1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * Copyright (c) 2004-2006 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * uma_core.c Implementation of the Universal Memory allocator
33 *
34 * This allocator is intended to replace the multitude of similar object caches
35 * in the standard FreeBSD kernel. The intent is to be flexible as well as
36 * efficient. A primary design goal is to return unused memory to the rest of
37 * the system. This will make the system as a whole more flexible due to the
38 * ability to move memory to subsystems which most need it instead of leaving
39 * pools of reserved memory unused.
40 *
41 * The basic ideas stem from similar slab/zone based allocators whose algorithms
42 * are well known.
43 *
44 */
45
46 /*
47 * TODO:
48 * - Improve memory usage for large allocations
49 * - Investigate cache size adjustments
50 */
51
52 #include <sys/cdefs.h>
53 #include "opt_ddb.h"
54 #include "opt_param.h"
55 #include "opt_vm.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/asan.h>
60 #include <sys/bitset.h>
61 #include <sys/domainset.h>
62 #include <sys/eventhandler.h>
63 #include <sys/kernel.h>
64 #include <sys/types.h>
65 #include <sys/limits.h>
66 #include <sys/queue.h>
67 #include <sys/malloc.h>
68 #include <sys/ktr.h>
69 #include <sys/lock.h>
70 #include <sys/msan.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/random.h>
74 #include <sys/rwlock.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/smp.h>
79 #include <sys/smr.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_phys.h>
90 #include <vm/vm_pagequeue.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_dumpset.h>
95 #include <vm/uma.h>
96 #include <vm/uma_int.h>
97 #include <vm/uma_dbg.h>
98
99 #include <ddb/ddb.h>
100
101 #ifdef DEBUG_MEMGUARD
102 #include <vm/memguard.h>
103 #endif
104
105 #include <machine/md_var.h>
106
107 #ifdef INVARIANTS
108 #define UMA_ALWAYS_CTORDTOR 1
109 #else
110 #define UMA_ALWAYS_CTORDTOR 0
111 #endif
112
113 /*
114 * This is the zone and keg from which all zones are spawned.
115 */
116 static uma_zone_t kegs;
117 static uma_zone_t zones;
118
119 /*
120 * On INVARIANTS builds, the slab contains a second bitset of the same size,
121 * "dbg_bits", which is laid out immediately after us_free.
122 */
123 #ifdef INVARIANTS
124 #define SLAB_BITSETS 2
125 #else
126 #define SLAB_BITSETS 1
127 #endif
128
129 /*
130 * These are the two zones from which all offpage uma_slab_ts are allocated.
131 *
132 * One zone is for slab headers that can represent a larger number of items,
133 * making the slabs themselves more efficient, and the other zone is for
134 * headers that are smaller and represent fewer items, making the headers more
135 * efficient.
136 */
137 #define SLABZONE_SIZE(setsize) \
138 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
139 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16)
140 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE
141 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE)
142 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE)
143 static uma_zone_t slabzones[2];
144
145 /*
146 * The initial hash tables come out of this zone so they can be allocated
147 * prior to malloc coming up.
148 */
149 static uma_zone_t hashzone;
150
151 /* The boot-time adjusted value for cache line alignment. */
152 static unsigned int uma_cache_align_mask = 64 - 1;
153
154 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
155 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
156
157 /*
158 * Are we allowed to allocate buckets?
159 */
160 static int bucketdisable = 1;
161
162 /* Linked list of all kegs in the system */
163 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
164
165 /* Linked list of all cache-only zones in the system */
166 static LIST_HEAD(,uma_zone) uma_cachezones =
167 LIST_HEAD_INITIALIZER(uma_cachezones);
168
169 /*
170 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
171 * zones.
172 */
173 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
174
175 static struct sx uma_reclaim_lock;
176
177 /*
178 * First available virual address for boot time allocations.
179 */
180 static vm_offset_t bootstart;
181 static vm_offset_t bootmem;
182
183 /*
184 * kmem soft limit, initialized by uma_set_limit(). Ensure that early
185 * allocations don't trigger a wakeup of the reclaim thread.
186 */
187 unsigned long uma_kmem_limit = LONG_MAX;
188 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
189 "UMA kernel memory soft limit");
190 unsigned long uma_kmem_total;
191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
192 "UMA kernel memory usage");
193
194 /* Is the VM done starting up? */
195 static enum {
196 BOOT_COLD,
197 BOOT_KVA,
198 BOOT_PCPU,
199 BOOT_RUNNING,
200 BOOT_SHUTDOWN,
201 } booted = BOOT_COLD;
202
203 /*
204 * This is the handle used to schedule events that need to happen
205 * outside of the allocation fast path.
206 */
207 static struct timeout_task uma_timeout_task;
208 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */
209
210 /*
211 * This structure is passed as the zone ctor arg so that I don't have to create
212 * a special allocation function just for zones.
213 */
214 struct uma_zctor_args {
215 const char *name;
216 size_t size;
217 uma_ctor ctor;
218 uma_dtor dtor;
219 uma_init uminit;
220 uma_fini fini;
221 uma_import import;
222 uma_release release;
223 void *arg;
224 uma_keg_t keg;
225 int align;
226 uint32_t flags;
227 };
228
229 struct uma_kctor_args {
230 uma_zone_t zone;
231 size_t size;
232 uma_init uminit;
233 uma_fini fini;
234 int align;
235 uint32_t flags;
236 };
237
238 struct uma_bucket_zone {
239 uma_zone_t ubz_zone;
240 const char *ubz_name;
241 int ubz_entries; /* Number of items it can hold. */
242 int ubz_maxsize; /* Maximum allocation size per-item. */
243 };
244
245 /*
246 * Compute the actual number of bucket entries to pack them in power
247 * of two sizes for more efficient space utilization.
248 */
249 #define BUCKET_SIZE(n) \
250 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
251
252 #define BUCKET_MAX BUCKET_SIZE(256)
253
254 struct uma_bucket_zone bucket_zones[] = {
255 /* Literal bucket sizes. */
256 { NULL, "2 Bucket", 2, 4096 },
257 { NULL, "4 Bucket", 4, 3072 },
258 { NULL, "8 Bucket", 8, 2048 },
259 { NULL, "16 Bucket", 16, 1024 },
260 /* Rounded down power of 2 sizes for efficiency. */
261 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
262 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
263 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
264 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
265 { NULL, NULL, 0}
266 };
267
268 /*
269 * Flags and enumerations to be passed to internal functions.
270 */
271 enum zfreeskip {
272 SKIP_NONE = 0,
273 SKIP_CNT = 0x00000001,
274 SKIP_DTOR = 0x00010000,
275 SKIP_FINI = 0x00020000,
276 };
277
278 /* Prototypes.. */
279
280 void uma_startup1(vm_offset_t);
281 void uma_startup2(void);
282
283 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
284 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void page_free(void *, vm_size_t, uint8_t);
289 static void pcpu_page_free(void *, vm_size_t, uint8_t);
290 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
291 static void cache_drain(uma_zone_t);
292 static void bucket_drain(uma_zone_t, uma_bucket_t);
293 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
294 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
295 static int keg_ctor(void *, int, void *, int);
296 static void keg_dtor(void *, int, void *);
297 static void keg_drain(uma_keg_t keg, int domain);
298 static int zone_ctor(void *, int, void *, int);
299 static void zone_dtor(void *, int, void *);
300 static inline void item_dtor(uma_zone_t zone, void *item, int size,
301 void *udata, enum zfreeskip skip);
302 static int zero_init(void *, int, int);
303 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
304 int itemdomain, bool ws);
305 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
306 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
307 static void zone_timeout(uma_zone_t zone, void *);
308 static int hash_alloc(struct uma_hash *, u_int);
309 static int hash_expand(struct uma_hash *, struct uma_hash *);
310 static void hash_free(struct uma_hash *hash);
311 static void uma_timeout(void *, int);
312 static void uma_shutdown(void);
313 static void *zone_alloc_item(uma_zone_t, void *, int, int);
314 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
315 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
316 static void zone_free_limit(uma_zone_t zone, int count);
317 static void bucket_enable(void);
318 static void bucket_init(void);
319 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
320 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
321 static void bucket_zone_drain(int domain);
322 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
323 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
324 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
325 static size_t slab_sizeof(int nitems);
326 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
327 uma_fini fini, int align, uint32_t flags);
328 static int zone_import(void *, void **, int, int, int);
329 static void zone_release(void *, void **, int);
330 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
331 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
332
333 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
334 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
335 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
336 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
337 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
338 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
339 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
340
341 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
342
343 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
344 "Memory allocation debugging");
345
346 #ifdef INVARIANTS
347 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
348 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
349
350 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
351 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
352 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
353 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
354
355 static u_int dbg_divisor = 1;
356 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
357 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
358 "Debug & thrash every this item in memory allocator");
359
360 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
361 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
362 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
363 &uma_dbg_cnt, "memory items debugged");
364 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
365 &uma_skip_cnt, "memory items skipped, not debugged");
366 #endif
367
368 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
369 "Universal Memory Allocator");
370
371 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
372 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
373
374 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
375 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
376
377 static int zone_warnings = 1;
378 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
379 "Warn when UMA zones becomes full");
380
381 static int multipage_slabs = 1;
382 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
383 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
384 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
385 "UMA may choose larger slab sizes for better efficiency");
386
387 /*
388 * Select the slab zone for an offpage slab with the given maximum item count.
389 */
390 static inline uma_zone_t
slabzone(int ipers)391 slabzone(int ipers)
392 {
393
394 return (slabzones[ipers > SLABZONE0_SETSIZE]);
395 }
396
397 /*
398 * This routine checks to see whether or not it's safe to enable buckets.
399 */
400 static void
bucket_enable(void)401 bucket_enable(void)
402 {
403
404 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
405 bucketdisable = vm_page_count_min();
406 }
407
408 /*
409 * Initialize bucket_zones, the array of zones of buckets of various sizes.
410 *
411 * For each zone, calculate the memory required for each bucket, consisting
412 * of the header and an array of pointers.
413 */
414 static void
bucket_init(void)415 bucket_init(void)
416 {
417 struct uma_bucket_zone *ubz;
418 int size;
419
420 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
421 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
422 size += sizeof(void *) * ubz->ubz_entries;
423 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
424 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
425 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
426 UMA_ZONE_FIRSTTOUCH);
427 }
428 }
429
430 /*
431 * Given a desired number of entries for a bucket, return the zone from which
432 * to allocate the bucket.
433 */
434 static struct uma_bucket_zone *
bucket_zone_lookup(int entries)435 bucket_zone_lookup(int entries)
436 {
437 struct uma_bucket_zone *ubz;
438
439 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
440 if (ubz->ubz_entries >= entries)
441 return (ubz);
442 ubz--;
443 return (ubz);
444 }
445
446 static int
bucket_select(int size)447 bucket_select(int size)
448 {
449 struct uma_bucket_zone *ubz;
450
451 ubz = &bucket_zones[0];
452 if (size > ubz->ubz_maxsize)
453 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
454
455 for (; ubz->ubz_entries != 0; ubz++)
456 if (ubz->ubz_maxsize < size)
457 break;
458 ubz--;
459 return (ubz->ubz_entries);
460 }
461
462 static uma_bucket_t
bucket_alloc(uma_zone_t zone,void * udata,int flags)463 bucket_alloc(uma_zone_t zone, void *udata, int flags)
464 {
465 struct uma_bucket_zone *ubz;
466 uma_bucket_t bucket;
467
468 /*
469 * Don't allocate buckets early in boot.
470 */
471 if (__predict_false(booted < BOOT_KVA))
472 return (NULL);
473
474 /*
475 * To limit bucket recursion we store the original zone flags
476 * in a cookie passed via zalloc_arg/zfree_arg. This allows the
477 * NOVM flag to persist even through deep recursions. We also
478 * store ZFLAG_BUCKET once we have recursed attempting to allocate
479 * a bucket for a bucket zone so we do not allow infinite bucket
480 * recursion. This cookie will even persist to frees of unused
481 * buckets via the allocation path or bucket allocations in the
482 * free path.
483 */
484 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
485 udata = (void *)(uintptr_t)zone->uz_flags;
486 else {
487 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
488 return (NULL);
489 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
490 }
491 if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
492 flags |= M_NOVM;
493 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
494 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
495 ubz++;
496 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
497 if (bucket) {
498 #ifdef INVARIANTS
499 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
500 #endif
501 bucket->ub_cnt = 0;
502 bucket->ub_entries = min(ubz->ubz_entries,
503 zone->uz_bucket_size_max);
504 bucket->ub_seq = SMR_SEQ_INVALID;
505 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
506 zone->uz_name, zone, bucket);
507 }
508
509 return (bucket);
510 }
511
512 static void
bucket_free(uma_zone_t zone,uma_bucket_t bucket,void * udata)513 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
514 {
515 struct uma_bucket_zone *ubz;
516
517 if (bucket->ub_cnt != 0)
518 bucket_drain(zone, bucket);
519
520 KASSERT(bucket->ub_cnt == 0,
521 ("bucket_free: Freeing a non free bucket."));
522 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
523 ("bucket_free: Freeing an SMR bucket."));
524 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
525 udata = (void *)(uintptr_t)zone->uz_flags;
526 ubz = bucket_zone_lookup(bucket->ub_entries);
527 uma_zfree_arg(ubz->ubz_zone, bucket, udata);
528 }
529
530 static void
bucket_zone_drain(int domain)531 bucket_zone_drain(int domain)
532 {
533 struct uma_bucket_zone *ubz;
534
535 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
536 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
537 domain);
538 }
539
540 #ifdef KASAN
541 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
542 "Base UMA allocation size not a multiple of the KASAN scale factor");
543
544 static void
kasan_mark_item_valid(uma_zone_t zone,void * item)545 kasan_mark_item_valid(uma_zone_t zone, void *item)
546 {
547 void *pcpu_item;
548 size_t sz, rsz;
549 int i;
550
551 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
552 return;
553
554 sz = zone->uz_size;
555 rsz = roundup2(sz, KASAN_SHADOW_SCALE);
556 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
557 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
558 } else {
559 pcpu_item = zpcpu_base_to_offset(item);
560 for (i = 0; i <= mp_maxid; i++)
561 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
562 KASAN_GENERIC_REDZONE);
563 }
564 }
565
566 static void
kasan_mark_item_invalid(uma_zone_t zone,void * item)567 kasan_mark_item_invalid(uma_zone_t zone, void *item)
568 {
569 void *pcpu_item;
570 size_t sz;
571 int i;
572
573 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
574 return;
575
576 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
577 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
578 kasan_mark(item, 0, sz, KASAN_UMA_FREED);
579 } else {
580 pcpu_item = zpcpu_base_to_offset(item);
581 for (i = 0; i <= mp_maxid; i++)
582 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
583 KASAN_UMA_FREED);
584 }
585 }
586
587 static void
kasan_mark_slab_valid(uma_keg_t keg,void * mem)588 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
589 {
590 size_t sz;
591
592 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
593 sz = keg->uk_ppera * PAGE_SIZE;
594 kasan_mark(mem, sz, sz, 0);
595 }
596 }
597
598 static void
kasan_mark_slab_invalid(uma_keg_t keg,void * mem)599 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
600 {
601 size_t sz;
602
603 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
604 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
605 sz = keg->uk_ppera * PAGE_SIZE;
606 else
607 sz = keg->uk_pgoff;
608 kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
609 }
610 }
611 #else /* !KASAN */
612 static void
kasan_mark_item_valid(uma_zone_t zone __unused,void * item __unused)613 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
614 {
615 }
616
617 static void
kasan_mark_item_invalid(uma_zone_t zone __unused,void * item __unused)618 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
619 {
620 }
621
622 static void
kasan_mark_slab_valid(uma_keg_t keg __unused,void * mem __unused)623 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
624 {
625 }
626
627 static void
kasan_mark_slab_invalid(uma_keg_t keg __unused,void * mem __unused)628 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
629 {
630 }
631 #endif /* KASAN */
632
633 #ifdef KMSAN
634 static inline void
kmsan_mark_item_uninitialized(uma_zone_t zone,void * item)635 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
636 {
637 void *pcpu_item;
638 size_t sz;
639 int i;
640
641 if ((zone->uz_flags &
642 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
643 /*
644 * Cache zones should not be instrumented by default, as UMA
645 * does not have enough information to do so correctly.
646 * Consumers can mark items themselves if it makes sense to do
647 * so.
648 *
649 * Items from secondary zones are initialized by the parent
650 * zone and thus cannot safely be marked by UMA.
651 *
652 * malloc zones are handled directly by malloc(9) and friends,
653 * since they can provide more precise origin tracking.
654 */
655 return;
656 }
657 if (zone->uz_keg->uk_init != NULL) {
658 /*
659 * By definition, initialized items cannot be marked. The
660 * best we can do is mark items from these zones after they
661 * are freed to the keg.
662 */
663 return;
664 }
665
666 sz = zone->uz_size;
667 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
668 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
669 kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
670 } else {
671 pcpu_item = zpcpu_base_to_offset(item);
672 for (i = 0; i <= mp_maxid; i++) {
673 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
674 KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
675 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
676 KMSAN_STATE_INITED);
677 }
678 }
679 }
680 #else /* !KMSAN */
681 static inline void
kmsan_mark_item_uninitialized(uma_zone_t zone __unused,void * item __unused)682 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
683 {
684 }
685 #endif /* KMSAN */
686
687 /*
688 * Acquire the domain lock and record contention.
689 */
690 static uma_zone_domain_t
zone_domain_lock(uma_zone_t zone,int domain)691 zone_domain_lock(uma_zone_t zone, int domain)
692 {
693 uma_zone_domain_t zdom;
694 bool lockfail;
695
696 zdom = ZDOM_GET(zone, domain);
697 lockfail = false;
698 if (ZDOM_OWNED(zdom))
699 lockfail = true;
700 ZDOM_LOCK(zdom);
701 /* This is unsynchronized. The counter does not need to be precise. */
702 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
703 zone->uz_bucket_size++;
704 return (zdom);
705 }
706
707 /*
708 * Search for the domain with the least cached items and return it if it
709 * is out of balance with the preferred domain.
710 */
711 static __noinline int
zone_domain_lowest(uma_zone_t zone,int pref)712 zone_domain_lowest(uma_zone_t zone, int pref)
713 {
714 long least, nitems, prefitems;
715 int domain;
716 int i;
717
718 prefitems = least = LONG_MAX;
719 domain = 0;
720 for (i = 0; i < vm_ndomains; i++) {
721 nitems = ZDOM_GET(zone, i)->uzd_nitems;
722 if (nitems < least) {
723 domain = i;
724 least = nitems;
725 }
726 if (domain == pref)
727 prefitems = nitems;
728 }
729 if (prefitems < least * 2)
730 return (pref);
731
732 return (domain);
733 }
734
735 /*
736 * Search for the domain with the most cached items and return it or the
737 * preferred domain if it has enough to proceed.
738 */
739 static __noinline int
zone_domain_highest(uma_zone_t zone,int pref)740 zone_domain_highest(uma_zone_t zone, int pref)
741 {
742 long most, nitems;
743 int domain;
744 int i;
745
746 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
747 return (pref);
748
749 most = 0;
750 domain = 0;
751 for (i = 0; i < vm_ndomains; i++) {
752 nitems = ZDOM_GET(zone, i)->uzd_nitems;
753 if (nitems > most) {
754 domain = i;
755 most = nitems;
756 }
757 }
758
759 return (domain);
760 }
761
762 /*
763 * Set the maximum imax value.
764 */
765 static void
zone_domain_imax_set(uma_zone_domain_t zdom,int nitems)766 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
767 {
768 long old;
769
770 old = zdom->uzd_imax;
771 do {
772 if (old >= nitems)
773 return;
774 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
775
776 /*
777 * We are at new maximum, so do the last WSS update for the old
778 * bimin and prepare to measure next allocation batch.
779 */
780 if (zdom->uzd_wss < old - zdom->uzd_bimin)
781 zdom->uzd_wss = old - zdom->uzd_bimin;
782 zdom->uzd_bimin = nitems;
783 }
784
785 /*
786 * Attempt to satisfy an allocation by retrieving a full bucket from one of the
787 * zone's caches. If a bucket is found the zone is not locked on return.
788 */
789 static uma_bucket_t
zone_fetch_bucket(uma_zone_t zone,uma_zone_domain_t zdom,bool reclaim)790 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
791 {
792 uma_bucket_t bucket;
793 long cnt;
794 int i;
795 bool dtor = false;
796
797 ZDOM_LOCK_ASSERT(zdom);
798
799 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
800 return (NULL);
801
802 /* SMR Buckets can not be re-used until readers expire. */
803 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
804 bucket->ub_seq != SMR_SEQ_INVALID) {
805 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
806 return (NULL);
807 bucket->ub_seq = SMR_SEQ_INVALID;
808 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
809 if (STAILQ_NEXT(bucket, ub_link) != NULL)
810 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
811 }
812 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
813
814 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
815 ("%s: item count underflow (%ld, %d)",
816 __func__, zdom->uzd_nitems, bucket->ub_cnt));
817 KASSERT(bucket->ub_cnt > 0,
818 ("%s: empty bucket in bucket cache", __func__));
819 zdom->uzd_nitems -= bucket->ub_cnt;
820
821 if (reclaim) {
822 /*
823 * Shift the bounds of the current WSS interval to avoid
824 * perturbing the estimates.
825 */
826 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
827 atomic_subtract_long(&zdom->uzd_imax, cnt);
828 zdom->uzd_bimin -= cnt;
829 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
830 if (zdom->uzd_limin >= bucket->ub_cnt) {
831 zdom->uzd_limin -= bucket->ub_cnt;
832 } else {
833 zdom->uzd_limin = 0;
834 zdom->uzd_timin = 0;
835 }
836 } else if (zdom->uzd_bimin > zdom->uzd_nitems) {
837 zdom->uzd_bimin = zdom->uzd_nitems;
838 if (zdom->uzd_imin > zdom->uzd_nitems)
839 zdom->uzd_imin = zdom->uzd_nitems;
840 }
841
842 ZDOM_UNLOCK(zdom);
843 if (dtor)
844 for (i = 0; i < bucket->ub_cnt; i++)
845 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
846 NULL, SKIP_NONE);
847
848 return (bucket);
849 }
850
851 /*
852 * Insert a full bucket into the specified cache. The "ws" parameter indicates
853 * whether the bucket's contents should be counted as part of the zone's working
854 * set. The bucket may be freed if it exceeds the bucket limit.
