1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #ifndef _SYS_FS_UFS_FS_H 40 #define _SYS_FS_UFS_FS_H 41 42 #pragma ident "%Z%%M% %I% %E% SMI" 43 44 #include <sys/isa_defs.h> 45 #include <sys/types32.h> 46 #include <sys/t_lock.h> /* for kmutex_t */ 47 48 #ifdef __cplusplus 49 extern "C" { 50 #endif 51 52 /* 53 * The following values are minor release values for UFS. 54 * The fs_version field in the superblock will equal one of them. 55 */ 56 57 #define MTB_UFS_VERSION_MIN 1 58 #define MTB_UFS_VERSION_1 1 59 #define UFS_VERSION_MIN 0 60 #define UFS_EFISTYLE4NONEFI_VERSION_2 2 61 62 /* 63 * Each disk drive contains some number of file systems. 64 * A file system consists of a number of cylinder groups. 65 * Each cylinder group has inodes and data. 66 * 67 * A file system is described by its super-block, which in turn 68 * describes the cylinder groups. The super-block is critical 69 * data and is replicated in the first 10 cylinder groups and the 70 * the last 10 cylinder groups to protect against 71 * catastrophic loss. This is done at mkfs time and the critical 72 * super-block data does not change, so the copies need not be 73 * referenced further unless disaster strikes. 74 * 75 * For file system fs, the offsets of the various blocks of interest 76 * are given in the super block as: 77 * [fs->fs_sblkno] Super-block 78 * [fs->fs_cblkno] Cylinder group block 79 * [fs->fs_iblkno] Inode blocks 80 * [fs->fs_dblkno] Data blocks 81 * The beginning of cylinder group cg in fs, is given by 82 * the ``cgbase(fs, cg)'' macro. 83 * 84 * The first boot and super blocks are given in absolute disk addresses. 85 * The byte-offset forms are preferred, as they don't imply a sector size. 86 */ 87 #define BBSIZE 8192 88 #define SBSIZE 8192 89 #define BBOFF ((off_t)(0)) 90 #define SBOFF ((off_t)(BBOFF + BBSIZE)) 91 #define BBLOCK ((daddr32_t)(0)) 92 #define SBLOCK ((daddr32_t)(BBLOCK + BBSIZE / DEV_BSIZE)) 93 94 /* 95 * Addresses stored in inodes are capable of addressing fragments 96 * of `blocks'. File system blocks of at most size MAXBSIZE can 97 * be optionally broken into 2, 4, or 8 pieces, each of which is 98 * addressible; these pieces may be DEV_BSIZE, or some multiple of 99 * a DEV_BSIZE unit. 100 * 101 * Large files consist of exclusively large data blocks. To avoid 102 * undue wasted disk space, the last data block of a small file may be 103 * allocated as only as many fragments of a large block as are 104 * necessary. The file system format retains only a single pointer 105 * to such a fragment, which is a piece of a single large block that 106 * has been divided. The size of such a fragment is determinable from 107 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. 108 * 109 * The file system records space availability at the fragment level; 110 * to determine block availability, aligned fragments are examined. 111 * 112 * The root inode is the root of the file system. 113 * Inode 0 can't be used for normal purposes and 114 * historically bad blocks were linked to inode 1, 115 * thus the root inode is 2. (inode 1 is no longer used for 116 * this purpose, however numerous dump tapes make this 117 * assumption, so we are stuck with it) 118 * The lost+found directory is given the next available 119 * inode when it is created by ``mkfs''. 120 */ 121 #define UFSROOTINO ((ino_t)2) /* i number of all roots */ 122 #define LOSTFOUNDINO (UFSROOTINO + 1) 123 #ifndef _LONGLONG_TYPE 124 #define UFS_MAXOFFSET_T MAXOFF_T 125 #define UFS_FILESIZE_BITS 32 126 #else 127 #define UFS_MAXOFFSET_T ((1LL << NBBY * sizeof (daddr32_t) + DEV_BSHIFT - 1) \ 128 - 1) 129 #define UFS_FILESIZE_BITS 41 130 #endif /* _LONGLONG_TYPE */ 131 132 /* 133 * MINBSIZE is the smallest allowable block size. 134 * In order to insure that it is possible to create files of size 135 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. 