xref: /freebsd/sys/kern/uipc_usrreq.c (revision 1390bba42caf53a00fa370f3844cd7b3725ed4ec)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include "opt_ddb.h"
60 
61 #include <sys/param.h>
62 #include <sys/capsicum.h>
63 #include <sys/domain.h>
64 #include <sys/eventhandler.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/poll.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 MALLOC_DECLARE(M_FILECAPS);
105 
106 static struct domain localdomain;
107 
108 static uma_zone_t	unp_zone;
109 static unp_gen_t	unp_gencnt;	/* (l) */
110 static u_int		unp_count;	/* (l) Count of local sockets. */
111 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
112 static int		unp_rights;	/* (g) File descriptors in flight. */
113 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
114 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
115 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
116 static struct mtx_pool	*unp_vp_mtxpool;
117 
118 struct unp_defer {
119 	SLIST_ENTRY(unp_defer) ud_link;
120 	struct file *ud_fp;
121 };
122 static SLIST_HEAD(, unp_defer) unp_defers;
123 static int unp_defers_count;
124 
125 static const struct sockaddr	sun_noname = {
126 	.sa_len = sizeof(sun_noname),
127 	.sa_family = AF_LOCAL,
128 };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer,
147  * however the notion of send buffer still makes sense with them.  Its size is
148  * the amount of space that a send(2) syscall may copyin(9) before checking
149  * with the receive buffer of a peer.  Although not linked anywhere yet,
150  * pointed to by a stack variable, effectively it is a buffer that needs to be
151  * sized.
152  *
153  * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size,
154  * and don't really want to reserve the sendspace.  Their recvspace should be
155  * large enough for at least one max-size datagram plus address.
156  */
157 static u_long	unpst_sendspace = 64*1024;
158 static u_long	unpst_recvspace = 64*1024;
159 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
160 static u_long	unpdg_recvspace = 16*1024;
161 static u_long	unpsp_sendspace = 64*1024;
162 static u_long	unpsp_recvspace = 64*1024;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pr_attach() and freed in pr_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *, bool);
296 static void	unp_connect2(struct socket *, struct socket *, bool);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf *, struct mchain *,
305 		    struct thread *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static void	unp_addsockcred(struct thread *, struct mchain *, int);
310 static void	unp_process_defers(void * __unused, int);
311 
312 static void	uipc_wrknl_lock(void *);
313 static void	uipc_wrknl_unlock(void *);
314 static void	uipc_wrknl_assert_lock(void *, int);
315 
316 static void
unp_pcb_hold(struct unpcb * unp)317 unp_pcb_hold(struct unpcb *unp)
318 {
319 	u_int old __unused;
320 
321 	old = refcount_acquire(&unp->unp_refcount);
322 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
323 }
324 
325 static __result_use_check bool
unp_pcb_rele(struct unpcb * unp)326 unp_pcb_rele(struct unpcb *unp)
327 {
328 	bool ret;
329 
330 	UNP_PCB_LOCK_ASSERT(unp);
331 
332 	if ((ret = refcount_release(&unp->unp_refcount))) {
333 		UNP_PCB_UNLOCK(unp);
334 		UNP_PCB_LOCK_DESTROY(unp);
335 		uma_zfree(unp_zone, unp);
336 	}
337 	return (ret);
338 }
339 
340 static void
unp_pcb_rele_notlast(struct unpcb * unp)341 unp_pcb_rele_notlast(struct unpcb *unp)
342 {
343 	bool ret __unused;
344 
345 	ret = refcount_release(&unp->unp_refcount);
346 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
347 }
348 
349 static void
unp_pcb_lock_pair(struct unpcb * unp,struct unpcb * unp2)350 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
351 {
352 	UNP_PCB_UNLOCK_ASSERT(unp);
353 	UNP_PCB_UNLOCK_ASSERT(unp2);
354 
355 	if (unp == unp2) {
356 		UNP_PCB_LOCK(unp);
357 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
358 		UNP_PCB_LOCK(unp);
359 		UNP_PCB_LOCK(unp2);
360 	} else {
361 		UNP_PCB_LOCK(unp2);
362 		UNP_PCB_LOCK(unp);
363 	}
364 }
365 
366 static void
unp_pcb_unlock_pair(struct unpcb * unp,struct unpcb * unp2)367 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
368 {
369 	UNP_PCB_UNLOCK(unp);
370 	if (unp != unp2)
371 		UNP_PCB_UNLOCK(unp2);
372 }
373 
374 /*
375  * Try to lock the connected peer of an already locked socket.  In some cases
376  * this requires that we unlock the current socket.  The pairbusy counter is
377  * used to block concurrent connection attempts while the lock is dropped.  The
378  * caller must be careful to revalidate PCB state.
379  */
380 static struct unpcb *
unp_pcb_lock_peer(struct unpcb * unp)381 unp_pcb_lock_peer(struct unpcb *unp)
382 {
383 	struct unpcb *unp2;
384 
385 	UNP_PCB_LOCK_ASSERT(unp);
386 	unp2 = unp->unp_conn;
387 	if (unp2 == NULL)
388 		return (NULL);
389 	if (__predict_false(unp == unp2))
390 		return (unp);
391 
392 	UNP_PCB_UNLOCK_ASSERT(unp2);
393 
394 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
395 		return (unp2);
396 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
397 		UNP_PCB_LOCK(unp2);
398 		return (unp2);
399 	}
400 	unp->unp_pairbusy++;
401 	unp_pcb_hold(unp2);
402 	UNP_PCB_UNLOCK(unp);
403 
404 	UNP_PCB_LOCK(unp2);
405 	UNP_PCB_LOCK(unp);
406 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
407 	    ("%s: socket %p was reconnected", __func__, unp));
408 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
409 		unp->unp_flags &= ~UNP_WAITING;
410 		wakeup(unp);
411 	}
412 	if (unp_pcb_rele(unp2)) {
413 		/* unp2 is unlocked. */
414 		return (NULL);
415 	}
416 	if (unp->unp_conn == NULL) {
417 		UNP_PCB_UNLOCK(unp2);
418 		return (NULL);
419 	}
420 	return (unp2);
421 }
422 
423 /*
424  * Try to lock peer of our socket for purposes of sending data to it.
425  */
426 static int
uipc_lock_peer(struct socket * so,struct unpcb ** unp2)427 uipc_lock_peer(struct socket *so, struct unpcb **unp2)
428 {
429 	struct unpcb *unp;
430 	int error;
431 
432 	unp = sotounpcb(so);
433 	UNP_PCB_LOCK(unp);
434 	*unp2 = unp_pcb_lock_peer(unp);
435 	if (__predict_false(so->so_error != 0)) {
436 		error = so->so_error;
437 		so->so_error = 0;
438 		UNP_PCB_UNLOCK(unp);
439 		if (*unp2 != NULL)
440 			UNP_PCB_UNLOCK(*unp2);
441 		return (error);
442 	}
443 	if (__predict_false(*unp2 == NULL)) {
444 		/*
445 		 * Different error code for a previously connected socket and
446 		 * a never connected one.  The SS_ISDISCONNECTED is set in the
447 		 * unp_soisdisconnected() and is synchronized by the pcb lock.
448 		 */
449 		error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN;
450 		UNP_PCB_UNLOCK(unp);
451 		return (error);
452 	}
453 	UNP_PCB_UNLOCK(unp);
454 
455 	return (0);
456 }
457 
458 static void
uipc_abort(struct socket * so)459 uipc_abort(struct socket *so)
460 {
461 	struct unpcb *unp, *unp2;
462 
463 	unp = sotounpcb(so);
464 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
465 	UNP_PCB_UNLOCK_ASSERT(unp);
466 
467 	UNP_PCB_LOCK(unp);
468 	unp2 = unp->unp_conn;
469 	if (unp2 != NULL) {
470 		unp_pcb_hold(unp2);
471 		UNP_PCB_UNLOCK(unp);
472 		unp_drop(unp2);
473 	} else
474 		UNP_PCB_UNLOCK(unp);
475 }
476 
477 static int
uipc_attach(struct socket * so,int proto,struct thread * td)478 uipc_attach(struct socket *so, int proto, struct thread *td)
479 {
480 	u_long sendspace, recvspace;
481 	struct unpcb *unp;
482 	int error;
483 	bool locked;
484 
485 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
486 	switch (so->so_type) {
487 	case SOCK_DGRAM:
488 		STAILQ_INIT(&so->so_rcv.uxdg_mb);
489 		STAILQ_INIT(&so->so_snd.uxdg_mb);
490 		TAILQ_INIT(&so->so_rcv.uxdg_conns);
491 		/*
492 		 * Since send buffer is either bypassed or is a part
493 		 * of one-to-many receive buffer, we assign both space
494 		 * limits to unpdg_recvspace.
495 		 */
496 		sendspace = recvspace = unpdg_recvspace;
497 		break;
498 
499 	case SOCK_STREAM:
500 		sendspace = unpst_sendspace;
501 		recvspace = unpst_recvspace;
502 		goto common;
503 
504 	case SOCK_SEQPACKET:
505 		sendspace = unpsp_sendspace;
506 		recvspace = unpsp_recvspace;
507 common:
508 		/*
509 		 * XXXGL: we need to initialize the mutex with MTX_DUPOK.
510 		 * Ideally, protocols that have PR_SOCKBUF should be
511 		 * responsible for mutex initialization officially, and then
512 		 * this uglyness with mtx_destroy(); mtx_init(); would go away.
513 		 */
514 		mtx_destroy(&so->so_rcv_mtx);
515 		mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF | MTX_DUPOK);
516 		knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock,
517 		    uipc_wrknl_unlock, uipc_wrknl_assert_lock);
518 		STAILQ_INIT(&so->so_rcv.uxst_mbq);
519 		break;
520 	default:
521 		panic("uipc_attach");
522 	}
523 	error = soreserve(so, sendspace, recvspace);
524 	if (error)
525 		return (error);
526 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
527 	if (unp == NULL)
528 		return (ENOBUFS);
529 	LIST_INIT(&unp->unp_refs);
530 	UNP_PCB_LOCK_INIT(unp);
531 	unp->unp_socket = so;
532 	so->so_pcb = unp;
533 	refcount_init(&unp->unp_refcount, 1);
534 	unp->unp_mode = ACCESSPERMS;
535 
536 	if ((locked = UNP_LINK_WOWNED()) == false)
537 		UNP_LINK_WLOCK();
538 
539 	unp->unp_gencnt = ++unp_gencnt;
540 	unp->unp_ino = ++unp_ino;
541 	unp_count++;
542 	switch (so->so_type) {
543 	case SOCK_STREAM:
544 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
545 		break;
546 
547 	case SOCK_DGRAM:
548 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
549 		break;
550 
551 	case SOCK_SEQPACKET:
552 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
553 		break;
554 
555 	default:
556 		panic("uipc_attach");
557 	}
558 
559 	if (locked == false)
560 		UNP_LINK_WUNLOCK();
561 
562 	return (0);
563 }
564 
565 static int
uipc_bindat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)566 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
567 {
568 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
569 	struct vattr vattr;
570 	int error, namelen;
571 	struct nameidata nd;
572 	struct unpcb *unp;
573 	struct vnode *vp;
574 	struct mount *mp;
575 	cap_rights_t rights;
576 	char *buf;
577 	mode_t mode;
578 
579 	if (nam->sa_family != AF_UNIX)
580 		return (EAFNOSUPPORT);
581 
582 	unp = sotounpcb(so);
583 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
584 
585 	if (soun->sun_len > sizeof(struct sockaddr_un))
586 		return (EINVAL);
587 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
588 	if (namelen <= 0)
589 		return (EINVAL);
590 
591 	/*
592 	 * We don't allow simultaneous bind() calls on a single UNIX domain
593 	 * socket, so flag in-progress operations, and return an error if an
594 	 * operation is already in progress.
595 	 *
596 	 * Historically, we have not allowed a socket to be rebound, so this
597 	 * also returns an error.  Not allowing re-binding simplifies the
598 	 * implementation and avoids a great many possible failure modes.
599 	 */
600 	UNP_PCB_LOCK(unp);
601 	if (unp->unp_vnode != NULL) {
602 		UNP_PCB_UNLOCK(unp);
603 		return (EINVAL);
604 	}
605 	if (unp->unp_flags & UNP_BINDING) {
606 		UNP_PCB_UNLOCK(unp);
607 		return (EALREADY);
608 	}
609 	unp->unp_flags |= UNP_BINDING;
610 	mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask;
611 	UNP_PCB_UNLOCK(unp);
612 
613 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
614 	bcopy(soun->sun_path, buf, namelen);
615 	buf[namelen] = 0;
616 
617 restart:
618 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
619 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
620 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
621 	error = namei(&nd);
622 	if (error)
623 		goto error;
624 	vp = nd.ni_vp;
625 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
626 		NDFREE_PNBUF(&nd);
627 		if (nd.ni_dvp == vp)
628 			vrele(nd.ni_dvp);
629 		else
630 			vput(nd.ni_dvp);
631 		if (vp != NULL) {
632 			vrele(vp);
633 			error = EADDRINUSE;
634 			goto error;
635 		}
636 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
637 		if (error)
638 			goto error;
639 		goto restart;
640 	}
641 	VATTR_NULL(&vattr);
642 	vattr.va_type = VSOCK;
643 	vattr.va_mode = mode;
644 #ifdef MAC
645 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
646 	    &vattr);
647 #endif
648 	if (error == 0) {
649 		/*
650 		 * The prior lookup may have left LK_SHARED in cn_lkflags,
651 		 * and VOP_CREATE technically only requires the new vnode to
652 		 * be locked shared. Most filesystems will return the new vnode
653 		 * locked exclusive regardless, but we should explicitly
654 		 * specify that here since we require it and assert to that
655 		 * effect below.
656 		 */
657 		nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
658 		    LK_EXCLUSIVE;
659 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
660 	}
661 	NDFREE_PNBUF(&nd);
662 	if (error) {
663 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
664 		vn_finished_write(mp);
665 		if (error == ERELOOKUP)
666 			goto restart;
667 		goto error;
668 	}
669 	vp = nd.ni_vp;
670 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
671 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
672 
673 	UNP_PCB_LOCK(unp);
674 	VOP_UNP_BIND(vp, unp);
675 	unp->unp_vnode = vp;
676 	unp->unp_addr = soun;
677 	unp->unp_flags &= ~UNP_BINDING;
678 	UNP_PCB_UNLOCK(unp);
679 	vref(vp);
680 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
681 	vn_finished_write(mp);
682 	free(buf, M_TEMP);
683 	return (0);
684 
685 error:
686 	UNP_PCB_LOCK(unp);
687 	unp->unp_flags &= ~UNP_BINDING;
688 	UNP_PCB_UNLOCK(unp);
689 	free(buf, M_TEMP);
690 	return (error);
691 }
692 
693 static int
uipc_bind(struct socket * so,struct sockaddr * nam,struct thread * td)694 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
695 {
696 
697 	return (uipc_bindat(AT_FDCWD, so, nam, td));
698 }
699 
700 static int
uipc_connect(struct socket * so,struct sockaddr * nam,struct thread * td)701 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
702 {
703 	int error;
704 
705 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
706 	error = unp_connect(so, nam, td);
707 	return (error);
708 }
709 
710 static int
uipc_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)711 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
712     struct thread *td)
713 {
714 	int error;
715 
716 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
717 	error = unp_connectat(fd, so, nam, td, false);
718 	return (error);
719 }
720 
721 static void
uipc_close(struct socket * so)722 uipc_close(struct socket *so)
723 {
724 	struct unpcb *unp, *unp2;
725 	struct vnode *vp = NULL;
726 	struct mtx *vplock;
727 
728 	unp = sotounpcb(so);
729 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
730 
731 	vplock = NULL;
732 	if ((vp = unp->unp_vnode) != NULL) {
733 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
734 		mtx_lock(vplock);
735 	}
736 	UNP_PCB_LOCK(unp);
737 	if (vp && unp->unp_vnode == NULL) {
738 		mtx_unlock(vplock);
739 		vp = NULL;
740 	}
741 	if (vp != NULL) {
742 		VOP_UNP_DETACH(vp);
743 		unp->unp_vnode = NULL;
744 	}
745 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
746 		unp_disconnect(unp, unp2);
747 	else
748 		UNP_PCB_UNLOCK(unp);
749 	if (vp) {
750 		mtx_unlock(vplock);
751 		vrele(vp);
752 	}
753 }
754 
755 static int
uipc_chmod(struct socket * so,mode_t mode,struct ucred * cred __unused,struct thread * td __unused)756 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused,
757     struct thread *td __unused)
758 {
759 	struct unpcb *unp;
760 	int error;
761 
762 	if ((mode & ~ACCESSPERMS) != 0)
763 		return (EINVAL);
764 
765 	error = 0;
766 	unp = sotounpcb(so);
767 	UNP_PCB_LOCK(unp);
768 	if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0)
769 		error = EINVAL;
770 	else
771 		unp->unp_mode = mode;
772 	UNP_PCB_UNLOCK(unp);
773 	return (error);
774 }
775 
776 static int
uipc_connect2(struct socket * so1,struct socket * so2)777 uipc_connect2(struct socket *so1, struct socket *so2)
778 {
779 	struct unpcb *unp, *unp2;
780 
781 	if (so1->so_type != so2->so_type)
782 		return (EPROTOTYPE);
783 
784 	unp = so1->so_pcb;
785 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
786 	unp2 = so2->so_pcb;
787 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
788 	unp_pcb_lock_pair(unp, unp2);
789 	unp_connect2(so1, so2, false);
790 	unp_pcb_unlock_pair(unp, unp2);
791 
792 	return (0);
793 }
794 
795 static void
maybe_schedule_gc(void)796 maybe_schedule_gc(void)
797 {
798 	if (atomic_load_int(&unp_rights) != 0)
799 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
800 }
801 
802 static void
uipc_detach(struct socket * so)803 uipc_detach(struct socket *so)
804 {
805 	struct unpcb *unp, *unp2;
806 	struct mtx *vplock;
807 	struct vnode *vp;
808 
809 	unp = sotounpcb(so);
810 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
811 
812 	vp = NULL;
813 	vplock = NULL;
814 
815 	if (!SOLISTENING(so))
816 		unp_dispose(so);
817 
818 	UNP_LINK_WLOCK();
819 	LIST_REMOVE(unp, unp_link);
820 	if (unp->unp_gcflag & UNPGC_DEAD)
821 		LIST_REMOVE(unp, unp_dead);
822 	unp->unp_gencnt = ++unp_gencnt;
823 	--unp_count;
824 	UNP_LINK_WUNLOCK();
825 
826 	UNP_PCB_UNLOCK_ASSERT(unp);
827  restart:
828 	if ((vp = unp->unp_vnode) != NULL) {
829 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
830 		mtx_lock(vplock);
831 	}
832 	UNP_PCB_LOCK(unp);
833 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
834 		if (vplock)
835 			mtx_unlock(vplock);
836 		UNP_PCB_UNLOCK(unp);
837 		goto restart;
838 	}
839 	if ((vp = unp->unp_vnode) != NULL) {
840 		VOP_UNP_DETACH(vp);
841 		unp->unp_vnode = NULL;
842 	}
843 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
844 		unp_disconnect(unp, unp2);
845 	else
846 		UNP_PCB_UNLOCK(unp);
847 
848 	UNP_REF_LIST_LOCK();
849 	while (!LIST_EMPTY(&unp->unp_refs)) {
850 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
851 
852 		unp_pcb_hold(ref);
853 		UNP_REF_LIST_UNLOCK();
854 
855 		MPASS(ref != unp);
856 		UNP_PCB_UNLOCK_ASSERT(ref);
857 		unp_drop(ref);
858 		UNP_REF_LIST_LOCK();
859 	}
860 	UNP_REF_LIST_UNLOCK();
861 
862 	UNP_PCB_LOCK(unp);
863 	unp->unp_socket->so_pcb = NULL;
864 	unp->unp_socket = NULL;
865 	free(unp->unp_addr, M_SONAME);
866 	unp->unp_addr = NULL;
867 	if (!unp_pcb_rele(unp))
868 		UNP_PCB_UNLOCK(unp);
869 	if (vp) {
870 		mtx_unlock(vplock);
871 		vrele(vp);
872 	}
873 	maybe_schedule_gc();
874 
875 	switch (so->so_type) {
876 	case SOCK_STREAM:
877 	case SOCK_SEQPACKET:
878 		MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) &&
879 		    so->so_rcv.uxst_peer == NULL));
880 		break;
881 	case SOCK_DGRAM:
882 		/*
883 		 * Everything should have been unlinked/freed by unp_dispose()
884 		 * and/or unp_disconnect().