855 */
856 static void
zone_put_bucket(uma_zone_t zone,int domain,uma_bucket_t bucket,void * udata,const bool ws)857 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
858 const bool ws)
859 {
860 uma_zone_domain_t zdom;
861
862 /* We don't cache empty buckets. This can happen after a reclaim. */
863 if (bucket->ub_cnt == 0)
864 goto out;
865 zdom = zone_domain_lock(zone, domain);
866
867 /*
868 * Conditionally set the maximum number of items.
869 */
870 zdom->uzd_nitems += bucket->ub_cnt;
871 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
872 if (ws) {
873 zone_domain_imax_set(zdom, zdom->uzd_nitems);
874 } else {
875 /*
876 * Shift the bounds of the current WSS interval to
877 * avoid perturbing the estimates.
878 */
879 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
880 zdom->uzd_imin += bucket->ub_cnt;
881 zdom->uzd_bimin += bucket->ub_cnt;
882 zdom->uzd_limin += bucket->ub_cnt;
883 }
884 if (STAILQ_EMPTY(&zdom->uzd_buckets))
885 zdom->uzd_seq = bucket->ub_seq;
886
887 /*
888 * Try to promote reuse of recently used items. For items
889 * protected by SMR, try to defer reuse to minimize polling.
890 */
891 if (bucket->ub_seq == SMR_SEQ_INVALID)
892 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
893 else
894 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
895 ZDOM_UNLOCK(zdom);
896 return;
897 }
898 zdom->uzd_nitems -= bucket->ub_cnt;
899 ZDOM_UNLOCK(zdom);
900 out:
901 bucket_free(zone, bucket, udata);
902 }
903
904 /* Pops an item out of a per-cpu cache bucket. */
905 static inline void *
cache_bucket_pop(uma_cache_t cache,uma_cache_bucket_t bucket)906 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
907 {
908 void *item;
909
910 CRITICAL_ASSERT(curthread);
911
912 bucket->ucb_cnt--;
913 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
914 #ifdef INVARIANTS
915 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
916 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
917 #endif
918 cache->uc_allocs++;
919
920 return (item);
921 }
922
923 /* Pushes an item into a per-cpu cache bucket. */
924 static inline void
cache_bucket_push(uma_cache_t cache,uma_cache_bucket_t bucket,void * item)925 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
926 {
927
928 CRITICAL_ASSERT(curthread);
929 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
930 ("uma_zfree: Freeing to non free bucket index."));
931
932 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
933 bucket->ucb_cnt++;
934 cache->uc_frees++;
935 }
936
937 /*
938 * Unload a UMA bucket from a per-cpu cache.
939 */
940 static inline uma_bucket_t
cache_bucket_unload(uma_cache_bucket_t bucket)941 cache_bucket_unload(uma_cache_bucket_t bucket)
942 {
943 uma_bucket_t b;
944
945 b = bucket->ucb_bucket;
946 if (b != NULL) {
947 MPASS(b->ub_entries == bucket->ucb_entries);
948 b->ub_cnt = bucket->ucb_cnt;
949 bucket->ucb_bucket = NULL;
950 bucket->ucb_entries = bucket->ucb_cnt = 0;
951 }
952
953 return (b);
954 }
955
956 static inline uma_bucket_t
cache_bucket_unload_alloc(uma_cache_t cache)957 cache_bucket_unload_alloc(uma_cache_t cache)
958 {
959
960 return (cache_bucket_unload(&cache->uc_allocbucket));
961 }
962
963 static inline uma_bucket_t
cache_bucket_unload_free(uma_cache_t cache)964 cache_bucket_unload_free(uma_cache_t cache)
965 {
966
967 return (cache_bucket_unload(&cache->uc_freebucket));
968 }
969
970 static inline uma_bucket_t
cache_bucket_unload_cross(uma_cache_t cache)971 cache_bucket_unload_cross(uma_cache_t cache)
972 {
973
974 return (cache_bucket_unload(&cache->uc_crossbucket));
975 }
976
977 /*
978 * Load a bucket into a per-cpu cache bucket.
979 */
980 static inline void
cache_bucket_load(uma_cache_bucket_t bucket,uma_bucket_t b)981 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
982 {
983
984 CRITICAL_ASSERT(curthread);
985 MPASS(bucket->ucb_bucket == NULL);
986 MPASS(b->ub_seq == SMR_SEQ_INVALID);
987
988 bucket->ucb_bucket = b;
989 bucket->ucb_cnt = b->ub_cnt;
990 bucket->ucb_entries = b->ub_entries;
991 }
992
993 static inline void
cache_bucket_load_alloc(uma_cache_t cache,uma_bucket_t b)994 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
995 {
996
997 cache_bucket_load(&cache->uc_allocbucket, b);
998 }
999
1000 static inline void
cache_bucket_load_free(uma_cache_t cache,uma_bucket_t b)1001 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1002 {
1003
1004 cache_bucket_load(&cache->uc_freebucket, b);
1005 }
1006
1007 #ifdef NUMA
1008 static inline void
cache_bucket_load_cross(uma_cache_t cache,uma_bucket_t b)1009 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1010 {
1011
1012 cache_bucket_load(&cache->uc_crossbucket, b);
1013 }
1014 #endif
1015
1016 /*
1017 * Copy and preserve ucb_spare.
1018 */
1019 static inline void
cache_bucket_copy(uma_cache_bucket_t b1,uma_cache_bucket_t b2)1020 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1021 {
1022
1023 b1->ucb_bucket = b2->ucb_bucket;
1024 b1->ucb_entries = b2->ucb_entries;
1025 b1->ucb_cnt = b2->ucb_cnt;
1026 }
1027
1028 /*
1029 * Swap two cache buckets.
1030 */
1031 static inline void
cache_bucket_swap(uma_cache_bucket_t b1,uma_cache_bucket_t b2)1032 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1033 {
1034 struct uma_cache_bucket b3;
1035
1036 CRITICAL_ASSERT(curthread);
1037
1038 cache_bucket_copy(&b3, b1);
1039 cache_bucket_copy(b1, b2);
1040 cache_bucket_copy(b2, &b3);
1041 }
1042
1043 /*
1044 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1045 */
1046 static uma_bucket_t
cache_fetch_bucket(uma_zone_t zone,uma_cache_t cache,int domain)1047 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1048 {
1049 uma_zone_domain_t zdom;
1050 uma_bucket_t bucket;
1051 smr_seq_t seq;
1052
1053 /*
1054 * Avoid the lock if possible.
1055 */
1056 zdom = ZDOM_GET(zone, domain);
1057 if (zdom->uzd_nitems == 0)
1058 return (NULL);
1059
1060 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1061 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1062 !smr_poll(zone->uz_smr, seq, false))
1063 return (NULL);
1064
1065 /*
1066 * Check the zone's cache of buckets.
1067 */
1068 zdom = zone_domain_lock(zone, domain);
1069 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1070 return (bucket);
1071 ZDOM_UNLOCK(zdom);
1072
1073 return (NULL);
1074 }
1075
1076 static void
zone_log_warning(uma_zone_t zone)1077 zone_log_warning(uma_zone_t zone)
1078 {
1079 static const struct timeval warninterval = { 300, 0 };
1080
1081 if (!zone_warnings || zone->uz_warning == NULL)
1082 return;
1083
1084 if (ratecheck(&zone->uz_ratecheck, &warninterval))
1085 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1086 }
1087
1088 static inline void
zone_maxaction(uma_zone_t zone)1089 zone_maxaction(uma_zone_t zone)
1090 {
1091
1092 if (zone->uz_maxaction.ta_func != NULL)
1093 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1094 }
1095
1096 /*
1097 * Routine called by timeout which is used to fire off some time interval
1098 * based calculations. (stats, hash size, etc.)
1099 *
1100 * Arguments:
1101 * arg Unused
1102 *
1103 * Returns:
1104 * Nothing
1105 */
1106 static void
uma_timeout(void * context __unused,int pending __unused)1107 uma_timeout(void *context __unused, int pending __unused)
1108 {
1109 bucket_enable();
1110 zone_foreach(zone_timeout, NULL);
1111
1112 /* Reschedule this event */
1113 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
1114 UMA_TIMEOUT * hz);
1115 }
1116
1117 /*
1118 * Update the working set size estimates for the zone's bucket cache.
1119 * The constants chosen here are somewhat arbitrary.
1120 */
1121 static void
zone_domain_update_wss(uma_zone_domain_t zdom)1122 zone_domain_update_wss(uma_zone_domain_t zdom)
1123 {
1124 long m;
1125
1126 ZDOM_LOCK_ASSERT(zdom);
1127 MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1128 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1129 MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1130
1131 /*
1132 * Estimate WSS as modified moving average of biggest allocation
1133 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1134 */
1135 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1136 zdom->uzd_imax - zdom->uzd_bimin);
1137
1138 /*
1139 * Estimate longtime minimum item count as a combination of recent
1140 * minimum item count, adjusted by WSS for safety, and the modified
1141 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1142 * timin measures time since limin tried to go negative, that means
1143 * we were dangerously close to or got out of cache.
1144 */
1145 m = zdom->uzd_imin - zdom->uzd_wss;
1146 if (m >= 0) {
1147 if (zdom->uzd_limin >= m)
1148 zdom->uzd_limin = m;
1149 else
1150 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1151 zdom->uzd_timin++;
1152 } else {
1153 zdom->uzd_limin = 0;
1154 zdom->uzd_timin = 0;
1155 }
1156
1157 /* To reduce period edge effects on WSS keep half of the imax. */
1158 atomic_subtract_long(&zdom->uzd_imax,
1159 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1160 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1161 }
1162
1163 /*
1164 * Routine to perform timeout driven calculations. This expands the
1165 * hashes and does per cpu statistics aggregation.
1166 *
1167 * Returns nothing.
1168 */
1169 static void
zone_timeout(uma_zone_t zone,void * unused)1170 zone_timeout(uma_zone_t zone, void *unused)
1171 {
1172 uma_keg_t keg;
1173 u_int slabs, pages;
1174
1175 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1176 goto trim;
1177
1178 keg = zone->uz_keg;
1179
1180 /*
1181 * Hash zones are non-numa by definition so the first domain
1182 * is the only one present.
1183 */
1184 KEG_LOCK(keg, 0);
1185 pages = keg->uk_domain[0].ud_pages;
1186
1187 /*
1188 * Expand the keg hash table.
1189 *
1190 * This is done if the number of slabs is larger than the hash size.
1191 * What I'm trying to do here is completely reduce collisions. This
1192 * may be a little aggressive. Should I allow for two collisions max?
1193 */
1194 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1195 struct uma_hash newhash;
1196 struct uma_hash oldhash;
1197 int ret;
1198
1199 /*
1200 * This is so involved because allocating and freeing
1201 * while the keg lock is held will lead to deadlock.
1202 * I have to do everything in stages and check for
1203 * races.
1204 */
1205 KEG_UNLOCK(keg, 0);
1206 ret = hash_alloc(&newhash, 1 << fls(slabs));
1207 KEG_LOCK(keg, 0);
1208 if (ret) {
1209 if (hash_expand(&keg->uk_hash, &newhash)) {
1210 oldhash = keg->uk_hash;
1211 keg->uk_hash = newhash;
1212 } else
1213 oldhash = newhash;
1214
1215 KEG_UNLOCK(keg, 0);
1216 hash_free(&oldhash);
1217 goto trim;
1218 }
1219 }
1220 KEG_UNLOCK(keg, 0);
1221
1222 trim:
1223 /* Trim caches not used for a long time. */
1224 if ((zone->uz_flags & (UMA_ZONE_UNMANAGED | UMA_ZONE_NOTRIM)) == 0) {
1225 for (int i = 0; i < vm_ndomains; i++) {
1226 if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1227 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1228 keg_drain(zone->uz_keg, i);
1229 }
1230 }
1231 }
1232
1233 /*
1234 * Allocate and zero fill the next sized hash table from the appropriate
1235 * backing store.
1236 *
1237 * Arguments:
1238 * hash A new hash structure with the old hash size in uh_hashsize
1239 *
1240 * Returns:
1241 * 1 on success and 0 on failure.
1242 */
1243 static int
hash_alloc(struct uma_hash * hash,u_int size)1244 hash_alloc(struct uma_hash *hash, u_int size)
1245 {
1246 size_t alloc;
1247
1248 KASSERT(powerof2(size), ("hash size must be power of 2"));
1249 if (size > UMA_HASH_SIZE_INIT) {
1250 hash->uh_hashsize = size;
1251 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1252 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1253 } else {
1254 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1255 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1256 UMA_ANYDOMAIN, M_WAITOK);
1257 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1258 }
1259 if (hash->uh_slab_hash) {
1260 bzero(hash->uh_slab_hash, alloc);
1261 hash->uh_hashmask = hash->uh_hashsize - 1;
1262 return (1);
1263 }
1264
1265 return (0);
1266 }
1267
1268 /*
1269 * Expands the hash table for HASH zones. This is done from zone_timeout
1270 * to reduce collisions. This must not be done in the regular allocation
1271 * path, otherwise, we can recurse on the vm while allocating pages.
1272 *
1273 * Arguments:
1274 * oldhash The hash you want to expand
1275 * newhash The hash structure for the new table
1276 *
1277 * Returns:
1278 * Nothing
1279 *
1280 * Discussion:
1281 */
1282 static int
hash_expand(struct uma_hash * oldhash,struct uma_hash * newhash)1283 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1284 {
1285 uma_hash_slab_t slab;
1286 u_int hval;
1287 u_int idx;
1288
1289 if (!newhash->uh_slab_hash)
1290 return (0);
1291
1292 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1293 return (0);
1294
1295 /*
1296 * I need to investigate hash algorithms for resizing without a
1297 * full rehash.
1298 */
1299
1300 for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1301 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1302 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1303 LIST_REMOVE(slab, uhs_hlink);
1304 hval = UMA_HASH(newhash, slab->uhs_data);
1305 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1306 slab, uhs_hlink);
1307 }
1308
1309 return (1);
1310 }
1311
1312 /*
1313 * Free the hash bucket to the appropriate backing store.
1314 *
1315 * Arguments:
1316 * slab_hash The hash bucket we're freeing
1317 * hashsize The number of entries in that hash bucket
1318 *
1319 * Returns:
1320 * Nothing
1321 */
1322 static void
hash_free(struct uma_hash * hash)1323 hash_free(struct uma_hash *hash)
1324 {
1325 if (hash->uh_slab_hash == NULL)
1326 return;
1327 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1328 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1329 else
1330 free(hash->uh_slab_hash, M_UMAHASH);
1331 }
1332
1333 /*
1334 * Frees all outstanding items in a bucket
1335 *
1336 * Arguments:
1337 * zone The zone to free to, must be unlocked.
1338 * bucket The free/alloc bucket with items.
1339 *
1340 * Returns:
1341 * Nothing
1342 */
1343 static void
bucket_drain(uma_zone_t zone,uma_bucket_t bucket)1344 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1345 {
1346 int i;
1347
1348 if (bucket->ub_cnt == 0)
1349 return;
1350
1351 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1352 bucket->ub_seq != SMR_SEQ_INVALID) {
1353 smr_wait(zone->uz_smr, bucket->ub_seq);
1354 bucket->ub_seq = SMR_SEQ_INVALID;
1355 for (i = 0; i < bucket->ub_cnt; i++)
1356 item_dtor(zone, bucket->ub_bucket[i],
1357 zone->uz_size, NULL, SKIP_NONE);
1358 }
1359 if (zone->uz_fini)
1360 for (i = 0; i < bucket->ub_cnt; i++) {
1361 kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1362 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1363 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1364 }
1365 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1366 if (zone->uz_max_items > 0)
1367 zone_free_limit(zone, bucket->ub_cnt);
1368 #ifdef INVARIANTS
1369 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1370 #endif
1371 bucket->ub_cnt = 0;
1372 }
1373
1374 /*
1375 * Drains the per cpu caches for a zone.
1376 *
1377 * NOTE: This may only be called while the zone is being torn down, and not
1378 * during normal operation. This is necessary in order that we do not have
1379 * to migrate CPUs to drain the per-CPU caches.
1380 *
1381 * Arguments:
1382 * zone The zone to drain, must be unlocked.
1383 *
1384 * Returns:
1385 * Nothing
1386 */
1387 static void
cache_drain(uma_zone_t zone)1388 cache_drain(uma_zone_t zone)
1389 {
1390 uma_cache_t cache;
1391 uma_bucket_t bucket;
1392 smr_seq_t seq;
1393 int cpu;
1394
1395 /*
1396 * XXX: It is safe to not lock the per-CPU caches, because we're
1397 * tearing down the zone anyway. I.e., there will be no further use
1398 * of the caches at this point.
1399 *
1400 * XXX: It would good to be able to assert that the zone is being
1401 * torn down to prevent improper use of cache_drain().
1402 */
1403 seq = SMR_SEQ_INVALID;
1404 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1405 seq = smr_advance(zone->uz_smr);
1406 CPU_FOREACH(cpu) {
1407 cache = &zone->uz_cpu[cpu];
1408 bucket = cache_bucket_unload_alloc(cache);
1409 if (bucket != NULL)
1410 bucket_free(zone, bucket, NULL);
1411 bucket = cache_bucket_unload_free(cache);
1412 if (bucket != NULL) {
1413 bucket->ub_seq = seq;
1414 bucket_free(zone, bucket, NULL);
1415 }
1416 bucket = cache_bucket_unload_cross(cache);
1417 if (bucket != NULL) {
1418 bucket->ub_seq = seq;
1419 bucket_free(zone, bucket, NULL);
1420 }
1421 }
1422 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1423 }
1424
1425 static void
cache_shrink(uma_zone_t zone,void * unused)1426 cache_shrink(uma_zone_t zone, void *unused)
1427 {
1428
1429 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1430 return;
1431
1432 ZONE_LOCK(zone);
1433 zone->uz_bucket_size =
1434 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1435 ZONE_UNLOCK(zone);
1436 }
1437
1438 static void
cache_drain_safe_cpu(uma_zone_t zone,void * unused)1439 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1440 {
1441 uma_cache_t cache;
1442 uma_bucket_t b1, b2, b3;
1443 int domain;
1444
1445 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1446 return;
1447
1448 b1 = b2 = b3 = NULL;
1449 critical_enter();
1450 cache = &zone->uz_cpu[curcpu];
1451 domain = PCPU_GET(domain);
1452 b1 = cache_bucket_unload_alloc(cache);
1453
1454 /*
1455 * Don't flush SMR zone buckets. This leaves the zone without a
1456 * bucket and forces every free to synchronize().
1457 */
1458 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1459 b2 = cache_bucket_unload_free(cache);
1460 b3 = cache_bucket_unload_cross(cache);
1461 }
1462 critical_exit();
1463
1464 if (b1 != NULL)
1465 zone_free_bucket(zone, b1, NULL, domain, false);
1466 if (b2 != NULL)
1467 zone_free_bucket(zone, b2, NULL, domain, false);
1468 if (b3 != NULL) {
1469 /* Adjust the domain so it goes to zone_free_cross. */
1470 domain = (domain + 1) % vm_ndomains;
1471 zone_free_bucket(zone, b3, NULL, domain, false);
1472 }
1473 }
1474
1475 /*
1476 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1477 * This is an expensive call because it needs to bind to all CPUs
1478 * one by one and enter a critical section on each of them in order
1479 * to safely access their cache buckets.
1480 * Zone lock must not be held on call this function.
1481 */
1482 static void
pcpu_cache_drain_safe(uma_zone_t zone)1483 pcpu_cache_drain_safe(uma_zone_t zone)
1484 {
1485 int cpu;
1486
1487 /*
1488 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1489 */
1490 if (zone)
1491 cache_shrink(zone, NULL);
1492 else
1493 zone_foreach(cache_shrink, NULL);
1494
1495 CPU_FOREACH(cpu) {
1496 thread_lock(curthread);
1497 sched_bind(curthread, cpu);
1498 thread_unlock(curthread);
1499
1500 if (zone)
1501 cache_drain_safe_cpu(zone, NULL);
1502 else
1503 zone_foreach(cache_drain_safe_cpu, NULL);
1504 }
1505 thread_lock(curthread);
1506 sched_unbind(curthread);
1507 thread_unlock(curthread);
1508 }
1509
1510 /*
1511 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller
1512 * requested a drain, otherwise the per-domain caches are trimmed to either
1513 * estimated working set size.
1514 */
1515 static bool
bucket_cache_reclaim_domain(uma_zone_t zone,bool drain,bool trim,int domain)1516 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1517 {
1518 uma_zone_domain_t zdom;
1519 uma_bucket_t bucket;
1520 long target;
1521 bool done = false;
1522
1523 /*
1524 * The cross bucket is partially filled and not part of
1525 * the item count. Reclaim it individually here.
1526 */
1527 zdom = ZDOM_GET(zone, domain);
1528 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1529 ZONE_CROSS_LOCK(zone);
1530 bucket = zdom->uzd_cross;
1531 zdom->uzd_cross = NULL;
1532 ZONE_CROSS_UNLOCK(zone);
1533 if (bucket != NULL)
1534 bucket_free(zone, bucket, NULL);
1535 }
1536
1537 /*
1538 * If we were asked to drain the zone, we are done only once
1539 * this bucket cache is empty. If trim, we reclaim items in
1540 * excess of the zone's estimated working set size. Multiple
1541 * consecutive calls will shrink the WSS and so reclaim more.
1542 * If neither drain nor trim, then voluntarily reclaim 1/4
1543 * (to reduce first spike) of items not used for a long time.
1544 */
1545 ZDOM_LOCK(zdom);
1546 zone_domain_update_wss(zdom);
1547 if (drain)
1548 target = 0;
1549 else if (trim)
1550 target = zdom->uzd_wss;
1551 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1552 target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1553 else {
1554 ZDOM_UNLOCK(zdom);
1555 return (done);
1556 }
1557 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1558 zdom->uzd_nitems >= target + bucket->ub_cnt) {
1559 bucket = zone_fetch_bucket(zone, zdom, true);
1560 if (bucket == NULL)
1561 break;
1562 bucket_free(zone, bucket, NULL);
1563 done = true;
1564 ZDOM_LOCK(zdom);
1565 }
1566 ZDOM_UNLOCK(zdom);
1567 return (done);
1568 }
1569
1570 static void
bucket_cache_reclaim(uma_zone_t zone,bool drain,int domain)1571 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1572 {
1573 int i;
1574
1575 /*
1576 * Shrink the zone bucket size to ensure that the per-CPU caches
1577 * don't grow too large.
