753 error = EFAULT;
2754 else {
2755 mtx_lock(&umtx_lock);
2756 if (su || new_inherited_pri == PRI_MAX)
2757 uq->uq_inherited_pri = new_inherited_pri;
2758 pri = PRI_MAX;
2759 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2760 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2761 if (uq2 != NULL) {
2762 if (pri > UPRI(uq2->uq_thread))
2763 pri = UPRI(uq2->uq_thread);
2764 }
2765 }
2766 if (pri > uq->uq_inherited_pri)
2767 pri = uq->uq_inherited_pri;
2768 thread_lock(td);
2769 sched_lend_user_prio(td, pri);
2770 thread_unlock(td);
2771 mtx_unlock(&umtx_lock);
2772 }
2773 umtx_key_release(&key);
2774 return (error);
2775 }
2776
2777 static int
do_set_ceiling(struct thread * td,struct umutex * m,uint32_t ceiling,uint32_t * old_ceiling)2778 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2779 uint32_t *old_ceiling)
2780 {
2781 struct umtx_q *uq;
2782 uint32_t flags, id, owner, save_ceiling;
2783 int error, rv, rv1;
2784
2785 error = fueword32(&m->m_flags, &flags);
2786 if (error == -1)
2787 return (EFAULT);
2788 if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2789 return (EINVAL);
2790 if (ceiling > RTP_PRIO_MAX)
2791 return (EINVAL);
2792 id = td->td_tid;
2793 uq = td->td_umtxq;
2794 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2795 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2796 &uq->uq_key)) != 0)
2797 return (error);
2798 for (;;) {
2799 umtxq_busy_unlocked(&uq->uq_key);
2800
2801 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2802 if (rv == -1) {
2803 error = EFAULT;
2804 break;
2805 }
2806
2807 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2808 id | UMUTEX_CONTESTED);
2809 if (rv == -1) {
2810 error = EFAULT;
2811 break;
2812 }
2813
2814 if (rv == 0) {
2815 MPASS(owner == UMUTEX_CONTESTED);
2816 rv = suword32(&m->m_ceilings[0], ceiling);
2817 rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2818 error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2819 break;
2820 }
2821
2822 if ((owner & ~UMUTEX_CONTESTED) == id) {
2823 rv = suword32(&m->m_ceilings[0], ceiling);
2824 error = rv == 0 ? 0 : EFAULT;
2825 break;
2826 }
2827
2828 if (owner == UMUTEX_RB_OWNERDEAD) {
2829 error = EOWNERDEAD;
2830 break;
2831 } else if (owner == UMUTEX_RB_NOTRECOV) {
2832 error = ENOTRECOVERABLE;
2833 break;
2834 } else if (owner == UMUTEX_CONTESTED) {
2835 /* Spurious failure, retry. */
2836 umtxq_unbusy_unlocked(&uq->uq_key);
2837 continue;
2838 }
2839
2840 /*
2841 * If we caught a signal, we have retried and now
2842 * exit immediately.
2843 */
2844 if (error != 0)
2845 break;
2846
2847 /*
2848 * We set the contested bit, sleep. Otherwise the lock changed
2849 * and we need to retry or we lost a race to the thread
2850 * unlocking the umtx.
2851 */
2852 umtxq_lock(&uq->uq_key);
2853 umtxq_insert(uq);
2854 umtxq_unbusy(&uq->uq_key);
2855 error = umtxq_sleep(uq, "umtxpp", NULL);
2856 umtxq_remove(uq);
2857 umtxq_unlock(&uq->uq_key);
2858 }
2859 umtxq_lock(&uq->uq_key);
2860 if (error == 0)
2861 umtxq_signal(&uq->uq_key, INT_MAX);
2862 umtxq_unbusy(&uq->uq_key);
2863 umtxq_unlock(&uq->uq_key);
2864 umtx_key_release(&uq->uq_key);
2865 if (error == 0 && old_ceiling != NULL) {
2866 rv = suword32(old_ceiling, save_ceiling);
2867 error = rv == 0 ? 0 : EFAULT;
2868 }
2869 return (error);
2870 }
2871
2872 /*
2873 * Lock a userland POSIX mutex.
2874 */
2875 static int
do_lock_umutex(struct thread * td,struct umutex * m,struct _umtx_time * timeout,int mode)2876 do_lock_umutex(struct thread *td, struct umutex *m,
2877 struct _umtx_time *timeout, int mode)
2878 {
2879 uint32_t flags;
2880 int error;
2881
2882 error = fueword32(&m->m_flags, &flags);
2883 if (error == -1)
2884 return (EFAULT);
2885
2886 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2887 case 0:
2888 error = do_lock_normal(td, m, flags, timeout, mode);
2889 break;
2890 case UMUTEX_PRIO_INHERIT:
2891 error = do_lock_pi(td, m, flags, timeout, mode);
2892 break;
2893 case UMUTEX_PRIO_PROTECT:
2894 error = do_lock_pp(td, m, flags, timeout, mode);
2895 break;
2896 default:
2897 return (EINVAL);
2898 }
2899 if (timeout == NULL) {
2900 if (error == EINTR && mode != _UMUTEX_WAIT)
2901 error = ERESTART;
2902 } else {
2903 /* Timed-locking is not restarted. */
2904 if (error == ERESTART)
2905 error = EINTR;
2906 }
2907 return (error);
2908 }
2909
2910 /*
2911 * Unlock a userland POSIX mutex.
2912 */
2913 static int
do_unlock_umutex(struct thread * td,struct umutex * m,bool rb)2914 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2915 {
2916 uint32_t flags;
2917 int error;
2918
2919 error = fueword32(&m->m_flags, &flags);
2920 if (error == -1)
2921 return (EFAULT);
2922
2923 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2924 case 0:
2925 return (do_unlock_normal(td, m, flags, rb));
2926 case UMUTEX_PRIO_INHERIT:
2927 return (do_unlock_pi(td, m, flags, rb));
2928 case UMUTEX_PRIO_PROTECT:
2929 return (do_unlock_pp(td, m, flags, rb));
2930 }
2931
2932 return (EINVAL);
2933 }
2934
2935 static int
do_cv_wait(struct thread * td,struct ucond * cv,struct umutex * m,struct timespec * timeout,u_long wflags)2936 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2937 struct timespec *timeout, u_long wflags)
2938 {
2939 struct umtx_abs_timeout timo;
2940 struct umtx_q *uq;
2941 uint32_t flags, clockid, hasw;
2942 int error;
2943
2944 uq = td->td_umtxq;
2945 error = fueword32(&cv->c_flags, &flags);
2946 if (error == -1)
2947 return (EFAULT);
2948 error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2949 if (error != 0)
2950 return (error);
2951
2952 if ((wflags & CVWAIT_CLOCKID) != 0) {
2953 error = fueword32(&cv->c_clockid, &clockid);
2954 if (error == -1) {
2955 umtx_key_release(&uq->uq_key);
2956 return (EFAULT);
2957 }
2958 if ((clockid < CLOCK_REALTIME ||
2959 clockid >= CLOCK_THREAD_CPUTIME_ID) &&
2960 clockid != CLOCK_TAI) {
2961 /* hmm, only HW clock id will work. */
2962 umtx_key_release(&uq->uq_key);
2963 return (EINVAL);
2964 }
2965 } else {
2966 clockid = CLOCK_REALTIME;
2967 }
2968
2969 umtxq_lock(&uq->uq_key);
2970 umtxq_busy(&uq->uq_key);
2971 umtxq_insert(uq);
2972 umtxq_unlock(&uq->uq_key);
2973
2974 /*
2975 * Set c_has_waiters to 1 before releasing user mutex, also
2976 * don't modify cache line when unnecessary.
2977 */
2978 error = fueword32(&cv->c_has_waiters, &hasw);
2979 if (error == 0 && hasw == 0)
2980 error = suword32(&cv->c_has_waiters, 1);
2981 if (error != 0) {
2982 umtxq_lock(&uq->uq_key);
2983 umtxq_remove(uq);
2984 umtxq_unbusy(&uq->uq_key);
2985 error = EFAULT;
2986 goto out;
2987 }
2988
2989 umtxq_unbusy_unlocked(&uq->uq_key);
2990
2991 error = do_unlock_umutex(td, m, false);
2992
2993 if (timeout != NULL)
2994 umtx_abs_timeout_init(&timo, clockid,
2995 (wflags & CVWAIT_ABSTIME) != 0, timeout);
2996
2997 umtxq_lock(&uq->uq_key);
2998 if (error == 0) {
2999 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
3000 NULL : &timo);
3001 }
3002
3003 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3004 error = 0;
3005 else {
3006 /*
3007 * This must be timeout,interrupted by signal or
3008 * surprious wakeup, clear c_has_waiter flag when
3009 * necessary.
3010 */
3011 umtxq_busy(&uq->uq_key);
3012 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
3013 int oldlen = uq->uq_cur_queue->length;
3014 umtxq_remove(uq);
3015 if (oldlen == 1) {
3016 umtxq_unlock(&uq->uq_key);
3017 if (suword32(&cv->c_has_waiters, 0) != 0 &&
3018 error == 0)
3019 error = EFAULT;
3020 umtxq_lock(&uq->uq_key);
3021 }
3022 }
3023 umtxq_unbusy(&uq->uq_key);
3024 if (error == ERESTART)
3025 error = EINTR;
3026 }
3027 out:
3028 umtxq_unlock(&uq->uq_key);
3029 umtx_key_release(&uq->uq_key);
3030 return (error);
3031 }
3032
3033 /*
3034 * Signal a userland condition variable.