885 		 */
886 		MPASS(so->so_rcv.uxdg_peeked == NULL);
887 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
888 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
889 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
890 	}
891 }
892 
893 static int
uipc_disconnect(struct socket * so)894 uipc_disconnect(struct socket *so)
895 {
896 	struct unpcb *unp, *unp2;
897 
898 	unp = sotounpcb(so);
899 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
900 
901 	UNP_PCB_LOCK(unp);
902 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
903 		unp_disconnect(unp, unp2);
904 	else
905 		UNP_PCB_UNLOCK(unp);
906 	return (0);
907 }
908 
909 static void
uipc_fdclose(struct socket * so __unused)910 uipc_fdclose(struct socket *so __unused)
911 {
912 	/*
913 	 * Ensure that userspace can't create orphaned file descriptors without
914 	 * triggering garbage collection.  Triggering GC from uipc_detach() is
915 	 * not sufficient, since that's only closed once a socket reference
916 	 * count drops to zero.
917 	 */
918 	maybe_schedule_gc();
919 }
920 
921 static int
uipc_listen(struct socket * so,int backlog,struct thread * td)922 uipc_listen(struct socket *so, int backlog, struct thread *td)
923 {
924 	struct unpcb *unp;
925 	int error;
926 
927 	MPASS(so->so_type != SOCK_DGRAM);
928 
929 	/*
930 	 * Synchronize with concurrent connection attempts.
931 	 */
932 	error = 0;
933 	unp = sotounpcb(so);
934 	UNP_PCB_LOCK(unp);
935 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
936 		error = EINVAL;
937 	else if (unp->unp_vnode == NULL)
938 		error = EDESTADDRREQ;
939 	if (error != 0) {
940 		UNP_PCB_UNLOCK(unp);
941 		return (error);
942 	}
943 
944 	SOCK_LOCK(so);
945 	error = solisten_proto_check(so);
946 	if (error == 0) {
947 		cru2xt(td, &unp->unp_peercred);
948 		if (!SOLISTENING(so)) {
949 			(void)chgsbsize(so->so_cred->cr_uidinfo,
950 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
951 			(void)chgsbsize(so->so_cred->cr_uidinfo,
952 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
953 		}
954 		solisten_proto(so, backlog);
955 	}
956 	SOCK_UNLOCK(so);
957 	UNP_PCB_UNLOCK(unp);
958 	return (error);
959 }
960 
961 static int
uipc_peeraddr(struct socket * so,struct sockaddr * ret)962 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
963 {
964 	struct unpcb *unp, *unp2;
965 	const struct sockaddr *sa;
966 
967 	unp = sotounpcb(so);
968 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
969 
970 	UNP_PCB_LOCK(unp);
971 	unp2 = unp_pcb_lock_peer(unp);
972 	if (unp2 != NULL) {
973 		if (unp2->unp_addr != NULL)
974 			sa = (struct sockaddr *)unp2->unp_addr;
975 		else
976 			sa = &sun_noname;
977 		bcopy(sa, ret, sa->sa_len);
978 		unp_pcb_unlock_pair(unp, unp2);
979 	} else {
980 		UNP_PCB_UNLOCK(unp);
981 		sa = &sun_noname;
982 		bcopy(sa, ret, sa->sa_len);
983 	}
984 	return (0);
985 }
986 
987 /*
988  * pr_sosend() called with mbuf instead of uio is a kernel thread.  NFS,
989  * netgraph(4) and other subsystems can call into socket code.  The
990  * function will condition the mbuf so that it can be safely put onto socket
991  * buffer and calculate its char count and mbuf count.
992  *
993  * Note: we don't support receiving control data from a kernel thread.  Our
994  * pr_sosend methods have MPASS() to check that.  This may change.
995  */
996 static void
uipc_reset_kernel_mbuf(struct mbuf * m,struct mchain * mc)997 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc)
998 {
999 
1000 	M_ASSERTPKTHDR(m);
1001 
1002 	m_clrprotoflags(m);
1003 	m_tag_delete_chain(m, NULL);
1004 	m->m_pkthdr.rcvif = NULL;
1005 	m->m_pkthdr.flowid = 0;
1006 	m->m_pkthdr.csum_flags = 0;
1007 	m->m_pkthdr.fibnum = 0;
1008 	m->m_pkthdr.rsstype = 0;
1009 
1010 	mc_init_m(mc, m);
1011 	MPASS(m->m_pkthdr.len == mc->mc_len);
1012 }
1013 
1014 #ifdef SOCKBUF_DEBUG
1015 static inline void
uipc_stream_sbcheck(struct sockbuf * sb)1016 uipc_stream_sbcheck(struct sockbuf *sb)
1017 {
1018 	struct mbuf *d;
1019 	u_int dacc, dccc, dctl, dmbcnt;
1020 	bool notready = false;
1021 
1022 	dacc = dccc = dctl = dmbcnt = 0;
1023 	STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) {
1024 		if (d == sb->uxst_fnrdy) {
1025 			MPASS(d->m_flags & M_NOTREADY);
1026 			notready = true;
1027 		}
1028 		if (d->m_type == MT_CONTROL)
1029 			dctl += d->m_len;
1030 		else if (d->m_type == MT_DATA) {
1031 			dccc +=  d->m_len;
1032 			if (!notready)
1033 				dacc += d->m_len;
1034 		} else
1035 			MPASS(0);
1036 		dmbcnt += MSIZE;
1037 		if (d->m_flags & M_EXT)
1038 			dmbcnt += d->m_ext.ext_size;
1039 		if (d->m_stailq.stqe_next == NULL)
1040 			MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next);
1041 	}
1042 	MPASS(sb->uxst_fnrdy == NULL || notready);
1043 	MPASS(dacc == sb->sb_acc);
1044 	MPASS(dccc == sb->sb_ccc);
1045 	MPASS(dctl == sb->sb_ctl);
1046 	MPASS(dmbcnt == sb->sb_mbcnt);
1047 	(void)STAILQ_EMPTY(&sb->uxst_mbq);
1048 }
1049 #define	UIPC_STREAM_SBCHECK(sb)	uipc_stream_sbcheck(sb)
1050 #else
1051 #define	UIPC_STREAM_SBCHECK(sb)	do {} while (0)
1052 #endif
1053 
1054 /*
1055  * uipc_stream_sbspace() returns how much a writer can send, limited by char
1056  * count or mbuf memory use, whatever ends first.
1057  *
1058  * An obvious and legitimate reason for a socket having more data than allowed,
1059  * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer.
1060  * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed
1061  * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended
1062  * up with 'mc_mlen > mbspace'.  A typical scenario would be a full buffer with
1063  * writer trying to push in a large write, and a slow reader, that reads just
1064  * a few bytes at a time.  In that case writer will keep creating new mbufs
1065  * with mc_split().  These mbufs will carry little chars, but will all point at
1066  * the same cluster, thus each adding cluster size to sb_mbcnt.  This means we
1067  * will count same cluster many times potentially underutilizing socket buffer.
1068  * We aren't optimizing towards ineffective readers.  Classic socket buffer had
1069  * the same "feature".
1070  */
1071 static inline u_int
uipc_stream_sbspace(struct sockbuf * sb)1072 uipc_stream_sbspace(struct sockbuf *sb)
1073 {
1074 	u_int space, mbspace;
1075 
1076 	if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl))
1077 		space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl;
1078 	else
1079 		return (0);
1080 	if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt))
1081 		mbspace = sb->sb_mbmax - sb->sb_mbcnt;
1082 	else
1083 		return (0);
1084 
1085 	return (min(space, mbspace));
1086 }
1087 
1088 /*
1089  * UNIX version of generic sbwait() for writes.  We wait on peer's receive
1090  * buffer, using our timeout.
1091  */
1092 static int
uipc_stream_sbwait(struct socket * so,sbintime_t timeo)1093 uipc_stream_sbwait(struct socket *so, sbintime_t timeo)
1094 {
1095 	struct sockbuf *sb = &so->so_rcv;
1096 
1097 	SOCK_RECVBUF_LOCK_ASSERT(so);
1098 	sb->sb_flags |= SB_WAIT;
1099 	return (msleep_sbt(&sb->sb_acc, SOCK_RECVBUF_MTX(so), PSOCK | PCATCH,
1100 	    "sbwait", timeo, 0, 0));
1101 }
1102 
1103 static int
uipc_sosend_stream_or_seqpacket(struct socket * so,struct sockaddr * addr,struct uio * uio0,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1104 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr,
1105     struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags,
1106     struct thread *td)
1107 {
1108 	struct unpcb *unp2;
1109 	struct socket *so2;
1110 	struct sockbuf *sb;
1111 	struct uio *uio;
1112 	struct mchain mc, cmc;
1113 	size_t resid, sent;
1114 	bool nonblock, eor, aio;
1115 	int error;
1116 
1117 	MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL));
1118 	MPASS(m == NULL || c == NULL);
1119 
1120 	if (__predict_false(flags & MSG_OOB))
1121 		return (EOPNOTSUPP);
1122 
1123 	nonblock = (so->so_state & SS_NBIO) ||
1124 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1125 	eor = flags & MSG_EOR;
1126 
1127 	mc = MCHAIN_INITIALIZER(&mc);
1128 	cmc = MCHAIN_INITIALIZER(&cmc);
1129 	sent = 0;
1130 	aio = false;
1131 
1132 	if (m == NULL) {
1133 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1134 			goto out;
1135 		/*
1136 		 * This function may read more data from the uio than it would
1137 		 * then place on socket.  That would leave uio inconsistent
1138 		 * upon return.  Normally uio is allocated on the stack of the
1139 		 * syscall thread and we don't care about leaving it consistent.
1140 		 * However, aio(9) will allocate a uio as part of job and will
1141 		 * use it to track progress.  We detect aio(9) checking the
1142 		 * SB_AIO_RUNNING flag.  It is safe to check it without lock
1143 		 * cause it is set and cleared in the same taskqueue thread.
1144 		 *
1145 		 * This check can also produce a false positive: there is
1146 		 * aio(9) job and also there is a syscall we are serving now.
1147 		 * No sane software does that, it would leave to a mess in
1148 		 * the socket buffer, as aio(9) doesn't grab the I/O sx(9).
1149 		 * But syzkaller can create this mess.  For such false positive
1150 		 * our goal is just don't panic or leak memory.
1151 		 */
1152 		if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) {
1153 			uio = cloneuio(uio0);
1154 			aio = true;
1155 		} else {
1156 			uio = uio0;
1157 			resid = uio->uio_resid;
1158 		}
1159 		/*
1160 		 * Optimization for a case when our send fits into the receive
1161 		 * buffer - do the copyin before taking any locks, sized to our
1162 		 * send buffer.  Later copyins will also take into account
1163 		 * space in the peer's receive buffer.
1164 		 */
1165 		error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK,
1166 		    eor ? M_EOR : 0);
1167 		if (__predict_false(error))
1168 			goto out2;
1169 	} else
1170 		uipc_reset_kernel_mbuf(m, &mc);
1171 
1172 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1173 	if (error)
1174 		goto out2;
1175 
1176 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
1177 		goto out3;
1178 
1179 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1180 		/*
1181 		 * Credentials are passed only once on SOCK_STREAM and
1182 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1183 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1184 		 */
1185 		unp_addsockcred(td, &cmc, unp2->unp_flags);
1186 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1187 	}
1188 
1189 	/*
1190 	 * Cycle through the data to send and available space in the peer's
1191 	 * receive buffer.  Put a reference on the peer socket, so that it
1192 	 * doesn't get freed while we sbwait().  If peer goes away, we will
1193 	 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's
1194 	 * socket destruction.
1195 	 */
1196 	so2 = unp2->unp_socket;
1197 	soref(so2);
1198 	UNP_PCB_UNLOCK(unp2);
1199 	sb = &so2->so_rcv;
1200 	while (mc.mc_len + cmc.mc_len > 0) {
1201 		struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext);
1202 		u_int space;
1203 
1204 		SOCK_RECVBUF_LOCK(so2);
1205 restart:
1206 		UIPC_STREAM_SBCHECK(sb);
1207 		if (__predict_false(cmc.mc_len > sb->sb_hiwat)) {
1208 			SOCK_RECVBUF_UNLOCK(so2);
1209 			error = EMSGSIZE;
1210 			goto out4;
1211 		}
1212 		if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1213 			SOCK_RECVBUF_UNLOCK(so2);
1214 			error = EPIPE;
1215 			goto out4;
1216 		}
1217 		/*
1218 		 * Wait on the peer socket receive buffer until we have enough
1219 		 * space to put at least control.  The data is a stream and can
1220 		 * be put partially, but control is really a datagram.
1221 		 */
1222 		space = uipc_stream_sbspace(sb);
1223 		if (space < sb->sb_lowat || space < cmc.mc_len) {
1224 			if (nonblock) {
1225 				if (aio)
1226 					sb->uxst_flags |= UXST_PEER_AIO;
1227 				SOCK_RECVBUF_UNLOCK(so2);
1228 				if (aio) {
1229 					SOCK_SENDBUF_LOCK(so);
1230 					so->so_snd.sb_ccc =
1231 					    so->so_snd.sb_hiwat - space;
1232 					SOCK_SENDBUF_UNLOCK(so);
1233 				}
1234 				error = EWOULDBLOCK;
1235 				goto out4;
1236 			}
1237 			if ((error = uipc_stream_sbwait(so2,
1238 			    so->so_snd.sb_timeo)) != 0) {
1239 				SOCK_RECVBUF_UNLOCK(so2);
1240 				goto out4;
1241 			} else
1242 				goto restart;
1243 		}
1244 		MPASS(space >= cmc.mc_len);
1245 		space -= cmc.mc_len;
1246 		if (space == 0) {
1247 			/* There is space only to send control. */
1248 			MPASS(!STAILQ_EMPTY(&cmc.mc_q));
1249 			mcnext = mc;
1250 			mc = MCHAIN_INITIALIZER(&mc);
1251 		} else if (space < mc.mc_len) {
1252 			/* Not enough space. */
1253 			if (__predict_false(mc_split(&mc, &mcnext, space,
1254 			    M_NOWAIT) == ENOMEM)) {
1255 				/*
1256 				 * If allocation failed use M_WAITOK and merge
1257 				 * the chain back.  Next time mc_split() will
1258 				 * easily split at the same place.  Only if we
1259 				 * race with setsockopt(SO_RCVBUF) shrinking
1260 				 * sb_hiwat can this happen more than once.
1261 				 */
1262 				SOCK_RECVBUF_UNLOCK(so2);
1263 				(void)mc_split(&mc, &mcnext, space, M_WAITOK);
1264 				mc_concat(&mc, &mcnext);
1265 				SOCK_RECVBUF_LOCK(so2);
1266 				goto restart;
1267 			}
1268 			MPASS(mc.mc_len == space);
1269 		}
1270 		if (!STAILQ_EMPTY(&cmc.mc_q)) {
1271 			STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q);
1272 			sb->sb_ctl += cmc.mc_len;
1273 			sb->sb_mbcnt += cmc.mc_mlen;
1274 			cmc.mc_len = 0;
1275 		}
1276 		sent += mc.mc_len;
1277 		if (sb->uxst_fnrdy == NULL)
1278 			sb->sb_acc += mc.mc_len;
1279 		sb->sb_ccc += mc.mc_len;
1280 		sb->sb_mbcnt += mc.mc_mlen;
1281 		STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
1282 		UIPC_STREAM_SBCHECK(sb);
1283 		space = uipc_stream_sbspace(sb);
1284 		sorwakeup_locked(so2);
1285 		if (!STAILQ_EMPTY(&mcnext.mc_q)) {
1286 			/*
1287 			 * Such assignment is unsafe in general, but it is
1288 			 * safe with !STAILQ_EMPTY(&mcnext.mc_q).  In C++ we
1289 			 * could reload = for STAILQs :)
1290 			 */
1291 			mc = mcnext;
1292 		} else if (uio != NULL && uio->uio_resid > 0) {
1293 			/*
1294 			 * Copyin sum of peer's receive buffer space and our
1295 			 * sb_hiwat, which is our virtual send buffer size.
1296 			 * See comment above unpst_sendspace declaration.
1297 			 * We are reading sb_hiwat locklessly, cause a) we
1298 			 * don't care about an application that does send(2)
1299 			 * and setsockopt(2) racing internally, and for an
1300 			 * application that does this in sequence we will see
1301 			 * the correct value cause sbsetopt() uses buffer lock
1302 			 * and we also have already acquired it at least once.
1303 			 */
1304 			error = mc_uiotomc(&mc, uio, space +
1305 			    atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK,
1306 			    eor ? M_EOR : 0);
1307 			if (__predict_false(error))
1308 				goto out4;
1309 		} else
1310 			mc = MCHAIN_INITIALIZER(&mc);
1311 	}
1312 
1313 	MPASS(STAILQ_EMPTY(&mc.mc_q));
1314 
1315 	td->td_ru.ru_msgsnd++;
1316 out4:
1317 	sorele(so2);
1318 out3:
1319 	SOCK_IO_SEND_UNLOCK(so);
1320 out2:
1321 	if (aio) {
1322 		freeuio(uio);
1323 		uioadvance(uio0, sent);
1324 	} else if (uio != NULL)
1325 		uio->uio_resid = resid - sent;
1326 	if (!mc_empty(&cmc))
1327 		unp_scan(mc_first(&cmc), unp_freerights);
1328 out:
1329 	mc_freem(&mc);
1330 	mc_freem(&cmc);
1331 
1332 	return (error);
1333 }
1334 
1335 /*
1336  * Wakeup a writer, used by recv(2) and shutdown(2).
1337  *
1338  * @param so	Points to a connected stream socket with receive buffer locked
1339  *
1340  * In a blocking mode peer is sleeping on our receive buffer, and we need just
1341  * wakeup(9) on it.  But to wake up various event engines, we need to reach
1342  * over to peer's selinfo.  This can be safely done as the socket buffer
1343  * receive lock is protecting us from the peer going away.
1344  */
1345 static void
uipc_wakeup_writer(struct socket * so)1346 uipc_wakeup_writer(struct socket *so)
1347 {
1348 	struct sockbuf *sb = &so->so_rcv;
1349 	struct selinfo *sel;
1350 
1351 	SOCK_RECVBUF_LOCK_ASSERT(so);
1352 	MPASS(sb->uxst_peer != NULL);
1353 
1354 	sel = &sb->uxst_peer->so_wrsel;
1355 
1356 	if (sb->uxst_flags & UXST_PEER_SEL) {
1357 		selwakeuppri(sel, PSOCK);
1358 		/*
1359 		 * XXXGL: sowakeup() does SEL_WAITING() without locks.
