1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2018 Joyent, Inc.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
26 */
27
28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30
31 /*
32 * Portions of this source code were derived from Berkeley 4.3 BSD
33 * under license from the Regents of the University of California.
34 */
35
36 #include <sys/types.h>
37 #include <sys/t_lock.h>
38 #include <sys/ksynch.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/systm.h>
42 #include <sys/sysmacros.h>
43 #include <sys/resource.h>
44 #include <sys/signal.h>
45 #include <sys/cred.h>
46 #include <sys/user.h>
47 #include <sys/buf.h>
48 #include <sys/vfs.h>
49 #include <sys/vfs_opreg.h>
50 #include <sys/vnode.h>
51 #include <sys/proc.h>
52 #include <sys/disp.h>
53 #include <sys/file.h>
54 #include <sys/fcntl.h>
55 #include <sys/flock.h>
56 #include <sys/atomic.h>
57 #include <sys/kmem.h>
58 #include <sys/uio.h>
59 #include <sys/dnlc.h>
60 #include <sys/conf.h>
61 #include <sys/mman.h>
62 #include <sys/pathname.h>
63 #include <sys/debug.h>
64 #include <sys/vmsystm.h>
65 #include <sys/cmn_err.h>
66 #include <sys/filio.h>
67 #include <sys/policy.h>
68
69 #include <sys/fs/ufs_fs.h>
70 #include <sys/fs/ufs_lockfs.h>
71 #include <sys/fs/ufs_filio.h>
72 #include <sys/fs/ufs_inode.h>
73 #include <sys/fs/ufs_fsdir.h>
74 #include <sys/fs/ufs_quota.h>
75 #include <sys/fs/ufs_log.h>
76 #include <sys/fs/ufs_snap.h>
77 #include <sys/fs/ufs_trans.h>
78 #include <sys/fs/ufs_panic.h>
79 #include <sys/fs/ufs_bio.h>
80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
81 #include <sys/errno.h>
82 #include <sys/fssnap_if.h>
83 #include <sys/unistd.h>
84 #include <sys/sunddi.h>
85
86 #include <sys/filio.h> /* _FIOIO */
87
88 #include <vm/hat.h>
89 #include <vm/page.h>
90 #include <vm/pvn.h>
91 #include <vm/as.h>
92 #include <vm/seg.h>
93 #include <vm/seg_map.h>
94 #include <vm/seg_vn.h>
95 #include <vm/seg_kmem.h>
96 #include <vm/rm.h>
97 #include <sys/swap.h>
98
99 #include <fs/fs_subr.h>
100
101 #include <sys/fs/decomp.h>
102
103 static struct instats ins;
104
105 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
106 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
107 caddr_t, struct page **, size_t, enum seg_rw, int);
108 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
109 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
110 caller_context_t *);
111 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
112 struct caller_context *);
113 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
114 struct caller_context *);
115 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
116 int *, caller_context_t *);
117 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
118 caller_context_t *);
119 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
120 caller_context_t *);
121 static int ufs_access(struct vnode *, int, int, struct cred *,
122 caller_context_t *);
123 static int ufs_lookup(struct vnode *, char *, struct vnode **,
124 struct pathname *, int, struct vnode *, struct cred *,
125 caller_context_t *, int *, pathname_t *);
126 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
127 int, struct vnode **, struct cred *, int,
128 caller_context_t *, vsecattr_t *);
129 static int ufs_remove(struct vnode *, char *, struct cred *,
130 caller_context_t *, int);
131 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
132 caller_context_t *, int);
133 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
134 struct cred *, caller_context_t *, int);
135 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
136 struct cred *, caller_context_t *, int, vsecattr_t *);
137 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
138 caller_context_t *, int);
139 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
140 caller_context_t *, int);
141 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
142 struct cred *, caller_context_t *, int);
143 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
144 caller_context_t *);
145 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
146 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
147 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
148 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
149 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
150 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
151 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
152 struct flk_callback *, struct cred *,
153 caller_context_t *);
154 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
155 cred_t *, caller_context_t *);
156 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
157 struct page **, size_t, struct seg *, caddr_t,
158 enum seg_rw, struct cred *, caller_context_t *);
159 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
160 caller_context_t *);
161 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
162 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
163 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
164 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
165 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
166 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
167 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
168 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
169 caller_context_t *);
170 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
171 caller_context_t *);
172 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
173 caller_context_t *);
174 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
175 struct cred *, caller_context_t *);
176 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
177 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
178 daddr32_t *, int, int);
179 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
180 caller_context_t *);
181 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
182 caller_context_t *);
183 static int ufs_priv_access(void *, int, struct cred *);
184 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
185 struct vnode **);
186
187 /*
188 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
189 *
190 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
191 */
192 struct vnodeops *ufs_vnodeops;
193
194 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
195 const fs_operation_def_t ufs_vnodeops_template[] = {
196 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
197 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
198 VOPNAME_READ, { .vop_read = ufs_read },
199 VOPNAME_WRITE, { .vop_write = ufs_write },
200 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
201 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
202 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
203 VOPNAME_ACCESS, { .vop_access = ufs_access },
204 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
205 VOPNAME_CREATE, { .vop_create = ufs_create },
206 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
207 VOPNAME_LINK, { .vop_link = ufs_link },
208 VOPNAME_RENAME, { .vop_rename = ufs_rename },
209 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
210 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
211 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
212 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
213 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
214 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
215 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
216 VOPNAME_FID, { .vop_fid = ufs_fid },
217 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
218 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
219 VOPNAME_SEEK, { .vop_seek = ufs_seek },
220 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
221 VOPNAME_SPACE, { .vop_space = ufs_space },
222 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
223 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
224 VOPNAME_MAP, { .vop_map = ufs_map },
225 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
226 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
227 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
228 VOPNAME_DUMP, { .vop_dump = ufs_dump },
229 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
230 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
231 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
232 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
233 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
234 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
235 NULL, NULL
236 };
237
238 #define MAX_BACKFILE_COUNT 9999
239
240 /*
241 * Created by ufs_dumpctl() to store a file's disk block info into memory.
242 * Used by ufs_dump() to dump data to disk directly.
243 */
244 struct dump {
245 struct inode *ip; /* the file we contain */
246 daddr_t fsbs; /* number of blocks stored */
247 struct timeval32 time; /* time stamp for the struct */
248 daddr32_t dblk[1]; /* place holder for block info */
249 };
250
251 static struct dump *dump_info = NULL;
252
253 /*
254 * Previously there was no special action required for ordinary files.
255 * (Devices are handled through the device file system.)
256 * Now we support Large Files and Large File API requires open to
257 * fail if file is large.
258 * We could take care to prevent data corruption
259 * by doing an atomic check of size and truncate if file is opened with
260 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
261 * layers. So taking care of truncation here is a change in the existing
262 * semantics of VOP_OPEN and therefore we chose not to implement any thing
263 * here. The check for the size of the file > 2GB is being done at the
264 * vfs layer in routine vn_open().
265 */
266
267 /* ARGSUSED */
268 static int
ufs_open(struct vnode ** vpp,int flag,struct cred * cr,caller_context_t * ct)269 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
270 {
271 return (0);
272 }
273
274 /*ARGSUSED*/
275 static int
ufs_close(struct vnode * vp,int flag,int count,offset_t offset,struct cred * cr,caller_context_t * ct)276 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
277 struct cred *cr, caller_context_t *ct)
278 {
279 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
280 cleanshares(vp, ttoproc(curthread)->p_pid);
281
282 /*
283 * Push partially filled cluster at last close.
284 * ``last close'' is approximated because the dnlc
285 * may have a hold on the vnode.
286 * Checking for VBAD here will also act as a forced umount check.
287 */
288 if (vp->v_count <= 2 && vp->v_type != VBAD) {
289 struct inode *ip = VTOI(vp);
290 if (ip->i_delaylen) {
291 ins.in_poc.value.ul++;
292 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
293 B_ASYNC | B_FREE, cr);
294 ip->i_delaylen = 0;
295 }
296 }
297
298 return (0);
299 }
300
301 /*ARGSUSED*/
302 static int
ufs_read(struct vnode * vp,struct uio * uiop,int ioflag,struct cred * cr,struct caller_context * ct)303 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
304 struct caller_context *ct)
305 {
306 struct inode *ip = VTOI(vp);
307 struct ufsvfs *ufsvfsp;
308 struct ulockfs *ulp = NULL;
309 int error = 0;
310 int intrans = 0;
311
312 ASSERT(RW_READ_HELD(&ip->i_rwlock));
313
314 /*
315 * Mandatory locking needs to be done before ufs_lockfs_begin()
316 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
317 */
318 if (MANDLOCK(vp, ip->i_mode)) {
319 /*
320 * ufs_getattr ends up being called by chklock
321 */
322 error = chklock(vp, FREAD, uiop->uio_loffset,
323 uiop->uio_resid, uiop->uio_fmode, ct);
324 if (error)
325 goto out;
326 }
327
328 ufsvfsp = ip->i_ufsvfs;
329 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
330 if (error)
331 goto out;
332
333 /*
334 * In the case that a directory is opened for reading as a file
335 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
336 * The locking order had to be changed to avoid a deadlock with
337 * an update taking place on that directory at the same time.
338 */
339 if ((ip->i_mode & IFMT) == IFDIR) {
340
341 rw_enter(&ip->i_contents, RW_READER);
342 error = rdip(ip, uiop, ioflag, cr);
343 rw_exit(&ip->i_contents);
344
345 if (error) {
346 if (ulp)
347 ufs_lockfs_end(ulp);
348 goto out;
349 }
350
351 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
352 TRANS_ISTRANS(ufsvfsp)) {
353 rw_exit(&ip->i_rwlock);
354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
355 error);
356 ASSERT(!error);
357 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
358 TOP_READ_SIZE);
359 rw_enter(&ip->i_rwlock, RW_READER);
360 }
361 } else {
362 /*
363 * Only transact reads to files opened for sync-read and
364 * sync-write on a file system that is not write locked.
365 *
366 * The ``not write locked'' check prevents problems with
367 * enabling/disabling logging on a busy file system. E.g.,
368 * logging exists at the beginning of the read but does not
369 * at the end.
370 *
371 */
372 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
373 TRANS_ISTRANS(ufsvfsp)) {
374 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
375 error);
376 ASSERT(!error);
377 intrans = 1;
378 }
379
380 rw_enter(&ip->i_contents, RW_READER);
381 error = rdip(ip, uiop, ioflag, cr);
382 rw_exit(&ip->i_contents);
383
384 if (intrans) {
385 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
386 TOP_READ_SIZE);
387 }
388 }
389
390 if (ulp) {
391 ufs_lockfs_end(ulp);
392 }
393 out:
394
395 return (error);
396 }
397
398 extern int ufs_HW; /* high water mark */
399 extern int ufs_LW; /* low water mark */
400 int ufs_WRITES = 1; /* XXX - enable/disable */
401 int ufs_throttles = 0; /* throttling count */
402 int ufs_allow_shared_writes = 1; /* directio shared writes */
403
404 static int
ufs_check_rewrite(struct inode * ip,struct uio * uiop,int ioflag)405 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
406 {
407 int shared_write;
408
409 /*
410 * If the FDSYNC flag is set then ignore the global
411 * ufs_allow_shared_writes in this case.
412 */
413 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
414
415 /*
416 * Filter to determine if this request is suitable as a
417 * concurrent rewrite. This write must not allocate blocks
418 * by extending the file or filling in holes. No use trying
419 * through FSYNC descriptors as the inode will be synchronously
420 * updated after the write. The uio structure has not yet been
421 * checked for sanity, so assume nothing.
422 */
423 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
424 (uiop->uio_loffset >= (offset_t)0) &&
425 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
426 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
427 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
428 shared_write);
429 }
430
431 /*ARGSUSED*/
432 static int
ufs_write(struct vnode * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)433 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
434 caller_context_t *ct)
435 {
436 struct inode *ip = VTOI(vp);
437 struct ufsvfs *ufsvfsp;
438 struct ulockfs *ulp;
439 int retry = 1;
440 int error, resv, resid = 0;
441 int directio_status;
442 int exclusive;
443 int rewriteflg;
444 long start_resid = uiop->uio_resid;
445
446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
447
448 retry_mandlock:
449 /*
450 * Mandatory locking needs to be done before ufs_lockfs_begin()
451 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
452 * Check for forced unmounts normally done in ufs_lockfs_begin().
453 */
454 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
455 error = EIO;
456 goto out;
457 }
458 if (MANDLOCK(vp, ip->i_mode)) {
459
460 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
461
462 /*
463 * ufs_getattr ends up being called by chklock
464 */
465 error = chklock(vp, FWRITE, uiop->uio_loffset,
466 uiop->uio_resid, uiop->uio_fmode, ct);
467 if (error)
468 goto out;
469 }
470
471 /* i_rwlock can change in chklock */
472 exclusive = rw_write_held(&ip->i_rwlock);
473 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
474
475 /*
476 * Check for fast-path special case of directio re-writes.