136 * MINBSIZE must be big enough to hold a cylinder group block, 137 * thus changes to (struct cg) must keep its size within MINBSIZE. 138 * Note that super blocks are always of size SBSIZE, 139 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. 140 */ 141 #define MINBSIZE 4096 142 143 /* 144 * The path name on which the file system is mounted is maintained 145 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in 146 * the super block for this name. 147 * The limit on the amount of summary information per file system 148 * is defined by MAXCSBUFS. It is currently parameterized for a 149 * maximum of two million cylinders. 150 */ 151 #define MAXMNTLEN 512 152 #define MAXCSBUFS 32 153 154 #define LABEL_TYPE_VTOC 1 155 #define LABEL_TYPE_EFI 2 156 #define LABEL_TYPE_OTHER 3 157 158 /* 159 * The following constant is taken from the ANSI T13 ATA Specification 160 * and defines the maximum size (in sectors) that an ATA disk can be 161 * and still has to provide CHS translation. For a disk above this 162 * size all sectors are to be accessed via their LBA address. This 163 * makes a good cut off value to move from disk provided geometry 164 * to the predefined defaults used in efi label disks. 165 */ 166 #define CHSLIMIT (63 * 256 * 1024) 167 168 /* 169 * Per cylinder group information; summarized in blocks allocated 170 * from first cylinder group data blocks. These blocks have to be 171 * read in from fs_csaddr (size fs_cssize) in addition to the 172 * super block. 173 * 174 * N.B. sizeof (struct csum) must be a power of two in order for 175 * the ``fs_cs'' macro to work (see below). 176 */ 177 struct csum { 178 int32_t cs_ndir; /* number of directories */ 179 int32_t cs_nbfree; /* number of free blocks */ 180 int32_t cs_nifree; /* number of free inodes */ 181 int32_t cs_nffree; /* number of free frags */ 182 }; 183 184 /* 185 * In the 5.0 release, the file system state flag in the superblock (fs_clean) 186 * is now used. The value of fs_clean can be: 187 * FSACTIVE file system may have fsck inconsistencies 188 * FSCLEAN file system has successfully unmounted (implies 189 * everything is ok) 190 * FSSTABLE No fsck inconsistencies, no guarantee on user data 191 * FSBAD file system is mounted from a partition that is 192 * neither FSCLEAN or FSSTABLE 193 * FSSUSPEND Clean flag processing is temporarily disabled 194 * FSLOG Logging file system 195 * Under this scheme, fsck can safely skip file systems that 196 * are FSCLEAN or FSSTABLE. To provide additional safeguard, 197 * fs_clean information could be trusted only if 198 * fs_state == FSOKAY - fs_time, where FSOKAY is a constant 199 * 200 * Note: mount(2) will now return ENOSPC if fs_clean is neither FSCLEAN nor 201 * FSSTABLE, or fs_state is not valid. The exceptions are the root or 202 * the read-only partitions 203 */ 204 205 /* 206 * Super block for a file system. 