1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * Copyright (c) 2004-2006 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * uma_core.c Implementation of the Universal Memory allocator
33 *
34 * This allocator is intended to replace the multitude of similar object caches
35 * in the standard FreeBSD kernel. The intent is to be flexible as well as
36 * efficient. A primary design goal is to return unused memory to the rest of
37 * the system. This will make the system as a whole more flexible due to the
38 * ability to move memory to subsystems which most need it instead of leaving
39 * pools of reserved memory unused.
40 *
41 * The basic ideas stem from similar slab/zone based allocators whose algorithms
42 * are well known.
43 *
44 */
45
46 /*
47 * TODO:
48 * - Improve memory usage for large allocations
49 * - Investigate cache size adjustments
50 */
51
52 #include <sys/cdefs.h>
53 #include "opt_ddb.h"
54 #include "opt_param.h"
55 #include "opt_vm.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/asan.h>
60 #include <sys/bitset.h>
61 #include <sys/domainset.h>
62 #include <sys/eventhandler.h>
63 #include <sys/kernel.h>
64 #include <sys/types.h>
65 #include <sys/limits.h>
66 #include <sys/queue.h>
67 #include <sys/malloc.h>
68 #include <sys/ktr.h>
69 #include <sys/lock.h>
70 #include <sys/msan.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/random.h>
74 #include <sys/rwlock.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/smp.h>
79 #include <sys/smr.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_phys.h>
91 #include <vm/vm_pagequeue.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_dumpset.h>
96 #include <vm/uma.h>
97 #include <vm/uma_int.h>
98 #include <vm/uma_dbg.h>
99
100 #include <ddb/ddb.h>
101
102 #ifdef DEBUG_MEMGUARD
103 #include <vm/memguard.h>
104 #endif
105
106 #include <machine/md_var.h>
107
108 #ifdef INVARIANTS
109 #define UMA_ALWAYS_CTORDTOR 1
110 #else
111 #define UMA_ALWAYS_CTORDTOR 0
112 #endif
113
114 /*
115 * This is the zone and keg from which all zones are spawned.
116 */
117 static uma_zone_t kegs;
118 static uma_zone_t zones;
119
120 /*
121 * On INVARIANTS builds, the slab contains a second bitset of the same size,
122 * "dbg_bits", which is laid out immediately after us_free.
123 */
124 #ifdef INVARIANTS
125 #define SLAB_BITSETS 2
126 #else
127 #define SLAB_BITSETS 1
128 #endif
129
130 /*
131 * These are the two zones from which all offpage uma_slab_ts are allocated.
132 *
133 * One zone is for slab headers that can represent a larger number of items,
134 * making the slabs themselves more efficient, and the other zone is for
135 * headers that are smaller and represent fewer items, making the headers more
136 * efficient.
137 */
138 #define SLABZONE_SIZE(setsize) \
139 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
140 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16)
141 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE
142 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE)
143 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE)
144 static uma_zone_t slabzones[2];
145
146 /*
147 * The initial hash tables come out of this zone so they can be allocated
148 * prior to malloc coming up.
149 */
150 static uma_zone_t hashzone;
151
152 /* The boot-time adjusted value for cache line alignment. */
153 static unsigned int uma_cache_align_mask = 64 - 1;
154
155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
157
158 /*
159 * Are we allowed to allocate buckets?
160 */
161 static int bucketdisable = 1;
162
163 /* Linked list of all kegs in the system */
164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
165
166 /* Linked list of all cache-only zones in the system */
167 static LIST_HEAD(,uma_zone) uma_cachezones =
168 LIST_HEAD_INITIALIZER(uma_cachezones);
169
170 /*
171 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
172 * zones.
173 */
174 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
175
176 static struct sx uma_reclaim_lock;
177
178 /*
179 * First available virual address for boot time allocations.
180 */
181 static vm_offset_t bootstart;
182 static vm_offset_t bootmem;
183
184 /*
185 * kmem soft limit, initialized by uma_set_limit(). Ensure that early
186 * allocations don't trigger a wakeup of the reclaim thread.
187 */
188 unsigned long uma_kmem_limit = LONG_MAX;
189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
190 "UMA kernel memory soft limit");
191 unsigned long uma_kmem_total;
192 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
193 "UMA kernel memory usage");
194
195 /* Is the VM done starting up? */
196 static enum {
197 BOOT_COLD,
198 BOOT_KVA,
199 BOOT_PCPU,
200 BOOT_RUNNING,
201 BOOT_SHUTDOWN,
202 } booted = BOOT_COLD;
203
204 /*
205 * This is the handle used to schedule events that need to happen
206 * outside of the allocation fast path.
207 */
208 static struct timeout_task uma_timeout_task;
209 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */
210
211 /*
212 * This structure is passed as the zone ctor arg so that I don't have to create
213 * a special allocation function just for zones.
214 */
215 struct uma_zctor_args {
216 const char *name;
217 size_t size;
218 uma_ctor ctor;
219 uma_dtor dtor;
220 uma_init uminit;
221 uma_fini fini;
222 uma_import import;
223 uma_release release;
224 void *arg;
225 uma_keg_t keg;
226 int align;
227 uint32_t flags;
228 };
229
230 struct uma_kctor_args {
231 uma_zone_t zone;
232 size_t size;
233 uma_init uminit;
234 uma_fini fini;
235 int align;
236 uint32_t flags;
237 };
238
239 struct uma_bucket_zone {
240 uma_zone_t ubz_zone;
241 const char *ubz_name;
242 int ubz_entries; /* Number of items it can hold. */
243 int ubz_maxsize; /* Maximum allocation size per-item. */
244 };
245
246 /*
247 * Compute the actual number of bucket entries to pack them in power
248 * of two sizes for more efficient space utilization.
249 */
250 #define BUCKET_SIZE(n) \
251 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
252
253 #define BUCKET_MAX BUCKET_SIZE(256)
254
255 struct uma_bucket_zone bucket_zones[] = {
256 /* Literal bucket sizes. */
257 { NULL, "2 Bucket", 2, 4096 },
258 { NULL, "4 Bucket", 4, 3072 },
259 { NULL, "8 Bucket", 8, 2048 },
260 { NULL, "16 Bucket", 16, 1024 },
261 /* Rounded down power of 2 sizes for efficiency. */
262 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
263 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
264 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
265 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
266 { NULL, NULL, 0}
267 };
268
269 /*
270 * Flags and enumerations to be passed to internal functions.
271 */
272 enum zfreeskip {
273 SKIP_NONE = 0,
274 SKIP_CNT = 0x00000001,
275 SKIP_DTOR = 0x00010000,
276 SKIP_FINI = 0x00020000,
277 };
278
279 /* Prototypes.. */
280
281 void uma_startup1(vm_offset_t);
282 void uma_startup2(void);
283
284 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289 static void page_free(void *, vm_size_t, uint8_t);
290 static void pcpu_page_free(void *, vm_size_t, uint8_t);
291 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
292 static void cache_drain(uma_zone_t);
293 static void bucket_drain(uma_zone_t, uma_bucket_t);
294 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
295 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
296 static int keg_ctor(void *, int, void *, int);
297 static void keg_dtor(void *, int, void *);
298 static void keg_drain(uma_keg_t keg, int domain);
299 static int zone_ctor(void *, int, void *, int);
300 static void zone_dtor(void *, int, void *);
301 static inline void item_dtor(uma_zone_t zone, void *item, int size,
302 void *udata, enum zfreeskip skip);
303 static int zero_init(void *, int, int);
304 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
305 int itemdomain, bool ws);
306 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
307 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
308 static void zone_timeout(uma_zone_t zone, void *);
309 static int hash_alloc(struct uma_hash *, u_int);
310 static int hash_expand(struct uma_hash *, struct uma_hash *);
311 static void hash_free(struct uma_hash *hash);
312 static void uma_timeout(void *, int);
313 static void uma_shutdown(void);
314 static void *zone_alloc_item(uma_zone_t, void *, int, int);
315 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
316 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
317 static void zone_free_limit(uma_zone_t zone, int count);
318 static void bucket_enable(void);
319 static void bucket_init(void);
320 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
321 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
322 static void bucket_zone_drain(int domain);
323 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
324 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
325 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
326 static size_t slab_sizeof(int nitems);
327 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
328 uma_fini fini, int align, uint32_t flags);
329 static int zone_import(void *, void **, int, int, int);
330 static void zone_release(void *, void **, int);
331 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
332 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
333
334 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
335 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
336 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
337 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
338 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
339 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
340 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
341
342 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
343
344 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
345 "Memory allocation debugging");
346
347 #ifdef INVARIANTS
348 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
349 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
350
351 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
352 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
353 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
354 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
355
356 static u_int dbg_divisor = 1;
357 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
358 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
359 "Debug & thrash every this item in memory allocator");
360
361 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
362 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
363 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
364 &uma_dbg_cnt, "memory items debugged");
365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
366 &uma_skip_cnt, "memory items skipped, not debugged");
367 #endif
368
369 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
370 "Universal Memory Allocator");
371
372 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
373 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
374
375 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
376 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
377
378 static int zone_warnings = 1;
379 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
380 "Warn when UMA zones becomes full");
381
382 static int multipage_slabs = 1;
383 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
384 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
385 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
386 "UMA may choose larger slab sizes for better efficiency");
387
388 /*
389 * Select the slab zone for an offpage slab with the given maximum item count.
390 */
391 static inline uma_zone_t
slabzone(int ipers)392 slabzone(int ipers)
393 {
394
395 return (slabzones[ipers > SLABZONE0_SETSIZE]);
396 }
397
398 /*
399 * This routine checks to see whether or not it's safe to enable buckets.
400 */
401 static void
bucket_enable(void)402 bucket_enable(void)
403 {
404
405 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
406 bucketdisable = vm_page_count_min();
407 }
408
409 /*
410 * Initialize bucket_zones, the array of zones of buckets of various sizes.
411 *
412 * For each zone, calculate the memory required for each bucket, consisting
413 * of the header and an array of pointers.
414 */
415 static void
bucket_init(void)416 bucket_init(void)
417 {
418 struct uma_bucket_zone *ubz;
419 int size;
420
421 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
422 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
423 size += sizeof(void *) * ubz->ubz_entries;
424 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
425 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
426 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
427 UMA_ZONE_FIRSTTOUCH);
428 }
429 }
430
431 /*
432 * Given a desired number of entries for a bucket, return the zone from which
433 * to allocate the bucket.
434 */
435 static struct uma_bucket_zone *
bucket_zone_lookup(int entries)436 bucket_zone_lookup(int entries)
437 {
438 struct uma_bucket_zone *ubz;
439
440 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
441 if (ubz->ubz_entries >= entries)
442 return (ubz);
443 ubz--;
444 return (ubz);
445 }
446
447 static int
bucket_select(int size)448 bucket_select(int size)
449 {
450 struct uma_bucket_zone *ubz;
451
452 ubz = &bucket_zones[0];
453 if (size > ubz->ubz_maxsize)
454 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
455
456 for (; ubz->ubz_entries != 0; ubz++)
457 if (ubz->ubz_maxsize < size)
458 break;
459 ubz--;
460 return (ubz->ubz_entries);
461 }
462
463 static uma_bucket_t
bucket_alloc(uma_zone_t zone,void * udata,int flags)464 bucket_alloc(uma_zone_t zone, void *udata, int flags)
465 {
466 struct uma_bucket_zone *ubz;
467 uma_bucket_t bucket;
468
469 /*
470 * Don't allocate buckets early in boot.
471 */
472 if (__predict_false(booted < BOOT_KVA))
473 return (NULL);
474
475 /*
476 * To limit bucket recursion we store the original zone flags
477 * in a cookie passed via zalloc_arg/zfree_arg. This allows the
478 * NOVM flag to persist even through deep recursions. We also
479 * store ZFLAG_BUCKET once we have recursed attempting to allocate
480 * a bucket for a bucket zone so we do not allow infinite bucket
481 * recursion. This cookie will even persist to frees of unused
482 * buckets via the allocation path or bucket allocations in the
483 * free path.
484 */
485 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
486 udata = (void *)(uintptr_t)zone->uz_flags;
487 else {
488 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
489 return (NULL);
490 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
491 }
492 if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
493 flags |= M_NOVM;
494 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
495 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
496 ubz++;
497 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
498 if (bucket) {
499 #ifdef INVARIANTS
500 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
501 #endif
502 bucket->ub_cnt = 0;
503 bucket->ub_entries = min(ubz->ubz_entries,
504 zone->uz_bucket_size_max);
505 bucket->ub_seq = SMR_SEQ_INVALID;
506 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
507 zone->uz_name, zone, bucket);
508 }
509
510 return (bucket);
511 }
512
513 static void
bucket_free(uma_zone_t zone,uma_bucket_t bucket,void * udata)514 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
515 {
516 struct uma_bucket_zone *ubz;
517
518 if (bucket->ub_cnt != 0)
519 bucket_drain(zone, bucket);
520
521 KASSERT(bucket->ub_cnt == 0,
522 ("bucket_free: Freeing a non free bucket."));
523 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
524 ("bucket_free: Freeing an SMR bucket."));
525 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
526 udata = (void *)(uintptr_t)zone->uz_flags;
527 ubz = bucket_zone_lookup(bucket->ub_entries);
528 uma_zfree_arg(ubz->ubz_zone, bucket, udata);
529 }
530
531 static void
bucket_zone_drain(int domain)532 bucket_zone_drain(int domain)
533 {
534 struct uma_bucket_zone *ubz;
535
536 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
537 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
538 domain);
539 }
540
541 #ifdef KASAN
542 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
543 "Base UMA allocation size not a multiple of the KASAN scale factor");
544
545 static void
kasan_mark_item_valid(uma_zone_t zone,void * item)546 kasan_mark_item_valid(uma_zone_t zone, void *item)
547 {
548 void *pcpu_item;
549 size_t sz, rsz;
550 int i;
551
552 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
553 return;
554
555 sz = zone->uz_size;
556 rsz = roundup2(sz, KASAN_SHADOW_SCALE);
557 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
558 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
559 } else {
560 pcpu_item = zpcpu_base_to_offset(item);
561 for (i = 0; i <= mp_maxid; i++)
562 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
563 KASAN_GENERIC_REDZONE);
564 }
565 }
566
567 static void
kasan_mark_item_invalid(uma_zone_t zone,void * item)568 kasan_mark_item_invalid(uma_zone_t zone, void *item)
569 {
570 void *pcpu_item;
571 size_t sz;
572 int i;
573
574 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
575 return;
576
577 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
578 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
579 kasan_mark(item, 0, sz, KASAN_UMA_FREED);
580 } else {
581 pcpu_item = zpcpu_base_to_offset(item);
582 for (i = 0; i <= mp_maxid; i++)
583 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
584 KASAN_UMA_FREED);
585 }
586 }
587
588 static void
kasan_mark_slab_valid(uma_keg_t keg,void * mem)589 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
590 {
591 size_t sz;
592
593 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
594 sz = keg->uk_ppera * PAGE_SIZE;
595 kasan_mark(mem, sz, sz, 0);
596 }
597 }
598
599 static void
kasan_mark_slab_invalid(uma_keg_t keg,void * mem)600 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
601 {
602 size_t sz;
603
604 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
605 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
606 sz = keg->uk_ppera * PAGE_SIZE;
607 else
608 sz = keg->uk_pgoff;
609 kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
610 }
611 }
612 #else /* !KASAN */
613 static void
kasan_mark_item_valid(uma_zone_t zone __unused,void * item __unused)614 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
615 {
616 }
617
618 static void
kasan_mark_item_invalid(uma_zone_t zone __unused,void * item __unused)619 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
620 {
621 }
622
623 static void
kasan_mark_slab_valid(uma_keg_t keg __unused,void * mem __unused)624 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
625 {
626 }
627
628 static void
kasan_mark_slab_invalid(uma_keg_t keg __unused,void * mem __unused)629 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
630 {
631 }
632 #endif /* KASAN */
633
634 #ifdef KMSAN
635 static inline void
kmsan_mark_item_uninitialized(uma_zone_t zone,void * item)636 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
637 {
638 void *pcpu_item;
639 size_t sz;
640 int i;
641
642 if ((zone->uz_flags &
643 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
644 /*
645 * Cache zones should not be instrumented by default, as UMA
646 * does not have enough information to do so correctly.
647 * Consumers can mark items themselves if it makes sense to do
648 * so.
649 *
650 * Items from secondary zones are initialized by the parent
651 * zone and thus cannot safely be marked by UMA.
652 *
653 * malloc zones are handled directly by malloc(9) and friends,
654 * since they can provide more precise origin tracking.
655 */
656 return;
657 }
658 if (zone->uz_keg->uk_init != NULL) {
659 /*
660 * By definition, initialized items cannot be marked. The
661 * best we can do is mark items from these zones after they
662 * are freed to the keg.
663 */
664 return;
665 }
666
667 sz = zone->uz_size;
668 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
669 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
670 kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
671 } else {
672 pcpu_item = zpcpu_base_to_offset(item);
673 for (i = 0; i <= mp_maxid; i++) {
674 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
675 KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
676 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
677 KMSAN_STATE_INITED);
678 }
679 }
680 }
681 #else /* !KMSAN */
682 static inline void
kmsan_mark_item_uninitialized(uma_zone_t zone __unused,void * item __unused)683 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
684 {
685 }
686 #endif /* KMSAN */
687
688 /*
689 * Acquire the domain lock and record contention.
690 */
691 static uma_zone_domain_t
zone_domain_lock(uma_zone_t zone,int domain)692 zone_domain_lock(uma_zone_t zone, int domain)
693 {
694 uma_zone_domain_t zdom;
695 bool lockfail;
696
697 zdom = ZDOM_GET(zone, domain);
698 lockfail = false;
699 if (ZDOM_OWNED(zdom))
700 lockfail = true;
701 ZDOM_LOCK(zdom);
702 /* This is unsynchronized. The counter does not need to be precise. */
703 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
704 zone->uz_bucket_size++;
705 return (zdom);
706 }
707
708 /*
709 * Search for the domain with the least cached items and return it if it
710 * is out of balance with the preferred domain.
711 */
712 static __noinline int
zone_domain_lowest(uma_zone_t zone,int pref)713 zone_domain_lowest(uma_zone_t zone, int pref)
714 {
715 long least, nitems, prefitems;
716 int domain;
717 int i;
718
719 prefitems = least = LONG_MAX;
720 domain = 0;
721 for (i = 0; i < vm_ndomains; i++) {
722 nitems = ZDOM_GET(zone, i)->uzd_nitems;
723 if (nitems < least) {
724 domain = i;
725 least = nitems;
726 }
727 if (domain == pref)
728 prefitems = nitems;
729 }
730 if (prefitems < least * 2)
731 return (pref);
732
733 return (domain);
734 }
735
736 /*
737 * Search for the domain with the most cached items and return it or the
738 * preferred domain if it has enough to proceed.
739 */
740 static __noinline int
zone_domain_highest(uma_zone_t zone,int pref)741 zone_domain_highest(uma_zone_t zone, int pref)
742 {
743 long most, nitems;
744 int domain;
745 int i;
746
747 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
748 return (pref);
749
750 most = 0;
751 domain = 0;
752 for (i = 0; i < vm_ndomains; i++) {
753 nitems = ZDOM_GET(zone, i)->uzd_nitems;
754 if (nitems > most) {
755 domain = i;
756 most = nitems;
757 }
758 }
759
760 return (domain);
761 }
762
763 /*
764 * Set the maximum imax value.
765 */
766 static void
zone_domain_imax_set(uma_zone_domain_t zdom,int nitems)767 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
768 {
769 long old;
770
771 old = zdom->uzd_imax;
772 do {
773 if (old >= nitems)
774 return;
775 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
776
777 /*
778 * We are at new maximum, so do the last WSS update for the old
779 * bimin and prepare to measure next allocation batch.
780 */
781 if (zdom->uzd_wss < old - zdom->uzd_bimin)
782 zdom->uzd_wss = old - zdom->uzd_bimin;
783 zdom->uzd_bimin = nitems;
784 }
785
786 /*
787 * Attempt to satisfy an allocation by retrieving a full bucket from one of the
788 * zone's caches. If a bucket is found the zone is not locked on return.
789 */
790 static uma_bucket_t
zone_fetch_bucket(uma_zone_t zone,uma_zone_domain_t zdom,bool reclaim)791 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
792 {
793 uma_bucket_t bucket;
794 long cnt;
795 int i;
796 bool dtor = false;
797
798 ZDOM_LOCK_ASSERT(zdom);
799
800 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
801 return (NULL);
802
803 /* SMR Buckets can not be re-used until readers expire. */
804 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
805 bucket->ub_seq != SMR_SEQ_INVALID) {
806 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
807 return (NULL);
808 bucket->ub_seq = SMR_SEQ_INVALID;
809 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
810 if (STAILQ_NEXT(bucket, ub_link) != NULL)
811 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
812 }
813 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
814
815 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
816 ("%s: item count underflow (%ld, %d)",
817 __func__, zdom->uzd_nitems, bucket->ub_cnt));
818 KASSERT(bucket->ub_cnt > 0,
819 ("%s: empty bucket in bucket cache", __func__));
820 zdom->uzd_nitems -= bucket->ub_cnt;
821
822 if (reclaim) {
823 /*
824 * Shift the bounds of the current WSS interval to avoid
825 * perturbing the estimates.
826 */
827 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
828 atomic_subtract_long(&zdom->uzd_imax, cnt);
829 zdom->uzd_bimin -= cnt;
830 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
831 if (zdom->uzd_limin >= bucket->ub_cnt) {
832 zdom->uzd_limin -= bucket->ub_cnt;
833 } else {
834 zdom->uzd_limin = 0;
835 zdom->uzd_timin = 0;
836 }
837 } else if (zdom->uzd_bimin > zdom->uzd_nitems) {
838 zdom->uzd_bimin = zdom->uzd_nitems;
839 if (zdom->uzd_imin > zdom->uzd_nitems)
840 zdom->uzd_imin = zdom->uzd_nitems;
841 }
842
843 ZDOM_UNLOCK(zdom);
844 if (dtor)
845 for (i = 0; i < bucket->ub_cnt; i++)
846 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
847 NULL, SKIP_NONE);
848
849 return (bucket);
850 }
851
852 /*
853 * Insert a full bucket into the specified cache. The "ws" parameter indicates
854 * whether the bucket's contents should be counted as part of the zone's working
855 * set. The bucket may be freed if it exceeds the bucket limit.