1360 		 */
1361 		if (!SEL_WAITING(sel))
1362 			sb->uxst_flags &= ~UXST_PEER_SEL;
1363 	}
1364 	if (sb->sb_flags & SB_WAIT) {
1365 		sb->sb_flags &= ~SB_WAIT;
1366 		wakeup(&sb->sb_acc);
1367 	}
1368 	KNOTE_LOCKED(&sel->si_note, 0);
1369 	SOCK_RECVBUF_UNLOCK(so);
1370 }
1371 
1372 static void
uipc_cantrcvmore(struct socket * so)1373 uipc_cantrcvmore(struct socket *so)
1374 {
1375 
1376 	SOCK_RECVBUF_LOCK(so);
1377 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
1378 	selwakeuppri(&so->so_rdsel, PSOCK);
1379 	KNOTE_LOCKED(&so->so_rdsel.si_note, 0);
1380 	if (so->so_rcv.uxst_peer != NULL)
1381 		uipc_wakeup_writer(so);
1382 	else
1383 		SOCK_RECVBUF_UNLOCK(so);
1384 }
1385 
1386 static int
uipc_soreceive_stream_or_seqpacket(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)1387 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa,
1388     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1389 {
1390 	struct sockbuf *sb = &so->so_rcv;
1391 	struct mbuf *control, *m, *first, *part, *next;
1392 	u_int ctl, space, datalen, mbcnt, partlen;
1393 	int error, flags;
1394 	bool nonblock, waitall, peek;
1395 
1396 	MPASS(mp0 == NULL);
1397 
1398 	if (psa != NULL)
1399 		*psa = NULL;
1400 	if (controlp != NULL)
1401 		*controlp = NULL;
1402 
1403 	flags = flagsp != NULL ? *flagsp : 0;
1404 	nonblock = (so->so_state & SS_NBIO) ||
1405 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1406 	peek = flags & MSG_PEEK;
1407 	waitall = (flags & MSG_WAITALL) && !peek;
1408 
1409 	/*
1410 	 * This check may fail only on a socket that never went through
1411 	 * connect(2).  We can check this locklessly, cause: a) for a new born
1412 	 * socket we don't care about applications that may race internally
1413 	 * between connect(2) and recv(2), and b) for a dying socket if we
1414 	 * miss update by unp_sosidisconnected(), we would still get the check
1415 	 * correct.  For dying socket we would observe SBS_CANTRCVMORE later.
1416 	 */
1417 	if (__predict_false((atomic_load_short(&so->so_state) &
1418 	    (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0))
1419 		return (ENOTCONN);
1420 
1421 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1422 	if (__predict_false(error))
1423 		return (error);
1424 
1425 restart:
1426 	SOCK_RECVBUF_LOCK(so);
1427 	UIPC_STREAM_SBCHECK(sb);
1428 	while (sb->sb_acc < sb->sb_lowat &&
1429 	    (sb->sb_ctl == 0 || controlp == NULL)) {
1430 		if (so->so_error) {
1431 			error = so->so_error;
1432 			if (!peek)
1433 				so->so_error = 0;
1434 			SOCK_RECVBUF_UNLOCK(so);
1435 			SOCK_IO_RECV_UNLOCK(so);
1436 			return (error);
1437 		}
1438 		if (sb->sb_state & SBS_CANTRCVMORE) {
1439 			SOCK_RECVBUF_UNLOCK(so);
1440 			SOCK_IO_RECV_UNLOCK(so);
1441 			return (0);
1442 		}
1443 		if (nonblock) {
1444 			SOCK_RECVBUF_UNLOCK(so);
1445 			SOCK_IO_RECV_UNLOCK(so);
1446 			return (EWOULDBLOCK);
1447 		}
1448 		error = sbwait(so, SO_RCV);
1449 		if (error) {
1450 			SOCK_RECVBUF_UNLOCK(so);
1451 			SOCK_IO_RECV_UNLOCK(so);
1452 			return (error);
1453 		}
1454 	}
1455 
1456 	MPASS(STAILQ_FIRST(&sb->uxst_mbq));
1457 	MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0);
1458 
1459 	mbcnt = 0;
1460 	ctl = 0;
1461 	first = STAILQ_FIRST(&sb->uxst_mbq);
1462 	if (first->m_type == MT_CONTROL) {
1463 		control = first;
1464 		STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) {
1465 			if (first->m_type != MT_CONTROL)
1466 				break;
1467 			ctl += first->m_len;
1468 			mbcnt += MSIZE;
1469 			if (first->m_flags & M_EXT)
1470 				mbcnt += first->m_ext.ext_size;
1471 		}
1472 	} else
1473 		control = NULL;
1474 
1475 	/*
1476 	 * Find split point for the next copyout.  On exit from the loop,
1477 	 * 'next' points to the new head of the buffer STAILQ and 'datalen'
1478 	 * contains the amount of data we will copy out at the end.  The
1479 	 * copyout is protected by the I/O lock only, as writers can only
1480 	 * append to the buffer.  We need to record the socket buffer state
1481 	 * and do all length adjustments before dropping the socket buffer lock.
1482 	 */
1483 	for (space = uio->uio_resid, m = next = first, part = NULL, datalen = 0;
1484 	     space > 0 && m != sb->uxst_fnrdy && m->m_type == MT_DATA;
1485 	     m = STAILQ_NEXT(m, m_stailq)) {
1486 		if (space >= m->m_len) {
1487 			space -= m->m_len;
1488 			datalen += m->m_len;
1489 			mbcnt += MSIZE;
1490 			if (m->m_flags & M_EXT)
1491 				mbcnt += m->m_ext.ext_size;
1492 			if (m->m_flags & M_EOR) {
1493 				flags |= MSG_EOR;
1494 				next = STAILQ_NEXT(m, m_stailq);
1495 				break;
1496 			}
1497 		} else {
1498 			datalen += space;
1499 			partlen = space;
1500 			if (!peek) {
1501 				m->m_len -= partlen;
1502 				m->m_data += partlen;
1503 			}
1504 			next = part = m;
1505 			break;
1506 		}
1507 		next = STAILQ_NEXT(m, m_stailq);
1508 	}
1509 
1510 	if (!peek) {
1511 		if (next == NULL)
1512 			STAILQ_INIT(&sb->uxst_mbq);
1513 		else
1514 			STAILQ_FIRST(&sb->uxst_mbq) = next;
1515 		MPASS(sb->sb_acc >= datalen);
1516 		sb->sb_acc -= datalen;
1517 		sb->sb_ccc -= datalen;
1518 		MPASS(sb->sb_ctl >= ctl);
1519 		sb->sb_ctl -= ctl;
1520 		MPASS(sb->sb_mbcnt >= mbcnt);
1521 		sb->sb_mbcnt -= mbcnt;
1522 		UIPC_STREAM_SBCHECK(sb);
1523 		if (__predict_true(sb->uxst_peer != NULL)) {
1524 			struct unpcb *unp2;
1525 			bool aio;
1526 
1527 			if ((aio = sb->uxst_flags & UXST_PEER_AIO))
1528 				sb->uxst_flags &= ~UXST_PEER_AIO;
1529 
1530 			uipc_wakeup_writer(so);
1531 			/*
1532 			 * XXXGL: need to go through uipc_lock_peer() after
1533 			 * the receive buffer lock dropped, it was protecting
1534 			 * us from unp_soisdisconnected().  The aio workarounds
1535 			 * should be refactored to the aio(4) side.
1536 			 */
1537 			if (aio && uipc_lock_peer(so, &unp2) == 0) {
1538 				struct socket *so2 = unp2->unp_socket;
1539 
1540 				SOCK_SENDBUF_LOCK(so2);
1541 				so2->so_snd.sb_ccc -= datalen;
1542 				sowakeup_aio(so2, SO_SND);
1543 				SOCK_SENDBUF_UNLOCK(so2);
1544 				UNP_PCB_UNLOCK(unp2);
1545 			}
1546 		} else
1547 			SOCK_RECVBUF_UNLOCK(so);
1548 	} else
1549 		SOCK_RECVBUF_UNLOCK(so);
1550 
1551 	while (control != NULL && control->m_type == MT_CONTROL) {
1552 		if (!peek) {
1553 			/*
1554 			 * unp_externalize() failure must abort entire read(2).
1555 			 * Such failure should also free the problematic
1556 			 * control, but link back the remaining data to the head
1557 			 * of the buffer, so that socket is not left in a state
1558 			 * where it can't progress forward with reading.
1559 			 * Probability of such a failure is really low, so it
1560 			 * is fine that we need to perform pretty complex
1561 			 * operation here to reconstruct the buffer.
1562 			 */
1563 			error = unp_externalize(control, controlp, flags);
1564 			control = m_free(control);
1565 			if (__predict_false(error && control != NULL)) {
1566 				struct mchain cmc;
1567 
1568 				mc_init_m(&cmc, control);
1569 
1570 				SOCK_RECVBUF_LOCK(so);
1571 				if (__predict_false(
1572 				    (sb->sb_state & SBS_CANTRCVMORE) ||
1573 				    cmc.mc_len + sb->sb_ccc + sb->sb_ctl >
1574 				    sb->sb_hiwat)) {
1575 					/*
1576 					 * While the lock was dropped and we
1577 					 * were failing in unp_externalize(),
1578 					 * the peer could has a) disconnected,
1579 					 * b) filled the buffer so that we
1580 					 * can't prepend data back.
1581 					 * These are two edge conditions that
1582 					 * we just can't handle, so lose the
1583 					 * data and return the error.
1584 					 */
1585 					SOCK_RECVBUF_UNLOCK(so);
1586 					SOCK_IO_RECV_UNLOCK(so);
1587 					unp_scan(mc_first(&cmc),
1588 					    unp_freerights);
1589 					mc_freem(&cmc);
1590 					return (error);
1591 				}
1592 
1593 				UIPC_STREAM_SBCHECK(sb);
1594 				/* XXXGL: STAILQ_PREPEND */
1595 				STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq);
1596 				STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf);
1597 
1598 				sb->sb_ctl = sb->sb_acc = sb->sb_ccc =
1599 				    sb->sb_mbcnt = 0;
1600 				STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) {
1601 					if (m->m_type == MT_DATA) {
1602 						sb->sb_acc += m->m_len;
1603 						sb->sb_ccc += m->m_len;
1604 					} else {
1605 						sb->sb_ctl += m->m_len;
1606 					}
1607 					sb->sb_mbcnt += MSIZE;
1608 					if (m->m_flags & M_EXT)
1609 						sb->sb_mbcnt +=
1610 						    m->m_ext.ext_size;
1611 				}
1612 				UIPC_STREAM_SBCHECK(sb);
1613 				SOCK_RECVBUF_UNLOCK(so);
1614 				SOCK_IO_RECV_UNLOCK(so);
1615 				return (error);
1616 			}
1617 			if (controlp != NULL) {
1618 				while (*controlp != NULL)
1619 					controlp = &(*controlp)->m_next;
1620 			}
1621 		} else {
1622 			/*
1623 			 * XXXGL
1624 			 *
1625 			 * In MSG_PEEK case control is not externalized.  This
1626 			 * means we are leaking some kernel pointers to the
1627 			 * userland.  They are useless to a law-abiding
1628 			 * application, but may be useful to a malware.  This
1629 			 * is what the historical implementation in the
1630 			 * soreceive_generic() did. To be improved?
1631 			 */
1632 			if (controlp != NULL) {
1633 				*controlp = m_copym(control, 0, control->m_len,
1634 				    M_WAITOK);
1635 				controlp = &(*controlp)->m_next;
1636 			}
1637 			control = STAILQ_NEXT(control, m_stailq);
1638 		}
1639 	}
1640 
1641 	for (m = first; datalen > 0; m = next) {
1642 		void *data;
1643 		u_int len;
1644 
1645 		next = STAILQ_NEXT(m, m_stailq);
1646 		if (m == part) {
1647 			data = peek ?
1648 			    mtod(m, char *) : mtod(m, char *) - partlen;
1649 			len = partlen;
1650 		} else {
1651 			data = mtod(m, char *);
1652 			len = m->m_len;
1653 		}
1654 		error = uiomove(data, len, uio);
1655 		if (__predict_false(error)) {
1656 			if (!peek)
1657 				for (; m != part && datalen > 0; m = next) {
1658 					next = STAILQ_NEXT(m, m_stailq);
1659 					MPASS(datalen >= m->m_len);
1660 					datalen -= m->m_len;
1661 					m_free(m);
1662 				}
1663 			SOCK_IO_RECV_UNLOCK(so);
1664 			return (error);
1665 		}
1666 		datalen -= len;
1667 		if (!peek && m != part)
1668 			m_free(m);
1669 	}
1670 	if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0)
1671 		goto restart;
1672 	SOCK_IO_RECV_UNLOCK(so);
1673 
1674 	if (flagsp != NULL)
1675 		*flagsp |= flags;
1676 
1677 	uio->uio_td->td_ru.ru_msgrcv++;
1678 
1679 	return (0);
1680 }
1681 
1682 static int
uipc_sopoll_stream_or_seqpacket(struct socket * so,int events,struct thread * td)1683 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events,
1684     struct thread *td)
1685 {
1686 	struct unpcb *unp = sotounpcb(so);
1687 	int revents;
1688 
1689 	UNP_PCB_LOCK(unp);
1690 	if (SOLISTENING(so)) {
1691 		/* The above check is safe, since conversion to listening uses
1692 		 * both protocol and socket lock.
1693 		 */
1694 		SOCK_LOCK(so);
1695 		if (!(events & (POLLIN | POLLRDNORM)))
1696 			revents = 0;
1697 		else if (!TAILQ_EMPTY(&so->sol_comp))
1698 			revents = events & (POLLIN | POLLRDNORM);
1699 		else if (so->so_error)
1700 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
1701 		else {
1702 			selrecord(td, &so->so_rdsel);
1703 			revents = 0;
1704 		}
1705 		SOCK_UNLOCK(so);
1706 	} else {
1707 		if (so->so_state & SS_ISDISCONNECTED)
1708 			revents = POLLHUP;
1709 		else
1710 			revents = 0;
1711 		if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) {
1712 			SOCK_RECVBUF_LOCK(so);
1713 			if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat ||
1714 			    so->so_error || so->so_rerror)
1715 				revents |= events & (POLLIN | POLLRDNORM);
1716 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1717 				revents |= events &
1718 				    (POLLIN | POLLRDNORM | POLLRDHUP);
1719 			if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) {
1720 				selrecord(td, &so->so_rdsel);
1721 				so->so_rcv.sb_flags |= SB_SEL;
1722 			}
1723 			SOCK_RECVBUF_UNLOCK(so);
1724 		}
1725 		if (events & (POLLOUT | POLLWRNORM)) {
1726 			struct socket *so2 = so->so_rcv.uxst_peer;
1727 
1728 			if (so2 != NULL) {
1729 				struct sockbuf *sb = &so2->so_rcv;
1730 
1731 				SOCK_RECVBUF_LOCK(so2);
1732 				if (uipc_stream_sbspace(sb) >= sb->sb_lowat)
1733 					revents |= events &
1734 					    (POLLOUT | POLLWRNORM);
1735 				if (sb->sb_state & SBS_CANTRCVMORE)
1736 					revents |= POLLHUP;
1737 				if (!(revents & (POLLOUT | POLLWRNORM))) {
1738 					so2->so_rcv.uxst_flags |= UXST_PEER_SEL;
1739 					selrecord(td, &so->so_wrsel);
1740 				}
1741 				SOCK_RECVBUF_UNLOCK(so2);
1742 			} else
1743 				selrecord(td, &so->so_wrsel);
1744 		}
1745 	}
1746 	UNP_PCB_UNLOCK(unp);
1747 	return (revents);
1748 }
1749 
1750 static void
uipc_wrknl_lock(void * arg)1751 uipc_wrknl_lock(void *arg)
1752 {
1753 	struct socket *so = arg;
1754 	struct unpcb *unp = sotounpcb(so);
1755 
1756 retry:
1757 	if (SOLISTENING(so)) {
1758 		SOLISTEN_LOCK(so);
1759 	} else {
1760 		UNP_PCB_LOCK(unp);
1761 		if (__predict_false(SOLISTENING(so))) {
1762 			UNP_PCB_UNLOCK(unp);
1763 			goto retry;
1764 		}
1765 		if (so->so_rcv.uxst_peer != NULL)
1766 			SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer);
1767 	}
1768 }
1769 
1770 static void
uipc_wrknl_unlock(void * arg)1771 uipc_wrknl_unlock(void *arg)
1772 {
1773 	struct socket *so = arg;
1774 	struct unpcb *unp = sotounpcb(so);
1775 
1776 	if (SOLISTENING(so))
1777 		SOLISTEN_UNLOCK(so);
1778 	else {
1779 		if (so->so_rcv.uxst_peer != NULL)
1780 			SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer);
1781 		UNP_PCB_UNLOCK(unp);
1782 	}
1783 }
1784 
1785 static void
uipc_wrknl_assert_lock(void * arg,int what)1786 uipc_wrknl_assert_lock(void *arg, int what)
1787 {
1788 	struct socket *so = arg;
1789 
1790 	if (SOLISTENING(so)) {
1791 		if (what == LA_LOCKED)
1792 			SOLISTEN_LOCK_ASSERT(so);
1793 		else
1794 			SOLISTEN_UNLOCK_ASSERT(so);
1795 	} else {
1796 		/*
1797 		 * The pr_soreceive method will put a note without owning the
1798 		 * unp lock, so we can't assert it here.  But we can safely
1799 		 * dereference uxst_peer pointer, since receive buffer lock
1800 		 * is assumed to be held here.