207 * 208 * Most of the data in the super block is read-only data and needs 209 * no explicit locking to protect it. Exceptions are: 210 * fs_time 211 * fs_optim 212 * fs_cstotal 213 * fs_fmod 214 * fs_cgrotor 215 * fs_flags (largefiles flag - set when a file grows large) 216 * These fields require the use of fs->fs_lock. 217 */ 218 #define FS_MAGIC 0x011954 219 #define MTB_UFS_MAGIC 0xdecade 220 #define FSOKAY (0x7c269d38) 221 /* #define FSOKAY (0x7c269d38 + 3) */ 222 /* 223 * fs_clean values 224 */ 225 #define FSACTIVE ((char)0) 226 #define FSCLEAN ((char)0x1) 227 #define FSSTABLE ((char)0x2) 228 #define FSBAD ((char)0xff) /* mounted !FSCLEAN and !FSSTABLE */ 229 #define FSSUSPEND ((char)0xfe) /* temporarily suspended */ 230 #define FSLOG ((char)0xfd) /* logging fs */ 231 #define FSFIX ((char)0xfc) /* being repaired while mounted */ 232 233 /* 234 * fs_flags values 235 */ 236 #define FSLARGEFILES ((char)0x1) /* largefiles exist on filesystem */ 237 238 struct fs { 239 uint32_t fs_link; /* linked list of file systems */ 240 uint32_t fs_rolled; /* logging only: fs fully rolled */ 241 daddr32_t fs_sblkno; /* addr of super-block in filesys */ 242 daddr32_t fs_cblkno; /* offset of cyl-block in filesys */ 243 daddr32_t fs_iblkno; /* offset of inode-blocks in filesys */ 244 daddr32_t fs_dblkno; /* offset of first data after cg */ 245 int32_t fs_cgoffset; /* cylinder group offset in cylinder */ 246 int32_t fs_cgmask; /* used to calc mod fs_ntrak */ 247 time32_t fs_time; /* last time written */ 248 int32_t fs_size; /* number of blocks in fs */ 249 int32_t fs_dsize; /* number of data blocks in fs */ 250 int32_t fs_ncg; /* number of cylinder groups */ 251 int32_t fs_bsize; /* size of basic blocks in fs */ 252 int32_t fs_fsize; /* size of frag blocks in fs */ 253 int32_t fs_frag; /* number of frags in a block in fs */ 254 /* these are configuration parameters */ 255 int32_t fs_minfree; /* minimum percentage of free blocks */ 256 int32_t fs_rotdelay; /* num of ms for optimal next block */ 257 int32_t fs_rps; /* disk revolutions per second */ 258 /* these fields can be computed from the others */ 259 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ 260 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ 261 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ 262 int32_t fs_fshift; /* ``numfrags'' calc number of frags */ 263 /* these are configuration parameters */ 264 int32_t fs_maxcontig; /* max number of contiguous blks */ 265 int32_t fs_maxbpg; /* max number of blks per cyl group */ 266 /* these fields can be computed from the others */ 267 int32_t fs_fragshift; /* block to frag shift */ 268 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ 269 int32_t fs_sbsize; /* actual size of super block */ 270 int32_t fs_csmask; /* csum block offset */ 271 int32_t fs_csshift; /* csum block number */ 272 int32_t fs_nindir; /* value of NINDIR */ 273 int32_t fs_inopb; /* value of INOPB */ 274 int32_t fs_nspf; /* value of NSPF */ 275 /* yet another configuration parameter */ 276 int32_t fs_optim; /* optimization preference, see below */ 277 /* these fields are derived from the hardware */ 278 /* USL SVR4 compatibility */ 279 #ifdef _LITTLE_ENDIAN 280 /* 281 * USL SVR4 compatibility 282 * 283 * There was a significant divergence here between Solaris and 284 * SVR4 for x86. By swapping these two members in the superblock, 285 * we get read-only compatibility of SVR4 filesystems. Otherwise 286 * there would be no compatibility. This change was introduced 287 * during bootstrapping of Solaris on x86. By making this ifdef'ed 288 * on byte order, we provide ongoing compatibility across all 289 * platforms with the same byte order, the highest compatibility 290 * that can be achieved. 