3035 */
3036 static int
do_cv_signal(struct thread * td,struct ucond * cv)3037 do_cv_signal(struct thread *td, struct ucond *cv)
3038 {
3039 struct umtx_key key;
3040 int error, cnt, nwake;
3041 uint32_t flags;
3042
3043 error = fueword32(&cv->c_flags, &flags);
3044 if (error == -1)
3045 return (EFAULT);
3046 if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3047 return (error);
3048 umtxq_lock(&key);
3049 umtxq_busy(&key);
3050 cnt = umtxq_count(&key);
3051 nwake = umtxq_signal(&key, 1);
3052 if (cnt <= nwake) {
3053 umtxq_unlock(&key);
3054 error = suword32(&cv->c_has_waiters, 0);
3055 if (error == -1)
3056 error = EFAULT;
3057 umtxq_lock(&key);
3058 }
3059 umtxq_unbusy(&key);
3060 umtxq_unlock(&key);
3061 umtx_key_release(&key);
3062 return (error);
3063 }
3064
3065 static int
do_cv_broadcast(struct thread * td,struct ucond * cv)3066 do_cv_broadcast(struct thread *td, struct ucond *cv)
3067 {
3068 struct umtx_key key;
3069 int error;
3070 uint32_t flags;
3071
3072 error = fueword32(&cv->c_flags, &flags);
3073 if (error == -1)
3074 return (EFAULT);
3075 if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3076 return (error);
3077
3078 umtxq_lock(&key);
3079 umtxq_busy(&key);
3080 umtxq_signal(&key, INT_MAX);
3081 umtxq_unlock(&key);
3082
3083 error = suword32(&cv->c_has_waiters, 0);
3084 if (error == -1)
3085 error = EFAULT;
3086
3087 umtxq_unbusy_unlocked(&key);
3088
3089 umtx_key_release(&key);
3090 return (error);
3091 }
3092
3093 static int
do_rw_rdlock(struct thread * td,struct urwlock * rwlock,long fflag,struct _umtx_time * timeout)3094 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3095 struct _umtx_time *timeout)
3096 {
3097 struct umtx_abs_timeout timo;
3098 struct umtx_q *uq;
3099 uint32_t flags, wrflags;
3100 int32_t state, oldstate;
3101 int32_t blocked_readers;
3102 int error, error1, rv;
3103
3104 uq = td->td_umtxq;
3105 error = fueword32(&rwlock->rw_flags, &flags);
3106 if (error == -1)
3107 return (EFAULT);
3108 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3109 if (error != 0)
3110 return (error);
3111
3112 if (timeout != NULL)
3113 umtx_abs_timeout_init2(&timo, timeout);
3114
3115 wrflags = URWLOCK_WRITE_OWNER;
3116 if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3117 wrflags |= URWLOCK_WRITE_WAITERS;
3118
3119 for (;;) {
3120 rv = fueword32(&rwlock->rw_state, &state);
3121 if (rv == -1) {
3122 umtx_key_release(&uq->uq_key);
3123 return (EFAULT);
3124 }
3125
3126 /* try to lock it */
3127 while (!(state & wrflags)) {
3128 if (__predict_false(URWLOCK_READER_COUNT(state) ==
3129 URWLOCK_MAX_READERS)) {
3130 umtx_key_release(&uq->uq_key);
3131 return (EAGAIN);
3132 }
3133 rv = casueword32(&rwlock->rw_state, state,
3134 &oldstate, state + 1);
3135 if (rv == -1) {
3136 umtx_key_release(&uq->uq_key);
3137 return (EFAULT);
3138 }
3139 if (rv == 0) {
3140 MPASS(oldstate == state);
3141 umtx_key_release(&uq->uq_key);
3142 return (0);
3143 }
3144 error = thread_check_susp(td, true);
3145 if (error != 0)
3146 break;
3147 state = oldstate;
3148 }
3149
3150 if (error)
3151 break;
3152
3153 /* grab monitor lock */
3154 umtxq_busy_unlocked(&uq->uq_key);
3155
3156 /*
3157 * re-read the state, in case it changed between the try-lock above
3158 * and the check below
3159 */
3160 rv = fueword32(&rwlock->rw_state, &state);
3161 if (rv == -1)
3162 error = EFAULT;
3163
3164 /* set read contention bit */
3165 while (error == 0 && (state & wrflags) &&
3166 !(state & URWLOCK_READ_WAITERS)) {
3167 rv = casueword32(&rwlock->rw_state, state,
3168 &oldstate, state | URWLOCK_READ_WAITERS);
3169 if (rv == -1) {
3170 error = EFAULT;
3171 break;
3172 }
3173 if (rv == 0) {
3174 MPASS(oldstate == state);
3175 goto sleep;
3176 }
3177 state = oldstate;
3178 error = thread_check_susp(td, false);
3179 if (error != 0)
3180 break;
3181 }
3182 if (error != 0) {
3183 umtxq_unbusy_unlocked(&uq->uq_key);
3184 break;
3185 }
3186
3187 /* state is changed while setting flags, restart */
3188 if (!(state & wrflags)) {
3189 umtxq_unbusy_unlocked(&uq->uq_key);
3190 error = thread_check_susp(td, true);
3191 if (error != 0)
3192 break;
3193 continue;
3194 }
3195
3196 sleep:
3197 /*
3198 * Contention bit is set, before sleeping, increase
3199 * read waiter count.
3200 */
3201 rv = fueword32(&rwlock->rw_blocked_readers,
3202 &blocked_readers);
3203 if (rv == 0)
3204 rv = suword32(&rwlock->rw_blocked_readers,
3205 blocked_readers + 1);
3206 if (rv == -1) {
3207 umtxq_unbusy_unlocked(&uq->uq_key);
3208 error = EFAULT;
3209 break;
3210 }
3211
3212 while (state & wrflags) {
3213 umtxq_lock(&uq->uq_key);
3214 umtxq_insert(uq);
3215 umtxq_unbusy(&uq->uq_key);
3216
3217 error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3218 NULL : &timo);
3219
3220 umtxq_busy(&uq->uq_key);
3221 umtxq_remove(uq);
3222 umtxq_unlock(&uq->uq_key);
3223 if (error)
3224 break;
3225 rv = fueword32(&rwlock->rw_state, &state);
3226 if (rv == -1) {
3227 error = EFAULT;
3228 break;
3229 }
3230 }
3231
3232 /* decrease read waiter count, and may clear read contention bit */
3233 rv = fueword32(&rwlock->rw_blocked_readers,
3234 &blocked_readers);
3235 if (rv == 0)
3236 rv = suword32(&rwlock->rw_blocked_readers,
3237 blocked_readers - 1);
3238 if (rv == -1) {
3239 umtxq_unbusy_unlocked(&uq->uq_key);
3240 error = EFAULT;
3241 break;
3242 }
3243 if (blocked_readers == 1) {
3244 rv = fueword32(&rwlock->rw_state, &state);
3245 if (rv == -1) {
3246 umtxq_unbusy_unlocked(&uq->uq_key);
3247 error = EFAULT;
3248 break;
3249 }
3250 for (;;) {
3251 rv = casueword32(&rwlock->rw_state, state,
3252 &oldstate, state & ~URWLOCK_READ_WAITERS);
3253 if (rv == -1) {
3254 error = EFAULT;
3255 break;
3256 }
3257 if (rv == 0) {
3258 MPASS(oldstate == state);
3259 break;
3260 }
3261 state = oldstate;
3262 error1 = thread_check_susp(td, false);
3263 if (error1 != 0) {
3264 if (error == 0)
3265 error = error1;
3266 break;
3267 }
3268 }
3269 }
3270
3271 umtxq_unbusy_unlocked(&uq->uq_key);
3272 if (error != 0)
3273 break;
3274 }
3275 umtx_key_release(&uq->uq_key);
3276 if (error == ERESTART)
3277 error = EINTR;
3278 return (error);
3279 }
3280
3281 static int
do_rw_wrlock(struct thread * td,struct urwlock * rwlock,struct _umtx_time * timeout)3282 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3283 {
3284 struct umtx_abs_timeout timo;
3285 struct umtx_q *uq;
3286 uint32_t flags;
3287 int32_t state, oldstate;
3288 int32_t blocked_writers;
3289 int32_t blocked_readers;
3290 int error, error1, rv;
3291
3292 uq = td->td_umtxq;
3293 error = fueword32(&rwlock->rw_flags, &flags);
3294 if (error == -1)
3295 return (EFAULT);
3296 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3297 if (error != 0)
3298 return (error);
3299
3300 if (timeout != NULL)
3301 umtx_abs_timeout_init2(&timo, timeout);
3302
3303 blocked_readers = 0;
3304 for (;;) {
3305 rv = fueword32(&rwlock->rw_state, &state);
3306 if (rv == -1) {
3307 umtx_key_release(&uq->uq_key);
3308 return (EFAULT);
3309 }
3310 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3311 URWLOCK_READER_COUNT(state) == 0) {
3312 rv = casueword32(&rwlock->rw_state, state,
3313 &oldstate, state | URWLOCK_WRITE_OWNER);
3314 if (rv == -1) {
3315 umtx_key_release(&uq->uq_key);
3316 return (EFAULT);
3317 }
3318 if (rv == 0) {
3319 MPASS(oldstate == state);
3320 umtx_key_release(&uq->uq_key);
3321 return (0);
3322 }
3323 state = oldstate;
3324 error = thread_check_susp(td, true);
3325 if (error != 0)
3326 break;
3327 }
3328
3329 if (error) {
3330 if ((state & (URWLOCK_WRITE_OWNER |
3331 URWLOCK_WRITE_WAITERS)) == 0 &&
3332 blocked_readers != 0) {
3333 umtxq_lock(&uq->uq_key);
3334 umtxq_busy(&uq->uq_key);
3335 umtxq_signal_queue(&uq->uq_key, INT_MAX,
3336 UMTX_SHARED_QUEUE);
3337 umtxq_unbusy(&uq->uq_key);
3338 umtxq_unlock(&uq->uq_key);
3339 }
3340
3341 break;
3342 }
3343
3344 /* grab monitor lock */
3345 umtxq_busy_unlocked(&uq->uq_key);
3346
3347 /*
3348 * Re-read the state, in case it changed between the
3349 * try-lock above and the check below.