477 */
478 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
479 !exclusive && rewriteflg) {
480
481 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
482 if (error)
483 goto out;
484
485 rw_enter(&ip->i_contents, RW_READER);
486 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
487 &directio_status);
488 if (directio_status == DIRECTIO_SUCCESS) {
489 uint_t i_flag_save;
490
491 if (start_resid != uiop->uio_resid)
492 error = 0;
493 /*
494 * Special treatment of access times for re-writes.
495 * If IMOD is not already set, then convert it
496 * to IMODACC for this operation. This defers
497 * entering a delta into the log until the inode
498 * is flushed. This mimics what is done for read
499 * operations and inode access time.
500 */
501 mutex_enter(&ip->i_tlock);
502 i_flag_save = ip->i_flag;
503 ip->i_flag |= IUPD | ICHG;
504 ip->i_seq++;
505 ITIMES_NOLOCK(ip);
506 if ((i_flag_save & IMOD) == 0) {
507 ip->i_flag &= ~IMOD;
508 ip->i_flag |= IMODACC;
509 }
510 mutex_exit(&ip->i_tlock);
511 rw_exit(&ip->i_contents);
512 if (ulp)
513 ufs_lockfs_end(ulp);
514 goto out;
515 }
516 rw_exit(&ip->i_contents);
517 if (ulp)
518 ufs_lockfs_end(ulp);
519 }
520
521 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
522 rw_exit(&ip->i_rwlock);
523 rw_enter(&ip->i_rwlock, RW_WRITER);
524 /*
525 * Mandatory locking could have been enabled
526 * after dropping the i_rwlock.
527 */
528 if (MANDLOCK(vp, ip->i_mode))
529 goto retry_mandlock;
530 }
531
532 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
533 if (error)
534 goto out;
535
536 /*
537 * Amount of log space needed for this write
538 */
539 if (!rewriteflg || !(ioflag & FDSYNC))
540 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
541
542 /*
543 * Throttle writes.
544 */
545 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
546 mutex_enter(&ip->i_tlock);
547 while (ip->i_writes > ufs_HW) {
548 ufs_throttles++;
549 cv_wait(&ip->i_wrcv, &ip->i_tlock);
550 }
551 mutex_exit(&ip->i_tlock);
552 }
553
554 /*
555 * Enter Transaction
556 *
557 * If the write is a rewrite there is no need to open a transaction
558 * if the FDSYNC flag is set and not the FSYNC. In this case just
559 * set the IMODACC flag to modify do the update at a later time
560 * thus avoiding the overhead of the logging transaction that is
561 * not required.
562 */
563 if (ioflag & (FSYNC|FDSYNC)) {
564 if (ulp) {
565 if (rewriteflg) {
566 uint_t i_flag_save;
567
568 rw_enter(&ip->i_contents, RW_READER);
569 mutex_enter(&ip->i_tlock);
570 i_flag_save = ip->i_flag;
571 ip->i_flag |= IUPD | ICHG;
572 ip->i_seq++;
573 ITIMES_NOLOCK(ip);
574 if ((i_flag_save & IMOD) == 0) {
575 ip->i_flag &= ~IMOD;
576 ip->i_flag |= IMODACC;
577 }
578 mutex_exit(&ip->i_tlock);
579 rw_exit(&ip->i_contents);
580 } else {
581 int terr = 0;
582 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
583 terr);
584 ASSERT(!terr);
585 }
586 }
587 } else {
588 if (ulp)
589 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
590 }
591
592 /*
593 * Write the file
594 */
595 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
596 rw_enter(&ip->i_contents, RW_WRITER);
597 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
598 /*
599 * In append mode start at end of file.
600 */
601 uiop->uio_loffset = ip->i_size;
602 }
603
604 /*
605 * Mild optimisation, don't call ufs_trans_write() unless we have to
606 * Also, suppress file system full messages if we will retry.
607 */
608 if (retry)
609 ip->i_flag |= IQUIET;
610 if (resid) {
611 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
612 } else {
613 error = wrip(ip, uiop, ioflag, cr);
614 }
615 ip->i_flag &= ~IQUIET;
616
617 rw_exit(&ip->i_contents);
618 rw_exit(&ufsvfsp->vfs_dqrwlock);
619
620 /*
621 * Leave Transaction
622 */
623 if (ulp) {
624 if (ioflag & (FSYNC|FDSYNC)) {
625 if (!rewriteflg) {
626 int terr = 0;
627
628 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
629 resv);
630 if (error == 0)
631 error = terr;
632 }
633 } else {
634 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
635 }
636 ufs_lockfs_end(ulp);
637 }
638 out:
639 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
640 /*
641 * Any blocks tied up in pending deletes?
642 */
643 ufs_delete_drain_wait(ufsvfsp, 1);
644 retry = 0;
645 goto retry_mandlock;
646 }
647
648 if (error == ENOSPC && (start_resid != uiop->uio_resid))
649 error = 0;
650
651 return (error);
652 }
653
654 /*
655 * Don't cache write blocks to files with the sticky bit set.
656 * Used to keep swap files from blowing the page cache on a server.
657 */
658 int stickyhack = 1;
659
660 /*
661 * wrip does the real work of write requests for ufs.
662 */
663 int
wrip(struct inode * ip,struct uio * uio,int ioflag,struct cred * cr)664 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
665 {
666 rlim64_t limit = uio->uio_llimit;
667 u_offset_t off;
668 u_offset_t old_i_size;
669 struct fs *fs;
670 struct vnode *vp;
671 struct ufsvfs *ufsvfsp;
672 caddr_t base;
673 long start_resid = uio->uio_resid; /* save starting resid */
674 long premove_resid; /* resid before uiomove() */
675 uint_t flags;
676 int newpage;
677 int iupdat_flag, directio_status;
678 int n, on, mapon;
679 int error, pagecreate;
680 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
681 int32_t iblocks;
682 int new_iblocks;
683
684 /*
685 * ip->i_size is incremented before the uiomove
686 * is done on a write. If the move fails (bad user
687 * address) reset ip->i_size.
688 * The better way would be to increment ip->i_size
689 * only if the uiomove succeeds.
690 */
691 int i_size_changed = 0;
692 o_mode_t type;
693 int i_seq_needed = 0;
694
695 vp = ITOV(ip);
696
697 /*
698 * check for forced unmount - should not happen as
699 * the request passed the lockfs checks.
700 */
701 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
702 return (EIO);
703
704 fs = ip->i_fs;
705
706 ASSERT(RW_WRITE_HELD(&ip->i_contents));
707
708 /* check for valid filetype */
709 type = ip->i_mode & IFMT;
710 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
711 (type != IFLNK) && (type != IFSHAD)) {
712 return (EIO);
713 }
714
715 /*
716 * the actual limit of UFS file size
717 * is UFS_MAXOFFSET_T
718 */
719 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
720 limit = MAXOFFSET_T;
721
722 if (uio->uio_loffset >= limit) {
723 proc_t *p = ttoproc(curthread);
724
725 mutex_enter(&p->p_lock);
726 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
727 p, RCA_UNSAFE_SIGINFO);
728 mutex_exit(&p->p_lock);
729 return (EFBIG);
730 }
731
732 /*
733 * if largefiles are disallowed, the limit is
734 * the pre-largefiles value of 2GB
735 */
736 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
737 limit = MIN(UFS_MAXOFFSET_T, limit);
738 else
739 limit = MIN(MAXOFF32_T, limit);
740
741 if (uio->uio_loffset < (offset_t)0) {
742 return (EINVAL);
743 }
744 if (uio->uio_resid == 0) {
745 return (0);
746 }
747
748 if (uio->uio_loffset >= limit)
749 return (EFBIG);
750
751 ip->i_flag |= INOACC; /* don't update ref time in getpage */
752
753 if (ioflag & (FSYNC|FDSYNC)) {
754 ip->i_flag |= ISYNC;
755 iupdat_flag = 1;
756 }
757 /*
758 * Try to go direct
759 */
760 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
761 uio->uio_llimit = limit;
762 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
763 &directio_status);
764 /*
765 * If ufs_directio wrote to the file or set the flags,
766 * we need to update i_seq, but it may be deferred.
767 */
768 if (start_resid != uio->uio_resid ||
769 (ip->i_flag & (ICHG|IUPD))) {
770 i_seq_needed = 1;
771 ip->i_flag |= ISEQ;
772 }
773 if (directio_status == DIRECTIO_SUCCESS)
774 goto out;
775 }
776
777 /*
778 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
779 *
780 * o shadow inodes: vfs_dqrwlock is not held at all
781 * o quota updates: vfs_dqrwlock is read or write held
782 * o other updates: vfs_dqrwlock is read held
783 *
784 * The first case is the only one where we do not hold
785 * vfs_dqrwlock at all while entering wrip().
786 * We must make sure not to downgrade/drop vfs_dqrwlock if we
787 * have it as writer, i.e. if we are updating the quota inode.
788 * There is no potential deadlock scenario in this case as
789 * ufs_getpage() takes care of this and avoids reacquiring
790 * vfs_dqrwlock in that case.
791 *
792 * This check is done here since the above conditions do not change
793 * and we possibly loop below, so save a few cycles.
794 */
795 if ((type == IFSHAD) ||
796 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
797 do_dqrwlock = 0;
798 } else {
799 do_dqrwlock = 1;
800 }
801
802 /*
803 * Large Files: We cast MAXBMASK to offset_t
804 * inorder to mask out the higher bits. Since offset_t
805 * is a signed value, the high order bit set in MAXBMASK
806 * value makes it do the right thing by having all bits 1
807 * in the higher word. May be removed for _SOLARIS64_.
808 */
809
810 fs = ip->i_fs;
811 do {
812 u_offset_t uoff = uio->uio_loffset;
813 off = uoff & (offset_t)MAXBMASK;
814 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
815 on = (int)blkoff(fs, uoff);
816 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
817 new_iblocks = 1;
818
819 if (type == IFREG && uoff + n >= limit) {
820 if (uoff >= limit) {
821 error = EFBIG;
822 goto out;
823 }
824 /*
825 * since uoff + n >= limit,
826 * therefore n >= limit - uoff, and n is an int
827 * so it is safe to cast it to an int
828 */
829 n = (int)(limit - (rlim64_t)uoff);
830 }
831 if (uoff + n > ip->i_size) {
832 /*
833 * We are extending the length of the file.
834 * bmap is used so that we are sure that
835 * if we need to allocate new blocks, that it
836 * is done here before we up the file size.
837 */
838 error = bmap_write(ip, uoff, (int)(on + n),
839 mapon == 0, NULL, cr);
840 /*
841 * bmap_write never drops i_contents so if
842 * the flags are set it changed the file.
843 */
844 if (ip->i_flag & (ICHG|IUPD)) {
845 i_seq_needed = 1;
846 ip->i_flag |= ISEQ;
847 }
848 if (error)
849 break;
850 /*
851 * There is a window of vulnerability here.
852 * The sequence of operations: allocate file
853 * system blocks, uiomove the data into pages,
854 * and then update the size of the file in the
855 * inode, must happen atomically. However, due
856 * to current locking constraints, this can not
857 * be done.
858 */
859 ASSERT(ip->i_writer == NULL);
860 ip->i_writer = curthread;
861 i_size_changed = 1;
862 /*
863 * If we are writing from the beginning of
864 * the mapping, we can just create the
865 * pages without having to read them.
866 */
867 pagecreate = (mapon == 0);
868 } else if (n == MAXBSIZE) {
869 /*
870 * Going to do a whole mappings worth,
871 * so we can just create the pages w/o
872 * having to read them in. But before
873 * we do that, we need to make sure any
874 * needed blocks are allocated first.
875 */
876 iblocks = ip->i_blocks;
877 error = bmap_write(ip, uoff, (int)(on + n),
878 BI_ALLOC_ONLY, NULL, cr);
879 /*
880 * bmap_write never drops i_contents so if
881 * the flags are set it changed the file.
882 */
883 if (ip->i_flag & (ICHG|IUPD)) {
884 i_seq_needed = 1;
885 ip->i_flag |= ISEQ;
886 }
887 if (error)
888 break;
889 pagecreate = 1;
890 /*
891 * check if the new created page needed the
892 * allocation of new disk blocks.
893 */
894 if (iblocks == ip->i_blocks)
895 new_iblocks = 0; /* no new blocks allocated */
896 } else {
897 pagecreate = 0;
898 /*
899 * In sync mode flush the indirect blocks which
900 * may have been allocated and not written on
901 * disk. In above cases bmap_write will allocate
902 * in sync mode.
903 */
904 if (ioflag & (FSYNC|FDSYNC)) {
905 error = ufs_indirblk_sync(ip, uoff);
906 if (error)
907 break;
908 }
909 }
910
911 /*
912 * At this point we can enter ufs_getpage() in one
913 * of two ways:
914 * 1) segmap_getmapflt() calls ufs_getpage() when the
915 * forcefault parameter is true (pagecreate == 0)
916 * 2) uiomove() causes a page fault.
917 *
918 * We have to drop the contents lock to prevent the VM
919 * system from trying to reacquire it in ufs_getpage()
920 * should the uiomove cause a pagefault.