856 */
857 static void
zone_put_bucket(uma_zone_t zone,int domain,uma_bucket_t bucket,void * udata,const bool ws)858 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
859 const bool ws)
860 {
861 uma_zone_domain_t zdom;
862
863 /* We don't cache empty buckets. This can happen after a reclaim. */
864 if (bucket->ub_cnt == 0)
865 goto out;
866 zdom = zone_domain_lock(zone, domain);
867
868 /*
869 * Conditionally set the maximum number of items.
870 */
871 zdom->uzd_nitems += bucket->ub_cnt;
872 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
873 if (ws) {
874 zone_domain_imax_set(zdom, zdom->uzd_nitems);
875 } else {
876 /*
877 * Shift the bounds of the current WSS interval to
878 * avoid perturbing the estimates.
879 */
880 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
881 zdom->uzd_imin += bucket->ub_cnt;
882 zdom->uzd_bimin += bucket->ub_cnt;
883 zdom->uzd_limin += bucket->ub_cnt;
884 }
885 if (STAILQ_EMPTY(&zdom->uzd_buckets))
886 zdom->uzd_seq = bucket->ub_seq;
887
888 /*
889 * Try to promote reuse of recently used items. For items
890 * protected by SMR, try to defer reuse to minimize polling.
891 */
892 if (bucket->ub_seq == SMR_SEQ_INVALID)
893 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
894 else
895 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
896 ZDOM_UNLOCK(zdom);
897 return;
898 }
899 zdom->uzd_nitems -= bucket->ub_cnt;
900 ZDOM_UNLOCK(zdom);
901 out:
902 bucket_free(zone, bucket, udata);
903 }
904
905 /* Pops an item out of a per-cpu cache bucket. */
906 static inline void *
cache_bucket_pop(uma_cache_t cache,uma_cache_bucket_t bucket)907 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
908 {
909 void *item;
910
911 CRITICAL_ASSERT(curthread);
912
913 bucket->ucb_cnt--;
914 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
915 #ifdef INVARIANTS
916 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
917 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
918 #endif
919 cache->uc_allocs++;
920
921 return (item);
922 }
923
924 /* Pushes an item into a per-cpu cache bucket. */
925 static inline void
cache_bucket_push(uma_cache_t cache,uma_cache_bucket_t bucket,void * item)926 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
927 {
928
929 CRITICAL_ASSERT(curthread);
930 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
931 ("uma_zfree: Freeing to non free bucket index."));
932
933 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
934 bucket->ucb_cnt++;
935 cache->uc_frees++;
936 }
937
938 /*
939 * Unload a UMA bucket from a per-cpu cache.
940 */
941 static inline uma_bucket_t
cache_bucket_unload(uma_cache_bucket_t bucket)942 cache_bucket_unload(uma_cache_bucket_t bucket)
943 {
944 uma_bucket_t b;
945
946 b = bucket->ucb_bucket;
947 if (b != NULL) {
948 MPASS(b->ub_entries == bucket->ucb_entries);
949 b->ub_cnt = bucket->ucb_cnt;
950 bucket->ucb_bucket = NULL;
951 bucket->ucb_entries = bucket->ucb_cnt = 0;
952 }
953
954 return (b);
955 }
956
957 static inline uma_bucket_t
cache_bucket_unload_alloc(uma_cache_t cache)958 cache_bucket_unload_alloc(uma_cache_t cache)
959 {
960
961 return (cache_bucket_unload(&cache->uc_allocbucket));
962 }
963
964 static inline uma_bucket_t
cache_bucket_unload_free(uma_cache_t cache)965 cache_bucket_unload_free(uma_cache_t cache)
966 {
967
968 return (cache_bucket_unload(&cache->uc_freebucket));
969 }
970
971 static inline uma_bucket_t
cache_bucket_unload_cross(uma_cache_t cache)972 cache_bucket_unload_cross(uma_cache_t cache)
973 {
974
975 return (cache_bucket_unload(&cache->uc_crossbucket));
976 }
977
978 /*
979 * Load a bucket into a per-cpu cache bucket.
980 */
981 static inline void
cache_bucket_load(uma_cache_bucket_t bucket,uma_bucket_t b)982 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
983 {
984
985 CRITICAL_ASSERT(curthread);
986 MPASS(bucket->ucb_bucket == NULL);
987 MPASS(b->ub_seq == SMR_SEQ_INVALID);
988
989 bucket->ucb_bucket = b;
990 bucket->ucb_cnt = b->ub_cnt;
991 bucket->ucb_entries = b->ub_entries;
992 }
993
994 static inline void
cache_bucket_load_alloc(uma_cache_t cache,uma_bucket_t b)995 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
996 {
997
998 cache_bucket_load(&cache->uc_allocbucket, b);
999 }
1000
1001 static inline void
cache_bucket_load_free(uma_cache_t cache,uma_bucket_t b)1002 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1003 {
1004
1005 cache_bucket_load(&cache->uc_freebucket, b);
1006 }
1007
1008 #ifdef NUMA
1009 static inline void
cache_bucket_load_cross(uma_cache_t cache,uma_bucket_t b)1010 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1011 {
1012
1013 cache_bucket_load(&cache->uc_crossbucket, b);
1014 }
1015 #endif
1016
1017 /*
1018 * Copy and preserve ucb_spare.
1019 */
1020 static inline void
cache_bucket_copy(uma_cache_bucket_t b1,uma_cache_bucket_t b2)1021 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1022 {
1023
1024 b1->ucb_bucket = b2->ucb_bucket;
1025 b1->ucb_entries = b2->ucb_entries;
1026 b1->ucb_cnt = b2->ucb_cnt;
1027 }
1028
1029 /*
1030 * Swap two cache buckets.
1031 */
1032 static inline void
cache_bucket_swap(uma_cache_bucket_t b1,uma_cache_bucket_t b2)1033 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1034 {
1035 struct uma_cache_bucket b3;
1036
1037 CRITICAL_ASSERT(curthread);
1038
1039 cache_bucket_copy(&b3, b1);
1040 cache_bucket_copy(b1, b2);
1041 cache_bucket_copy(b2, &b3);
1042 }
1043
1044 /*
1045 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1046 */
1047 static uma_bucket_t
cache_fetch_bucket(uma_zone_t zone,uma_cache_t cache,int domain)1048 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1049 {
1050 uma_zone_domain_t zdom;
1051 uma_bucket_t bucket;
1052 smr_seq_t seq;
1053
1054 /*
1055 * Avoid the lock if possible.
1056 */
1057 zdom = ZDOM_GET(zone, domain);
1058 if (zdom->uzd_nitems == 0)
1059 return (NULL);
1060
1061 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1062 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1063 !smr_poll(zone->uz_smr, seq, false))
1064 return (NULL);
1065
1066 /*
1067 * Check the zone's cache of buckets.
1068 */
1069 zdom = zone_domain_lock(zone, domain);
1070 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1071 return (bucket);
1072 ZDOM_UNLOCK(zdom);
1073
1074 return (NULL);
1075 }
1076
1077 static void
zone_log_warning(uma_zone_t zone)1078 zone_log_warning(uma_zone_t zone)
1079 {
1080 static const struct timeval warninterval = { 300, 0 };
1081
1082 if (!zone_warnings || zone->uz_warning == NULL)
1083 return;
1084
1085 if (ratecheck(&zone->uz_ratecheck, &warninterval))
1086 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1087 }
1088
1089 static inline void
zone_maxaction(uma_zone_t zone)1090 zone_maxaction(uma_zone_t zone)
1091 {
1092
1093 if (zone->uz_maxaction.ta_func != NULL)
1094 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1095 }
1096
1097 /*
1098 * Routine called by timeout which is used to fire off some time interval
1099 * based calculations. (stats, hash size, etc.)
1100 *
1101 * Arguments:
1102 * arg Unused
1103 *
1104 * Returns:
1105 * Nothing
1106 */
1107 static void
uma_timeout(void * context __unused,int pending __unused)1108 uma_timeout(void *context __unused, int pending __unused)
1109 {
1110 bucket_enable();
1111 zone_foreach(zone_timeout, NULL);
1112
1113 /* Reschedule this event */
1114 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
1115 UMA_TIMEOUT * hz);
1116 }
1117
1118 /*
1119 * Update the working set size estimates for the zone's bucket cache.
1120 * The constants chosen here are somewhat arbitrary.
1121 */
1122 static void
zone_domain_update_wss(uma_zone_domain_t zdom)1123 zone_domain_update_wss(uma_zone_domain_t zdom)
1124 {
1125 long m;
1126
1127 ZDOM_LOCK_ASSERT(zdom);
1128 MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1129 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1130 MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1131
1132 /*
1133 * Estimate WSS as modified moving average of biggest allocation
1134 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1135 */
1136 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1137 zdom->uzd_imax - zdom->uzd_bimin);
1138
1139 /*
1140 * Estimate longtime minimum item count as a combination of recent
1141 * minimum item count, adjusted by WSS for safety, and the modified
1142 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1143 * timin measures time since limin tried to go negative, that means
1144 * we were dangerously close to or got out of cache.
1145 */
1146 m = zdom->uzd_imin - zdom->uzd_wss;
1147 if (m >= 0) {
1148 if (zdom->uzd_limin >= m)
1149 zdom->uzd_limin = m;
1150 else
1151 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1152 zdom->uzd_timin++;
1153 } else {
1154 zdom->uzd_limin = 0;
1155 zdom->uzd_timin = 0;
1156 }
1157
1158 /* To reduce period edge effects on WSS keep half of the imax. */
1159 atomic_subtract_long(&zdom->uzd_imax,
1160 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1161 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1162 }
1163
1164 /*
1165 * Routine to perform timeout driven calculations. This expands the
1166 * hashes and does per cpu statistics aggregation.
1167 *
1168 * Returns nothing.
1169 */
1170 static void
zone_timeout(uma_zone_t zone,void * unused)1171 zone_timeout(uma_zone_t zone, void *unused)
1172 {
1173 uma_keg_t keg;
1174 u_int slabs, pages;
1175
1176 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1177 goto trim;
1178
1179 keg = zone->uz_keg;
1180
1181 /*
1182 * Hash zones are non-numa by definition so the first domain
1183 * is the only one present.
1184 */
1185 KEG_LOCK(keg, 0);
1186 pages = keg->uk_domain[0].ud_pages;
1187
1188 /*
1189 * Expand the keg hash table.
1190 *
1191 * This is done if the number of slabs is larger than the hash size.
1192 * What I'm trying to do here is completely reduce collisions. This
1193 * may be a little aggressive. Should I allow for two collisions max?
1194 */
1195 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1196 struct uma_hash newhash;
1197 struct uma_hash oldhash;
1198 int ret;
1199
1200 /*
1201 * This is so involved because allocating and freeing
1202 * while the keg lock is held will lead to deadlock.
1203 * I have to do everything in stages and check for
1204 * races.
1205 */
1206 KEG_UNLOCK(keg, 0);
1207 ret = hash_alloc(&newhash, 1 << fls(slabs));
1208 KEG_LOCK(keg, 0);
1209 if (ret) {
1210 if (hash_expand(&keg->uk_hash, &newhash)) {
1211 oldhash = keg->uk_hash;
1212 keg->uk_hash = newhash;
1213 } else
1214 oldhash = newhash;
1215
1216 KEG_UNLOCK(keg, 0);
1217 hash_free(&oldhash);
1218 goto trim;
1219 }
1220 }
1221 KEG_UNLOCK(keg, 0);
1222
1223 trim:
1224 /* Trim caches not used for a long time. */
1225 if ((zone->uz_flags & (UMA_ZONE_UNMANAGED | UMA_ZONE_NOTRIM)) == 0) {
1226 for (int i = 0; i < vm_ndomains; i++) {
1227 if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1228 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1229 keg_drain(zone->uz_keg, i);
1230 }
1231 }
1232 }
1233
1234 /*
1235 * Allocate and zero fill the next sized hash table from the appropriate
1236 * backing store.
1237 *
1238 * Arguments:
1239 * hash A new hash structure with the old hash size in uh_hashsize
1240 *
1241 * Returns:
1242 * 1 on success and 0 on failure.
1243 */
1244 static int
hash_alloc(struct uma_hash * hash,u_int size)1245 hash_alloc(struct uma_hash *hash, u_int size)
1246 {
1247 size_t alloc;
1248
1249 KASSERT(powerof2(size), ("hash size must be power of 2"));
1250 if (size > UMA_HASH_SIZE_INIT) {
1251 hash->uh_hashsize = size;
1252 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1253 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1254 } else {
1255 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1256 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1257 UMA_ANYDOMAIN, M_WAITOK);
1258 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1259 }
1260 if (hash->uh_slab_hash) {
1261 bzero(hash->uh_slab_hash, alloc);
1262 hash->uh_hashmask = hash->uh_hashsize - 1;
1263 return (1);
1264 }
1265
1266 return (0);
1267 }
1268
1269 /*
1270 * Expands the hash table for HASH zones. This is done from zone_timeout
1271 * to reduce collisions. This must not be done in the regular allocation
1272 * path, otherwise, we can recurse on the vm while allocating pages.
1273 *
1274 * Arguments:
1275 * oldhash The hash you want to expand
1276 * newhash The hash structure for the new table
1277 *
1278 * Returns:
1279 * Nothing
1280 *
1281 * Discussion:
1282 */
1283 static int
hash_expand(struct uma_hash * oldhash,struct uma_hash * newhash)1284 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1285 {
1286 uma_hash_slab_t slab;
1287 u_int hval;
1288 u_int idx;
1289
1290 if (!newhash->uh_slab_hash)
1291 return (0);
1292
1293 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1294 return (0);
1295
1296 /*
1297 * I need to investigate hash algorithms for resizing without a
1298 * full rehash.
1299 */
1300
1301 for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1302 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1303 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1304 LIST_REMOVE(slab, uhs_hlink);
1305 hval = UMA_HASH(newhash, slab->uhs_data);
1306 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1307 slab, uhs_hlink);
1308 }
1309
1310 return (1);
1311 }
1312
1313 /*
1314 * Free the hash bucket to the appropriate backing store.
1315 *
1316 * Arguments:
1317 * slab_hash The hash bucket we're freeing
1318 * hashsize The number of entries in that hash bucket
1319 *
1320 * Returns:
1321 * Nothing
1322 */
1323 static void
hash_free(struct uma_hash * hash)1324 hash_free(struct uma_hash *hash)
1325 {
1326 if (hash->uh_slab_hash == NULL)
1327 return;
1328 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1329 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1330 else
1331 free(hash->uh_slab_hash, M_UMAHASH);
1332 }
1333
1334 /*
1335 * Frees all outstanding items in a bucket
1336 *
1337 * Arguments:
1338 * zone The zone to free to, must be unlocked.
1339 * bucket The free/alloc bucket with items.
1340 *
1341 * Returns:
1342 * Nothing
1343 */
1344 static void
bucket_drain(uma_zone_t zone,uma_bucket_t bucket)1345 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1346 {
1347 int i;
1348
1349 if (bucket->ub_cnt == 0)
1350 return;
1351
1352 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1353 bucket->ub_seq != SMR_SEQ_INVALID) {
1354 smr_wait(zone->uz_smr, bucket->ub_seq);
1355 bucket->ub_seq = SMR_SEQ_INVALID;
1356 for (i = 0; i < bucket->ub_cnt; i++)
1357 item_dtor(zone, bucket->ub_bucket[i],
1358 zone->uz_size, NULL, SKIP_NONE);
1359 }
1360 if (zone->uz_fini)
1361 for (i = 0; i < bucket->ub_cnt; i++) {
1362 kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1363 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1364 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1365 }
1366 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1367 if (zone->uz_max_items > 0)
1368 zone_free_limit(zone, bucket->ub_cnt);
1369 #ifdef INVARIANTS
1370 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1371 #endif
1372 bucket->ub_cnt = 0;
1373 }
1374
1375 /*
1376 * Drains the per cpu caches for a zone.
1377 *
1378 * NOTE: This may only be called while the zone is being torn down, and not
1379 * during normal operation. This is necessary in order that we do not have
1380 * to migrate CPUs to drain the per-CPU caches.
1381 *
1382 * Arguments:
1383 * zone The zone to drain, must be unlocked.
1384 *
1385 * Returns:
1386 * Nothing
1387 */
1388 static void
cache_drain(uma_zone_t zone)1389 cache_drain(uma_zone_t zone)
1390 {
1391 uma_cache_t cache;
1392 uma_bucket_t bucket;
1393 smr_seq_t seq;
1394 int cpu;
1395
1396 /*
1397 * XXX: It is safe to not lock the per-CPU caches, because we're
1398 * tearing down the zone anyway. I.e., there will be no further use
1399 * of the caches at this point.
1400 *
1401 * XXX: It would good to be able to assert that the zone is being
1402 * torn down to prevent improper use of cache_drain().
1403 */
1404 seq = SMR_SEQ_INVALID;
1405 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1406 seq = smr_advance(zone->uz_smr);
1407 CPU_FOREACH(cpu) {
1408 cache = &zone->uz_cpu[cpu];
1409 bucket = cache_bucket_unload_alloc(cache);
1410 if (bucket != NULL)
1411 bucket_free(zone, bucket, NULL);
1412 bucket = cache_bucket_unload_free(cache);
1413 if (bucket != NULL) {
1414 bucket->ub_seq = seq;
1415 bucket_free(zone, bucket, NULL);
1416 }
1417 bucket = cache_bucket_unload_cross(cache);
1418 if (bucket != NULL) {
1419 bucket->ub_seq = seq;
1420 bucket_free(zone, bucket, NULL);
1421 }
1422 }
1423 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1424 }
1425
1426 static void
cache_shrink(uma_zone_t zone,void * unused)1427 cache_shrink(uma_zone_t zone, void *unused)
1428 {
1429
1430 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1431 return;
1432
1433 ZONE_LOCK(zone);
1434 zone->uz_bucket_size =
1435 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1436 ZONE_UNLOCK(zone);
1437 }
1438
1439 static void
cache_drain_safe_cpu(uma_zone_t zone,void * unused)1440 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1441 {
1442 uma_cache_t cache;
1443 uma_bucket_t b1, b2, b3;
1444 int domain;
1445
1446 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1447 return;
1448
1449 b1 = b2 = b3 = NULL;
1450 critical_enter();
1451 cache = &zone->uz_cpu[curcpu];
1452 domain = PCPU_GET(domain);
1453 b1 = cache_bucket_unload_alloc(cache);
1454
1455 /*
1456 * Don't flush SMR zone buckets. This leaves the zone without a
1457 * bucket and forces every free to synchronize().
1458 */
1459 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1460 b2 = cache_bucket_unload_free(cache);
1461 b3 = cache_bucket_unload_cross(cache);
1462 }
1463 critical_exit();
1464
1465 if (b1 != NULL)
1466 zone_free_bucket(zone, b1, NULL, domain, false);
1467 if (b2 != NULL)
1468 zone_free_bucket(zone, b2, NULL, domain, false);
1469 if (b3 != NULL) {
1470 /* Adjust the domain so it goes to zone_free_cross. */
1471 domain = (domain + 1) % vm_ndomains;
1472 zone_free_bucket(zone, b3, NULL, domain, false);
1473 }
1474 }
1475
1476 /*
1477 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1478 * This is an expensive call because it needs to bind to all CPUs
1479 * one by one and enter a critical section on each of them in order
1480 * to safely access their cache buckets.
1481 * Zone lock must not be held on call this function.
1482 */
1483 static void
pcpu_cache_drain_safe(uma_zone_t zone)1484 pcpu_cache_drain_safe(uma_zone_t zone)
1485 {
1486 int cpu;
1487
1488 /*
1489 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1490 */
1491 if (zone)
1492 cache_shrink(zone, NULL);
1493 else
1494 zone_foreach(cache_shrink, NULL);
1495
1496 CPU_FOREACH(cpu) {
1497 thread_lock(curthread);
1498 sched_bind(curthread, cpu);
1499 thread_unlock(curthread);
1500
1501 if (zone)
1502 cache_drain_safe_cpu(zone, NULL);
1503 else
1504 zone_foreach(cache_drain_safe_cpu, NULL);
1505 }
1506 thread_lock(curthread);
1507 sched_unbind(curthread);
1508 thread_unlock(curthread);
1509 }
1510
1511 /*
1512 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller
1513 * requested a drain, otherwise the per-domain caches are trimmed to either
1514 * estimated working set size.
1515 */
1516 static bool
bucket_cache_reclaim_domain(uma_zone_t zone,bool drain,bool trim,int domain)1517 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1518 {
1519 uma_zone_domain_t zdom;
1520 uma_bucket_t bucket;
1521 long target;
1522 bool done = false;
1523
1524 /*
1525 * The cross bucket is partially filled and not part of
1526 * the item count. Reclaim it individually here.
1527 */
1528 zdom = ZDOM_GET(zone, domain);
1529 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1530 ZONE_CROSS_LOCK(zone);
1531 bucket = zdom->uzd_cross;
1532 zdom->uzd_cross = NULL;
1533 ZONE_CROSS_UNLOCK(zone);
1534 if (bucket != NULL)
1535 bucket_free(zone, bucket, NULL);
1536 }
1537
1538 /*
1539 * If we were asked to drain the zone, we are done only once
1540 * this bucket cache is empty. If trim, we reclaim items in
1541 * excess of the zone's estimated working set size. Multiple
1542 * consecutive calls will shrink the WSS and so reclaim more.
1543 * If neither drain nor trim, then voluntarily reclaim 1/4
1544 * (to reduce first spike) of items not used for a long time.
1545 */
1546 ZDOM_LOCK(zdom);
1547 zone_domain_update_wss(zdom);
1548 if (drain)
1549 target = 0;
1550 else if (trim)
1551 target = zdom->uzd_wss;
1552 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1553 target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1554 else {
1555 ZDOM_UNLOCK(zdom);
1556 return (done);
1557 }
1558 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1559 zdom->uzd_nitems >= target + bucket->ub_cnt) {
1560 bucket = zone_fetch_bucket(zone, zdom, true);
1561 if (bucket == NULL)
1562 break;
1563 bucket_free(zone, bucket, NULL);
1564 done = true;
1565 ZDOM_LOCK(zdom);
1566 }
1567 ZDOM_UNLOCK(zdom);
1568 return (done);
1569 }
1570
1571 static void
bucket_cache_reclaim(uma_zone_t zone,bool drain,int domain)1572 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1573 {
1574 int i;
1575
1576 /*
1577 * Shrink the zone bucket size to ensure that the per-CPU caches
1578 * don't grow too large.