3350 */
3351 rv = fueword32(&rwlock->rw_state, &state);
3352 if (rv == -1)
3353 error = EFAULT;
3354
3355 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3356 URWLOCK_READER_COUNT(state) != 0) &&
3357 (state & URWLOCK_WRITE_WAITERS) == 0) {
3358 rv = casueword32(&rwlock->rw_state, state,
3359 &oldstate, state | URWLOCK_WRITE_WAITERS);
3360 if (rv == -1) {
3361 error = EFAULT;
3362 break;
3363 }
3364 if (rv == 0) {
3365 MPASS(oldstate == state);
3366 goto sleep;
3367 }
3368 state = oldstate;
3369 error = thread_check_susp(td, false);
3370 if (error != 0)
3371 break;
3372 }
3373 if (error != 0) {
3374 umtxq_unbusy_unlocked(&uq->uq_key);
3375 break;
3376 }
3377
3378 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3379 URWLOCK_READER_COUNT(state) == 0) {
3380 umtxq_unbusy_unlocked(&uq->uq_key);
3381 error = thread_check_susp(td, false);
3382 if (error != 0)
3383 break;
3384 continue;
3385 }
3386 sleep:
3387 rv = fueword32(&rwlock->rw_blocked_writers,
3388 &blocked_writers);
3389 if (rv == 0)
3390 rv = suword32(&rwlock->rw_blocked_writers,
3391 blocked_writers + 1);
3392 if (rv == -1) {
3393 umtxq_unbusy_unlocked(&uq->uq_key);
3394 error = EFAULT;
3395 break;
3396 }
3397
3398 while ((state & URWLOCK_WRITE_OWNER) ||
3399 URWLOCK_READER_COUNT(state) != 0) {
3400 umtxq_lock(&uq->uq_key);
3401 umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3402 umtxq_unbusy(&uq->uq_key);
3403
3404 error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3405 NULL : &timo);
3406
3407 umtxq_busy(&uq->uq_key);
3408 umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3409 umtxq_unlock(&uq->uq_key);
3410 if (error)
3411 break;
3412 rv = fueword32(&rwlock->rw_state, &state);
3413 if (rv == -1) {
3414 error = EFAULT;
3415 break;
3416 }
3417 }
3418
3419 rv = fueword32(&rwlock->rw_blocked_writers,
3420 &blocked_writers);
3421 if (rv == 0)
3422 rv = suword32(&rwlock->rw_blocked_writers,
3423 blocked_writers - 1);
3424 if (rv == -1) {
3425 umtxq_unbusy_unlocked(&uq->uq_key);
3426 error = EFAULT;
3427 break;
3428 }
3429 if (blocked_writers == 1) {
3430 rv = fueword32(&rwlock->rw_state, &state);
3431 if (rv == -1) {
3432 umtxq_unbusy_unlocked(&uq->uq_key);
3433 error = EFAULT;
3434 break;
3435 }
3436 for (;;) {
3437 rv = casueword32(&rwlock->rw_state, state,
3438 &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3439 if (rv == -1) {
3440 error = EFAULT;
3441 break;
3442 }
3443 if (rv == 0) {
3444 MPASS(oldstate == state);
3445 break;
3446 }
3447 state = oldstate;
3448 error1 = thread_check_susp(td, false);
3449 /*
3450 * We are leaving the URWLOCK_WRITE_WAITERS
3451 * behind, but this should not harm the
3452 * correctness.
3453 */
3454 if (error1 != 0) {
3455 if (error == 0)
3456 error = error1;
3457 break;
3458 }
3459 }
3460 rv = fueword32(&rwlock->rw_blocked_readers,
3461 &blocked_readers);
3462 if (rv == -1) {
3463 umtxq_unbusy_unlocked(&uq->uq_key);
3464 error = EFAULT;
3465 break;
3466 }
3467 } else
3468 blocked_readers = 0;
3469
3470 umtxq_unbusy_unlocked(&uq->uq_key);
3471 }
3472
3473 umtx_key_release(&uq->uq_key);
3474 if (error == ERESTART)
3475 error = EINTR;
3476 return (error);
3477 }
3478
3479 static int
do_rw_unlock(struct thread * td,struct urwlock * rwlock)3480 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3481 {
3482 struct umtx_q *uq;
3483 uint32_t flags;
3484 int32_t state, oldstate;
3485 int error, rv, q, count;
3486
3487 uq = td->td_umtxq;
3488 error = fueword32(&rwlock->rw_flags, &flags);
3489 if (error == -1)
3490 return (EFAULT);
3491 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3492 if (error != 0)
3493 return (error);
3494
3495 error = fueword32(&rwlock->rw_state, &state);
3496 if (error == -1) {
3497 error = EFAULT;
3498 goto out;
3499 }
3500 if (state & URWLOCK_WRITE_OWNER) {
3501 for (;;) {
3502 rv = casueword32(&rwlock->rw_state, state,
3503 &oldstate, state & ~URWLOCK_WRITE_OWNER);
3504 if (rv == -1) {
3505 error = EFAULT;
3506 goto out;
3507 }
3508 if (rv == 1) {
3509 state = oldstate;
3510 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3511 error = EPERM;
3512 goto out;
3513 }
3514 error = thread_check_susp(td, true);
3515 if (error != 0)
3516 goto out;
3517 } else
3518 break;
3519 }
3520 } else if (URWLOCK_READER_COUNT(state) != 0) {
3521 for (;;) {
3522 rv = casueword32(&rwlock->rw_state, state,
3523 &oldstate, state - 1);
3524 if (rv == -1) {
3525 error = EFAULT;
3526 goto out;
3527 }
3528 if (rv == 1) {
3529 state = oldstate;
3530 if (URWLOCK_READER_COUNT(oldstate) == 0) {
3531 error = EPERM;
3532 goto out;
3533 }
3534 error = thread_check_susp(td, true);
3535 if (error != 0)
3536 goto out;
3537 } else
3538 break;
3539 }
3540 } else {
3541 error = EPERM;
3542 goto out;
3543 }
3544
3545 count = 0;
3546
3547 if (!(flags & URWLOCK_PREFER_READER)) {
3548 if (state & URWLOCK_WRITE_WAITERS) {
3549 count = 1;
3550 q = UMTX_EXCLUSIVE_QUEUE;
3551 } else if (state & URWLOCK_READ_WAITERS) {
3552 count = INT_MAX;
3553 q = UMTX_SHARED_QUEUE;
3554 }
3555 } else {
3556 if (state & URWLOCK_READ_WAITERS) {
3557 count = INT_MAX;
3558 q = UMTX_SHARED_QUEUE;
3559 } else if (state & URWLOCK_WRITE_WAITERS) {
3560 count = 1;
3561 q = UMTX_EXCLUSIVE_QUEUE;
3562 }
3563 }
3564
3565 if (count) {
3566 umtxq_lock(&uq->uq_key);
3567 umtxq_busy(&uq->uq_key);
3568 umtxq_signal_queue(&uq->uq_key, count, q);
3569 umtxq_unbusy(&uq->uq_key);
3570 umtxq_unlock(&uq->uq_key);
3571 }
3572 out:
3573 umtx_key_release(&uq->uq_key);
3574 return (error);
3575 }
3576
3577 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3578 static int
do_sem_wait(struct thread * td,struct _usem * sem,struct _umtx_time * timeout)3579 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3580 {
3581 struct umtx_abs_timeout timo;
3582 struct umtx_q *uq;
3583 uint32_t flags, count, count1;
3584 int error, rv, rv1;
3585
3586 uq = td->td_umtxq;
3587 error = fueword32(&sem->_flags, &flags);
3588 if (error == -1)
3589 return (EFAULT);
3590 error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3591 if (error != 0)
3592 return (error);
3593
3594 if (timeout != NULL)
3595 umtx_abs_timeout_init2(&timo, timeout);
3596
3597 again:
3598 umtxq_lock(&uq->uq_key);
3599 umtxq_busy(&uq->uq_key);
3600 umtxq_insert(uq);
3601 umtxq_unlock(&uq->uq_key);
3602 rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3603 if (rv != -1)
3604 rv1 = fueword32(&sem->_count, &count);
3605 if (rv == -1 || rv1 == -1 || count != 0 || (rv == 1 && count1 == 0)) {
3606 if (rv == 0)
3607 rv = suword32(&sem->_has_waiters, 0);
3608 umtxq_lock(&uq->uq_key);
3609 umtxq_unbusy(&uq->uq_key);
3610 umtxq_remove(uq);
3611 umtxq_unlock(&uq->uq_key);
3612 if (rv == -1 || rv1 == -1) {
3613 error = EFAULT;
3614 goto out;
3615 }
3616 if (count != 0) {
3617 error = 0;
3618 goto out;
3619 }
3620 MPASS(rv == 1 && count1 == 0);
3621 rv = thread_check_susp(td, true);
3622 if (rv == 0)
3623 goto again;
3624 error = rv;
3625 goto out;
3626 }
3627 umtxq_lock(&uq->uq_key);
3628 umtxq_unbusy(&uq->uq_key);
3629
3630 error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3631
3632 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3633 error = 0;
3634 else {
3635 umtxq_remove(uq);
3636 /* A relative timeout cannot be restarted. */
3637 if (error == ERESTART && timeout != NULL &&
3638 (timeout->_flags & UMTX_ABSTIME) == 0)
3639 error = EINTR;
3640 }
3641 umtxq_unlock(&uq->uq_key);
3642 out:
3643 umtx_key_release(&uq->uq_key);
3644 return (error);
3645 }
3646
3647 /*
3648 * Signal a userland semaphore.
3649 */
3650 static int
do_sem_wake(struct thread * td,struct _usem * sem)3651 do_sem_wake(struct thread *td, struct _usem *sem)
3652 {
3653 struct umtx_key key;
3654 int error, cnt;
3655 uint32_t flags;
3656
3657 error = fueword32(&sem->_flags, &flags);
3658 if (error == -1)
3659 return (EFAULT);
3660 if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3661 return (error);
3662 umtxq_lock(&key);
3663 umtxq_busy(&key);
3664 cnt = umtxq_count(&key);
3665 if (cnt > 0) {
3666 /*
3667 * Check if count is greater than 0, this means the memory is
3668 * still being referenced by user code, so we can safely
3669 * update _has_waiters flag.