291 */ 292 int32_t fs_state; /* file system state time stamp */ 293 #else 294 int32_t fs_npsect; /* # sectors/track including spares */ 295 #endif 296 int32_t fs_si; /* summary info state - lufs only */ 297 int32_t fs_trackskew; /* sector 0 skew, per track */ 298 /* a unique id for this filesystem (currently unused and unmaintained) */ 299 /* In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek */ 300 /* Neither of those fields is used in the Tahoe code right now but */ 301 /* there could be problems if they are. */ 302 int32_t fs_id[2]; /* file system id */ 303 /* sizes determined by number of cylinder groups and their sizes */ 304 daddr32_t fs_csaddr; /* blk addr of cyl grp summary area */ 305 int32_t fs_cssize; /* size of cyl grp summary area */ 306 int32_t fs_cgsize; /* cylinder group size */ 307 /* these fields are derived from the hardware */ 308 int32_t fs_ntrak; /* tracks per cylinder */ 309 int32_t fs_nsect; /* sectors per track */ 310 int32_t fs_spc; /* sectors per cylinder */ 311 /* this comes from the disk driver partitioning */ 312 int32_t fs_ncyl; /* cylinders in file system */ 313 /* these fields can be computed from the others */ 314 int32_t fs_cpg; /* cylinders per group */ 315 int32_t fs_ipg; /* inodes per group */ 316 int32_t fs_fpg; /* blocks per group * fs_frag */ 317 /* this data must be re-computed after crashes */ 318 struct csum fs_cstotal; /* cylinder summary information */ 319 /* these fields are cleared at mount time */ 320 char fs_fmod; /* super block modified flag */ 321 char fs_clean; /* file system state flag */ 322 char fs_ronly; /* mounted read-only flag */ 323 char fs_flags; /* largefiles flag, etc. */ 324 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ 325 /* these fields retain the current block allocation info */ 326 int32_t fs_cgrotor; /* last cg searched */ 327 /* 328 * The following used to be fs_csp[MAXCSBUFS]. It was not 329 * used anywhere except in old utilities. We removed this 330 * in 5.6 and expect fs_u.fs_csp to be used instead. 331 * We no longer limit fs_cssize based on MAXCSBUFS. 332 */ 333 union { /* fs_cs (csum) info */ 334 uint32_t fs_csp_pad[MAXCSBUFS]; 335 struct csum *fs_csp; 336 } fs_u; 337 int32_t fs_cpc; /* cyl per cycle in postbl */ 338 short fs_opostbl[16][8]; /* old rotation block list head */ 339 int32_t fs_sparecon[51]; /* reserved for future constants */ 340 int32_t fs_version; /* minor version of ufs */ 341 int32_t fs_logbno; /* block # of embedded log */ 342 int32_t fs_reclaim; /* reclaim open, deleted files */ 343 int32_t fs_sparecon2; /* reserved for future constant */ 344 #ifdef _LITTLE_ENDIAN 345 /* USL SVR4 compatibility */ 346 int32_t fs_npsect; /* # sectors/track including spares */ 347 #else 348 int32_t fs_state; /* file system state time stamp */ 349 #endif 350 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */ 351 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */ 352 int32_t fs_postblformat; /* format of positional layout tables */ 353 int32_t fs_nrpos; /* number of rotaional positions */ 354 int32_t fs_postbloff; /* (short) rotation block list head */ 355 int32_t fs_rotbloff; /* (uchar_t) blocks for each rotation */ 356 int32_t fs_magic; /* magic number */ 357 uchar_t fs_space[1]; /* list of blocks for each rotation */ 358 /* actually longer */ 359 }; 360 361 /* 362 * values for fs_reclaim 363 */ 364 #define FS_RECLAIM (0x00000001) /* run the reclaim-files thread */ 365 #define FS_RECLAIMING (0x00000002) /* running the reclaim-files thread */ 366 #define FS_CHECKCLEAN (0x00000004) /* checking for a clean file system */ 367 #define FS_CHECKRECLAIM (0x00000008) /* checking for a reclaimable file */ 368 369 /* 370 * values for fs_rolled 371 */ 372 #define FS_PRE_FLAG 0 /* old system, prior to fs_rolled flag */ 373 #define FS_ALL_ROLLED 1 374 #define FS_NEED_ROLL 2 375 376 /* 377 * values for fs_si, logging only 378 * si is the summary of the summary - a copy of the cylinder group summary 379 * info held in an array for perf. On a mount if this is out of date 380 * (FS_SI_BAD) it can be re-constructed by re-reading the cgs. 381 */ 382 #define FS_SI_OK 0 /* on-disk summary info ok */ 383 #define FS_SI_BAD 1 /* out of date on-disk si */ 384 385 /* 386 * Preference for optimization. 