1579 */
1580 if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1581 zone->uz_bucket_size--;
1582
1583 if (domain != UMA_ANYDOMAIN &&
1584 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1585 bucket_cache_reclaim_domain(zone, drain, true, domain);
1586 } else {
1587 for (i = 0; i < vm_ndomains; i++)
1588 bucket_cache_reclaim_domain(zone, drain, true, i);
1589 }
1590 }
1591
1592 static void
keg_free_slab(uma_keg_t keg,uma_slab_t slab,int start)1593 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1594 {
1595 uint8_t *mem;
1596 size_t size;
1597 int i;
1598 uint8_t flags;
1599
1600 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1601 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1602
1603 mem = slab_data(slab, keg);
1604 size = PAGE_SIZE * keg->uk_ppera;
1605
1606 kasan_mark_slab_valid(keg, mem);
1607 if (keg->uk_fini != NULL) {
1608 for (i = start - 1; i > -1; i--)
1609 #ifdef INVARIANTS
1610 /*
1611 * trash_fini implies that dtor was trash_dtor. trash_fini
1612 * would check that memory hasn't been modified since free,
1613 * which executed trash_dtor.
1614 * That's why we need to run uma_dbg_kskip() check here,
1615 * albeit we don't make skip check for other init/fini
1616 * invocations.
1617 */
1618 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1619 keg->uk_fini != trash_fini)
1620 #endif
1621 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1622 }
1623 flags = slab->us_flags;
1624 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1625 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1626 NULL, SKIP_NONE);
1627 }
1628 keg->uk_freef(mem, size, flags);
1629 uma_total_dec(size);
1630 }
1631
1632 static void
keg_drain_domain(uma_keg_t keg,int domain)1633 keg_drain_domain(uma_keg_t keg, int domain)
1634 {
1635 struct slabhead freeslabs;
1636 uma_domain_t dom;
1637 uma_slab_t slab, tmp;
1638 uint32_t i, stofree, stokeep, partial;
1639
1640 dom = &keg->uk_domain[domain];
1641 LIST_INIT(&freeslabs);
1642
1643 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1644 keg->uk_name, keg, domain, dom->ud_free_items);
1645
1646 KEG_LOCK(keg, domain);
1647
1648 /*
1649 * Are the free items in partially allocated slabs sufficient to meet
1650 * the reserve? If not, compute the number of fully free slabs that must
1651 * be kept.
1652 */
1653 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1654 if (partial < keg->uk_reserve) {
1655 stokeep = min(dom->ud_free_slabs,
1656 howmany(keg->uk_reserve - partial, keg->uk_ipers));
1657 } else {
1658 stokeep = 0;
1659 }
1660 stofree = dom->ud_free_slabs - stokeep;
1661
1662 /*
1663 * Partition the free slabs into two sets: those that must be kept in
1664 * order to maintain the reserve, and those that may be released back to
1665 * the system. Since one set may be much larger than the other,
1666 * populate the smaller of the two sets and swap them if necessary.
1667 */
1668 for (i = min(stofree, stokeep); i > 0; i--) {
1669 slab = LIST_FIRST(&dom->ud_free_slab);
1670 LIST_REMOVE(slab, us_link);
1671 LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1672 }
1673 if (stofree > stokeep)
1674 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1675
1676 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1677 LIST_FOREACH(slab, &freeslabs, us_link)
1678 UMA_HASH_REMOVE(&keg->uk_hash, slab);
1679 }
1680 dom->ud_free_items -= stofree * keg->uk_ipers;
1681 dom->ud_free_slabs -= stofree;
1682 dom->ud_pages -= stofree * keg->uk_ppera;
1683 KEG_UNLOCK(keg, domain);
1684
1685 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1686 keg_free_slab(keg, slab, keg->uk_ipers);
1687 }
1688
1689 /*
1690 * Frees pages from a keg back to the system. This is done on demand from
1691 * the pageout daemon.
1692 *
1693 * Returns nothing.
1694 */
1695 static void
keg_drain(uma_keg_t keg,int domain)1696 keg_drain(uma_keg_t keg, int domain)
1697 {
1698 int i;
1699
1700 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1701 return;
1702 if (domain != UMA_ANYDOMAIN) {
1703 keg_drain_domain(keg, domain);
1704 } else {
1705 for (i = 0; i < vm_ndomains; i++)
1706 keg_drain_domain(keg, i);
1707 }
1708 }
1709
1710 static void
zone_reclaim(uma_zone_t zone,int domain,int waitok,bool drain)1711 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1712 {
1713 /*
1714 * Count active reclaim operations in order to interlock with
1715 * zone_dtor(), which removes the zone from global lists before
1716 * attempting to reclaim items itself.
1717 *
1718 * The zone may be destroyed while sleeping, so only zone_dtor() should
1719 * specify M_WAITOK.
1720 */
1721 ZONE_LOCK(zone);
1722 if (waitok == M_WAITOK) {
1723 while (zone->uz_reclaimers > 0)
1724 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1725 }
1726 zone->uz_reclaimers++;
1727 ZONE_UNLOCK(zone);
1728 bucket_cache_reclaim(zone, drain, domain);
1729
1730 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1731 keg_drain(zone->uz_keg, domain);
1732 ZONE_LOCK(zone);
1733 zone->uz_reclaimers--;
1734 if (zone->uz_reclaimers == 0)
1735 wakeup(zone);
1736 ZONE_UNLOCK(zone);
1737 }
1738
1739 /*
1740 * Allocate a new slab for a keg and inserts it into the partial slab list.
1741 * The keg should be unlocked on entry. If the allocation succeeds it will
1742 * be locked on return.
1743 *
1744 * Arguments:
1745 * flags Wait flags for the item initialization routine
1746 * aflags Wait flags for the slab allocation
1747 *
1748 * Returns:
1749 * The slab that was allocated or NULL if there is no memory and the
1750 * caller specified M_NOWAIT.
1751 */
1752 static uma_slab_t
keg_alloc_slab(uma_keg_t keg,uma_zone_t zone,int domain,int flags,int aflags)1753 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1754 int aflags)
1755 {
1756 uma_domain_t dom;
1757 uma_slab_t slab;
1758 unsigned long size;
1759 uint8_t *mem;
1760 uint8_t sflags;
1761 int i;
1762
1763 TSENTER();
1764
1765 KASSERT(domain >= 0 && domain < vm_ndomains,
1766 ("keg_alloc_slab: domain %d out of range", domain));
1767
1768 slab = NULL;
1769 mem = NULL;
1770 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1771 uma_hash_slab_t hslab;
1772 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1773 domain, aflags);
1774 if (hslab == NULL)
1775 goto fail;
1776 slab = &hslab->uhs_slab;
1777 }
1778
1779 /*
1780 * This reproduces the old vm_zone behavior of zero filling pages the
1781 * first time they are added to a zone.
1782 *
1783 * Malloced items are zeroed in uma_zalloc.
1784 */
1785
1786 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1787 aflags |= M_ZERO;
1788 else
1789 aflags &= ~M_ZERO;
1790
1791 if (keg->uk_flags & UMA_ZONE_NODUMP)
1792 aflags |= M_NODUMP;
1793
1794 if (keg->uk_flags & UMA_ZONE_NOFREE)
1795 aflags |= M_NEVERFREED;
1796
1797 /* zone is passed for legacy reasons. */
1798 size = keg->uk_ppera * PAGE_SIZE;
1799 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1800 if (mem == NULL) {
1801 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1802 zone_free_item(slabzone(keg->uk_ipers),
1803 slab_tohashslab(slab), NULL, SKIP_NONE);
1804 goto fail;
1805 }
1806 uma_total_inc(size);
1807
1808 /* For HASH zones all pages go to the same uma_domain. */
1809 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1810 domain = 0;
1811
1812 kmsan_mark(mem, size,
1813 (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1814
1815 /* Point the slab into the allocated memory */
1816 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1817 slab = (uma_slab_t)(mem + keg->uk_pgoff);
1818 else
1819 slab_tohashslab(slab)->uhs_data = mem;
1820
1821 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1822 for (i = 0; i < keg->uk_ppera; i++)
1823 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1824 zone, slab);
1825
1826 slab->us_freecount = keg->uk_ipers;
1827 slab->us_flags = sflags;
1828 slab->us_domain = domain;
1829
1830 BIT_FILL(keg->uk_ipers, &slab->us_free);
1831 #ifdef INVARIANTS
1832 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1833 #endif
1834
1835 if (keg->uk_init != NULL) {
1836 for (i = 0; i < keg->uk_ipers; i++)
1837 if (keg->uk_init(slab_item(slab, keg, i),
1838 keg->uk_size, flags) != 0)
1839 break;
1840 if (i != keg->uk_ipers) {
1841 keg_free_slab(keg, slab, i);
1842 goto fail;
1843 }
1844 }
1845 kasan_mark_slab_invalid(keg, mem);
1846 KEG_LOCK(keg, domain);
1847
1848 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1849 slab, keg->uk_name, keg);
1850
1851 if (keg->uk_flags & UMA_ZFLAG_HASH)
1852 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1853
1854 /*
1855 * If we got a slab here it's safe to mark it partially used
1856 * and return. We assume that the caller is going to remove
1857 * at least one item.
1858 */
1859 dom = &keg->uk_domain[domain];
1860 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1861 dom->ud_pages += keg->uk_ppera;
1862 dom->ud_free_items += keg->uk_ipers;
1863
1864 TSEXIT();
1865 return (slab);
1866
1867 fail:
1868 return (NULL);
1869 }
1870
1871 /*
1872 * This function is intended to be used early on in place of page_alloc(). It
1873 * performs contiguous physical memory allocations and uses a bump allocator for
1874 * KVA, so is usable before the kernel map is initialized.
1875 */
1876 static void *
startup_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1877 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1878 int wait)
1879 {
1880 vm_paddr_t pa;
1881 vm_page_t m;
1882 int i, pages;
1883
1884 pages = howmany(bytes, PAGE_SIZE);
1885 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1886
1887 *pflag = UMA_SLAB_BOOT;
1888 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1889 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1890 VM_MEMATTR_DEFAULT);
1891 if (m == NULL)
1892 return (NULL);
1893
1894 pa = VM_PAGE_TO_PHYS(m);
1895 for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1896 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1897 if ((wait & M_NODUMP) == 0)
1898 dump_add_page(pa);
1899 #endif
1900 }
1901
1902 /* Allocate KVA and indirectly advance bootmem. */
1903 return ((void *)pmap_map(&bootmem, m->phys_addr,
1904 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1905 }
1906
1907 static void
startup_free(void * mem,vm_size_t bytes)1908 startup_free(void *mem, vm_size_t bytes)
1909 {
1910 vm_offset_t va;
1911 vm_page_t m;
1912
1913 va = (vm_offset_t)mem;
1914 m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1915
1916 /*
1917 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid
1918 * unmapping ranges of the direct map.
1919 */
1920 if (va >= bootstart && va + bytes <= bootmem)
1921 pmap_remove(kernel_pmap, va, va + bytes);
1922 for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1923 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1924 dump_drop_page(VM_PAGE_TO_PHYS(m));
1925 #endif
1926 vm_page_unwire_noq(m);
1927 vm_page_free(m);
1928 }
1929 }
1930
1931 /*
1932 * Allocates a number of pages from the system
1933 *
1934 * Arguments:
1935 * bytes The number of bytes requested
1936 * wait Shall we wait?
1937 *
1938 * Returns:
1939 * A pointer to the alloced memory or possibly
1940 * NULL if M_NOWAIT is set.
1941 */
1942 static void *
page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1943 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1944 int wait)
1945 {
1946 void *p; /* Returned page */
1947
1948 *pflag = UMA_SLAB_KERNEL;
1949 p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1950
1951 return (p);
1952 }
1953
1954 static void *
pcpu_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1955 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1956 int wait)
1957 {
1958 struct pglist alloctail;
1959 vm_offset_t addr, zkva;
1960 int cpu, flags;
1961 vm_page_t p, p_next;
1962 #ifdef NUMA
1963 struct pcpu *pc;
1964 #endif
1965
1966 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1967
1968 TAILQ_INIT(&alloctail);
1969 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1970 *pflag = UMA_SLAB_KERNEL;
1971 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1972 if (CPU_ABSENT(cpu)) {
1973 p = vm_page_alloc_noobj(flags);
1974 } else {
1975 #ifndef NUMA
1976 p = vm_page_alloc_noobj(flags);
1977 #else
1978 pc = pcpu_find(cpu);
1979 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1980 p = NULL;
1981 else
1982 p = vm_page_alloc_noobj_domain(pc->pc_domain,
1983 flags);
1984 if (__predict_false(p == NULL))
1985 p = vm_page_alloc_noobj(flags);
1986 #endif
1987 }
1988 if (__predict_false(p == NULL))
1989 goto fail;
1990 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1991 }
1992 if ((addr = kva_alloc(bytes)) == 0)
1993 goto fail;
1994 zkva = addr;
1995 TAILQ_FOREACH(p, &alloctail, listq) {
1996 pmap_qenter(zkva, &p, 1);
1997 zkva += PAGE_SIZE;
1998 }
1999 return ((void*)addr);
2000 fail:
2001 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2002 vm_page_unwire_noq(p);
2003 vm_page_free(p);
2004 }
2005 return (NULL);
2006 }
2007
2008 /*
2009 * Allocates a number of pages not belonging to a VM object
2010 *
2011 * Arguments:
2012 * bytes The number of bytes requested
2013 * wait Shall we wait?
2014 *
2015 * Returns:
2016 * A pointer to the alloced memory or possibly
2017 * NULL if M_NOWAIT is set.
2018 */
2019 static void *
noobj_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)2020 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2021 int wait)
2022 {
2023 TAILQ_HEAD(, vm_page) alloctail;
2024 u_long npages;
2025 vm_offset_t retkva, zkva;
2026 vm_page_t p, p_next;
2027 uma_keg_t keg;
2028 int req;
2029
2030 TAILQ_INIT(&alloctail);
2031 keg = zone->uz_keg;
2032 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2033 if ((wait & M_WAITOK) != 0)
2034 req |= VM_ALLOC_WAITOK;
2035
2036 npages = howmany(bytes, PAGE_SIZE);
2037 while (npages > 0) {
2038 p = vm_page_alloc_noobj_domain(domain, req);
2039 if (p != NULL) {
2040 /*
2041 * Since the page does not belong to an object, its
2042 * listq is unused.
2043 */
2044 TAILQ_INSERT_TAIL(&alloctail, p, listq);
2045 npages--;
2046 continue;
2047 }
2048 /*
2049 * Page allocation failed, free intermediate pages and
2050 * exit.
2051 */
2052 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2053 vm_page_unwire_noq(p);
2054 vm_page_free(p);
2055 }
2056 return (NULL);
2057 }
2058 *flags = UMA_SLAB_PRIV;
2059 zkva = keg->uk_kva +
2060 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2061 retkva = zkva;
2062 TAILQ_FOREACH(p, &alloctail, listq) {
2063 pmap_qenter(zkva, &p, 1);
2064 zkva += PAGE_SIZE;
2065 }
2066
2067 return ((void *)retkva);
2068 }
2069
2070 /*
2071 * Allocate physically contiguous pages.
2072 */
2073 static void *
contig_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)2074 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2075 int wait)
2076 {
2077
2078 *pflag = UMA_SLAB_KERNEL;
2079 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2080 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2081 }
2082
2083 #if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2084 void *
uma_small_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)2085 uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2086 int wait)
2087 {
2088 vm_page_t m;
2089 vm_paddr_t pa;
2090 void *va;
2091
2092 *flags = UMA_SLAB_PRIV;
2093 m = vm_page_alloc_noobj_domain(domain,
2094 malloc2vm_flags(wait) | VM_ALLOC_WIRED);
2095 if (m == NULL)
2096 return (NULL);
2097 pa = m->phys_addr;
2098 if ((wait & M_NODUMP) == 0)
2099 dump_add_page(pa);
2100 va = (void *)PHYS_TO_DMAP(pa);
2101 return (va);
2102 }
2103 #endif
2104
2105 /*
2106 * Frees a number of pages to the system
2107 *
2108 * Arguments:
2109 * mem A pointer to the memory to be freed
2110 * size The size of the memory being freed
2111 * flags The original p->us_flags field
2112 *
2113 * Returns:
2114 * Nothing
2115 */
2116 static void
page_free(void * mem,vm_size_t size,uint8_t flags)2117 page_free(void *mem, vm_size_t size, uint8_t flags)
2118 {
2119
2120 if ((flags & UMA_SLAB_BOOT) != 0) {
2121 startup_free(mem, size);
2122 return;
2123 }
2124
2125 KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2126 ("UMA: page_free used with invalid flags %x", flags));
2127
2128 kmem_free(mem, size);
2129 }
2130
2131 /*
2132 * Frees pcpu zone allocations
2133 *
2134 * Arguments:
2135 * mem A pointer to the memory to be freed
2136 * size The size of the memory being freed
2137 * flags The original p->us_flags field
2138 *
2139 * Returns:
2140 * Nothing
2141 */
2142 static void
pcpu_page_free(void * mem,vm_size_t size,uint8_t flags)2143 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2144 {
2145 vm_offset_t sva, curva;
2146 vm_paddr_t paddr;
2147 vm_page_t m;
2148
2149 MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2150
2151 if ((flags & UMA_SLAB_BOOT) != 0) {
2152 startup_free(mem, size);
2153 return;
2154 }
2155
2156 sva = (vm_offset_t)mem;
2157 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2158 paddr = pmap_kextract(curva);
2159 m = PHYS_TO_VM_PAGE(paddr);
2160 vm_page_unwire_noq(m);
2161 vm_page_free(m);
2162 }
2163 pmap_qremove(sva, size >> PAGE_SHIFT);
2164 kva_free(sva, size);
2165 }
2166
2167 #if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2168 void
uma_small_free(void * mem,vm_size_t size,uint8_t flags)2169 uma_small_free(void *mem, vm_size_t size, uint8_t flags)
2170 {
2171 vm_page_t m;
2172 vm_paddr_t pa;
2173
2174 pa = DMAP_TO_PHYS((vm_offset_t)mem);
2175 dump_drop_page(pa);
2176 m = PHYS_TO_VM_PAGE(pa);
2177 vm_page_unwire_noq(m);
2178 vm_page_free(m);
2179 }
2180 #endif
2181
2182 /*
2183 * Zero fill initializer
2184 *
2185 * Arguments/Returns follow uma_init specifications
2186 */
2187 static int
zero_init(void * mem,int size,int flags)2188 zero_init(void *mem, int size, int flags)
2189 {
2190 bzero(mem, size);
2191 return (0);
2192 }
2193
2194 #ifdef INVARIANTS
2195 static struct noslabbits *
slab_dbg_bits(uma_slab_t slab,uma_keg_t keg)2196 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2197 {
2198
2199 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2200 }
2201 #endif
2202
2203 /*
2204 * Actual size of embedded struct slab (!OFFPAGE).
2205 */
2206 static size_t
slab_sizeof(int nitems)2207 slab_sizeof(int nitems)
2208 {
2209 size_t s;
2210
2211 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2212 return (roundup(s, UMA_ALIGN_PTR + 1));
2213 }
2214
2215 #define UMA_FIXPT_SHIFT 31
2216 #define UMA_FRAC_FIXPT(n, d) \
2217 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2218 #define UMA_FIXPT_PCT(f) \
2219 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2220 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100)
2221 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2222
2223 /*
2224 * Compute the number of items that will fit in a slab. If hdr is true, the
2225 * item count may be limited to provide space in the slab for an inline slab
2226 * header. Otherwise, all slab space will be provided for item storage.
2227 */
2228 static u_int
slab_ipers_hdr(u_int size,u_int rsize,u_int slabsize,bool hdr)2229 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2230 {
2231 u_int ipers;
2232 u_int padpi;
2233
2234 /* The padding between items is not needed after the last item. */
2235 padpi = rsize - size;
2236
2237 if (hdr) {
2238 /*
2239 * Start with the maximum item count and remove items until
2240 * the slab header first alongside the allocatable memory.
2241 */
2242 for (ipers = MIN(SLAB_MAX_SETSIZE,
2243 (slabsize + padpi - slab_sizeof(1)) / rsize);
2244 ipers > 0 &&
2245 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2246 ipers--)
2247 continue;
2248 } else {
2249 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2250 }
2251
2252 return (ipers);
2253 }
2254
2255 struct keg_layout_result {
2256 u_int format;
2257 u_int slabsize;
2258 u_int ipers;
2259 u_int eff;
2260 };
2261
2262 static void
keg_layout_one(uma_keg_t keg,u_int rsize,u_int slabsize,u_int fmt,struct keg_layout_result * kl)2263 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2264 struct keg_layout_result *kl)
2265 {
2266 u_int total;
2267
2268 kl->format = fmt;
2269 kl->slabsize = slabsize;
2270
2271 /* Handle INTERNAL as inline with an extra page. */
2272 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2273 kl->format &= ~UMA_ZFLAG_INTERNAL;
2274 kl->slabsize += PAGE_SIZE;
2275 }
2276
2277 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2278 (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2279
2280 /* Account for memory used by an offpage slab header. */
2281 total = kl->slabsize;
2282 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2283 total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2284
2285 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2286 }
2287
2288 /*
2289 * Determine the format of a uma keg. This determines where the slab header
2290 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2291 *
2292 * Arguments
2293 * keg The zone we should initialize
2294 *
2295 * Returns
2296 * Nothing
2297 */
2298 static void
keg_layout(uma_keg_t keg)2299 keg_layout(uma_keg_t keg)
2300 {
2301 struct keg_layout_result kl = {}, kl_tmp;
2302 u_int fmts[2];
2303 u_int alignsize;
2304 u_int nfmt;
2305 u_int pages;
2306 u_int rsize;
2307 u_int slabsize;
2308 u_int i, j;
2309
2310 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2311 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2312 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2313 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2314 __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2315 PRINT_UMA_ZFLAGS));
2316 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2317 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2318 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2319 PRINT_UMA_ZFLAGS));
2320
2321 alignsize = keg->uk_align + 1;
2322 #ifdef KASAN
2323 /*
2324 * ASAN requires that each allocation be aligned to the shadow map
2325 * scale factor.