3670 */
3671 if (cnt == 1) {
3672 umtxq_unlock(&key);
3673 error = suword32(&sem->_has_waiters, 0);
3674 umtxq_lock(&key);
3675 if (error == -1)
3676 error = EFAULT;
3677 }
3678 umtxq_signal(&key, 1);
3679 }
3680 umtxq_unbusy(&key);
3681 umtxq_unlock(&key);
3682 umtx_key_release(&key);
3683 return (error);
3684 }
3685 #endif
3686
3687 static int
do_sem2_wait(struct thread * td,struct _usem2 * sem,struct _umtx_time * timeout)3688 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3689 {
3690 struct umtx_abs_timeout timo;
3691 struct umtx_q *uq;
3692 uint32_t count, flags;
3693 int error, rv;
3694
3695 uq = td->td_umtxq;
3696 flags = fuword32(&sem->_flags);
3697 if (timeout != NULL)
3698 umtx_abs_timeout_init2(&timo, timeout);
3699
3700 again:
3701 error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3702 if (error != 0)
3703 return (error);
3704 umtxq_lock(&uq->uq_key);
3705 umtxq_busy(&uq->uq_key);
3706 umtxq_insert(uq);
3707 umtxq_unlock(&uq->uq_key);
3708 rv = fueword32(&sem->_count, &count);
3709 if (rv == -1) {
3710 umtxq_lock(&uq->uq_key);
3711 umtxq_unbusy(&uq->uq_key);
3712 umtxq_remove(uq);
3713 umtxq_unlock(&uq->uq_key);
3714 umtx_key_release(&uq->uq_key);
3715 return (EFAULT);
3716 }
3717 for (;;) {
3718 if (USEM_COUNT(count) != 0) {
3719 umtxq_lock(&uq->uq_key);
3720 umtxq_unbusy(&uq->uq_key);
3721 umtxq_remove(uq);
3722 umtxq_unlock(&uq->uq_key);
3723 umtx_key_release(&uq->uq_key);
3724 return (0);
3725 }
3726 if (count == USEM_HAS_WAITERS)
3727 break;
3728 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3729 if (rv == 0)
3730 break;
3731 umtxq_lock(&uq->uq_key);
3732 umtxq_unbusy(&uq->uq_key);
3733 umtxq_remove(uq);
3734 umtxq_unlock(&uq->uq_key);
3735 umtx_key_release(&uq->uq_key);
3736 if (rv == -1)
3737 return (EFAULT);
3738 rv = thread_check_susp(td, true);
3739 if (rv != 0)
3740 return (rv);
3741 goto again;
3742 }
3743 umtxq_lock(&uq->uq_key);
3744 umtxq_unbusy(&uq->uq_key);
3745
3746 error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3747
3748 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3749 error = 0;
3750 else {
3751 umtxq_remove(uq);
3752 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3753 /* A relative timeout cannot be restarted. */
3754 if (error == ERESTART)
3755 error = EINTR;
3756 if (error == EINTR) {
3757 kern_clock_gettime(curthread, timo.clockid,
3758 &timo.cur);
3759 timespecsub(&timo.end, &timo.cur,
3760 &timeout->_timeout);
3761 }
3762 }
3763 }
3764 umtxq_unlock(&uq->uq_key);
3765 umtx_key_release(&uq->uq_key);
3766 return (error);
3767 }
3768
3769 /*
3770 * Signal a userland semaphore.
3771 */
3772 static int
do_sem2_wake(struct thread * td,struct _usem2 * sem)3773 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3774 {
3775 struct umtx_key key;
3776 int error, cnt, rv;
3777 uint32_t count, flags;
3778
3779 rv = fueword32(&sem->_flags, &flags);
3780 if (rv == -1)
3781 return (EFAULT);
3782 if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3783 return (error);
3784 umtxq_lock(&key);
3785 umtxq_busy(&key);
3786 cnt = umtxq_count(&key);
3787 if (cnt > 0) {
3788 /*
3789 * If this was the last sleeping thread, clear the waiters
3790 * flag in _count.
3791 */
3792 if (cnt == 1) {
3793 umtxq_unlock(&key);
3794 rv = fueword32(&sem->_count, &count);
3795 while (rv != -1 && count & USEM_HAS_WAITERS) {
3796 rv = casueword32(&sem->_count, count, &count,
3797 count & ~USEM_HAS_WAITERS);
3798 if (rv == 1) {
3799 rv = thread_check_susp(td, false);
3800 if (rv != 0)
3801 break;
3802 }
3803 }
3804 if (rv == -1)
3805 error = EFAULT;
3806 else if (rv > 0) {
3807 error = rv;
3808 }
3809 umtxq_lock(&key);
3810 }
3811
3812 umtxq_signal(&key, 1);
3813 }
3814 umtxq_unbusy(&key);
3815 umtxq_unlock(&key);
3816 umtx_key_release(&key);
3817 return (error);
3818 }
3819
3820 #ifdef COMPAT_FREEBSD10
3821 int
freebsd10__umtx_lock(struct thread * td,struct freebsd10__umtx_lock_args * uap)3822 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3823 {
3824 return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3825 }
3826
3827 int
freebsd10__umtx_unlock(struct thread * td,struct freebsd10__umtx_unlock_args * uap)3828 freebsd10__umtx_unlock(struct thread *td,
3829 struct freebsd10__umtx_unlock_args *uap)
3830 {
3831 return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3832 }
3833 #endif
3834
3835 inline int
umtx_copyin_timeout(const void * uaddr,struct timespec * tsp)3836 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3837 {
3838 int error;
3839
3840 error = copyin(uaddr, tsp, sizeof(*tsp));
3841 if (error == 0) {
3842 if (!timespecvalid_interval(tsp))
3843 error = EINVAL;
3844 }
3845 return (error);
3846 }
3847
3848 static inline int
umtx_copyin_umtx_time(const void * uaddr,size_t size,struct _umtx_time * tp)3849 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3850 {
3851 int error;
3852
3853 if (size <= sizeof(tp->_timeout)) {
3854 tp->_clockid = CLOCK_REALTIME;
3855 tp->_flags = 0;
3856 error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3857 } else
3858 error = copyin(uaddr, tp, sizeof(*tp));
3859 if (error != 0)
3860 return (error);
3861 if (!timespecvalid_interval(&tp->_timeout))
3862 return (EINVAL);
3863 return (0);
3864 }
3865
3866 static int
umtx_copyin_robust_lists(const void * uaddr,size_t size,struct umtx_robust_lists_params * rb)3867 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3868 struct umtx_robust_lists_params *rb)
3869 {
3870
3871 if (size > sizeof(*rb))
3872 return (EINVAL);
3873 return (copyin(uaddr, rb, size));
3874 }
3875
3876 static int
umtx_copyout_timeout(void * uaddr,size_t sz,struct timespec * tsp)3877 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3878 {
3879
3880 /*
3881 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3882 * and we're only called if sz >= sizeof(timespec) as supplied in the
3883 * copyops.
3884 */
3885 KASSERT(sz >= sizeof(*tsp),
3886 ("umtx_copyops specifies incorrect sizes"));
3887
3888 return (copyout(tsp, uaddr, sizeof(*tsp)));
3889 }
3890
3891 #ifdef COMPAT_FREEBSD10
3892 static int
__umtx_op_lock_umtx(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3893 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3894 const struct umtx_copyops *ops)
3895 {
3896 struct timespec *ts, timeout;
3897 int error;
3898
3899 /* Allow a null timespec (wait forever). */
3900 if (uap->uaddr2 == NULL)
3901 ts = NULL;
3902 else {
3903 error = ops->copyin_timeout(uap->uaddr2, &timeout);
3904 if (error != 0)
3905 return (error);
3906 ts = &timeout;
3907 }
3908 #ifdef COMPAT_FREEBSD32
3909 if (ops->compat32)
3910 return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3911 #endif
3912 return (do_lock_umtx(td, uap->obj, uap->val, ts));
3913 }
3914
3915 static int
__umtx_op_unlock_umtx(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3916 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3917 const struct umtx_copyops *ops)
3918 {
3919 #ifdef COMPAT_FREEBSD32
3920 if (ops->compat32)
3921 return (do_unlock_umtx32(td, uap->obj, uap->val));
3922 #endif
3923 return (do_unlock_umtx(td, uap->obj, uap->val));
3924 }
3925 #endif /* COMPAT_FREEBSD10 */
3926
3927 #if !defined(COMPAT_FREEBSD10)
3928 static int
__umtx_op_unimpl(struct thread * td __unused,struct _umtx_op_args * uap __unused,const struct umtx_copyops * ops __unused)3929 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3930 const struct umtx_copyops *ops __unused)
3931 {
3932 return (EOPNOTSUPP);
3933 }
3934 #endif /* COMPAT_FREEBSD10 */
3935
3936 static int
__umtx_op_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3937 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3938 const struct umtx_copyops *ops)
3939 {
3940 struct _umtx_time timeout, *tm_p;
3941 int error;
3942
3943 if (uap->uaddr2 == NULL)
3944 tm_p = NULL;
3945 else {
3946 error = ops->copyin_umtx_time(
3947 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3948 if (error != 0)
3949 return (error);
3950 tm_p = &timeout;
3951 }
3952 return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3953 }
3954
3955 static int
__umtx_op_wait_uint(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3956 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3957 const struct umtx_copyops *ops)
3958 {
3959 struct _umtx_time timeout, *tm_p;
3960 int error;
3961
3962 if (uap->uaddr2 == NULL)
3963 tm_p = NULL;
3964 else {
3965 error = ops->copyin_umtx_time(
3966 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3967 if (error != 0)
3968 return (error);
3969 tm_p = &timeout;
3970 }
3971 return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3972 }
3973
3974 static int
__umtx_op_wait_uint_private(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3975 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3976 const struct umtx_copyops *ops)
3977 {
3978 struct _umtx_time *tm_p, timeout;
3979 int error;
3980
3981 if (uap->uaddr2 == NULL)
3982 tm_p = NULL;
3983 else {
3984 error = ops->copyin_umtx_time(
3985 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3986 if (error != 0)
3987 return (error);
3988 tm_p = &timeout;
3989 }
3990 return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3991 }
3992
3993 static int
__umtx_op_wake(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)3994 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3995 const struct umtx_copyops *ops __unused)
3996 {
3997
3998 return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3999 }
4000
4001 #define BATCH_SIZE 128
4002 static int
__umtx_op_nwake_private_native(struct thread * td,struct _umtx_op_args * uap)4003 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
4004 {
4005 char *uaddrs[BATCH_SIZE], **upp;
4006 int count, error, i, pos, tocopy;
4007
4008 upp = (char **)uap->obj;
4009 error = 0;
4010 for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4011 pos += tocopy) {
4012 tocopy = MIN(count, BATCH_SIZE);
4013 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
4014 if (error != 0)
4015 break;
4016 for (i = 0; i < tocopy; ++i) {
4017 kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
4018 }
4019 maybe_yield();
4020 }
4021 return (error);
4022 }
4023
4024 static int
__umtx_op_nwake_private_compat32(struct thread * td,struct _umtx_op_args * uap)4025 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4026 {
4027 uint32_t uaddrs[BATCH_SIZE], *upp;
4028 int count, error, i, pos, tocopy;
4029
4030 upp = (uint32_t *)uap->obj;
4031 error = 0;
4032 for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4033 pos += tocopy) {
4034 tocopy = MIN(count, BATCH_SIZE);
4035 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4036 if (error != 0)
4037 break;
4038 for (i = 0; i < tocopy; ++i) {
4039 kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
4040 INT_MAX, 1);
4041 }
4042 maybe_yield();
4043 }
4044 return (error);
4045 }
4046
4047 static int
__umtx_op_nwake_private(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4048 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
4049 const struct umtx_copyops *ops)
4050 {
4051
4052 if (ops->compat32)
4053 return (__umtx_op_nwake_private_compat32(td, uap));