921 *
922 * We have to drop the reader vfs_dqrwlock here as well.
923 */
924 rw_exit(&ip->i_contents);
925 if (do_dqrwlock) {
926 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
927 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
928 rw_exit(&ufsvfsp->vfs_dqrwlock);
929 }
930
931 newpage = 0;
932 premove_resid = uio->uio_resid;
933
934 /*
935 * Touch the page and fault it in if it is not in core
936 * before segmap_getmapflt or vpm_data_copy can lock it.
937 * This is to avoid the deadlock if the buffer is mapped
938 * to the same file through mmap which we want to write.
939 */
940 uio_prefaultpages((long)n, uio);
941
942 if (vpm_enable) {
943 /*
944 * Copy data. If new pages are created, part of
945 * the page that is not written will be initizliazed
946 * with zeros.
947 */
948 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
949 uio, !pagecreate, &newpage, 0, S_WRITE);
950 } else {
951
952 base = segmap_getmapflt(segkmap, vp, (off + mapon),
953 (uint_t)n, !pagecreate, S_WRITE);
954
955 /*
956 * segmap_pagecreate() returns 1 if it calls
957 * page_create_va() to allocate any pages.
958 */
959
960 if (pagecreate)
961 newpage = segmap_pagecreate(segkmap, base,
962 (size_t)n, 0);
963
964 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
965 }
966
967 /*
968 * If "newpage" is set, then a new page was created and it
969 * does not contain valid data, so it needs to be initialized
970 * at this point.
971 * Otherwise the page contains old data, which was overwritten
972 * partially or as a whole in uiomove.
973 * If there is only one iovec structure within uio, then
974 * on error uiomove will not be able to update uio->uio_loffset
975 * and we would zero the whole page here!
976 *
977 * If uiomove fails because of an error, the old valid data
978 * is kept instead of filling the rest of the page with zero's.
979 */
980 if (!vpm_enable && newpage &&
981 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
982 /*
983 * We created pages w/o initializing them completely,
984 * thus we need to zero the part that wasn't set up.
985 * This happens on most EOF write cases and if
986 * we had some sort of error during the uiomove.
987 */
988 int nzero, nmoved;
989
990 nmoved = (int)(uio->uio_loffset - (off + mapon));
991 ASSERT(nmoved >= 0 && nmoved <= n);
992 nzero = roundup(on + n, PAGESIZE) - nmoved;
993 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
994 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
995 }
996
997 /*
998 * Unlock the pages allocated by page_create_va()
999 * in segmap_pagecreate()
1000 */
1001 if (!vpm_enable && newpage)
1002 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1003
1004 /*
1005 * If the size of the file changed, then update the
1006 * size field in the inode now. This can't be done
1007 * before the call to segmap_pageunlock or there is
1008 * a potential deadlock with callers to ufs_putpage().
1009 * They will be holding i_contents and trying to lock
1010 * a page, while this thread is holding a page locked
1011 * and trying to acquire i_contents.
1012 */
1013 if (i_size_changed) {
1014 rw_enter(&ip->i_contents, RW_WRITER);
1015 old_i_size = ip->i_size;
1016 UFS_SET_ISIZE(uoff + n, ip);
1017 TRANS_INODE(ufsvfsp, ip);
1018 /*
1019 * file has grown larger than 2GB. Set flag
1020 * in superblock to indicate this, if it
1021 * is not already set.
1022 */
1023 if ((ip->i_size > MAXOFF32_T) &&
1024 !(fs->fs_flags & FSLARGEFILES)) {
1025 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1026 mutex_enter(&ufsvfsp->vfs_lock);
1027 fs->fs_flags |= FSLARGEFILES;
1028 ufs_sbwrite(ufsvfsp);
1029 mutex_exit(&ufsvfsp->vfs_lock);
1030 }
1031 mutex_enter(&ip->i_tlock);
1032 ip->i_writer = NULL;
1033 cv_broadcast(&ip->i_wrcv);
1034 mutex_exit(&ip->i_tlock);
1035 rw_exit(&ip->i_contents);
1036 }
1037
1038 if (error) {
1039 /*
1040 * If we failed on a write, we may have already
1041 * allocated file blocks as well as pages. It's
1042 * hard to undo the block allocation, but we must
1043 * be sure to invalidate any pages that may have
1044 * been allocated.
1045 *
1046 * If the page was created without initialization
1047 * then we must check if it should be possible
1048 * to destroy the new page and to keep the old data
1049 * on the disk.
1050 *
1051 * It is possible to destroy the page without
1052 * having to write back its contents only when
1053 * - the size of the file keeps unchanged
1054 * - bmap_write() did not allocate new disk blocks
1055 * it is possible to create big files using "seek" and
1056 * write to the end of the file. A "write" to a
1057 * position before the end of the file would not
1058 * change the size of the file but it would allocate
1059 * new disk blocks.
1060 * - uiomove intended to overwrite the whole page.
1061 * - a new page was created (newpage == 1).
1062 */
1063
1064 if (i_size_changed == 0 && new_iblocks == 0 &&
1065 newpage) {
1066
1067 /* unwind what uiomove eventually last did */
1068 uio->uio_resid = premove_resid;
1069
1070 /*
1071 * destroy the page, do not write ambiguous
1072 * data to the disk.
1073 */
1074 flags = SM_DESTROY;
1075 } else {
1076 /*
1077 * write the page back to the disk, if dirty,
1078 * and remove the page from the cache.
1079 */
1080 flags = SM_INVAL;
1081 }
1082
1083 if (vpm_enable) {
1084 /*
1085 * Flush pages.
1086 */
1087 (void) vpm_sync_pages(vp, off, n, flags);
1088 } else {
1089 (void) segmap_release(segkmap, base, flags);
1090 }
1091 } else {
1092 flags = 0;
1093 /*
1094 * Force write back for synchronous write cases.
1095 */
1096 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1097 /*
1098 * If the sticky bit is set but the
1099 * execute bit is not set, we do a
1100 * synchronous write back and free
1101 * the page when done. We set up swap
1102 * files to be handled this way to
1103 * prevent servers from keeping around
1104 * the client's swap pages too long.
1105 * XXX - there ought to be a better way.
1106 */
1107 if (IS_SWAPVP(vp)) {
1108 flags = SM_WRITE | SM_FREE |
1109 SM_DONTNEED;
1110 iupdat_flag = 0;
1111 } else {
1112 flags = SM_WRITE;
1113 }
1114 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1115 /*
1116 * Have written a whole block.
1117 * Start an asynchronous write and
1118 * mark the buffer to indicate that
1119 * it won't be needed again soon.
1120 */
1121 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1122 }
1123 if (vpm_enable) {
1124 /*
1125 * Flush pages.
1126 */
1127 error = vpm_sync_pages(vp, off, n, flags);
1128 } else {
1129 error = segmap_release(segkmap, base, flags);
1130 }
1131 /*
1132 * If the operation failed and is synchronous,
1133 * then we need to unwind what uiomove() last
1134 * did so we can potentially return an error to
1135 * the caller. If this write operation was
1136 * done in two pieces and the first succeeded,
1137 * then we won't return an error for the second
1138 * piece that failed. However, we only want to
1139 * return a resid value that reflects what was
1140 * really done.
1141 *
1142 * Failures for non-synchronous operations can
1143 * be ignored since the page subsystem will
1144 * retry the operation until it succeeds or the
1145 * file system is unmounted.
1146 */
1147 if (error) {
1148 if ((ioflag & (FSYNC | FDSYNC)) ||
1149 type == IFDIR) {
1150 uio->uio_resid = premove_resid;
1151 } else {
1152 error = 0;
1153 }
1154 }
1155 }
1156
1157 /*
1158 * Re-acquire contents lock.
1159 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1160 */
1161 if (do_dqrwlock)
1162 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1163 rw_enter(&ip->i_contents, RW_WRITER);
1164
1165 /*
1166 * If the uiomove() failed or if a synchronous
1167 * page push failed, fix up i_size.
1168 */
1169 if (error) {
1170 if (i_size_changed) {
1171 /*
1172 * The uiomove failed, and we
1173 * allocated blocks,so get rid
1174 * of them.
1175 */
1176 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1177 }
1178 } else {
1179 /*
1180 * XXX - Can this be out of the loop?
1181 */
1182 ip->i_flag |= IUPD | ICHG;
1183 /*
1184 * Only do one increase of i_seq for multiple
1185 * pieces. Because we drop locks, record
1186 * the fact that we changed the timestamp and
1187 * are deferring the increase in case another thread
1188 * pushes our timestamp update.
1189 */
1190 i_seq_needed = 1;
1191 ip->i_flag |= ISEQ;
1192 if (i_size_changed)
1193 ip->i_flag |= IATTCHG;
1194 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1195 (IEXEC >> 6))) != 0 &&
1196 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1197 secpolicy_vnode_setid_retain(cr,
1198 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1199 /*
1200 * Clear Set-UID & Set-GID bits on
1201 * successful write if not privileged
1202 * and at least one of the execute bits
1203 * is set. If we always clear Set-GID,
1204 * mandatory file and record locking is
1205 * unuseable.
1206 */
1207 ip->i_mode &= ~(ISUID | ISGID);
1208 }
1209 }
1210 /*
1211 * In the case the FDSYNC flag is set and this is a
1212 * "rewrite" we won't log a delta.
1213 * The FSYNC flag overrides all cases.
1214 */
1215 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1216 TRANS_INODE(ufsvfsp, ip);
1217 }
1218 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1219
1220 out:
1221 /*
1222 * Make sure i_seq is increased at least once per write
1223 */
1224 if (i_seq_needed) {
1225 ip->i_seq++;
1226 ip->i_flag &= ~ISEQ; /* no longer deferred */
1227 }
1228
1229 /*
1230 * Inode is updated according to this table -
1231 *
1232 * FSYNC FDSYNC(posix.4)
1233 * --------------------------
1234 * always@ IATTCHG|IBDWRITE
1235 *
1236 * @ - If we are doing synchronous write the only time we should
1237 * not be sync'ing the ip here is if we have the stickyhack
1238 * activated, the file is marked with the sticky bit and
1239 * no exec bit, the file length has not been changed and
1240 * no new blocks have been allocated during this write.
1241 */
1242
1243 if ((ip->i_flag & ISYNC) != 0) {
1244 /*
1245 * we have eliminated nosync
1246 */
1247 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1248 ((ioflag & FSYNC) && iupdat_flag)) {
1249 ufs_iupdat(ip, 1);
1250 }
1251 }
1252
1253 /*
1254 * If we've already done a partial-write, terminate
1255 * the write but return no error unless the error is ENOSPC
1256 * because the caller can detect this and free resources and
1257 * try again.
1258 */
1259 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1260 error = 0;
1261
1262 ip->i_flag &= ~(INOACC | ISYNC);
1263 ITIMES_NOLOCK(ip);
1264 return (error);
1265 }
1266
1267 /*
1268 * rdip does the real work of read requests for ufs.
1269 */
1270 int
rdip(struct inode * ip,struct uio * uio,int ioflag,cred_t * cr)1271 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1272 {
1273 u_offset_t off;
1274 caddr_t base;
1275 struct fs *fs;
1276 struct ufsvfs *ufsvfsp;
1277 struct vnode *vp;
1278 long oresid = uio->uio_resid;
1279 u_offset_t n, on, mapon;
1280 int error = 0;
1281 int doupdate = 1;
1282 uint_t flags;
1283 int directio_status;
1284 krw_t rwtype;
1285 o_mode_t type;
1286
1287 vp = ITOV(ip);
1288
1289 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1290
1291 ufsvfsp = ip->i_ufsvfs;
1292
1293 if (ufsvfsp == NULL)
1294 return (EIO);
1295
1296 fs = ufsvfsp->vfs_fs;
1297
1298 /* check for valid filetype */
1299 type = ip->i_mode & IFMT;
1300 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1301 (type != IFLNK) && (type != IFSHAD)) {
1302 return (EIO);
1303 }
1304
1305 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1306 error = 0;
1307 goto out;
1308 }
1309 if (uio->uio_loffset < (offset_t)0) {
1310 return (EINVAL);
1311 }
1312 if (uio->uio_resid == 0) {
1313 return (0);
1314 }
1315
1316 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1317 (!ufsvfsp->vfs_noatime)) {
1318 mutex_enter(&ip->i_tlock);
1319 ip->i_flag |= IACC;
1320 mutex_exit(&ip->i_tlock);
1321 }
1322 /*
1323 * Try to go direct
1324 */
1325 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1326 error = ufs_directio_read(ip, uio, cr, &directio_status);
1327 if (directio_status == DIRECTIO_SUCCESS)
1328 goto out;
1329 }
1330
1331 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1332
1333 do {
1334 offset_t diff;
1335 u_offset_t uoff = uio->uio_loffset;
1336 off = uoff & (offset_t)MAXBMASK;
1337 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1338 on = (u_offset_t)blkoff(fs, uoff);
1339 n = MIN((u_offset_t)fs->fs_bsize - on,
1340 (u_offset_t)uio->uio_resid);
1341
1342 diff = ip->i_size - uoff;
1343
1344 if (diff <= (offset_t)0) {
1345 error = 0;
1346 goto out;
1347 }
1348 if (diff < (offset_t)n)
1349 n = (int)diff;
1350
1351 /*
1352 * At this point we can enter ufs_getpage() in one of two
1353 * ways:
1354 * 1) segmap_getmapflt() calls ufs_getpage() when the
1355 * forcefault parameter is true (value of 1 is passed)
1356 * 2) uiomove() causes a page fault.