1801 		 */
1802 		if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL)
1803 			SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer);
1804 	}
1805 }
1806 
1807 static void
uipc_filt_sowdetach(struct knote * kn)1808 uipc_filt_sowdetach(struct knote *kn)
1809 {
1810 	struct socket *so = kn->kn_fp->f_data;
1811 
1812 	uipc_wrknl_lock(so);
1813 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
1814 	uipc_wrknl_unlock(so);
1815 }
1816 
1817 static int
uipc_filt_sowrite(struct knote * kn,long hint)1818 uipc_filt_sowrite(struct knote *kn, long hint)
1819 {
1820 	struct socket *so = kn->kn_fp->f_data, *so2;
1821 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1822 
1823 	if (SOLISTENING(so))
1824 		return (0);
1825 
1826 	if (unp2 == NULL) {
1827 		if (so->so_state & SS_ISDISCONNECTED) {
1828 			kn->kn_flags |= EV_EOF;
1829 			kn->kn_fflags = so->so_error;
1830 			return (1);
1831 		} else
1832 			return (0);
1833 	}
1834 
1835 	so2 = unp2->unp_socket;
1836 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1837 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1838 
1839 	if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) {
1840 		kn->kn_flags |= EV_EOF;
1841 		return (1);
1842 	} else if (kn->kn_sfflags & NOTE_LOWAT)
1843 		return (kn->kn_data >= kn->kn_sdata);
1844 	else
1845 		return (kn->kn_data >= so2->so_rcv.sb_lowat);
1846 }
1847 
1848 static int
uipc_filt_soempty(struct knote * kn,long hint)1849 uipc_filt_soempty(struct knote *kn, long hint)
1850 {
1851 	struct socket *so = kn->kn_fp->f_data, *so2;
1852 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1853 
1854 	if (SOLISTENING(so) || unp2 == NULL)
1855 		return (1);
1856 
1857 	so2 = unp2->unp_socket;
1858 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1859 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1860 
1861 	return (kn->kn_data == 0 ? 1 : 0);
1862 }
1863 
1864 static const struct filterops uipc_write_filtops = {
1865 	.f_isfd = 1,
1866 	.f_detach = uipc_filt_sowdetach,
1867 	.f_event = uipc_filt_sowrite,
1868 	.f_copy = knote_triv_copy,
1869 };
1870 static const struct filterops uipc_empty_filtops = {
1871 	.f_isfd = 1,
1872 	.f_detach = uipc_filt_sowdetach,
1873 	.f_event = uipc_filt_soempty,
1874 	.f_copy = knote_triv_copy,
1875 };
1876 
1877 static int
uipc_kqfilter_stream_or_seqpacket(struct socket * so,struct knote * kn)1878 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn)
1879 {
1880 	struct unpcb *unp = sotounpcb(so);
1881 	struct knlist *knl;
1882 
1883 	switch (kn->kn_filter) {
1884 	case EVFILT_READ:
1885 		return (sokqfilter_generic(so, kn));
1886 	case EVFILT_WRITE:
1887 		kn->kn_fop = &uipc_write_filtops;
1888 		break;
1889 	case EVFILT_EMPTY:
1890 		kn->kn_fop = &uipc_empty_filtops;
1891 		break;
1892 	default:
1893 		return (EINVAL);
1894 	}
1895 
1896 	knl = &so->so_wrsel.si_note;
1897 	UNP_PCB_LOCK(unp);
1898 	if (SOLISTENING(so)) {
1899 		SOLISTEN_LOCK(so);
1900 		knlist_add(knl, kn, 1);
1901 		SOLISTEN_UNLOCK(so);
1902 	} else {
1903 		struct socket *so2 = so->so_rcv.uxst_peer;
1904 
1905 		if (so2 != NULL)
1906 			SOCK_RECVBUF_LOCK(so2);
1907 		knlist_add(knl, kn, 1);
1908 		if (so2 != NULL)
1909 			SOCK_RECVBUF_UNLOCK(so2);
1910 	}
1911 	UNP_PCB_UNLOCK(unp);
1912 	return (0);
1913 }
1914 
1915 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1916 static inline bool
uipc_dgram_sbspace(struct sockbuf * sb,u_int cc,u_int mbcnt)1917 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1918 {
1919 	u_int bleft, mleft;
1920 
1921 	/*
1922 	 * Negative space may happen if send(2) is followed by
1923 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1924 	 */
1925 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1926 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1927 		return (false);
1928 
1929 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1930 		return (false);
1931 
1932 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1933 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1934 
1935 	return (bleft >= cc && mleft >= mbcnt);
1936 }
1937 
1938 /*
1939  * PF_UNIX/SOCK_DGRAM send
1940  *
1941  * Allocate a record consisting of 3 mbufs in the sequence of
1942  * from -> control -> data and append it to the socket buffer.
1943  *
1944  * The first mbuf carries sender's name and is a pkthdr that stores
1945  * overall length of datagram, its memory consumption and control length.
1946  */
1947 #define	ctllen	PH_loc.thirtytwo[1]
1948 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1949     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1950 static int
uipc_sosend_dgram(struct socket * so,struct sockaddr * addr,struct uio * uio,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1951 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1952     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1953 {
1954 	struct unpcb *unp, *unp2;
1955 	const struct sockaddr *from;
1956 	struct socket *so2;
1957 	struct sockbuf *sb;
1958 	struct mchain cmc = MCHAIN_INITIALIZER(&cmc);
1959 	struct mbuf *f;
1960 	u_int cc, ctl, mbcnt;
1961 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1962 	int error;
1963 
1964 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1965 
1966 	error = 0;
1967 	f = NULL;
1968 
1969 	if (__predict_false(flags & MSG_OOB)) {
1970 		error = EOPNOTSUPP;
1971 		goto out;
1972 	}
1973 	if (m == NULL) {
1974 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1975 			error = EMSGSIZE;
1976 			goto out;
1977 		}
1978 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1979 		if (__predict_false(m == NULL)) {
1980 			error = EFAULT;
1981 			goto out;
1982 		}
1983 		f = m_gethdr(M_WAITOK, MT_SONAME);
1984 		cc = m->m_pkthdr.len;
1985 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1986 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1987 			goto out;
1988 	} else {
1989 		struct mchain mc;
1990 
1991 		uipc_reset_kernel_mbuf(m, &mc);
1992 		cc = mc.mc_len;
1993 		mbcnt = mc.mc_mlen;
1994 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1995 			error = EMSGSIZE;
1996 			goto out;
1997 		}
1998 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1999 			error = ENOBUFS;
2000 			goto out;
2001 		}
2002 	}
2003 
2004 	unp = sotounpcb(so);
2005 	MPASS(unp);
2006 
2007 	/*
2008 	 * XXXGL: would be cool to fully remove so_snd out of the equation
2009 	 * and avoid this lock, which is not only extraneous, but also being
2010 	 * released, thus still leaving possibility for a race.  We can easily
2011 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
2012 	 * is more difficult to invent something to handle so_error.
2013 	 */
2014 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2015 	if (error)
2016 		goto out2;
2017 	SOCK_SENDBUF_LOCK(so);
2018 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2019 		SOCK_SENDBUF_UNLOCK(so);
2020 		error = EPIPE;
2021 		goto out3;
2022 	}
2023 	if (so->so_error != 0) {
2024 		error = so->so_error;
2025 		so->so_error = 0;
2026 		SOCK_SENDBUF_UNLOCK(so);
2027 		goto out3;
2028 	}
2029 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
2030 		SOCK_SENDBUF_UNLOCK(so);
2031 		error = EDESTADDRREQ;
2032 		goto out3;
2033 	}
2034 	SOCK_SENDBUF_UNLOCK(so);
2035 
2036 	if (addr != NULL) {
2037 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
2038 			goto out3;
2039 		UNP_PCB_LOCK_ASSERT(unp);
2040 		unp2 = unp->unp_conn;
2041 		UNP_PCB_LOCK_ASSERT(unp2);
2042 	} else {
2043 		UNP_PCB_LOCK(unp);
2044 		unp2 = unp_pcb_lock_peer(unp);
2045 		if (unp2 == NULL) {
2046 			UNP_PCB_UNLOCK(unp);
2047 			error = ENOTCONN;
2048 			goto out3;
2049 		}
2050 	}
2051 
2052 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
2053 		unp_addsockcred(td, &cmc, unp2->unp_flags);
2054 	if (unp->unp_addr != NULL)
2055 		from = (struct sockaddr *)unp->unp_addr;
2056 	else
2057 		from = &sun_noname;
2058 	f->m_len = from->sa_len;
2059 	MPASS(from->sa_len <= MLEN);
2060 	bcopy(from, mtod(f, void *), from->sa_len);
2061 
2062 	/*
2063 	 * Concatenate mbufs: from -> control -> data.
2064 	 * Save overall cc and mbcnt in "from" mbuf.
2065 	 */
2066 	if (!STAILQ_EMPTY(&cmc.mc_q)) {
2067 		f->m_next = mc_first(&cmc);
2068 		mc_last(&cmc)->m_next = m;
2069 		/* XXXGL: This is dirty as well as rollback after ENOBUFS. */
2070 		STAILQ_INIT(&cmc.mc_q);
2071 	} else
2072 		f->m_next = m;
2073 	m = NULL;
2074 	ctl = f->m_len + cmc.mc_len;
2075 	mbcnt += cmc.mc_mlen;
2076 #ifdef INVARIANTS
2077 	dcc = dctl = dmbcnt = 0;
2078 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
2079 		if (mb->m_type == MT_DATA)
2080 			dcc += mb->m_len;
2081 		else
2082 			dctl += mb->m_len;
2083 		dmbcnt += MSIZE;
2084 		if (mb->m_flags & M_EXT)
2085 			dmbcnt += mb->m_ext.ext_size;
2086 	}
2087 	MPASS(dcc == cc);
2088 	MPASS(dctl == ctl);
2089 	MPASS(dmbcnt == mbcnt);
2090 #endif
2091 	f->m_pkthdr.len = cc + ctl;
2092 	f->m_pkthdr.memlen = mbcnt;
2093 	f->m_pkthdr.ctllen = ctl;
2094 
2095 	/*
2096 	 * Destination socket buffer selection.
2097 	 *
2098 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
2099 	 * destination address is supplied, create a temporary connection for
2100 	 * the run time of the function (see call to unp_connectat() above and
2101 	 * to unp_disconnect() below).  We distinguish them by condition of
2102 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
2103 	 * that condition, since, again, through the run time of this code we
2104 	 * are always connected.  For such "unconnected" sends, the destination
2105 	 * buffer would be the receive buffer of destination socket so2.
2106 	 *
2107 	 * For connected sends, data lands on the send buffer of the sender's
2108 	 * socket "so".  Then, if we just added the very first datagram
2109 	 * on this send buffer, we need to add the send buffer on to the
2110 	 * receiving socket's buffer list.  We put ourselves on top of the
2111 	 * list.  Such logic gives infrequent senders priority over frequent
2112 	 * senders.
2113 	 *
2114 	 * Note on byte count management. As long as event methods kevent(2),
2115 	 * select(2) are not protocol specific (yet), we need to maintain
2116 	 * meaningful values on the receive buffer.  So, the receive buffer
2117 	 * would accumulate counters from all connected buffers potentially
2118 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
2119 	 */
2120 	so2 = unp2->unp_socket;
2121 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
2122 	SOCK_RECVBUF_LOCK(so2);
2123 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
2124 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
2125 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
2126 			    uxdg_clist);
2127 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
2128 		sb->uxdg_cc += cc + ctl;
2129 		sb->uxdg_ctl += ctl;
2130 		sb->uxdg_mbcnt += mbcnt;
2131 		so2->so_rcv.sb_acc += cc + ctl;
2132 		so2->so_rcv.sb_ccc += cc + ctl;
2133 		so2->so_rcv.sb_ctl += ctl;
2134 		so2->so_rcv.sb_mbcnt += mbcnt;
2135 		sorwakeup_locked(so2);
2136 		f = NULL;
2137 	} else {
2138 		soroverflow_locked(so2);
2139 		error = ENOBUFS;
2140 		if (f->m_next->m_type == MT_CONTROL) {
2141 			STAILQ_FIRST(&cmc.mc_q) = f->m_next;
2142 			f->m_next = NULL;
2143 		}
2144 	}
2145 
2146 	if (addr != NULL)
2147 		unp_disconnect(unp, unp2);
2148 	else
2149 		unp_pcb_unlock_pair(unp, unp2);
2150 
2151 	td->td_ru.ru_msgsnd++;
2152 
2153 out3:
2154 	SOCK_IO_SEND_UNLOCK(so);
2155 out2:
2156 	if (!mc_empty(&cmc))
2157 		unp_scan(mc_first(&cmc), unp_freerights);
2158 out:
2159 	if (f)
2160 		m_freem(f);
2161 	mc_freem(&cmc);
2162 	if (m)
2163 		m_freem(m);
2164 
2165 	return (error);
2166 }
2167 
2168 /*
2169  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
2170  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
2171  * and needs to be linked onto uxdg_peeked of receive socket buffer.
2172  */
2173 static int
uipc_peek_dgram(struct socket * so,struct mbuf * m,struct sockaddr ** psa,struct uio * uio,struct mbuf ** controlp,int * flagsp)2174 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
2175     struct uio *uio, struct mbuf **controlp, int *flagsp)
2176 {
2177 	ssize_t len = 0;
2178 	int error;
2179 
2180 	so->so_rcv.uxdg_peeked = m;
2181 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
2182 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
2183 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
2184 	SOCK_RECVBUF_UNLOCK(so);
2185 
2186 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2187 	if (psa != NULL)
2188 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2189 
2190 	m = m->m_next;
2191 	KASSERT(m, ("%s: no data or control after soname", __func__));
2192 
2193 	/*
2194 	 * With MSG_PEEK the control isn't executed, just copied.
2195 	 */
2196 	while (m != NULL && m->m_type == MT_CONTROL) {
2197 		if (controlp != NULL) {
2198 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
2199 			controlp = &(*controlp)->m_next;
2200 		}
2201 		m = m->m_next;
2202 	}
2203 	KASSERT(m == NULL || m->m_type == MT_DATA,
2204 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2205 	while (m != NULL && uio->uio_resid > 0) {
2206 		len = uio->uio_resid;
2207 		if (len > m->m_len)
2208 			len = m->m_len;
2209 		error = uiomove(mtod(m, char *), (int)len, uio);
2210 		if (error) {
2211 			SOCK_IO_RECV_UNLOCK(so);
2212 			return (error);
2213 		}
2214 		if (len == m->m_len)
2215 			m = m->m_next;
2216 	}
2217 	SOCK_IO_RECV_UNLOCK(so);
2218 
2219 	if (flagsp != NULL) {
2220 		if (m != NULL) {
2221 			if (*flagsp & MSG_TRUNC) {
2222 				/* Report real length of the packet */
2223 				uio->uio_resid -= m_length(m, NULL) - len;
2224 			}
2225 			*flagsp |= MSG_TRUNC;
2226 		} else
2227 			*flagsp &= ~MSG_TRUNC;
2228 	}
2229 
2230 	return (0);
2231 }
2232 
2233 /*
2234  * PF_UNIX/SOCK_DGRAM receive
2235  */
2236 static int
uipc_soreceive_dgram(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)2237 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2238     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2239 {
2240 	struct sockbuf *sb = NULL;
2241 	struct mbuf *m;
2242 	int flags, error;
2243 	ssize_t len = 0;
2244 	bool nonblock;
2245 
2246 	MPASS(mp0 == NULL);
2247 
2248 	if (psa != NULL)
2249 		*psa = NULL;
2250 	if (controlp != NULL)
2251 		*controlp = NULL;
2252 
2253 	flags = flagsp != NULL ? *flagsp : 0;
2254 	nonblock = (so->so_state & SS_NBIO) ||
2255 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
2256 
2257 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2258 	if (__predict_false(error))
2259 		return (error);
2260 
2261 	/*
2262 	 * Loop blocking while waiting for a datagram.  Prioritize connected
2263 	 * peers over unconnected sends.  Set sb to selected socket buffer
2264 	 * containing an mbuf on exit from the wait loop.  A datagram that
2265 	 * had already been peeked at has top priority.
2266 	 */
2267 	SOCK_RECVBUF_LOCK(so);
2268 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
2269 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
2270 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
2271 		if (so->so_error) {
2272 			error = so->so_error;
2273 			if (!(flags & MSG_PEEK))
2274 				so->so_error = 0;
2275 			SOCK_RECVBUF_UNLOCK(so);
2276 			SOCK_IO_RECV_UNLOCK(so);
2277 			return (error);
2278 		}
2279 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2280 		    uio->uio_resid == 0) {
2281 			SOCK_RECVBUF_UNLOCK(so);
2282 			SOCK_IO_RECV_UNLOCK(so);
2283 			return (0);
2284 		}
2285 		if (nonblock) {
2286 			SOCK_RECVBUF_UNLOCK(so);
2287 			SOCK_IO_RECV_UNLOCK(so);
2288 			return (EWOULDBLOCK);
2289 		}
2290 		error = sbwait(so, SO_RCV);
2291 		if (error) {
2292 			SOCK_RECVBUF_UNLOCK(so);
2293 			SOCK_IO_RECV_UNLOCK(so);
2294 			return (error);
2295 		}
2296 	}
2297 
2298 	if (sb == NULL)
2299 		sb = &so->so_rcv;
2300 	else if (m == NULL)
2301 		m = STAILQ_FIRST(&sb->uxdg_mb);
2302 	else
2303 		MPASS(m == so->so_rcv.uxdg_peeked);
2304 
2305 	MPASS(sb->uxdg_cc > 0);
2306 	M_ASSERTPKTHDR(m);
2307 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2308 
2309 	if (uio->uio_td)
2310 		uio->uio_td->td_ru.ru_msgrcv++;
2311 
2312 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
2313 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
2314 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
2315 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
2316 	} else
2317 		so->so_rcv.uxdg_peeked = NULL;
2318 
2319 	sb->uxdg_cc -= m->m_pkthdr.len;
2320 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
2321 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
2322 
2323 	if (__predict_false(flags & MSG_PEEK))
2324 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
2325 
2326 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
2327 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
2328 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
2329 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
2330 	SOCK_RECVBUF_UNLOCK(so);
2331 
2332 	if (psa != NULL)
2333 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2334 	m = m_free(m);
2335 	KASSERT(m, ("%s: no data or control after soname", __func__));
2336 
2337 	/*
2338 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2339 	 * queue.
2340 	 *
2341 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2342 	 * in the first mbuf chain on the socket buffer.  We call into the
2343 	 * unp_externalize() to perform externalization (or freeing if
2344 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
2345 	 * without MT_DATA mbufs.
2346 	 */
2347 	while (m != NULL && m->m_type == MT_CONTROL) {
2348 		error = unp_externalize(m, controlp, flags);
2349 		m = m_free(m);
2350 		if (error != 0) {
2351 			SOCK_IO_RECV_UNLOCK(so);
2352 			unp_scan(m, unp_freerights);
2353 			m_freem(m);
2354 			return (error);
2355 		}
2356 		if (controlp != NULL) {
2357 			while (*controlp != NULL)
2358 				controlp = &(*controlp)->m_next;
2359 		}
2360 	}
2361 	KASSERT(m == NULL || m->m_type == MT_DATA,
2362 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2363 	while (m != NULL && uio->uio_resid > 0) {
2364 		len = uio->uio_resid;
2365 		if (len > m->m_len)
2366 			len = m->m_len;
2367 		error = uiomove(mtod(m, char *), (int)len, uio);
2368 		if (error) {
2369 			SOCK_IO_RECV_UNLOCK(so);
2370 			m_freem(m);
2371 			return (error);
2372 		}
2373 		if (len == m->m_len)
2374 			m = m_free(m);
2375 		else {
2376 			m->m_data += len;
2377 			m->m_len -= len;
2378 		}
2379 	}
2380 	SOCK_IO_RECV_UNLOCK(so);
2381 
2382 	if (m != NULL) {
2383 		if (flagsp != NULL) {
2384 			if (flags & MSG_TRUNC) {
2385 				/* Report real length of the packet */
2386 				uio->uio_resid -= m_length(m, NULL);
2387 			}
2388 			*flagsp |= MSG_TRUNC;
2389 		}
2390 		m_freem(m);
2391 	} else if (flagsp != NULL)
2392 		*flagsp &= ~MSG_TRUNC;
2393 
2394 	return (0);
2395 }
2396 
2397 static int
uipc_sendfile_wait(struct socket * so,off_t need,int * space)2398 uipc_sendfile_wait(struct socket *so, off_t need, int *space)
2399 {
2400 	struct unpcb *unp2;
2401 	struct socket *so2;
2402 	struct sockbuf *sb;
2403 	bool nonblock, sockref;
2404 	int error;
2405 
2406 	MPASS(so->so_type == SOCK_STREAM);
2407 	MPASS(need > 0);
2408 	MPASS(space != NULL);
2409 
2410 	nonblock = so->so_state & SS_NBIO;
2411 	sockref = false;
2412 
2413 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0))
2414 		return (ENOTCONN);
2415 
2416 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2417 		return (error);
2418 
2419 	so2 = unp2->unp_socket;
2420 	sb = &so2->so_rcv;
2421 	SOCK_RECVBUF_LOCK(so2);
2422 	UNP_PCB_UNLOCK(unp2);
2423 	while ((*space = uipc_stream_sbspace(sb)) < need &&
2424 	    (*space < so->so_snd.sb_hiwat / 2)) {
2425 		UIPC_STREAM_SBCHECK(sb);
2426 		if (nonblock) {
2427 			SOCK_RECVBUF_UNLOCK(so2);
2428 			return (EAGAIN);
2429 		}
2430 		if (!sockref)
2431 			soref(so2);
2432 		error = uipc_stream_sbwait(so2, so->so_snd.sb_timeo);
2433 		if (error == 0 &&
2434 		    __predict_false(sb->sb_state & SBS_CANTRCVMORE))
2435 			error = EPIPE;
2436 		if (error) {
2437 			SOCK_RECVBUF_UNLOCK(so2);
2438 			sorele(so2);
2439 			return (error);
2440 		}
2441 	}
2442 	UIPC_STREAM_SBCHECK(sb);
2443 	SOCK_RECVBUF_UNLOCK(so2);
2444 	if (sockref)
2445 		sorele(so2);
2446 
2447 	return (0);
2448 }
2449 
2450 /*
2451  * Although this is a pr_send method, for unix(4) it is called only via
2452  * sendfile(2) path.  This means we can be sure that mbufs are clear of
2453  * any extra flags and don't require any conditioning.