2326 */
2327 if (alignsize < KASAN_SHADOW_SCALE)
2328 alignsize = KASAN_SHADOW_SCALE;
2329 #endif
2330
2331 /*
2332 * Calculate the size of each allocation (rsize) according to
2333 * alignment. If the requested size is smaller than we have
2334 * allocation bits for we round it up.
2335 */
2336 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2337 rsize = roundup2(rsize, alignsize);
2338
2339 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2340 /*
2341 * We want one item to start on every align boundary in a page.
2342 * To do this we will span pages. We will also extend the item
2343 * by the size of align if it is an even multiple of align.
2344 * Otherwise, it would fall on the same boundary every time.
2345 */
2346 if ((rsize & alignsize) == 0)
2347 rsize += alignsize;
2348 slabsize = rsize * (PAGE_SIZE / alignsize);
2349 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2350 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2351 slabsize = round_page(slabsize);
2352 } else {
2353 /*
2354 * Start with a slab size of as many pages as it takes to
2355 * represent a single item. We will try to fit as many
2356 * additional items into the slab as possible.
2357 */
2358 slabsize = round_page(keg->uk_size);
2359 }
2360
2361 /* Build a list of all of the available formats for this keg. */
2362 nfmt = 0;
2363
2364 /* Evaluate an inline slab layout. */
2365 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2366 fmts[nfmt++] = 0;
2367
2368 /* TODO: vm_page-embedded slab. */
2369
2370 /*
2371 * We can't do OFFPAGE if we're internal or if we've been
2372 * asked to not go to the VM for buckets. If we do this we
2373 * may end up going to the VM for slabs which we do not want
2374 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2375 * In those cases, evaluate a pseudo-format called INTERNAL
2376 * which has an inline slab header and one extra page to
2377 * guarantee that it fits.
2378 *
2379 * Otherwise, see if using an OFFPAGE slab will improve our
2380 * efficiency.
2381 */
2382 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2383 fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2384 else
2385 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2386
2387 /*
2388 * Choose a slab size and format which satisfy the minimum efficiency.
2389 * Prefer the smallest slab size that meets the constraints.
2390 *
2391 * Start with a minimum slab size, to accommodate CACHESPREAD. Then,
2392 * for small items (up to PAGE_SIZE), the iteration increment is one
2393 * page; and for large items, the increment is one item.
2394 */
2395 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2396 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2397 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2398 rsize, i));
2399 for ( ; ; i++) {
2400 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2401 round_page(rsize * (i - 1) + keg->uk_size);
2402
2403 for (j = 0; j < nfmt; j++) {
2404 /* Only if we have no viable format yet. */
2405 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2406 kl.ipers > 0)
2407 continue;
2408
2409 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2410 if (kl_tmp.eff <= kl.eff)
2411 continue;
2412
2413 kl = kl_tmp;
2414
2415 CTR6(KTR_UMA, "keg %s layout: format %#x "
2416 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2417 keg->uk_name, kl.format, kl.ipers, rsize,
2418 kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2419
2420 /* Stop when we reach the minimum efficiency. */
2421 if (kl.eff >= UMA_MIN_EFF)
2422 break;
2423 }
2424
2425 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2426 slabsize >= SLAB_MAX_SETSIZE * rsize ||
2427 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2428 break;
2429 }
2430
2431 pages = atop(kl.slabsize);
2432 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2433 pages *= mp_maxid + 1;
2434
2435 keg->uk_rsize = rsize;
2436 keg->uk_ipers = kl.ipers;
2437 keg->uk_ppera = pages;
2438 keg->uk_flags |= kl.format;
2439
2440 /*
2441 * How do we find the slab header if it is offpage or if not all item
2442 * start addresses are in the same page? We could solve the latter
2443 * case with vaddr alignment, but we don't.
2444 */
2445 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2446 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2447 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2448 keg->uk_flags |= UMA_ZFLAG_HASH;
2449 else
2450 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2451 }
2452
2453 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2454 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2455 pages);
2456 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2457 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2458 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2459 keg->uk_ipers, pages));
2460 }
2461
2462 /*
2463 * Keg header ctor. This initializes all fields, locks, etc. And inserts
2464 * the keg onto the global keg list.
2465 *
2466 * Arguments/Returns follow uma_ctor specifications
2467 * udata Actually uma_kctor_args
2468 */
2469 static int
keg_ctor(void * mem,int size,void * udata,int flags)2470 keg_ctor(void *mem, int size, void *udata, int flags)
2471 {
2472 struct uma_kctor_args *arg = udata;
2473 uma_keg_t keg = mem;
2474 uma_zone_t zone;
2475 int i;
2476
2477 bzero(keg, size);
2478 keg->uk_size = arg->size;
2479 keg->uk_init = arg->uminit;
2480 keg->uk_fini = arg->fini;
2481 keg->uk_align = arg->align;
2482 keg->uk_reserve = 0;
2483 keg->uk_flags = arg->flags;
2484
2485 /*
2486 * We use a global round-robin policy by default. Zones with
2487 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2488 * case the iterator is never run.
2489 */
2490 keg->uk_dr.dr_policy = DOMAINSET_RR();
2491 keg->uk_dr.dr_iter = 0;
2492
2493 /*
2494 * The primary zone is passed to us at keg-creation time.
2495 */
2496 zone = arg->zone;
2497 keg->uk_name = zone->uz_name;
2498
2499 if (arg->flags & UMA_ZONE_ZINIT)
2500 keg->uk_init = zero_init;
2501
2502 if (arg->flags & UMA_ZONE_MALLOC)
2503 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2504
2505 #ifndef SMP
2506 keg->uk_flags &= ~UMA_ZONE_PCPU;
2507 #endif
2508
2509 keg_layout(keg);
2510
2511 /*
2512 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2513 * work on. Use round-robin for everything else.
2514 *
2515 * Zones may override the default by specifying either.
2516 */
2517 #ifdef NUMA
2518 if ((keg->uk_flags &
2519 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2520 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2521 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2522 keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2523 #endif
2524
2525 /*
2526 * If we haven't booted yet we need allocations to go through the
2527 * startup cache until the vm is ready.
2528 */
2529 #ifdef UMA_USE_DMAP
2530 if (keg->uk_ppera == 1)
2531 keg->uk_allocf = uma_small_alloc;
2532 else
2533 #endif
2534 if (booted < BOOT_KVA)
2535 keg->uk_allocf = startup_alloc;
2536 else if (keg->uk_flags & UMA_ZONE_PCPU)
2537 keg->uk_allocf = pcpu_page_alloc;
2538 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2539 keg->uk_allocf = contig_alloc;
2540 else
2541 keg->uk_allocf = page_alloc;
2542 #ifdef UMA_USE_DMAP
2543 if (keg->uk_ppera == 1)
2544 keg->uk_freef = uma_small_free;
2545 else
2546 #endif
2547 if (keg->uk_flags & UMA_ZONE_PCPU)
2548 keg->uk_freef = pcpu_page_free;
2549 else
2550 keg->uk_freef = page_free;
2551
2552 /*
2553 * Initialize keg's locks.
2554 */
2555 for (i = 0; i < vm_ndomains; i++)
2556 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2557
2558 /*
2559 * If we're putting the slab header in the actual page we need to
2560 * figure out where in each page it goes. See slab_sizeof
2561 * definition.
2562 */
2563 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2564 size_t shsize;
2565
2566 shsize = slab_sizeof(keg->uk_ipers);
2567 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2568 /*
2569 * The only way the following is possible is if with our
2570 * UMA_ALIGN_PTR adjustments we are now bigger than
2571 * UMA_SLAB_SIZE. I haven't checked whether this is
2572 * mathematically possible for all cases, so we make
2573 * sure here anyway.
2574 */
2575 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2576 ("zone %s ipers %d rsize %d size %d slab won't fit",
2577 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2578 }
2579
2580 if (keg->uk_flags & UMA_ZFLAG_HASH)
2581 hash_alloc(&keg->uk_hash, 0);
2582
2583 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2584
2585 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2586
2587 rw_wlock(&uma_rwlock);
2588 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2589 rw_wunlock(&uma_rwlock);
2590 return (0);
2591 }
2592
2593 static void
zone_kva_available(uma_zone_t zone,void * unused)2594 zone_kva_available(uma_zone_t zone, void *unused)
2595 {
2596 uma_keg_t keg;
2597
2598 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2599 return;
2600 KEG_GET(zone, keg);
2601
2602 if (keg->uk_allocf == startup_alloc) {
2603 /* Switch to the real allocator. */
2604 if (keg->uk_flags & UMA_ZONE_PCPU)
2605 keg->uk_allocf = pcpu_page_alloc;
2606 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2607 keg->uk_ppera > 1)
2608 keg->uk_allocf = contig_alloc;
2609 else
2610 keg->uk_allocf = page_alloc;
2611 }
2612 }
2613
2614 static void
zone_alloc_counters(uma_zone_t zone,void * unused)2615 zone_alloc_counters(uma_zone_t zone, void *unused)
2616 {
2617
2618 zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2619 zone->uz_frees = counter_u64_alloc(M_WAITOK);
2620 zone->uz_fails = counter_u64_alloc(M_WAITOK);
2621 zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2622 }
2623
2624 static void
zone_alloc_sysctl(uma_zone_t zone,void * unused)2625 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2626 {
2627 uma_zone_domain_t zdom;
2628 uma_domain_t dom;
2629 uma_keg_t keg;
2630 struct sysctl_oid *oid, *domainoid;
2631 int domains, i, cnt;
2632 static const char *nokeg = "cache zone";
2633 char *c;
2634
2635 /*
2636 * Make a sysctl safe copy of the zone name by removing
2637 * any special characters and handling dups by appending
2638 * an index.
2639 */
2640 if (zone->uz_namecnt != 0) {
2641 /* Count the number of decimal digits and '_' separator. */
2642 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2643 cnt /= 10;
2644 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2645 M_UMA, M_WAITOK);
2646 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2647 zone->uz_namecnt);
2648 } else
2649 zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2650 for (c = zone->uz_ctlname; *c != '\0'; c++)
2651 if (strchr("./\\ -", *c) != NULL)
2652 *c = '_';
2653
2654 /*
2655 * Basic parameters at the root.
2656 */
2657 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2658 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2659 oid = zone->uz_oid;
2660 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2661 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2662 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2663 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2664 zone, 0, sysctl_handle_uma_zone_flags, "A",
2665 "Allocator configuration flags");
2666 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2667 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2668 "Desired per-cpu cache size");
2669 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2670 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2671 "Maximum allowed per-cpu cache size");
2672
2673 /*
2674 * keg if present.
2675 */
2676 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2677 domains = vm_ndomains;
2678 else
2679 domains = 1;
2680 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2681 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2682 keg = zone->uz_keg;
2683 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2684 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2685 "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2686 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2687 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2688 "Real object size with alignment");
2689 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2690 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2691 "pages per-slab allocation");
2692 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2693 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2694 "items available per-slab");
2695 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2696 "align", CTLFLAG_RD, &keg->uk_align, 0,
2697 "item alignment mask");
2698 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2699 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2700 "number of reserved items");
2701 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2702 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2703 keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2704 "Slab utilization (100 - internal fragmentation %)");
2705 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2706 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2707 for (i = 0; i < domains; i++) {
2708 dom = &keg->uk_domain[i];
2709 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2710 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2711 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2712 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2713 "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2714 "Total pages currently allocated from VM");
2715 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2716 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2717 "Items free in the slab layer");
2718 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2719 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2720 "Unused slabs");
2721 }
2722 } else
2723 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2724 "name", CTLFLAG_RD, nokeg, "Keg name");
2725
2726 /*
2727 * Information about zone limits.
2728 */
2729 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2730 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2731 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2732 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2733 zone, 0, sysctl_handle_uma_zone_items, "QU",
2734 "Current number of allocated items if limit is set");
2735 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2736 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2737 "Maximum number of allocated and cached items");
2738 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2739 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2740 "Number of threads sleeping at limit");
2741 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2742 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2743 "Total zone limit sleeps");
2744 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2745 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2746 "Maximum number of items in each domain's bucket cache");
2747
2748 /*
2749 * Per-domain zone information.
2750 */
2751 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2752 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2753 for (i = 0; i < domains; i++) {
2754 zdom = ZDOM_GET(zone, i);
2755 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2756 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2757 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2758 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2759 "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2760 "number of items in this domain");
2761 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2762 "imax", CTLFLAG_RD, &zdom->uzd_imax,
2763 "maximum item count in this period");
2764 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2765 "imin", CTLFLAG_RD, &zdom->uzd_imin,
2766 "minimum item count in this period");
2767 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2768 "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2769 "Minimum item count in this batch");
2770 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2771 "wss", CTLFLAG_RD, &zdom->uzd_wss,
2772 "Working set size");
2773 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2774 "limin", CTLFLAG_RD, &zdom->uzd_limin,
2775 "Long time minimum item count");
2776 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2777 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2778 "Time since zero long time minimum item count");
2779 }
2780
2781 /*
2782 * General statistics.
2783 */
2784 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2785 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2786 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2787 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2788 zone, 1, sysctl_handle_uma_zone_cur, "I",
2789 "Current number of allocated items");
2790 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2791 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2792 zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2793 "Total allocation calls");
2794 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2795 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2796 zone, 0, sysctl_handle_uma_zone_frees, "QU",
2797 "Total free calls");
2798 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2799 "fails", CTLFLAG_RD, &zone->uz_fails,
2800 "Number of allocation failures");
2801 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2802 "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2803 "Free calls from the wrong domain");
2804 }
2805
2806 struct uma_zone_count {
2807 const char *name;
2808 int count;
2809 };
2810
2811 static void
zone_count(uma_zone_t zone,void * arg)2812 zone_count(uma_zone_t zone, void *arg)
2813 {
2814 struct uma_zone_count *cnt;
2815
2816 cnt = arg;
2817 /*
2818 * Some zones are rapidly created with identical names and
2819 * destroyed out of order. This can lead to gaps in the count.
2820 * Use one greater than the maximum observed for this name.
2821 */
2822 if (strcmp(zone->uz_name, cnt->name) == 0)
2823 cnt->count = MAX(cnt->count,
2824 zone->uz_namecnt + 1);
2825 }
2826
2827 static void
zone_update_caches(uma_zone_t zone)2828 zone_update_caches(uma_zone_t zone)
2829 {
2830 int i;
2831
2832 for (i = 0; i <= mp_maxid; i++) {
2833 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2834 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2835 }
2836 }
2837
2838 /*
2839 * Zone header ctor. This initializes all fields, locks, etc.
2840 *
2841 * Arguments/Returns follow uma_ctor specifications
2842 * udata Actually uma_zctor_args
2843 */
2844 static int
zone_ctor(void * mem,int size,void * udata,int flags)2845 zone_ctor(void *mem, int size, void *udata, int flags)
2846 {
2847 struct uma_zone_count cnt;
2848 struct uma_zctor_args *arg = udata;
2849 uma_zone_domain_t zdom;
2850 uma_zone_t zone = mem;
2851 uma_zone_t z;
2852 uma_keg_t keg;
2853 int i;
2854
2855 bzero(zone, size);
2856 zone->uz_name = arg->name;
2857 zone->uz_ctor = arg->ctor;
2858 zone->uz_dtor = arg->dtor;
2859 zone->uz_init = NULL;
2860 zone->uz_fini = NULL;
2861 zone->uz_sleeps = 0;
2862 zone->uz_bucket_size = 0;
2863 zone->uz_bucket_size_min = 0;
2864 zone->uz_bucket_size_max = BUCKET_MAX;
2865 zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2866 zone->uz_warning = NULL;
2867 /* The domain structures follow the cpu structures. */
2868 zone->uz_bucket_max = ULONG_MAX;
2869 timevalclear(&zone->uz_ratecheck);
2870
2871 /* Count the number of duplicate names. */
2872 cnt.name = arg->name;
2873 cnt.count = 0;
2874 zone_foreach(zone_count, &cnt);
2875 zone->uz_namecnt = cnt.count;
2876 ZONE_CROSS_LOCK_INIT(zone);
2877
2878 for (i = 0; i < vm_ndomains; i++) {
2879 zdom = ZDOM_GET(zone, i);
2880 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2881 STAILQ_INIT(&zdom->uzd_buckets);
2882 }
2883
2884 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2885 if (arg->uminit == trash_init && arg->fini == trash_fini)
2886 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2887 #elif defined(KASAN)
2888 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2889 arg->flags |= UMA_ZONE_NOKASAN;
2890 #endif
2891
2892 /*
2893 * This is a pure cache zone, no kegs.
2894 */
2895 if (arg->import) {
2896 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2897 ("zone_ctor: Import specified for non-cache zone."));
2898 zone->uz_flags = arg->flags;
2899 zone->uz_size = arg->size;
2900 zone->uz_import = arg->import;
2901 zone->uz_release = arg->release;
2902 zone->uz_arg = arg->arg;
2903 #ifdef NUMA
2904 /*
2905 * Cache zones are round-robin unless a policy is
2906 * specified because they may have incompatible
2907 * constraints.
2908 */
2909 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2910 zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2911 #endif
2912 rw_wlock(&uma_rwlock);
2913 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2914 rw_wunlock(&uma_rwlock);
2915 goto out;
2916 }
2917
2918 /*
2919 * Use the regular zone/keg/slab allocator.
2920 */
2921 zone->uz_import = zone_import;
2922 zone->uz_release = zone_release;
2923 zone->uz_arg = zone;
2924 keg = arg->keg;
2925
2926 if (arg->flags & UMA_ZONE_SECONDARY) {
2927 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2928 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2929 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2930 zone->uz_init = arg->uminit;
2931 zone->uz_fini = arg->fini;
2932 zone->uz_flags |= UMA_ZONE_SECONDARY;
2933 rw_wlock(&uma_rwlock);
2934 ZONE_LOCK(zone);
2935 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2936 if (LIST_NEXT(z, uz_link) == NULL) {
2937 LIST_INSERT_AFTER(z, zone, uz_link);
2938 break;
2939 }
2940 }
2941 ZONE_UNLOCK(zone);
2942 rw_wunlock(&uma_rwlock);
2943 } else if (keg == NULL) {
2944 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2945 arg->align, arg->flags)) == NULL)
2946 return (ENOMEM);
2947 } else {
2948 struct uma_kctor_args karg;
2949 int error;
2950
2951 /* We should only be here from uma_startup() */
2952 karg.size = arg->size;
2953 karg.uminit = arg->uminit;
2954 karg.fini = arg->fini;
2955 karg.align = arg->align;
2956 karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2957 karg.zone = zone;
2958 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2959 flags);
2960 if (error)
2961 return (error);
2962 }
2963
2964 /* Inherit properties from the keg. */
2965 zone->uz_keg = keg;
2966 zone->uz_size = keg->uk_size;
2967 zone->uz_flags |= (keg->uk_flags &
2968 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2969
2970 out:
2971 if (booted >= BOOT_PCPU) {
2972 zone_alloc_counters(zone, NULL);
2973 if (booted >= BOOT_RUNNING)
2974 zone_alloc_sysctl(zone, NULL);
2975 } else {
2976 zone->uz_allocs = EARLY_COUNTER;
2977 zone->uz_frees = EARLY_COUNTER;
2978 zone->uz_fails = EARLY_COUNTER;
2979 }
2980
2981 /* Caller requests a private SMR context. */
2982 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2983 zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2984
2985 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2986 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2987 ("Invalid zone flag combination"));
2988 if (arg->flags & UMA_ZFLAG_INTERNAL)
2989 zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2990 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2991 zone->uz_bucket_size = BUCKET_MAX;
2992 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2993 zone->uz_bucket_size = 0;
2994 else
2995 zone->uz_bucket_size = bucket_select(zone->uz_size);
2996 zone->uz_bucket_size_min = zone->uz_bucket_size;
2997 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2998 zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2999 zone_update_caches(zone);
3000
3001 return (0);
3002 }
3003
3004 /*
3005 * Keg header dtor. This frees all data, destroys locks, frees the hash
3006 * table and removes the keg from the global list.
3007 *
3008 * Arguments/Returns follow uma_dtor specifications
3009 * udata unused
3010 */
3011 static void
keg_dtor(void * arg,int size,void * udata)3012 keg_dtor(void *arg, int size, void *udata)
3013 {
3014 uma_keg_t keg;
3015 uint32_t free, pages;
3016 int i;
3017
3018 keg = (uma_keg_t)arg;
3019 free = pages = 0;
3020 for (i = 0; i < vm_ndomains; i++) {
3021 free += keg->uk_domain[i].ud_free_items;
3022 pages += keg->uk_domain[i].ud_pages;
3023 KEG_LOCK_FINI(keg, i);
3024 }
3025 if (pages != 0)
3026 printf("Freed UMA keg (%s) was not empty (%u items). "
3027 " Lost %u pages of memory.\n",
3028 keg->uk_name ? keg->uk_name : "",
3029 pages / keg->uk_ppera * keg->uk_ipers - free, pages);
3030
3031 hash_free(&keg->uk_hash);
3032 }
3033
3034 /*
3035 * Zone header dtor.
3036 *
3037 * Arguments/Returns follow uma_dtor specifications
3038 * udata unused
3039 */
3040 static void
zone_dtor(void * arg,int size,void * udata)3041 zone_dtor(void *arg, int size, void *udata)
3042 {
3043 uma_zone_t zone;
3044 uma_keg_t keg;
3045 int i;
3046
3047 zone = (uma_zone_t)arg;
3048
3049 sysctl_remove_oid(zone->uz_oid, 1, 1);
3050
3051 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3052 cache_drain(zone);
3053
3054 rw_wlock(&uma_rwlock);
3055 LIST_REMOVE(zone, uz_link);
3056 rw_wunlock(&uma_rwlock);
3057 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3058 keg = zone->uz_keg;
3059 keg->uk_reserve = 0;
3060 }
3061 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3062
3063 /*
3064 * We only destroy kegs from non secondary/non cache zones.