1357 *
1358 * We cannot hold onto an i_contents reader lock without
1359 * risking deadlock in ufs_getpage() so drop a reader lock.
1360 * The ufs_getpage() dolock logic already allows for a
1361 * thread holding i_contents as writer to work properly
1362 * so we keep a writer lock.
1363 */
1364 if (rwtype == RW_READER)
1365 rw_exit(&ip->i_contents);
1366
1367 if (vpm_enable) {
1368 /*
1369 * Copy data.
1370 */
1371 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1372 uio, 1, NULL, 0, S_READ);
1373 } else {
1374 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1375 (uint_t)n, 1, S_READ);
1376 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1377 }
1378
1379 flags = 0;
1380 if (!error) {
1381 /*
1382 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1383 * we want to make sure that the page which has
1384 * been read, is written on disk if it is dirty.
1385 * And corresponding indirect blocks should also
1386 * be flushed out.
1387 */
1388 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1389 flags |= SM_WRITE;
1390 }
1391 if (vpm_enable) {
1392 error = vpm_sync_pages(vp, off, n, flags);
1393 } else {
1394 error = segmap_release(segkmap, base, flags);
1395 }
1396 } else {
1397 if (vpm_enable) {
1398 (void) vpm_sync_pages(vp, off, n, flags);
1399 } else {
1400 (void) segmap_release(segkmap, base, flags);
1401 }
1402 }
1403
1404 if (rwtype == RW_READER)
1405 rw_enter(&ip->i_contents, rwtype);
1406 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1407 out:
1408 /*
1409 * Inode is updated according to this table if FRSYNC is set.
1410 *
1411 * FSYNC FDSYNC(posix.4)
1412 * --------------------------
1413 * always IATTCHG|IBDWRITE
1414 */
1415 /*
1416 * The inode is not updated if we're logging and the inode is a
1417 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1418 */
1419 if (ioflag & FRSYNC) {
1420 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1421 doupdate = 0;
1422 }
1423 if (doupdate) {
1424 if ((ioflag & FSYNC) ||
1425 ((ioflag & FDSYNC) &&
1426 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1427 ufs_iupdat(ip, 1);
1428 }
1429 }
1430 }
1431 /*
1432 * If we've already done a partial read, terminate
1433 * the read but return no error.
1434 */
1435 if (oresid != uio->uio_resid)
1436 error = 0;
1437 ITIMES(ip);
1438
1439 return (error);
1440 }
1441
1442 /* ARGSUSED */
1443 static int
ufs_ioctl(struct vnode * vp,int cmd,intptr_t arg,int flag,struct cred * cr,int * rvalp,caller_context_t * ct)1444 ufs_ioctl(
1445 struct vnode *vp,
1446 int cmd,
1447 intptr_t arg,
1448 int flag,
1449 struct cred *cr,
1450 int *rvalp,
1451 caller_context_t *ct)
1452 {
1453 struct lockfs lockfs, lockfs_out;
1454 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1455 char *comment, *original_comment;
1456 struct fs *fs;
1457 struct ulockfs *ulp;
1458 offset_t off;
1459 extern int maxphys;
1460 int error;
1461 int issync;
1462 int trans_size;
1463
1464
1465 /*
1466 * forcibly unmounted
1467 */
1468 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1469 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1470 return (EIO);
1471 fs = ufsvfsp->vfs_fs;
1472
1473 if (cmd == Q_QUOTACTL) {
1474 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1475 if (error)
1476 return (error);
1477
1478 if (ulp) {
1479 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1480 TOP_SETQUOTA_SIZE(fs));
1481 }
1482
1483 error = quotactl(vp, arg, flag, cr);
1484
1485 if (ulp) {
1486 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1487 TOP_SETQUOTA_SIZE(fs));
1488 ufs_lockfs_end(ulp);
1489 }
1490 return (error);
1491 }
1492
1493 switch (cmd) {
1494 case _FIOLFS:
1495 /*
1496 * file system locking
1497 */
1498 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1499 return (EPERM);
1500
1501 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1502 if (copyin((caddr_t)arg, &lockfs,
1503 sizeof (struct lockfs)))
1504 return (EFAULT);
1505 }
1506 #ifdef _SYSCALL32_IMPL
1507 else {
1508 struct lockfs32 lockfs32;
1509 /* Translate ILP32 lockfs to LP64 lockfs */
1510 if (copyin((caddr_t)arg, &lockfs32,
1511 sizeof (struct lockfs32)))
1512 return (EFAULT);
1513 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1514 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1515 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1516 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1517 lockfs.lf_comment =
1518 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1519 }
1520 #endif /* _SYSCALL32_IMPL */
1521
1522 if (lockfs.lf_comlen) {
1523 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1524 return (ENAMETOOLONG);
1525 comment =
1526 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1527 if (copyin(lockfs.lf_comment, comment,
1528 lockfs.lf_comlen)) {
1529 kmem_free(comment, lockfs.lf_comlen);
1530 return (EFAULT);
1531 }
1532 original_comment = lockfs.lf_comment;
1533 lockfs.lf_comment = comment;
1534 }
1535 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1536 lockfs.lf_comment = original_comment;
1537
1538 if ((flag & DATAMODEL_MASK) ==
1539 DATAMODEL_NATIVE) {
1540 (void) copyout(&lockfs, (caddr_t)arg,
1541 sizeof (struct lockfs));
1542 }
1543 #ifdef _SYSCALL32_IMPL
1544 else {
1545 struct lockfs32 lockfs32;
1546 /* Translate LP64 to ILP32 lockfs */
1547 lockfs32.lf_lock =
1548 (uint32_t)lockfs.lf_lock;
1549 lockfs32.lf_flags =
1550 (uint32_t)lockfs.lf_flags;
1551 lockfs32.lf_key =
1552 (uint32_t)lockfs.lf_key;
1553 lockfs32.lf_comlen =
1554 (uint32_t)lockfs.lf_comlen;
1555 lockfs32.lf_comment =
1556 (uint32_t)(uintptr_t)
1557 lockfs.lf_comment;
1558 (void) copyout(&lockfs32, (caddr_t)arg,
1559 sizeof (struct lockfs32));
1560 }
1561 #endif /* _SYSCALL32_IMPL */
1562
1563 } else {
1564 if (lockfs.lf_comlen)
1565 kmem_free(comment, lockfs.lf_comlen);
1566 }
1567 return (error);
1568
1569 case _FIOLFSS:
1570 /*
1571 * get file system locking status
1572 */
1573
1574 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1575 if (copyin((caddr_t)arg, &lockfs,
1576 sizeof (struct lockfs)))
1577 return (EFAULT);
1578 }
1579 #ifdef _SYSCALL32_IMPL
1580 else {
1581 struct lockfs32 lockfs32;
1582 /* Translate ILP32 lockfs to LP64 lockfs */
1583 if (copyin((caddr_t)arg, &lockfs32,
1584 sizeof (struct lockfs32)))
1585 return (EFAULT);
1586 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1587 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1588 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1589 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1590 lockfs.lf_comment =
1591 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1592 }
1593 #endif /* _SYSCALL32_IMPL */
1594
1595 if (error = ufs_fiolfss(vp, &lockfs_out))
1596 return (error);
1597 lockfs.lf_lock = lockfs_out.lf_lock;
1598 lockfs.lf_key = lockfs_out.lf_key;
1599 lockfs.lf_flags = lockfs_out.lf_flags;
1600 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1601 lockfs_out.lf_comlen);
1602
1603 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1604 if (copyout(&lockfs, (caddr_t)arg,
1605 sizeof (struct lockfs)))
1606 return (EFAULT);
1607 }
1608 #ifdef _SYSCALL32_IMPL
1609 else {
1610 /* Translate LP64 to ILP32 lockfs */
1611 struct lockfs32 lockfs32;
1612 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1613 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1614 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1615 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1616 lockfs32.lf_comment =
1617 (uint32_t)(uintptr_t)lockfs.lf_comment;
1618 if (copyout(&lockfs32, (caddr_t)arg,
1619 sizeof (struct lockfs32)))
1620 return (EFAULT);
1621 }
1622 #endif /* _SYSCALL32_IMPL */
1623
1624 if (lockfs.lf_comlen &&
1625 lockfs.lf_comment && lockfs_out.lf_comment)
1626 if (copyout(lockfs_out.lf_comment,
1627 lockfs.lf_comment, lockfs.lf_comlen))
1628 return (EFAULT);
1629 return (0);
1630
1631 case _FIOSATIME:
1632 /*
1633 * set access time
1634 */
1635
1636 /*
1637 * if mounted w/o atime, return quietly.
1638 * I briefly thought about returning ENOSYS, but
1639 * figured that most apps would consider this fatal
1640 * but the idea is to make this as seamless as poss.
1641 */
1642 if (ufsvfsp->vfs_noatime)
1643 return (0);
1644
1645 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1646 ULOCKFS_SETATTR_MASK);
1647 if (error)
1648 return (error);
1649
1650 if (ulp) {
1651 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1652 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1653 TOP_SETATTR, trans_size);
1654 }
1655
1656 error = ufs_fiosatime(vp, (struct timeval *)arg,
1657 flag, cr);
1658
1659 if (ulp) {
1660 TRANS_END_CSYNC(ufsvfsp, error, issync,
1661 TOP_SETATTR, trans_size);
1662 ufs_lockfs_end(ulp);
1663 }
1664 return (error);
1665
1666 case _FIOSDIO:
1667 /*
1668 * set delayed-io
1669 */
1670 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1671
1672 case _FIOGDIO:
1673 /*
1674 * get delayed-io
1675 */
1676 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1677
1678 case _FIOIO:
1679 /*
1680 * inode open
1681 */
1682 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1683 ULOCKFS_VGET_MASK);
1684 if (error)
1685 return (error);
1686
1687 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1688
1689 if (ulp) {
1690 ufs_lockfs_end(ulp);
1691 }
1692 return (error);
1693
1694 case _FIOFFS:
1695 /*
1696 * file system flush (push w/invalidate)
1697 */
1698 if ((caddr_t)arg != NULL)
1699 return (EINVAL);
1700 return (ufs_fioffs(vp->v_vfsp, cr));
1701
1702 case _FIOISBUSY:
1703 /*
1704 * Contract-private interface for Legato
1705 * Purge this vnode from the DNLC and decide
1706 * if this vnode is busy (*arg == 1) or not
1707 * (*arg == 0)
1708 */
1709 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1710 return (EPERM);
1711 error = ufs_fioisbusy(vp, (int *)arg, cr);
1712 return (error);
1713
1714 case _FIODIRECTIO:
1715 return (ufs_fiodirectio(vp, (int)arg, cr));
1716
1717 case _FIOTUNE:
1718 /*
1719 * Tune the file system (aka setting fs attributes)
1720 */
1721 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1722 ULOCKFS_SETATTR_MASK);
1723 if (error)
1724 return (error);
1725
1726 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1727
1728 if (ulp)
1729 ufs_lockfs_end(ulp);
1730 return (error);
1731
1732 case _FIOLOGENABLE:
1733 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1734 return (EPERM);
1735 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1736
1737 case _FIOLOGDISABLE:
1738 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1739 return (EPERM);
1740 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1741
1742 case _FIOISLOG:
1743 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1744
1745 case _FIOSNAPSHOTCREATE_MULTI:
1746 {
1747 struct fiosnapcreate_multi fc, *fcp;
1748 size_t fcm_size;
1749
1750 if (copyin((void *)arg, &fc, sizeof (fc)))
1751 return (EFAULT);
1752 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1753 return (EINVAL);
1754 fcm_size = sizeof (struct fiosnapcreate_multi) +
1755 (fc.backfilecount - 1) * sizeof (int);
1756 fcp = (struct fiosnapcreate_multi *)
1757 kmem_alloc(fcm_size, KM_SLEEP);
1758 if (copyin((void *)arg, fcp, fcm_size)) {
1759 kmem_free(fcp, fcm_size);
1760 return (EFAULT);
1761 }
1762 error = ufs_snap_create(vp, fcp, cr);
1763 /*
1764 * Do copyout even if there is an error because
1765 * the details of error is stored in fcp.