2454  */
2455 static int
uipc_sendfile(struct socket * so,int flags,struct mbuf * m,struct sockaddr * from,struct mbuf * control,struct thread * td)2456 uipc_sendfile(struct socket *so, int flags, struct mbuf *m,
2457     struct sockaddr *from, struct mbuf *control, struct thread *td)
2458 {
2459 	struct mchain mc;
2460 	struct unpcb *unp2;
2461 	struct socket *so2;
2462 	struct sockbuf *sb;
2463 	bool notready, wakeup;
2464 	int error;
2465 
2466 	MPASS(so->so_type == SOCK_STREAM);
2467 	MPASS(from == NULL && control == NULL);
2468 	KASSERT(!(m->m_flags & M_EXTPG),
2469 	    ("unix(4): TLS sendfile(2) not supported"));
2470 
2471 	notready = flags & PRUS_NOTREADY;
2472 
2473 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) {
2474 		error = ENOTCONN;
2475 		goto out;
2476 	}
2477 
2478 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2479 		goto out;
2480 
2481 	mc_init_m(&mc, m);
2482 
2483 	so2 = unp2->unp_socket;
2484 	sb = &so2->so_rcv;
2485 	SOCK_RECVBUF_LOCK(so2);
2486 	UNP_PCB_UNLOCK(unp2);
2487 	UIPC_STREAM_SBCHECK(sb);
2488 	sb->sb_ccc += mc.mc_len;
2489 	sb->sb_mbcnt += mc.mc_mlen;
2490 	if (sb->uxst_fnrdy == NULL) {
2491 		if (notready) {
2492 			wakeup = false;
2493 			STAILQ_FOREACH(m, &mc.mc_q, m_stailq) {
2494 				if (m->m_flags & M_NOTREADY) {
2495 					sb->uxst_fnrdy = m;
2496 					break;
2497 				} else {
2498 					sb->sb_acc += m->m_len;
2499 					wakeup = true;
2500 				}
2501 			}
2502 		} else {
2503 			wakeup = true;
2504 			sb->sb_acc += mc.mc_len;
2505 		}
2506 	} else {
2507 		wakeup = false;
2508 	}
2509 	STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
2510 	UIPC_STREAM_SBCHECK(sb);
2511 	if (wakeup)
2512 		sorwakeup_locked(so2);
2513 	else
2514 		SOCK_RECVBUF_UNLOCK(so2);
2515 
2516 	return (0);
2517 out:
2518 	/*
2519 	 * In case of not ready data, uipc_ready() is responsible
2520 	 * for freeing memory.
2521 	 */
2522 	if (m != NULL && !notready)
2523 		m_freem(m);
2524 
2525 	return (error);
2526 }
2527 
2528 static int
uipc_sbready(struct sockbuf * sb,struct mbuf * m,int count)2529 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count)
2530 {
2531 	bool blocker;
2532 
2533 	/* assert locked */
2534 
2535 	blocker = (sb->uxst_fnrdy == m);
2536 	STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) {
2537 		if (count > 0) {
2538 			MPASS(m->m_flags & M_NOTREADY);
2539 			m->m_flags &= ~M_NOTREADY;
2540 			if (blocker)
2541 				sb->sb_acc += m->m_len;
2542 			count--;
2543 		} else if (m->m_flags & M_NOTREADY)
2544 			break;
2545 		else if (blocker)
2546 			sb->sb_acc += m->m_len;
2547 	}
2548 	if (blocker) {
2549 		sb->uxst_fnrdy = m;
2550 		return (0);
2551 	} else
2552 		return (EINPROGRESS);
2553 }
2554 
2555 static bool
uipc_ready_scan(struct socket * so,struct mbuf * m,int count,int * errorp)2556 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
2557 {
2558 	struct mbuf *mb;
2559 	struct sockbuf *sb;
2560 
2561 	SOCK_LOCK(so);
2562 	if (SOLISTENING(so)) {
2563 		SOCK_UNLOCK(so);
2564 		return (false);
2565 	}
2566 	mb = NULL;
2567 	sb = &so->so_rcv;
2568 	SOCK_RECVBUF_LOCK(so);
2569 	if (sb->uxst_fnrdy != NULL) {
2570 		STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) {
2571 			if (mb == m) {
2572 				*errorp = uipc_sbready(sb, m, count);
2573 				break;
2574 			}
2575 		}
2576 	}
2577 	SOCK_RECVBUF_UNLOCK(so);
2578 	SOCK_UNLOCK(so);
2579 	return (mb != NULL);
2580 }
2581 
2582 static int
uipc_ready(struct socket * so,struct mbuf * m,int count)2583 uipc_ready(struct socket *so, struct mbuf *m, int count)
2584 {
2585 	struct unpcb *unp, *unp2;
2586 	int error;
2587 
2588 	MPASS(so->so_type == SOCK_STREAM);
2589 
2590 	if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) {
2591 		struct socket *so2;
2592 		struct sockbuf *sb;
2593 
2594 		so2 = unp2->unp_socket;
2595 		sb = &so2->so_rcv;
2596 		SOCK_RECVBUF_LOCK(so2);
2597 		UNP_PCB_UNLOCK(unp2);
2598 		UIPC_STREAM_SBCHECK(sb);
2599 		error = uipc_sbready(sb, m, count);
2600 		UIPC_STREAM_SBCHECK(sb);
2601 		if (error == 0)
2602 			sorwakeup_locked(so2);
2603 		else
2604 			SOCK_RECVBUF_UNLOCK(so2);
2605 	} else {
2606 		/*
2607 		 * The receiving socket has been disconnected, but may still
2608 		 * be valid.  In this case, the not-ready mbufs are still
2609 		 * present in its socket buffer, so perform an exhaustive
2610 		 * search before giving up and freeing the mbufs.
2611 		 */
2612 		UNP_LINK_RLOCK();
2613 		LIST_FOREACH(unp, &unp_shead, unp_link) {
2614 			if (uipc_ready_scan(unp->unp_socket, m, count, &error))
2615 				break;
2616 		}
2617 		UNP_LINK_RUNLOCK();
2618 
2619 		if (unp == NULL) {
2620 			for (int i = 0; i < count; i++)
2621 				m = m_free(m);
2622 			return (ECONNRESET);
2623 		}
2624 	}
2625 	return (error);
2626 }
2627 
2628 static int
uipc_sense(struct socket * so,struct stat * sb)2629 uipc_sense(struct socket *so, struct stat *sb)
2630 {
2631 	struct unpcb *unp;
2632 
2633 	unp = sotounpcb(so);
2634 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
2635 
2636 	sb->st_blksize = so->so_snd.sb_hiwat;
2637 	sb->st_dev = NODEV;
2638 	sb->st_ino = unp->unp_ino;
2639 	return (0);
2640 }
2641 
2642 static int
uipc_shutdown(struct socket * so,enum shutdown_how how)2643 uipc_shutdown(struct socket *so, enum shutdown_how how)
2644 {
2645 	struct unpcb *unp = sotounpcb(so);
2646 	int error;
2647 
2648 	SOCK_LOCK(so);
2649 	if (SOLISTENING(so)) {
2650 		if (how != SHUT_WR) {
2651 			so->so_error = ECONNABORTED;
2652 			solisten_wakeup(so);    /* unlocks so */
2653 		} else
2654 			SOCK_UNLOCK(so);
2655 		return (ENOTCONN);
2656 	} else if ((so->so_state &
2657 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2658 		/*
2659 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
2660 		 * invoked on a datagram sockets, however historically we would
2661 		 * actually tear socket down.  This is known to be leveraged by
2662 		 * some applications to unblock process waiting in recv(2) by
2663 		 * other process that it shares that socket with.  Try to meet
2664 		 * both backward-compatibility and POSIX requirements by forcing
2665 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
2666 		 *
2667 		 * XXXGL: it remains unknown what applications expect this
2668 		 * behavior and is this isolated to unix/dgram or inet/dgram or
2669 		 * both.  See: D10351, D3039.
2670 		 */
2671 		error = ENOTCONN;
2672 		if (so->so_type != SOCK_DGRAM) {
2673 			SOCK_UNLOCK(so);
2674 			return (error);
2675 		}
2676 	} else
2677 		error = 0;
2678 	SOCK_UNLOCK(so);
2679 
2680 	switch (how) {
2681 	case SHUT_RD:
2682 		if (so->so_type == SOCK_DGRAM)
2683 			socantrcvmore(so);
2684 		else
2685 			uipc_cantrcvmore(so);
2686 		unp_dispose(so);
2687 		break;
2688 	case SHUT_RDWR:
2689 		if (so->so_type == SOCK_DGRAM)
2690 			socantrcvmore(so);
2691 		else
2692 			uipc_cantrcvmore(so);
2693 		unp_dispose(so);
2694 		/* FALLTHROUGH */
2695 	case SHUT_WR:
2696 		if (so->so_type == SOCK_DGRAM) {
2697 			socantsendmore(so);
2698 		} else {
2699 			UNP_PCB_LOCK(unp);
2700 			if (unp->unp_conn != NULL)
2701 				uipc_cantrcvmore(unp->unp_conn->unp_socket);
2702 			UNP_PCB_UNLOCK(unp);
2703 		}
2704 	}
2705 	wakeup(&so->so_timeo);
2706 
2707 	return (error);
2708 }
2709 
2710 static int
uipc_sockaddr(struct socket * so,struct sockaddr * ret)2711 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
2712 {
2713 	struct unpcb *unp;
2714 	const struct sockaddr *sa;
2715 
2716 	unp = sotounpcb(so);
2717 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
2718 
2719 	UNP_PCB_LOCK(unp);
2720 	if (unp->unp_addr != NULL)
2721 		sa = (struct sockaddr *) unp->unp_addr;
2722 	else
2723 		sa = &sun_noname;
2724 	bcopy(sa, ret, sa->sa_len);
2725 	UNP_PCB_UNLOCK(unp);
2726 	return (0);
2727 }
2728 
2729 static int
uipc_ctloutput(struct socket * so,struct sockopt * sopt)2730 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
2731 {
2732 	struct unpcb *unp;
2733 	struct xucred xu;
2734 	int error, optval;
2735 
2736 	if (sopt->sopt_level != SOL_LOCAL)
2737 		return (EINVAL);
2738 
2739 	unp = sotounpcb(so);
2740 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
2741 	error = 0;
2742 	switch (sopt->sopt_dir) {
2743 	case SOPT_GET:
2744 		switch (sopt->sopt_name) {
2745 		case LOCAL_PEERCRED:
2746 			UNP_PCB_LOCK(unp);
2747 			if (unp->unp_flags & UNP_HAVEPC)
2748 				xu = unp->unp_peercred;
2749 			else {
2750 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2751 					error = ENOTCONN;
2752 				else
2753 					error = EINVAL;
2754 			}
2755 			UNP_PCB_UNLOCK(unp);
2756 			if (error == 0)
2757 				error = sooptcopyout(sopt, &xu, sizeof(xu));
2758 			break;
2759 
2760 		case LOCAL_CREDS:
2761 			/* Unlocked read. */
2762 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
2763 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2764 			break;
2765 
2766 		case LOCAL_CREDS_PERSISTENT:
2767 			/* Unlocked read. */
2768 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
2769 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2770 			break;
2771 
2772 		default:
2773 			error = EOPNOTSUPP;
2774 			break;
2775 		}
2776 		break;
2777 
2778 	case SOPT_SET:
2779 		switch (sopt->sopt_name) {
2780 		case LOCAL_CREDS:
2781 		case LOCAL_CREDS_PERSISTENT:
2782 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2783 					    sizeof(optval));
2784 			if (error)
2785 				break;
2786 
2787 #define	OPTSET(bit, exclusive) do {					\
2788 	UNP_PCB_LOCK(unp);						\
2789 	if (optval) {							\
2790 		if ((unp->unp_flags & (exclusive)) != 0) {		\
2791 			UNP_PCB_UNLOCK(unp);				\
2792 			error = EINVAL;					\
2793 			break;						\
2794 		}							\
2795 		unp->unp_flags |= (bit);				\
2796 	} else								\
2797 		unp->unp_flags &= ~(bit);				\
2798 	UNP_PCB_UNLOCK(unp);						\
2799 } while (0)
2800 
2801 			switch (sopt->sopt_name) {
2802 			case LOCAL_CREDS:
2803 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
2804 				break;
2805 
2806 			case LOCAL_CREDS_PERSISTENT:
2807 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
2808 				break;
2809 
2810 			default:
2811 				break;
2812 			}
2813 			break;
2814 #undef	OPTSET
2815 		default:
2816 			error = ENOPROTOOPT;
2817 			break;
2818 		}
2819 		break;
2820 
2821 	default:
2822 		error = EOPNOTSUPP;
2823 		break;
2824 	}
2825 	return (error);
2826 }
2827 
2828 static int
unp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)2829 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
2830 {
2831 
2832 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
2833 }
2834 
2835 static int
unp_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td,bool return_locked)2836 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
2837     struct thread *td, bool return_locked)
2838 {
2839 	struct mtx *vplock;
2840 	struct sockaddr_un *soun;
2841 	struct vnode *vp;
2842 	struct socket *so2;
2843 	struct unpcb *unp, *unp2, *unp3;
2844 	struct nameidata nd;
2845 	char buf[SOCK_MAXADDRLEN];
2846 	struct sockaddr *sa;
2847 	cap_rights_t rights;
2848 	int error, len;
2849 	bool connreq;
2850 
2851 	CURVNET_ASSERT_SET();
2852 
2853 	if (nam->sa_family != AF_UNIX)
2854 		return (EAFNOSUPPORT);
2855 	if (nam->sa_len > sizeof(struct sockaddr_un))
2856 		return (EINVAL);
2857 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2858 	if (len <= 0)
2859 		return (EINVAL);
2860 	soun = (struct sockaddr_un *)nam;
2861 	bcopy(soun->sun_path, buf, len);
2862 	buf[len] = 0;
2863 
2864 	error = 0;
2865 	unp = sotounpcb(so);
2866 	UNP_PCB_LOCK(unp);
2867 	for (;;) {
2868 		/*
2869 		 * Wait for connection state to stabilize.  If a connection
2870 		 * already exists, give up.  For datagram sockets, which permit
2871 		 * multiple consecutive connect(2) calls, upper layers are
2872 		 * responsible for disconnecting in advance of a subsequent
2873 		 * connect(2), but this is not synchronized with PCB connection
2874 		 * state.
2875 		 *
2876 		 * Also make sure that no threads are currently attempting to
2877 		 * lock the peer socket, to ensure that unp_conn cannot
2878 		 * transition between two valid sockets while locks are dropped.
2879 		 */
2880 		if (SOLISTENING(so))
2881 			error = EOPNOTSUPP;
2882 		else if (unp->unp_conn != NULL)
2883 			error = EISCONN;
2884 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
2885 			error = EALREADY;
2886 		}
2887 		if (error != 0) {
2888 			UNP_PCB_UNLOCK(unp);
2889 			return (error);
2890 		}
2891 		if (unp->unp_pairbusy > 0) {
2892 			unp->unp_flags |= UNP_WAITING;
2893 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
2894 			continue;
2895 		}
2896 		break;
2897 	}
2898 	unp->unp_flags |= UNP_CONNECTING;
2899 	UNP_PCB_UNLOCK(unp);
2900 
2901 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
2902 	if (connreq)
2903 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
2904 	else
2905 		sa = NULL;
2906 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
2907 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
2908 	error = namei(&nd);
2909 	if (error)
2910 		vp = NULL;
2911 	else
2912 		vp = nd.ni_vp;
2913 	ASSERT_VOP_LOCKED(vp, "unp_connect");
2914 	if (error)
2915 		goto bad;
2916 	NDFREE_PNBUF(&nd);
2917 
2918 	if (vp->v_type != VSOCK) {
2919 		error = ENOTSOCK;
2920 		goto bad;
2921 	}
2922 #ifdef MAC
2923 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
2924 	if (error)
2925 		goto bad;
2926 #endif
2927 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
2928 	if (error)
2929 		goto bad;
2930 
2931 	unp = sotounpcb(so);
2932 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
2933 
2934 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
2935 	mtx_lock(vplock);
2936 	VOP_UNP_CONNECT(vp, &unp2);
2937 	if (unp2 == NULL) {
2938 		error = ECONNREFUSED;
2939 		goto bad2;
2940 	}
2941 	so2 = unp2->unp_socket;
2942 	if (so->so_type != so2->so_type) {
2943 		error = EPROTOTYPE;
2944 		goto bad2;
2945 	}
2946 	if (connreq) {
2947 		if (SOLISTENING(so2))
2948 			so2 = solisten_clone(so2);
2949 		else
2950 			so2 = NULL;
2951 		if (so2 == NULL) {
2952 			error = ECONNREFUSED;
2953 			goto bad2;
2954 		}
2955 		if ((error = uipc_attach(so2, 0, NULL)) != 0) {
2956 			sodealloc(so2);
2957 			goto bad2;
2958 		}
2959 		unp3 = sotounpcb(so2);
2960 		unp_pcb_lock_pair(unp2, unp3);
2961 		if (unp2->unp_addr != NULL) {
2962 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
2963 			unp3->unp_addr = (struct sockaddr_un *) sa;
2964 			sa = NULL;
2965 		}
2966 
2967 		unp_copy_peercred(td, unp3, unp, unp2);
2968 
2969 		UNP_PCB_UNLOCK(unp2);
2970 		unp2 = unp3;
2971 
2972 		/*
2973 		 * It is safe to block on the PCB lock here since unp2 is
2974 		 * nascent and cannot be connected to any other sockets.