3065 */
3066 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3067 keg = zone->uz_keg;
3068 rw_wlock(&uma_rwlock);
3069 LIST_REMOVE(keg, uk_link);
3070 rw_wunlock(&uma_rwlock);
3071 zone_free_item(kegs, keg, NULL, SKIP_NONE);
3072 }
3073 counter_u64_free(zone->uz_allocs);
3074 counter_u64_free(zone->uz_frees);
3075 counter_u64_free(zone->uz_fails);
3076 counter_u64_free(zone->uz_xdomain);
3077 free(zone->uz_ctlname, M_UMA);
3078 for (i = 0; i < vm_ndomains; i++)
3079 ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3080 ZONE_CROSS_LOCK_FINI(zone);
3081 }
3082
3083 static void
zone_foreach_unlocked(void (* zfunc)(uma_zone_t,void * arg),void * arg)3084 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3085 {
3086 uma_keg_t keg;
3087 uma_zone_t zone;
3088
3089 LIST_FOREACH(keg, &uma_kegs, uk_link) {
3090 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3091 zfunc(zone, arg);
3092 }
3093 LIST_FOREACH(zone, &uma_cachezones, uz_link)
3094 zfunc(zone, arg);
3095 }
3096
3097 /*
3098 * Traverses every zone in the system and calls a callback
3099 *
3100 * Arguments:
3101 * zfunc A pointer to a function which accepts a zone
3102 * as an argument.
3103 *
3104 * Returns:
3105 * Nothing
3106 */
3107 static void
zone_foreach(void (* zfunc)(uma_zone_t,void * arg),void * arg)3108 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3109 {
3110
3111 rw_rlock(&uma_rwlock);
3112 zone_foreach_unlocked(zfunc, arg);
3113 rw_runlock(&uma_rwlock);
3114 }
3115
3116 /*
3117 * Initialize the kernel memory allocator. This is done after pages can be
3118 * allocated but before general KVA is available.
3119 */
3120 void
uma_startup1(vm_offset_t virtual_avail)3121 uma_startup1(vm_offset_t virtual_avail)
3122 {
3123 struct uma_zctor_args args;
3124 size_t ksize, zsize, size;
3125 uma_keg_t primarykeg;
3126 uintptr_t m;
3127 int domain;
3128 uint8_t pflag;
3129
3130 bootstart = bootmem = virtual_avail;
3131
3132 rw_init(&uma_rwlock, "UMA lock");
3133 sx_init(&uma_reclaim_lock, "umareclaim");
3134
3135 ksize = sizeof(struct uma_keg) +
3136 (sizeof(struct uma_domain) * vm_ndomains);
3137 ksize = roundup(ksize, UMA_SUPER_ALIGN);
3138 zsize = sizeof(struct uma_zone) +
3139 (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3140 (sizeof(struct uma_zone_domain) * vm_ndomains);
3141 zsize = roundup(zsize, UMA_SUPER_ALIGN);
3142
3143 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3144 size = (zsize * 2) + ksize;
3145 for (domain = 0; domain < vm_ndomains; domain++) {
3146 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3147 M_NOWAIT | M_ZERO);
3148 if (m != 0)
3149 break;
3150 }
3151 zones = (uma_zone_t)m;
3152 m += zsize;
3153 kegs = (uma_zone_t)m;
3154 m += zsize;
3155 primarykeg = (uma_keg_t)m;
3156
3157 /* "manually" create the initial zone */
3158 memset(&args, 0, sizeof(args));
3159 args.name = "UMA Kegs";
3160 args.size = ksize;
3161 args.ctor = keg_ctor;
3162 args.dtor = keg_dtor;
3163 args.uminit = zero_init;
3164 args.fini = NULL;
3165 args.keg = primarykeg;
3166 args.align = UMA_SUPER_ALIGN - 1;
3167 args.flags = UMA_ZFLAG_INTERNAL;
3168 zone_ctor(kegs, zsize, &args, M_WAITOK);
3169
3170 args.name = "UMA Zones";
3171 args.size = zsize;
3172 args.ctor = zone_ctor;
3173 args.dtor = zone_dtor;
3174 args.uminit = zero_init;
3175 args.fini = NULL;
3176 args.keg = NULL;
3177 args.align = UMA_SUPER_ALIGN - 1;
3178 args.flags = UMA_ZFLAG_INTERNAL;
3179 zone_ctor(zones, zsize, &args, M_WAITOK);
3180
3181 /* Now make zones for slab headers */
3182 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3183 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3184 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3185 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3186
3187 hashzone = uma_zcreate("UMA Hash",
3188 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3189 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3190
3191 bucket_init();
3192 smr_init();
3193 }
3194
3195 #ifndef UMA_USE_DMAP
3196 extern void vm_radix_reserve_kva(void);
3197 #endif
3198
3199 /*
3200 * Advertise the availability of normal kva allocations and switch to
3201 * the default back-end allocator. Marks the KVA we consumed on startup
3202 * as used in the map.
3203 */
3204 void
uma_startup2(void)3205 uma_startup2(void)
3206 {
3207
3208 if (bootstart != bootmem) {
3209 vm_map_lock(kernel_map);
3210 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3211 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3212 vm_map_unlock(kernel_map);
3213 }
3214
3215 #ifndef UMA_USE_DMAP
3216 /* Set up radix zone to use noobj_alloc. */
3217 vm_radix_reserve_kva();
3218 #endif
3219
3220 booted = BOOT_KVA;
3221 zone_foreach_unlocked(zone_kva_available, NULL);
3222 bucket_enable();
3223 }
3224
3225 /*
3226 * Allocate counters as early as possible so that boot-time allocations are
3227 * accounted more precisely.
3228 */
3229 static void
uma_startup_pcpu(void * arg __unused)3230 uma_startup_pcpu(void *arg __unused)
3231 {
3232
3233 zone_foreach_unlocked(zone_alloc_counters, NULL);
3234 booted = BOOT_PCPU;
3235 }
3236 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3237
3238 /*
3239 * Finish our initialization steps.
3240 */
3241 static void
uma_startup3(void * arg __unused)3242 uma_startup3(void *arg __unused)
3243 {
3244
3245 #ifdef INVARIANTS
3246 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3247 uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3248 uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3249 #endif
3250 zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3251 booted = BOOT_RUNNING;
3252
3253 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3254 EVENTHANDLER_PRI_FIRST);
3255 }
3256 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3257
3258 static void
uma_startup4(void * arg __unused)3259 uma_startup4(void *arg __unused)
3260 {
3261 TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
3262 NULL);
3263 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
3264 UMA_TIMEOUT * hz);
3265 }
3266 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
3267
3268 static void
uma_shutdown(void)3269 uma_shutdown(void)
3270 {
3271
3272 booted = BOOT_SHUTDOWN;
3273 }
3274
3275 static uma_keg_t
uma_kcreate(uma_zone_t zone,size_t size,uma_init uminit,uma_fini fini,int align,uint32_t flags)3276 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3277 int align, uint32_t flags)
3278 {
3279 struct uma_kctor_args args;
3280
3281 args.size = size;
3282 args.uminit = uminit;
3283 args.fini = fini;
3284 args.align = align;
3285 args.flags = flags;
3286 args.zone = zone;
3287 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3288 }
3289
3290
3291 static void
check_align_mask(unsigned int mask)3292 check_align_mask(unsigned int mask)
3293 {
3294
3295 KASSERT(powerof2(mask + 1),
3296 ("UMA: %s: Not the mask of a power of 2 (%#x)", __func__, mask));
3297 /*
3298 * Make sure the stored align mask doesn't have its highest bit set,
3299 * which would cause implementation-defined behavior when passing it as
3300 * the 'align' argument of uma_zcreate(). Such very large alignments do
3301 * not make sense anyway.
3302 */
3303 KASSERT(mask <= INT_MAX,
3304 ("UMA: %s: Mask too big (%#x)", __func__, mask));
3305 }
3306
3307 /* Public functions */
3308 /* See uma.h */
3309 void
uma_set_cache_align_mask(unsigned int mask)3310 uma_set_cache_align_mask(unsigned int mask)
3311 {
3312
3313 check_align_mask(mask);
3314 uma_cache_align_mask = mask;
3315 }
3316
3317 /* Returns the alignment mask to use to request cache alignment. */
3318 unsigned int
uma_get_cache_align_mask(void)3319 uma_get_cache_align_mask(void)
3320 {
3321 return (uma_cache_align_mask);
3322 }
3323
3324 /* See uma.h */
3325 uma_zone_t
uma_zcreate(const char * name,size_t size,uma_ctor ctor,uma_dtor dtor,uma_init uminit,uma_fini fini,int align,uint32_t flags)3326 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3327 uma_init uminit, uma_fini fini, int align, uint32_t flags)
3328
3329 {
3330 struct uma_zctor_args args;
3331 uma_zone_t res;
3332
3333 check_align_mask(align);
3334
3335 /* This stuff is essential for the zone ctor */
3336 memset(&args, 0, sizeof(args));
3337 args.name = name;
3338 args.size = size;
3339 args.ctor = ctor;
3340 args.dtor = dtor;
3341 args.uminit = uminit;
3342 args.fini = fini;
3343 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3344 /*
3345 * Inject procedures which check for memory use after free if we are
3346 * allowed to scramble the memory while it is not allocated. This
3347 * requires that: UMA is actually able to access the memory, no init
3348 * or fini procedures, no dependency on the initial value of the
3349 * memory, and no (legitimate) use of the memory after free. Note,
3350 * the ctor and dtor do not need to be empty.
3351 */
3352 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3353 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3354 args.uminit = trash_init;
3355 args.fini = trash_fini;
3356 }
3357 #endif
3358 args.align = align;
3359 args.flags = flags;
3360 args.keg = NULL;
3361
3362 sx_xlock(&uma_reclaim_lock);
3363 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3364 sx_xunlock(&uma_reclaim_lock);
3365
3366 return (res);
3367 }
3368
3369 /* See uma.h */
3370 uma_zone_t
uma_zsecond_create(const char * name,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_zone_t primary)3371 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3372 uma_init zinit, uma_fini zfini, uma_zone_t primary)
3373 {
3374 struct uma_zctor_args args;
3375 uma_keg_t keg;
3376 uma_zone_t res;
3377
3378 keg = primary->uz_keg;
3379 memset(&args, 0, sizeof(args));
3380 args.name = name;
3381 args.size = keg->uk_size;
3382 args.ctor = ctor;
3383 args.dtor = dtor;
3384 args.uminit = zinit;
3385 args.fini = zfini;
3386 args.align = keg->uk_align;
3387 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3388 args.keg = keg;
3389
3390 sx_xlock(&uma_reclaim_lock);
3391 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3392 sx_xunlock(&uma_reclaim_lock);
3393
3394 return (res);
3395 }
3396
3397 /* See uma.h */
3398 uma_zone_t
uma_zcache_create(const char * name,int size,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_import zimport,uma_release zrelease,void * arg,int flags)3399 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3400 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3401 void *arg, int flags)
3402 {
3403 struct uma_zctor_args args;
3404
3405 memset(&args, 0, sizeof(args));
3406 args.name = name;
3407 args.size = size;
3408 args.ctor = ctor;
3409 args.dtor = dtor;
3410 args.uminit = zinit;
3411 args.fini = zfini;
3412 args.import = zimport;
3413 args.release = zrelease;
3414 args.arg = arg;
3415 args.align = 0;
3416 args.flags = flags | UMA_ZFLAG_CACHE;
3417
3418 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3419 }
3420
3421 /* See uma.h */
3422 void
uma_zdestroy(uma_zone_t zone)3423 uma_zdestroy(uma_zone_t zone)
3424 {
3425
3426 /*
3427 * Large slabs are expensive to reclaim, so don't bother doing
3428 * unnecessary work if we're shutting down.
3429 */
3430 if (booted == BOOT_SHUTDOWN &&
3431 zone->uz_fini == NULL && zone->uz_release == zone_release)
3432 return;
3433 sx_xlock(&uma_reclaim_lock);
3434 zone_free_item(zones, zone, NULL, SKIP_NONE);
3435 sx_xunlock(&uma_reclaim_lock);
3436 }
3437
3438 void
uma_zwait(uma_zone_t zone)3439 uma_zwait(uma_zone_t zone)
3440 {
3441
3442 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3443 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3444 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3445 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3446 else
3447 uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3448 }
3449
3450 void *
uma_zalloc_pcpu_arg(uma_zone_t zone,void * udata,int flags)3451 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3452 {
3453 void *item, *pcpu_item;
3454 #ifdef SMP
3455 int i;
3456
3457 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3458 #endif
3459 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3460 if (item == NULL)
3461 return (NULL);
3462 pcpu_item = zpcpu_base_to_offset(item);
3463 if (flags & M_ZERO) {
3464 #ifdef SMP
3465 for (i = 0; i <= mp_maxid; i++)
3466 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3467 #else
3468 bzero(item, zone->uz_size);
3469 #endif
3470 }
3471 return (pcpu_item);
3472 }
3473
3474 /*
3475 * A stub while both regular and pcpu cases are identical.
3476 */
3477 void
uma_zfree_pcpu_arg(uma_zone_t zone,void * pcpu_item,void * udata)3478 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3479 {
3480 void *item;
3481
3482 #ifdef SMP
3483 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3484 #endif
3485
3486 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3487 if (pcpu_item == NULL)
3488 return;
3489
3490 item = zpcpu_offset_to_base(pcpu_item);
3491 uma_zfree_arg(zone, item, udata);
3492 }
3493
3494 static inline void *
item_ctor(uma_zone_t zone,int uz_flags,int size,void * udata,int flags,void * item)3495 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3496 void *item)
3497 {
3498 #ifdef INVARIANTS
3499 bool skipdbg;
3500 #endif
3501
3502 kasan_mark_item_valid(zone, item);
3503 kmsan_mark_item_uninitialized(zone, item);
3504
3505 #ifdef INVARIANTS
3506 skipdbg = uma_dbg_zskip(zone, item);
3507 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3508 zone->uz_ctor != trash_ctor)
3509 trash_ctor(item, size, zone, flags);
3510 #endif
3511
3512 /* Check flags before loading ctor pointer. */
3513 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3514 __predict_false(zone->uz_ctor != NULL) &&
3515 zone->uz_ctor(item, size, udata, flags) != 0) {
3516 counter_u64_add(zone->uz_fails, 1);
3517 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3518 return (NULL);
3519 }
3520 #ifdef INVARIANTS
3521 if (!skipdbg)
3522 uma_dbg_alloc(zone, NULL, item);
3523 #endif
3524 if (__predict_false(flags & M_ZERO))
3525 return (memset(item, 0, size));
3526
3527 return (item);
3528 }
3529
3530 static inline void
item_dtor(uma_zone_t zone,void * item,int size,void * udata,enum zfreeskip skip)3531 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3532 enum zfreeskip skip)
3533 {
3534 #ifdef INVARIANTS
3535 bool skipdbg;
3536
3537 skipdbg = uma_dbg_zskip(zone, item);
3538 if (skip == SKIP_NONE && !skipdbg) {
3539 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3540 uma_dbg_free(zone, udata, item);
3541 else
3542 uma_dbg_free(zone, NULL, item);
3543 }
3544 #endif
3545 if (__predict_true(skip < SKIP_DTOR)) {
3546 if (zone->uz_dtor != NULL)
3547 zone->uz_dtor(item, size, udata);
3548 #ifdef INVARIANTS
3549 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3550 zone->uz_dtor != trash_dtor)
3551 trash_dtor(item, size, zone);
3552 #endif
3553 }
3554 kasan_mark_item_invalid(zone, item);
3555 }
3556
3557 #ifdef NUMA
3558 static int
item_domain(void * item)3559 item_domain(void *item)
3560 {
3561 int domain;
3562
3563 domain = vm_phys_domain(vtophys(item));
3564 KASSERT(domain >= 0 && domain < vm_ndomains,
3565 ("%s: unknown domain for item %p", __func__, item));
3566 return (domain);
3567 }
3568 #endif
3569
3570 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3571 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3572 #include <sys/stack.h>
3573 #endif
3574 #define UMA_ZALLOC_DEBUG
3575 static int
uma_zalloc_debug(uma_zone_t zone,void ** itemp,void * udata,int flags)3576 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3577 {
3578 int error;
3579
3580 error = 0;
3581 #ifdef WITNESS
3582 if (flags & M_WAITOK) {
3583 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3584 "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3585 }
3586 #endif
3587
3588 #ifdef INVARIANTS
3589 KASSERT((flags & M_EXEC) == 0,
3590 ("uma_zalloc_debug: called with M_EXEC"));
3591 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3592 ("uma_zalloc_debug: called within spinlock or critical section"));
3593 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3594 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3595
3596 _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3597 "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3598 #if 0
3599 /*
3600 * Give the #elif clause time to find problems, then remove it
3601 * and enable this. (Remove <sys/stack.h> above, too.)
3602 */
3603 KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3604 (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3605 ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3606 #elif defined(DDB) || defined(STACK)
3607 if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3608 (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3609 static int stack_count;
3610 struct stack st;
3611
3612 if (stack_count < 10) {
3613 ++stack_count;
3614 printf("uma_zalloc* called with bad WAIT flags:\n");
3615 stack_save(&st);
3616 stack_print(&st);
3617 }
3618 }
3619 #endif
3620 #endif
3621
3622 #ifdef DEBUG_MEMGUARD
3623 if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3624 memguard_cmp_zone(zone)) {
3625 void *item;
3626 item = memguard_alloc(zone->uz_size, flags);
3627 if (item != NULL) {
3628 error = EJUSTRETURN;
3629 if (zone->uz_init != NULL &&
3630 zone->uz_init(item, zone->uz_size, flags) != 0) {
3631 *itemp = NULL;
3632 return (error);
3633 }
3634 if (zone->uz_ctor != NULL &&
3635 zone->uz_ctor(item, zone->uz_size, udata,
3636 flags) != 0) {
3637 counter_u64_add(zone->uz_fails, 1);
3638 if (zone->uz_fini != NULL)
3639 zone->uz_fini(item, zone->uz_size);
3640 *itemp = NULL;
3641 return (error);
3642 }
3643 *itemp = item;
3644 return (error);
3645 }
3646 /* This is unfortunate but should not be fatal. */
3647 }
3648 #endif
3649 return (error);
3650 }
3651
3652 static int
uma_zfree_debug(uma_zone_t zone,void * item,void * udata)3653 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3654 {
3655 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3656 ("uma_zfree_debug: called with spinlock or critical section held"));
3657
3658 #ifdef DEBUG_MEMGUARD
3659 if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3660 is_memguard_addr(item)) {
3661 if (zone->uz_dtor != NULL)
3662 zone->uz_dtor(item, zone->uz_size, udata);
3663 if (zone->uz_fini != NULL)
3664 zone->uz_fini(item, zone->uz_size);
3665 memguard_free(item);
3666 return (EJUSTRETURN);
3667 }
3668 #endif
3669 return (0);
3670 }
3671 #endif
3672
3673 static inline void *
cache_alloc_item(uma_zone_t zone,uma_cache_t cache,uma_cache_bucket_t bucket,void * udata,int flags)3674 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3675 void *udata, int flags)
3676 {
3677 void *item;
3678 int size, uz_flags;
3679
3680 item = cache_bucket_pop(cache, bucket);
3681 size = cache_uz_size(cache);
3682 uz_flags = cache_uz_flags(cache);
3683 critical_exit();
3684 return (item_ctor(zone, uz_flags, size, udata, flags, item));
3685 }
3686
3687 static __noinline void *
cache_alloc_retry(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3688 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3689 {
3690 uma_cache_bucket_t bucket;
3691 int domain;
3692
3693 while (cache_alloc(zone, cache, udata, flags)) {
3694 cache = &zone->uz_cpu[curcpu];
3695 bucket = &cache->uc_allocbucket;
3696 if (__predict_false(bucket->ucb_cnt == 0))
3697 continue;
3698 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3699 }
3700 critical_exit();
3701
3702 /*
3703 * We can not get a bucket so try to return a single item.
3704 */
3705 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3706 domain = PCPU_GET(domain);
3707 else
3708 domain = UMA_ANYDOMAIN;
3709 return (zone_alloc_item(zone, udata, domain, flags));
3710 }
3711
3712 /* See uma.h */
3713 void *
uma_zalloc_smr(uma_zone_t zone,int flags)3714 uma_zalloc_smr(uma_zone_t zone, int flags)
3715 {
3716 uma_cache_bucket_t bucket;
3717 uma_cache_t cache;
3718
3719 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3720 zone, flags);
3721
3722 #ifdef UMA_ZALLOC_DEBUG
3723 void *item;
3724
3725 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3726 ("uma_zalloc_arg: called with non-SMR zone."));
3727 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3728 return (item);
3729 #endif
3730
3731 critical_enter();
3732 cache = &zone->uz_cpu[curcpu];
3733 bucket = &cache->uc_allocbucket;
3734 if (__predict_false(bucket->ucb_cnt == 0))
3735 return (cache_alloc_retry(zone, cache, NULL, flags));
3736 return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3737 }
3738
3739 /* See uma.h */
3740 void *
uma_zalloc_arg(uma_zone_t zone,void * udata,int flags)3741 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3742 {
3743 uma_cache_bucket_t bucket;
3744 uma_cache_t cache;
3745
3746 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3747 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3748
3749 /* This is the fast path allocation */
3750 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3751 zone, flags);
3752
3753 #ifdef UMA_ZALLOC_DEBUG
3754 void *item;
3755
3756 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3757 ("uma_zalloc_arg: called with SMR zone."));
3758 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3759 return (item);
3760 #endif
3761
3762 /*
3763 * If possible, allocate from the per-CPU cache. There are two
3764 * requirements for safe access to the per-CPU cache: (1) the thread
3765 * accessing the cache must not be preempted or yield during access,
3766 * and (2) the thread must not migrate CPUs without switching which
3767 * cache it accesses. We rely on a critical section to prevent
3768 * preemption and migration. We release the critical section in
3769 * order to acquire the zone mutex if we are unable to allocate from
3770 * the current cache; when we re-acquire the critical section, we
3771 * must detect and handle migration if it has occurred.
3772 */
3773 critical_enter();
3774 cache = &zone->uz_cpu[curcpu];
3775 bucket = &cache->uc_allocbucket;
3776 if (__predict_false(bucket->ucb_cnt == 0))
3777 return (cache_alloc_retry(zone, cache, udata, flags));
3778 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3779 }
3780
3781 /*
3782 * Replenish an alloc bucket and possibly restore an old one. Called in
3783 * a critical section. Returns in a critical section.
3784 *
3785 * A false return value indicates an allocation failure.
3786 * A true return value indicates success and the caller should retry.
3787 */
3788 static __noinline bool
cache_alloc(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3789 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3790 {
3791 uma_bucket_t bucket;
3792 int curdomain, domain;
3793 bool new;
3794
3795 CRITICAL_ASSERT(curthread);
3796
3797 /*
3798 * If we have run out of items in our alloc bucket see
3799 * if we can switch with the free bucket.
3800 *
3801 * SMR Zones can't re-use the free bucket until the sequence has
3802 * expired.