1766 */
1767 if (copyout(fcp, (void *)arg, fcm_size))
1768 error = EFAULT;
1769 kmem_free(fcp, fcm_size);
1770 return (error);
1771 }
1772
1773 case _FIOSNAPSHOTDELETE:
1774 {
1775 struct fiosnapdelete fc;
1776
1777 if (copyin((void *)arg, &fc, sizeof (fc)))
1778 return (EFAULT);
1779 error = ufs_snap_delete(vp, &fc, cr);
1780 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
1781 error = EFAULT;
1782 return (error);
1783 }
1784
1785 case _FIOGETSUPERBLOCK:
1786 if (copyout(fs, (void *)arg, SBSIZE))
1787 return (EFAULT);
1788 return (0);
1789
1790 case _FIOGETMAXPHYS:
1791 if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1792 return (EFAULT);
1793 return (0);
1794
1795 /*
1796 * The following 3 ioctls are for TSufs support
1797 * although could potentially be used elsewhere
1798 */
1799 case _FIO_SET_LUFS_DEBUG:
1800 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1801 return (EPERM);
1802 lufs_debug = (uint32_t)arg;
1803 return (0);
1804
1805 case _FIO_SET_LUFS_ERROR:
1806 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1807 return (EPERM);
1808 TRANS_SETERROR(ufsvfsp);
1809 return (0);
1810
1811 case _FIO_GET_TOP_STATS:
1812 {
1813 fio_lufs_stats_t *ls;
1814 ml_unit_t *ul = ufsvfsp->vfs_log;
1815
1816 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1817 ls->ls_debug = ul->un_debug; /* return debug value */
1818 /* Copy stucture if statistics are being kept */
1819 if (ul->un_logmap->mtm_tops) {
1820 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1821 }
1822 error = 0;
1823 if (copyout(ls, (void *)arg, sizeof (*ls)))
1824 error = EFAULT;
1825 kmem_free(ls, sizeof (*ls));
1826 return (error);
1827 }
1828
1829 case _FIO_SEEK_DATA:
1830 case _FIO_SEEK_HOLE:
1831 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1832 return (EFAULT);
1833 /* offset paramater is in/out */
1834 error = ufs_fio_holey(vp, cmd, &off);
1835 if (error)
1836 return (error);
1837 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1838 return (EFAULT);
1839 return (0);
1840
1841 case _FIO_COMPRESSED:
1842 {
1843 /*
1844 * This is a project private ufs ioctl() to mark
1845 * the inode as that belonging to a compressed
1846 * file. This is used to mark individual
1847 * compressed files in a miniroot archive.
1848 * The files compressed in this manner are
1849 * automatically decompressed by the dcfs filesystem
1850 * (via an interception in ufs_lookup - see decompvp())
1851 * which is layered on top of ufs on a system running
1852 * from the archive. See uts/common/fs/dcfs for details.
1853 * This ioctl only marks the file as compressed - the
1854 * actual compression is done by fiocompress (a
1855 * userland utility) which invokes this ioctl().
1856 */
1857 struct inode *ip = VTOI(vp);
1858
1859 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1860 ULOCKFS_SETATTR_MASK);
1861 if (error)
1862 return (error);
1863
1864 if (ulp) {
1865 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1866 TOP_IUPDAT_SIZE(ip));
1867 }
1868
1869 error = ufs_mark_compressed(vp);
1870
1871 if (ulp) {
1872 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1873 TOP_IUPDAT_SIZE(ip));
1874 ufs_lockfs_end(ulp);
1875 }
1876
1877 return (error);
1878
1879 }
1880
1881 default:
1882 return (ENOTTY);
1883 }
1884 }
1885
1886
1887 /* ARGSUSED */
1888 static int
ufs_getattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)1889 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1890 struct cred *cr, caller_context_t *ct)
1891 {
1892 struct inode *ip = VTOI(vp);
1893 struct ufsvfs *ufsvfsp;
1894 int err;
1895
1896 if (vap->va_mask == AT_SIZE) {
1897 /*
1898 * for performance, if only the size is requested don't bother
1899 * with anything else.
1900 */
1901 UFS_GET_ISIZE(&vap->va_size, ip);
1902 return (0);
1903 }
1904
1905 /*
1906 * inlined lockfs checks
1907 */
1908 ufsvfsp = ip->i_ufsvfs;
1909 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
1910 err = EIO;
1911 goto out;
1912 }
1913
1914 rw_enter(&ip->i_contents, RW_READER);
1915 /*
1916 * Return all the attributes. This should be refined so
1917 * that it only returns what's asked for.
1918 */
1919
1920 /*
1921 * Copy from inode table.
1922 */
1923 vap->va_type = vp->v_type;
1924 vap->va_mode = ip->i_mode & MODEMASK;
1925 /*
1926 * If there is an ACL and there is a mask entry, then do the
1927 * extra work that completes the equivalent of an acltomode(3)
1928 * call. According to POSIX P1003.1e, the acl mask should be
1929 * returned in the group permissions field.
1930 *
1931 * - start with the original permission and mode bits (from above)
1932 * - clear the group owner bits
1933 * - add in the mask bits.
1934 */
1935 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
1936 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
1937 vap->va_mode |=
1938 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
1939 }
1940 vap->va_uid = ip->i_uid;
1941 vap->va_gid = ip->i_gid;
1942 vap->va_fsid = ip->i_dev;
1943 vap->va_nodeid = (ino64_t)ip->i_number;
1944 vap->va_nlink = ip->i_nlink;
1945 vap->va_size = ip->i_size;
1946 if (vp->v_type == VCHR || vp->v_type == VBLK)
1947 vap->va_rdev = ip->i_rdev;
1948 else
1949 vap->va_rdev = 0; /* not a b/c spec. */
1950 mutex_enter(&ip->i_tlock);
1951 ITIMES_NOLOCK(ip); /* mark correct time in inode */
1952 vap->va_seq = ip->i_seq;
1953 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
1954 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
1955 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
1956 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
1957 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
1958 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
1959 mutex_exit(&ip->i_tlock);
1960
1961 switch (ip->i_mode & IFMT) {
1962
1963 case IFBLK:
1964 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
1965 break;
1966
1967 case IFCHR:
1968 vap->va_blksize = MAXBSIZE;
1969 break;
1970
1971 default:
1972 vap->va_blksize = ip->i_fs->fs_bsize;
1973 break;
1974 }
1975 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
1976 rw_exit(&ip->i_contents);
1977 err = 0;
1978
1979 out:
1980 return (err);
1981 }
1982
1983 /*
1984 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
1985 * The i_contents lock is already held by the caller and we need to
1986 * declare the inode as 'void *' argument.
1987 */
1988 static int
ufs_priv_access(void * vip,int mode,struct cred * cr)1989 ufs_priv_access(void *vip, int mode, struct cred *cr)
1990 {
1991 struct inode *ip = vip;
1992
1993 return (ufs_iaccess(ip, mode, cr, 0));
1994 }
1995
1996 /*ARGSUSED4*/
1997 static int
ufs_setattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)1998 ufs_setattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cr,
1999 caller_context_t *ct)
2000 {
2001 struct inode *ip = VTOI(vp);
2002 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2003 struct fs *fs;
2004 struct ulockfs *ulp;
2005 char *errmsg1;
2006 char *errmsg2;
2007 long blocks;
2008 long int mask = vap->va_mask;
2009 size_t len1, len2;
2010 int issync;
2011 int trans_size;
2012 int dotrans;
2013 int dorwlock;
2014 int error;
2015 int owner_change;
2016 int dodqlock;
2017 timestruc_t now;
2018 vattr_t oldva;
2019 int retry = 1;
2020 int indeadlock;
2021
2022 /*
2023 * Cannot set these attributes.
2024 */
2025 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2026 return (EINVAL);
2027
2028 /*
2029 * check for forced unmount
2030 */
2031 if (ufsvfsp == NULL)
2032 return (EIO);
2033
2034 fs = ufsvfsp->vfs_fs;
2035 if (fs->fs_ronly != 0)
2036 return (EROFS);
2037
2038 again:
2039 errmsg1 = NULL;
2040 errmsg2 = NULL;
2041 dotrans = 0;
2042 dorwlock = 0;
2043 dodqlock = 0;
2044
2045 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2046 if (error)
2047 goto out;
2048
2049 /*
2050 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2051 * This follows the protocol for read()/write().
2052 */
2053 if (vp->v_type != VDIR) {
2054 /*
2055 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2056 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2057 * possible, retries the operation.
2058 */
2059 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2060 if (indeadlock) {
2061 if (ulp)
2062 ufs_lockfs_end(ulp);
2063 goto again;
2064 }
2065 dorwlock = 1;
2066 }
2067
2068 /*
2069 * Truncate file. Must have write permission and not be a directory.
2070 */
2071 if (mask & AT_SIZE) {
2072 rw_enter(&ip->i_contents, RW_WRITER);
2073 if (vp->v_type == VDIR) {
2074 error = EISDIR;
2075 goto update_inode;
2076 }
2077 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2078 goto update_inode;
2079
2080 rw_exit(&ip->i_contents);
2081 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2082 if (error) {
2083 rw_enter(&ip->i_contents, RW_WRITER);
2084 goto update_inode;
2085 }
2086
2087 if (error == 0 && vap->va_size)
2088 vnevent_truncate(vp, ct);
2089 }
2090
2091 if (ulp) {
2092 trans_size = (int)TOP_SETATTR_SIZE(ip);
2093 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2094 ++dotrans;
2095 }
2096
2097 /*
2098 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2099 * This follows the protocol established by
2100 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2101 */
2102 if (vp->v_type == VDIR) {
2103 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2104 retry_dir);
2105 if (indeadlock)
2106 goto again;
2107 dorwlock = 1;
2108 }
2109
2110 /*
2111 * Grab quota lock if we are changing the file's owner.
2112 */
2113 if (mask & AT_UID) {
2114 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2115 dodqlock = 1;
2116 }
2117 rw_enter(&ip->i_contents, RW_WRITER);
2118
2119 oldva.va_mode = ip->i_mode;
2120 oldva.va_uid = ip->i_uid;
2121 oldva.va_gid = ip->i_gid;
2122
2123 vap->va_mask &= ~AT_SIZE;
2124
2125 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2126 ufs_priv_access, ip);
2127 if (error)
2128 goto update_inode;
2129
2130 mask = vap->va_mask;
2131
2132 /*
2133 * Change file access modes.
2134 */
2135 if (mask & AT_MODE) {
2136 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2137 TRANS_INODE(ufsvfsp, ip);
2138 ip->i_flag |= ICHG;
2139 if (stickyhack) {
2140 mutex_enter(&vp->v_lock);
2141 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2142 vp->v_flag |= VSWAPLIKE;
2143 else
2144 vp->v_flag &= ~VSWAPLIKE;
2145 mutex_exit(&vp->v_lock);
2146 }
2147 }
2148 if (mask & (AT_UID|AT_GID)) {
2149 if (mask & AT_UID) {
2150 /*
2151 * Don't change ownership of the quota inode.
2152 */
2153 if (ufsvfsp->vfs_qinod == ip) {
2154 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2155 error = EINVAL;
2156 goto update_inode;
2157 }
2158
2159 /*
2160 * No real ownership change.
2161 */
2162 if (ip->i_uid == vap->va_uid) {
2163 blocks = 0;
2164 owner_change = 0;
2165 }
2166 /*
2167 * Remove the blocks and the file, from the old user's
2168 * quota.
2169 */
2170 else {
2171 blocks = ip->i_blocks;
2172 owner_change = 1;
2173
2174 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2175 (char **)NULL, (size_t *)NULL);
2176 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2177 (uid_t)ip->i_uid, /* force */ 1, cr,
2178 (char **)NULL, (size_t *)NULL);
2179 dqrele(ip->i_dquot);
2180 }
2181
2182 ip->i_uid = vap->va_uid;
2183
2184 /*
2185 * There is a real ownership change.
2186 */
2187 if (owner_change) {
2188 /*
2189 * Add the blocks and the file to the new
2190 * user's quota.
2191 */
2192 ip->i_dquot = getinoquota(ip);
2193 (void) chkdq(ip, blocks, /* force */ 1, cr,
2194 &errmsg1, &len1);
2195 (void) chkiq(ufsvfsp, /* change */ 1,
2196 (struct inode *)NULL, (uid_t)ip->i_uid,
2197 /* force */ 1, cr, &errmsg2, &len2);
2198 }
2199 }
2200 if (mask & AT_GID) {
2201 ip->i_gid = vap->va_gid;
2202 }
2203 TRANS_INODE(ufsvfsp, ip);
2204 ip->i_flag |= ICHG;
2205 }
2206 /*
2207 * Change file access or modified times.
2208 */
2209 if (mask & (AT_ATIME|AT_MTIME)) {
2210 /* Check that the time value is within ufs range */
2211 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2212 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2213 error = EOVERFLOW;
2214 goto update_inode;
2215 }
2216
2217 /*
2218 * if the "noaccess" mount option is set and only atime
2219 * update is requested, do nothing. No error is returned.
2220 */
2221 if ((ufsvfsp->vfs_noatime) &&
2222 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2223 goto skip_atime;
2224
2225 if (mask & AT_ATIME) {
2226 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2227 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2228 ip->i_flag &= ~IACC;
2229 }
2230 if (mask & AT_MTIME) {
2231 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2232 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2233 gethrestime(&now);
2234 if (now.tv_sec > TIME32_MAX) {
2235 /*
2236 * In 2038, ctime sticks forever..