387 */ 388 #define FS_OPTTIME 0 /* minimize allocation time */ 389 #define FS_OPTSPACE 1 /* minimize disk fragmentation */ 390 391 /* 392 * Rotational layout table format types 393 */ 394 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 395 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 396 397 /* 398 * Macros for access to superblock array structures 399 */ 400 #ifdef _KERNEL 401 #define fs_postbl(ufsvfsp, cylno) \ 402 (((ufsvfsp)->vfs_fs->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ 403 ? ((ufsvfsp)->vfs_fs->fs_opostbl[cylno]) \ 404 : ((short *)((char *)(ufsvfsp)->vfs_fs + \ 405 (ufsvfsp)->vfs_fs->fs_postbloff) \ 406 + (cylno) * (ufsvfsp)->vfs_nrpos)) 407 #else 408 #define fs_postbl(fs, cylno) \ 409 (((fs)->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ 410 ? ((fs)->fs_opostbl[cylno]) \ 411 : ((short *)((char *)(fs) + \ 412 (fs)->fs_postbloff) \ 413 + (cylno) * (fs)->fs_nrpos)) 414 #endif 415 416 #define fs_rotbl(fs) \ 417 (((fs)->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ 418 ? ((fs)->fs_space) \ 419 : ((uchar_t *)((char *)(fs) + (fs)->fs_rotbloff))) 420 421 /* 422 * Convert cylinder group to base address of its global summary info. 423 * 424 * N.B. This macro assumes that sizeof (struct csum) is a power of two. 425 * We just index off the first entry into one big array 426 */ 427 428 #define fs_cs(fs, indx) fs_u.fs_csp[(indx)] 429 430 /* 431 * Cylinder group block for a file system. 432 * 433 * Writable fields in the cylinder group are protected by the associated 434 * super block lock fs->fs_lock. 435 */ 436 #define CG_MAGIC 0x090255 437 struct cg { 438 uint32_t cg_link; /* NOT USED linked list of cyl groups */ 439 int32_t cg_magic; /* magic number */ 440 time32_t cg_time; /* time last written */ 441 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 442 short cg_ncyl; /* number of cyl's this cg */ 443 short cg_niblk; /* number of inode blocks this cg */ 444 int32_t cg_ndblk; /* number of data blocks this cg */ 445 struct csum cg_cs; /* cylinder summary information */ 446 int32_t cg_rotor; /* position of last used block */ 447 int32_t cg_frotor; /* position of last used frag */ 448 int32_t cg_irotor; /* position of last used inode */ 449 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */ 450 int32_t cg_btotoff; /* (int32_t)block totals per cylinder */ 451 int32_t cg_boff; /* (short) free block positions */ 452 int32_t cg_iusedoff; /* (char) used inode map */ 453 int32_t cg_freeoff; /* (uchar_t) free block map */ 454 int32_t cg_nextfreeoff; /* (uchar_t) next available space */ 455 int32_t cg_sparecon[16]; /* reserved for future use */ 456 uchar_t cg_space[1]; /* space for cylinder group maps */ 457 /* actually longer */ 458 }; 459 460 /* 461 * Macros for access to cylinder group array structures 462 */ 463 464 #define cg_blktot(cgp) \ 465 (((cgp)->cg_magic != CG_MAGIC) \ 466 ? (((struct ocg *)(cgp))->cg_btot) \ 467 : ((int32_t *)((char *)(cgp) + (cgp)->cg_btotoff))) 468 469 #ifdef _KERNEL 470 #define cg_blks(ufsvfsp, cgp, cylno) \ 471 (((cgp)->cg_magic != CG_MAGIC) \ 472 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 473 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + \ 474 (cylno) * (ufsvfsp)->vfs_nrpos)) 475 #else 476 #define cg_blks(fs, cgp, cylno) \ 