3803 */
3804 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3805 cache->uc_freebucket.ucb_cnt != 0) {
3806 cache_bucket_swap(&cache->uc_freebucket,
3807 &cache->uc_allocbucket);
3808 return (true);
3809 }
3810
3811 /*
3812 * Discard any empty allocation bucket while we hold no locks.
3813 */
3814 bucket = cache_bucket_unload_alloc(cache);
3815 critical_exit();
3816
3817 if (bucket != NULL) {
3818 KASSERT(bucket->ub_cnt == 0,
3819 ("cache_alloc: Entered with non-empty alloc bucket."));
3820 bucket_free(zone, bucket, udata);
3821 }
3822
3823 /*
3824 * Attempt to retrieve the item from the per-CPU cache has failed, so
3825 * we must go back to the zone. This requires the zdom lock, so we
3826 * must drop the critical section, then re-acquire it when we go back
3827 * to the cache. Since the critical section is released, we may be
3828 * preempted or migrate. As such, make sure not to maintain any
3829 * thread-local state specific to the cache from prior to releasing
3830 * the critical section.
3831 */
3832 domain = PCPU_GET(domain);
3833 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3834 VM_DOMAIN_EMPTY(domain))
3835 domain = zone_domain_highest(zone, domain);
3836 bucket = cache_fetch_bucket(zone, cache, domain);
3837 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3838 bucket = zone_alloc_bucket(zone, udata, domain, flags);
3839 new = true;
3840 } else {
3841 new = false;
3842 }
3843
3844 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3845 zone->uz_name, zone, bucket);
3846 if (bucket == NULL) {
3847 critical_enter();
3848 return (false);
3849 }
3850
3851 /*
3852 * See if we lost the race or were migrated. Cache the
3853 * initialized bucket to make this less likely or claim
3854 * the memory directly.
3855 */
3856 critical_enter();
3857 cache = &zone->uz_cpu[curcpu];
3858 if (cache->uc_allocbucket.ucb_bucket == NULL &&
3859 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3860 (curdomain = PCPU_GET(domain)) == domain ||
3861 VM_DOMAIN_EMPTY(curdomain))) {
3862 if (new)
3863 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3864 bucket->ub_cnt);
3865 cache_bucket_load_alloc(cache, bucket);
3866 return (true);
3867 }
3868
3869 /*
3870 * We lost the race, release this bucket and start over.
3871 */
3872 critical_exit();
3873 zone_put_bucket(zone, domain, bucket, udata, !new);
3874 critical_enter();
3875
3876 return (true);
3877 }
3878
3879 void *
uma_zalloc_domain(uma_zone_t zone,void * udata,int domain,int flags)3880 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3881 {
3882 #ifdef NUMA
3883 uma_bucket_t bucket;
3884 uma_zone_domain_t zdom;
3885 void *item;
3886 #endif
3887
3888 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3889 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3890
3891 /* This is the fast path allocation */
3892 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3893 zone->uz_name, zone, domain, flags);
3894
3895 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3896 ("uma_zalloc_domain: called with SMR zone."));
3897 #ifdef NUMA
3898 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3899 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3900
3901 if (vm_ndomains == 1)
3902 return (uma_zalloc_arg(zone, udata, flags));
3903
3904 #ifdef UMA_ZALLOC_DEBUG
3905 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3906 return (item);
3907 #endif
3908
3909 /*
3910 * Try to allocate from the bucket cache before falling back to the keg.
3911 * We could try harder and attempt to allocate from per-CPU caches or
3912 * the per-domain cross-domain buckets, but the complexity is probably
3913 * not worth it. It is more important that frees of previous
3914 * cross-domain allocations do not blow up the cache.
3915 */
3916 zdom = zone_domain_lock(zone, domain);
3917 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3918 item = bucket->ub_bucket[bucket->ub_cnt - 1];
3919 #ifdef INVARIANTS
3920 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3921 #endif
3922 bucket->ub_cnt--;
3923 zone_put_bucket(zone, domain, bucket, udata, true);
3924 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3925 flags, item);
3926 if (item != NULL) {
3927 KASSERT(item_domain(item) == domain,
3928 ("%s: bucket cache item %p from wrong domain",
3929 __func__, item));
3930 counter_u64_add(zone->uz_allocs, 1);
3931 }
3932 return (item);
3933 }
3934 ZDOM_UNLOCK(zdom);
3935 return (zone_alloc_item(zone, udata, domain, flags));
3936 #else
3937 return (uma_zalloc_arg(zone, udata, flags));
3938 #endif
3939 }
3940
3941 /*
3942 * Find a slab with some space. Prefer slabs that are partially used over those
3943 * that are totally full. This helps to reduce fragmentation.
3944 *
3945 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check
3946 * only 'domain'.
3947 */
3948 static uma_slab_t
keg_first_slab(uma_keg_t keg,int domain,bool rr)3949 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3950 {
3951 uma_domain_t dom;
3952 uma_slab_t slab;
3953 int start;
3954
3955 KASSERT(domain >= 0 && domain < vm_ndomains,
3956 ("keg_first_slab: domain %d out of range", domain));
3957 KEG_LOCK_ASSERT(keg, domain);
3958
3959 slab = NULL;
3960 start = domain;
3961 do {
3962 dom = &keg->uk_domain[domain];
3963 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3964 return (slab);
3965 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3966 LIST_REMOVE(slab, us_link);
3967 dom->ud_free_slabs--;
3968 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3969 return (slab);
3970 }
3971 if (rr)
3972 domain = (domain + 1) % vm_ndomains;
3973 } while (domain != start);
3974
3975 return (NULL);
3976 }
3977
3978 /*
3979 * Fetch an existing slab from a free or partial list. Returns with the
3980 * keg domain lock held if a slab was found or unlocked if not.
3981 */
3982 static uma_slab_t
keg_fetch_free_slab(uma_keg_t keg,int domain,bool rr,int flags)3983 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3984 {
3985 uma_slab_t slab;
3986 uint32_t reserve;
3987
3988 /* HASH has a single free list. */
3989 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3990 domain = 0;
3991
3992 KEG_LOCK(keg, domain);
3993 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3994 if (keg->uk_domain[domain].ud_free_items <= reserve ||
3995 (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3996 KEG_UNLOCK(keg, domain);
3997 return (NULL);
3998 }
3999 return (slab);
4000 }
4001
4002 static uma_slab_t
keg_fetch_slab(uma_keg_t keg,uma_zone_t zone,int rdomain,const int flags)4003 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
4004 {
4005 struct vm_domainset_iter di;
4006 uma_slab_t slab;
4007 int aflags, domain;
4008 bool rr;
4009
4010 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
4011 ("%s: invalid flags %#x", __func__, flags));
4012
4013 restart:
4014 /*
4015 * Use the keg's policy if upper layers haven't already specified a
4016 * domain (as happens with first-touch zones).
4017 *
4018 * To avoid races we run the iterator with the keg lock held, but that
4019 * means that we cannot allow the vm_domainset layer to sleep. Thus,
4020 * clear M_WAITOK and handle low memory conditions locally.
4021 */
4022 rr = rdomain == UMA_ANYDOMAIN;
4023 if (rr) {
4024 aflags = (flags & ~M_WAITOK) | M_NOWAIT;
4025 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4026 &aflags);
4027 } else {
4028 aflags = flags;
4029 domain = rdomain;
4030 }
4031
4032 for (;;) {
4033 slab = keg_fetch_free_slab(keg, domain, rr, flags);
4034 if (slab != NULL)
4035 return (slab);
4036
4037 /*
4038 * M_NOVM is used to break the recursion that can otherwise
4039 * occur if low-level memory management routines use UMA.
4040 */
4041 if ((flags & M_NOVM) == 0) {
4042 slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
4043 if (slab != NULL)
4044 return (slab);
4045 }
4046
4047 if (!rr) {
4048 if ((flags & M_USE_RESERVE) != 0) {
4049 /*
4050 * Drain reserves from other domains before
4051 * giving up or sleeping. It may be useful to
4052 * support per-domain reserves eventually.
4053 */
4054 rdomain = UMA_ANYDOMAIN;
4055 goto restart;
4056 }
4057 if ((flags & M_WAITOK) == 0)
4058 break;
4059 vm_wait_domain(domain);
4060 } else if (vm_domainset_iter_policy(&di, &domain) != 0) {
4061 if ((flags & M_WAITOK) != 0) {
4062 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4063 goto restart;
4064 }
4065 break;
4066 }
4067 }
4068
4069 /*
4070 * We might not have been able to get a slab but another cpu
4071 * could have while we were unlocked. Check again before we
4072 * fail.
4073 */
4074 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4075 return (slab);
4076
4077 return (NULL);
4078 }
4079
4080 static void *
slab_alloc_item(uma_keg_t keg,uma_slab_t slab)4081 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4082 {
4083 uma_domain_t dom;
4084 void *item;
4085 int freei;
4086
4087 KEG_LOCK_ASSERT(keg, slab->us_domain);
4088
4089 dom = &keg->uk_domain[slab->us_domain];
4090 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4091 BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4092 item = slab_item(slab, keg, freei);
4093 slab->us_freecount--;
4094 dom->ud_free_items--;
4095
4096 /*
4097 * Move this slab to the full list. It must be on the partial list, so
4098 * we do not need to update the free slab count. In particular,
4099 * keg_fetch_slab() always returns slabs on the partial list.
4100 */
4101 if (slab->us_freecount == 0) {
4102 LIST_REMOVE(slab, us_link);
4103 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4104 }
4105
4106 return (item);
4107 }
4108
4109 static int
zone_import(void * arg,void ** bucket,int max,int domain,int flags)4110 zone_import(void *arg, void **bucket, int max, int domain, int flags)
4111 {
4112 uma_domain_t dom;
4113 uma_zone_t zone;
4114 uma_slab_t slab;
4115 uma_keg_t keg;
4116 #ifdef NUMA
4117 int stripe;
4118 #endif
4119 int i;
4120
4121 zone = arg;
4122 slab = NULL;
4123 keg = zone->uz_keg;
4124 /* Try to keep the buckets totally full */
4125 for (i = 0; i < max; ) {
4126 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4127 break;
4128 #ifdef NUMA
4129 stripe = howmany(max, vm_ndomains);
4130 #endif
4131 dom = &keg->uk_domain[slab->us_domain];
4132 do {
4133 bucket[i++] = slab_alloc_item(keg, slab);
4134 if (keg->uk_reserve > 0 &&
4135 dom->ud_free_items <= keg->uk_reserve) {
4136 /*
4137 * Avoid depleting the reserve after a
4138 * successful item allocation, even if
4139 * M_USE_RESERVE is specified.
4140 */
4141 KEG_UNLOCK(keg, slab->us_domain);
4142 goto out;
4143 }
4144 #ifdef NUMA
4145 /*
4146 * If the zone is striped we pick a new slab for every
4147 * N allocations. Eliminating this conditional will
4148 * instead pick a new domain for each bucket rather
4149 * than stripe within each bucket. The current option
4150 * produces more fragmentation and requires more cpu
4151 * time but yields better distribution.
4152 */
4153 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4154 vm_ndomains > 1 && --stripe == 0)
4155 break;
4156 #endif
4157 } while (slab->us_freecount != 0 && i < max);
4158 KEG_UNLOCK(keg, slab->us_domain);
4159
4160 /* Don't block if we allocated any successfully. */
4161 flags &= ~M_WAITOK;
4162 flags |= M_NOWAIT;
4163 }
4164 out:
4165 return i;
4166 }
4167
4168 static int
zone_alloc_limit_hard(uma_zone_t zone,int count,int flags)4169 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4170 {
4171 uint64_t old, new, total, max;
4172
4173 /*
4174 * The hard case. We're going to sleep because there were existing
4175 * sleepers or because we ran out of items. This routine enforces
4176 * fairness by keeping fifo order.
4177 *
4178 * First release our ill gotten gains and make some noise.
4179 */
4180 for (;;) {
4181 zone_free_limit(zone, count);
4182 zone_log_warning(zone);
4183 zone_maxaction(zone);
4184 if (flags & M_NOWAIT)
4185 return (0);
4186
4187 /*
4188 * We need to allocate an item or set ourself as a sleeper
4189 * while the sleepq lock is held to avoid wakeup races. This
4190 * is essentially a home rolled semaphore.
4191 */
4192 sleepq_lock(&zone->uz_max_items);
4193 old = zone->uz_items;
4194 do {
4195 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4196 /* Cache the max since we will evaluate twice. */
4197 max = zone->uz_max_items;
4198 if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4199 UZ_ITEMS_COUNT(old) >= max)
4200 new = old + UZ_ITEMS_SLEEPER;
4201 else
4202 new = old + MIN(count, max - old);
4203 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4204
4205 /* We may have successfully allocated under the sleepq lock. */
4206 if (UZ_ITEMS_SLEEPERS(new) == 0) {
4207 sleepq_release(&zone->uz_max_items);
4208 return (new - old);
4209 }
4210
4211 /*
4212 * This is in a different cacheline from uz_items so that we
4213 * don't constantly invalidate the fastpath cacheline when we
4214 * adjust item counts. This could be limited to toggling on
4215 * transitions.
4216 */
4217 atomic_add_32(&zone->uz_sleepers, 1);
4218 atomic_add_64(&zone->uz_sleeps, 1);
4219
4220 /*
4221 * We have added ourselves as a sleeper. The sleepq lock
4222 * protects us from wakeup races. Sleep now and then retry.
4223 */
4224 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4225 sleepq_wait(&zone->uz_max_items, PVM);
4226
4227 /*
4228 * After wakeup, remove ourselves as a sleeper and try
4229 * again. We no longer have the sleepq lock for protection.
4230 *
4231 * Subract ourselves as a sleeper while attempting to add
4232 * our count.
4233 */
4234 atomic_subtract_32(&zone->uz_sleepers, 1);
4235 old = atomic_fetchadd_64(&zone->uz_items,
4236 -(UZ_ITEMS_SLEEPER - count));
4237 /* We're no longer a sleeper. */
4238 old -= UZ_ITEMS_SLEEPER;
4239
4240 /*
4241 * If we're still at the limit, restart. Notably do not
4242 * block on other sleepers. Cache the max value to protect
4243 * against changes via sysctl.
4244 */
4245 total = UZ_ITEMS_COUNT(old);
4246 max = zone->uz_max_items;
4247 if (total >= max)
4248 continue;
4249 /* Truncate if necessary, otherwise wake other sleepers. */
4250 if (total + count > max) {
4251 zone_free_limit(zone, total + count - max);
4252 count = max - total;
4253 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4254 wakeup_one(&zone->uz_max_items);
4255
4256 return (count);
4257 }
4258 }
4259
4260 /*
4261 * Allocate 'count' items from our max_items limit. Returns the number
4262 * available. If M_NOWAIT is not specified it will sleep until at least
4263 * one item can be allocated.
4264 */
4265 static int
zone_alloc_limit(uma_zone_t zone,int count,int flags)4266 zone_alloc_limit(uma_zone_t zone, int count, int flags)
4267 {
4268 uint64_t old;
4269 uint64_t max;
4270
4271 max = zone->uz_max_items;
4272 MPASS(max > 0);
4273
4274 /*
4275 * We expect normal allocations to succeed with a simple
4276 * fetchadd.
4277 */
4278 old = atomic_fetchadd_64(&zone->uz_items, count);
4279 if (__predict_true(old + count <= max))
4280 return (count);
4281
4282 /*
4283 * If we had some items and no sleepers just return the
4284 * truncated value. We have to release the excess space
4285 * though because that may wake sleepers who weren't woken
4286 * because we were temporarily over the limit.
4287 */
4288 if (old < max) {
4289 zone_free_limit(zone, (old + count) - max);
4290 return (max - old);
4291 }
4292 return (zone_alloc_limit_hard(zone, count, flags));
4293 }
4294
4295 /*
4296 * Free a number of items back to the limit.
4297 */
4298 static void
zone_free_limit(uma_zone_t zone,int count)4299 zone_free_limit(uma_zone_t zone, int count)
4300 {
4301 uint64_t old;
4302
4303 MPASS(count > 0);
4304
4305 /*
4306 * In the common case we either have no sleepers or
4307 * are still over the limit and can just return.
4308 */
4309 old = atomic_fetchadd_64(&zone->uz_items, -count);
4310 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4311 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4312 return;
4313
4314 /*
4315 * Moderate the rate of wakeups. Sleepers will continue
4316 * to generate wakeups if necessary.
4317 */
4318 wakeup_one(&zone->uz_max_items);
4319 }
4320
4321 static uma_bucket_t
zone_alloc_bucket(uma_zone_t zone,void * udata,int domain,int flags)4322 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4323 {
4324 uma_bucket_t bucket;
4325 int error, maxbucket, cnt;
4326
4327 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4328 zone, domain);
4329
4330 /* Avoid allocs targeting empty domains. */
4331 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4332 domain = UMA_ANYDOMAIN;
4333 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4334 domain = UMA_ANYDOMAIN;
4335
4336 if (zone->uz_max_items > 0)
4337 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4338 M_NOWAIT);
4339 else
4340 maxbucket = zone->uz_bucket_size;
4341 if (maxbucket == 0)
4342 return (NULL);
4343
4344 /* Don't wait for buckets, preserve caller's NOVM setting. */
4345 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4346 if (bucket == NULL) {
4347 cnt = 0;
4348 goto out;
4349 }
4350
4351 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4352 MIN(maxbucket, bucket->ub_entries), domain, flags);
4353
4354 /*
4355 * Initialize the memory if necessary.
4356 */
4357 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4358 int i;
4359
4360 for (i = 0; i < bucket->ub_cnt; i++) {
4361 kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4362 error = zone->uz_init(bucket->ub_bucket[i],
4363 zone->uz_size, flags);
4364 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4365 if (error != 0)
4366 break;
4367 }
4368
4369 /*
4370 * If we couldn't initialize the whole bucket, put the
4371 * rest back onto the freelist.
4372 */
4373 if (i != bucket->ub_cnt) {
4374 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4375 bucket->ub_cnt - i);
4376 #ifdef INVARIANTS
4377 bzero(&bucket->ub_bucket[i],
4378 sizeof(void *) * (bucket->ub_cnt - i));
4379 #endif
4380 bucket->ub_cnt = i;
4381 }
4382 }
4383
4384 cnt = bucket->ub_cnt;
4385 if (bucket->ub_cnt == 0) {
4386 bucket_free(zone, bucket, udata);
4387 counter_u64_add(zone->uz_fails, 1);
4388 bucket = NULL;
4389 }
4390 out:
4391 if (zone->uz_max_items > 0 && cnt < maxbucket)
4392 zone_free_limit(zone, maxbucket - cnt);
4393
4394 return (bucket);
4395 }
4396
4397 /*
4398 * Allocates a single item from a zone.
4399 *
4400 * Arguments
4401 * zone The zone to alloc for.
4402 * udata The data to be passed to the constructor.
4403 * domain The domain to allocate from or UMA_ANYDOMAIN.
4404 * flags M_WAITOK, M_NOWAIT, M_ZERO.
4405 *
4406 * Returns
4407 * NULL if there is no memory and M_NOWAIT is set
4408 * An item if successful
4409 */
4410
4411 static void *
zone_alloc_item(uma_zone_t zone,void * udata,int domain,int flags)4412 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4413 {
4414 void *item;
4415
4416 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4417 counter_u64_add(zone->uz_fails, 1);
4418 return (NULL);
4419 }
4420
4421 /* Avoid allocs targeting empty domains. */
4422 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4423 domain = UMA_ANYDOMAIN;
4424
4425 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4426 goto fail_cnt;
4427
4428 /*
4429 * We have to call both the zone's init (not the keg's init)
4430 * and the zone's ctor. This is because the item is going from
4431 * a keg slab directly to the user, and the user is expecting it
4432 * to be both zone-init'd as well as zone-ctor'd.
4433 */
4434 if (zone->uz_init != NULL) {
4435 int error;
4436
4437 kasan_mark_item_valid(zone, item);
4438 error = zone->uz_init(item, zone->uz_size, flags);
4439 kasan_mark_item_invalid(zone, item);
4440 if (error != 0) {
4441 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4442 goto fail_cnt;
4443 }
4444 }
4445 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4446 item);
4447 if (item == NULL)
4448 goto fail;
4449
4450 counter_u64_add(zone->uz_allocs, 1);
4451 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4452 zone->uz_name, zone);
4453
4454 return (item);
4455
4456 fail_cnt:
4457 counter_u64_add(zone->uz_fails, 1);
4458 fail:
4459 if (zone->uz_max_items > 0)
4460 zone_free_limit(zone, 1);
4461 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4462 zone->uz_name, zone);
4463
4464 return (NULL);
4465 }
4466
4467 /* See uma.h */
4468 void
uma_zfree_smr(uma_zone_t zone,void * item)4469 uma_zfree_smr(uma_zone_t zone, void *item)
4470 {
4471 uma_cache_t cache;
4472 uma_cache_bucket_t bucket;
4473 int itemdomain;
4474 #ifdef NUMA
4475 int uz_flags;
4476 #endif
4477
4478 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4479 zone->uz_name, zone, item);
4480
4481 #ifdef UMA_ZALLOC_DEBUG
4482 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4483 ("uma_zfree_smr: called with non-SMR zone."));
4484 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4485 SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4486 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4487 return;
4488 #endif
4489 cache = &zone->uz_cpu[curcpu];
4490 itemdomain = 0;
4491 #ifdef NUMA
4492 uz_flags = cache_uz_flags(cache);
4493 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4494 itemdomain = item_domain(item);
4495 #endif
4496 critical_enter();
4497 do {
4498 cache = &zone->uz_cpu[curcpu];
4499 /* SMR Zones must free to the free bucket. */
4500 bucket = &cache->uc_freebucket;
4501 #ifdef NUMA
4502 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4503 PCPU_GET(domain) != itemdomain) {
4504 bucket = &cache->uc_crossbucket;
4505 }
4506 #endif
4507 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4508 cache_bucket_push(cache, bucket, item);
4509 critical_exit();
4510 return;
4511 }
4512 } while (cache_free(zone, cache, NULL, itemdomain));
4513 critical_exit();
4514
4515 /*
4516 * If nothing else caught this, we'll just do an internal free.