2237 */
2238 ip->i_ctime.tv_sec = TIME32_MAX;
2239 ip->i_ctime.tv_usec = 0;
2240 } else {
2241 ip->i_ctime.tv_sec = now.tv_sec;
2242 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2243 }
2244 ip->i_flag &= ~(IUPD|ICHG);
2245 ip->i_flag |= IMODTIME;
2246 }
2247 TRANS_INODE(ufsvfsp, ip);
2248 ip->i_flag |= IMOD;
2249 }
2250
2251 skip_atime:
2252 /*
2253 * The presence of a shadow inode may indicate an ACL, but does
2254 * not imply an ACL. Future FSD types should be handled here too
2255 * and check for the presence of the attribute-specific data
2256 * before referencing it.
2257 */
2258 if (ip->i_shadow) {
2259 /*
2260 * XXX if ufs_iupdat is changed to sandbagged write fix
2261 * ufs_acl_setattr to push ip to keep acls consistent
2262 *
2263 * Suppress out of inodes messages if we will retry.
2264 */
2265 if (retry)
2266 ip->i_flag |= IQUIET;
2267 error = ufs_acl_setattr(ip, vap, cr);
2268 ip->i_flag &= ~IQUIET;
2269 }
2270
2271 update_inode:
2272 /*
2273 * Setattr always increases the sequence number
2274 */
2275 ip->i_seq++;
2276
2277 /*
2278 * if nfsd and not logging; push synchronously
2279 */
2280 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2281 ufs_iupdat(ip, 1);
2282 } else {
2283 ITIMES_NOLOCK(ip);
2284 }
2285
2286 rw_exit(&ip->i_contents);
2287 if (dodqlock) {
2288 rw_exit(&ufsvfsp->vfs_dqrwlock);
2289 }
2290 if (dorwlock)
2291 rw_exit(&ip->i_rwlock);
2292
2293 if (ulp) {
2294 if (dotrans) {
2295 int terr = 0;
2296 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2297 trans_size);
2298 if (error == 0)
2299 error = terr;
2300 }
2301 ufs_lockfs_end(ulp);
2302 }
2303 out:
2304 /*
2305 * If out of inodes or blocks, see if we can free something
2306 * up from the delete queue.
2307 */
2308 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2309 ufs_delete_drain_wait(ufsvfsp, 1);
2310 retry = 0;
2311 if (errmsg1 != NULL)
2312 kmem_free(errmsg1, len1);
2313 if (errmsg2 != NULL)
2314 kmem_free(errmsg2, len2);
2315 goto again;
2316 }
2317 if (errmsg1 != NULL) {
2318 uprintf(errmsg1);
2319 kmem_free(errmsg1, len1);
2320 }
2321 if (errmsg2 != NULL) {
2322 uprintf(errmsg2);
2323 kmem_free(errmsg2, len2);
2324 }
2325 return (error);
2326 }
2327
2328 /*ARGSUSED*/
2329 static int
ufs_access(struct vnode * vp,int mode,int flags,struct cred * cr,caller_context_t * ct)2330 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2331 caller_context_t *ct)
2332 {
2333 struct inode *ip = VTOI(vp);
2334
2335 if (ip->i_ufsvfs == NULL)
2336 return (EIO);
2337
2338 /*
2339 * The ufs_iaccess function wants to be called with
2340 * mode bits expressed as "ufs specific" bits.
2341 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2342 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2343 * But since they're the same we just pass the vnode mode
2344 * bit but just verify that assumption at compile time.
2345 */
2346 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2347 #error "ufs_access needs to map Vmodes to Imodes"
2348 #endif
2349 return (ufs_iaccess(ip, mode, cr, 1));
2350 }
2351
2352 /* ARGSUSED */
2353 static int
ufs_readlink(struct vnode * vp,struct uio * uiop,struct cred * cr,caller_context_t * ct)2354 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2355 caller_context_t *ct)
2356 {
2357 struct inode *ip = VTOI(vp);
2358 struct ufsvfs *ufsvfsp;
2359 struct ulockfs *ulp;
2360 int error;
2361 int fastsymlink;
2362
2363 if (vp->v_type != VLNK) {
2364 error = EINVAL;
2365 goto nolockout;
2366 }
2367
2368 /*
2369 * If the symbolic link is empty there is nothing to read.
2370 * Fast-track these empty symbolic links
2371 */
2372 if (ip->i_size == 0) {
2373 error = 0;
2374 goto nolockout;
2375 }
2376
2377 ufsvfsp = ip->i_ufsvfs;
2378 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2379 if (error)
2380 goto nolockout;
2381 /*
2382 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2383 */
2384 again:
2385 fastsymlink = 0;
2386 if (ip->i_flag & IFASTSYMLNK) {
2387 rw_enter(&ip->i_rwlock, RW_READER);
2388 rw_enter(&ip->i_contents, RW_READER);
2389 if (ip->i_flag & IFASTSYMLNK) {
2390 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2391 (ip->i_fs->fs_ronly == 0) &&
2392 (!ufsvfsp->vfs_noatime)) {
2393 mutex_enter(&ip->i_tlock);
2394 ip->i_flag |= IACC;
2395 mutex_exit(&ip->i_tlock);
2396 }
2397 error = uiomove((caddr_t)&ip->i_db[1],
2398 MIN(ip->i_size, uiop->uio_resid),
2399 UIO_READ, uiop);
2400 ITIMES(ip);
2401 ++fastsymlink;
2402 }
2403 rw_exit(&ip->i_contents);
2404 rw_exit(&ip->i_rwlock);
2405 }
2406 if (!fastsymlink) {
2407 ssize_t size; /* number of bytes read */
2408 caddr_t basep; /* pointer to input data */
2409 ino_t ino;
2410 long igen;
2411 struct uio tuio; /* temp uio struct */
2412 struct uio *tuiop;
2413 iovec_t tiov; /* temp iovec struct */
2414 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2415 int tflag = 0; /* flag to indicate temp vars used */
2416
2417 ino = ip->i_number;
2418 igen = ip->i_gen;
2419 size = uiop->uio_resid;
2420 basep = uiop->uio_iov->iov_base;
2421 tuiop = uiop;
2422
2423 rw_enter(&ip->i_rwlock, RW_WRITER);
2424 rw_enter(&ip->i_contents, RW_WRITER);
2425 if (ip->i_flag & IFASTSYMLNK) {
2426 rw_exit(&ip->i_contents);
2427 rw_exit(&ip->i_rwlock);
2428 goto again;
2429 }
2430
2431 /* can this be a fast symlink and is it a user buffer? */
2432 if (ip->i_size <= FSL_SIZE &&
2433 (uiop->uio_segflg == UIO_USERSPACE ||
2434 uiop->uio_segflg == UIO_USERISPACE)) {
2435
2436 bzero(&tuio, sizeof (struct uio));
2437 /*
2438 * setup a kernel buffer to read link into. this
2439 * is to fix a race condition where the user buffer
2440 * got corrupted before copying it into the inode.
2441 */
2442 size = ip->i_size;
2443 tiov.iov_len = size;
2444 tiov.iov_base = kbuf;
2445 tuio.uio_iov = &tiov;
2446 tuio.uio_iovcnt = 1;
2447 tuio.uio_offset = uiop->uio_offset;
2448 tuio.uio_segflg = UIO_SYSSPACE;
2449 tuio.uio_fmode = uiop->uio_fmode;
2450 tuio.uio_extflg = uiop->uio_extflg;
2451 tuio.uio_limit = uiop->uio_limit;
2452 tuio.uio_resid = size;
2453
2454 basep = tuio.uio_iov->iov_base;
2455 tuiop = &tuio;
2456 tflag = 1;
2457 }
2458
2459 error = rdip(ip, tuiop, 0, cr);
2460 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2461 rw_exit(&ip->i_contents);
2462 rw_exit(&ip->i_rwlock);
2463 goto out;
2464 }
2465
2466 if (tflag == 0)
2467 size -= uiop->uio_resid;
2468
2469 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2470 ip->i_size == size) || (tflag == 1 &&
2471 tuio.uio_resid == 0)) {
2472 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2473 if (error == 0) {
2474 ip->i_flag |= IFASTSYMLNK;
2475 /*
2476 * free page
2477 */
2478 (void) VOP_PUTPAGE(ITOV(ip),
2479 (offset_t)0, PAGESIZE,
2480 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2481 cr, ct);
2482 } else {
2483 int i;
2484 /* error, clear garbage left behind */
2485 for (i = 1; i < NDADDR; i++)
2486 ip->i_db[i] = 0;
2487 for (i = 0; i < NIADDR; i++)
2488 ip->i_ib[i] = 0;
2489 }
2490 }
2491 if (tflag == 1) {
2492 /* now, copy it into the user buffer */
2493 error = uiomove((caddr_t)kbuf,
2494 MIN(size, uiop->uio_resid),
2495 UIO_READ, uiop);
2496 }
2497 rw_exit(&ip->i_contents);
2498 rw_exit(&ip->i_rwlock);
2499 }
2500 out:
2501 if (ulp) {
2502 ufs_lockfs_end(ulp);
2503 }
2504 nolockout:
2505 return (error);
2506 }
2507
2508 /* ARGSUSED */
2509 static int
ufs_fsync(struct vnode * vp,int syncflag,struct cred * cr,caller_context_t * ct)2510 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, caller_context_t *ct)
2511 {
2512 struct inode *ip = VTOI(vp);
2513 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2514 struct ulockfs *ulp;
2515 int error;
2516
2517 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2518 if (error)
2519 return (error);
2520
2521 if (TRANS_ISTRANS(ufsvfsp)) {
2522 /*
2523 * First push out any data pages
2524 */
2525 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2526 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2527 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2528 0, CRED(), ct);
2529 if (error)
2530 goto out;
2531 }
2532
2533 /*
2534 * Delta any delayed inode times updates
2535 * and push inode to log.
2536 * All other inode deltas will have already been delta'd
2537 * and will be pushed during the commit.
2538 */
2539 if (!(syncflag & FDSYNC) &&
2540 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2541 if (ulp) {
2542 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2543 TOP_SYNCIP_SIZE);
2544 }
2545 rw_enter(&ip->i_contents, RW_READER);
2546 mutex_enter(&ip->i_tlock);
2547 ip->i_flag &= ~IMODTIME;
2548 mutex_exit(&ip->i_tlock);
2549 ufs_iupdat(ip, I_SYNC);
2550 rw_exit(&ip->i_contents);
2551 if (ulp) {
2552 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2553 TOP_SYNCIP_SIZE);
2554 }
2555 }
2556
2557 /*
2558 * Commit the Moby transaction
2559 *
2560 * Deltas have already been made so we just need to
2561 * commit them with a synchronous transaction.
2562 * TRANS_BEGIN_SYNC() will return an error
2563 * if there are no deltas to commit, for an
2564 * empty transaction.
2565 */
2566 if (ulp) {
2567 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2568 error);
2569 if (error) {
2570 error = 0; /* commit wasn't needed */
2571 goto out;
2572 }
2573 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2574 TOP_COMMIT_SIZE);
2575 }
2576 } else { /* not logging */
2577 if (!(IS_SWAPVP(vp)))
2578 if (syncflag & FNODSYNC) {
2579 /* Just update the inode only */
2580 TRANS_IUPDAT(ip, 1);
2581 error = 0;
2582 } else if (syncflag & FDSYNC)
2583 /* Do data-synchronous writes */
2584 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2585 else
2586 /* Do synchronous writes */
2587 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2588
2589 rw_enter(&ip->i_contents, RW_WRITER);
2590 if (!error)
2591 error = ufs_sync_indir(ip);
2592 rw_exit(&ip->i_contents);
2593 }
2594 out:
2595 if (ulp) {
2596 ufs_lockfs_end(ulp);
2597 }
2598 return (error);
2599 }
2600
2601 /*ARGSUSED*/
2602 static void
ufs_inactive(struct vnode * vp,struct cred * cr,caller_context_t * ct)2603 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2604 {
2605 ufs_iinactive(VTOI(vp));
2606 }
2607
2608 /*
2609 * Unix file system operations having to do with directory manipulation.
2610 */
2611 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2612 /* ARGSUSED */
2613 static int
ufs_lookup(struct vnode * dvp,char * nm,struct vnode ** vpp,struct pathname * pnp,int flags,struct vnode * rdir,struct cred * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)2614 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2615 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2616 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2617 {
2618 struct inode *ip;
2619 struct inode *sip;
2620 struct inode *xip;
2621 struct ufsvfs *ufsvfsp;
2622 struct ulockfs *ulp;
2623 struct vnode *vp;
2624 int error;
2625
2626 /*
2627 * Check flags for type of lookup (regular file or attribute file)
2628 */
2629
2630 ip = VTOI(dvp);
2631
2632 if (flags & LOOKUP_XATTR) {
2633
2634 /*
2635 * If not mounted with XATTR support then return EINVAL
2636 */
2637
2638 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2639 return (EINVAL);
2640 /*
2641 * We don't allow recursive attributes...