2975 		 */
2976 		UNP_PCB_LOCK(unp);
2977 #ifdef MAC
2978 		mac_socketpeer_set_from_socket(so, so2);
2979 		mac_socketpeer_set_from_socket(so2, so);
2980 #endif
2981 	} else {
2982 		unp_pcb_lock_pair(unp, unp2);
2983 	}
2984 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2985 	    sotounpcb(so2) == unp2,
2986 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2987 	unp_connect2(so, so2, connreq);
2988 	if (connreq)
2989 		(void)solisten_enqueue(so2, SS_ISCONNECTED);
2990 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2991 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2992 	unp->unp_flags &= ~UNP_CONNECTING;
2993 	if (!return_locked)
2994 		unp_pcb_unlock_pair(unp, unp2);
2995 bad2:
2996 	mtx_unlock(vplock);
2997 bad:
2998 	if (vp != NULL) {
2999 		/*
3000 		 * If we are returning locked (called via uipc_sosend_dgram()),
3001 		 * we need to be sure that vput() won't sleep.  This is
3002 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
3003 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
3004 		 */
3005 		MPASS(!(return_locked && connreq));
3006 		vput(vp);
3007 	}
3008 	free(sa, M_SONAME);
3009 	if (__predict_false(error)) {
3010 		UNP_PCB_LOCK(unp);
3011 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
3012 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
3013 		unp->unp_flags &= ~UNP_CONNECTING;
3014 		UNP_PCB_UNLOCK(unp);
3015 	}
3016 	return (error);
3017 }
3018 
3019 /*
3020  * Set socket peer credentials at connection time.
3021  *
3022  * The client's PCB credentials are copied from its process structure.  The
3023  * server's PCB credentials are copied from the socket on which it called
3024  * listen(2).  uipc_listen cached that process's credentials at the time.
3025  */
3026 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)3027 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
3028     struct unpcb *server_unp, struct unpcb *listen_unp)
3029 {
3030 	cru2xt(td, &client_unp->unp_peercred);
3031 	client_unp->unp_flags |= UNP_HAVEPC;
3032 
3033 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
3034 	    sizeof(server_unp->unp_peercred));
3035 	server_unp->unp_flags |= UNP_HAVEPC;
3036 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
3037 }
3038 
3039 /*
3040  * unix/stream & unix/seqpacket version of soisconnected().
3041  *
3042  * The crucial thing we are doing here is setting up the uxst_peer linkage,
3043  * holding unp and receive buffer locks of the both sockets.  The disconnect
3044  * procedure does the same.  This gives as a safe way to access the peer in the
3045  * send(2) and recv(2) during the socket lifetime.
3046  *
3047  * The less important thing is event notification of the fact that a socket is
3048  * now connected.  It is unusual for a software to put a socket into event
3049  * mechanism before connect(2), but is supposed to be supported.  Note that
3050  * there can not be any sleeping I/O on the socket, yet, only presence in the
3051  * select/poll/kevent.
3052  *
3053  * This function can be called via two call paths:
3054  * 1) socketpair(2) - in this case socket has not been yet reported to userland
3055  *    and just can't have any event notifications mechanisms set up.  The
3056  *    'wakeup' boolean is always false.
3057  * 2) connect(2) of existing socket to a recent clone of a listener:
3058  *   2.1) Socket that connect(2)s will have 'wakeup' true.  An application
3059  *        could have already put it into event mechanism, is it shall be
3060  *        reported as readable and as writable.
3061  *   2.2) Socket that was just cloned with solisten_clone().  Same as 1).
3062  */
3063 static void
unp_soisconnected(struct socket * so,bool wakeup)3064 unp_soisconnected(struct socket *so, bool wakeup)
3065 {
3066 	struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket;
3067 	struct sockbuf *sb;
3068 
3069 	SOCK_LOCK_ASSERT(so);
3070 	UNP_PCB_LOCK_ASSERT(sotounpcb(so));
3071 	UNP_PCB_LOCK_ASSERT(sotounpcb(so2));
3072 	SOCK_RECVBUF_LOCK_ASSERT(so);
3073 	SOCK_RECVBUF_LOCK_ASSERT(so2);
3074 
3075 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3076 	MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
3077 	    SS_ISDISCONNECTING)) == 0);
3078 	MPASS(so->so_qstate == SQ_NONE);
3079 
3080 	so->so_state &= ~SS_ISDISCONNECTED;
3081 	so->so_state |= SS_ISCONNECTED;
3082 
3083 	sb = &so2->so_rcv;
3084 	sb->uxst_peer = so;
3085 
3086 	if (wakeup) {
3087 		KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
3088 		sb = &so->so_rcv;
3089 		selwakeuppri(sb->sb_sel, PSOCK);
3090 		SOCK_SENDBUF_LOCK_ASSERT(so);
3091 		sb = &so->so_snd;
3092 		selwakeuppri(sb->sb_sel, PSOCK);
3093 		SOCK_SENDBUF_UNLOCK(so);
3094 	}
3095 }
3096 
3097 static void
unp_connect2(struct socket * so,struct socket * so2,bool wakeup)3098 unp_connect2(struct socket *so, struct socket *so2, bool wakeup)
3099 {
3100 	struct unpcb *unp;
3101 	struct unpcb *unp2;
3102 
3103 	MPASS(so2->so_type == so->so_type);
3104 	unp = sotounpcb(so);
3105 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
3106 	unp2 = sotounpcb(so2);
3107 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
3108 
3109 	UNP_PCB_LOCK_ASSERT(unp);
3110 	UNP_PCB_LOCK_ASSERT(unp2);
3111 	KASSERT(unp->unp_conn == NULL,
3112 	    ("%s: socket %p is already connected", __func__, unp));
3113 
3114 	unp->unp_conn = unp2;
3115 	unp_pcb_hold(unp2);
3116 	unp_pcb_hold(unp);
3117 	switch (so->so_type) {
3118 	case SOCK_DGRAM:
3119 		UNP_REF_LIST_LOCK();
3120 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
3121 		UNP_REF_LIST_UNLOCK();
3122 		soisconnected(so);
3123 		break;
3124 
3125 	case SOCK_STREAM:
3126 	case SOCK_SEQPACKET:
3127 		KASSERT(unp2->unp_conn == NULL,
3128 		    ("%s: socket %p is already connected", __func__, unp2));
3129 		unp2->unp_conn = unp;
3130 		SOCK_LOCK(so);
3131 		SOCK_LOCK(so2);
3132 		if (wakeup)	/* Avoid LOR with receive buffer lock. */
3133 			SOCK_SENDBUF_LOCK(so);
3134 		SOCK_RECVBUF_LOCK(so);
3135 		SOCK_RECVBUF_LOCK(so2);
3136 		unp_soisconnected(so, wakeup);	/* Will unlock send buffer. */
3137 		unp_soisconnected(so2, false);
3138 		SOCK_RECVBUF_UNLOCK(so);
3139 		SOCK_RECVBUF_UNLOCK(so2);
3140 		SOCK_UNLOCK(so);
3141 		SOCK_UNLOCK(so2);
3142 		break;
3143 
3144 	default:
3145 		panic("unp_connect2");
3146 	}
3147 }
3148 
3149 static void
unp_soisdisconnected(struct socket * so)3150 unp_soisdisconnected(struct socket *so)
3151 {
3152 	SOCK_LOCK_ASSERT(so);
3153 	SOCK_RECVBUF_LOCK_ASSERT(so);
3154 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3155 	MPASS(!SOLISTENING(so));
3156 	MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING |
3157 	    SS_ISDISCONNECTED)) == 0);
3158 	MPASS(so->so_state & SS_ISCONNECTED);
3159 
3160 	so->so_state |= SS_ISDISCONNECTED;
3161 	so->so_state &= ~SS_ISCONNECTED;
3162 	so->so_rcv.uxst_peer = NULL;
3163 	socantrcvmore_locked(so);
3164 }
3165 
3166 static void
unp_disconnect(struct unpcb * unp,struct unpcb * unp2)3167 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
3168 {
3169 	struct socket *so, *so2;
3170 	struct mbuf *m = NULL;
3171 #ifdef INVARIANTS
3172 	struct unpcb *unptmp;
3173 #endif
3174 
3175 	UNP_PCB_LOCK_ASSERT(unp);
3176 	UNP_PCB_LOCK_ASSERT(unp2);
3177 	KASSERT(unp->unp_conn == unp2,
3178 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
3179 
3180 	unp->unp_conn = NULL;
3181 	so = unp->unp_socket;
3182 	so2 = unp2->unp_socket;
3183 	switch (unp->unp_socket->so_type) {
3184 	case SOCK_DGRAM:
3185 		/*
3186 		 * Remove our send socket buffer from the peer's receive buffer.
3187 		 * Move the data to the receive buffer only if it is empty.
3188 		 * This is a protection against a scenario where a peer
3189 		 * connects, floods and disconnects, effectively blocking
3190 		 * sendto() from unconnected sockets.
3191 		 */
3192 		SOCK_RECVBUF_LOCK(so2);
3193 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
3194 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
3195 			    uxdg_clist);
3196 			if (__predict_true((so2->so_rcv.sb_state &
3197 			    SBS_CANTRCVMORE) == 0) &&
3198 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
3199 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
3200 				    &so->so_snd.uxdg_mb);
3201 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
3202 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
3203 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
3204 			} else {
3205 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
3206 				STAILQ_INIT(&so->so_snd.uxdg_mb);
3207 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
3208 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
3209 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
3210 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
3211 			}
3212 			/* Note: so may reconnect. */
3213 			so->so_snd.uxdg_cc = 0;
3214 			so->so_snd.uxdg_ctl = 0;
3215 			so->so_snd.uxdg_mbcnt = 0;
3216 		}
3217 		SOCK_RECVBUF_UNLOCK(so2);
3218 		UNP_REF_LIST_LOCK();
3219 #ifdef INVARIANTS
3220 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
3221 			if (unptmp == unp)
3222 				break;
3223 		}
3224 		KASSERT(unptmp != NULL,
3225 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
3226 #endif
3227 		LIST_REMOVE(unp, unp_reflink);
3228 		UNP_REF_LIST_UNLOCK();
3229 		SOCK_LOCK(so);
3230 		so->so_state &= ~SS_ISCONNECTED;
3231 		SOCK_UNLOCK(so);
3232 		break;
3233 
3234 	case SOCK_STREAM:
3235 	case SOCK_SEQPACKET:
3236 		SOCK_LOCK(so);
3237 		SOCK_LOCK(so2);
3238 		SOCK_RECVBUF_LOCK(so);
3239 		SOCK_RECVBUF_LOCK(so2);
3240 		unp_soisdisconnected(so);
3241 		MPASS(unp2->unp_conn == unp);
3242 		unp2->unp_conn = NULL;
3243 		unp_soisdisconnected(so2);
3244 		SOCK_UNLOCK(so);
3245 		SOCK_UNLOCK(so2);
3246 		break;
3247 	}
3248 
3249 	if (unp == unp2) {
3250 		unp_pcb_rele_notlast(unp);
3251 		if (!unp_pcb_rele(unp))
3252 			UNP_PCB_UNLOCK(unp);
3253 	} else {
3254 		if (!unp_pcb_rele(unp))
3255 			UNP_PCB_UNLOCK(unp);
3256 		if (!unp_pcb_rele(unp2))
3257 			UNP_PCB_UNLOCK(unp2);
3258 	}
3259 
3260 	if (m != NULL) {
3261 		unp_scan(m, unp_freerights);
3262 		m_freemp(m);
3263 	}
3264 }
3265 
3266 /*
3267  * unp_pcblist() walks the global list of struct unpcb's to generate a
3268  * pointer list, bumping the refcount on each unpcb.  It then copies them out
3269  * sequentially, validating the generation number on each to see if it has
3270  * been detached.  All of this is necessary because copyout() may sleep on
3271  * disk I/O.
3272  */
3273 static int
unp_pcblist(SYSCTL_HANDLER_ARGS)3274 unp_pcblist(SYSCTL_HANDLER_ARGS)
3275 {
3276 	struct unpcb *unp, **unp_list;
3277 	unp_gen_t gencnt;
3278 	struct xunpgen *xug;
3279 	struct unp_head *head;
3280 	struct xunpcb *xu;
3281 	u_int i;
3282 	int error, n;
3283 
3284 	switch ((intptr_t)arg1) {
3285 	case SOCK_STREAM:
3286 		head = &unp_shead;
3287 		break;
3288 
3289 	case SOCK_DGRAM:
3290 		head = &unp_dhead;
3291 		break;
3292 
3293 	case SOCK_SEQPACKET:
3294 		head = &unp_sphead;
3295 		break;
3296 
3297 	default:
3298 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
3299 	}
3300 
3301 	/*
3302 	 * The process of preparing the PCB list is too time-consuming and
3303 	 * resource-intensive to repeat twice on every request.
3304 	 */
3305 	if (req->oldptr == NULL) {
3306 		n = unp_count;
3307 		req->oldidx = 2 * (sizeof *xug)
3308 			+ (n + n/8) * sizeof(struct xunpcb);
3309 		return (0);
3310 	}
3311 
3312 	if (req->newptr != NULL)
3313 		return (EPERM);
3314 
3315 	/*
3316 	 * OK, now we're committed to doing something.
3317 	 */
3318 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
3319 	UNP_LINK_RLOCK();
3320 	gencnt = unp_gencnt;
3321 	n = unp_count;
3322 	UNP_LINK_RUNLOCK();
3323 
3324 	xug->xug_len = sizeof *xug;
3325 	xug->xug_count = n;
3326 	xug->xug_gen = gencnt;
3327 	xug->xug_sogen = so_gencnt;
3328 	error = SYSCTL_OUT(req, xug, sizeof *xug);
3329 	if (error) {
3330 		free(xug, M_TEMP);
3331 		return (error);
3332 	}
3333 
3334 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
3335 
3336 	UNP_LINK_RLOCK();
3337 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
3338 	     unp = LIST_NEXT(unp, unp_link)) {
3339 		UNP_PCB_LOCK(unp);
3340 		if (unp->unp_gencnt <= gencnt) {
3341 			if (cr_cansee(req->td->td_ucred,
3342 			    unp->unp_socket->so_cred)) {
3343 				UNP_PCB_UNLOCK(unp);
3344 				continue;
3345 			}
3346 			unp_list[i++] = unp;
3347 			unp_pcb_hold(unp);
3348 		}
3349 		UNP_PCB_UNLOCK(unp);
3350 	}
3351 	UNP_LINK_RUNLOCK();
3352 	n = i;			/* In case we lost some during malloc. */
3353 
3354 	error = 0;
3355 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
3356 	for (i = 0; i < n; i++) {
3357 		unp = unp_list[i];
3358 		UNP_PCB_LOCK(unp);
3359 		if (unp_pcb_rele(unp))
3360 			continue;
3361 
3362 		if (unp->unp_gencnt <= gencnt) {
3363 			xu->xu_len = sizeof *xu;
3364 			xu->xu_unpp = (uintptr_t)unp;
3365 			/*
3366 			 * XXX - need more locking here to protect against
3367 			 * connect/disconnect races for SMP.
3368 			 */
3369 			if (unp->unp_addr != NULL)
3370 				bcopy(unp->unp_addr, &xu->xu_addr,
3371 				      unp->unp_addr->sun_len);
3372 			else
3373 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
3374 			if (unp->unp_conn != NULL &&
3375 			    unp->unp_conn->unp_addr != NULL)
3376 				bcopy(unp->unp_conn->unp_addr,
3377 				      &xu->xu_caddr,
3378 				      unp->unp_conn->unp_addr->sun_len);
3379 			else
3380 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
3381 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
3382 			xu->unp_conn = (uintptr_t)unp->unp_conn;
3383 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
3384 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
3385 			xu->unp_gencnt = unp->unp_gencnt;
3386 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
3387 			UNP_PCB_UNLOCK(unp);
3388 			error = SYSCTL_OUT(req, xu, sizeof *xu);
3389 		} else {
3390 			UNP_PCB_UNLOCK(unp);
3391 		}
3392 	}
3393 	free(xu, M_TEMP);
3394 	if (!error) {
3395 		/*
3396 		 * Give the user an updated idea of our state.  If the
3397 		 * generation differs from what we told her before, she knows
3398 		 * that something happened while we were processing this
3399 		 * request, and it might be necessary to retry.
3400 		 */
3401 		xug->xug_gen = unp_gencnt;
3402 		xug->xug_sogen = so_gencnt;
3403 		xug->xug_count = unp_count;
3404 		error = SYSCTL_OUT(req, xug, sizeof *xug);
3405 	}
3406 	free(unp_list, M_TEMP);
3407 	free(xug, M_TEMP);
3408 	return (error);
3409 }
3410 
3411 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
3412     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3413     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
3414     "List of active local datagram sockets");
3415 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
3416     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3417     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
3418     "List of active local stream sockets");
3419 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
3420     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3421     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
3422     "List of active local seqpacket sockets");
3423 
3424 static void
unp_drop(struct unpcb * unp)3425 unp_drop(struct unpcb *unp)
3426 {
3427 	struct socket *so;
3428 	struct unpcb *unp2;
3429 
3430 	/*
3431 	 * Regardless of whether the socket's peer dropped the connection
3432 	 * with this socket by aborting or disconnecting, POSIX requires
3433 	 * that ECONNRESET is returned on next connected send(2) in case of
3434 	 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM.
3435 	 */
3436 	UNP_PCB_LOCK(unp);
3437 	if ((so = unp->unp_socket) != NULL)
3438 		so->so_error =
3439 		    so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE;
3440 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
3441 		/* Last reference dropped in unp_disconnect(). */
3442 		unp_pcb_rele_notlast(unp);
3443 		unp_disconnect(unp, unp2);
3444 	} else if (!unp_pcb_rele(unp)) {
3445 		UNP_PCB_UNLOCK(unp);
3446 	}
3447 }
3448 
3449 static void
unp_freerights(struct filedescent ** fdep,int fdcount)3450 unp_freerights(struct filedescent **fdep, int fdcount)
3451 {
3452 	struct file *fp;
3453 	int i;
3454 
3455 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
3456 
3457 	for (i = 0; i < fdcount; i++) {
3458 		fp = fdep[i]->fde_file;
3459 		filecaps_free(&fdep[i]->fde_caps);
3460 		unp_discard(fp);
3461 	}
3462 	free(fdep[0], M_FILECAPS);
3463 }
3464 
3465 static bool
restrict_rights(struct file * fp,struct thread * td)3466 restrict_rights(struct file *fp, struct thread *td)
3467 {
3468 	struct prison *prison1, *prison2;
3469 
3470 	prison1 = fp->f_cred->cr_prison;
3471 	prison2 = td->td_ucred->cr_prison;
3472 	return (prison1 != prison2 && prison1->pr_root != prison2->pr_root &&
3473 	    prison2 != &prison0);
3474 }
3475 
3476 static int
unp_externalize(struct mbuf * control,struct mbuf ** controlp,int flags)3477 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
3478 {
3479 	struct thread *td = curthread;		/* XXX */
3480 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
3481 	int *fdp;
3482 	struct filedesc *fdesc = td->td_proc->p_fd;
3483 	struct filedescent **fdep;
3484 	void *data;
3485 	socklen_t clen = control->m_len, datalen;
3486 	int error, fdflags, newfds;
3487 	u_int newlen;
3488 
3489 	UNP_LINK_UNLOCK_ASSERT();
3490 
3491 	fdflags = ((flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0) |
3492 	    ((flags & MSG_CMSG_CLOFORK) ? O_CLOFORK : 0);
3493 
3494 	error = 0;
3495 	if (controlp != NULL) /* controlp == NULL => free control messages */
3496 		*controlp = NULL;
3497 	while (cm != NULL) {
3498 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
3499 
3500 		data = CMSG_DATA(cm);
3501 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
3502 		if (cm->cmsg_level == SOL_SOCKET
3503 		    && cm->cmsg_type == SCM_RIGHTS) {
3504 			newfds = datalen / sizeof(*fdep);
3505 			if (newfds == 0)
3506 				goto next;
3507 			fdep = data;
3508 
3509 			/* If we're not outputting the descriptors free them. */
3510 			if (error || controlp == NULL) {
3511 				unp_freerights(fdep, newfds);
3512 				goto next;
3513 			}
3514 			FILEDESC_XLOCK(fdesc);
3515 
3516 			/*
3517 			 * Now change each pointer to an fd in the global
3518 			 * table to an integer that is the index to the local
3519 			 * fd table entry that we set up to point to the
3520 			 * global one we are transferring.