4054 return (__umtx_op_nwake_private_native(td, uap));
4055 }
4056
4057 static int
__umtx_op_wake_private(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4058 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4059 const struct umtx_copyops *ops __unused)
4060 {
4061
4062 return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4063 }
4064
4065 static int
__umtx_op_lock_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4066 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4067 const struct umtx_copyops *ops)
4068 {
4069 struct _umtx_time *tm_p, timeout;
4070 int error;
4071
4072 /* Allow a null timespec (wait forever). */
4073 if (uap->uaddr2 == NULL)
4074 tm_p = NULL;
4075 else {
4076 error = ops->copyin_umtx_time(
4077 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4078 if (error != 0)
4079 return (error);
4080 tm_p = &timeout;
4081 }
4082 return (do_lock_umutex(td, uap->obj, tm_p, 0));
4083 }
4084
4085 static int
__umtx_op_trylock_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4086 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4087 const struct umtx_copyops *ops __unused)
4088 {
4089
4090 return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4091 }
4092
4093 static int
__umtx_op_wait_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4094 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4095 const struct umtx_copyops *ops)
4096 {
4097 struct _umtx_time *tm_p, timeout;
4098 int error;
4099
4100 /* Allow a null timespec (wait forever). */
4101 if (uap->uaddr2 == NULL)
4102 tm_p = NULL;
4103 else {
4104 error = ops->copyin_umtx_time(
4105 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4106 if (error != 0)
4107 return (error);
4108 tm_p = &timeout;
4109 }
4110 return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4111 }
4112
4113 static int
__umtx_op_wake_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4114 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4115 const struct umtx_copyops *ops __unused)
4116 {
4117
4118 return (do_wake_umutex(td, uap->obj));
4119 }
4120
4121 static int
__umtx_op_unlock_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4122 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4123 const struct umtx_copyops *ops __unused)
4124 {
4125
4126 return (do_unlock_umutex(td, uap->obj, false));
4127 }
4128
4129 static int
__umtx_op_set_ceiling(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4130 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4131 const struct umtx_copyops *ops __unused)
4132 {
4133
4134 return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4135 }
4136
4137 static int
__umtx_op_cv_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4138 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4139 const struct umtx_copyops *ops)
4140 {
4141 struct timespec *ts, timeout;
4142 int error;
4143
4144 /* Allow a null timespec (wait forever). */
4145 if (uap->uaddr2 == NULL)
4146 ts = NULL;
4147 else {
4148 error = ops->copyin_timeout(uap->uaddr2, &timeout);
4149 if (error != 0)
4150 return (error);
4151 ts = &timeout;
4152 }
4153 return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4154 }
4155
4156 static int
__umtx_op_cv_signal(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4157 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4158 const struct umtx_copyops *ops __unused)
4159 {
4160
4161 return (do_cv_signal(td, uap->obj));
4162 }
4163
4164 static int
__umtx_op_cv_broadcast(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4165 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4166 const struct umtx_copyops *ops __unused)
4167 {
4168
4169 return (do_cv_broadcast(td, uap->obj));
4170 }
4171
4172 static int
__umtx_op_rw_rdlock(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4173 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4174 const struct umtx_copyops *ops)
4175 {
4176 struct _umtx_time timeout;
4177 int error;
4178
4179 /* Allow a null timespec (wait forever). */
4180 if (uap->uaddr2 == NULL) {
4181 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4182 } else {
4183 error = ops->copyin_umtx_time(uap->uaddr2,
4184 (size_t)uap->uaddr1, &timeout);
4185 if (error != 0)
4186 return (error);
4187 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4188 }
4189 return (error);
4190 }
4191
4192 static int
__umtx_op_rw_wrlock(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4193 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4194 const struct umtx_copyops *ops)
4195 {
4196 struct _umtx_time timeout;
4197 int error;
4198
4199 /* Allow a null timespec (wait forever). */
4200 if (uap->uaddr2 == NULL) {
4201 error = do_rw_wrlock(td, uap->obj, 0);
4202 } else {
4203 error = ops->copyin_umtx_time(uap->uaddr2,
4204 (size_t)uap->uaddr1, &timeout);
4205 if (error != 0)
4206 return (error);
4207
4208 error = do_rw_wrlock(td, uap->obj, &timeout);
4209 }
4210 return (error);
4211 }
4212
4213 static int
__umtx_op_rw_unlock(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4214 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4215 const struct umtx_copyops *ops __unused)
4216 {
4217
4218 return (do_rw_unlock(td, uap->obj));
4219 }
4220
4221 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4222 static int
__umtx_op_sem_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4223 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4224 const struct umtx_copyops *ops)
4225 {
4226 struct _umtx_time *tm_p, timeout;
4227 int error;
4228
4229 /* Allow a null timespec (wait forever). */
4230 if (uap->uaddr2 == NULL)
4231 tm_p = NULL;
4232 else {
4233 error = ops->copyin_umtx_time(
4234 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4235 if (error != 0)
4236 return (error);
4237 tm_p = &timeout;
4238 }
4239 return (do_sem_wait(td, uap->obj, tm_p));
4240 }
4241
4242 static int
__umtx_op_sem_wake(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4243 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4244 const struct umtx_copyops *ops __unused)
4245 {
4246
4247 return (do_sem_wake(td, uap->obj));
4248 }
4249 #endif
4250
4251 static int
__umtx_op_wake2_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4252 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4253 const struct umtx_copyops *ops __unused)
4254 {
4255
4256 return (do_wake2_umutex(td, uap->obj, uap->val));
4257 }
4258
4259 static int
__umtx_op_sem2_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4260 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4261 const struct umtx_copyops *ops)
4262 {
4263 struct _umtx_time *tm_p, timeout;
4264 size_t uasize;
4265 int error;
4266
4267 /* Allow a null timespec (wait forever). */
4268 if (uap->uaddr2 == NULL) {
4269 uasize = 0;
4270 tm_p = NULL;
4271 } else {
4272 uasize = (size_t)uap->uaddr1;
4273 error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4274 if (error != 0)
4275 return (error);
4276 tm_p = &timeout;
4277 }
4278 error = do_sem2_wait(td, uap->obj, tm_p);
4279 if (error == EINTR && uap->uaddr2 != NULL &&
4280 (timeout._flags & UMTX_ABSTIME) == 0 &&
4281 uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4282 error = ops->copyout_timeout(
4283 (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4284 uasize - ops->umtx_time_sz, &timeout._timeout);
4285 if (error == 0) {
4286 error = EINTR;
4287 }
4288 }
4289
4290 return (error);
4291 }
4292
4293 static int
__umtx_op_sem2_wake(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4294 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4295 const struct umtx_copyops *ops __unused)
4296 {
4297
4298 return (do_sem2_wake(td, uap->obj));
4299 }
4300
4301 #define USHM_OBJ_UMTX(o) \
4302 ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4303
4304 #define USHMF_LINKED 0x0001
4305 struct umtx_shm_reg {
4306 TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4307 LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4308 struct umtx_key ushm_key;
4309 struct ucred *ushm_cred;
4310 struct shmfd *ushm_obj;
4311 u_int ushm_refcnt;
4312 u_int ushm_flags;
4313 };
4314
4315 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4316 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4317
4318 static uma_zone_t umtx_shm_reg_zone;
4319 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4320 static struct mtx umtx_shm_lock;
4321 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4322 TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4323
4324 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4325
4326 static void
umtx_shm_reg_delfree_tq(void * context __unused,int pending __unused)4327 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4328 {
4329 struct umtx_shm_reg_head d;
4330 struct umtx_shm_reg *reg, *reg1;
4331
4332 TAILQ_INIT(&d);
4333 mtx_lock(&umtx_shm_lock);
4334 TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4335 mtx_unlock(&umtx_shm_lock);
4336 TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4337 TAILQ_REMOVE(&d, reg, ushm_reg_link);
4338 umtx_shm_free_reg(reg);
4339 }
4340 }
4341
4342 static struct task umtx_shm_reg_delfree_task =
4343 TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4344
4345 /*
4346 * Returns 0 if a SHM with the passed key is found in the registry, in which
4347 * case it is returned through 'oreg'. Otherwise, returns an error among ESRCH
4348 * (no corresponding SHM; ESRCH was chosen for compatibility, ENOENT would have
4349 * been preferable) or EOVERFLOW (there is a corresponding SHM, but reference
4350 * count would overflow, so can't return it), in which case '*oreg' is left
4351 * unchanged.
4352 */
4353 static int
umtx_shm_find_reg_locked(const struct umtx_key * key,struct umtx_shm_reg ** const oreg)4354 umtx_shm_find_reg_locked(const struct umtx_key *key,
4355 struct umtx_shm_reg **const oreg)
4356 {
4357 struct umtx_shm_reg *reg;
4358 struct umtx_shm_reg_head *reg_head;
4359
4360 KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4361 mtx_assert(&umtx_shm_lock, MA_OWNED);
4362 reg_head = &umtx_shm_registry[key->hash];
4363 TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4364 KASSERT(reg->ushm_key.shared,
4365 ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4366 if (reg->ushm_key.info.shared.object ==
4367 key->info.shared.object &&
4368 reg->ushm_key.info.shared.offset ==
4369 key->info.shared.offset) {
4370 KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4371 KASSERT(reg->ushm_refcnt != 0,
4372 ("reg %p refcnt 0 onlist", reg));
4373 KASSERT((reg->ushm_flags & USHMF_LINKED) != 0,
4374 ("reg %p not linked", reg));
4375 /*
4376 * Don't let overflow happen, just deny a new reference
4377 * (this is additional protection against some reference
4378 * count leak, which is known not to be the case at the
4379 * time of this writing).
4380 */
4381 if (__predict_false(reg->ushm_refcnt == UINT_MAX))
4382 return (EOVERFLOW);
4383 reg->ushm_refcnt++;
4384 *oreg = reg;
4385 return (0);
4386 }
4387 }
4388 return (ESRCH);
4389 }
4390
4391 /*
4392 * Calls umtx_shm_find_reg_unlocked() under the 'umtx_shm_lock'.