477 (((cgp)->cg_magic != CG_MAGIC) \ 478 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 479 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + \ 480 (cylno) * (fs)->fs_nrpos)) 481 #endif 482 483 #define cg_inosused(cgp) \ 484 (((cgp)->cg_magic != CG_MAGIC) \ 485 ? (((struct ocg *)(cgp))->cg_iused) \ 486 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff))) 487 488 #define cg_blksfree(cgp) \ 489 (((cgp)->cg_magic != CG_MAGIC) \ 490 ? (((struct ocg *)(cgp))->cg_free) \ 491 : ((uchar_t *)((char *)(cgp) + (cgp)->cg_freeoff))) 492 493 #define cg_chkmagic(cgp) \ 494 ((cgp)->cg_magic == CG_MAGIC || \ 495 ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) 496 497 /* 498 * The following structure is defined 499 * for compatibility with old file systems. 500 */ 501 struct ocg { 502 uint32_t cg_link; /* NOT USED linked list of cyl groups */ 503 uint32_t cg_rlink; /* NOT USED incore cyl groups */ 504 time32_t cg_time; /* time last written */ 505 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 506 short cg_ncyl; /* number of cyl's this cg */ 507 short cg_niblk; /* number of inode blocks this cg */ 508 int32_t cg_ndblk; /* number of data blocks this cg */ 509 struct csum cg_cs; /* cylinder summary information */ 510 int32_t cg_rotor; /* position of last used block */ 511 int32_t cg_frotor; /* position of last used frag */ 512 int32_t cg_irotor; /* position of last used inode */ 513 int32_t cg_frsum[8]; /* counts of available frags */ 514 int32_t cg_btot[32]; /* block totals per cylinder */ 515 short cg_b[32][8]; /* positions of free blocks */ 516 char cg_iused[256]; /* used inode map */ 517 int32_t cg_magic; /* magic number */ 518 uchar_t cg_free[1]; /* free block map */ 519 /* actually longer */ 520 }; 521 522 /* 523 * Turn frag offsets into disk block addresses. 524 * This maps frags to device size blocks. 525 * (In the names of these macros, "fsb" refers to "frags", not 526 * file system blocks.) 527 */ 528 #ifdef KERNEL 529 #define fsbtodb(fs, b) (((daddr_t)(b)) << (fs)->fs_fsbtodb) 530 #else /* KERNEL */ 531 #define fsbtodb(fs, b) (((diskaddr_t)(b)) << (fs)->fs_fsbtodb) 532 #endif /* KERNEL */ 533 534 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) 535 536 /* 537 * Get the offset of the log, in either sectors, frags, or file system 538 * blocks. The interpretation of the fs_logbno field depends on whether 539 * this is UFS or MTB UFS. (UFS stores the value as sectors. MTBUFS 540 * stores the value as frags.) 541 */ 542 543 #ifdef KERNEL 544 #define logbtodb(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 545 (daddr_t)(b) : ((daddr_t)(b) << (fs)->fs_fsbtodb)) 546 #else /* KERNEL */ 547 #define logbtodb(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 548 (diskaddr_t)(b) : ((diskaddr_t)(b) << (fs)->fs_fsbtodb)) 549 #endif /* KERNEL */ 550 #define logbtofrag(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 551 (b) >> (fs)->fs_fsbtodb : (b)) 552 #define logbtofsblk(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 553 (b) >> ((fs)->fs_fsbtodb + (fs)->fs_fragshift) : \ 554 (b) >> (fs)->fs_fragshift) 555 556 /* 557 * Cylinder group macros to locate things in cylinder groups. 558 * They calc file system addresses of cylinder group data structures. 559 */ 560 #define cgbase(fs, c) ((daddr32_t)((fs)->fs_fpg * (c))) 561 562 #define cgstart(fs, c) \ 563 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) 564 565 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ 566 567 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ 568 569 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ 570 571 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ 572 573 /* 574 * Macros for handling inode numbers: 575 * inode number to file system block offset. 