3521 			 */
3522 			newlen = newfds * sizeof(int);
3523 			*controlp = sbcreatecontrol(NULL, newlen,
3524 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
3525 
3526 			fdp = (int *)
3527 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
3528 			if ((error = fdallocn(td, 0, fdp, newfds))) {
3529 				FILEDESC_XUNLOCK(fdesc);
3530 				unp_freerights(fdep, newfds);
3531 				m_freem(*controlp);
3532 				*controlp = NULL;
3533 				goto next;
3534 			}
3535 			for (int i = 0; i < newfds; i++, fdp++) {
3536 				struct file *fp;
3537 
3538 				fp = fdep[i]->fde_file;
3539 				_finstall(fdesc, fp, *fdp, fdflags |
3540 				    (restrict_rights(fp, td) ?
3541 				    O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps);
3542 				unp_externalize_fp(fp);
3543 			}
3544 
3545 			/*
3546 			 * The new type indicates that the mbuf data refers to
3547 			 * kernel resources that may need to be released before
3548 			 * the mbuf is freed.
3549 			 */
3550 			m_chtype(*controlp, MT_EXTCONTROL);
3551 			FILEDESC_XUNLOCK(fdesc);
3552 			free(fdep[0], M_FILECAPS);
3553 		} else {
3554 			/* We can just copy anything else across. */
3555 			if (error || controlp == NULL)
3556 				goto next;
3557 			*controlp = sbcreatecontrol(NULL, datalen,
3558 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
3559 			bcopy(data,
3560 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
3561 			    datalen);
3562 		}
3563 		controlp = &(*controlp)->m_next;
3564 
3565 next:
3566 		if (CMSG_SPACE(datalen) < clen) {
3567 			clen -= CMSG_SPACE(datalen);
3568 			cm = (struct cmsghdr *)
3569 			    ((caddr_t)cm + CMSG_SPACE(datalen));
3570 		} else {
3571 			clen = 0;
3572 			cm = NULL;
3573 		}
3574 	}
3575 
3576 	return (error);
3577 }
3578 
3579 static void
unp_zone_change(void * tag)3580 unp_zone_change(void *tag)
3581 {
3582 
3583 	uma_zone_set_max(unp_zone, maxsockets);
3584 }
3585 
3586 #ifdef INVARIANTS
3587 static void
unp_zdtor(void * mem,int size __unused,void * arg __unused)3588 unp_zdtor(void *mem, int size __unused, void *arg __unused)
3589 {
3590 	struct unpcb *unp;
3591 
3592 	unp = mem;
3593 
3594 	KASSERT(LIST_EMPTY(&unp->unp_refs),
3595 	    ("%s: unpcb %p has lingering refs", __func__, unp));
3596 	KASSERT(unp->unp_socket == NULL,
3597 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
3598 	KASSERT(unp->unp_vnode == NULL,
3599 	    ("%s: unpcb %p has vnode references", __func__, unp));
3600 	KASSERT(unp->unp_conn == NULL,
3601 	    ("%s: unpcb %p is still connected", __func__, unp));
3602 	KASSERT(unp->unp_addr == NULL,
3603 	    ("%s: unpcb %p has leaked addr", __func__, unp));
3604 }
3605 #endif
3606 
3607 static void
unp_init(void * arg __unused)3608 unp_init(void *arg __unused)
3609 {
3610 	uma_dtor dtor;
3611 
3612 #ifdef INVARIANTS
3613 	dtor = unp_zdtor;
3614 #else
3615 	dtor = NULL;
3616 #endif
3617 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
3618 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
3619 	uma_zone_set_max(unp_zone, maxsockets);
3620 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
3621 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
3622 	    NULL, EVENTHANDLER_PRI_ANY);
3623 	LIST_INIT(&unp_dhead);
3624 	LIST_INIT(&unp_shead);
3625 	LIST_INIT(&unp_sphead);
3626 	SLIST_INIT(&unp_defers);
3627 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
3628 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
3629 	UNP_LINK_LOCK_INIT();
3630 	UNP_DEFERRED_LOCK_INIT();
3631 	unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF);
3632 }
3633 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
3634 
3635 static void
unp_internalize_cleanup_rights(struct mbuf * control)3636 unp_internalize_cleanup_rights(struct mbuf *control)
3637 {
3638 	struct cmsghdr *cp;
3639 	struct mbuf *m;
3640 	void *data;
3641 	socklen_t datalen;
3642 
3643 	for (m = control; m != NULL; m = m->m_next) {
3644 		cp = mtod(m, struct cmsghdr *);
3645 		if (cp->cmsg_level != SOL_SOCKET ||
3646 		    cp->cmsg_type != SCM_RIGHTS)
3647 			continue;
3648 		data = CMSG_DATA(cp);
3649 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
3650 		unp_freerights(data, datalen / sizeof(struct filedesc *));
3651 	}
3652 }
3653 
3654 static int
unp_internalize(struct mbuf * control,struct mchain * mc,struct thread * td)3655 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td)
3656 {
3657 	struct proc *p;
3658 	struct filedesc *fdesc;
3659 	struct bintime *bt;
3660 	struct cmsghdr *cm;
3661 	struct cmsgcred *cmcred;
3662 	struct mbuf *m;
3663 	struct filedescent *fde, **fdep, *fdev;
3664 	struct file *fp;
3665 	struct timeval *tv;
3666 	struct timespec *ts;
3667 	void *data;
3668 	socklen_t clen, datalen;
3669 	int i, j, error, *fdp, oldfds;
3670 	u_int newlen;
3671 
3672 	MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */
3673 	UNP_LINK_UNLOCK_ASSERT();
3674 
3675 	p = td->td_proc;
3676 	fdesc = p->p_fd;
3677 	error = 0;
3678 	*mc = MCHAIN_INITIALIZER(mc);
3679 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
3680 	    data = CMSG_DATA(cm);
3681 
3682 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
3683 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
3684 	    (char *)cm + cm->cmsg_len >= (char *)data;
3685 
3686 	    clen -= min(CMSG_SPACE(datalen), clen),
3687 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
3688 	    data = CMSG_DATA(cm)) {
3689 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
3690 		switch (cm->cmsg_type) {
3691 		case SCM_CREDS:
3692 			m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS,
3693 			    SOL_SOCKET, M_WAITOK);
3694 			cmcred = (struct cmsgcred *)
3695 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3696 			cmcred->cmcred_pid = p->p_pid;
3697 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
3698 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
3699 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
3700 			_Static_assert(CMGROUP_MAX >= 1,
3701 			    "Room needed for the effective GID.");
3702 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups + 1,
3703 			    CMGROUP_MAX);
3704 			cmcred->cmcred_groups[0] = td->td_ucred->cr_gid;
3705 			for (i = 1; i < cmcred->cmcred_ngroups; i++)
3706 				cmcred->cmcred_groups[i] =
3707 				    td->td_ucred->cr_groups[i - 1];
3708 			break;
3709 
3710 		case SCM_RIGHTS:
3711 			oldfds = datalen / sizeof (int);
3712 			if (oldfds == 0)
3713 				continue;
3714 			/* On some machines sizeof pointer is bigger than
3715 			 * sizeof int, so we need to check if data fits into
3716 			 * single mbuf.  We could allocate several mbufs, and
3717 			 * unp_externalize() should even properly handle that.
3718 			 * But it is not worth to complicate the code for an
3719 			 * insane scenario of passing over 200 file descriptors
3720 			 * at once.
3721 			 */
3722 			newlen = oldfds * sizeof(fdep[0]);
3723 			if (CMSG_SPACE(newlen) > MCLBYTES) {
3724 				error = EMSGSIZE;
3725 				goto out;
3726 			}
3727 			/*
3728 			 * Check that all the FDs passed in refer to legal
3729 			 * files.  If not, reject the entire operation.
3730 			 */
3731 			fdp = data;
3732 			FILEDESC_SLOCK(fdesc);
3733 			for (i = 0; i < oldfds; i++, fdp++) {
3734 				fp = fget_noref(fdesc, *fdp);
3735 				if (fp == NULL) {
3736 					FILEDESC_SUNLOCK(fdesc);
3737 					error = EBADF;
3738 					goto out;
3739 				}
3740 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
3741 					FILEDESC_SUNLOCK(fdesc);
3742 					error = EOPNOTSUPP;
3743 					goto out;
3744 				}
3745 			}
3746 
3747 			/*
3748 			 * Now replace the integer FDs with pointers to the
3749 			 * file structure and capability rights.
3750 			 */
3751 			m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS,
3752 			    SOL_SOCKET, M_WAITOK);
3753 			fdp = data;
3754 			for (i = 0; i < oldfds; i++, fdp++) {
3755 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
3756 					fdp = data;
3757 					for (j = 0; j < i; j++, fdp++) {
3758 						fdrop(fdesc->fd_ofiles[*fdp].
3759 						    fde_file, td);
3760 					}
3761 					FILEDESC_SUNLOCK(fdesc);
3762 					error = EBADF;
3763 					goto out;
3764 				}
3765 			}
3766 			fdp = data;
3767 			fdep = (struct filedescent **)
3768 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3769 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
3770 			    M_WAITOK);
3771 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
3772 				fde = &fdesc->fd_ofiles[*fdp];
3773 				fdep[i] = fdev;
3774 				fdep[i]->fde_file = fde->fde_file;
3775 				filecaps_copy(&fde->fde_caps,
3776 				    &fdep[i]->fde_caps, true);
3777 				unp_internalize_fp(fdep[i]->fde_file);
3778 			}
3779 			FILEDESC_SUNLOCK(fdesc);
3780 			break;
3781 
3782 		case SCM_TIMESTAMP:
3783 			m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP,
3784 			    SOL_SOCKET, M_WAITOK);
3785 			tv = (struct timeval *)
3786 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3787 			microtime(tv);
3788 			break;
3789 
3790 		case SCM_BINTIME:
3791 			m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME,
3792 			    SOL_SOCKET, M_WAITOK);
3793 			bt = (struct bintime *)
3794 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3795 			bintime(bt);
3796 			break;
3797 
3798 		case SCM_REALTIME:
3799 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME,
3800 			    SOL_SOCKET, M_WAITOK);
3801 			ts = (struct timespec *)
3802 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3803 			nanotime(ts);
3804 			break;
3805 
3806 		case SCM_MONOTONIC:
3807 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC,
3808 			    SOL_SOCKET, M_WAITOK);
3809 			ts = (struct timespec *)
3810 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3811 			nanouptime(ts);
3812 			break;
3813 
3814 		default:
3815 			error = EINVAL;
3816 			goto out;
3817 		}
3818 
3819 		mc_append(mc, m);
3820 	}
3821 	if (clen > 0)
3822 		error = EINVAL;
3823 
3824 out:
3825 	if (error != 0)
3826 		unp_internalize_cleanup_rights(mc_first(mc));
3827 	m_freem(control);
3828 	return (error);
3829 }
3830 
3831 static void
unp_addsockcred(struct thread * td,struct mchain * mc,int mode)3832 unp_addsockcred(struct thread *td, struct mchain *mc, int mode)
3833 {
3834 	struct mbuf *m, *n, *n_prev;
3835 	const struct cmsghdr *cm;
3836 	int ngroups, i, cmsgtype;
3837 	size_t ctrlsz;
3838 
3839 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
3840 	if (mode & UNP_WANTCRED_ALWAYS) {
3841 		ctrlsz = SOCKCRED2SIZE(ngroups);
3842 		cmsgtype = SCM_CREDS2;
3843 	} else {
3844 		ctrlsz = SOCKCREDSIZE(ngroups);
3845 		cmsgtype = SCM_CREDS;
3846 	}
3847 
3848 	/* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */
3849 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
3850 	if (m == NULL)
3851 		return;
3852 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
3853 
3854 	if (mode & UNP_WANTCRED_ALWAYS) {
3855 		struct sockcred2 *sc;
3856 
3857 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3858 		sc->sc_version = 0;
3859 		sc->sc_pid = td->td_proc->p_pid;
3860 		sc->sc_uid = td->td_ucred->cr_ruid;
3861 		sc->sc_euid = td->td_ucred->cr_uid;
3862 		sc->sc_gid = td->td_ucred->cr_rgid;
3863 		sc->sc_egid = td->td_ucred->cr_gid;
3864 		sc->sc_ngroups = ngroups;
3865 		for (i = 0; i < sc->sc_ngroups; i++)
3866 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3867 	} else {
3868 		struct sockcred *sc;
3869 
3870 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3871 		sc->sc_uid = td->td_ucred->cr_ruid;
3872 		sc->sc_euid = td->td_ucred->cr_uid;
3873 		sc->sc_gid = td->td_ucred->cr_rgid;
3874 		sc->sc_egid = td->td_ucred->cr_gid;
3875 		sc->sc_ngroups = ngroups;
3876 		for (i = 0; i < sc->sc_ngroups; i++)
3877 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3878 	}
3879 
3880 	/*
3881 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
3882 	 * created SCM_CREDS control message (struct sockcred) has another
3883 	 * format.
3884 	 */
3885 	if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS)
3886 		STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) {
3887 			cm = mtod(n, struct cmsghdr *);
3888     			if (cm->cmsg_level == SOL_SOCKET &&
3889 			    cm->cmsg_type == SCM_CREDS) {
3890 				mc_remove(mc, n);
3891 				m_free(n);
3892 			}
3893 		}
3894 
3895 	/* Prepend it to the head. */
3896 	mc_prepend(mc, m);
3897 }
3898 
3899 static struct unpcb *
fptounp(struct file * fp)3900 fptounp(struct file *fp)
3901 {
3902 	struct socket *so;
3903 
3904 	if (fp->f_type != DTYPE_SOCKET)
3905 		return (NULL);
3906 	if ((so = fp->f_data) == NULL)
3907 		return (NULL);
3908 	if (so->so_proto->pr_domain != &localdomain)
3909 		return (NULL);
3910 	return sotounpcb(so);
3911 }
3912 
3913 static void
unp_discard(struct file * fp)3914 unp_discard(struct file *fp)
3915 {
3916 	struct unp_defer *dr;
3917 
3918 	if (unp_externalize_fp(fp)) {
3919 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
3920 		dr->ud_fp = fp;
3921 		UNP_DEFERRED_LOCK();
3922 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
3923 		UNP_DEFERRED_UNLOCK();
3924 		atomic_add_int(&unp_defers_count, 1);
3925 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
3926 	} else
3927 		closef_nothread(fp);
3928 }
3929 
3930 static void
unp_process_defers(void * arg __unused,int pending)3931 unp_process_defers(void *arg __unused, int pending)
3932 {
3933 	struct unp_defer *dr;
3934 	SLIST_HEAD(, unp_defer) drl;
3935 	int count;
3936 
3937 	SLIST_INIT(&drl);
3938 	for (;;) {
3939 		UNP_DEFERRED_LOCK();
3940 		if (SLIST_FIRST(&unp_defers) == NULL) {
3941 			UNP_DEFERRED_UNLOCK();
3942 			break;
3943 		}
3944 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
3945 		UNP_DEFERRED_UNLOCK();
3946 		count = 0;
3947 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
3948 			SLIST_REMOVE_HEAD(&drl, ud_link);
3949 			closef_nothread(dr->ud_fp);
3950 			free(dr, M_TEMP);
3951 			count++;
3952 		}
3953 		atomic_add_int(&unp_defers_count, -count);
3954 	}
3955 }
3956 
3957 static void
unp_internalize_fp(struct file * fp)3958 unp_internalize_fp(struct file *fp)
3959 {
3960 	struct unpcb *unp;
3961 
3962 	UNP_LINK_WLOCK();
3963 	if ((unp = fptounp(fp)) != NULL) {
3964 		unp->unp_file = fp;
3965 		unp->unp_msgcount++;
3966 	}
3967 	unp_rights++;
3968 	UNP_LINK_WUNLOCK();
3969 }
3970 
3971 static int
unp_externalize_fp(struct file * fp)3972 unp_externalize_fp(struct file *fp)
3973 {
3974 	struct unpcb *unp;
3975 	int ret;
3976 
3977 	UNP_LINK_WLOCK();
3978 	if ((unp = fptounp(fp)) != NULL) {
3979 		unp->unp_msgcount--;
3980 		ret = 1;
3981 	} else
3982 		ret = 0;
3983 	unp_rights--;
3984 	UNP_LINK_WUNLOCK();
3985 	return (ret);
3986 }
3987 
3988 /*
3989  * unp_defer indicates whether additional work has been defered for a future
3990  * pass through unp_gc().  It is thread local and does not require explicit
3991  * synchronization.
3992  */
3993 static int	unp_marked;
3994 
3995 static void
unp_remove_dead_ref(struct filedescent ** fdep,int fdcount)3996 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
3997 {
3998 	struct unpcb *unp;
3999 	struct file *fp;
4000 	int i;
4001 
4002 	/*
4003 	 * This function can only be called from the gc task.
4004 	 */
4005 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4006 	    ("%s: not on gc callout", __func__));
4007 	UNP_LINK_LOCK_ASSERT();
4008 
4009 	for (i = 0; i < fdcount; i++) {
4010 		fp = fdep[i]->fde_file;
4011 		if ((unp = fptounp(fp)) == NULL)
4012 			continue;
4013 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4014 			continue;
4015 		unp->unp_gcrefs--;
4016 	}
4017 }
4018 
4019 static void
unp_restore_undead_ref(struct filedescent ** fdep,int fdcount)4020 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
4021 {
4022 	struct unpcb *unp;
4023 	struct file *fp;
4024 	int i;
4025 
4026 	/*
4027 	 * This function can only be called from the gc task.
4028 	 */
4029 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4030 	    ("%s: not on gc callout", __func__));
4031 	UNP_LINK_LOCK_ASSERT();
4032 
4033 	for (i = 0; i < fdcount; i++) {
4034 		fp = fdep[i]->fde_file;
4035 		if ((unp = fptounp(fp)) == NULL)
4036 			continue;
4037 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4038 			continue;
4039 		unp->unp_gcrefs++;
4040 		unp_marked++;
4041 	}
4042 }
4043 
4044 static void
unp_scan_socket(struct socket * so,void (* op)(struct filedescent **,int))4045 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
4046 {
4047 	struct sockbuf *sb;
4048 
4049 	SOCK_LOCK_ASSERT(so);
4050 
4051 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
4052 		return;
4053 
4054 	SOCK_RECVBUF_LOCK(so);
4055 	switch (so->so_type) {
4056 	case SOCK_DGRAM:
4057 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
4058 		unp_scan(so->so_rcv.uxdg_peeked, op);
4059 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
4060 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
4061 		break;
4062 	case SOCK_STREAM:
4063 	case SOCK_SEQPACKET:
4064 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op);
4065 		break;
4066 	}
4067 	SOCK_RECVBUF_UNLOCK(so);
4068 }
4069 
4070 static void
unp_gc_scan(struct unpcb * unp,void (* op)(struct filedescent **,int))4071 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
4072 {
4073 	struct socket *so, *soa;
4074 
4075 	so = unp->unp_socket;
4076 	SOCK_LOCK(so);
4077 	if (SOLISTENING(so)) {
4078 		/*
4079 		 * Mark all sockets in our accept queue.