1578 */
1579 if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1580 zone->uz_bucket_size--;
1581
1582 if (domain != UMA_ANYDOMAIN &&
1583 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1584 bucket_cache_reclaim_domain(zone, drain, true, domain);
1585 } else {
1586 for (i = 0; i < vm_ndomains; i++)
1587 bucket_cache_reclaim_domain(zone, drain, true, i);
1588 }
1589 }
1590
1591 static void
keg_free_slab(uma_keg_t keg,uma_slab_t slab,int start)1592 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1593 {
1594 uint8_t *mem;
1595 size_t size;
1596 int i;
1597 uint8_t flags;
1598
1599 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1600 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1601
1602 mem = slab_data(slab, keg);
1603 size = PAGE_SIZE * keg->uk_ppera;
1604
1605 kasan_mark_slab_valid(keg, mem);
1606 if (keg->uk_fini != NULL) {
1607 for (i = start - 1; i > -1; i--)
1608 #ifdef INVARIANTS
1609 /*
1610 * trash_fini implies that dtor was trash_dtor. trash_fini
1611 * would check that memory hasn't been modified since free,
1612 * which executed trash_dtor.
1613 * That's why we need to run uma_dbg_kskip() check here,
1614 * albeit we don't make skip check for other init/fini
1615 * invocations.
1616 */
1617 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1618 keg->uk_fini != trash_fini)
1619 #endif
1620 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1621 }
1622 flags = slab->us_flags;
1623 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1624 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1625 NULL, SKIP_NONE);
1626 }
1627 keg->uk_freef(mem, size, flags);
1628 uma_total_dec(size);
1629 }
1630
1631 static void
keg_drain_domain(uma_keg_t keg,int domain)1632 keg_drain_domain(uma_keg_t keg, int domain)
1633 {
1634 struct slabhead freeslabs;
1635 uma_domain_t dom;
1636 uma_slab_t slab, tmp;
1637 uint32_t i, stofree, stokeep, partial;
1638
1639 dom = &keg->uk_domain[domain];
1640 LIST_INIT(&freeslabs);
1641
1642 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1643 keg->uk_name, keg, domain, dom->ud_free_items);
1644
1645 KEG_LOCK(keg, domain);
1646
1647 /*
1648 * Are the free items in partially allocated slabs sufficient to meet
1649 * the reserve? If not, compute the number of fully free slabs that must
1650 * be kept.
1651 */
1652 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1653 if (partial < keg->uk_reserve) {
1654 stokeep = min(dom->ud_free_slabs,
1655 howmany(keg->uk_reserve - partial, keg->uk_ipers));
1656 } else {
1657 stokeep = 0;
1658 }
1659 stofree = dom->ud_free_slabs - stokeep;
1660
1661 /*
1662 * Partition the free slabs into two sets: those that must be kept in
1663 * order to maintain the reserve, and those that may be released back to
1664 * the system. Since one set may be much larger than the other,
1665 * populate the smaller of the two sets and swap them if necessary.
1666 */
1667 for (i = min(stofree, stokeep); i > 0; i--) {
1668 slab = LIST_FIRST(&dom->ud_free_slab);
1669 LIST_REMOVE(slab, us_link);
1670 LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1671 }
1672 if (stofree > stokeep)
1673 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1674
1675 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1676 LIST_FOREACH(slab, &freeslabs, us_link)
1677 UMA_HASH_REMOVE(&keg->uk_hash, slab);
1678 }
1679 dom->ud_free_items -= stofree * keg->uk_ipers;
1680 dom->ud_free_slabs -= stofree;
1681 dom->ud_pages -= stofree * keg->uk_ppera;
1682 KEG_UNLOCK(keg, domain);
1683
1684 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1685 keg_free_slab(keg, slab, keg->uk_ipers);
1686 }
1687
1688 /*
1689 * Frees pages from a keg back to the system. This is done on demand from
1690 * the pageout daemon.
1691 *
1692 * Returns nothing.
1693 */
1694 static void
keg_drain(uma_keg_t keg,int domain)1695 keg_drain(uma_keg_t keg, int domain)
1696 {
1697 int i;
1698
1699 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1700 return;
1701 if (domain != UMA_ANYDOMAIN) {
1702 keg_drain_domain(keg, domain);
1703 } else {
1704 for (i = 0; i < vm_ndomains; i++)
1705 keg_drain_domain(keg, i);
1706 }
1707 }
1708
1709 static void
zone_reclaim(uma_zone_t zone,int domain,int waitok,bool drain)1710 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1711 {
1712 /*
1713 * Count active reclaim operations in order to interlock with
1714 * zone_dtor(), which removes the zone from global lists before
1715 * attempting to reclaim items itself.
1716 *
1717 * The zone may be destroyed while sleeping, so only zone_dtor() should
1718 * specify M_WAITOK.
1719 */
1720 ZONE_LOCK(zone);
1721 if (waitok == M_WAITOK) {
1722 while (zone->uz_reclaimers > 0)
1723 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1724 }
1725 zone->uz_reclaimers++;
1726 ZONE_UNLOCK(zone);
1727 bucket_cache_reclaim(zone, drain, domain);
1728
1729 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1730 keg_drain(zone->uz_keg, domain);
1731 ZONE_LOCK(zone);
1732 zone->uz_reclaimers--;
1733 if (zone->uz_reclaimers == 0)
1734 wakeup(zone);
1735 ZONE_UNLOCK(zone);
1736 }
1737
1738 /*
1739 * Allocate a new slab for a keg and inserts it into the partial slab list.
1740 * The keg should be unlocked on entry. If the allocation succeeds it will
1741 * be locked on return.
1742 *
1743 * Arguments:
1744 * flags Wait flags for the item initialization routine
1745 * aflags Wait flags for the slab allocation
1746 *
1747 * Returns:
1748 * The slab that was allocated or NULL if there is no memory and the
1749 * caller specified M_NOWAIT.
1750 */
1751 static uma_slab_t
keg_alloc_slab(uma_keg_t keg,uma_zone_t zone,int domain,int flags,int aflags)1752 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1753 int aflags)
1754 {
1755 uma_domain_t dom;
1756 uma_slab_t slab;
1757 unsigned long size;
1758 uint8_t *mem;
1759 uint8_t sflags;
1760 int i;
1761
1762 TSENTER();
1763
1764 KASSERT(domain >= 0 && domain < vm_ndomains,
1765 ("keg_alloc_slab: domain %d out of range", domain));
1766
1767 slab = NULL;
1768 mem = NULL;
1769 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1770 uma_hash_slab_t hslab;
1771 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1772 domain, aflags);
1773 if (hslab == NULL)
1774 goto fail;
1775 slab = &hslab->uhs_slab;
1776 }
1777
1778 /*
1779 * This reproduces the old vm_zone behavior of zero filling pages the
1780 * first time they are added to a zone.
1781 *
1782 * Malloced items are zeroed in uma_zalloc.
1783 */
1784
1785 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1786 aflags |= M_ZERO;
1787 else
1788 aflags &= ~M_ZERO;
1789
1790 if (keg->uk_flags & UMA_ZONE_NODUMP)
1791 aflags |= M_NODUMP;
1792
1793 if (keg->uk_flags & UMA_ZONE_NOFREE)
1794 aflags |= M_NEVERFREED;
1795
1796 /* zone is passed for legacy reasons. */
1797 size = keg->uk_ppera * PAGE_SIZE;
1798 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1799 if (mem == NULL) {
1800 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1801 zone_free_item(slabzone(keg->uk_ipers),
1802 slab_tohashslab(slab), NULL, SKIP_NONE);
1803 goto fail;
1804 }
1805 uma_total_inc(size);
1806
1807 /* For HASH zones all pages go to the same uma_domain. */
1808 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1809 domain = 0;
1810
1811 kmsan_mark(mem, size,
1812 (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1813
1814 /* Point the slab into the allocated memory */
1815 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1816 slab = (uma_slab_t)(mem + keg->uk_pgoff);
1817 else
1818 slab_tohashslab(slab)->uhs_data = mem;
1819
1820 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1821 for (i = 0; i < keg->uk_ppera; i++)
1822 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1823 zone, slab);
1824
1825 slab->us_freecount = keg->uk_ipers;
1826 slab->us_flags = sflags;
1827 slab->us_domain = domain;
1828
1829 BIT_FILL(keg->uk_ipers, &slab->us_free);
1830 #ifdef INVARIANTS
1831 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1832 #endif
1833
1834 if (keg->uk_init != NULL) {
1835 for (i = 0; i < keg->uk_ipers; i++)
1836 if (keg->uk_init(slab_item(slab, keg, i),
1837 keg->uk_size, flags) != 0)
1838 break;
1839 if (i != keg->uk_ipers) {
1840 keg_free_slab(keg, slab, i);
1841 goto fail;
1842 }
1843 }
1844 kasan_mark_slab_invalid(keg, mem);
1845 KEG_LOCK(keg, domain);
1846
1847 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1848 slab, keg->uk_name, keg);
1849
1850 if (keg->uk_flags & UMA_ZFLAG_HASH)
1851 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1852
1853 /*
1854 * If we got a slab here it's safe to mark it partially used
1855 * and return. We assume that the caller is going to remove
1856 * at least one item.
1857 */
1858 dom = &keg->uk_domain[domain];
1859 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1860 dom->ud_pages += keg->uk_ppera;
1861 dom->ud_free_items += keg->uk_ipers;
1862
1863 TSEXIT();
1864 return (slab);
1865
1866 fail:
1867 return (NULL);
1868 }
1869
1870 /*
1871 * This function is intended to be used early on in place of page_alloc(). It
1872 * performs contiguous physical memory allocations and uses a bump allocator for
1873 * KVA, so is usable before the kernel map is initialized.
1874 */
1875 static void *
startup_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1876 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1877 int wait)
1878 {
1879 vm_paddr_t pa;
1880 vm_page_t m;
1881 int i, pages;
1882
1883 pages = howmany(bytes, PAGE_SIZE);
1884 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1885
1886 *pflag = UMA_SLAB_BOOT;
1887 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1888 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1889 VM_MEMATTR_DEFAULT);
1890 if (m == NULL)
1891 return (NULL);
1892
1893 pa = VM_PAGE_TO_PHYS(m);
1894 for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1895 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1896 if ((wait & M_NODUMP) == 0)
1897 dump_add_page(pa);
1898 #endif
1899 }
1900
1901 /* Allocate KVA and indirectly advance bootmem. */
1902 return ((void *)pmap_map(&bootmem, m->phys_addr,
1903 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1904 }
1905
1906 static void
startup_free(void * mem,vm_size_t bytes)1907 startup_free(void *mem, vm_size_t bytes)
1908 {
1909 vm_offset_t va;
1910 vm_page_t m;
1911
1912 va = (vm_offset_t)mem;
1913 m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1914
1915 /*
1916 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid
1917 * unmapping ranges of the direct map.
1918 */
1919 if (va >= bootstart && va + bytes <= bootmem)
1920 pmap_remove(kernel_pmap, va, va + bytes);
1921 for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1922 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1923 dump_drop_page(VM_PAGE_TO_PHYS(m));
1924 #endif
1925 vm_page_unwire_noq(m);
1926 vm_page_free(m);
1927 }
1928 }
1929
1930 /*
1931 * Allocates a number of pages from the system
1932 *
1933 * Arguments:
1934 * bytes The number of bytes requested
1935 * wait Shall we wait?
1936 *
1937 * Returns:
1938 * A pointer to the alloced memory or possibly
1939 * NULL if M_NOWAIT is set.
1940 */
1941 static void *
page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1942 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1943 int wait)
1944 {
1945 void *p; /* Returned page */
1946
1947 *pflag = UMA_SLAB_KERNEL;
1948 p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1949
1950 return (p);
1951 }
1952
1953 static void *
pcpu_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1954 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1955 int wait)
1956 {
1957 struct pglist alloctail;
1958 vm_offset_t addr, zkva;
1959 int cpu, flags;
1960 vm_page_t p, p_next;
1961 #ifdef NUMA
1962 struct pcpu *pc;
1963 #endif
1964
1965 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1966
1967 TAILQ_INIT(&alloctail);
1968 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1969 *pflag = UMA_SLAB_KERNEL;
1970 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1971 if (CPU_ABSENT(cpu)) {
1972 p = vm_page_alloc_noobj(flags);
1973 } else {
1974 #ifndef NUMA
1975 p = vm_page_alloc_noobj(flags);
1976 #else
1977 pc = pcpu_find(cpu);
1978 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1979 p = NULL;
1980 else
1981 p = vm_page_alloc_noobj_domain(pc->pc_domain,
1982 flags);
1983 if (__predict_false(p == NULL))
1984 p = vm_page_alloc_noobj(flags);
1985 #endif
1986 }
1987 if (__predict_false(p == NULL))
1988 goto fail;
1989 TAILQ_INSERT_TAIL(&alloctail, p, plinks.q);
1990 }
1991 if ((addr = kva_alloc(bytes)) == 0)
1992 goto fail;
1993 zkva = addr;
1994 TAILQ_FOREACH(p, &alloctail, plinks.q) {
1995 pmap_qenter(zkva, &p, 1);
1996 zkva += PAGE_SIZE;
1997 }
1998 return ((void*)addr);
1999 fail:
2000 TAILQ_FOREACH_SAFE(p, &alloctail, plinks.q, p_next) {
2001 vm_page_unwire_noq(p);
2002 vm_page_free(p);
2003 }
2004 return (NULL);
2005 }
2006
2007 /*
2008 * Allocates a number of pages not belonging to a VM object
2009 *
2010 * Arguments:
2011 * bytes The number of bytes requested
2012 * wait Shall we wait?
2013 *
2014 * Returns:
2015 * A pointer to the alloced memory or possibly
2016 * NULL if M_NOWAIT is set.
2017 */
2018 static void *
noobj_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)2019 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2020 int wait)
2021 {
2022 TAILQ_HEAD(, vm_page) alloctail;
2023 u_long npages;
2024 vm_offset_t retkva, zkva;
2025 vm_page_t p, p_next;
2026 uma_keg_t keg;
2027 int req;
2028
2029 TAILQ_INIT(&alloctail);
2030 keg = zone->uz_keg;
2031 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2032 if ((wait & M_WAITOK) != 0)
2033 req |= VM_ALLOC_WAITOK;
2034
2035 npages = howmany(bytes, PAGE_SIZE);
2036 while (npages > 0) {
2037 p = vm_page_alloc_noobj_domain(domain, req);
2038 if (p != NULL) {
2039 TAILQ_INSERT_TAIL(&alloctail, p, plinks.q);
2040 npages--;
2041 continue;
2042 }
2043 /*
2044 * Page allocation failed, free intermediate pages and
2045 * exit.
2046 */
2047 TAILQ_FOREACH_SAFE(p, &alloctail, plinks.q, p_next) {
2048 vm_page_unwire_noq(p);
2049 vm_page_free(p);
2050 }
2051 return (NULL);
2052 }
2053 *flags = UMA_SLAB_PRIV;
2054 zkva = keg->uk_kva +
2055 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2056 retkva = zkva;
2057 TAILQ_FOREACH(p, &alloctail, plinks.q) {
2058 pmap_qenter(zkva, &p, 1);
2059 zkva += PAGE_SIZE;
2060 }
2061
2062 return ((void *)retkva);
2063 }
2064
2065 /*
2066 * Allocate physically contiguous pages.
2067 */
2068 static void *
contig_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)2069 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2070 int wait)
2071 {
2072
2073 *pflag = UMA_SLAB_KERNEL;
2074 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2075 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2076 }
2077
2078 #if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2079 void *
uma_small_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)2080 uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2081 int wait)
2082 {
2083 vm_page_t m;
2084 vm_paddr_t pa;
2085 void *va;
2086
2087 *flags = UMA_SLAB_PRIV;
2088 m = vm_page_alloc_noobj_domain(domain,
2089 malloc2vm_flags(wait) | VM_ALLOC_WIRED);
2090 if (m == NULL)
2091 return (NULL);
2092 pa = m->phys_addr;
2093 if ((wait & M_NODUMP) == 0)
2094 dump_add_page(pa);
2095 va = (void *)PHYS_TO_DMAP(pa);
2096 return (va);
2097 }
2098 #endif
2099
2100 /*
2101 * Frees a number of pages to the system
2102 *
2103 * Arguments:
2104 * mem A pointer to the memory to be freed
2105 * size The size of the memory being freed
2106 * flags The original p->us_flags field
2107 *
2108 * Returns:
2109 * Nothing
2110 */
2111 static void
page_free(void * mem,vm_size_t size,uint8_t flags)2112 page_free(void *mem, vm_size_t size, uint8_t flags)
2113 {
2114
2115 if ((flags & UMA_SLAB_BOOT) != 0) {
2116 startup_free(mem, size);
2117 return;
2118 }
2119
2120 KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2121 ("UMA: page_free used with invalid flags %x", flags));
2122
2123 kmem_free(mem, size);
2124 }
2125
2126 /*
2127 * Frees pcpu zone allocations
2128 *
2129 * Arguments:
2130 * mem A pointer to the memory to be freed
2131 * size The size of the memory being freed
2132 * flags The original p->us_flags field
2133 *
2134 * Returns:
2135 * Nothing
2136 */
2137 static void
pcpu_page_free(void * mem,vm_size_t size,uint8_t flags)2138 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2139 {
2140 vm_offset_t sva, curva;
2141 vm_paddr_t paddr;
2142 vm_page_t m;
2143
2144 MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2145
2146 if ((flags & UMA_SLAB_BOOT) != 0) {
2147 startup_free(mem, size);
2148 return;
2149 }
2150
2151 sva = (vm_offset_t)mem;
2152 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2153 paddr = pmap_kextract(curva);
2154 m = PHYS_TO_VM_PAGE(paddr);
2155 vm_page_unwire_noq(m);
2156 vm_page_free(m);
2157 }
2158 pmap_qremove(sva, size >> PAGE_SHIFT);
2159 kva_free(sva, size);
2160 }
2161
2162 #if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2163 void
uma_small_free(void * mem,vm_size_t size,uint8_t flags)2164 uma_small_free(void *mem, vm_size_t size, uint8_t flags)
2165 {
2166 vm_page_t m;
2167 vm_paddr_t pa;
2168
2169 pa = DMAP_TO_PHYS((vm_offset_t)mem);
2170 dump_drop_page(pa);
2171 m = PHYS_TO_VM_PAGE(pa);
2172 vm_page_unwire_noq(m);
2173 vm_page_free(m);
2174 }
2175 #endif
2176
2177 /*
2178 * Zero fill initializer
2179 *
2180 * Arguments/Returns follow uma_init specifications
2181 */
2182 static int
zero_init(void * mem,int size,int flags)2183 zero_init(void *mem, int size, int flags)
2184 {
2185 bzero(mem, size);
2186 return (0);
2187 }
2188
2189 #ifdef INVARIANTS
2190 static struct noslabbits *
slab_dbg_bits(uma_slab_t slab,uma_keg_t keg)2191 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2192 {
2193
2194 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2195 }
2196 #endif
2197
2198 /*
2199 * Actual size of embedded struct slab (!OFFPAGE).
2200 */
2201 static size_t
slab_sizeof(int nitems)2202 slab_sizeof(int nitems)
2203 {
2204 size_t s;
2205
2206 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2207 return (roundup(s, UMA_ALIGN_PTR + 1));
2208 }
2209
2210 #define UMA_FIXPT_SHIFT 31
2211 #define UMA_FRAC_FIXPT(n, d) \
2212 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2213 #define UMA_FIXPT_PCT(f) \
2214 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2215 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100)
2216 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2217
2218 /*
2219 * Compute the number of items that will fit in a slab. If hdr is true, the
2220 * item count may be limited to provide space in the slab for an inline slab
2221 * header. Otherwise, all slab space will be provided for item storage.
2222 */
2223 static u_int
slab_ipers_hdr(u_int size,u_int rsize,u_int slabsize,bool hdr)2224 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2225 {
2226 u_int ipers;
2227 u_int padpi;
2228
2229 /* The padding between items is not needed after the last item. */
2230 padpi = rsize - size;
2231
2232 if (hdr) {
2233 /*
2234 * Start with the maximum item count and remove items until
2235 * the slab header first alongside the allocatable memory.
2236 */
2237 for (ipers = MIN(SLAB_MAX_SETSIZE,
2238 (slabsize + padpi - slab_sizeof(1)) / rsize);
2239 ipers > 0 &&
2240 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2241 ipers--)
2242 continue;
2243 } else {
2244 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2245 }
2246
2247 return (ipers);
2248 }
2249
2250 struct keg_layout_result {
2251 u_int format;
2252 u_int slabsize;
2253 u_int ipers;
2254 u_int eff;
2255 };
2256
2257 static void
keg_layout_one(uma_keg_t keg,u_int rsize,u_int slabsize,u_int fmt,struct keg_layout_result * kl)2258 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2259 struct keg_layout_result *kl)
2260 {
2261 u_int total;
2262
2263 kl->format = fmt;
2264 kl->slabsize = slabsize;
2265
2266 /* Handle INTERNAL as inline with an extra page. */
2267 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2268 kl->format &= ~UMA_ZFLAG_INTERNAL;
2269 kl->slabsize += PAGE_SIZE;
2270 }
2271
2272 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2273 (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2274
2275 /* Account for memory used by an offpage slab header. */
2276 total = kl->slabsize;
2277 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2278 total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2279
2280 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2281 }
2282
2283 /*
2284 * Determine the format of a uma keg. This determines where the slab header
2285 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2286 *
2287 * Arguments
2288 * keg The zone we should initialize
2289 *
2290 * Returns
2291 * Nothing
2292 */
2293 static void
keg_layout(uma_keg_t keg)2294 keg_layout(uma_keg_t keg)
2295 {
2296 struct keg_layout_result kl = {}, kl_tmp;
2297 u_int fmts[2];
2298 u_int alignsize;
2299 u_int nfmt;
2300 u_int pages;
2301 u_int rsize;
2302 u_int slabsize;
2303 u_int i, j;
2304
2305 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2306 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2307 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2308 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2309 __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2310 PRINT_UMA_ZFLAGS));
2311 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2312 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2313 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2314 PRINT_UMA_ZFLAGS));
2315
2316 alignsize = keg->uk_align + 1;
2317 #ifdef KASAN
2318 /*
2319 * ASAN requires that each allocation be aligned to the shadow map
2320 * scale factor.