4393 */
4394 static int
umtx_shm_find_reg(const struct umtx_key * key,struct umtx_shm_reg ** const oreg)4395 umtx_shm_find_reg(const struct umtx_key *key, struct umtx_shm_reg **const oreg)
4396 {
4397 int error;
4398
4399 mtx_lock(&umtx_shm_lock);
4400 error = umtx_shm_find_reg_locked(key, oreg);
4401 mtx_unlock(&umtx_shm_lock);
4402 return (error);
4403 }
4404
4405 static void
umtx_shm_free_reg(struct umtx_shm_reg * reg)4406 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4407 {
4408
4409 chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4410 crfree(reg->ushm_cred);
4411 shm_drop(reg->ushm_obj);
4412 uma_zfree(umtx_shm_reg_zone, reg);
4413 }
4414
4415 static bool
umtx_shm_unref_reg_locked(struct umtx_shm_reg * reg,bool linked_ref)4416 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool linked_ref)
4417 {
4418 mtx_assert(&umtx_shm_lock, MA_OWNED);
4419 KASSERT(reg->ushm_refcnt != 0, ("ushm_reg %p refcnt 0", reg));
4420
4421 if (linked_ref) {
4422 if ((reg->ushm_flags & USHMF_LINKED) == 0)
4423 /*
4424 * The reference tied to USHMF_LINKED has already been
4425 * released concurrently.
4426 */
4427 return (false);
4428
4429 TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash], reg,
4430 ushm_reg_link);
4431 LIST_REMOVE(reg, ushm_obj_link);
4432 reg->ushm_flags &= ~USHMF_LINKED;
4433 }
4434
4435 reg->ushm_refcnt--;
4436 return (reg->ushm_refcnt == 0);
4437 }
4438
4439 static void
umtx_shm_unref_reg(struct umtx_shm_reg * reg,bool linked_ref)4440 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool linked_ref)
4441 {
4442 vm_object_t object;
4443 bool dofree;
4444
4445 if (linked_ref) {
4446 /*
4447 * Note: This may be executed multiple times on the same
4448 * shared-memory VM object in presence of concurrent callers
4449 * because 'umtx_shm_lock' is not held all along in umtx_shm()
4450 * and here.
4451 */
4452 object = reg->ushm_obj->shm_object;
4453 VM_OBJECT_WLOCK(object);
4454 vm_object_set_flag(object, OBJ_UMTXDEAD);
4455 VM_OBJECT_WUNLOCK(object);
4456 }
4457 mtx_lock(&umtx_shm_lock);
4458 dofree = umtx_shm_unref_reg_locked(reg, linked_ref);
4459 mtx_unlock(&umtx_shm_lock);
4460 if (dofree)
4461 umtx_shm_free_reg(reg);
4462 }
4463
4464 void
umtx_shm_object_init(vm_object_t object)4465 umtx_shm_object_init(vm_object_t object)
4466 {
4467
4468 LIST_INIT(USHM_OBJ_UMTX(object));
4469 }
4470
4471 void
umtx_shm_object_terminated(vm_object_t object)4472 umtx_shm_object_terminated(vm_object_t object)
4473 {
4474 struct umtx_shm_reg *reg, *reg1;
4475 bool dofree;
4476
4477 if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4478 return;
4479
4480 dofree = false;
4481 mtx_lock(&umtx_shm_lock);
4482 LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4483 if (umtx_shm_unref_reg_locked(reg, true)) {
4484 TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4485 ushm_reg_link);
4486 dofree = true;
4487 }
4488 }
4489 mtx_unlock(&umtx_shm_lock);
4490 if (dofree)
4491 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4492 }
4493
4494 static int
umtx_shm_create_reg(struct thread * td,const struct umtx_key * key,struct umtx_shm_reg ** res)4495 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4496 struct umtx_shm_reg **res)
4497 {
4498 struct shmfd *shm;
4499 struct umtx_shm_reg *reg, *reg1;
4500 struct ucred *cred;
4501 int error;
4502
4503 error = umtx_shm_find_reg(key, res);
4504 if (error != ESRCH) {
4505 /*
4506 * Either no error occured, and '*res' was filled, or EOVERFLOW
4507 * was returned, indicating a reference count limit, and we
4508 * won't create a duplicate registration. In both cases, we are
4509 * done.
4510 */
4511 return (error);
4512 }
4513 /* No entry, we will create one. */
4514
4515 cred = td->td_ucred;
4516 if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4517 return (ENOMEM);
4518 shm = shm_alloc(td->td_ucred, O_RDWR, false);
4519 if (shm == NULL) {
4520 chgumtxcnt(cred->cr_ruidinfo, -1, 0);
4521 return (ENOMEM);
4522 }
4523 reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4524 bcopy(key, ®->ushm_key, sizeof(*key));
4525 reg->ushm_obj = shm;
4526 reg->ushm_cred = crhold(cred);
4527 error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4528 if (error != 0) {
4529 umtx_shm_free_reg(reg);
4530 return (error);
4531 }
4532 mtx_lock(&umtx_shm_lock);
4533 /* Re-lookup as 'umtx_shm_lock' has been temporarily released. */
4534 error = umtx_shm_find_reg_locked(key, ®1);
4535 switch (error) {
4536 case 0:
4537 mtx_unlock(&umtx_shm_lock);
4538 umtx_shm_free_reg(reg);
4539 *res = reg1;
4540 return (0);
4541 case ESRCH:
4542 break;
4543 default:
4544 mtx_unlock(&umtx_shm_lock);
4545 umtx_shm_free_reg(reg);
4546 return (error);
4547 }
4548 TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4549 LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4550 ushm_obj_link);
4551 reg->ushm_flags = USHMF_LINKED;
4552 /*
4553 * This is one reference for the registry and the list of shared
4554 * mutexes referenced by the VM object containing the lock pointer, and
4555 * another for the caller, which it will free after use. So, one of
4556 * these is tied to the presence of USHMF_LINKED.
4557 */
4558 reg->ushm_refcnt = 2;
4559 mtx_unlock(&umtx_shm_lock);
4560 *res = reg;
4561 return (0);
4562 }
4563
4564 static int
umtx_shm_alive(struct thread * td,void * addr)4565 umtx_shm_alive(struct thread *td, void *addr)
4566 {
4567 vm_map_t map;
4568 vm_map_entry_t entry;
4569 vm_object_t object;
4570 vm_pindex_t pindex;
4571 vm_prot_t prot;
4572 int res, ret;
4573 boolean_t wired;
4574
4575 map = &td->td_proc->p_vmspace->vm_map;
4576 res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4577 &object, &pindex, &prot, &wired);
4578 if (res != KERN_SUCCESS)
4579 return (EFAULT);
4580 if (object == NULL)
4581 ret = EINVAL;
4582 else
4583 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4584 vm_map_lookup_done(map, entry);
4585 return (ret);
4586 }
4587
4588 static void
umtx_shm_init(void)4589 umtx_shm_init(void)
4590 {
4591 int i;
4592
4593 umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4594 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4595 mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4596 for (i = 0; i < nitems(umtx_shm_registry); i++)
4597 TAILQ_INIT(&umtx_shm_registry[i]);
4598 }
4599
4600 static int
umtx_shm(struct thread * td,void * addr,u_int flags)4601 umtx_shm(struct thread *td, void *addr, u_int flags)
4602 {
4603 struct umtx_key key;
4604 struct umtx_shm_reg *reg;
4605 struct file *fp;
4606 int error, fd;
4607
4608 if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4609 UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4610 return (EINVAL);
4611 if ((flags & UMTX_SHM_ALIVE) != 0)
4612 return (umtx_shm_alive(td, addr));
4613 error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4614 if (error != 0)
4615 return (error);
4616 KASSERT(key.shared == 1, ("non-shared key"));
4617 error = (flags & UMTX_SHM_CREAT) != 0 ?
4618 umtx_shm_create_reg(td, &key, ®) :
4619 umtx_shm_find_reg(&key, ®);
4620 umtx_key_release(&key);
4621 if (error != 0)
4622 return (error);
4623 KASSERT(reg != NULL, ("no reg"));
4624 if ((flags & UMTX_SHM_DESTROY) != 0) {
4625 umtx_shm_unref_reg(reg, true);
4626 } else {
4627 #if 0
4628 #ifdef MAC
4629 error = mac_posixshm_check_open(td->td_ucred,
4630 reg->ushm_obj, FFLAGS(O_RDWR));
4631 if (error == 0)
4632 #endif
4633 error = shm_access(reg->ushm_obj, td->td_ucred,
4634 FFLAGS(O_RDWR));
4635 if (error == 0)
4636 #endif
4637 error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4638 if (error == 0) {
4639 shm_hold(reg->ushm_obj);
4640 finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4641 &shm_ops);
4642 td->td_retval[0] = fd;
4643 fdrop(fp, td);
4644 }
4645 }
4646 umtx_shm_unref_reg(reg, false);
4647 return (error);
4648 }
4649
4650 static int
__umtx_op_shm(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4651 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4652 const struct umtx_copyops *ops __unused)
4653 {
4654
4655 return (umtx_shm(td, uap->uaddr1, uap->val));
4656 }
4657
4658 static int
__umtx_op_robust_lists(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4659 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4660 const struct umtx_copyops *ops)
4661 {
4662 struct umtx_robust_lists_params rb;
4663 int error;
4664
4665 if (ops->compat32) {
4666 if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4667 (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4668 td->td_rb_inact != 0))
4669 return (EBUSY);
4670 } else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4671 return (EBUSY);
4672 }
4673
4674 bzero(&rb, sizeof(rb));
4675 error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4676 if (error != 0)
4677 return (error);
4678
4679 if (ops->compat32)
4680 td->td_pflags2 |= TDP2_COMPAT32RB;
4681
4682 td->td_rb_list = rb.robust_list_offset;
4683 td->td_rbp_list = rb.robust_priv_list_offset;
4684 td->td_rb_inact = rb.robust_inact_offset;
4685 return (0);
4686 }
4687
4688 static int
__umtx_op_get_min_timeout(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4689 __umtx_op_get_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4690 const struct umtx_copyops *ops)
4691 {
4692 long val;
4693 int error, val1;
4694
4695 val = sbttons(td->td_proc->p_umtx_min_timeout);
4696 if (ops->compat32) {
4697 val1 = (int)val;
4698 error = copyout(&val1, uap->uaddr1, sizeof(val1));
4699 } else {
4700 error = copyout(&val, uap->uaddr1, sizeof(val));
4701 }
4702 return (error);
4703 }
4704
4705 static int
__umtx_op_set_min_timeout(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4706 __umtx_op_set_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4707 const struct umtx_copyops *ops)
4708 {
4709 if (uap->val < 0)
4710 return (EINVAL);
4711 td->td_proc->p_umtx_min_timeout = nstosbt(uap->val);
4712 return (0);
4713 }
4714
4715 #if defined(__i386__) || defined(__amd64__)
4716 /*
4717 * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4718 * 32-bit time_t there. Other architectures just need the i386 definitions
4719 * along with their standard compat32.