2642 * Maybe someday we will.
2643 */
2644 if ((ip->i_cflags & IXATTR)) {
2645 return (EINVAL);
2646 }
2647
2648 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2649 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2650 if (error) {
2651 *vpp = NULL;
2652 goto out;
2653 }
2654
2655 vp = ITOV(sip);
2656 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2657 }
2658
2659 /*
2660 * Check accessibility of directory.
2661 */
2662 if (vp == DNLC_NO_VNODE) {
2663 VN_RELE(vp);
2664 error = ENOENT;
2665 goto out;
2666 }
2667 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2668 VN_RELE(vp);
2669 goto out;
2670 }
2671
2672 *vpp = vp;
2673 return (0);
2674 }
2675
2676 /*
2677 * Check for a null component, which we should treat as
2678 * looking at dvp from within it's parent, so we don't
2679 * need a call to ufs_iaccess(), as it has already been
2680 * done.
2681 */
2682 if (nm[0] == 0) {
2683 VN_HOLD(dvp);
2684 error = 0;
2685 *vpp = dvp;
2686 goto out;
2687 }
2688
2689 /*
2690 * Check for "." ie itself. this is a quick check and
2691 * avoids adding "." into the dnlc (which have been seen
2692 * to occupy >10% of the cache).
2693 */
2694 if ((nm[0] == '.') && (nm[1] == 0)) {
2695 /*
2696 * Don't return without checking accessibility
2697 * of the directory. We only need the lock if
2698 * we are going to return it.
2699 */
2700 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2701 VN_HOLD(dvp);
2702 *vpp = dvp;
2703 }
2704 goto out;
2705 }
2706
2707 /*
2708 * Fast path: Check the directory name lookup cache.
2709 */
2710 if (vp = dnlc_lookup(dvp, nm)) {
2711 /*
2712 * Check accessibility of directory.
2713 */
2714 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2715 VN_RELE(vp);
2716 goto out;
2717 }
2718 if (vp == DNLC_NO_VNODE) {
2719 VN_RELE(vp);
2720 error = ENOENT;
2721 goto out;
2722 }
2723 xip = VTOI(vp);
2724 ulp = NULL;
2725 goto fastpath;
2726 }
2727
2728 /*
2729 * Keep the idle queue from getting too long by
2730 * idling two inodes before attempting to allocate another.
2731 * This operation must be performed before entering
2732 * lockfs or a transaction.
2733 */
2734 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2735 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2736 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2737 ufs_idle_some(ufs_lookup_idle_count);
2738 }
2739
2740 retry_lookup:
2741 /*
2742 * Check accessibility of directory.
2743 */
2744 if (error = ufs_diraccess(ip, IEXEC, cr))
2745 goto out;
2746
2747 ufsvfsp = ip->i_ufsvfs;
2748 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2749 if (error)
2750 goto out;
2751
2752 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2753
2754 fastpath:
2755 if (error == 0) {
2756 ip = xip;
2757 *vpp = ITOV(ip);
2758
2759 /*
2760 * If vnode is a device return special vnode instead.
2761 */
2762 if (IS_DEVVP(*vpp)) {
2763 struct vnode *newvp;
2764
2765 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2766 cr);
2767 VN_RELE(*vpp);
2768 if (newvp == NULL)
2769 error = ENOSYS;
2770 else
2771 *vpp = newvp;
2772 } else if (ip->i_cflags & ICOMPRESS) {
2773 struct vnode *newvp;
2774
2775 /*
2776 * Compressed file, substitute dcfs vnode
2777 */
2778 newvp = decompvp(*vpp, cr, ct);
2779 VN_RELE(*vpp);
2780 if (newvp == NULL)
2781 error = ENOSYS;
2782 else
2783 *vpp = newvp;
2784 }
2785 }
2786 if (ulp) {
2787 ufs_lockfs_end(ulp);
2788 }
2789
2790 if (error == EAGAIN)
2791 goto retry_lookup;
2792
2793 out:
2794 return (error);
2795 }
2796
2797 /*ARGSUSED*/
2798 static int
ufs_create(struct vnode * dvp,char * name,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,struct cred * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)2799 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2800 int mode, struct vnode **vpp, struct cred *cr, int flag,
2801 caller_context_t *ct, vsecattr_t *vsecp)
2802 {
2803 struct inode *ip;
2804 struct inode *xip;
2805 struct inode *dip;
2806 struct vnode *xvp;
2807 struct ufsvfs *ufsvfsp;
2808 struct ulockfs *ulp;
2809 int error;
2810 int issync;
2811 int truncflag;
2812 int trans_size;
2813 int noentry;
2814 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2815 int retry = 1;
2816 int indeadlock;
2817
2818 again:
2819 ip = VTOI(dvp);
2820 ufsvfsp = ip->i_ufsvfs;
2821 truncflag = 0;
2822
2823 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2824 if (error)
2825 goto out;
2826
2827 if (ulp) {
2828 trans_size = (int)TOP_CREATE_SIZE(ip);
2829 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2830 }
2831
2832 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2833 vap->va_mode &= ~VSVTX;
2834
2835 if (*name == '\0') {
2836 /*
2837 * Null component name refers to the directory itself.
2838 */
2839 VN_HOLD(dvp);
2840 /*
2841 * Even though this is an error case, we need to grab the
2842 * quota lock since the error handling code below is common.
2843 */
2844 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2845 rw_enter(&ip->i_contents, RW_WRITER);
2846 error = EEXIST;
2847 } else {
2848 xip = NULL;
2849 noentry = 0;
2850 /*
2851 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2852 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2853 * possible, retries the operation.
2854 */
2855 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2856 retry_dir);
2857 if (indeadlock)
2858 goto again;
2859
2860 xvp = dnlc_lookup(dvp, name);
2861 if (xvp == DNLC_NO_VNODE) {
2862 noentry = 1;
2863 VN_RELE(xvp);
2864 xvp = NULL;
2865 }
2866 if (xvp) {
2867 rw_exit(&ip->i_rwlock);
2868 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2869 VN_RELE(xvp);
2870 } else {
2871 error = EEXIST;
2872 xip = VTOI(xvp);
2873 }
2874 } else {
2875 /*
2876 * Suppress file system full message if we will retry
2877 */
2878 error = ufs_direnter_cm(ip, name, DE_CREATE,
2879 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2880 if (error == EAGAIN) {
2881 if (ulp) {
2882 TRANS_END_CSYNC(ufsvfsp, error, issync,
2883 TOP_CREATE, trans_size);
2884 ufs_lockfs_end(ulp);
2885 }
2886 goto again;
2887 }
2888 rw_exit(&ip->i_rwlock);
2889 }
2890 ip = xip;
2891 if (ip != NULL) {
2892 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2893 rw_enter(&ip->i_contents, RW_WRITER);
2894 }
2895 }
2896
2897 /*
2898 * If the file already exists and this is a non-exclusive create,
2899 * check permissions and allow access for non-directories.
2900 * Read-only create of an existing directory is also allowed.
2901 * We fail an exclusive create of anything which already exists.
2902 */
2903 if (error == EEXIST) {
2904 dip = VTOI(dvp);
2905 if (excl == NONEXCL) {
2906 if ((((ip->i_mode & IFMT) == IFDIR) ||
2907 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
2908 (mode & IWRITE))
2909 error = EISDIR;
2910 else if (mode)
2911 error = ufs_iaccess(ip, mode, cr, 0);
2912 else
2913 error = 0;
2914 }
2915 if (error) {
2916 rw_exit(&ip->i_contents);
2917 rw_exit(&ufsvfsp->vfs_dqrwlock);
2918 VN_RELE(ITOV(ip));
2919 goto unlock;
2920 }
2921 /*
2922 * If the error EEXIST was set, then i_seq can not
2923 * have been updated. The sequence number interface
2924 * is defined such that a non-error VOP_CREATE must
2925 * increase the dir va_seq it by at least one. If we
2926 * have cleared the error, increase i_seq. Note that
2927 * we are increasing the dir i_seq and in rare cases
2928 * ip may actually be from the dvp, so we already have
2929 * the locks and it will not be subject to truncation.
2930 * In case we have to update i_seq of the parent
2931 * directory dip, we have to defer it till we have
2932 * released our locks on ip due to lock ordering requirements.
2933 */
2934 if (ip != dip)
2935 defer_dip_seq_update = 1;
2936 else
2937 ip->i_seq++;
2938
2939 if (((ip->i_mode & IFMT) == IFREG) &&
2940 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
2941 /*
2942 * Truncate regular files, if requested by caller.
2943 * Grab i_rwlock to make sure no one else is
2944 * currently writing to the file (we promised
2945 * bmap we would do this).
2946 * Must get the locks in the correct order.
2947 */
2948 if (ip->i_size == 0) {
2949 ip->i_flag |= ICHG | IUPD;
2950 ip->i_seq++;
2951 TRANS_INODE(ufsvfsp, ip);
2952 } else {
2953 /*
2954 * Large Files: Why this check here?
2955 * Though we do it in vn_create() we really
2956 * want to guarantee that we do not destroy
2957 * Large file data by atomically checking
2958 * the size while holding the contents
2959 * lock.
2960 */
2961 if (flag && !(flag & FOFFMAX) &&
2962 ((ip->i_mode & IFMT) == IFREG) &&
2963 (ip->i_size > (offset_t)MAXOFF32_T)) {
2964 rw_exit(&ip->i_contents);
2965 rw_exit(&ufsvfsp->vfs_dqrwlock);
2966 error = EOVERFLOW;
2967 goto unlock;
2968 }
2969 if (TRANS_ISTRANS(ufsvfsp))
2970 truncflag++;
2971 else {
2972 rw_exit(&ip->i_contents);
2973 rw_exit(&ufsvfsp->vfs_dqrwlock);
2974 ufs_tryirwlock_trans(&ip->i_rwlock,
2975 RW_WRITER, TOP_CREATE,
2976 retry_file);
2977 if (indeadlock) {
2978 VN_RELE(ITOV(ip));
2979 goto again;
2980 }
2981 rw_enter(&ufsvfsp->vfs_dqrwlock,
2982 RW_READER);
2983 rw_enter(&ip->i_contents, RW_WRITER);
2984 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
2985 cr);
2986 rw_exit(&ip->i_rwlock);
2987 }
2988
2989 }
2990 if (error == 0) {
2991 vnevent_create(ITOV(ip), ct);
2992 }
2993 }
2994 }
2995
2996 if (error) {
2997 if (ip != NULL) {
2998 rw_exit(&ufsvfsp->vfs_dqrwlock);
2999 rw_exit(&ip->i_contents);
3000 }
3001 goto unlock;
3002 }
3003
3004 *vpp = ITOV(ip);
3005 ITIMES(ip);
3006 rw_exit(&ip->i_contents);
3007 rw_exit(&ufsvfsp->vfs_dqrwlock);
3008
3009 /*
3010 * If vnode is a device return special vnode instead.
3011 */
3012 if (!error && IS_DEVVP(*vpp)) {
3013 struct vnode *newvp;
3014
3015 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3016 VN_RELE(*vpp);
3017 if (newvp == NULL) {
3018 error = ENOSYS;
3019 goto unlock;
3020 }
3021 truncflag = 0;
3022 *vpp = newvp;
3023 }
3024 unlock:
3025
3026 /*
3027 * Do the deferred update of the parent directory's sequence
3028 * number now.
3029 */
3030 if (defer_dip_seq_update == 1) {
3031 rw_enter(&dip->i_contents, RW_READER);
3032 mutex_enter(&dip->i_tlock);
3033 dip->i_seq++;
3034 mutex_exit(&dip->i_tlock);
3035 rw_exit(&dip->i_contents);
3036 }
3037
3038 if (ulp) {
3039 int terr = 0;
3040
3041 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3042 trans_size);
3043
3044 /*
3045 * If we haven't had a more interesting failure
3046 * already, then anything that might've happened
3047 * here should be reported.
3048 */
3049 if (error == 0)
3050 error = terr;
3051 }
3052
3053 if (!error && truncflag) {
3054 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3055 if (indeadlock) {
3056 if (ulp)
3057 ufs_lockfs_end(ulp);
3058 VN_RELE(ITOV(ip));
3059 goto again;
3060 }
3061 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3062 rw_exit(&ip->i_rwlock);
3063 }
3064
3065 if (ulp)
3066 ufs_lockfs_end(ulp);
3067
3068 /*
3069 * If no inodes available, try to free one up out of the
3070 * pending delete queue.