2321 */
2322 if (alignsize < KASAN_SHADOW_SCALE)
2323 alignsize = KASAN_SHADOW_SCALE;
2324 #endif
2325
2326 /*
2327 * Calculate the size of each allocation (rsize) according to
2328 * alignment. If the requested size is smaller than we have
2329 * allocation bits for we round it up.
2330 */
2331 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2332 rsize = roundup2(rsize, alignsize);
2333
2334 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2335 /*
2336 * We want one item to start on every align boundary in a page.
2337 * To do this we will span pages. We will also extend the item
2338 * by the size of align if it is an even multiple of align.
2339 * Otherwise, it would fall on the same boundary every time.
2340 */
2341 if ((rsize & alignsize) == 0)
2342 rsize += alignsize;
2343 slabsize = rsize * (PAGE_SIZE / alignsize);
2344 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2345 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2346 slabsize = round_page(slabsize);
2347 } else {
2348 /*
2349 * Start with a slab size of as many pages as it takes to
2350 * represent a single item. We will try to fit as many
2351 * additional items into the slab as possible.
2352 */
2353 slabsize = round_page(keg->uk_size);
2354 }
2355
2356 /* Build a list of all of the available formats for this keg. */
2357 nfmt = 0;
2358
2359 /* Evaluate an inline slab layout. */
2360 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2361 fmts[nfmt++] = 0;
2362
2363 /* TODO: vm_page-embedded slab. */
2364
2365 /*
2366 * We can't do OFFPAGE if we're internal or if we've been
2367 * asked to not go to the VM for buckets. If we do this we
2368 * may end up going to the VM for slabs which we do not want
2369 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2370 * In those cases, evaluate a pseudo-format called INTERNAL
2371 * which has an inline slab header and one extra page to
2372 * guarantee that it fits.
2373 *
2374 * Otherwise, see if using an OFFPAGE slab will improve our
2375 * efficiency.
2376 */
2377 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2378 fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2379 else
2380 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2381
2382 /*
2383 * Choose a slab size and format which satisfy the minimum efficiency.
2384 * Prefer the smallest slab size that meets the constraints.
2385 *
2386 * Start with a minimum slab size, to accommodate CACHESPREAD. Then,
2387 * for small items (up to PAGE_SIZE), the iteration increment is one
2388 * page; and for large items, the increment is one item.
2389 */
2390 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2391 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2392 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2393 rsize, i));
2394 for ( ; ; i++) {
2395 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2396 round_page(rsize * (i - 1) + keg->uk_size);
2397
2398 for (j = 0; j < nfmt; j++) {
2399 /* Only if we have no viable format yet. */
2400 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2401 kl.ipers > 0)
2402 continue;
2403
2404 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2405 if (kl_tmp.eff <= kl.eff)
2406 continue;
2407
2408 kl = kl_tmp;
2409
2410 CTR6(KTR_UMA, "keg %s layout: format %#x "
2411 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2412 keg->uk_name, kl.format, kl.ipers, rsize,
2413 kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2414
2415 /* Stop when we reach the minimum efficiency. */
2416 if (kl.eff >= UMA_MIN_EFF)
2417 break;
2418 }
2419
2420 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2421 slabsize >= SLAB_MAX_SETSIZE * rsize ||
2422 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2423 break;
2424 }
2425
2426 pages = atop(kl.slabsize);
2427 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2428 pages *= mp_maxid + 1;
2429
2430 keg->uk_rsize = rsize;
2431 keg->uk_ipers = kl.ipers;
2432 keg->uk_ppera = pages;
2433 keg->uk_flags |= kl.format;
2434
2435 /*
2436 * How do we find the slab header if it is offpage or if not all item
2437 * start addresses are in the same page? We could solve the latter
2438 * case with vaddr alignment, but we don't.
2439 */
2440 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2441 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2442 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2443 keg->uk_flags |= UMA_ZFLAG_HASH;
2444 else
2445 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2446 }
2447
2448 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2449 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2450 pages);
2451 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2452 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2453 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2454 keg->uk_ipers, pages));
2455 }
2456
2457 /*
2458 * Keg header ctor. This initializes all fields, locks, etc. And inserts
2459 * the keg onto the global keg list.
2460 *
2461 * Arguments/Returns follow uma_ctor specifications
2462 * udata Actually uma_kctor_args
2463 */
2464 static int
keg_ctor(void * mem,int size,void * udata,int flags)2465 keg_ctor(void *mem, int size, void *udata, int flags)
2466 {
2467 struct uma_kctor_args *arg = udata;
2468 uma_keg_t keg = mem;
2469 uma_zone_t zone;
2470 int i;
2471
2472 bzero(keg, size);
2473 keg->uk_size = arg->size;
2474 keg->uk_init = arg->uminit;
2475 keg->uk_fini = arg->fini;
2476 keg->uk_align = arg->align;
2477 keg->uk_reserve = 0;
2478 keg->uk_flags = arg->flags;
2479
2480 /*
2481 * We use a global round-robin policy by default. Zones with
2482 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2483 * case the iterator is never run.
2484 */
2485 keg->uk_dr.dr_policy = DOMAINSET_RR();
2486 keg->uk_dr.dr_iter = 0;
2487
2488 /*
2489 * The primary zone is passed to us at keg-creation time.
2490 */
2491 zone = arg->zone;
2492 keg->uk_name = zone->uz_name;
2493
2494 if (arg->flags & UMA_ZONE_ZINIT)
2495 keg->uk_init = zero_init;
2496
2497 if (arg->flags & UMA_ZONE_MALLOC)
2498 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2499
2500 #ifndef SMP
2501 keg->uk_flags &= ~UMA_ZONE_PCPU;
2502 #endif
2503
2504 keg_layout(keg);
2505
2506 /*
2507 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2508 * work on. Use round-robin for everything else.
2509 *
2510 * Zones may override the default by specifying either.
2511 */
2512 #ifdef NUMA
2513 if ((keg->uk_flags &
2514 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2515 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2516 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2517 keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2518 #endif
2519
2520 /*
2521 * If we haven't booted yet we need allocations to go through the
2522 * startup cache until the vm is ready.
2523 */
2524 #ifdef UMA_USE_DMAP
2525 if (keg->uk_ppera == 1)
2526 keg->uk_allocf = uma_small_alloc;
2527 else
2528 #endif
2529 if (booted < BOOT_KVA)
2530 keg->uk_allocf = startup_alloc;
2531 else if (keg->uk_flags & UMA_ZONE_PCPU)
2532 keg->uk_allocf = pcpu_page_alloc;
2533 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2534 keg->uk_allocf = contig_alloc;
2535 else
2536 keg->uk_allocf = page_alloc;
2537 #ifdef UMA_USE_DMAP
2538 if (keg->uk_ppera == 1)
2539 keg->uk_freef = uma_small_free;
2540 else
2541 #endif
2542 if (keg->uk_flags & UMA_ZONE_PCPU)
2543 keg->uk_freef = pcpu_page_free;
2544 else
2545 keg->uk_freef = page_free;
2546
2547 /*
2548 * Initialize keg's locks.
2549 */
2550 for (i = 0; i < vm_ndomains; i++)
2551 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2552
2553 /*
2554 * If we're putting the slab header in the actual page we need to
2555 * figure out where in each page it goes. See slab_sizeof
2556 * definition.
2557 */
2558 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2559 size_t shsize;
2560
2561 shsize = slab_sizeof(keg->uk_ipers);
2562 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2563 /*
2564 * The only way the following is possible is if with our
2565 * UMA_ALIGN_PTR adjustments we are now bigger than
2566 * UMA_SLAB_SIZE. I haven't checked whether this is
2567 * mathematically possible for all cases, so we make
2568 * sure here anyway.
2569 */
2570 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2571 ("zone %s ipers %d rsize %d size %d slab won't fit",
2572 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2573 }
2574
2575 if (keg->uk_flags & UMA_ZFLAG_HASH)
2576 hash_alloc(&keg->uk_hash, 0);
2577
2578 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2579
2580 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2581
2582 rw_wlock(&uma_rwlock);
2583 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2584 rw_wunlock(&uma_rwlock);
2585 return (0);
2586 }
2587
2588 static void
zone_kva_available(uma_zone_t zone,void * unused)2589 zone_kva_available(uma_zone_t zone, void *unused)
2590 {
2591 uma_keg_t keg;
2592
2593 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2594 return;
2595 KEG_GET(zone, keg);
2596
2597 if (keg->uk_allocf == startup_alloc) {
2598 /* Switch to the real allocator. */
2599 if (keg->uk_flags & UMA_ZONE_PCPU)
2600 keg->uk_allocf = pcpu_page_alloc;
2601 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2602 keg->uk_ppera > 1)
2603 keg->uk_allocf = contig_alloc;
2604 else
2605 keg->uk_allocf = page_alloc;
2606 }
2607 }
2608
2609 static void
zone_alloc_counters(uma_zone_t zone,void * unused)2610 zone_alloc_counters(uma_zone_t zone, void *unused)
2611 {
2612
2613 zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2614 zone->uz_frees = counter_u64_alloc(M_WAITOK);
2615 zone->uz_fails = counter_u64_alloc(M_WAITOK);
2616 zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2617 }
2618
2619 static void
zone_alloc_sysctl(uma_zone_t zone,void * unused)2620 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2621 {
2622 uma_zone_domain_t zdom;
2623 uma_domain_t dom;
2624 uma_keg_t keg;
2625 struct sysctl_oid *oid, *domainoid;
2626 int domains, i, cnt;
2627 static const char *nokeg = "cache zone";
2628 char *c;
2629
2630 /*
2631 * Make a sysctl safe copy of the zone name by removing
2632 * any special characters and handling dups by appending
2633 * an index.
2634 */
2635 if (zone->uz_namecnt != 0) {
2636 /* Count the number of decimal digits and '_' separator. */
2637 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2638 cnt /= 10;
2639 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2640 M_UMA, M_WAITOK);
2641 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2642 zone->uz_namecnt);
2643 } else
2644 zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2645 for (c = zone->uz_ctlname; *c != '\0'; c++)
2646 if (strchr("./\\ -", *c) != NULL)
2647 *c = '_';
2648
2649 /*
2650 * Basic parameters at the root.
2651 */
2652 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2653 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2654 oid = zone->uz_oid;
2655 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2656 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2657 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2658 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2659 zone, 0, sysctl_handle_uma_zone_flags, "A",
2660 "Allocator configuration flags");
2661 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2662 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2663 "Desired per-cpu cache size");
2664 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2665 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2666 "Maximum allowed per-cpu cache size");
2667
2668 /*
2669 * keg if present.
2670 */
2671 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2672 domains = vm_ndomains;
2673 else
2674 domains = 1;
2675 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2676 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2677 keg = zone->uz_keg;
2678 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2679 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2680 "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2681 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2682 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2683 "Real object size with alignment");
2684 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2685 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2686 "pages per-slab allocation");
2687 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2688 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2689 "items available per-slab");
2690 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2691 "align", CTLFLAG_RD, &keg->uk_align, 0,
2692 "item alignment mask");
2693 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2694 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2695 "number of reserved items");
2696 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2697 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2698 keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2699 "Slab utilization (100 - internal fragmentation %)");
2700 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2701 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2702 for (i = 0; i < domains; i++) {
2703 dom = &keg->uk_domain[i];
2704 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2705 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2706 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2707 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2708 "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2709 "Total pages currently allocated from VM");
2710 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2711 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2712 "Items free in the slab layer");
2713 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2714 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2715 "Unused slabs");
2716 }
2717 } else
2718 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2719 "name", CTLFLAG_RD, nokeg, "Keg name");
2720
2721 /*
2722 * Information about zone limits.
2723 */
2724 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2725 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2726 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2727 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2728 zone, 0, sysctl_handle_uma_zone_items, "QU",
2729 "Current number of allocated items if limit is set");
2730 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2731 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2732 "Maximum number of allocated and cached items");
2733 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2734 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2735 "Number of threads sleeping at limit");
2736 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2737 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2738 "Total zone limit sleeps");
2739 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2740 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2741 "Maximum number of items in each domain's bucket cache");
2742
2743 /*
2744 * Per-domain zone information.
2745 */
2746 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2747 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2748 for (i = 0; i < domains; i++) {
2749 zdom = ZDOM_GET(zone, i);
2750 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2751 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2752 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2753 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2754 "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2755 "number of items in this domain");
2756 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2757 "imax", CTLFLAG_RD, &zdom->uzd_imax,
2758 "maximum item count in this period");
2759 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2760 "imin", CTLFLAG_RD, &zdom->uzd_imin,
2761 "minimum item count in this period");
2762 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2763 "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2764 "Minimum item count in this batch");
2765 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2766 "wss", CTLFLAG_RD, &zdom->uzd_wss,
2767 "Working set size");
2768 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2769 "limin", CTLFLAG_RD, &zdom->uzd_limin,
2770 "Long time minimum item count");
2771 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2772 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2773 "Time since zero long time minimum item count");
2774 }
2775
2776 /*
2777 * General statistics.
2778 */
2779 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2780 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2781 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2782 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2783 zone, 1, sysctl_handle_uma_zone_cur, "I",
2784 "Current number of allocated items");
2785 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2786 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2787 zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2788 "Total allocation calls");
2789 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2790 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2791 zone, 0, sysctl_handle_uma_zone_frees, "QU",
2792 "Total free calls");
2793 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2794 "fails", CTLFLAG_RD, &zone->uz_fails,
2795 "Number of allocation failures");
2796 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2797 "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2798 "Free calls from the wrong domain");
2799 }
2800
2801 struct uma_zone_count {
2802 const char *name;
2803 int count;
2804 };
2805
2806 static void
zone_count(uma_zone_t zone,void * arg)2807 zone_count(uma_zone_t zone, void *arg)
2808 {
2809 struct uma_zone_count *cnt;
2810
2811 cnt = arg;
2812 /*
2813 * Some zones are rapidly created with identical names and
2814 * destroyed out of order. This can lead to gaps in the count.
2815 * Use one greater than the maximum observed for this name.
2816 */
2817 if (strcmp(zone->uz_name, cnt->name) == 0)
2818 cnt->count = MAX(cnt->count,
2819 zone->uz_namecnt + 1);
2820 }
2821
2822 static void
zone_update_caches(uma_zone_t zone)2823 zone_update_caches(uma_zone_t zone)
2824 {
2825 int i;
2826
2827 for (i = 0; i <= mp_maxid; i++) {
2828 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2829 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2830 }
2831 }
2832
2833 /*
2834 * Zone header ctor. This initializes all fields, locks, etc.
2835 *
2836 * Arguments/Returns follow uma_ctor specifications
2837 * udata Actually uma_zctor_args
2838 */
2839 static int
zone_ctor(void * mem,int size,void * udata,int flags)2840 zone_ctor(void *mem, int size, void *udata, int flags)
2841 {
2842 struct uma_zone_count cnt;
2843 struct uma_zctor_args *arg = udata;
2844 uma_zone_domain_t zdom;
2845 uma_zone_t zone = mem;
2846 uma_zone_t z;
2847 uma_keg_t keg;
2848 int i;
2849
2850 bzero(zone, size);
2851 zone->uz_name = arg->name;
2852 zone->uz_ctor = arg->ctor;
2853 zone->uz_dtor = arg->dtor;
2854 zone->uz_init = NULL;
2855 zone->uz_fini = NULL;
2856 zone->uz_sleeps = 0;
2857 zone->uz_bucket_size = 0;
2858 zone->uz_bucket_size_min = 0;
2859 zone->uz_bucket_size_max = BUCKET_MAX;
2860 zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2861 zone->uz_warning = NULL;
2862 /* The domain structures follow the cpu structures. */
2863 zone->uz_bucket_max = ULONG_MAX;
2864 timevalclear(&zone->uz_ratecheck);
2865
2866 /* Count the number of duplicate names. */
2867 cnt.name = arg->name;
2868 cnt.count = 0;
2869 zone_foreach(zone_count, &cnt);
2870 zone->uz_namecnt = cnt.count;
2871 ZONE_CROSS_LOCK_INIT(zone);
2872
2873 for (i = 0; i < vm_ndomains; i++) {
2874 zdom = ZDOM_GET(zone, i);
2875 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2876 STAILQ_INIT(&zdom->uzd_buckets);
2877 }
2878
2879 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2880 if (arg->uminit == trash_init && arg->fini == trash_fini)
2881 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2882 #elif defined(KASAN)
2883 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2884 arg->flags |= UMA_ZONE_NOKASAN;
2885 #endif
2886
2887 /*
2888 * This is a pure cache zone, no kegs.
2889 */
2890 if (arg->import) {
2891 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2892 ("zone_ctor: Import specified for non-cache zone."));
2893 zone->uz_flags = arg->flags;
2894 zone->uz_size = arg->size;
2895 zone->uz_import = arg->import;
2896 zone->uz_release = arg->release;
2897 zone->uz_arg = arg->arg;
2898 #ifdef NUMA
2899 /*
2900 * Cache zones are round-robin unless a policy is
2901 * specified because they may have incompatible
2902 * constraints.
2903 */
2904 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2905 zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2906 #endif
2907 rw_wlock(&uma_rwlock);
2908 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2909 rw_wunlock(&uma_rwlock);
2910 goto out;
2911 }
2912
2913 /*
2914 * Use the regular zone/keg/slab allocator.
2915 */
2916 zone->uz_import = zone_import;
2917 zone->uz_release = zone_release;
2918 zone->uz_arg = zone;
2919 keg = arg->keg;
2920
2921 if (arg->flags & UMA_ZONE_SECONDARY) {
2922 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2923 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2924 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2925 zone->uz_init = arg->uminit;
2926 zone->uz_fini = arg->fini;
2927 zone->uz_flags |= UMA_ZONE_SECONDARY;
2928 rw_wlock(&uma_rwlock);
2929 ZONE_LOCK(zone);
2930 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2931 if (LIST_NEXT(z, uz_link) == NULL) {
2932 LIST_INSERT_AFTER(z, zone, uz_link);
2933 break;
2934 }
2935 }
2936 ZONE_UNLOCK(zone);
2937 rw_wunlock(&uma_rwlock);
2938 } else if (keg == NULL) {
2939 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2940 arg->align, arg->flags)) == NULL)
2941 return (ENOMEM);
2942 } else {
2943 struct uma_kctor_args karg;
2944 int error;
2945
2946 /* We should only be here from uma_startup() */
2947 karg.size = arg->size;
2948 karg.uminit = arg->uminit;
2949 karg.fini = arg->fini;
2950 karg.align = arg->align;
2951 karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2952 karg.zone = zone;
2953 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2954 flags);
2955 if (error)
2956 return (error);
2957 }
2958
2959 /* Inherit properties from the keg. */
2960 zone->uz_keg = keg;
2961 zone->uz_size = keg->uk_size;
2962 zone->uz_flags |= (keg->uk_flags &
2963 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2964
2965 out:
2966 if (booted >= BOOT_PCPU) {
2967 zone_alloc_counters(zone, NULL);
2968 if (booted >= BOOT_RUNNING)
2969 zone_alloc_sysctl(zone, NULL);
2970 } else {
2971 zone->uz_allocs = EARLY_COUNTER;
2972 zone->uz_frees = EARLY_COUNTER;
2973 zone->uz_fails = EARLY_COUNTER;
2974 }
2975
2976 /* Caller requests a private SMR context. */
2977 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2978 zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2979
2980 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2981 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2982 ("Invalid zone flag combination"));
2983 if (arg->flags & UMA_ZFLAG_INTERNAL)
2984 zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2985 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2986 zone->uz_bucket_size = BUCKET_MAX;
2987 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2988 zone->uz_bucket_size = 0;
2989 else
2990 zone->uz_bucket_size = bucket_select(zone->uz_size);
2991 zone->uz_bucket_size_min = zone->uz_bucket_size;
2992 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2993 zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2994 zone_update_caches(zone);
2995
2996 return (0);
2997 }
2998
2999 /*
3000 * Keg header dtor. This frees all data, destroys locks, frees the hash
3001 * table and removes the keg from the global list.
3002 *
3003 * Arguments/Returns follow uma_dtor specifications
3004 * udata unused
3005 */
3006 static void
keg_dtor(void * arg,int size,void * udata)3007 keg_dtor(void *arg, int size, void *udata)
3008 {
3009 uma_keg_t keg;
3010 uint32_t free, pages;
3011 int i;
3012
3013 keg = (uma_keg_t)arg;
3014 free = pages = 0;
3015 for (i = 0; i < vm_ndomains; i++) {
3016 free += keg->uk_domain[i].ud_free_items;
3017 pages += keg->uk_domain[i].ud_pages;
3018 KEG_LOCK_FINI(keg, i);
3019 }
3020 if (pages != 0)
3021 printf("Freed UMA keg (%s) was not empty (%u items). "
3022 " Lost %u pages of memory.\n",
3023 keg->uk_name ? keg->uk_name : "",
3024 pages / keg->uk_ppera * keg->uk_ipers - free, pages);
3025
3026 hash_free(&keg->uk_hash);
3027 }
3028
3029 /*
3030 * Zone header dtor.
3031 *
3032 * Arguments/Returns follow uma_dtor specifications
3033 * udata unused
3034 */
3035 static void
zone_dtor(void * arg,int size,void * udata)3036 zone_dtor(void *arg, int size, void *udata)
3037 {
3038 uma_zone_t zone;
3039 uma_keg_t keg;
3040 int i;
3041
3042 zone = (uma_zone_t)arg;
3043
3044 sysctl_remove_oid(zone->uz_oid, 1, 1);
3045
3046 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3047 cache_drain(zone);
3048
3049 rw_wlock(&uma_rwlock);
3050 LIST_REMOVE(zone, uz_link);
3051 rw_wunlock(&uma_rwlock);
3052 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3053 keg = zone->uz_keg;
3054 keg->uk_reserve = 0;
3055 }
3056 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3057
3058 /*
3059 * We only destroy kegs from non secondary/non cache zones.
3060 */
3061 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3062 keg = zone->uz_keg;
3063 rw_wlock(&uma_rwlock);
3064 LIST_REMOVE(keg, uk_link);
3065 rw_wunlock(&uma_rwlock);
3066 zone_free_item(kegs, keg, NULL, SKIP_NONE);
3067 }
3068 counter_u64_free(zone->uz_allocs);
3069 counter_u64_free(zone->uz_frees);
3070 counter_u64_free(zone->uz_fails);
3071 counter_u64_free(zone->uz_xdomain);
3072 free(zone->uz_ctlname, M_UMA);
3073 for (i = 0; i < vm_ndomains; i++)
3074 ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3075 ZONE_CROSS_LOCK_FINI(zone);
3076 }
3077
3078 static void
zone_foreach_unlocked(void (* zfunc)(uma_zone_t,void * arg),void * arg)3079 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3080 {
3081 uma_keg_t keg;
3082 uma_zone_t zone;
3083
3084 LIST_FOREACH(keg, &uma_kegs, uk_link) {
3085 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3086 zfunc(zone, arg);
3087 }
3088 LIST_FOREACH(zone, &uma_cachezones, uz_link)
3089 zfunc(zone, arg);
3090 }
3091
3092 /*
3093 * Traverses every zone in the system and calls a callback
3094 *
3095 * Arguments:
3096 * zfunc A pointer to a function which accepts a zone
3097 * as an argument.