4517 */
4518 zone_free_item(zone, item, NULL, SKIP_NONE);
4519 }
4520
4521 /* See uma.h */
4522 void
uma_zfree_arg(uma_zone_t zone,void * item,void * udata)4523 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4524 {
4525 uma_cache_t cache;
4526 uma_cache_bucket_t bucket;
4527 int itemdomain, uz_flags;
4528
4529 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4530 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4531
4532 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4533 zone->uz_name, zone, item);
4534
4535 #ifdef UMA_ZALLOC_DEBUG
4536 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4537 ("uma_zfree_arg: called with SMR zone."));
4538 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4539 return;
4540 #endif
4541 /* uma_zfree(..., NULL) does nothing, to match free(9). */
4542 if (item == NULL)
4543 return;
4544
4545 /*
4546 * We are accessing the per-cpu cache without a critical section to
4547 * fetch size and flags. This is acceptable, if we are preempted we
4548 * will simply read another cpu's line.
4549 */
4550 cache = &zone->uz_cpu[curcpu];
4551 uz_flags = cache_uz_flags(cache);
4552 if (UMA_ALWAYS_CTORDTOR ||
4553 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4554 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4555
4556 /*
4557 * The race here is acceptable. If we miss it we'll just have to wait
4558 * a little longer for the limits to be reset.
4559 */
4560 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4561 if (atomic_load_32(&zone->uz_sleepers) > 0)
4562 goto zfree_item;
4563 }
4564
4565 /*
4566 * If possible, free to the per-CPU cache. There are two
4567 * requirements for safe access to the per-CPU cache: (1) the thread
4568 * accessing the cache must not be preempted or yield during access,
4569 * and (2) the thread must not migrate CPUs without switching which
4570 * cache it accesses. We rely on a critical section to prevent
4571 * preemption and migration. We release the critical section in
4572 * order to acquire the zone mutex if we are unable to free to the
4573 * current cache; when we re-acquire the critical section, we must
4574 * detect and handle migration if it has occurred.
4575 */
4576 itemdomain = 0;
4577 #ifdef NUMA
4578 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4579 itemdomain = item_domain(item);
4580 #endif
4581 critical_enter();
4582 do {
4583 cache = &zone->uz_cpu[curcpu];
4584 /*
4585 * Try to free into the allocbucket first to give LIFO
4586 * ordering for cache-hot datastructures. Spill over
4587 * into the freebucket if necessary. Alloc will swap
4588 * them if one runs dry.
4589 */
4590 bucket = &cache->uc_allocbucket;
4591 #ifdef NUMA
4592 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4593 PCPU_GET(domain) != itemdomain) {
4594 bucket = &cache->uc_crossbucket;
4595 } else
4596 #endif
4597 if (bucket->ucb_cnt == bucket->ucb_entries &&
4598 cache->uc_freebucket.ucb_cnt <
4599 cache->uc_freebucket.ucb_entries)
4600 cache_bucket_swap(&cache->uc_freebucket,
4601 &cache->uc_allocbucket);
4602 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4603 cache_bucket_push(cache, bucket, item);
4604 critical_exit();
4605 return;
4606 }
4607 } while (cache_free(zone, cache, udata, itemdomain));
4608 critical_exit();
4609
4610 /*
4611 * If nothing else caught this, we'll just do an internal free.
4612 */
4613 zfree_item:
4614 zone_free_item(zone, item, udata, SKIP_DTOR);
4615 }
4616
4617 #ifdef NUMA
4618 /*
4619 * sort crossdomain free buckets to domain correct buckets and cache
4620 * them.
4621 */
4622 static void
zone_free_cross(uma_zone_t zone,uma_bucket_t bucket,void * udata)4623 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4624 {
4625 struct uma_bucketlist emptybuckets, fullbuckets;
4626 uma_zone_domain_t zdom;
4627 uma_bucket_t b;
4628 smr_seq_t seq;
4629 void *item;
4630 int domain;
4631
4632 CTR3(KTR_UMA,
4633 "uma_zfree: zone %s(%p) draining cross bucket %p",
4634 zone->uz_name, zone, bucket);
4635
4636 /*
4637 * It is possible for buckets to arrive here out of order so we fetch
4638 * the current smr seq rather than accepting the bucket's.
4639 */
4640 seq = SMR_SEQ_INVALID;
4641 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4642 seq = smr_advance(zone->uz_smr);
4643
4644 /*
4645 * To avoid having ndomain * ndomain buckets for sorting we have a
4646 * lock on the current crossfree bucket. A full matrix with
4647 * per-domain locking could be used if necessary.
4648 */
4649 STAILQ_INIT(&emptybuckets);
4650 STAILQ_INIT(&fullbuckets);
4651 ZONE_CROSS_LOCK(zone);
4652 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4653 item = bucket->ub_bucket[bucket->ub_cnt - 1];
4654 domain = item_domain(item);
4655 zdom = ZDOM_GET(zone, domain);
4656 if (zdom->uzd_cross == NULL) {
4657 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4658 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4659 zdom->uzd_cross = b;
4660 } else {
4661 /*
4662 * Avoid allocating a bucket with the cross lock
4663 * held, since allocation can trigger a
4664 * cross-domain free and bucket zones may
4665 * allocate from each other.
4666 */
4667 ZONE_CROSS_UNLOCK(zone);
4668 b = bucket_alloc(zone, udata, M_NOWAIT);
4669 if (b == NULL)
4670 goto out;
4671 ZONE_CROSS_LOCK(zone);
4672 if (zdom->uzd_cross != NULL) {
4673 STAILQ_INSERT_HEAD(&emptybuckets, b,
4674 ub_link);
4675 } else {
4676 zdom->uzd_cross = b;
4677 }
4678 }
4679 }
4680 b = zdom->uzd_cross;
4681 b->ub_bucket[b->ub_cnt++] = item;
4682 b->ub_seq = seq;
4683 if (b->ub_cnt == b->ub_entries) {
4684 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4685 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4686 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4687 zdom->uzd_cross = b;
4688 }
4689 }
4690 ZONE_CROSS_UNLOCK(zone);
4691 out:
4692 if (bucket->ub_cnt == 0)
4693 bucket->ub_seq = SMR_SEQ_INVALID;
4694 bucket_free(zone, bucket, udata);
4695
4696 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4697 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4698 bucket_free(zone, b, udata);
4699 }
4700 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4701 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4702 domain = item_domain(b->ub_bucket[0]);
4703 zone_put_bucket(zone, domain, b, udata, true);
4704 }
4705 }
4706 #endif
4707
4708 static void
zone_free_bucket(uma_zone_t zone,uma_bucket_t bucket,void * udata,int itemdomain,bool ws)4709 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4710 int itemdomain, bool ws)
4711 {
4712
4713 #ifdef NUMA
4714 /*
4715 * Buckets coming from the wrong domain will be entirely for the
4716 * only other domain on two domain systems. In this case we can
4717 * simply cache them. Otherwise we need to sort them back to
4718 * correct domains.
4719 */
4720 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4721 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4722 zone_free_cross(zone, bucket, udata);
4723 return;
4724 }
4725 #endif
4726
4727 /*
4728 * Attempt to save the bucket in the zone's domain bucket cache.
4729 */
4730 CTR3(KTR_UMA,
4731 "uma_zfree: zone %s(%p) putting bucket %p on free list",
4732 zone->uz_name, zone, bucket);
4733 /* ub_cnt is pointing to the last free item */
4734 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4735 itemdomain = zone_domain_lowest(zone, itemdomain);
4736 zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4737 }
4738
4739 /*
4740 * Populate a free or cross bucket for the current cpu cache. Free any
4741 * existing full bucket either to the zone cache or back to the slab layer.
4742 *
4743 * Enters and returns in a critical section. false return indicates that
4744 * we can not satisfy this free in the cache layer. true indicates that
4745 * the caller should retry.
4746 */
4747 static __noinline bool
cache_free(uma_zone_t zone,uma_cache_t cache,void * udata,int itemdomain)4748 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4749 {
4750 uma_cache_bucket_t cbucket;
4751 uma_bucket_t newbucket, bucket;
4752
4753 CRITICAL_ASSERT(curthread);
4754
4755 if (zone->uz_bucket_size == 0)
4756 return false;
4757
4758 cache = &zone->uz_cpu[curcpu];
4759 newbucket = NULL;
4760
4761 /*
4762 * FIRSTTOUCH domains need to free to the correct zdom. When
4763 * enabled this is the zdom of the item. The bucket is the
4764 * cross bucket if the current domain and itemdomain do not match.
4765 */
4766 cbucket = &cache->uc_freebucket;
4767 #ifdef NUMA
4768 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4769 if (PCPU_GET(domain) != itemdomain) {
4770 cbucket = &cache->uc_crossbucket;
4771 if (cbucket->ucb_cnt != 0)
4772 counter_u64_add(zone->uz_xdomain,
4773 cbucket->ucb_cnt);
4774 }
4775 }
4776 #endif
4777 bucket = cache_bucket_unload(cbucket);
4778 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4779 ("cache_free: Entered with non-full free bucket."));
4780
4781 /* We are no longer associated with this CPU. */
4782 critical_exit();
4783
4784 /*
4785 * Don't let SMR zones operate without a free bucket. Force
4786 * a synchronize and re-use this one. We will only degrade
4787 * to a synchronize every bucket_size items rather than every
4788 * item if we fail to allocate a bucket.
4789 */
4790 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4791 if (bucket != NULL)
4792 bucket->ub_seq = smr_advance(zone->uz_smr);
4793 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4794 if (newbucket == NULL && bucket != NULL) {
4795 bucket_drain(zone, bucket);
4796 newbucket = bucket;
4797 bucket = NULL;
4798 }
4799 } else if (!bucketdisable)
4800 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4801
4802 if (bucket != NULL)
4803 zone_free_bucket(zone, bucket, udata, itemdomain, true);
4804
4805 critical_enter();
4806 if ((bucket = newbucket) == NULL)
4807 return (false);
4808 cache = &zone->uz_cpu[curcpu];
4809 #ifdef NUMA
4810 /*
4811 * Check to see if we should be populating the cross bucket. If it
4812 * is already populated we will fall through and attempt to populate
4813 * the free bucket.
4814 */
4815 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4816 if (PCPU_GET(domain) != itemdomain &&
4817 cache->uc_crossbucket.ucb_bucket == NULL) {
4818 cache_bucket_load_cross(cache, bucket);
4819 return (true);
4820 }
4821 }
4822 #endif
4823 /*
4824 * We may have lost the race to fill the bucket or switched CPUs.
4825 */
4826 if (cache->uc_freebucket.ucb_bucket != NULL) {
4827 critical_exit();
4828 bucket_free(zone, bucket, udata);
4829 critical_enter();
4830 } else
4831 cache_bucket_load_free(cache, bucket);
4832
4833 return (true);
4834 }
4835
4836 static void
slab_free_item(uma_zone_t zone,uma_slab_t slab,void * item)4837 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4838 {
4839 uma_keg_t keg;
4840 uma_domain_t dom;
4841 int freei;
4842
4843 keg = zone->uz_keg;
4844 KEG_LOCK_ASSERT(keg, slab->us_domain);
4845
4846 /* Do we need to remove from any lists? */
4847 dom = &keg->uk_domain[slab->us_domain];
4848 if (slab->us_freecount + 1 == keg->uk_ipers) {
4849 LIST_REMOVE(slab, us_link);
4850 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4851 dom->ud_free_slabs++;
4852 } else if (slab->us_freecount == 0) {
4853 LIST_REMOVE(slab, us_link);
4854 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4855 }
4856
4857 /* Slab management. */
4858 freei = slab_item_index(slab, keg, item);
4859 BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4860 slab->us_freecount++;
4861
4862 /* Keg statistics. */
4863 dom->ud_free_items++;
4864 }
4865
4866 static void
zone_release(void * arg,void ** bucket,int cnt)4867 zone_release(void *arg, void **bucket, int cnt)
4868 {
4869 struct mtx *lock;
4870 uma_zone_t zone;
4871 uma_slab_t slab;
4872 uma_keg_t keg;
4873 uint8_t *mem;
4874 void *item;
4875 int i;
4876
4877 zone = arg;
4878 keg = zone->uz_keg;
4879 lock = NULL;
4880 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4881 lock = KEG_LOCK(keg, 0);
4882 for (i = 0; i < cnt; i++) {
4883 item = bucket[i];
4884 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4885 slab = vtoslab((vm_offset_t)item);
4886 } else {
4887 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4888 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4889 slab = hash_sfind(&keg->uk_hash, mem);
4890 else
4891 slab = (uma_slab_t)(mem + keg->uk_pgoff);
4892 }
4893 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4894 if (lock != NULL)
4895 mtx_unlock(lock);
4896 lock = KEG_LOCK(keg, slab->us_domain);
4897 }
4898 slab_free_item(zone, slab, item);
4899 }
4900 if (lock != NULL)
4901 mtx_unlock(lock);
4902 }
4903
4904 /*
4905 * Frees a single item to any zone.
4906 *
4907 * Arguments:
4908 * zone The zone to free to
4909 * item The item we're freeing
4910 * udata User supplied data for the dtor
4911 * skip Skip dtors and finis
4912 */
4913 static __noinline void
zone_free_item(uma_zone_t zone,void * item,void * udata,enum zfreeskip skip)4914 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4915 {
4916
4917 /*
4918 * If a free is sent directly to an SMR zone we have to
4919 * synchronize immediately because the item can instantly
4920 * be reallocated. This should only happen in degenerate
4921 * cases when no memory is available for per-cpu caches.
4922 */
4923 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4924 smr_synchronize(zone->uz_smr);
4925
4926 item_dtor(zone, item, zone->uz_size, udata, skip);
4927
4928 if (skip < SKIP_FINI && zone->uz_fini) {
4929 kasan_mark_item_valid(zone, item);
4930 zone->uz_fini(item, zone->uz_size);
4931 kasan_mark_item_invalid(zone, item);
4932 }
4933
4934 zone->uz_release(zone->uz_arg, &item, 1);
4935
4936 if (skip & SKIP_CNT)
4937 return;
4938
4939 counter_u64_add(zone->uz_frees, 1);
4940
4941 if (zone->uz_max_items > 0)
4942 zone_free_limit(zone, 1);
4943 }
4944
4945 /* See uma.h */
4946 int
uma_zone_set_max(uma_zone_t zone,int nitems)4947 uma_zone_set_max(uma_zone_t zone, int nitems)
4948 {
4949
4950 /*
4951 * If the limit is small, we may need to constrain the maximum per-CPU
4952 * cache size, or disable caching entirely.
4953 */
4954 uma_zone_set_maxcache(zone, nitems);
4955
4956 /*
4957 * XXX This can misbehave if the zone has any allocations with
4958 * no limit and a limit is imposed. There is currently no
4959 * way to clear a limit.
4960 */
4961 ZONE_LOCK(zone);
4962 if (zone->uz_max_items == 0)
4963 ZONE_ASSERT_COLD(zone);
4964 zone->uz_max_items = nitems;
4965 zone->uz_flags |= UMA_ZFLAG_LIMIT;
4966 zone_update_caches(zone);
4967 /* We may need to wake waiters. */
4968 wakeup(&zone->uz_max_items);
4969 ZONE_UNLOCK(zone);
4970
4971 return (nitems);
4972 }
4973
4974 /* See uma.h */
4975 void
uma_zone_set_maxcache(uma_zone_t zone,int nitems)4976 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4977 {
4978 int bpcpu, bpdom, bsize, nb;
4979
4980 ZONE_LOCK(zone);
4981
4982 /*
4983 * Compute a lower bound on the number of items that may be cached in
4984 * the zone. Each CPU gets at least two buckets, and for cross-domain
4985 * frees we use an additional bucket per CPU and per domain. Select the
4986 * largest bucket size that does not exceed half of the requested limit,
4987 * with the left over space given to the full bucket cache.
4988 */
4989 bpdom = 0;
4990 bpcpu = 2;
4991 #ifdef NUMA
4992 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4993 bpcpu++;
4994 bpdom++;
4995 }
4996 #endif
4997 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4998 bsize = nitems / nb / 2;
4999 if (bsize > BUCKET_MAX)
5000 bsize = BUCKET_MAX;
5001 else if (bsize == 0 && nitems / nb > 0)
5002 bsize = 1;
5003 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
5004 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
5005 zone->uz_bucket_size_min = zone->uz_bucket_size_max;
5006 zone->uz_bucket_max = nitems - nb * bsize;
5007 ZONE_UNLOCK(zone);
5008 }
5009
5010 /* See uma.h */
5011 int
uma_zone_get_max(uma_zone_t zone)5012 uma_zone_get_max(uma_zone_t zone)
5013 {
5014 int nitems;
5015
5016 nitems = atomic_load_64(&zone->uz_max_items);
5017
5018 return (nitems);
5019 }
5020
5021 /* See uma.h */
5022 void
uma_zone_set_warning(uma_zone_t zone,const char * warning)5023 uma_zone_set_warning(uma_zone_t zone, const char *warning)
5024 {
5025
5026 ZONE_ASSERT_COLD(zone);
5027 zone->uz_warning = warning;
5028 }
5029
5030 /* See uma.h */
5031 void
uma_zone_set_maxaction(uma_zone_t zone,uma_maxaction_t maxaction)5032 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
5033 {
5034
5035 ZONE_ASSERT_COLD(zone);
5036 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
5037 }
5038
5039 /* See uma.h */
5040 int
uma_zone_get_cur(uma_zone_t zone)5041 uma_zone_get_cur(uma_zone_t zone)
5042 {
5043 int64_t nitems;
5044 u_int i;
5045
5046 nitems = 0;
5047 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
5048 nitems = counter_u64_fetch(zone->uz_allocs) -
5049 counter_u64_fetch(zone->uz_frees);
5050 CPU_FOREACH(i)
5051 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
5052 atomic_load_64(&zone->uz_cpu[i].uc_frees);
5053
5054 return (nitems < 0 ? 0 : nitems);
5055 }
5056
5057 static uint64_t
uma_zone_get_allocs(uma_zone_t zone)5058 uma_zone_get_allocs(uma_zone_t zone)
5059 {
5060 uint64_t nitems;
5061 u_int i;
5062
5063 nitems = 0;
5064 if (zone->uz_allocs != EARLY_COUNTER)
5065 nitems = counter_u64_fetch(zone->uz_allocs);
5066 CPU_FOREACH(i)
5067 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
5068
5069 return (nitems);
5070 }
5071
5072 static uint64_t
uma_zone_get_frees(uma_zone_t zone)5073 uma_zone_get_frees(uma_zone_t zone)
5074 {
5075 uint64_t nitems;
5076 u_int i;
5077
5078 nitems = 0;
5079 if (zone->uz_frees != EARLY_COUNTER)
5080 nitems = counter_u64_fetch(zone->uz_frees);
5081 CPU_FOREACH(i)
5082 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5083
5084 return (nitems);
5085 }
5086
5087 #ifdef INVARIANTS
5088 /* Used only for KEG_ASSERT_COLD(). */
5089 static uint64_t
uma_keg_get_allocs(uma_keg_t keg)5090 uma_keg_get_allocs(uma_keg_t keg)
5091 {
5092 uma_zone_t z;
5093 uint64_t nitems;
5094
5095 nitems = 0;
5096 LIST_FOREACH(z, &keg->uk_zones, uz_link)
5097 nitems += uma_zone_get_allocs(z);
5098
5099 return (nitems);
5100 }
5101 #endif
5102
5103 /* See uma.h */
5104 void
uma_zone_set_init(uma_zone_t zone,uma_init uminit)5105 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5106 {
5107 uma_keg_t keg;
5108
5109 KEG_GET(zone, keg);
5110 KEG_ASSERT_COLD(keg);
5111 keg->uk_init = uminit;
5112 }
5113
5114 /* See uma.h */
5115 void
uma_zone_set_fini(uma_zone_t zone,uma_fini fini)5116 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5117 {
5118 uma_keg_t keg;
5119
5120 KEG_GET(zone, keg);
5121 KEG_ASSERT_COLD(keg);
5122 keg->uk_fini = fini;
5123 }
5124
5125 /* See uma.h */
5126 void
uma_zone_set_zinit(uma_zone_t zone,uma_init zinit)5127 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5128 {
5129
5130 ZONE_ASSERT_COLD(zone);
5131 zone->uz_init = zinit;
5132 }
5133
5134 /* See uma.h */
5135 void
uma_zone_set_zfini(uma_zone_t zone,uma_fini zfini)5136 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5137 {
5138
5139 ZONE_ASSERT_COLD(zone);
5140 zone->uz_fini = zfini;
5141 }
5142
5143 /* See uma.h */
5144 void
uma_zone_set_freef(uma_zone_t zone,uma_free freef)5145 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5146 {
5147 uma_keg_t keg;
5148
5149 KEG_GET(zone, keg);
5150 KEG_ASSERT_COLD(keg);
5151 keg->uk_freef = freef;
5152 }
5153
5154 /* See uma.h */
5155 void
uma_zone_set_allocf(uma_zone_t zone,uma_alloc allocf)5156 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5157 {
5158 uma_keg_t keg;
5159
5160 KEG_GET(zone, keg);
5161 KEG_ASSERT_COLD(keg);
5162 keg->uk_allocf = allocf;
5163 }
5164
5165 /* See uma.h */
5166 void
uma_zone_set_smr(uma_zone_t zone,smr_t smr)5167 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5168 {
5169
5170 ZONE_ASSERT_COLD(zone);
5171
5172 KASSERT(smr != NULL, ("Got NULL smr"));
5173 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5174 ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5175 zone->uz_flags |= UMA_ZONE_SMR;
5176 zone->uz_smr = smr;
5177 zone_update_caches(zone);
5178 }
5179
5180 smr_t
uma_zone_get_smr(uma_zone_t zone)5181 uma_zone_get_smr(uma_zone_t zone)
5182 {
5183
5184 return (zone->uz_smr);
5185 }
5186
5187 /* See uma.h */
5188 void
uma_zone_reserve(uma_zone_t zone,int items)5189 uma_zone_reserve(uma_zone_t zone, int items)
5190 {
5191 uma_keg_t keg;
5192
5193 KEG_GET(zone, keg);
5194 KEG_ASSERT_COLD(keg);
5195 keg->uk_reserve = items;
5196 }
5197
5198 /* See uma.h */
5199 int
uma_zone_reserve_kva(uma_zone_t zone,int count)5200 uma_zone_reserve_kva(uma_zone_t zone, int count)
5201 {
5202 uma_keg_t keg;
5203 vm_offset_t kva;
5204 u_int pages;
5205
5206 KEG_GET(zone, keg);
5207 KEG_ASSERT_COLD(keg);
5208 ZONE_ASSERT_COLD(zone);
5209
5210 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5211
5212 #ifdef UMA_USE_DMAP
5213 if (keg->uk_ppera > 1) {
5214 #else
5215 if (1) {
5216 #endif
5217 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5218 if (kva == 0)
5219 return (0);
5220 } else
5221 kva = 0;
5222
5223 MPASS(keg->uk_kva == 0);
5224 keg->uk_kva = kva;
5225 keg->uk_offset = 0;
5226 zone->uz_max_items = pages * keg->uk_ipers;
5227 #ifdef UMA_USE_DMAP
5228 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5229 #else
5230 keg->uk_allocf = noobj_alloc;
5231 #endif
5232 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5233 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5234 zone_update_caches(zone);
5235
5236 return (1);
5237 }
5238
5239 /* See uma.h */
5240 void
5241 uma_prealloc(uma_zone_t zone, int items)
5242 {
5243 struct vm_domainset_iter di;
5244 uma_domain_t dom;
5245 uma_slab_t slab;
5246 uma_keg_t keg;
5247 int aflags, domain, slabs;
5248
5249 KEG_GET(zone, keg);
5250 slabs = howmany(items, keg->uk_ipers);
5251 while (slabs-- > 0) {
5252 aflags = M_NOWAIT;
5253 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5254 &aflags);
5255 for (;;) {
5256 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5257 aflags);
5258 if (slab != NULL) {
5259 dom = &keg->uk_domain[slab->us_domain];
5260 /*
5261 * keg_alloc_slab() always returns a slab on the
5262 * partial list.