576 * inode number to cylinder group number. 577 * inode number to file system block address. 578 */ 579 #define itoo(fs, x) ((x) % (uint32_t)INOPB(fs)) 580 581 #define itog(fs, x) ((x) / (uint32_t)(fs)->fs_ipg) 582 583 #define itod(fs, x) \ 584 ((daddr32_t)(cgimin(fs, itog(fs, x)) + \ 585 (blkstofrags((fs), (((x)%(ulong_t)(fs)->fs_ipg)/(ulong_t)INOPB(fs)))))) 586 587 /* 588 * Give cylinder group number for a file system block. 589 * Give cylinder group block number for a file system block. 590 */ 591 #define dtog(fs, d) ((d) / (fs)->fs_fpg) 592 #define dtogd(fs, d) ((d) % (fs)->fs_fpg) 593 594 /* 595 * Extract the bits for a block from a map. 596 * Compute the cylinder and rotational position of a cyl block addr. 597 */ 598 #define blkmap(fs, map, loc) \ 599 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & \ 600 (0xff >> (NBBY - (fs)->fs_frag))) 601 602 #define cbtocylno(fs, bno) \ 603 ((bno) * NSPF(fs) / (fs)->fs_spc) 604 605 #ifdef _KERNEL 606 #define cbtorpos(ufsvfsp, bno) \ 607 ((((bno) * NSPF((ufsvfsp)->vfs_fs) % (ufsvfsp)->vfs_fs->fs_spc) % \ 608 (ufsvfsp)->vfs_fs->fs_nsect) * \ 609 (ufsvfsp)->vfs_nrpos) / (ufsvfsp)->vfs_fs->fs_nsect 610 #else 611 #define cbtorpos(fs, bno) \ 612 ((((bno) * NSPF(fs) % (fs)->fs_spc) % \ 613 (fs)->fs_nsect) * \ 614 (fs)->fs_nrpos) / (fs)->fs_nsect 615 #endif 616 617 /* 618 * The following macros optimize certain frequently calculated 619 * quantities by using shifts and masks in place of divisions 620 * modulos and multiplications. 621 */ 622 623 /* 624 * This macro works for 40 bit offset support in ufs because 625 * this calculates offset in the block and therefore no loss of 626 * information while casting to int. 627 */ 628 629 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ 630 ((int)((loc) & ~(fs)->fs_bmask)) 631 632 /* 633 * This macro works for 40 bit offset support similar to blkoff 634 */ 635 636 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ 637 ((int)((loc) & ~(fs)->fs_fmask)) 638 639 /* 640 * The cast to int32_t does not result in any loss of information because 641 * the number of logical blocks in the file system is limited to 642 * what fits in an int32_t anyway. 643 */ 644 645 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ 646 ((int32_t)((loc) >> (fs)->fs_bshift)) 647 648 /* 649 * The same argument as above applies here. 650 */ 651 652 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ 653 ((int32_t)((loc) >> (fs)->fs_fshift)) 654 655 /* 656 * Size can be a 64-bit value and therefore we sign extend fs_bmask 657 * to a 64-bit value too so that the higher 32 bits are masked 658 * properly. Note that the type of fs_bmask has to be signed. Otherwise 659 * compiler will set the higher 32 bits as zero and we don't want 660 * this to happen. 661 */ 662 663 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ 664 (((size) + (fs)->fs_bsize - 1) & (offset_t)(fs)->fs_bmask) 665 666 /* 667 * Same argument as above. 668 */ 669 670 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ 671 (((size) + (fs)->fs_fsize - 1) & (offset_t)(fs)->fs_fmask) 672 673 /* 674 * frags cannot exceed 32-bit value since we only support 40bit sizes. 