3098 *
3099 * Returns:
3100 * Nothing
3101 */
3102 static void
zone_foreach(void (* zfunc)(uma_zone_t,void * arg),void * arg)3103 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3104 {
3105
3106 rw_rlock(&uma_rwlock);
3107 zone_foreach_unlocked(zfunc, arg);
3108 rw_runlock(&uma_rwlock);
3109 }
3110
3111 /*
3112 * Initialize the kernel memory allocator. This is done after pages can be
3113 * allocated but before general KVA is available.
3114 */
3115 void
uma_startup1(vm_offset_t virtual_avail)3116 uma_startup1(vm_offset_t virtual_avail)
3117 {
3118 struct uma_zctor_args args;
3119 size_t ksize, zsize, size;
3120 uma_keg_t primarykeg;
3121 uintptr_t m;
3122 int domain;
3123 uint8_t pflag;
3124
3125 bootstart = bootmem = virtual_avail;
3126
3127 rw_init(&uma_rwlock, "UMA lock");
3128 sx_init(&uma_reclaim_lock, "umareclaim");
3129
3130 ksize = sizeof(struct uma_keg) +
3131 (sizeof(struct uma_domain) * vm_ndomains);
3132 ksize = roundup(ksize, UMA_SUPER_ALIGN);
3133 zsize = sizeof(struct uma_zone) +
3134 (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3135 (sizeof(struct uma_zone_domain) * vm_ndomains);
3136 zsize = roundup(zsize, UMA_SUPER_ALIGN);
3137
3138 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3139 size = (zsize * 2) + ksize;
3140 for (domain = 0; domain < vm_ndomains; domain++) {
3141 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3142 M_NOWAIT | M_ZERO);
3143 if (m != 0)
3144 break;
3145 }
3146 zones = (uma_zone_t)m;
3147 m += zsize;
3148 kegs = (uma_zone_t)m;
3149 m += zsize;
3150 primarykeg = (uma_keg_t)m;
3151
3152 /* "manually" create the initial zone */
3153 memset(&args, 0, sizeof(args));
3154 args.name = "UMA Kegs";
3155 args.size = ksize;
3156 args.ctor = keg_ctor;
3157 args.dtor = keg_dtor;
3158 args.uminit = zero_init;
3159 args.fini = NULL;
3160 args.keg = primarykeg;
3161 args.align = UMA_SUPER_ALIGN - 1;
3162 args.flags = UMA_ZFLAG_INTERNAL;
3163 zone_ctor(kegs, zsize, &args, M_WAITOK);
3164
3165 args.name = "UMA Zones";
3166 args.size = zsize;
3167 args.ctor = zone_ctor;
3168 args.dtor = zone_dtor;
3169 args.uminit = zero_init;
3170 args.fini = NULL;
3171 args.keg = NULL;
3172 args.align = UMA_SUPER_ALIGN - 1;
3173 args.flags = UMA_ZFLAG_INTERNAL;
3174 zone_ctor(zones, zsize, &args, M_WAITOK);
3175
3176 /* Now make zones for slab headers */
3177 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3178 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3179 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3180 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3181
3182 hashzone = uma_zcreate("UMA Hash",
3183 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3184 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3185
3186 bucket_init();
3187 smr_init();
3188 }
3189
3190 #ifndef UMA_USE_DMAP
3191 extern void vm_radix_reserve_kva(void);
3192 #endif
3193
3194 /*
3195 * Advertise the availability of normal kva allocations and switch to
3196 * the default back-end allocator. Marks the KVA we consumed on startup
3197 * as used in the map.
3198 */
3199 void
uma_startup2(void)3200 uma_startup2(void)
3201 {
3202
3203 if (bootstart != bootmem) {
3204 vm_map_lock(kernel_map);
3205 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3206 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3207 vm_map_unlock(kernel_map);
3208 }
3209
3210 #ifndef UMA_USE_DMAP
3211 /* Set up radix zone to use noobj_alloc. */
3212 vm_radix_reserve_kva();
3213 #endif
3214
3215 booted = BOOT_KVA;
3216 zone_foreach_unlocked(zone_kva_available, NULL);
3217 bucket_enable();
3218 }
3219
3220 /*
3221 * Allocate counters as early as possible so that boot-time allocations are
3222 * accounted more precisely.
3223 */
3224 static void
uma_startup_pcpu(void * arg __unused)3225 uma_startup_pcpu(void *arg __unused)
3226 {
3227
3228 zone_foreach_unlocked(zone_alloc_counters, NULL);
3229 booted = BOOT_PCPU;
3230 }
3231 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3232
3233 /*
3234 * Finish our initialization steps.
3235 */
3236 static void
uma_startup3(void * arg __unused)3237 uma_startup3(void *arg __unused)
3238 {
3239
3240 #ifdef INVARIANTS
3241 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3242 uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3243 uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3244 #endif
3245 zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3246 booted = BOOT_RUNNING;
3247
3248 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3249 EVENTHANDLER_PRI_FIRST);
3250 }
3251 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3252
3253 static void
uma_startup4(void * arg __unused)3254 uma_startup4(void *arg __unused)
3255 {
3256 TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
3257 NULL);
3258 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
3259 UMA_TIMEOUT * hz);
3260 }
3261 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
3262
3263 static void
uma_shutdown(void)3264 uma_shutdown(void)
3265 {
3266
3267 booted = BOOT_SHUTDOWN;
3268 }
3269
3270 static uma_keg_t
uma_kcreate(uma_zone_t zone,size_t size,uma_init uminit,uma_fini fini,int align,uint32_t flags)3271 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3272 int align, uint32_t flags)
3273 {
3274 struct uma_kctor_args args;
3275
3276 args.size = size;
3277 args.uminit = uminit;
3278 args.fini = fini;
3279 args.align = align;
3280 args.flags = flags;
3281 args.zone = zone;
3282 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3283 }
3284
3285
3286 static void
check_align_mask(unsigned int mask)3287 check_align_mask(unsigned int mask)
3288 {
3289
3290 KASSERT(powerof2(mask + 1),
3291 ("UMA: %s: Not the mask of a power of 2 (%#x)", __func__, mask));
3292 /*
3293 * Make sure the stored align mask doesn't have its highest bit set,
3294 * which would cause implementation-defined behavior when passing it as
3295 * the 'align' argument of uma_zcreate(). Such very large alignments do
3296 * not make sense anyway.
3297 */
3298 KASSERT(mask <= INT_MAX,
3299 ("UMA: %s: Mask too big (%#x)", __func__, mask));
3300 }
3301
3302 /* Public functions */
3303 /* See uma.h */
3304 void
uma_set_cache_align_mask(unsigned int mask)3305 uma_set_cache_align_mask(unsigned int mask)
3306 {
3307
3308 check_align_mask(mask);
3309 uma_cache_align_mask = mask;
3310 }
3311
3312 /* Returns the alignment mask to use to request cache alignment. */
3313 unsigned int
uma_get_cache_align_mask(void)3314 uma_get_cache_align_mask(void)
3315 {
3316 return (uma_cache_align_mask);
3317 }
3318
3319 /* See uma.h */
3320 uma_zone_t
uma_zcreate(const char * name,size_t size,uma_ctor ctor,uma_dtor dtor,uma_init uminit,uma_fini fini,int align,uint32_t flags)3321 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3322 uma_init uminit, uma_fini fini, int align, uint32_t flags)
3323
3324 {
3325 struct uma_zctor_args args;
3326 uma_zone_t res;
3327
3328 check_align_mask(align);
3329
3330 /* This stuff is essential for the zone ctor */
3331 memset(&args, 0, sizeof(args));
3332 args.name = name;
3333 args.size = size;
3334 args.ctor = ctor;
3335 args.dtor = dtor;
3336 args.uminit = uminit;
3337 args.fini = fini;
3338 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3339 /*
3340 * Inject procedures which check for memory use after free if we are
3341 * allowed to scramble the memory while it is not allocated. This
3342 * requires that: UMA is actually able to access the memory, no init
3343 * or fini procedures, no dependency on the initial value of the
3344 * memory, and no (legitimate) use of the memory after free. Note,
3345 * the ctor and dtor do not need to be empty.
3346 */
3347 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3348 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3349 args.uminit = trash_init;
3350 args.fini = trash_fini;
3351 }
3352 #endif
3353 args.align = align;
3354 args.flags = flags;
3355 args.keg = NULL;
3356
3357 sx_xlock(&uma_reclaim_lock);
3358 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3359 sx_xunlock(&uma_reclaim_lock);
3360
3361 return (res);
3362 }
3363
3364 /* See uma.h */
3365 uma_zone_t
uma_zsecond_create(const char * name,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_zone_t primary)3366 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3367 uma_init zinit, uma_fini zfini, uma_zone_t primary)
3368 {
3369 struct uma_zctor_args args;
3370 uma_keg_t keg;
3371 uma_zone_t res;
3372
3373 keg = primary->uz_keg;
3374 memset(&args, 0, sizeof(args));
3375 args.name = name;
3376 args.size = keg->uk_size;
3377 args.ctor = ctor;
3378 args.dtor = dtor;
3379 args.uminit = zinit;
3380 args.fini = zfini;
3381 args.align = keg->uk_align;
3382 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3383 args.keg = keg;
3384
3385 sx_xlock(&uma_reclaim_lock);
3386 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3387 sx_xunlock(&uma_reclaim_lock);
3388
3389 return (res);
3390 }
3391
3392 /* See uma.h */
3393 uma_zone_t
uma_zcache_create(const char * name,int size,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_import zimport,uma_release zrelease,void * arg,int flags)3394 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3395 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3396 void *arg, int flags)
3397 {
3398 struct uma_zctor_args args;
3399
3400 memset(&args, 0, sizeof(args));
3401 args.name = name;
3402 args.size = size;
3403 args.ctor = ctor;
3404 args.dtor = dtor;
3405 args.uminit = zinit;
3406 args.fini = zfini;
3407 args.import = zimport;
3408 args.release = zrelease;
3409 args.arg = arg;
3410 args.align = 0;
3411 args.flags = flags | UMA_ZFLAG_CACHE;
3412
3413 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3414 }
3415
3416 /* See uma.h */
3417 void
uma_zdestroy(uma_zone_t zone)3418 uma_zdestroy(uma_zone_t zone)
3419 {
3420
3421 /*
3422 * Large slabs are expensive to reclaim, so don't bother doing
3423 * unnecessary work if we're shutting down.
3424 */
3425 if (booted == BOOT_SHUTDOWN &&
3426 zone->uz_fini == NULL && zone->uz_release == zone_release)
3427 return;
3428 sx_xlock(&uma_reclaim_lock);
3429 zone_free_item(zones, zone, NULL, SKIP_NONE);
3430 sx_xunlock(&uma_reclaim_lock);
3431 }
3432
3433 void
uma_zwait(uma_zone_t zone)3434 uma_zwait(uma_zone_t zone)
3435 {
3436
3437 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3438 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3439 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3440 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3441 else
3442 uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3443 }
3444
3445 void *
uma_zalloc_pcpu_arg(uma_zone_t zone,void * udata,int flags)3446 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3447 {
3448 void *item, *pcpu_item;
3449 #ifdef SMP
3450 int i;
3451
3452 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3453 #endif
3454 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3455 if (item == NULL)
3456 return (NULL);
3457 pcpu_item = zpcpu_base_to_offset(item);
3458 if (flags & M_ZERO) {
3459 #ifdef SMP
3460 for (i = 0; i <= mp_maxid; i++)
3461 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3462 #else
3463 bzero(item, zone->uz_size);
3464 #endif
3465 }
3466 return (pcpu_item);
3467 }
3468
3469 /*
3470 * A stub while both regular and pcpu cases are identical.
3471 */
3472 void
uma_zfree_pcpu_arg(uma_zone_t zone,void * pcpu_item,void * udata)3473 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3474 {
3475 void *item;
3476
3477 #ifdef SMP
3478 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3479 #endif
3480
3481 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3482 if (pcpu_item == NULL)
3483 return;
3484
3485 item = zpcpu_offset_to_base(pcpu_item);
3486 uma_zfree_arg(zone, item, udata);
3487 }
3488
3489 static inline void *
item_ctor(uma_zone_t zone,int uz_flags,int size,void * udata,int flags,void * item)3490 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3491 void *item)
3492 {
3493 #ifdef INVARIANTS
3494 bool skipdbg;
3495 #endif
3496
3497 kasan_mark_item_valid(zone, item);
3498 kmsan_mark_item_uninitialized(zone, item);
3499
3500 #ifdef INVARIANTS
3501 skipdbg = uma_dbg_zskip(zone, item);
3502 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3503 zone->uz_ctor != trash_ctor)
3504 trash_ctor(item, size, zone, flags);
3505 #endif
3506
3507 /* Check flags before loading ctor pointer. */
3508 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3509 __predict_false(zone->uz_ctor != NULL) &&
3510 zone->uz_ctor(item, size, udata, flags) != 0) {
3511 counter_u64_add(zone->uz_fails, 1);
3512 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3513 return (NULL);
3514 }
3515 #ifdef INVARIANTS
3516 if (!skipdbg)
3517 uma_dbg_alloc(zone, NULL, item);
3518 #endif
3519 if (__predict_false(flags & M_ZERO))
3520 return (memset(item, 0, size));
3521
3522 return (item);
3523 }
3524
3525 static inline void
item_dtor(uma_zone_t zone,void * item,int size,void * udata,enum zfreeskip skip)3526 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3527 enum zfreeskip skip)
3528 {
3529 #ifdef INVARIANTS
3530 bool skipdbg;
3531
3532 skipdbg = uma_dbg_zskip(zone, item);
3533 if (skip == SKIP_NONE && !skipdbg) {
3534 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3535 uma_dbg_free(zone, udata, item);
3536 else
3537 uma_dbg_free(zone, NULL, item);
3538 }
3539 #endif
3540 if (__predict_true(skip < SKIP_DTOR)) {
3541 if (zone->uz_dtor != NULL)
3542 zone->uz_dtor(item, size, udata);
3543 #ifdef INVARIANTS
3544 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3545 zone->uz_dtor != trash_dtor)
3546 trash_dtor(item, size, zone);
3547 #endif
3548 }
3549 kasan_mark_item_invalid(zone, item);
3550 }
3551
3552 #ifdef NUMA
3553 static int
item_domain(void * item)3554 item_domain(void *item)
3555 {
3556 int domain;
3557
3558 domain = vm_phys_domain(vtophys(item));
3559 KASSERT(domain >= 0 && domain < vm_ndomains,
3560 ("%s: unknown domain for item %p", __func__, item));
3561 return (domain);
3562 }
3563 #endif
3564
3565 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3566 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3567 #include <sys/stack.h>
3568 #endif
3569 #define UMA_ZALLOC_DEBUG
3570 static int
uma_zalloc_debug(uma_zone_t zone,void ** itemp,void * udata,int flags)3571 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3572 {
3573 int error;
3574
3575 error = 0;
3576 #ifdef WITNESS
3577 if (flags & M_WAITOK) {
3578 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3579 "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3580 }
3581 #endif
3582
3583 #ifdef INVARIANTS
3584 KASSERT((flags & M_EXEC) == 0,
3585 ("uma_zalloc_debug: called with M_EXEC"));
3586 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3587 ("uma_zalloc_debug: called within spinlock or critical section"));
3588 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3589 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3590
3591 _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3592 "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3593 #if 0
3594 /*
3595 * Give the #elif clause time to find problems, then remove it
3596 * and enable this. (Remove <sys/stack.h> above, too.)
3597 */
3598 KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3599 (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3600 ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3601 #elif defined(DDB) || defined(STACK)
3602 if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3603 (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3604 static int stack_count;
3605 struct stack st;
3606
3607 if (stack_count < 10) {
3608 ++stack_count;
3609 printf("uma_zalloc* called with bad WAIT flags:\n");
3610 stack_save(&st);
3611 stack_print(&st);
3612 }
3613 }
3614 #endif
3615 #endif
3616
3617 #ifdef DEBUG_MEMGUARD
3618 if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3619 memguard_cmp_zone(zone)) {
3620 void *item;
3621 item = memguard_alloc(zone->uz_size, flags);
3622 if (item != NULL) {
3623 error = EJUSTRETURN;
3624 if (zone->uz_init != NULL &&
3625 zone->uz_init(item, zone->uz_size, flags) != 0) {
3626 *itemp = NULL;
3627 return (error);
3628 }
3629 if (zone->uz_ctor != NULL &&
3630 zone->uz_ctor(item, zone->uz_size, udata,
3631 flags) != 0) {
3632 counter_u64_add(zone->uz_fails, 1);
3633 if (zone->uz_fini != NULL)
3634 zone->uz_fini(item, zone->uz_size);
3635 *itemp = NULL;
3636 return (error);
3637 }
3638 *itemp = item;
3639 return (error);
3640 }
3641 /* This is unfortunate but should not be fatal. */
3642 }
3643 #endif
3644 return (error);
3645 }
3646
3647 static int
uma_zfree_debug(uma_zone_t zone,void * item,void * udata)3648 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3649 {
3650 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3651 ("uma_zfree_debug: called with spinlock or critical section held"));
3652
3653 #ifdef DEBUG_MEMGUARD
3654 if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3655 is_memguard_addr(item)) {
3656 if (zone->uz_dtor != NULL)
3657 zone->uz_dtor(item, zone->uz_size, udata);
3658 if (zone->uz_fini != NULL)
3659 zone->uz_fini(item, zone->uz_size);
3660 memguard_free(item);
3661 return (EJUSTRETURN);
3662 }
3663 #endif
3664 return (0);
3665 }
3666 #endif
3667
3668 static inline void *
cache_alloc_item(uma_zone_t zone,uma_cache_t cache,uma_cache_bucket_t bucket,void * udata,int flags)3669 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3670 void *udata, int flags)
3671 {
3672 void *item;
3673 int size, uz_flags;
3674
3675 item = cache_bucket_pop(cache, bucket);
3676 size = cache_uz_size(cache);
3677 uz_flags = cache_uz_flags(cache);
3678 critical_exit();
3679 return (item_ctor(zone, uz_flags, size, udata, flags, item));
3680 }
3681
3682 static __noinline void *
cache_alloc_retry(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3683 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3684 {
3685 uma_cache_bucket_t bucket;
3686 int domain;
3687
3688 while (cache_alloc(zone, cache, udata, flags)) {
3689 cache = &zone->uz_cpu[curcpu];
3690 bucket = &cache->uc_allocbucket;
3691 if (__predict_false(bucket->ucb_cnt == 0))
3692 continue;
3693 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3694 }
3695 critical_exit();
3696
3697 /*
3698 * We can not get a bucket so try to return a single item.
3699 */
3700 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3701 domain = PCPU_GET(domain);
3702 else
3703 domain = UMA_ANYDOMAIN;
3704 return (zone_alloc_item(zone, udata, domain, flags));
3705 }
3706
3707 /* See uma.h */
3708 void *
uma_zalloc_smr(uma_zone_t zone,int flags)3709 uma_zalloc_smr(uma_zone_t zone, int flags)
3710 {
3711 uma_cache_bucket_t bucket;
3712 uma_cache_t cache;
3713
3714 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3715 zone, flags);
3716
3717 #ifdef UMA_ZALLOC_DEBUG
3718 void *item;
3719
3720 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3721 ("uma_zalloc_arg: called with non-SMR zone."));
3722 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3723 return (item);
3724 #endif
3725
3726 critical_enter();
3727 cache = &zone->uz_cpu[curcpu];
3728 bucket = &cache->uc_allocbucket;
3729 if (__predict_false(bucket->ucb_cnt == 0))
3730 return (cache_alloc_retry(zone, cache, NULL, flags));
3731 return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3732 }
3733
3734 /* See uma.h */
3735 void *
uma_zalloc_arg(uma_zone_t zone,void * udata,int flags)3736 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3737 {
3738 uma_cache_bucket_t bucket;
3739 uma_cache_t cache;
3740
3741 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3742 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3743
3744 /* This is the fast path allocation */
3745 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3746 zone, flags);
3747
3748 #ifdef UMA_ZALLOC_DEBUG
3749 void *item;
3750
3751 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3752 ("uma_zalloc_arg: called with SMR zone."));
3753 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3754 return (item);
3755 #endif
3756
3757 /*
3758 * If possible, allocate from the per-CPU cache. There are two
3759 * requirements for safe access to the per-CPU cache: (1) the thread
3760 * accessing the cache must not be preempted or yield during access,
3761 * and (2) the thread must not migrate CPUs without switching which
3762 * cache it accesses. We rely on a critical section to prevent
3763 * preemption and migration. We release the critical section in
3764 * order to acquire the zone mutex if we are unable to allocate from
3765 * the current cache; when we re-acquire the critical section, we
3766 * must detect and handle migration if it has occurred.
3767 */
3768 critical_enter();
3769 cache = &zone->uz_cpu[curcpu];
3770 bucket = &cache->uc_allocbucket;
3771 if (__predict_false(bucket->ucb_cnt == 0))
3772 return (cache_alloc_retry(zone, cache, udata, flags));
3773 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3774 }
3775
3776 /*
3777 * Replenish an alloc bucket and possibly restore an old one. Called in
3778 * a critical section. Returns in a critical section.
3779 *
3780 * A false return value indicates an allocation failure.
3781 * A true return value indicates success and the caller should retry.
3782 */
3783 static __noinline bool
cache_alloc(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3784 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3785 {
3786 uma_bucket_t bucket;
3787 int curdomain, domain;
3788 bool new;
3789
3790 CRITICAL_ASSERT(curthread);
3791
3792 /*
3793 * If we have run out of items in our alloc bucket see
3794 * if we can switch with the free bucket.
3795 *
3796 * SMR Zones can't re-use the free bucket until the sequence has
3797 * expired.