4080 		 */
4081 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
4082 			unp_scan_socket(soa, op);
4083 	} else {
4084 		/*
4085 		 * Mark all sockets we reference with RIGHTS.
4086 		 */
4087 		unp_scan_socket(so, op);
4088 	}
4089 	SOCK_UNLOCK(so);
4090 }
4091 
4092 static int unp_recycled;
4093 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
4094     "Number of unreachable sockets claimed by the garbage collector.");
4095 
4096 static int unp_taskcount;
4097 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
4098     "Number of times the garbage collector has run.");
4099 
4100 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
4101     "Number of active local sockets.");
4102 
4103 static void
unp_gc(__unused void * arg,int pending)4104 unp_gc(__unused void *arg, int pending)
4105 {
4106 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
4107 				    NULL };
4108 	struct unp_head **head;
4109 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
4110 	struct file *f, **unref;
4111 	struct unpcb *unp, *unptmp;
4112 	int i, total, unp_unreachable;
4113 
4114 	LIST_INIT(&unp_deadhead);
4115 	unp_taskcount++;
4116 	UNP_LINK_RLOCK();
4117 	/*
4118 	 * First determine which sockets may be in cycles.
4119 	 */
4120 	unp_unreachable = 0;
4121 
4122 	for (head = heads; *head != NULL; head++)
4123 		LIST_FOREACH(unp, *head, unp_link) {
4124 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
4125 			    ("%s: unp %p has unexpected gc flags 0x%x",
4126 			    __func__, unp, (unsigned int)unp->unp_gcflag));
4127 
4128 			f = unp->unp_file;
4129 
4130 			/*
4131 			 * Check for an unreachable socket potentially in a
4132 			 * cycle.  It must be in a queue as indicated by
4133 			 * msgcount, and this must equal the file reference
4134 			 * count.  Note that when msgcount is 0 the file is
4135 			 * NULL.
4136 			 */
4137 			if (f != NULL && unp->unp_msgcount != 0 &&
4138 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
4139 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
4140 				unp->unp_gcflag |= UNPGC_DEAD;
4141 				unp->unp_gcrefs = unp->unp_msgcount;
4142 				unp_unreachable++;
4143 			}
4144 		}
4145 
4146 	/*
4147 	 * Scan all sockets previously marked as potentially being in a cycle
4148 	 * and remove the references each socket holds on any UNPGC_DEAD
4149 	 * sockets in its queue.  After this step, all remaining references on
4150 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
4151 	 */
4152 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
4153 		unp_gc_scan(unp, unp_remove_dead_ref);
4154 
4155 	/*
4156 	 * If a socket still has a non-negative refcount, it cannot be in a
4157 	 * cycle.  In this case increment refcount of all children iteratively.
4158 	 * Stop the scan once we do a complete loop without discovering
4159 	 * a new reachable socket.
4160 	 */
4161 	do {
4162 		unp_marked = 0;
4163 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
4164 			if (unp->unp_gcrefs > 0) {
4165 				unp->unp_gcflag &= ~UNPGC_DEAD;
4166 				LIST_REMOVE(unp, unp_dead);
4167 				KASSERT(unp_unreachable > 0,
4168 				    ("%s: unp_unreachable underflow.",
4169 				    __func__));
4170 				unp_unreachable--;
4171 				unp_gc_scan(unp, unp_restore_undead_ref);
4172 			}
4173 	} while (unp_marked);
4174 
4175 	UNP_LINK_RUNLOCK();
4176 
4177 	if (unp_unreachable == 0)
4178 		return;
4179 
4180 	/*
4181 	 * Allocate space for a local array of dead unpcbs.
4182 	 * TODO: can this path be simplified by instead using the local
4183 	 * dead list at unp_deadhead, after taking out references
4184 	 * on the file object and/or unpcb and dropping the link lock?
4185 	 */
4186 	unref = malloc(unp_unreachable * sizeof(struct file *),
4187 	    M_TEMP, M_WAITOK);
4188 
4189 	/*
4190 	 * Iterate looking for sockets which have been specifically marked
4191 	 * as unreachable and store them locally.
4192 	 */
4193 	UNP_LINK_RLOCK();
4194 	total = 0;
4195 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
4196 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
4197 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
4198 		unp->unp_gcflag &= ~UNPGC_DEAD;
4199 		f = unp->unp_file;
4200 		if (unp->unp_msgcount == 0 || f == NULL ||
4201 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
4202 		    !fhold(f))
4203 			continue;
4204 		unref[total++] = f;
4205 		KASSERT(total <= unp_unreachable,
4206 		    ("%s: incorrect unreachable count.", __func__));
4207 	}
4208 	UNP_LINK_RUNLOCK();
4209 
4210 	/*
4211 	 * Now flush all sockets, free'ing rights.  This will free the
4212 	 * struct files associated with these sockets but leave each socket
4213 	 * with one remaining ref.
4214 	 */
4215 	for (i = 0; i < total; i++) {
4216 		struct socket *so;
4217 
4218 		so = unref[i]->f_data;
4219 		if (!SOLISTENING(so)) {
4220 			CURVNET_SET(so->so_vnet);
4221 			socantrcvmore(so);
4222 			unp_dispose(so);
4223 			CURVNET_RESTORE();
4224 		}
4225 	}
4226 
4227 	/*
4228 	 * And finally release the sockets so they can be reclaimed.
4229 	 */
4230 	for (i = 0; i < total; i++)
4231 		fdrop(unref[i], NULL);
4232 	unp_recycled += total;
4233 	free(unref, M_TEMP);
4234 }
4235 
4236 /*
4237  * Synchronize against unp_gc, which can trip over data as we are freeing it.
4238  */
4239 static void
unp_dispose(struct socket * so)4240 unp_dispose(struct socket *so)
4241 {
4242 	struct sockbuf *sb;
4243 	struct unpcb *unp;
4244 	struct mbuf *m;
4245 	int error __diagused;
4246 
4247 	MPASS(!SOLISTENING(so));
4248 
4249 	unp = sotounpcb(so);
4250 	UNP_LINK_WLOCK();
4251 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
4252 	UNP_LINK_WUNLOCK();
4253 
4254 	/*
4255 	 * Grab our special mbufs before calling sbrelease().
4256 	 */
4257 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
4258 	MPASS(!error);
4259 	SOCK_RECVBUF_LOCK(so);
4260 	switch (so->so_type) {
4261 	case SOCK_DGRAM:
4262 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
4263 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
4264 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
4265 			/* Note: socket of sb may reconnect. */
4266 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
4267 		}
4268 		sb = &so->so_rcv;
4269 		if (sb->uxdg_peeked != NULL) {
4270 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
4271 			    m_stailqpkt);
4272 			sb->uxdg_peeked = NULL;
4273 		}
4274 		m = STAILQ_FIRST(&sb->uxdg_mb);
4275 		STAILQ_INIT(&sb->uxdg_mb);
4276 		break;
4277 	case SOCK_STREAM:
4278 	case SOCK_SEQPACKET:
4279 		sb = &so->so_rcv;
4280 		m = STAILQ_FIRST(&sb->uxst_mbq);
4281 		STAILQ_INIT(&sb->uxst_mbq);
4282 		sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0;
4283 		/*
4284 		 * Trim M_NOTREADY buffers from the free list.  They are
4285 		 * referenced by the I/O thread.
4286 		 */
4287 		if (sb->uxst_fnrdy != NULL) {
4288 			struct mbuf *n, *prev;
4289 
4290 			while (m != NULL && m->m_flags & M_NOTREADY)
4291 				m = m->m_next;
4292 			for (prev = n = m; n != NULL; n = n->m_next) {
4293 				if (n->m_flags & M_NOTREADY)
4294 					prev->m_next = n->m_next;
4295 				else
4296 					prev = n;
4297 			}
4298 			sb->uxst_fnrdy = NULL;
4299 		}
4300 		break;
4301 	}
4302 	/*
4303 	 * Mark sb with SBS_CANTRCVMORE.  This is needed to prevent
4304 	 * uipc_sosend_*() or unp_disconnect() adding more data to the socket.
4305 	 * We came here either through shutdown(2) or from the final sofree().
4306 	 * The sofree() case is simple as it guarantees that no more sends will
4307 	 * happen, however we can race with unp_disconnect() from our peer.
4308 	 * The shutdown(2) case is more exotic.  It would call into
4309 	 * unp_dispose() only if socket is SS_ISCONNECTED.  This is possible if
4310 	 * we did connect(2) on this socket and we also had it bound with
4311 	 * bind(2) and receive connections from other sockets.  Because
4312 	 * uipc_shutdown() violates POSIX (see comment there) this applies to
4313 	 * SOCK_DGRAM as well.  For SOCK_DGRAM this SBS_CANTRCVMORE will have
4314 	 * affect not only on the peer we connect(2)ed to, but also on all of
4315 	 * the peers who had connect(2)ed to us.  Their sends would end up
4316 	 * with ENOBUFS.
4317 	 */
4318 	sb->sb_state |= SBS_CANTRCVMORE;
4319 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
4320 	    RLIM_INFINITY);
4321 	SOCK_RECVBUF_UNLOCK(so);
4322 	SOCK_IO_RECV_UNLOCK(so);
4323 
4324 	if (m != NULL) {
4325 		unp_scan(m, unp_freerights);
4326 		m_freemp(m);
4327 	}
4328 }
4329 
4330 static void
unp_scan(struct mbuf * m0,void (* op)(struct filedescent **,int))4331 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
4332 {
4333 	struct mbuf *m;
4334 	struct cmsghdr *cm;
4335 	void *data;
4336 	socklen_t clen, datalen;
4337 
4338 	while (m0 != NULL) {
4339 		for (m = m0; m; m = m->m_next) {
4340 			if (m->m_type != MT_CONTROL)
4341 				continue;
4342 
4343 			cm = mtod(m, struct cmsghdr *);
4344 			clen = m->m_len;
4345 
4346 			while (cm != NULL) {
4347 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
4348 					break;
4349 
4350 				data = CMSG_DATA(cm);
4351 				datalen = (caddr_t)cm + cm->cmsg_len
4352 				    - (caddr_t)data;
4353 
4354 				if (cm->cmsg_level == SOL_SOCKET &&
4355 				    cm->cmsg_type == SCM_RIGHTS) {
4356 					(*op)(data, datalen /
4357 					    sizeof(struct filedescent *));
4358 				}
4359 
4360 				if (CMSG_SPACE(datalen) < clen) {
4361 					clen -= CMSG_SPACE(datalen);
4362 					cm = (struct cmsghdr *)
4363 					    ((caddr_t)cm + CMSG_SPACE(datalen));
4364 				} else {
4365 					clen = 0;
4366 					cm = NULL;
4367 				}
4368 			}
4369 		}
4370 		m0 = m0->m_nextpkt;
4371 	}
4372 }
4373 
4374 /*
4375  * Definitions of protocols supported in the LOCAL domain.
4376  */
4377 static struct protosw streamproto = {
4378 	.pr_type =		SOCK_STREAM,
4379 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4380 	.pr_ctloutput =		&uipc_ctloutput,
4381 	.pr_abort = 		uipc_abort,
4382 	.pr_accept =		uipc_peeraddr,
4383 	.pr_attach =		uipc_attach,
4384 	.pr_bind =		uipc_bind,
4385 	.pr_bindat =		uipc_bindat,
4386 	.pr_connect =		uipc_connect,
4387 	.pr_connectat =		uipc_connectat,
4388 	.pr_connect2 =		uipc_connect2,
4389 	.pr_detach =		uipc_detach,
4390 	.pr_disconnect =	uipc_disconnect,
4391 	.pr_fdclose =		uipc_fdclose,
4392 	.pr_listen =		uipc_listen,
4393 	.pr_peeraddr =		uipc_peeraddr,
4394 	.pr_send =		uipc_sendfile,
4395 	.pr_sendfile_wait =	uipc_sendfile_wait,
4396 	.pr_ready =		uipc_ready,
4397 	.pr_sense =		uipc_sense,
4398 	.pr_shutdown =		uipc_shutdown,
4399 	.pr_sockaddr =		uipc_sockaddr,
4400 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4401 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4402 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4403 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4404 	.pr_close =		uipc_close,
4405 	.pr_chmod =		uipc_chmod,
4406 };
4407 
4408 static struct protosw dgramproto = {
4409 	.pr_type =		SOCK_DGRAM,
4410 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
4411 	.pr_ctloutput =		&uipc_ctloutput,
4412 	.pr_abort = 		uipc_abort,
4413 	.pr_accept =		uipc_peeraddr,
4414 	.pr_attach =		uipc_attach,
4415 	.pr_bind =		uipc_bind,
4416 	.pr_bindat =		uipc_bindat,
4417 	.pr_connect =		uipc_connect,
4418 	.pr_connectat =		uipc_connectat,
4419 	.pr_connect2 =		uipc_connect2,
4420 	.pr_detach =		uipc_detach,
4421 	.pr_disconnect =	uipc_disconnect,
4422 	.pr_fdclose =		uipc_fdclose,
4423 	.pr_peeraddr =		uipc_peeraddr,
4424 	.pr_sosend =		uipc_sosend_dgram,
4425 	.pr_sense =		uipc_sense,
4426 	.pr_shutdown =		uipc_shutdown,
4427 	.pr_sockaddr =		uipc_sockaddr,
4428 	.pr_soreceive =		uipc_soreceive_dgram,
4429 	.pr_close =		uipc_close,
4430 	.pr_chmod =		uipc_chmod,
4431 };
4432 
4433 static struct protosw seqpacketproto = {
4434 	.pr_type =		SOCK_SEQPACKET,
4435 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4436 	.pr_ctloutput =		&uipc_ctloutput,
4437 	.pr_abort =		uipc_abort,
4438 	.pr_accept =		uipc_peeraddr,
4439 	.pr_attach =		uipc_attach,
4440 	.pr_bind =		uipc_bind,
4441 	.pr_bindat =		uipc_bindat,
4442 	.pr_connect =		uipc_connect,
4443 	.pr_connectat =		uipc_connectat,
4444 	.pr_connect2 =		uipc_connect2,
4445 	.pr_detach =		uipc_detach,
4446 	.pr_disconnect =	uipc_disconnect,
4447 	.pr_fdclose =		uipc_fdclose,
4448 	.pr_listen =		uipc_listen,
4449 	.pr_peeraddr =		uipc_peeraddr,
4450 	.pr_sense =		uipc_sense,
4451 	.pr_shutdown =		uipc_shutdown,
4452 	.pr_sockaddr =		uipc_sockaddr,
4453 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4454 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4455 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4456 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4457 	.pr_close =		uipc_close,
4458 	.pr_chmod =		uipc_chmod,
4459 };
4460 
4461 static struct domain localdomain = {
4462 	.dom_family =		AF_LOCAL,
4463 	.dom_name =		"local",
4464 	.dom_nprotosw =		3,
4465 	.dom_protosw =		{
4466 		&streamproto,
4467 		&dgramproto,
4468 		&seqpacketproto,
4469 	}
4470 };
4471 DOMAIN_SET(local);
4472 
4473 /*
4474  * A helper function called by VFS before socket-type vnode reclamation.
4475  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
4476  * use count.
4477  */
4478 void
vfs_unp_reclaim(struct vnode * vp)4479 vfs_unp_reclaim(struct vnode *vp)
4480 {
4481 	struct unpcb *unp;
4482 	int active;
4483 	struct mtx *vplock;
4484 
4485 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
4486 	KASSERT(vp->v_type == VSOCK,
4487 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
4488 
4489 	active = 0;
4490 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
4491 	mtx_lock(vplock);
4492 	VOP_UNP_CONNECT(vp, &unp);
4493 	if (unp == NULL)
4494 		goto done;
4495 	UNP_PCB_LOCK(unp);
4496 	if (unp->unp_vnode == vp) {
4497 		VOP_UNP_DETACH(vp);
4498 		unp->unp_vnode = NULL;
4499 		active = 1;
4500 	}
4501 	UNP_PCB_UNLOCK(unp);
4502  done:
4503 	mtx_unlock(vplock);
4504 	if (active)
4505 		vunref(vp);
4506 }
4507 
4508 #ifdef DDB
4509 static void
db_print_indent(int indent)4510 db_print_indent(int indent)
4511 {
4512 	int i;
4513 
4514 	for (i = 0; i < indent; i++)
4515 		db_printf(" ");
4516 }
4517 
4518 static void
db_print_unpflags(int unp_flags)4519 db_print_unpflags(int unp_flags)
4520 {
4521 	int comma;
4522 
4523 	comma = 0;
4524 	if (unp_flags & UNP_HAVEPC) {
4525 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
4526 		comma = 1;
4527 	}
4528 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
4529 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
4530 		comma = 1;
4531 	}
4532 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
4533 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
4534 		comma = 1;
4535 	}
4536 	if (unp_flags & UNP_CONNECTING) {
4537 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
4538 		comma = 1;
4539 	}
4540 	if (unp_flags & UNP_BINDING) {
4541 		db_printf("%sUNP_BINDING", comma ? ", " : "");
4542 		comma = 1;
4543 	}
4544 }
4545 
4546 static void
db_print_xucred(int indent,struct xucred * xu)4547 db_print_xucred(int indent, struct xucred *xu)
4548 {
4549 	int comma, i;
4550 
4551 	db_print_indent(indent);
4552 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
4553 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
4554 	db_print_indent(indent);
4555 	db_printf("cr_groups: ");
4556 	comma = 0;
4557 	for (i = 0; i < xu->cr_ngroups; i++) {
4558 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
4559 		comma = 1;
4560 	}
4561 	db_printf("\n");
4562 }
4563 
4564 static void
db_print_unprefs(int indent,struct unp_head * uh)4565 db_print_unprefs(int indent, struct unp_head *uh)
4566 {
4567 	struct unpcb *unp;
4568 	int counter;
4569 
4570 	counter = 0;
4571 	LIST_FOREACH(unp, uh, unp_reflink) {
4572 		if (counter % 4 == 0)
4573 			db_print_indent(indent);
4574 		db_printf("%p  ", unp);
4575 		if (counter % 4 == 3)
4576 			db_printf("\n");
4577 		counter++;
4578 	}
4579 	if (counter != 0 && counter % 4 != 0)
4580 		db_printf("\n");
4581 }
4582 
DB_SHOW_COMMAND(unpcb,db_show_unpcb)4583 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
4584 {
4585 	struct unpcb *unp;
4586 
4587         if (!have_addr) {
4588                 db_printf("usage: show unpcb <addr>\n");
4589                 return;
4590         }
4591         unp = (struct unpcb *)addr;
4592 
4593 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
4594 	    unp->unp_vnode);
4595 
4596 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
4597 	    unp->unp_conn);
4598 
4599 	db_printf("unp_refs:\n");
4600 	db_print_unprefs(2, &unp->unp_refs);
4601 
4602 	/* XXXRW: Would be nice to print the full address, if any. */
4603 	db_printf("unp_addr: %p\n", unp->unp_addr);
4604 
4605 	db_printf("unp_gencnt: %llu\n",
4606 	    (unsigned long long)unp->unp_gencnt);
4607 
4608 	db_printf("unp_flags: %x (", unp->unp_flags);
4609 	db_print_unpflags(unp->unp_flags);
4610 	db_printf(")\n");
4611 
4612 	db_printf("unp_peercred:\n");
4613 	db_print_xucred(2, &unp->unp_peercred);
4614 
4615 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
4616 }
4617 #endif
4618