675 */ 676 677 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ 678 ((frags) >> (fs)->fs_fragshift) 679 680 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ 681 ((blks) << (fs)->fs_fragshift) 682 683 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ 684 ((fsb) & ((fs)->fs_frag - 1)) 685 686 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ 687 ((fsb) &~ ((fs)->fs_frag - 1)) 688 689 /* 690 * Determine the number of available frags given a 691 * percentage to hold in reserve 692 */ 693 #define freespace(fs, ufsvfsp) \ 694 ((blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ 695 (fs)->fs_cstotal.cs_nffree) - (ufsvfsp)->vfs_minfrags) 696 697 /* 698 * Determining the size of a file block in the file system. 699 */ 700 701 #define blksize(fs, ip, lbn) \ 702 (((lbn) >= NDADDR || \ 703 (ip)->i_size >= (offset_t)((lbn) + 1) << (fs)->fs_bshift) \ 704 ? (fs)->fs_bsize \ 705 : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) 706 707 #define dblksize(fs, dip, lbn) \ 708 (((lbn) >= NDADDR || \ 709 (dip)->di_size >= (offset_t)((lbn) + 1) << (fs)->fs_bshift) \ 710 ? (fs)->fs_bsize \ 711 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 712 713 /* 714 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size. 715 */ 716 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) 717 #define NSPF(fs) ((fs)->fs_nspf) 718 719 /* 720 * INOPB is the number of inodes in a secondary storage block. 721 */ 722 #define INOPB(fs) ((fs)->fs_inopb) 723 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) 724 725 /* 726 * NINDIR is the number of indirects in a file system block. 727 */ 728 #define NINDIR(fs) ((fs)->fs_nindir) 729 730 /* 731 * bit map related macros 732 */ 733 #define bitloc(a, i) ((a)[(i)/NBBY]) 734 #define setbit(a, i) ((a)[(i)/NBBY] |= 1<<((i)%NBBY)) 735 #define clrbit(a, i) ((a)[(i)/NBBY] &= ~(1<<((i)%NBBY))) 736 #define isset(a, i) ((a)[(i)/NBBY] & (1<<((i)%NBBY))) 737 #define isclr(a, i) (((a)[(i)/NBBY] & (1<<((i)%NBBY))) == 0) 738 739 #define getfs(vfsp) \ 740 ((struct fs *)((struct ufsvfs *)vfsp->vfs_data)->vfs_bufp->b_un.b_addr) 741 742 #define RETRY_LOCK_DELAY 1 743 744 /* 745 * Macros to test and acquire i_rwlock: 746 * some vnops hold the target directory's i_rwlock after calling 747 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 748 * VOP_RWLOCK is explicitly called by the filesystem independent code before 749 * calling the file system operation. In these cases the order is reversed 750 * (i.e i_rwlock is taken first and then ufs_lockfs_begin is called). This 751 * is fine as long as ufs_lockfs_begin acts as a VOP counter but with 752 * ufs_quiesce setting the SLOCK bit this becomes a synchronizing 753 * object which might lead to a deadlock. So we use rw_tryenter instead of 754 * rw_enter. If we fail to get this lock and find that SLOCK bit is set, we 755 * call ufs_lockfs_end and restart the operation. 756 */ 757 758 #define ufs_tryirwlock(lock, mode, label) \ 759 {\ 760 indeadlock = 0;\ 761 label:\ 762 if (!rw_tryenter(lock, mode))\ 763 {\ 764 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {\ 765 indeadlock = 1;\ 766 } else {\ 767 delay(RETRY_LOCK_DELAY);\ 768 goto label;\ 769 }\ 770 }\ 771 } 772 773 /* 774 * The macro ufs_tryirwlock_trans is used in functions which call 775 * TRANS_BEGIN_CSYNC and ufs_lockfs_begin, hence the need to call 776 * TRANS_END_CSYNC and ufs_lockfs_end. 777 */ 778 779 #define ufs_tryirwlock_trans(lock, mode, transmode, label) \ 780 {\ 781 indeadlock = 0;\ 782 label:\ 783 if (!rw_tryenter(lock, mode))\ 784 {\ 785 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {\ 786 TRANS_END_CSYNC(ufsvfsp, error, issync,\ 787 transmode, trans_size);\ 788 ufs_lockfs_end(ulp);\ 789 indeadlock = 1;\ 790 } else {\ 791 delay(RETRY_LOCK_DELAY);\ 792 goto label;\ 793 }\ 794 }\ 795 } 796 797 #ifdef __cplusplus 798 } 799 #endif 800 801 #endif /* _SYS_FS_UFS_FS_H */ 802