3798 */
3799 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3800 cache->uc_freebucket.ucb_cnt != 0) {
3801 cache_bucket_swap(&cache->uc_freebucket,
3802 &cache->uc_allocbucket);
3803 return (true);
3804 }
3805
3806 /*
3807 * Discard any empty allocation bucket while we hold no locks.
3808 */
3809 bucket = cache_bucket_unload_alloc(cache);
3810 critical_exit();
3811
3812 if (bucket != NULL) {
3813 KASSERT(bucket->ub_cnt == 0,
3814 ("cache_alloc: Entered with non-empty alloc bucket."));
3815 bucket_free(zone, bucket, udata);
3816 }
3817
3818 /*
3819 * Attempt to retrieve the item from the per-CPU cache has failed, so
3820 * we must go back to the zone. This requires the zdom lock, so we
3821 * must drop the critical section, then re-acquire it when we go back
3822 * to the cache. Since the critical section is released, we may be
3823 * preempted or migrate. As such, make sure not to maintain any
3824 * thread-local state specific to the cache from prior to releasing
3825 * the critical section.
3826 */
3827 domain = PCPU_GET(domain);
3828 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3829 VM_DOMAIN_EMPTY(domain))
3830 domain = zone_domain_highest(zone, domain);
3831 bucket = cache_fetch_bucket(zone, cache, domain);
3832 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3833 bucket = zone_alloc_bucket(zone, udata, domain, flags);
3834 new = true;
3835 } else {
3836 new = false;
3837 }
3838
3839 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3840 zone->uz_name, zone, bucket);
3841 if (bucket == NULL) {
3842 critical_enter();
3843 return (false);
3844 }
3845
3846 /*
3847 * See if we lost the race or were migrated. Cache the
3848 * initialized bucket to make this less likely or claim
3849 * the memory directly.
3850 */
3851 critical_enter();
3852 cache = &zone->uz_cpu[curcpu];
3853 if (cache->uc_allocbucket.ucb_bucket == NULL &&
3854 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3855 (curdomain = PCPU_GET(domain)) == domain ||
3856 VM_DOMAIN_EMPTY(curdomain))) {
3857 if (new)
3858 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3859 bucket->ub_cnt);
3860 cache_bucket_load_alloc(cache, bucket);
3861 return (true);
3862 }
3863
3864 /*
3865 * We lost the race, release this bucket and start over.
3866 */
3867 critical_exit();
3868 zone_put_bucket(zone, domain, bucket, udata, !new);
3869 critical_enter();
3870
3871 return (true);
3872 }
3873
3874 void *
uma_zalloc_domain(uma_zone_t zone,void * udata,int domain,int flags)3875 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3876 {
3877 #ifdef NUMA
3878 uma_bucket_t bucket;
3879 uma_zone_domain_t zdom;
3880 void *item;
3881 #endif
3882
3883 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3884 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3885
3886 /* This is the fast path allocation */
3887 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3888 zone->uz_name, zone, domain, flags);
3889
3890 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3891 ("uma_zalloc_domain: called with SMR zone."));
3892 #ifdef NUMA
3893 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3894 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3895
3896 if (vm_ndomains == 1)
3897 return (uma_zalloc_arg(zone, udata, flags));
3898
3899 #ifdef UMA_ZALLOC_DEBUG
3900 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3901 return (item);
3902 #endif
3903
3904 /*
3905 * Try to allocate from the bucket cache before falling back to the keg.
3906 * We could try harder and attempt to allocate from per-CPU caches or
3907 * the per-domain cross-domain buckets, but the complexity is probably
3908 * not worth it. It is more important that frees of previous
3909 * cross-domain allocations do not blow up the cache.
3910 */
3911 zdom = zone_domain_lock(zone, domain);
3912 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3913 item = bucket->ub_bucket[bucket->ub_cnt - 1];
3914 #ifdef INVARIANTS
3915 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3916 #endif
3917 bucket->ub_cnt--;
3918 zone_put_bucket(zone, domain, bucket, udata, true);
3919 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3920 flags, item);
3921 if (item != NULL) {
3922 KASSERT(item_domain(item) == domain,
3923 ("%s: bucket cache item %p from wrong domain",
3924 __func__, item));
3925 counter_u64_add(zone->uz_allocs, 1);
3926 }
3927 return (item);
3928 }
3929 ZDOM_UNLOCK(zdom);
3930 return (zone_alloc_item(zone, udata, domain, flags));
3931 #else
3932 return (uma_zalloc_arg(zone, udata, flags));
3933 #endif
3934 }
3935
3936 /*
3937 * Find a slab with some space. Prefer slabs that are partially used over those
3938 * that are totally full. This helps to reduce fragmentation.
3939 *
3940 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check
3941 * only 'domain'.
3942 */
3943 static uma_slab_t
keg_first_slab(uma_keg_t keg,int domain,bool rr)3944 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3945 {
3946 uma_domain_t dom;
3947 uma_slab_t slab;
3948 int start;
3949
3950 KASSERT(domain >= 0 && domain < vm_ndomains,
3951 ("keg_first_slab: domain %d out of range", domain));
3952 KEG_LOCK_ASSERT(keg, domain);
3953
3954 slab = NULL;
3955 start = domain;
3956 do {
3957 dom = &keg->uk_domain[domain];
3958 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3959 return (slab);
3960 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3961 LIST_REMOVE(slab, us_link);
3962 dom->ud_free_slabs--;
3963 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3964 return (slab);
3965 }
3966 if (rr)
3967 domain = (domain + 1) % vm_ndomains;
3968 } while (domain != start);
3969
3970 return (NULL);
3971 }
3972
3973 /*
3974 * Fetch an existing slab from a free or partial list. Returns with the
3975 * keg domain lock held if a slab was found or unlocked if not.
3976 */
3977 static uma_slab_t
keg_fetch_free_slab(uma_keg_t keg,int domain,bool rr,int flags)3978 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3979 {
3980 uma_slab_t slab;
3981 uint32_t reserve;
3982
3983 /* HASH has a single free list. */
3984 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3985 domain = 0;
3986
3987 KEG_LOCK(keg, domain);
3988 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3989 if (keg->uk_domain[domain].ud_free_items <= reserve ||
3990 (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3991 KEG_UNLOCK(keg, domain);
3992 return (NULL);
3993 }
3994 return (slab);
3995 }
3996
3997 static uma_slab_t
keg_fetch_slab(uma_keg_t keg,uma_zone_t zone,int rdomain,const int flags)3998 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3999 {
4000 struct vm_domainset_iter di;
4001 uma_slab_t slab;
4002 int aflags, domain;
4003 bool rr;
4004
4005 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
4006 ("%s: invalid flags %#x", __func__, flags));
4007
4008 restart:
4009 /*
4010 * Use the keg's policy if upper layers haven't already specified a
4011 * domain (as happens with first-touch zones).
4012 *
4013 * To avoid races we run the iterator with the keg lock held, but that
4014 * means that we cannot allow the vm_domainset layer to sleep. Thus,
4015 * clear M_WAITOK and handle low memory conditions locally.
4016 */
4017 rr = rdomain == UMA_ANYDOMAIN;
4018 if (rr) {
4019 aflags = (flags & ~M_WAITOK) | M_NOWAIT;
4020 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4021 &aflags);
4022 } else {
4023 aflags = flags;
4024 domain = rdomain;
4025 }
4026
4027 for (;;) {
4028 slab = keg_fetch_free_slab(keg, domain, rr, flags);
4029 if (slab != NULL)
4030 return (slab);
4031
4032 /*
4033 * M_NOVM is used to break the recursion that can otherwise
4034 * occur if low-level memory management routines use UMA.
4035 */
4036 if ((flags & M_NOVM) == 0) {
4037 slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
4038 if (slab != NULL)
4039 return (slab);
4040 }
4041
4042 if (!rr) {
4043 if ((flags & M_USE_RESERVE) != 0) {
4044 /*
4045 * Drain reserves from other domains before
4046 * giving up or sleeping. It may be useful to
4047 * support per-domain reserves eventually.
4048 */
4049 rdomain = UMA_ANYDOMAIN;
4050 goto restart;
4051 }
4052 if ((flags & M_WAITOK) == 0)
4053 break;
4054 vm_wait_domain(domain);
4055 } else if (vm_domainset_iter_policy(&di, &domain) != 0) {
4056 if ((flags & M_WAITOK) != 0) {
4057 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4058 goto restart;
4059 }
4060 break;
4061 }
4062 }
4063
4064 /*
4065 * We might not have been able to get a slab but another cpu
4066 * could have while we were unlocked. Check again before we
4067 * fail.
4068 */
4069 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4070 return (slab);
4071
4072 return (NULL);
4073 }
4074
4075 static void *
slab_alloc_item(uma_keg_t keg,uma_slab_t slab)4076 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4077 {
4078 uma_domain_t dom;
4079 void *item;
4080 int freei;
4081
4082 KEG_LOCK_ASSERT(keg, slab->us_domain);
4083
4084 dom = &keg->uk_domain[slab->us_domain];
4085 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4086 BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4087 item = slab_item(slab, keg, freei);
4088 slab->us_freecount--;
4089 dom->ud_free_items--;
4090
4091 /*
4092 * Move this slab to the full list. It must be on the partial list, so
4093 * we do not need to update the free slab count. In particular,
4094 * keg_fetch_slab() always returns slabs on the partial list.
4095 */
4096 if (slab->us_freecount == 0) {
4097 LIST_REMOVE(slab, us_link);
4098 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4099 }
4100
4101 return (item);
4102 }
4103
4104 static int
zone_import(void * arg,void ** bucket,int max,int domain,int flags)4105 zone_import(void *arg, void **bucket, int max, int domain, int flags)
4106 {
4107 uma_domain_t dom;
4108 uma_zone_t zone;
4109 uma_slab_t slab;
4110 uma_keg_t keg;
4111 #ifdef NUMA
4112 int stripe;
4113 #endif
4114 int i;
4115
4116 zone = arg;
4117 slab = NULL;
4118 keg = zone->uz_keg;
4119 /* Try to keep the buckets totally full */
4120 for (i = 0; i < max; ) {
4121 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4122 break;
4123 #ifdef NUMA
4124 stripe = howmany(max, vm_ndomains);
4125 #endif
4126 dom = &keg->uk_domain[slab->us_domain];
4127 do {
4128 bucket[i++] = slab_alloc_item(keg, slab);
4129 if (keg->uk_reserve > 0 &&
4130 dom->ud_free_items <= keg->uk_reserve) {
4131 /*
4132 * Avoid depleting the reserve after a
4133 * successful item allocation, even if
4134 * M_USE_RESERVE is specified.
4135 */
4136 KEG_UNLOCK(keg, slab->us_domain);
4137 goto out;
4138 }
4139 #ifdef NUMA
4140 /*
4141 * If the zone is striped we pick a new slab for every
4142 * N allocations. Eliminating this conditional will
4143 * instead pick a new domain for each bucket rather
4144 * than stripe within each bucket. The current option
4145 * produces more fragmentation and requires more cpu
4146 * time but yields better distribution.
4147 */
4148 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4149 vm_ndomains > 1 && --stripe == 0)
4150 break;
4151 #endif
4152 } while (slab->us_freecount != 0 && i < max);
4153 KEG_UNLOCK(keg, slab->us_domain);
4154
4155 /* Don't block if we allocated any successfully. */
4156 flags &= ~M_WAITOK;
4157 flags |= M_NOWAIT;
4158 }
4159 out:
4160 return i;
4161 }
4162
4163 static int
zone_alloc_limit_hard(uma_zone_t zone,int count,int flags)4164 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4165 {
4166 uint64_t old, new, total, max;
4167
4168 /*
4169 * The hard case. We're going to sleep because there were existing
4170 * sleepers or because we ran out of items. This routine enforces
4171 * fairness by keeping fifo order.
4172 *
4173 * First release our ill gotten gains and make some noise.
4174 */
4175 for (;;) {
4176 zone_free_limit(zone, count);
4177 zone_log_warning(zone);
4178 zone_maxaction(zone);
4179 if (flags & M_NOWAIT)
4180 return (0);
4181
4182 /*
4183 * We need to allocate an item or set ourself as a sleeper
4184 * while the sleepq lock is held to avoid wakeup races. This
4185 * is essentially a home rolled semaphore.
4186 */
4187 sleepq_lock(&zone->uz_max_items);
4188 old = zone->uz_items;
4189 do {
4190 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4191 /* Cache the max since we will evaluate twice. */
4192 max = zone->uz_max_items;
4193 if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4194 UZ_ITEMS_COUNT(old) >= max)
4195 new = old + UZ_ITEMS_SLEEPER;
4196 else
4197 new = old + MIN(count, max - old);
4198 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4199
4200 /* We may have successfully allocated under the sleepq lock. */
4201 if (UZ_ITEMS_SLEEPERS(new) == 0) {
4202 sleepq_release(&zone->uz_max_items);
4203 return (new - old);
4204 }
4205
4206 /*
4207 * This is in a different cacheline from uz_items so that we
4208 * don't constantly invalidate the fastpath cacheline when we
4209 * adjust item counts. This could be limited to toggling on
4210 * transitions.
4211 */
4212 atomic_add_32(&zone->uz_sleepers, 1);
4213 atomic_add_64(&zone->uz_sleeps, 1);
4214
4215 /*
4216 * We have added ourselves as a sleeper. The sleepq lock
4217 * protects us from wakeup races. Sleep now and then retry.
4218 */
4219 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4220 sleepq_wait(&zone->uz_max_items, PVM);
4221
4222 /*
4223 * After wakeup, remove ourselves as a sleeper and try
4224 * again. We no longer have the sleepq lock for protection.
4225 *
4226 * Subract ourselves as a sleeper while attempting to add
4227 * our count.
4228 */
4229 atomic_subtract_32(&zone->uz_sleepers, 1);
4230 old = atomic_fetchadd_64(&zone->uz_items,
4231 -(UZ_ITEMS_SLEEPER - count));
4232 /* We're no longer a sleeper. */
4233 old -= UZ_ITEMS_SLEEPER;
4234
4235 /*
4236 * If we're still at the limit, restart. Notably do not
4237 * block on other sleepers. Cache the max value to protect
4238 * against changes via sysctl.
4239 */
4240 total = UZ_ITEMS_COUNT(old);
4241 max = zone->uz_max_items;
4242 if (total >= max)
4243 continue;
4244 /* Truncate if necessary, otherwise wake other sleepers. */
4245 if (total + count > max) {
4246 zone_free_limit(zone, total + count - max);
4247 count = max - total;
4248 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4249 wakeup_one(&zone->uz_max_items);
4250
4251 return (count);
4252 }
4253 }
4254
4255 /*
4256 * Allocate 'count' items from our max_items limit. Returns the number
4257 * available. If M_NOWAIT is not specified it will sleep until at least
4258 * one item can be allocated.
4259 */
4260 static int
zone_alloc_limit(uma_zone_t zone,int count,int flags)4261 zone_alloc_limit(uma_zone_t zone, int count, int flags)
4262 {
4263 uint64_t old;
4264 uint64_t max;
4265
4266 max = zone->uz_max_items;
4267 MPASS(max > 0);
4268
4269 /*
4270 * We expect normal allocations to succeed with a simple
4271 * fetchadd.
4272 */
4273 old = atomic_fetchadd_64(&zone->uz_items, count);
4274 if (__predict_true(old + count <= max))
4275 return (count);
4276
4277 /*
4278 * If we had some items and no sleepers just return the
4279 * truncated value. We have to release the excess space
4280 * though because that may wake sleepers who weren't woken
4281 * because we were temporarily over the limit.
4282 */
4283 if (old < max) {
4284 zone_free_limit(zone, (old + count) - max);
4285 return (max - old);
4286 }
4287 return (zone_alloc_limit_hard(zone, count, flags));
4288 }
4289
4290 /*
4291 * Free a number of items back to the limit.
4292 */
4293 static void
zone_free_limit(uma_zone_t zone,int count)4294 zone_free_limit(uma_zone_t zone, int count)
4295 {
4296 uint64_t old;
4297
4298 MPASS(count > 0);
4299
4300 /*
4301 * In the common case we either have no sleepers or
4302 * are still over the limit and can just return.
4303 */
4304 old = atomic_fetchadd_64(&zone->uz_items, -count);
4305 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4306 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4307 return;
4308
4309 /*
4310 * Moderate the rate of wakeups. Sleepers will continue
4311 * to generate wakeups if necessary.
4312 */
4313 wakeup_one(&zone->uz_max_items);
4314 }
4315
4316 static uma_bucket_t
zone_alloc_bucket(uma_zone_t zone,void * udata,int domain,int flags)4317 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4318 {
4319 uma_bucket_t bucket;
4320 int error, maxbucket, cnt;
4321
4322 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4323 zone, domain);
4324
4325 /* Avoid allocs targeting empty domains. */
4326 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4327 domain = UMA_ANYDOMAIN;
4328 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4329 domain = UMA_ANYDOMAIN;
4330
4331 if (zone->uz_max_items > 0)
4332 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4333 M_NOWAIT);
4334 else
4335 maxbucket = zone->uz_bucket_size;
4336 if (maxbucket == 0)
4337 return (NULL);
4338
4339 /* Don't wait for buckets, preserve caller's NOVM setting. */
4340 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4341 if (bucket == NULL) {
4342 cnt = 0;
4343 goto out;
4344 }
4345
4346 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4347 MIN(maxbucket, bucket->ub_entries), domain, flags);
4348
4349 /*
4350 * Initialize the memory if necessary.
4351 */
4352 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4353 int i;
4354
4355 for (i = 0; i < bucket->ub_cnt; i++) {
4356 kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4357 error = zone->uz_init(bucket->ub_bucket[i],
4358 zone->uz_size, flags);
4359 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4360 if (error != 0)
4361 break;
4362 }
4363
4364 /*
4365 * If we couldn't initialize the whole bucket, put the
4366 * rest back onto the freelist.
4367 */
4368 if (i != bucket->ub_cnt) {
4369 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4370 bucket->ub_cnt - i);
4371 #ifdef INVARIANTS
4372 bzero(&bucket->ub_bucket[i],
4373 sizeof(void *) * (bucket->ub_cnt - i));
4374 #endif
4375 bucket->ub_cnt = i;
4376 }
4377 }
4378
4379 cnt = bucket->ub_cnt;
4380 if (bucket->ub_cnt == 0) {
4381 bucket_free(zone, bucket, udata);
4382 counter_u64_add(zone->uz_fails, 1);
4383 bucket = NULL;
4384 }
4385 out:
4386 if (zone->uz_max_items > 0 && cnt < maxbucket)
4387 zone_free_limit(zone, maxbucket - cnt);
4388
4389 return (bucket);
4390 }
4391
4392 /*
4393 * Allocates a single item from a zone.
4394 *
4395 * Arguments
4396 * zone The zone to alloc for.
4397 * udata The data to be passed to the constructor.
4398 * domain The domain to allocate from or UMA_ANYDOMAIN.
4399 * flags M_WAITOK, M_NOWAIT, M_ZERO.
4400 *
4401 * Returns
4402 * NULL if there is no memory and M_NOWAIT is set
4403 * An item if successful
4404 */
4405
4406 static void *
zone_alloc_item(uma_zone_t zone,void * udata,int domain,int flags)4407 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4408 {
4409 void *item;
4410
4411 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4412 counter_u64_add(zone->uz_fails, 1);
4413 return (NULL);
4414 }
4415
4416 /* Avoid allocs targeting empty domains. */
4417 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4418 domain = UMA_ANYDOMAIN;
4419
4420 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4421 goto fail_cnt;
4422
4423 /*
4424 * We have to call both the zone's init (not the keg's init)
4425 * and the zone's ctor. This is because the item is going from
4426 * a keg slab directly to the user, and the user is expecting it
4427 * to be both zone-init'd as well as zone-ctor'd.
4428 */
4429 if (zone->uz_init != NULL) {
4430 int error;
4431
4432 kasan_mark_item_valid(zone, item);
4433 error = zone->uz_init(item, zone->uz_size, flags);
4434 kasan_mark_item_invalid(zone, item);
4435 if (error != 0) {
4436 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4437 goto fail_cnt;
4438 }
4439 }
4440 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4441 item);
4442 if (item == NULL)
4443 goto fail;
4444
4445 counter_u64_add(zone->uz_allocs, 1);
4446 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4447 zone->uz_name, zone);
4448
4449 return (item);
4450
4451 fail_cnt:
4452 counter_u64_add(zone->uz_fails, 1);
4453 fail:
4454 if (zone->uz_max_items > 0)
4455 zone_free_limit(zone, 1);
4456 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4457 zone->uz_name, zone);
4458
4459 return (NULL);
4460 }
4461
4462 /* See uma.h */
4463 void
uma_zfree_smr(uma_zone_t zone,void * item)4464 uma_zfree_smr(uma_zone_t zone, void *item)
4465 {
4466 uma_cache_t cache;
4467 uma_cache_bucket_t bucket;
4468 int itemdomain;
4469 #ifdef NUMA
4470 int uz_flags;
4471 #endif
4472
4473 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4474 zone->uz_name, zone, item);
4475
4476 #ifdef UMA_ZALLOC_DEBUG
4477 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4478 ("uma_zfree_smr: called with non-SMR zone."));
4479 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4480 SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4481 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4482 return;
4483 #endif
4484 cache = &zone->uz_cpu[curcpu];
4485 itemdomain = 0;
4486 #ifdef NUMA
4487 uz_flags = cache_uz_flags(cache);
4488 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4489 itemdomain = item_domain(item);
4490 #endif
4491 critical_enter();
4492 do {
4493 cache = &zone->uz_cpu[curcpu];
4494 /* SMR Zones must free to the free bucket. */
4495 bucket = &cache->uc_freebucket;
4496 #ifdef NUMA
4497 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4498 PCPU_GET(domain) != itemdomain) {
4499 bucket = &cache->uc_crossbucket;
4500 }
4501 #endif
4502 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4503 cache_bucket_push(cache, bucket, item);
4504 critical_exit();
4505 return;
4506 }
4507 } while (cache_free(zone, cache, NULL, itemdomain));
4508 critical_exit();
4509
4510 /*
4511 * If nothing else caught this, we'll just do an internal free.