5263 */
5264 LIST_REMOVE(slab, us_link);
5265 LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5266 us_link);
5267 dom->ud_free_slabs++;
5268 KEG_UNLOCK(keg, slab->us_domain);
5269 break;
5270 }
5271 if (vm_domainset_iter_policy(&di, &domain) != 0)
5272 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5273 }
5274 }
5275 }
5276
5277 /*
5278 * Returns a snapshot of memory consumption in bytes.
5279 */
5280 size_t
5281 uma_zone_memory(uma_zone_t zone)
5282 {
5283 size_t sz;
5284 int i;
5285
5286 sz = 0;
5287 if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5288 for (i = 0; i < vm_ndomains; i++)
5289 sz += ZDOM_GET(zone, i)->uzd_nitems;
5290 return (sz * zone->uz_size);
5291 }
5292 for (i = 0; i < vm_ndomains; i++)
5293 sz += zone->uz_keg->uk_domain[i].ud_pages;
5294
5295 return (sz * PAGE_SIZE);
5296 }
5297
5298 struct uma_reclaim_args {
5299 int domain;
5300 int req;
5301 };
5302
5303 static void
5304 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5305 {
5306 struct uma_reclaim_args *args;
5307
5308 args = arg;
5309 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) != 0)
5310 return;
5311 if ((args->req == UMA_RECLAIM_TRIM) &&
5312 (zone->uz_flags & UMA_ZONE_NOTRIM) !=0)
5313 return;
5314
5315 uma_zone_reclaim_domain(zone, args->req, args->domain);
5316 }
5317
5318 /* See uma.h */
5319 void
5320 uma_reclaim(int req)
5321 {
5322 uma_reclaim_domain(req, UMA_ANYDOMAIN);
5323 }
5324
5325 void
5326 uma_reclaim_domain(int req, int domain)
5327 {
5328 struct uma_reclaim_args args;
5329
5330 bucket_enable();
5331
5332 args.domain = domain;
5333 args.req = req;
5334
5335 sx_slock(&uma_reclaim_lock);
5336 switch (req) {
5337 case UMA_RECLAIM_TRIM:
5338 case UMA_RECLAIM_DRAIN:
5339 zone_foreach(uma_reclaim_domain_cb, &args);
5340 break;
5341 case UMA_RECLAIM_DRAIN_CPU:
5342 zone_foreach(uma_reclaim_domain_cb, &args);
5343 pcpu_cache_drain_safe(NULL);
5344 zone_foreach(uma_reclaim_domain_cb, &args);
5345 break;
5346 default:
5347 panic("unhandled reclamation request %d", req);
5348 }
5349
5350 /*
5351 * Some slabs may have been freed but this zone will be visited early
5352 * we visit again so that we can free pages that are empty once other
5353 * zones are drained. We have to do the same for buckets.
5354 */
5355 uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5356 uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5357 bucket_zone_drain(domain);
5358 sx_sunlock(&uma_reclaim_lock);
5359 }
5360
5361 static volatile int uma_reclaim_needed;
5362
5363 void
5364 uma_reclaim_wakeup(void)
5365 {
5366
5367 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5368 wakeup(uma_reclaim);
5369 }
5370
5371 void
5372 uma_reclaim_worker(void *arg __unused)
5373 {
5374
5375 for (;;) {
5376 sx_xlock(&uma_reclaim_lock);
5377 while (atomic_load_int(&uma_reclaim_needed) == 0)
5378 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5379 hz);
5380 sx_xunlock(&uma_reclaim_lock);
5381 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5382 uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5383 atomic_store_int(&uma_reclaim_needed, 0);
5384 /* Don't fire more than once per-second. */
5385 pause("umarclslp", hz);
5386 }
5387 }
5388
5389 /* See uma.h */
5390 void
5391 uma_zone_reclaim(uma_zone_t zone, int req)
5392 {
5393 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5394 }
5395
5396 void
5397 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5398 {
5399 switch (req) {
5400 case UMA_RECLAIM_TRIM:
5401 zone_reclaim(zone, domain, M_NOWAIT, false);
5402 break;
5403 case UMA_RECLAIM_DRAIN:
5404 zone_reclaim(zone, domain, M_NOWAIT, true);
5405 break;
5406 case UMA_RECLAIM_DRAIN_CPU:
5407 pcpu_cache_drain_safe(zone);
5408 zone_reclaim(zone, domain, M_NOWAIT, true);
5409 break;
5410 default:
5411 panic("unhandled reclamation request %d", req);
5412 }
5413 }
5414
5415 /* See uma.h */
5416 int
5417 uma_zone_exhausted(uma_zone_t zone)
5418 {
5419
5420 return (atomic_load_32(&zone->uz_sleepers) > 0);
5421 }
5422
5423 unsigned long
5424 uma_limit(void)
5425 {
5426
5427 return (uma_kmem_limit);
5428 }
5429
5430 void
5431 uma_set_limit(unsigned long limit)
5432 {
5433
5434 uma_kmem_limit = limit;
5435 }
5436
5437 unsigned long
5438 uma_size(void)
5439 {
5440
5441 return (atomic_load_long(&uma_kmem_total));
5442 }
5443
5444 long
5445 uma_avail(void)
5446 {
5447
5448 return (uma_kmem_limit - uma_size());
5449 }
5450
5451 #ifdef DDB
5452 /*
5453 * Generate statistics across both the zone and its per-cpu cache's. Return
5454 * desired statistics if the pointer is non-NULL for that statistic.
5455 *
5456 * Note: does not update the zone statistics, as it can't safely clear the
5457 * per-CPU cache statistic.
5458 *
5459 */
5460 static void
5461 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5462 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5463 {
5464 uma_cache_t cache;
5465 uint64_t allocs, frees, sleeps, xdomain;
5466 int cachefree, cpu;
5467
5468 allocs = frees = sleeps = xdomain = 0;
5469 cachefree = 0;
5470 CPU_FOREACH(cpu) {
5471 cache = &z->uz_cpu[cpu];
5472 cachefree += cache->uc_allocbucket.ucb_cnt;
5473 cachefree += cache->uc_freebucket.ucb_cnt;
5474 xdomain += cache->uc_crossbucket.ucb_cnt;
5475 cachefree += cache->uc_crossbucket.ucb_cnt;
5476 allocs += cache->uc_allocs;
5477 frees += cache->uc_frees;
5478 }
5479 allocs += counter_u64_fetch(z->uz_allocs);
5480 frees += counter_u64_fetch(z->uz_frees);
5481 xdomain += counter_u64_fetch(z->uz_xdomain);
5482 sleeps += z->uz_sleeps;
5483 if (cachefreep != NULL)
5484 *cachefreep = cachefree;
5485 if (allocsp != NULL)
5486 *allocsp = allocs;
5487 if (freesp != NULL)
5488 *freesp = frees;
5489 if (sleepsp != NULL)
5490 *sleepsp = sleeps;
5491 if (xdomainp != NULL)
5492 *xdomainp = xdomain;
5493 }
5494 #endif /* DDB */
5495
5496 static int
5497 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5498 {
5499 uma_keg_t kz;
5500 uma_zone_t z;
5501 int count;
5502
5503 count = 0;
5504 rw_rlock(&uma_rwlock);
5505 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5506 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5507 count++;
5508 }
5509 LIST_FOREACH(z, &uma_cachezones, uz_link)
5510 count++;
5511
5512 rw_runlock(&uma_rwlock);
5513 return (sysctl_handle_int(oidp, &count, 0, req));
5514 }
5515
5516 static void
5517 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5518 struct uma_percpu_stat *ups, bool internal)
5519 {
5520 uma_zone_domain_t zdom;
5521 uma_cache_t cache;
5522 int i;
5523
5524 for (i = 0; i < vm_ndomains; i++) {
5525 zdom = ZDOM_GET(z, i);
5526 uth->uth_zone_free += zdom->uzd_nitems;
5527 }
5528 uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5529 uth->uth_frees = counter_u64_fetch(z->uz_frees);
5530 uth->uth_fails = counter_u64_fetch(z->uz_fails);
5531 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5532 uth->uth_sleeps = z->uz_sleeps;
5533
5534 for (i = 0; i < mp_maxid + 1; i++) {
5535 bzero(&ups[i], sizeof(*ups));
5536 if (internal || CPU_ABSENT(i))
5537 continue;
5538 cache = &z->uz_cpu[i];
5539 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5540 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5541 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5542 ups[i].ups_allocs = cache->uc_allocs;
5543 ups[i].ups_frees = cache->uc_frees;
5544 }
5545 }
5546
5547 static int
5548 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5549 {
5550 struct uma_stream_header ush;
5551 struct uma_type_header uth;
5552 struct uma_percpu_stat *ups;
5553 struct sbuf sbuf;
5554 uma_keg_t kz;
5555 uma_zone_t z;
5556 uint64_t items;
5557 uint32_t kfree, pages;
5558 int count, error, i;
5559
5560 error = sysctl_wire_old_buffer(req, 0);
5561 if (error != 0)
5562 return (error);
5563 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5564 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5565 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5566
5567 count = 0;
5568 rw_rlock(&uma_rwlock);
5569 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5570 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5571 count++;
5572 }
5573
5574 LIST_FOREACH(z, &uma_cachezones, uz_link)
5575 count++;
5576
5577 /*
5578 * Insert stream header.
5579 */
5580 bzero(&ush, sizeof(ush));
5581 ush.ush_version = UMA_STREAM_VERSION;
5582 ush.ush_maxcpus = (mp_maxid + 1);
5583 ush.ush_count = count;
5584 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5585
5586 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5587 kfree = pages = 0;
5588 for (i = 0; i < vm_ndomains; i++) {
5589 kfree += kz->uk_domain[i].ud_free_items;
5590 pages += kz->uk_domain[i].ud_pages;
5591 }
5592 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5593 bzero(&uth, sizeof(uth));
5594 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5595 uth.uth_align = kz->uk_align;
5596 uth.uth_size = kz->uk_size;
5597 uth.uth_rsize = kz->uk_rsize;
5598 if (z->uz_max_items > 0) {
5599 items = UZ_ITEMS_COUNT(z->uz_items);
5600 uth.uth_pages = (items / kz->uk_ipers) *
5601 kz->uk_ppera;
5602 } else
5603 uth.uth_pages = pages;
5604 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5605 kz->uk_ppera;
5606 uth.uth_limit = z->uz_max_items;
5607 uth.uth_keg_free = kfree;
5608
5609 /*
5610 * A zone is secondary is it is not the first entry
5611 * on the keg's zone list.
5612 */
5613 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5614 (LIST_FIRST(&kz->uk_zones) != z))
5615 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5616 uma_vm_zone_stats(&uth, z, &sbuf, ups,
5617 kz->uk_flags & UMA_ZFLAG_INTERNAL);
5618 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5619 for (i = 0; i < mp_maxid + 1; i++)
5620 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5621 }
5622 }
5623 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5624 bzero(&uth, sizeof(uth));
5625 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5626 uth.uth_size = z->uz_size;
5627 uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5628 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5629 for (i = 0; i < mp_maxid + 1; i++)
5630 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5631 }
5632
5633 rw_runlock(&uma_rwlock);
5634 error = sbuf_finish(&sbuf);
5635 sbuf_delete(&sbuf);
5636 free(ups, M_TEMP);
5637 return (error);
5638 }
5639
5640 int
5641 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5642 {
5643 uma_zone_t zone = *(uma_zone_t *)arg1;
5644 int error, max;
5645
5646 max = uma_zone_get_max(zone);
5647 error = sysctl_handle_int(oidp, &max, 0, req);
5648 if (error || !req->newptr)
5649 return (error);
5650
5651 uma_zone_set_max(zone, max);
5652
5653 return (0);
5654 }
5655
5656 int
5657 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5658 {
5659 uma_zone_t zone;
5660 int cur;
5661
5662 /*
5663 * Some callers want to add sysctls for global zones that
5664 * may not yet exist so they pass a pointer to a pointer.
5665 */
5666 if (arg2 == 0)
5667 zone = *(uma_zone_t *)arg1;
5668 else
5669 zone = arg1;
5670 cur = uma_zone_get_cur(zone);
5671 return (sysctl_handle_int(oidp, &cur, 0, req));
5672 }
5673
5674 static int
5675 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5676 {
5677 uma_zone_t zone = arg1;
5678 uint64_t cur;
5679
5680 cur = uma_zone_get_allocs(zone);
5681 return (sysctl_handle_64(oidp, &cur, 0, req));
5682 }
5683
5684 static int
5685 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5686 {
5687 uma_zone_t zone = arg1;
5688 uint64_t cur;
5689
5690 cur = uma_zone_get_frees(zone);
5691 return (sysctl_handle_64(oidp, &cur, 0, req));
5692 }
5693
5694 static int
5695 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5696 {
5697 struct sbuf sbuf;
5698 uma_zone_t zone = arg1;
5699 int error;
5700
5701 sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5702 if (zone->uz_flags != 0)
5703 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5704 else
5705 sbuf_printf(&sbuf, "0");
5706 error = sbuf_finish(&sbuf);
5707 sbuf_delete(&sbuf);
5708
5709 return (error);
5710 }
5711
5712 static int
5713 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5714 {
5715 uma_keg_t keg = arg1;
5716 int avail, effpct, total;
5717
5718 total = keg->uk_ppera * PAGE_SIZE;
5719 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5720 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5721 /*
5722 * We consider the client's requested size and alignment here, not the
5723 * real size determination uk_rsize, because we also adjust the real
5724 * size for internal implementation reasons (max bitset size).
5725 */
5726 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5727 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5728 avail *= mp_maxid + 1;
5729 effpct = 100 * avail / total;
5730 return (sysctl_handle_int(oidp, &effpct, 0, req));
5731 }
5732
5733 static int
5734 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5735 {
5736 uma_zone_t zone = arg1;
5737 uint64_t cur;
5738
5739 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5740 return (sysctl_handle_64(oidp, &cur, 0, req));
5741 }
5742
5743 #ifdef INVARIANTS
5744 static uma_slab_t
5745 uma_dbg_getslab(uma_zone_t zone, void *item)
5746 {
5747 uma_slab_t slab;
5748 uma_keg_t keg;
5749 uint8_t *mem;
5750
5751 /*
5752 * It is safe to return the slab here even though the
5753 * zone is unlocked because the item's allocation state
5754 * essentially holds a reference.
5755 */
5756 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5757 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5758 return (NULL);
5759 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5760 return (vtoslab((vm_offset_t)mem));
5761 keg = zone->uz_keg;
5762 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5763 return ((uma_slab_t)(mem + keg->uk_pgoff));
5764 KEG_LOCK(keg, 0);
5765 slab = hash_sfind(&keg->uk_hash, mem);
5766 KEG_UNLOCK(keg, 0);
5767
5768 return (slab);
5769 }
5770
5771 static bool
5772 uma_dbg_zskip(uma_zone_t zone, void *mem)
5773 {
5774
5775 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5776 return (true);
5777
5778 return (uma_dbg_kskip(zone->uz_keg, mem));
5779 }
5780
5781 static bool
5782 uma_dbg_kskip(uma_keg_t keg, void *mem)
5783 {
5784 uintptr_t idx;
5785
5786 if (dbg_divisor == 0)
5787 return (true);
5788
5789 if (dbg_divisor == 1)
5790 return (false);
5791
5792 idx = (uintptr_t)mem >> PAGE_SHIFT;
5793 if (keg->uk_ipers > 1) {
5794 idx *= keg->uk_ipers;
5795 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5796 }
5797
5798 if ((idx / dbg_divisor) * dbg_divisor != idx) {
5799 counter_u64_add(uma_skip_cnt, 1);
5800 return (true);
5801 }
5802 counter_u64_add(uma_dbg_cnt, 1);
5803
5804 return (false);
5805 }
5806
5807 /*
5808 * Set up the slab's freei data such that uma_dbg_free can function.
5809 *
5810 */
5811 static void
5812 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5813 {
5814 uma_keg_t keg;
5815 int freei;
5816
5817 if (slab == NULL) {
5818 slab = uma_dbg_getslab(zone, item);
5819 if (slab == NULL)
5820 panic("uma: item %p did not belong to zone %s",
5821 item, zone->uz_name);
5822 }
5823 keg = zone->uz_keg;
5824 freei = slab_item_index(slab, keg, item);
5825
5826 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5827 slab_dbg_bits(slab, keg)))
5828 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5829 item, zone, zone->uz_name, slab, freei);
5830 }
5831
5832 /*
5833 * Verifies freed addresses. Checks for alignment, valid slab membership
5834 * and duplicate frees.
5835 *
5836 */
5837 static void
5838 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5839 {
5840 uma_keg_t keg;
5841 int freei;
5842
5843 if (slab == NULL) {
5844 slab = uma_dbg_getslab(zone, item);
5845 if (slab == NULL)
5846 panic("uma: Freed item %p did not belong to zone %s",
5847 item, zone->uz_name);
5848 }
5849 keg = zone->uz_keg;
5850 freei = slab_item_index(slab, keg, item);
5851
5852 if (freei >= keg->uk_ipers)
5853 panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5854 item, zone, zone->uz_name, slab, freei);
5855
5856 if (slab_item(slab, keg, freei) != item)
5857 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5858 item, zone, zone->uz_name, slab, freei);
5859
5860 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5861 slab_dbg_bits(slab, keg)))
5862 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5863 item, zone, zone->uz_name, slab, freei);
5864 }
5865 #endif /* INVARIANTS */
5866
5867 #ifdef DDB
5868 static int64_t
5869 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5870 uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5871 {
5872 uint64_t frees;
5873 int i;
5874
5875 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5876 *allocs = counter_u64_fetch(z->uz_allocs);
5877 frees = counter_u64_fetch(z->uz_frees);
5878 *sleeps = z->uz_sleeps;
5879 *cachefree = 0;
5880 *xdomain = 0;
5881 } else
5882 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5883 xdomain);
5884 for (i = 0; i < vm_ndomains; i++) {
5885 *cachefree += ZDOM_GET(z, i)->uzd_nitems;
5886 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5887 (LIST_FIRST(&kz->uk_zones) != z)))
5888 *cachefree += kz->uk_domain[i].ud_free_items;
5889 }
5890 *used = *allocs - frees;
5891 return (((int64_t)*used + *cachefree) * kz->uk_size);
5892 }
5893
5894 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
5895 {
5896 const char *fmt_hdr, *fmt_entry;
5897 uma_keg_t kz;
5898 uma_zone_t z;
5899 uint64_t allocs, used, sleeps, xdomain;
5900 long cachefree;
5901 /* variables for sorting */
5902 uma_keg_t cur_keg;
5903 uma_zone_t cur_zone, last_zone;
5904 int64_t cur_size, last_size, size;
5905 int ties;
5906
5907 /* /i option produces machine-parseable CSV output */
5908 if (modif[0] == 'i') {
5909 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5910 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5911 } else {
5912 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5913 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5914 }
5915
5916 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5917 "Sleeps", "Bucket", "Total Mem", "XFree");
5918
5919 /* Sort the zones with largest size first. */
5920 last_zone = NULL;
5921 last_size = INT64_MAX;
5922 for (;;) {
5923 cur_zone = NULL;
5924 cur_size = -1;
5925 ties = 0;
5926 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5927 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5928 /*
5929 * In the case of size ties, print out zones
5930 * in the order they are encountered. That is,
5931 * when we encounter the most recently output
5932 * zone, we have already printed all preceding
5933 * ties, and we must print all following ties.
5934 */
5935 if (z == last_zone) {
5936 ties = 1;
5937 continue;
5938 }
5939 size = get_uma_stats(kz, z, &allocs, &used,
5940 &sleeps, &cachefree, &xdomain);
5941 if (size > cur_size && size < last_size + ties)
5942 {
5943 cur_size = size;
5944 cur_zone = z;
5945 cur_keg = kz;
5946 }
5947 }
5948 }
5949 if (cur_zone == NULL)
5950 break;
5951
5952 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5953 &sleeps, &cachefree, &xdomain);
5954 db_printf(fmt_entry, cur_zone->uz_name,
5955 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5956 (uintmax_t)allocs, (uintmax_t)sleeps,
5957 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5958 xdomain);
5959
5960 if (db_pager_quit)
5961 return;
5962 last_zone = cur_zone;
5963 last_size = cur_size;
5964 }
5965 }
5966
5967 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
5968 {
5969 uma_zone_t z;
5970 uint64_t allocs, frees;
5971 long cachefree;
5972 int i;
5973
5974 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5975 "Requests", "Bucket");
5976 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5977 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5978 for (i = 0; i < vm_ndomains; i++)
5979 cachefree += ZDOM_GET(z, i)->uzd_nitems;
5980 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5981 z->uz_name, (uintmax_t)z->uz_size,
5982 (intmax_t)(allocs - frees), cachefree,
5983 (uintmax_t)allocs, z->uz_bucket_size);
5984 if (db_pager_quit)
5985 return;
5986 }
5987 }
5988 #endif /* DDB */
5989