4720 */
4721 struct timespecx32 {
4722 int64_t tv_sec;
4723 int32_t tv_nsec;
4724 };
4725
4726 struct umtx_timex32 {
4727 struct timespecx32 _timeout;
4728 uint32_t _flags;
4729 uint32_t _clockid;
4730 };
4731
4732 #ifndef __i386__
4733 #define timespeci386 timespec32
4734 #define umtx_timei386 umtx_time32
4735 #endif
4736 #else /* !__i386__ && !__amd64__ */
4737 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4738 struct timespeci386 {
4739 int32_t tv_sec;
4740 int32_t tv_nsec;
4741 };
4742
4743 struct umtx_timei386 {
4744 struct timespeci386 _timeout;
4745 uint32_t _flags;
4746 uint32_t _clockid;
4747 };
4748
4749 #if defined(__LP64__)
4750 #define timespecx32 timespec32
4751 #define umtx_timex32 umtx_time32
4752 #endif
4753 #endif
4754
4755 static int
umtx_copyin_robust_lists32(const void * uaddr,size_t size,struct umtx_robust_lists_params * rbp)4756 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4757 struct umtx_robust_lists_params *rbp)
4758 {
4759 struct umtx_robust_lists_params_compat32 rb32;
4760 int error;
4761
4762 if (size > sizeof(rb32))
4763 return (EINVAL);
4764 bzero(&rb32, sizeof(rb32));
4765 error = copyin(uaddr, &rb32, size);
4766 if (error != 0)
4767 return (error);
4768 CP(rb32, *rbp, robust_list_offset);
4769 CP(rb32, *rbp, robust_priv_list_offset);
4770 CP(rb32, *rbp, robust_inact_offset);
4771 return (0);
4772 }
4773
4774 #ifndef __i386__
4775 static inline int
umtx_copyin_timeouti386(const void * uaddr,struct timespec * tsp)4776 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4777 {
4778 struct timespeci386 ts32;
4779 int error;
4780
4781 error = copyin(uaddr, &ts32, sizeof(ts32));
4782 if (error == 0) {
4783 if (!timespecvalid_interval(&ts32))
4784 error = EINVAL;
4785 else {
4786 CP(ts32, *tsp, tv_sec);
4787 CP(ts32, *tsp, tv_nsec);
4788 }
4789 }
4790 return (error);
4791 }
4792
4793 static inline int
umtx_copyin_umtx_timei386(const void * uaddr,size_t size,struct _umtx_time * tp)4794 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4795 {
4796 struct umtx_timei386 t32;
4797 int error;
4798
4799 t32._clockid = CLOCK_REALTIME;
4800 t32._flags = 0;
4801 if (size <= sizeof(t32._timeout))
4802 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4803 else
4804 error = copyin(uaddr, &t32, sizeof(t32));
4805 if (error != 0)
4806 return (error);
4807 if (!timespecvalid_interval(&t32._timeout))
4808 return (EINVAL);
4809 TS_CP(t32, *tp, _timeout);
4810 CP(t32, *tp, _flags);
4811 CP(t32, *tp, _clockid);
4812 return (0);
4813 }
4814
4815 static int
umtx_copyout_timeouti386(void * uaddr,size_t sz,struct timespec * tsp)4816 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4817 {
4818 struct timespeci386 remain32 = {
4819 .tv_sec = tsp->tv_sec,
4820 .tv_nsec = tsp->tv_nsec,
4821 };
4822
4823 /*
4824 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4825 * and we're only called if sz >= sizeof(timespec) as supplied in the
4826 * copyops.
4827 */
4828 KASSERT(sz >= sizeof(remain32),
4829 ("umtx_copyops specifies incorrect sizes"));
4830
4831 return (copyout(&remain32, uaddr, sizeof(remain32)));
4832 }
4833 #endif /* !__i386__ */
4834
4835 #if defined(__i386__) || defined(__LP64__)
4836 static inline int
umtx_copyin_timeoutx32(const void * uaddr,struct timespec * tsp)4837 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4838 {
4839 struct timespecx32 ts32;
4840 int error;
4841
4842 error = copyin(uaddr, &ts32, sizeof(ts32));
4843 if (error == 0) {
4844 if (!timespecvalid_interval(&ts32))
4845 error = EINVAL;
4846 else {
4847 CP(ts32, *tsp, tv_sec);
4848 CP(ts32, *tsp, tv_nsec);
4849 }
4850 }
4851 return (error);
4852 }
4853
4854 static inline int
umtx_copyin_umtx_timex32(const void * uaddr,size_t size,struct _umtx_time * tp)4855 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4856 {
4857 struct umtx_timex32 t32;
4858 int error;
4859
4860 t32._clockid = CLOCK_REALTIME;
4861 t32._flags = 0;
4862 if (size <= sizeof(t32._timeout))
4863 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4864 else
4865 error = copyin(uaddr, &t32, sizeof(t32));
4866 if (error != 0)
4867 return (error);
4868 if (!timespecvalid_interval(&t32._timeout))
4869 return (EINVAL);
4870 TS_CP(t32, *tp, _timeout);
4871 CP(t32, *tp, _flags);
4872 CP(t32, *tp, _clockid);
4873 return (0);
4874 }
4875
4876 static int
umtx_copyout_timeoutx32(void * uaddr,size_t sz,struct timespec * tsp)4877 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4878 {
4879 struct timespecx32 remain32 = {
4880 .tv_sec = tsp->tv_sec,
4881 .tv_nsec = tsp->tv_nsec,
4882 };
4883
4884 /*
4885 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4886 * and we're only called if sz >= sizeof(timespec) as supplied in the
4887 * copyops.
4888 */
4889 KASSERT(sz >= sizeof(remain32),
4890 ("umtx_copyops specifies incorrect sizes"));
4891
4892 return (copyout(&remain32, uaddr, sizeof(remain32)));
4893 }
4894 #endif /* __i386__ || __LP64__ */
4895
4896 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4897 const struct umtx_copyops *umtx_ops);
4898
4899 static const _umtx_op_func op_table[] = {
4900 #ifdef COMPAT_FREEBSD10
4901 [UMTX_OP_LOCK] = __umtx_op_lock_umtx,
4902 [UMTX_OP_UNLOCK] = __umtx_op_unlock_umtx,
4903 #else
4904 [UMTX_OP_LOCK] = __umtx_op_unimpl,
4905 [UMTX_OP_UNLOCK] = __umtx_op_unimpl,
4906 #endif
4907 [UMTX_OP_WAIT] = __umtx_op_wait,
4908 [UMTX_OP_WAKE] = __umtx_op_wake,
4909 [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
4910 [UMTX_OP_MUTEX_LOCK] = __umtx_op_lock_umutex,
4911 [UMTX_OP_MUTEX_UNLOCK] = __umtx_op_unlock_umutex,
4912 [UMTX_OP_SET_CEILING] = __umtx_op_set_ceiling,
4913 [UMTX_OP_CV_WAIT] = __umtx_op_cv_wait,
4914 [UMTX_OP_CV_SIGNAL] = __umtx_op_cv_signal,
4915 [UMTX_OP_CV_BROADCAST] = __umtx_op_cv_broadcast,
4916 [UMTX_OP_WAIT_UINT] = __umtx_op_wait_uint,
4917 [UMTX_OP_RW_RDLOCK] = __umtx_op_rw_rdlock,
4918 [UMTX_OP_RW_WRLOCK] = __umtx_op_rw_wrlock,
4919 [UMTX_OP_RW_UNLOCK] = __umtx_op_rw_unlock,
4920 [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4921 [UMTX_OP_WAKE_PRIVATE] = __umtx_op_wake_private,
4922 [UMTX_OP_MUTEX_WAIT] = __umtx_op_wait_umutex,
4923 [UMTX_OP_MUTEX_WAKE] = __umtx_op_wake_umutex,
4924 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4925 [UMTX_OP_SEM_WAIT] = __umtx_op_sem_wait,
4926 [UMTX_OP_SEM_WAKE] = __umtx_op_sem_wake,
4927 #else
4928 [UMTX_OP_SEM_WAIT] = __umtx_op_unimpl,
4929 [UMTX_OP_SEM_WAKE] = __umtx_op_unimpl,
4930 #endif
4931 [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
4932 [UMTX_OP_MUTEX_WAKE2] = __umtx_op_wake2_umutex,
4933 [UMTX_OP_SEM2_WAIT] = __umtx_op_sem2_wait,
4934 [UMTX_OP_SEM2_WAKE] = __umtx_op_sem2_wake,
4935 [UMTX_OP_SHM] = __umtx_op_shm,
4936 [UMTX_OP_ROBUST_LISTS] = __umtx_op_robust_lists,
4937 [UMTX_OP_GET_MIN_TIMEOUT] = __umtx_op_get_min_timeout,
4938 [UMTX_OP_SET_MIN_TIMEOUT] = __umtx_op_set_min_timeout,
4939 };
4940
4941 static const struct umtx_copyops umtx_native_ops = {
4942 .copyin_timeout = umtx_copyin_timeout,
4943 .copyin_umtx_time = umtx_copyin_umtx_time,
4944 .copyin_robust_lists = umtx_copyin_robust_lists,
4945 .copyout_timeout = umtx_copyout_timeout,
4946 .timespec_sz = sizeof(struct timespec),
4947 .umtx_time_sz = sizeof(struct _umtx_time),
4948 };
4949
4950 #ifndef __i386__
4951 static const struct umtx_copyops umtx_native_opsi386 = {
4952 .copyin_timeout = umtx_copyin_timeouti386,
4953 .copyin_umtx_time = umtx_copyin_umtx_timei386,
4954 .copyin_robust_lists = umtx_copyin_robust_lists32,
4955 .copyout_timeout = umtx_copyout_timeouti386,
4956 .timespec_sz = sizeof(struct timespeci386),
4957 .umtx_time_sz = sizeof(struct umtx_timei386),
4958 .compat32 = true,
4959 };
4960 #endif
4961
4962 #if defined(__i386__) || defined(__LP64__)
4963 /* i386 can emulate other 32-bit archs, too! */
4964 static const struct umtx_copyops umtx_native_opsx32 = {
4965 .copyin_timeout = umtx_copyin_timeoutx32,
4966 .copyin_umtx_time = umtx_copyin_umtx_timex32,
4967 .copyin_robust_lists = umtx_copyin_robust_lists32,
4968 .copyout_timeout = umtx_copyout_timeoutx32,
4969 .timespec_sz = sizeof(struct timespecx32),
4970 .umtx_time_sz = sizeof(struct umtx_timex32),
4971 .compat32 = true,
4972 };
4973
4974 #ifdef COMPAT_FREEBSD32
4975 #ifdef __amd64__
4976 #define umtx_native_ops32 umtx_native_opsi386
4977 #else
4978 #define umtx_native_ops32 umtx_native_opsx32
4979 #endif
4980 #endif /* COMPAT_FREEBSD32 */
4981 #endif /* __i386__ || __LP64__ */
4982
4983 #define UMTX_OP__FLAGS (UMTX_OP__32BIT | UMTX_OP__I386)