4512 */
4513 zone_free_item(zone, item, NULL, SKIP_NONE);
4514 }
4515
4516 /* See uma.h */
4517 void
uma_zfree_arg(uma_zone_t zone,void * item,void * udata)4518 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4519 {
4520 uma_cache_t cache;
4521 uma_cache_bucket_t bucket;
4522 int itemdomain, uz_flags;
4523
4524 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4525 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4526
4527 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4528 zone->uz_name, zone, item);
4529
4530 #ifdef UMA_ZALLOC_DEBUG
4531 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4532 ("uma_zfree_arg: called with SMR zone."));
4533 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4534 return;
4535 #endif
4536 /* uma_zfree(..., NULL) does nothing, to match free(9). */
4537 if (item == NULL)
4538 return;
4539
4540 /*
4541 * We are accessing the per-cpu cache without a critical section to
4542 * fetch size and flags. This is acceptable, if we are preempted we
4543 * will simply read another cpu's line.
4544 */
4545 cache = &zone->uz_cpu[curcpu];
4546 uz_flags = cache_uz_flags(cache);
4547 if (UMA_ALWAYS_CTORDTOR ||
4548 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4549 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4550
4551 /*
4552 * The race here is acceptable. If we miss it we'll just have to wait
4553 * a little longer for the limits to be reset.
4554 */
4555 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4556 if (atomic_load_32(&zone->uz_sleepers) > 0)
4557 goto zfree_item;
4558 }
4559
4560 /*
4561 * If possible, free to the per-CPU cache. There are two
4562 * requirements for safe access to the per-CPU cache: (1) the thread
4563 * accessing the cache must not be preempted or yield during access,
4564 * and (2) the thread must not migrate CPUs without switching which
4565 * cache it accesses. We rely on a critical section to prevent
4566 * preemption and migration. We release the critical section in
4567 * order to acquire the zone mutex if we are unable to free to the
4568 * current cache; when we re-acquire the critical section, we must
4569 * detect and handle migration if it has occurred.
4570 */
4571 itemdomain = 0;
4572 #ifdef NUMA
4573 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4574 itemdomain = item_domain(item);
4575 #endif
4576 critical_enter();
4577 do {
4578 cache = &zone->uz_cpu[curcpu];
4579 /*
4580 * Try to free into the allocbucket first to give LIFO
4581 * ordering for cache-hot datastructures. Spill over
4582 * into the freebucket if necessary. Alloc will swap
4583 * them if one runs dry.
4584 */
4585 bucket = &cache->uc_allocbucket;
4586 #ifdef NUMA
4587 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4588 PCPU_GET(domain) != itemdomain) {
4589 bucket = &cache->uc_crossbucket;
4590 } else
4591 #endif
4592 if (bucket->ucb_cnt == bucket->ucb_entries &&
4593 cache->uc_freebucket.ucb_cnt <
4594 cache->uc_freebucket.ucb_entries)
4595 cache_bucket_swap(&cache->uc_freebucket,
4596 &cache->uc_allocbucket);
4597 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4598 cache_bucket_push(cache, bucket, item);
4599 critical_exit();
4600 return;
4601 }
4602 } while (cache_free(zone, cache, udata, itemdomain));
4603 critical_exit();
4604
4605 /*
4606 * If nothing else caught this, we'll just do an internal free.
4607 */
4608 zfree_item:
4609 zone_free_item(zone, item, udata, SKIP_DTOR);
4610 }
4611
4612 #ifdef NUMA
4613 /*
4614 * sort crossdomain free buckets to domain correct buckets and cache
4615 * them.
4616 */
4617 static void
zone_free_cross(uma_zone_t zone,uma_bucket_t bucket,void * udata)4618 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4619 {
4620 struct uma_bucketlist emptybuckets, fullbuckets;
4621 uma_zone_domain_t zdom;
4622 uma_bucket_t b;
4623 smr_seq_t seq;
4624 void *item;
4625 int domain;
4626
4627 CTR3(KTR_UMA,
4628 "uma_zfree: zone %s(%p) draining cross bucket %p",
4629 zone->uz_name, zone, bucket);
4630
4631 /*
4632 * It is possible for buckets to arrive here out of order so we fetch
4633 * the current smr seq rather than accepting the bucket's.
4634 */
4635 seq = SMR_SEQ_INVALID;
4636 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4637 seq = smr_advance(zone->uz_smr);
4638
4639 /*
4640 * To avoid having ndomain * ndomain buckets for sorting we have a
4641 * lock on the current crossfree bucket. A full matrix with
4642 * per-domain locking could be used if necessary.
4643 */
4644 STAILQ_INIT(&emptybuckets);
4645 STAILQ_INIT(&fullbuckets);
4646 ZONE_CROSS_LOCK(zone);
4647 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4648 item = bucket->ub_bucket[bucket->ub_cnt - 1];
4649 domain = item_domain(item);
4650 zdom = ZDOM_GET(zone, domain);
4651 if (zdom->uzd_cross == NULL) {
4652 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4653 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4654 zdom->uzd_cross = b;
4655 } else {
4656 /*
4657 * Avoid allocating a bucket with the cross lock
4658 * held, since allocation can trigger a
4659 * cross-domain free and bucket zones may
4660 * allocate from each other.
4661 */
4662 ZONE_CROSS_UNLOCK(zone);
4663 b = bucket_alloc(zone, udata, M_NOWAIT);
4664 if (b == NULL)
4665 goto out;
4666 ZONE_CROSS_LOCK(zone);
4667 if (zdom->uzd_cross != NULL) {
4668 STAILQ_INSERT_HEAD(&emptybuckets, b,
4669 ub_link);
4670 } else {
4671 zdom->uzd_cross = b;
4672 }
4673 }
4674 }
4675 b = zdom->uzd_cross;
4676 b->ub_bucket[b->ub_cnt++] = item;
4677 b->ub_seq = seq;
4678 if (b->ub_cnt == b->ub_entries) {
4679 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4680 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4681 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4682 zdom->uzd_cross = b;
4683 }
4684 }
4685 ZONE_CROSS_UNLOCK(zone);
4686 out:
4687 if (bucket->ub_cnt == 0)
4688 bucket->ub_seq = SMR_SEQ_INVALID;
4689 bucket_free(zone, bucket, udata);
4690
4691 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4692 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4693 bucket_free(zone, b, udata);
4694 }
4695 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4696 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4697 domain = item_domain(b->ub_bucket[0]);
4698 zone_put_bucket(zone, domain, b, udata, true);
4699 }
4700 }
4701 #endif
4702
4703 static void
zone_free_bucket(uma_zone_t zone,uma_bucket_t bucket,void * udata,int itemdomain,bool ws)4704 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4705 int itemdomain, bool ws)
4706 {
4707
4708 #ifdef NUMA
4709 /*
4710 * Buckets coming from the wrong domain will be entirely for the
4711 * only other domain on two domain systems. In this case we can
4712 * simply cache them. Otherwise we need to sort them back to
4713 * correct domains.
4714 */
4715 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4716 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4717 zone_free_cross(zone, bucket, udata);
4718 return;
4719 }
4720 #endif
4721
4722 /*
4723 * Attempt to save the bucket in the zone's domain bucket cache.
4724 */
4725 CTR3(KTR_UMA,
4726 "uma_zfree: zone %s(%p) putting bucket %p on free list",
4727 zone->uz_name, zone, bucket);
4728 /* ub_cnt is pointing to the last free item */
4729 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4730 itemdomain = zone_domain_lowest(zone, itemdomain);
4731 zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4732 }
4733
4734 /*
4735 * Populate a free or cross bucket for the current cpu cache. Free any
4736 * existing full bucket either to the zone cache or back to the slab layer.
4737 *
4738 * Enters and returns in a critical section. false return indicates that
4739 * we can not satisfy this free in the cache layer. true indicates that
4740 * the caller should retry.
4741 */
4742 static __noinline bool
cache_free(uma_zone_t zone,uma_cache_t cache,void * udata,int itemdomain)4743 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4744 {
4745 uma_cache_bucket_t cbucket;
4746 uma_bucket_t newbucket, bucket;
4747
4748 CRITICAL_ASSERT(curthread);
4749
4750 if (zone->uz_bucket_size == 0)
4751 return false;
4752
4753 cache = &zone->uz_cpu[curcpu];
4754 newbucket = NULL;
4755
4756 /*
4757 * FIRSTTOUCH domains need to free to the correct zdom. When
4758 * enabled this is the zdom of the item. The bucket is the
4759 * cross bucket if the current domain and itemdomain do not match.
4760 */
4761 cbucket = &cache->uc_freebucket;
4762 #ifdef NUMA
4763 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4764 if (PCPU_GET(domain) != itemdomain) {
4765 cbucket = &cache->uc_crossbucket;
4766 if (cbucket->ucb_cnt != 0)
4767 counter_u64_add(zone->uz_xdomain,
4768 cbucket->ucb_cnt);
4769 }
4770 }
4771 #endif
4772 bucket = cache_bucket_unload(cbucket);
4773 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4774 ("cache_free: Entered with non-full free bucket."));
4775
4776 /* We are no longer associated with this CPU. */
4777 critical_exit();
4778
4779 /*
4780 * Don't let SMR zones operate without a free bucket. Force
4781 * a synchronize and re-use this one. We will only degrade
4782 * to a synchronize every bucket_size items rather than every
4783 * item if we fail to allocate a bucket.
4784 */
4785 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4786 if (bucket != NULL)
4787 bucket->ub_seq = smr_advance(zone->uz_smr);
4788 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4789 if (newbucket == NULL && bucket != NULL) {
4790 bucket_drain(zone, bucket);
4791 newbucket = bucket;
4792 bucket = NULL;
4793 }
4794 } else if (!bucketdisable)
4795 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4796
4797 if (bucket != NULL)
4798 zone_free_bucket(zone, bucket, udata, itemdomain, true);
4799
4800 critical_enter();
4801 if ((bucket = newbucket) == NULL)
4802 return (false);
4803 cache = &zone->uz_cpu[curcpu];
4804 #ifdef NUMA
4805 /*
4806 * Check to see if we should be populating the cross bucket. If it
4807 * is already populated we will fall through and attempt to populate
4808 * the free bucket.
4809 */
4810 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4811 if (PCPU_GET(domain) != itemdomain &&
4812 cache->uc_crossbucket.ucb_bucket == NULL) {
4813 cache_bucket_load_cross(cache, bucket);
4814 return (true);
4815 }
4816 }
4817 #endif
4818 /*
4819 * We may have lost the race to fill the bucket or switched CPUs.
4820 */
4821 if (cache->uc_freebucket.ucb_bucket != NULL) {
4822 critical_exit();
4823 bucket_free(zone, bucket, udata);
4824 critical_enter();
4825 } else
4826 cache_bucket_load_free(cache, bucket);
4827
4828 return (true);
4829 }
4830
4831 static void
slab_free_item(uma_zone_t zone,uma_slab_t slab,void * item)4832 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4833 {
4834 uma_keg_t keg;
4835 uma_domain_t dom;
4836 int freei;
4837
4838 keg = zone->uz_keg;
4839 KEG_LOCK_ASSERT(keg, slab->us_domain);
4840
4841 /* Do we need to remove from any lists? */
4842 dom = &keg->uk_domain[slab->us_domain];
4843 if (slab->us_freecount + 1 == keg->uk_ipers) {
4844 LIST_REMOVE(slab, us_link);
4845 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4846 dom->ud_free_slabs++;
4847 } else if (slab->us_freecount == 0) {
4848 LIST_REMOVE(slab, us_link);
4849 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4850 }
4851
4852 /* Slab management. */
4853 freei = slab_item_index(slab, keg, item);
4854 BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4855 slab->us_freecount++;
4856
4857 /* Keg statistics. */
4858 dom->ud_free_items++;
4859 }
4860
4861 static void
zone_release(void * arg,void ** bucket,int cnt)4862 zone_release(void *arg, void **bucket, int cnt)
4863 {
4864 struct mtx *lock;
4865 uma_zone_t zone;
4866 uma_slab_t slab;
4867 uma_keg_t keg;
4868 uint8_t *mem;
4869 void *item;
4870 int i;
4871
4872 zone = arg;
4873 keg = zone->uz_keg;
4874 lock = NULL;
4875 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4876 lock = KEG_LOCK(keg, 0);
4877 for (i = 0; i < cnt; i++) {
4878 item = bucket[i];
4879 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4880 slab = vtoslab((vm_offset_t)item);
4881 } else {
4882 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4883 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4884 slab = hash_sfind(&keg->uk_hash, mem);
4885 else
4886 slab = (uma_slab_t)(mem + keg->uk_pgoff);
4887 }
4888 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4889 if (lock != NULL)
4890 mtx_unlock(lock);
4891 lock = KEG_LOCK(keg, slab->us_domain);
4892 }
4893 slab_free_item(zone, slab, item);
4894 }
4895 if (lock != NULL)
4896 mtx_unlock(lock);
4897 }
4898
4899 /*
4900 * Frees a single item to any zone.
4901 *
4902 * Arguments:
4903 * zone The zone to free to
4904 * item The item we're freeing
4905 * udata User supplied data for the dtor
4906 * skip Skip dtors and finis
4907 */
4908 static __noinline void
zone_free_item(uma_zone_t zone,void * item,void * udata,enum zfreeskip skip)4909 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4910 {
4911
4912 /*
4913 * If a free is sent directly to an SMR zone we have to
4914 * synchronize immediately because the item can instantly
4915 * be reallocated. This should only happen in degenerate
4916 * cases when no memory is available for per-cpu caches.
4917 */
4918 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4919 smr_synchronize(zone->uz_smr);
4920
4921 item_dtor(zone, item, zone->uz_size, udata, skip);
4922
4923 if (skip < SKIP_FINI && zone->uz_fini) {
4924 kasan_mark_item_valid(zone, item);
4925 zone->uz_fini(item, zone->uz_size);
4926 kasan_mark_item_invalid(zone, item);
4927 }
4928
4929 zone->uz_release(zone->uz_arg, &item, 1);
4930
4931 if (skip & SKIP_CNT)
4932 return;
4933
4934 counter_u64_add(zone->uz_frees, 1);
4935
4936 if (zone->uz_max_items > 0)
4937 zone_free_limit(zone, 1);
4938 }
4939
4940 /* See uma.h */
4941 int
uma_zone_set_max(uma_zone_t zone,int nitems)4942 uma_zone_set_max(uma_zone_t zone, int nitems)
4943 {
4944
4945 /*
4946 * If the limit is small, we may need to constrain the maximum per-CPU
4947 * cache size, or disable caching entirely.
4948 */
4949 uma_zone_set_maxcache(zone, nitems);
4950
4951 /*
4952 * XXX This can misbehave if the zone has any allocations with
4953 * no limit and a limit is imposed. There is currently no
4954 * way to clear a limit.
4955 */
4956 ZONE_LOCK(zone);
4957 if (zone->uz_max_items == 0)
4958 ZONE_ASSERT_COLD(zone);
4959 zone->uz_max_items = nitems;
4960 zone->uz_flags |= UMA_ZFLAG_LIMIT;
4961 zone_update_caches(zone);
4962 /* We may need to wake waiters. */
4963 wakeup(&zone->uz_max_items);
4964 ZONE_UNLOCK(zone);
4965
4966 return (nitems);
4967 }
4968
4969 /* See uma.h */
4970 void
uma_zone_set_maxcache(uma_zone_t zone,int nitems)4971 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4972 {
4973 int bpcpu, bpdom, bsize, nb;
4974
4975 ZONE_LOCK(zone);
4976
4977 /*
4978 * Compute a lower bound on the number of items that may be cached in
4979 * the zone. Each CPU gets at least two buckets, and for cross-domain
4980 * frees we use an additional bucket per CPU and per domain. Select the
4981 * largest bucket size that does not exceed half of the requested limit,
4982 * with the left over space given to the full bucket cache.
4983 */
4984 bpdom = 0;
4985 bpcpu = 2;
4986 #ifdef NUMA
4987 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4988 bpcpu++;
4989 bpdom++;
4990 }
4991 #endif
4992 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4993 bsize = nitems / nb / 2;
4994 if (bsize > BUCKET_MAX)
4995 bsize = BUCKET_MAX;
4996 else if (bsize == 0 && nitems / nb > 0)
4997 bsize = 1;
4998 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4999 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
5000 zone->uz_bucket_size_min = zone->uz_bucket_size_max;
5001 zone->uz_bucket_max = nitems - nb * bsize;
5002 ZONE_UNLOCK(zone);
5003 }
5004
5005 /* See uma.h */
5006 int
uma_zone_get_max(uma_zone_t zone)5007 uma_zone_get_max(uma_zone_t zone)
5008 {
5009 int nitems;
5010
5011 nitems = atomic_load_64(&zone->uz_max_items);
5012
5013 return (nitems);
5014 }
5015
5016 /* See uma.h */
5017 void
uma_zone_set_warning(uma_zone_t zone,const char * warning)5018 uma_zone_set_warning(uma_zone_t zone, const char *warning)
5019 {
5020
5021 ZONE_ASSERT_COLD(zone);
5022 zone->uz_warning = warning;
5023 }
5024
5025 /* See uma.h */
5026 void
uma_zone_set_maxaction(uma_zone_t zone,uma_maxaction_t maxaction)5027 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
5028 {
5029
5030 ZONE_ASSERT_COLD(zone);
5031 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
5032 }
5033
5034 /* See uma.h */
5035 int
uma_zone_get_cur(uma_zone_t zone)5036 uma_zone_get_cur(uma_zone_t zone)
5037 {
5038 int64_t nitems;
5039 u_int i;
5040
5041 nitems = 0;
5042 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
5043 nitems = counter_u64_fetch(zone->uz_allocs) -
5044 counter_u64_fetch(zone->uz_frees);
5045 CPU_FOREACH(i)
5046 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
5047 atomic_load_64(&zone->uz_cpu[i].uc_frees);
5048
5049 return (nitems < 0 ? 0 : nitems);
5050 }
5051
5052 static uint64_t
uma_zone_get_allocs(uma_zone_t zone)5053 uma_zone_get_allocs(uma_zone_t zone)
5054 {
5055 uint64_t nitems;
5056 u_int i;
5057
5058 nitems = 0;
5059 if (zone->uz_allocs != EARLY_COUNTER)
5060 nitems = counter_u64_fetch(zone->uz_allocs);
5061 CPU_FOREACH(i)
5062 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
5063
5064 return (nitems);
5065 }
5066
5067 static uint64_t
uma_zone_get_frees(uma_zone_t zone)5068 uma_zone_get_frees(uma_zone_t zone)
5069 {
5070 uint64_t nitems;
5071 u_int i;
5072
5073 nitems = 0;
5074 if (zone->uz_frees != EARLY_COUNTER)
5075 nitems = counter_u64_fetch(zone->uz_frees);
5076 CPU_FOREACH(i)
5077 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5078
5079 return (nitems);
5080 }
5081
5082 #ifdef INVARIANTS
5083 /* Used only for KEG_ASSERT_COLD(). */
5084 static uint64_t
uma_keg_get_allocs(uma_keg_t keg)5085 uma_keg_get_allocs(uma_keg_t keg)
5086 {
5087 uma_zone_t z;
5088 uint64_t nitems;
5089
5090 nitems = 0;
5091 LIST_FOREACH(z, &keg->uk_zones, uz_link)
5092 nitems += uma_zone_get_allocs(z);
5093
5094 return (nitems);
5095 }
5096 #endif
5097
5098 /* See uma.h */
5099 void
uma_zone_set_init(uma_zone_t zone,uma_init uminit)5100 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5101 {
5102 uma_keg_t keg;
5103
5104 KEG_GET(zone, keg);
5105 KEG_ASSERT_COLD(keg);
5106 keg->uk_init = uminit;
5107 }
5108
5109 /* See uma.h */
5110 void
uma_zone_set_fini(uma_zone_t zone,uma_fini fini)5111 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5112 {
5113 uma_keg_t keg;
5114
5115 KEG_GET(zone, keg);
5116 KEG_ASSERT_COLD(keg);
5117 keg->uk_fini = fini;
5118 }
5119
5120 /* See uma.h */
5121 void
uma_zone_set_zinit(uma_zone_t zone,uma_init zinit)5122 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5123 {
5124
5125 ZONE_ASSERT_COLD(zone);
5126 zone->uz_init = zinit;
5127 }
5128
5129 /* See uma.h */
5130 void
uma_zone_set_zfini(uma_zone_t zone,uma_fini zfini)5131 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5132 {
5133
5134 ZONE_ASSERT_COLD(zone);
5135 zone->uz_fini = zfini;
5136 }
5137
5138 /* See uma.h */
5139 void
uma_zone_set_freef(uma_zone_t zone,uma_free freef)5140 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5141 {
5142 uma_keg_t keg;
5143
5144 KEG_GET(zone, keg);
5145 KEG_ASSERT_COLD(keg);
5146 keg->uk_freef = freef;
5147 }
5148
5149 /* See uma.h */
5150 void
uma_zone_set_allocf(uma_zone_t zone,uma_alloc allocf)5151 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5152 {
5153 uma_keg_t keg;
5154
5155 KEG_GET(zone, keg);
5156 KEG_ASSERT_COLD(keg);
5157 keg->uk_allocf = allocf;
5158 }
5159
5160 /* See uma.h */
5161 void
uma_zone_set_smr(uma_zone_t zone,smr_t smr)5162 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5163 {
5164
5165 ZONE_ASSERT_COLD(zone);
5166
5167 KASSERT(smr != NULL, ("Got NULL smr"));
5168 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5169 ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5170 zone->uz_flags |= UMA_ZONE_SMR;
5171 zone->uz_smr = smr;
5172 zone_update_caches(zone);
5173 }
5174
5175 smr_t
uma_zone_get_smr(uma_zone_t zone)5176 uma_zone_get_smr(uma_zone_t zone)
5177 {
5178
5179 return (zone->uz_smr);
5180 }
5181
5182 /* See uma.h */
5183 void
uma_zone_reserve(uma_zone_t zone,int items)5184 uma_zone_reserve(uma_zone_t zone, int items)
5185 {
5186 uma_keg_t keg;
5187
5188 KEG_GET(zone, keg);
5189 KEG_ASSERT_COLD(keg);
5190 keg->uk_reserve = items;
5191 }
5192
5193 /* See uma.h */
5194 int
uma_zone_reserve_kva(uma_zone_t zone,int count)5195 uma_zone_reserve_kva(uma_zone_t zone, int count)
5196 {
5197 uma_keg_t keg;
5198 vm_offset_t kva;
5199 u_int pages;
5200
5201 KEG_GET(zone, keg);
5202 KEG_ASSERT_COLD(keg);
5203 ZONE_ASSERT_COLD(zone);
5204
5205 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5206
5207 #ifdef UMA_USE_DMAP
5208 if (keg->uk_ppera > 1) {
5209 #else
5210 if (1) {
5211 #endif
5212 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5213 if (kva == 0)
5214 return (0);
5215 } else
5216 kva = 0;
5217
5218 MPASS(keg->uk_kva == 0);
5219 keg->uk_kva = kva;
5220 keg->uk_offset = 0;
5221 zone->uz_max_items = pages * keg->uk_ipers;
5222 #ifdef UMA_USE_DMAP
5223 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5224 #else
5225 keg->uk_allocf = noobj_alloc;
5226 #endif
5227 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5228 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5229 zone_update_caches(zone);
5230
5231 return (1);
5232 }
5233
5234 /* See uma.h */
5235 void
5236 uma_prealloc(uma_zone_t zone, int items)
5237 {
5238 struct vm_domainset_iter di;
5239 uma_domain_t dom;
5240 uma_slab_t slab;
5241 uma_keg_t keg;
5242 int aflags, domain, slabs;
5243
5244 KEG_GET(zone, keg);
5245 slabs = howmany(items, keg->uk_ipers);
5246 while (slabs-- > 0) {
5247 aflags = M_NOWAIT;
5248 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5249 &aflags);
5250 for (;;) {
5251 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5252 aflags);
5253 if (slab != NULL) {
5254 dom = &keg->uk_domain[slab->us_domain];
5255 /*
5256 * keg_alloc_slab() always returns a slab on the
5257 * partial list.