4984
4985 static int
kern__umtx_op(struct thread * td,void * obj,int op,unsigned long val,void * uaddr1,void * uaddr2,const struct umtx_copyops * ops)4986 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4987 void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4988 {
4989 struct _umtx_op_args uap = {
4990 .obj = obj,
4991 .op = op & ~UMTX_OP__FLAGS,
4992 .val = val,
4993 .uaddr1 = uaddr1,
4994 .uaddr2 = uaddr2
4995 };
4996
4997 if ((uap.op >= nitems(op_table)))
4998 return (EINVAL);
4999 return ((*op_table[uap.op])(td, &uap, ops));
5000 }
5001
5002 int
sys__umtx_op(struct thread * td,struct _umtx_op_args * uap)5003 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
5004 {
5005 static const struct umtx_copyops *umtx_ops;
5006
5007 umtx_ops = &umtx_native_ops;
5008 #ifdef __LP64__
5009 if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
5010 if ((uap->op & UMTX_OP__I386) != 0)
5011 umtx_ops = &umtx_native_opsi386;
5012 else
5013 umtx_ops = &umtx_native_opsx32;
5014 }
5015 #elif !defined(__i386__)
5016 /* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
5017 if ((uap->op & UMTX_OP__I386) != 0)
5018 umtx_ops = &umtx_native_opsi386;
5019 #else
5020 /* Likewise, UMTX_OP__I386 is a nop on i386. */
5021 if ((uap->op & UMTX_OP__32BIT) != 0)
5022 umtx_ops = &umtx_native_opsx32;
5023 #endif
5024 return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
5025 uap->uaddr2, umtx_ops));
5026 }
5027
5028 #ifdef COMPAT_FREEBSD32
5029 #ifdef COMPAT_FREEBSD10
5030 int
freebsd10_freebsd32__umtx_lock(struct thread * td,struct freebsd10_freebsd32__umtx_lock_args * uap)5031 freebsd10_freebsd32__umtx_lock(struct thread *td,
5032 struct freebsd10_freebsd32__umtx_lock_args *uap)
5033 {
5034 return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
5035 }
5036
5037 int
freebsd10_freebsd32__umtx_unlock(struct thread * td,struct freebsd10_freebsd32__umtx_unlock_args * uap)5038 freebsd10_freebsd32__umtx_unlock(struct thread *td,
5039 struct freebsd10_freebsd32__umtx_unlock_args *uap)
5040 {
5041 return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
5042 }
5043 #endif /* COMPAT_FREEBSD10 */
5044
5045 int
freebsd32__umtx_op(struct thread * td,struct freebsd32__umtx_op_args * uap)5046 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
5047 {
5048
5049 return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
5050 uap->uaddr2, &umtx_native_ops32));
5051 }
5052 #endif /* COMPAT_FREEBSD32 */
5053
5054 void
umtx_thread_init(struct thread * td)5055 umtx_thread_init(struct thread *td)
5056 {
5057
5058 td->td_umtxq = umtxq_alloc();
5059 td->td_umtxq->uq_thread = td;
5060 }
5061
5062 void
umtx_thread_fini(struct thread * td)5063 umtx_thread_fini(struct thread *td)
5064 {
5065
5066 umtxq_free(td->td_umtxq);
5067 }
5068
5069 /*
5070 * It will be called when new thread is created, e.g fork().
5071 */
5072 void
umtx_thread_alloc(struct thread * td)5073 umtx_thread_alloc(struct thread *td)
5074 {
5075 struct umtx_q *uq;
5076
5077 uq = td->td_umtxq;
5078 uq->uq_inherited_pri = PRI_MAX;
5079
5080 KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
5081 KASSERT(uq->uq_thread == td, ("uq_thread != td"));
5082 KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
5083 KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
5084 }
5085
5086 /*
5087 * exec() hook.
5088 *
5089 * Clear robust lists for all process' threads, not delaying the
5090 * cleanup to thread exit, since the relevant address space is
5091 * destroyed right now.
5092 */
5093 void
umtx_exec(struct proc * p)5094 umtx_exec(struct proc *p)
5095 {
5096 struct thread *td;
5097
5098 KASSERT(p == curproc, ("need curproc"));
5099 KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
5100 (p->p_flag & P_STOPPED_SINGLE) != 0,
5101 ("curproc must be single-threaded"));
5102 /*
5103 * There is no need to lock the list as only this thread can be
5104 * running.
5105 */
5106 FOREACH_THREAD_IN_PROC(p, td) {
5107 KASSERT(td == curthread ||
5108 ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
5109 ("running thread %p %p", p, td));
5110 umtx_thread_cleanup(td);
5111 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
5112 }
5113
5114 p->p_umtx_min_timeout = 0;
5115 }
5116
5117 /*
5118 * thread exit hook.
5119 */
5120 void
umtx_thread_exit(struct thread * td)5121 umtx_thread_exit(struct thread *td)
5122 {
5123
5124 umtx_thread_cleanup(td);
5125 }
5126
5127 static int
umtx_read_uptr(struct thread * td,uintptr_t ptr,uintptr_t * res,bool compat32)5128 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
5129 {
5130 u_long res1;
5131 uint32_t res32;
5132 int error;
5133
5134 if (compat32) {
5135 error = fueword32((void *)ptr, &res32);
5136 if (error == 0)
5137 res1 = res32;
5138 } else {
5139 error = fueword((void *)ptr, &res1);
5140 }
5141 if (error == 0)
5142 *res = res1;
5143 else
5144 error = EFAULT;
5145 return (error);
5146 }
5147
5148 static void
umtx_read_rb_list(struct thread * td,struct umutex * m,uintptr_t * rb_list,bool compat32)5149 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5150 bool compat32)
5151 {
5152 struct umutex32 m32;
5153
5154 if (compat32) {
5155 memcpy(&m32, m, sizeof(m32));
5156 *rb_list = m32.m_rb_lnk;
5157 } else {
5158 *rb_list = m->m_rb_lnk;
5159 }
5160 }
5161
5162 static int
umtx_handle_rb(struct thread * td,uintptr_t rbp,uintptr_t * rb_list,bool inact,bool compat32)5163 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5164 bool compat32)
5165 {
5166 struct umutex m;
5167 int error;
5168
5169 KASSERT(td->td_proc == curproc, ("need current vmspace"));
5170 error = copyin((void *)rbp, &m, sizeof(m));
5171 if (error != 0)
5172 return (error);
5173 if (rb_list != NULL)
5174 umtx_read_rb_list(td, &m, rb_list, compat32);
5175 if ((m.m_flags & UMUTEX_ROBUST) == 0)
5176 return (EINVAL);
5177 if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5178 /* inact is cleared after unlock, allow the inconsistency */
5179 return (inact ? 0 : EINVAL);
5180 return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5181 }
5182
5183 static void
umtx_cleanup_rb_list(struct thread * td,uintptr_t rb_list,uintptr_t * rb_inact,const char * name,bool compat32)5184 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5185 const char *name, bool compat32)
5186 {
5187 int error, i;
5188 uintptr_t rbp;
5189 bool inact;
5190
5191 if (rb_list == 0)
5192 return;
5193 error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5194 for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5195 if (rbp == *rb_inact) {
5196 inact = true;
5197 *rb_inact = 0;
5198 } else
5199 inact = false;
5200 error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5201 }
5202 if (i == umtx_max_rb && umtx_verbose_rb) {
5203 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5204 td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5205 }
5206 if (error != 0 && umtx_verbose_rb) {
5207 uprintf("comm %s pid %d: handling %srb error %d\n",
5208 td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5209 }
5210 }
5211
5212 /*
5213 * Clean up umtx data.
5214 */
5215 static void
umtx_thread_cleanup(struct thread * td)5216 umtx_thread_cleanup(struct thread *td)
5217 {
5218 struct umtx_q *uq;
5219 struct umtx_pi *pi;
5220 uintptr_t rb_inact;
5221 bool compat32;
5222
5223 /*
5224 * Disown pi mutexes.
5225 */
5226 uq = td->td_umtxq;
5227 if (uq != NULL) {
5228 if (uq->uq_inherited_pri != PRI_MAX ||
5229 !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5230 mtx_lock(&umtx_lock);
5231 uq->uq_inherited_pri = PRI_MAX;
5232 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5233 pi->pi_owner = NULL;
5234 TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5235 }
5236 mtx_unlock(&umtx_lock);
5237 }
5238 sched_lend_user_prio_cond(td, PRI_MAX);
5239 }
5240
5241 compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5242 td->td_pflags2 &= ~TDP2_COMPAT32RB;
5243
5244 if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5245 return;
5246
5247 /*
5248 * Handle terminated robust mutexes. Must be done after
5249 * robust pi disown, otherwise unlock could see unowned
5250 * entries.
5251 */
5252 rb_inact = td->td_rb_inact;
5253 if (rb_inact != 0)
5254 (void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5255 umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5256 umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5257 if (rb_inact != 0)
5258 (void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5259 }
5260