5258 */
5259 LIST_REMOVE(slab, us_link);
5260 LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5261 us_link);
5262 dom->ud_free_slabs++;
5263 KEG_UNLOCK(keg, slab->us_domain);
5264 break;
5265 }
5266 if (vm_domainset_iter_policy(&di, &domain) != 0)
5267 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5268 }
5269 }
5270 }
5271
5272 /*
5273 * Returns a snapshot of memory consumption in bytes.
5274 */
5275 size_t
5276 uma_zone_memory(uma_zone_t zone)
5277 {
5278 size_t sz;
5279 int i;
5280
5281 sz = 0;
5282 if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5283 for (i = 0; i < vm_ndomains; i++)
5284 sz += ZDOM_GET(zone, i)->uzd_nitems;
5285 return (sz * zone->uz_size);
5286 }
5287 for (i = 0; i < vm_ndomains; i++)
5288 sz += zone->uz_keg->uk_domain[i].ud_pages;
5289
5290 return (sz * PAGE_SIZE);
5291 }
5292
5293 struct uma_reclaim_args {
5294 int domain;
5295 int req;
5296 };
5297
5298 static void
5299 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5300 {
5301 struct uma_reclaim_args *args;
5302
5303 args = arg;
5304 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) != 0)
5305 return;
5306 if ((args->req == UMA_RECLAIM_TRIM) &&
5307 (zone->uz_flags & UMA_ZONE_NOTRIM) !=0)
5308 return;
5309
5310 uma_zone_reclaim_domain(zone, args->req, args->domain);
5311 }
5312
5313 /* See uma.h */
5314 void
5315 uma_reclaim(int req)
5316 {
5317 uma_reclaim_domain(req, UMA_ANYDOMAIN);
5318 }
5319
5320 void
5321 uma_reclaim_domain(int req, int domain)
5322 {
5323 struct uma_reclaim_args args;
5324
5325 bucket_enable();
5326
5327 args.domain = domain;
5328 args.req = req;
5329
5330 sx_slock(&uma_reclaim_lock);
5331 switch (req) {
5332 case UMA_RECLAIM_TRIM:
5333 case UMA_RECLAIM_DRAIN:
5334 zone_foreach(uma_reclaim_domain_cb, &args);
5335 break;
5336 case UMA_RECLAIM_DRAIN_CPU:
5337 /*
5338 * Reclaim globally visible free items from all zones, then drain
5339 * per-CPU buckets, then reclaim items freed while draining.
5340 * This approach minimizes expensive context switching needed to
5341 * drain each zone's per-CPU buckets.
5342 */
5343 args.req = UMA_RECLAIM_DRAIN;
5344 zone_foreach(uma_reclaim_domain_cb, &args);
5345 pcpu_cache_drain_safe(NULL);
5346 zone_foreach(uma_reclaim_domain_cb, &args);
5347 break;
5348 default:
5349 panic("unhandled reclamation request %d", req);
5350 }
5351
5352 /*
5353 * Some slabs may have been freed but this zone will be visited early
5354 * we visit again so that we can free pages that are empty once other
5355 * zones are drained. We have to do the same for buckets.
5356 */
5357 uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5358 uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5359 bucket_zone_drain(domain);
5360 sx_sunlock(&uma_reclaim_lock);
5361 }
5362
5363 static volatile int uma_reclaim_needed;
5364
5365 void
5366 uma_reclaim_wakeup(void)
5367 {
5368
5369 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5370 wakeup(uma_reclaim);
5371 }
5372
5373 void
5374 uma_reclaim_worker(void *arg __unused)
5375 {
5376
5377 for (;;) {
5378 sx_xlock(&uma_reclaim_lock);
5379 while (atomic_load_int(&uma_reclaim_needed) == 0)
5380 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5381 hz);
5382 sx_xunlock(&uma_reclaim_lock);
5383 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5384 uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5385 atomic_store_int(&uma_reclaim_needed, 0);
5386 /* Don't fire more than once per-second. */
5387 pause("umarclslp", hz);
5388 }
5389 }
5390
5391 /* See uma.h */
5392 void
5393 uma_zone_reclaim(uma_zone_t zone, int req)
5394 {
5395 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5396 }
5397
5398 void
5399 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5400 {
5401 switch (req) {
5402 case UMA_RECLAIM_TRIM:
5403 zone_reclaim(zone, domain, M_NOWAIT, false);
5404 break;
5405 case UMA_RECLAIM_DRAIN:
5406 zone_reclaim(zone, domain, M_NOWAIT, true);
5407 break;
5408 case UMA_RECLAIM_DRAIN_CPU:
5409 pcpu_cache_drain_safe(zone);
5410 zone_reclaim(zone, domain, M_NOWAIT, true);
5411 break;
5412 default:
5413 panic("unhandled reclamation request %d", req);
5414 }
5415 }
5416
5417 /* See uma.h */
5418 int
5419 uma_zone_exhausted(uma_zone_t zone)
5420 {
5421
5422 return (atomic_load_32(&zone->uz_sleepers) > 0);
5423 }
5424
5425 unsigned long
5426 uma_limit(void)
5427 {
5428
5429 return (uma_kmem_limit);
5430 }
5431
5432 void
5433 uma_set_limit(unsigned long limit)
5434 {
5435
5436 uma_kmem_limit = limit;
5437 }
5438
5439 unsigned long
5440 uma_size(void)
5441 {
5442
5443 return (atomic_load_long(&uma_kmem_total));
5444 }
5445
5446 long
5447 uma_avail(void)
5448 {
5449
5450 return (uma_kmem_limit - uma_size());
5451 }
5452
5453 #ifdef DDB
5454 /*
5455 * Generate statistics across both the zone and its per-cpu cache's. Return
5456 * desired statistics if the pointer is non-NULL for that statistic.
5457 *
5458 * Note: does not update the zone statistics, as it can't safely clear the
5459 * per-CPU cache statistic.
5460 *
5461 */
5462 static void
5463 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5464 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5465 {
5466 uma_cache_t cache;
5467 uint64_t allocs, frees, sleeps, xdomain;
5468 int cachefree, cpu;
5469
5470 allocs = frees = sleeps = xdomain = 0;
5471 cachefree = 0;
5472 CPU_FOREACH(cpu) {
5473 cache = &z->uz_cpu[cpu];
5474 cachefree += cache->uc_allocbucket.ucb_cnt;
5475 cachefree += cache->uc_freebucket.ucb_cnt;
5476 xdomain += cache->uc_crossbucket.ucb_cnt;
5477 cachefree += cache->uc_crossbucket.ucb_cnt;
5478 allocs += cache->uc_allocs;
5479 frees += cache->uc_frees;
5480 }
5481 allocs += counter_u64_fetch(z->uz_allocs);
5482 frees += counter_u64_fetch(z->uz_frees);
5483 xdomain += counter_u64_fetch(z->uz_xdomain);
5484 sleeps += z->uz_sleeps;
5485 if (cachefreep != NULL)
5486 *cachefreep = cachefree;
5487 if (allocsp != NULL)
5488 *allocsp = allocs;
5489 if (freesp != NULL)
5490 *freesp = frees;
5491 if (sleepsp != NULL)
5492 *sleepsp = sleeps;
5493 if (xdomainp != NULL)
5494 *xdomainp = xdomain;
5495 }
5496 #endif /* DDB */
5497
5498 static int
5499 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5500 {
5501 uma_keg_t kz;
5502 uma_zone_t z;
5503 int count;
5504
5505 count = 0;
5506 rw_rlock(&uma_rwlock);
5507 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5508 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5509 count++;
5510 }
5511 LIST_FOREACH(z, &uma_cachezones, uz_link)
5512 count++;
5513
5514 rw_runlock(&uma_rwlock);
5515 return (sysctl_handle_int(oidp, &count, 0, req));
5516 }
5517
5518 static void
5519 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5520 struct uma_percpu_stat *ups, bool internal)
5521 {
5522 uma_zone_domain_t zdom;
5523 uma_cache_t cache;
5524 int i;
5525
5526 for (i = 0; i < vm_ndomains; i++) {
5527 zdom = ZDOM_GET(z, i);
5528 uth->uth_zone_free += zdom->uzd_nitems;
5529 }
5530 uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5531 uth->uth_frees = counter_u64_fetch(z->uz_frees);
5532 uth->uth_fails = counter_u64_fetch(z->uz_fails);
5533 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5534 uth->uth_sleeps = z->uz_sleeps;
5535
5536 for (i = 0; i < mp_maxid + 1; i++) {
5537 bzero(&ups[i], sizeof(*ups));
5538 if (internal || CPU_ABSENT(i))
5539 continue;
5540 cache = &z->uz_cpu[i];
5541 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5542 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5543 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5544 ups[i].ups_allocs = cache->uc_allocs;
5545 ups[i].ups_frees = cache->uc_frees;
5546 }
5547 }
5548
5549 static int
5550 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5551 {
5552 struct uma_stream_header ush;
5553 struct uma_type_header uth;
5554 struct uma_percpu_stat *ups;
5555 struct sbuf sbuf;
5556 uma_keg_t kz;
5557 uma_zone_t z;
5558 uint64_t items;
5559 uint32_t kfree, pages;
5560 int count, error, i;
5561
5562 error = sysctl_wire_old_buffer(req, 0);
5563 if (error != 0)
5564 return (error);
5565 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5566 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5567 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5568
5569 count = 0;
5570 rw_rlock(&uma_rwlock);
5571 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5572 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5573 count++;
5574 }
5575
5576 LIST_FOREACH(z, &uma_cachezones, uz_link)
5577 count++;
5578
5579 /*
5580 * Insert stream header.
5581 */
5582 bzero(&ush, sizeof(ush));
5583 ush.ush_version = UMA_STREAM_VERSION;
5584 ush.ush_maxcpus = (mp_maxid + 1);
5585 ush.ush_count = count;
5586 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5587
5588 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5589 kfree = pages = 0;
5590 for (i = 0; i < vm_ndomains; i++) {
5591 kfree += kz->uk_domain[i].ud_free_items;
5592 pages += kz->uk_domain[i].ud_pages;
5593 }
5594 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5595 bzero(&uth, sizeof(uth));
5596 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5597 uth.uth_align = kz->uk_align;
5598 uth.uth_size = kz->uk_size;
5599 uth.uth_rsize = kz->uk_rsize;
5600 if (z->uz_max_items > 0) {
5601 items = UZ_ITEMS_COUNT(z->uz_items);
5602 uth.uth_pages = (items / kz->uk_ipers) *
5603 kz->uk_ppera;
5604 } else
5605 uth.uth_pages = pages;
5606 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5607 kz->uk_ppera;
5608 uth.uth_limit = z->uz_max_items;
5609 uth.uth_keg_free = kfree;
5610
5611 /*
5612 * A zone is secondary is it is not the first entry
5613 * on the keg's zone list.
5614 */
5615 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5616 (LIST_FIRST(&kz->uk_zones) != z))
5617 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5618 uma_vm_zone_stats(&uth, z, &sbuf, ups,
5619 kz->uk_flags & UMA_ZFLAG_INTERNAL);
5620 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5621 for (i = 0; i < mp_maxid + 1; i++)
5622 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5623 }
5624 }
5625 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5626 bzero(&uth, sizeof(uth));
5627 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5628 uth.uth_size = z->uz_size;
5629 uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5630 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5631 for (i = 0; i < mp_maxid + 1; i++)
5632 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5633 }
5634
5635 rw_runlock(&uma_rwlock);
5636 error = sbuf_finish(&sbuf);
5637 sbuf_delete(&sbuf);
5638 free(ups, M_TEMP);
5639 return (error);
5640 }
5641
5642 int
5643 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5644 {
5645 uma_zone_t zone = *(uma_zone_t *)arg1;
5646 int error, max;
5647
5648 max = uma_zone_get_max(zone);
5649 error = sysctl_handle_int(oidp, &max, 0, req);
5650 if (error || !req->newptr)
5651 return (error);
5652
5653 uma_zone_set_max(zone, max);
5654
5655 return (0);
5656 }
5657
5658 int
5659 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5660 {
5661 uma_zone_t zone;
5662 int cur;
5663
5664 /*
5665 * Some callers want to add sysctls for global zones that
5666 * may not yet exist so they pass a pointer to a pointer.
5667 */
5668 if (arg2 == 0)
5669 zone = *(uma_zone_t *)arg1;
5670 else
5671 zone = arg1;
5672 cur = uma_zone_get_cur(zone);
5673 return (sysctl_handle_int(oidp, &cur, 0, req));
5674 }
5675
5676 static int
5677 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5678 {
5679 uma_zone_t zone = arg1;
5680 uint64_t cur;
5681
5682 cur = uma_zone_get_allocs(zone);
5683 return (sysctl_handle_64(oidp, &cur, 0, req));
5684 }
5685
5686 static int
5687 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5688 {
5689 uma_zone_t zone = arg1;
5690 uint64_t cur;
5691
5692 cur = uma_zone_get_frees(zone);
5693 return (sysctl_handle_64(oidp, &cur, 0, req));
5694 }
5695
5696 static int
5697 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5698 {
5699 struct sbuf sbuf;
5700 uma_zone_t zone = arg1;
5701 int error;
5702
5703 sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5704 if (zone->uz_flags != 0)
5705 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5706 else
5707 sbuf_printf(&sbuf, "0");
5708 error = sbuf_finish(&sbuf);
5709 sbuf_delete(&sbuf);
5710
5711 return (error);
5712 }
5713
5714 static int
5715 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5716 {
5717 uma_keg_t keg = arg1;
5718 int avail, effpct, total;
5719
5720 total = keg->uk_ppera * PAGE_SIZE;
5721 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5722 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5723 /*
5724 * We consider the client's requested size and alignment here, not the
5725 * real size determination uk_rsize, because we also adjust the real
5726 * size for internal implementation reasons (max bitset size).
5727 */
5728 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5729 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5730 avail *= mp_maxid + 1;
5731 effpct = 100 * avail / total;
5732 return (sysctl_handle_int(oidp, &effpct, 0, req));
5733 }
5734
5735 static int
5736 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5737 {
5738 uma_zone_t zone = arg1;
5739 uint64_t cur;
5740
5741 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5742 return (sysctl_handle_64(oidp, &cur, 0, req));
5743 }
5744
5745 #ifdef INVARIANTS
5746 static uma_slab_t
5747 uma_dbg_getslab(uma_zone_t zone, void *item)
5748 {
5749 uma_slab_t slab;
5750 uma_keg_t keg;
5751 uint8_t *mem;
5752
5753 /*
5754 * It is safe to return the slab here even though the
5755 * zone is unlocked because the item's allocation state
5756 * essentially holds a reference.
5757 */
5758 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5759 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5760 return (NULL);
5761 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5762 return (vtoslab((vm_offset_t)mem));
5763 keg = zone->uz_keg;
5764 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5765 return ((uma_slab_t)(mem + keg->uk_pgoff));
5766 KEG_LOCK(keg, 0);
5767 slab = hash_sfind(&keg->uk_hash, mem);
5768 KEG_UNLOCK(keg, 0);
5769
5770 return (slab);
5771 }
5772
5773 static bool
5774 uma_dbg_zskip(uma_zone_t zone, void *mem)
5775 {
5776
5777 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5778 return (true);
5779
5780 return (uma_dbg_kskip(zone->uz_keg, mem));
5781 }
5782
5783 static bool
5784 uma_dbg_kskip(uma_keg_t keg, void *mem)
5785 {
5786 uintptr_t idx;
5787
5788 if (dbg_divisor == 0)
5789 return (true);
5790
5791 if (dbg_divisor == 1)
5792 return (false);
5793
5794 idx = (uintptr_t)mem >> PAGE_SHIFT;
5795 if (keg->uk_ipers > 1) {
5796 idx *= keg->uk_ipers;
5797 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5798 }
5799
5800 if ((idx / dbg_divisor) * dbg_divisor != idx) {
5801 counter_u64_add(uma_skip_cnt, 1);
5802 return (true);
5803 }
5804 counter_u64_add(uma_dbg_cnt, 1);
5805
5806 return (false);
5807 }
5808
5809 /*
5810 * Set up the slab's freei data such that uma_dbg_free can function.
5811 *
5812 */
5813 static void
5814 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5815 {
5816 uma_keg_t keg;
5817 int freei;
5818
5819 if (slab == NULL) {
5820 slab = uma_dbg_getslab(zone, item);
5821 if (slab == NULL)
5822 panic("uma: item %p did not belong to zone %s",
5823 item, zone->uz_name);
5824 }
5825 keg = zone->uz_keg;
5826 freei = slab_item_index(slab, keg, item);
5827
5828 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5829 slab_dbg_bits(slab, keg)))
5830 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5831 item, zone, zone->uz_name, slab, freei);
5832 }
5833
5834 /*
5835 * Verifies freed addresses. Checks for alignment, valid slab membership
5836 * and duplicate frees.
5837 *
5838 */
5839 static void
5840 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5841 {
5842 uma_keg_t keg;
5843 int freei;
5844
5845 if (slab == NULL) {
5846 slab = uma_dbg_getslab(zone, item);
5847 if (slab == NULL)
5848 panic("uma: Freed item %p did not belong to zone %s",
5849 item, zone->uz_name);
5850 }
5851 keg = zone->uz_keg;
5852 freei = slab_item_index(slab, keg, item);
5853
5854 if (freei >= keg->uk_ipers)
5855 panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5856 item, zone, zone->uz_name, slab, freei);
5857
5858 if (slab_item(slab, keg, freei) != item)
5859 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5860 item, zone, zone->uz_name, slab, freei);
5861
5862 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5863 slab_dbg_bits(slab, keg)))
5864 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5865 item, zone, zone->uz_name, slab, freei);
5866 }
5867 #endif /* INVARIANTS */
5868
5869 #ifdef DDB
5870 static int64_t
5871 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5872 uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5873 {
5874 uint64_t frees;
5875 int i;
5876
5877 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5878 *allocs = counter_u64_fetch(z->uz_allocs);
5879 frees = counter_u64_fetch(z->uz_frees);
5880 *sleeps = z->uz_sleeps;
5881 *cachefree = 0;
5882 *xdomain = 0;
5883 } else
5884 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5885 xdomain);
5886 for (i = 0; i < vm_ndomains; i++) {
5887 *cachefree += ZDOM_GET(z, i)->uzd_nitems;
5888 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5889 (LIST_FIRST(&kz->uk_zones) != z)))
5890 *cachefree += kz->uk_domain[i].ud_free_items;
5891 }
5892 *used = *allocs - frees;
5893 return (((int64_t)*used + *cachefree) * kz->uk_size);
5894 }
5895
5896 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
5897 {
5898 const char *fmt_hdr, *fmt_entry;
5899 uma_keg_t kz;
5900 uma_zone_t z;
5901 uint64_t allocs, used, sleeps, xdomain;
5902 long cachefree;
5903 /* variables for sorting */
5904 uma_keg_t cur_keg;
5905 uma_zone_t cur_zone, last_zone;
5906 int64_t cur_size, last_size, size;
5907 int ties;
5908
5909 /* /i option produces machine-parseable CSV output */
5910 if (modif[0] == 'i') {
5911 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5912 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5913 } else {
5914 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5915 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5916 }
5917
5918 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5919 "Sleeps", "Bucket", "Total Mem", "XFree");
5920
5921 /* Sort the zones with largest size first. */
5922 last_zone = NULL;
5923 last_size = INT64_MAX;
5924 for (;;) {
5925 cur_zone = NULL;
5926 cur_size = -1;
5927 ties = 0;
5928 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5929 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5930 /*
5931 * In the case of size ties, print out zones
5932 * in the order they are encountered. That is,
5933 * when we encounter the most recently output
5934 * zone, we have already printed all preceding
5935 * ties, and we must print all following ties.
5936 */
5937 if (z == last_zone) {
5938 ties = 1;
5939 continue;
5940 }
5941 size = get_uma_stats(kz, z, &allocs, &used,
5942 &sleeps, &cachefree, &xdomain);
5943 if (size > cur_size && size < last_size + ties)
5944 {
5945 cur_size = size;
5946 cur_zone = z;
5947 cur_keg = kz;
5948 }
5949 }
5950 }
5951 if (cur_zone == NULL)
5952 break;
5953
5954 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5955 &sleeps, &cachefree, &xdomain);
5956 db_printf(fmt_entry, cur_zone->uz_name,
5957 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5958 (uintmax_t)allocs, (uintmax_t)sleeps,
5959 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5960 xdomain);
5961
5962 if (db_pager_quit)
5963 return;
5964 last_zone = cur_zone;
5965 last_size = cur_size;
5966 }
5967 }
5968
5969 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
5970 {
5971 uma_zone_t z;
5972 uint64_t allocs, frees;
5973 long cachefree;
5974 int i;
5975
5976 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5977 "Requests", "Bucket");
5978 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5979 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5980 for (i = 0; i < vm_ndomains; i++)
5981 cachefree += ZDOM_GET(z, i)->uzd_nitems;
5982 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5983 z->uz_name, (uintmax_t)z->uz_size,
5984 (intmax_t)(allocs - frees), cachefree,
5985 (uintmax_t)allocs, z->uz_bucket_size);
5986 if (db_pager_quit)
5987 return;
5988 }
5989 }
5990 #endif /* DDB */
5991