3071 */
3072 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3073 ufs_delete_drain_wait(ufsvfsp, 1);
3074 retry = 0;
3075 goto again;
3076 }
3077
3078 out:
3079 return (error);
3080 }
3081
3082 extern int ufs_idle_max;
3083 /*ARGSUSED*/
3084 static int
ufs_remove(struct vnode * vp,char * nm,struct cred * cr,caller_context_t * ct,int flags)3085 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, caller_context_t *ct,
3086 int flags)
3087 {
3088 struct inode *ip = VTOI(vp);
3089 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3090 struct ulockfs *ulp;
3091 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3092 int indeadlock;
3093 int error;
3094 int issync;
3095 int trans_size;
3096
3097 /*
3098 * don't let the delete queue get too long
3099 */
3100 if (ufsvfsp == NULL) {
3101 error = EIO;
3102 goto out;
3103 }
3104 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3105 ufs_delete_drain(vp->v_vfsp, 1, 1);
3106
3107 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3108 if (rmvp != NULL) {
3109 /* Only send the event if there were no errors */
3110 if (error == 0)
3111 vnevent_remove(rmvp, vp, nm, ct);
3112 VN_RELE(rmvp);
3113 }
3114
3115 retry_remove:
3116 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3117 if (error)
3118 goto out;
3119
3120 if (ulp)
3121 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3122 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3123
3124 /*
3125 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3126 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3127 * possible, retries the operation.
3128 */
3129 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3130 if (indeadlock)
3131 goto retry_remove;
3132 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3133 DR_REMOVE, cr);
3134 rw_exit(&ip->i_rwlock);
3135
3136 if (ulp) {
3137 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3138 ufs_lockfs_end(ulp);
3139 }
3140
3141 out:
3142 return (error);
3143 }
3144
3145 /*
3146 * Link a file or a directory. Only privileged processes are allowed to
3147 * make links to directories.
3148 */
3149 /*ARGSUSED*/
3150 static int
ufs_link(struct vnode * tdvp,struct vnode * svp,char * tnm,struct cred * cr,caller_context_t * ct,int flags)3151 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3152 caller_context_t *ct, int flags)
3153 {
3154 struct inode *sip;
3155 struct inode *tdp = VTOI(tdvp);
3156 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3157 struct ulockfs *ulp;
3158 struct vnode *realvp;
3159 int error;
3160 int issync;
3161 int trans_size;
3162 int isdev;
3163 int indeadlock;
3164
3165 retry_link:
3166 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3167 if (error)
3168 goto out;
3169
3170 if (ulp)
3171 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3172 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3173
3174 if (VOP_REALVP(svp, &realvp, ct) == 0)
3175 svp = realvp;
3176
3177 /*
3178 * Make sure link for extended attributes is valid
3179 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3180 *
3181 * Make certain we don't attempt to look at a device node as
3182 * a ufs inode.
3183 */
3184
3185 isdev = IS_DEVVP(svp);
3186 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3187 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3188 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3189 ((tdp->i_mode & IFMT) == IFDIR))) {
3190 error = EINVAL;
3191 goto unlock;
3192 }
3193
3194 sip = VTOI(svp);
3195 if ((svp->v_type == VDIR &&
3196 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3197 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3198 error = EPERM;
3199 goto unlock;
3200 }
3201
3202 /*
3203 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3204 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3205 * possible, retries the operation.
3206 */
3207 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3208 if (indeadlock)
3209 goto retry_link;
3210 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3211 sip, cr);
3212 rw_exit(&tdp->i_rwlock);
3213
3214 unlock:
3215 if (ulp) {
3216 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3217 ufs_lockfs_end(ulp);
3218 }
3219
3220 if (!error) {
3221 vnevent_link(svp, ct);
3222 }
3223 out:
3224 return (error);
3225 }
3226
3227 uint64_t ufs_rename_retry_cnt;
3228 uint64_t ufs_rename_upgrade_retry_cnt;
3229 uint64_t ufs_rename_dircheck_retry_cnt;
3230 clock_t ufs_rename_backoff_delay = 1;
3231
3232 /*
3233 * Rename a file or directory.
3234 * We are given the vnode and entry string of the source and the
3235 * vnode and entry string of the place we want to move the source
3236 * to (the target). The essential operation is:
3237 * unlink(target);
3238 * link(source, target);
3239 * unlink(source);
3240 * but "atomically". Can't do full commit without saving state in
3241 * the inode on disk, which isn't feasible at this time. Best we
3242 * can do is always guarantee that the TARGET exists.
3243 */
3244
3245 /*ARGSUSED*/
3246 static int
ufs_rename(struct vnode * sdvp,char * snm,struct vnode * tdvp,char * tnm,struct cred * cr,caller_context_t * ct,int flags)3247 ufs_rename(struct vnode *sdvp, char *snm, struct vnode *tdvp, char *tnm,
3248 struct cred *cr, caller_context_t *ct, int flags)
3249 {
3250 struct inode *sip = NULL; /* source inode */
3251 struct inode *ip = NULL; /* check inode */
3252 struct inode *sdp; /* old (source) parent inode */
3253 struct inode *tdp; /* new (target) parent inode */
3254 struct vnode *svp = NULL; /* source vnode */
3255 struct vnode *tvp = NULL; /* target vnode, if it exists */
3256 struct vnode *realvp;
3257 struct ufsvfs *ufsvfsp;
3258 struct ulockfs *ulp = NULL;
3259 struct ufs_slot slot;
3260 timestruc_t now;
3261 int error;
3262 int issync;
3263 int trans_size;
3264 krwlock_t *first_lock;
3265 krwlock_t *second_lock;
3266 krwlock_t *reverse_lock;
3267 int serr, terr;
3268
3269 sdp = VTOI(sdvp);
3270 slot.fbp = NULL;
3271 ufsvfsp = sdp->i_ufsvfs;
3272
3273 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3274 tdvp = realvp;
3275
3276 /* Must do this before taking locks in case of DNLC miss */
3277 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3278 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3279
3280 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3281 if (tvp != NULL)
3282 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct);
3283
3284 /*
3285 * Notify the target directory of the rename event
3286 * if source and target directories are not the same.
3287 */
3288 if (sdvp != tdvp)
3289 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct);
3290
3291 if (svp != NULL)
3292 vnevent_pre_rename_src(svp, sdvp, snm, ct);
3293 }
3294
3295 if (svp != NULL)
3296 VN_RELE(svp);
3297
3298 retry_rename:
3299 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3300 if (error)
3301 goto unlock;
3302
3303 if (ulp)
3304 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3305 trans_size = (int)TOP_RENAME_SIZE(sdp));
3306
3307 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3308 tdvp = realvp;
3309
3310 tdp = VTOI(tdvp);
3311
3312 /*
3313 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3314 */
3315 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3316 error = EINVAL;
3317 goto unlock;
3318 }
3319
3320 /*
3321 * Check accessibility of directory.
3322 */
3323 if (error = ufs_diraccess(sdp, IEXEC, cr))
3324 goto unlock;
3325
3326 /*
3327 * Look up inode of file we're supposed to rename.
3328 */
3329 gethrestime(&now);
3330 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3331 if (error == EAGAIN) {
3332 if (ulp) {
3333 TRANS_END_CSYNC(ufsvfsp, error, issync,
3334 TOP_RENAME, trans_size);
3335 ufs_lockfs_end(ulp);
3336 }
3337 goto retry_rename;
3338 }
3339
3340 goto unlock;
3341 }
3342
3343 /*
3344 * Lock both the source and target directories (they may be
3345 * the same) to provide the atomicity semantics that was
3346 * previously provided by the per file system vfs_rename_lock
3347 *
3348 * with vfs_rename_lock removed to allow simultaneous renames
3349 * within a file system, ufs_dircheckpath can deadlock while
3350 * traversing back to ensure that source is not a parent directory
3351 * of target parent directory. This is because we get into
3352 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3353 * If the tdp and sdp of the simultaneous renames happen to be
3354 * in the path of each other, it can lead to a deadlock. This
3355 * can be avoided by getting the locks as RW_READER here and then
3356 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3357 *
3358 * We hold the target directory's i_rwlock after calling
3359 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3360 * VOP_RWLOCK is explicitly called by the filesystem independent code
3361 * before calling the file system operation. In these cases the order
3362 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3363 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3364 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3365 * synchronizing object which might lead to a deadlock. So we use
3366 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3367 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3368 * operation.
3369 */
3370 retry:
3371 first_lock = &tdp->i_rwlock;
3372 second_lock = &sdp->i_rwlock;
3373 retry_firstlock:
3374 if (!rw_tryenter(first_lock, RW_READER)) {
3375 /*
3376 * We didn't get the lock. Check if the SLOCK is set in the
3377 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3378 * and wait for SLOCK to be cleared.
3379 */
3380
3381 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3382 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3383 trans_size);
3384 ufs_lockfs_end(ulp);
3385 goto retry_rename;
3386
3387 } else {
3388 /*
3389 * SLOCK isn't set so this is a genuine synchronization
3390 * case. Let's try again after giving them a breather.
3391 */
3392 delay(RETRY_LOCK_DELAY);
3393 goto retry_firstlock;
3394 }
3395 }
3396 /*
3397 * Need to check if the tdp and sdp are same !!!
3398 */
3399 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3400 /*
3401 * We didn't get the lock. Check if the SLOCK is set in the
3402 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3403 * and wait for SLOCK to be cleared.
3404 */
3405
3406 rw_exit(first_lock);
3407 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3408 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3409 trans_size);
3410 ufs_lockfs_end(ulp);
3411 goto retry_rename;
3412
3413 } else {
3414 /*
3415 * So we couldn't get the second level peer lock *and*
3416 * the SLOCK bit isn't set. Too bad we can be
3417 * contentding with someone wanting these locks otherway
3418 * round. Reverse the locks in case there is a heavy
3419 * contention for the second level lock.
3420 */
3421 reverse_lock = first_lock;
3422 first_lock = second_lock;
3423 second_lock = reverse_lock;
3424 ufs_rename_retry_cnt++;
3425 goto retry_firstlock;
3426 }
3427 }
3428
3429 if (sip == tdp) {
3430 error = EINVAL;
3431 goto errout;
3432 }
3433 /*
3434 * Make sure we can delete the source entry. This requires
3435 * write permission on the containing directory.
3436 * Check for sticky directories.
3437 */
3438 rw_enter(&sdp->i_contents, RW_READER);
3439 rw_enter(&sip->i_contents, RW_READER);
3440 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3441 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3442 rw_exit(&sip->i_contents);
3443 rw_exit(&sdp->i_contents);
3444 goto errout;
3445 }
3446
3447 /*
3448 * If this is a rename of a directory and the parent is
3449 * different (".." must be changed), then the source
3450 * directory must not be in the directory hierarchy
3451 * above the target, as this would orphan everything
3452 * below the source directory. Also the user must have
3453 * write permission in the source so as to be able to
3454 * change "..".
3455 */
3456 if ((((sip->i_mode & IFMT) == IFDIR) ||
3457 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3458 ino_t inum;
3459
3460 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3461 rw_exit(&sip->i_contents);
3462 rw_exit(&sdp->i_contents);
3463 goto errout;
3464 }
3465 inum = sip->i_number;
3466 rw_exit(&sip->i_contents);
3467 rw_exit(&sdp->i_contents);
3468 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3469 /*
3470 * If we got EAGAIN ufs_dircheckpath detected a
3471 * potential deadlock and backed out. We need
3472 * to retry the operation since sdp and tdp have
3473 * to be released to avoid the deadlock.
3474 */
3475 if (error == EAGAIN) {
3476 rw_exit(&tdp->i_rwlock);
3477 if (tdp != sdp)
3478 rw_exit(&sdp->i_rwlock);
3479 delay(ufs_rename_backoff_delay);
3480 ufs_rename_dircheck_retry_cnt++;
3481 goto retry;
3482 }
3483 goto errout;
3484 }
3485 } else {
3486 rw_exit(&sip->i_contents);
3487 rw_exit(&sdp->i_contents);
3488 }
3489
3490
3491 /*
3492 * Check for renaming '.' or '..' or alias of '.'
3493 */
3494 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3495 error = EINVAL;
3496 goto errout;
3497 }
3498
3499 /*
3500 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3501 * tries to traverse back the file tree with both tdp and sdp held
3502 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3503 * as RW_READERS till ufs_dircheckpath is done.
3504 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3505 * to RW_WRITER.
3506 */
3507 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3508 /*
3509 * The upgrade failed. We got to give away the lock
3510 * as to avoid deadlocking with someone else who is
3511 * waiting for writer lock. With the lock gone, we
3512 * cannot be sure the checks done above will hold
3513 * good when we eventually get them back as writer.
3514 * So if we can't upgrade we drop the locks and retry
3515 * everything again.
3516 */
3517 rw_exit(&tdp->i_rwlock);
3518 if (tdp != sdp)
3519 rw_exit(&sdp->i_rwlock);
3520 delay(ufs_rename_backoff_delay);
3521 ufs_rename_upgrade_retry_cnt++;
3522 goto retry;
3523 }
3524 if (tdp != sdp) {
3525 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3526 /*
3527 * The upgrade failed. We got to give away the lock
3528 * as to avoid deadlocking with someone else who is
3529 * waiting for writer lock. With the lock gone, we
3530 * cannot be sure the checks done above will hold
3531 * good when we eventually get them back as writer.
3532 * So if we can't upgrade we drop the locks and retry
3533 * everything again.
3534 */
3535 rw_exit(&tdp->i_rwlock);
3536 rw_exit(&sdp->i_rwlock);
3537 delay(ufs_rename_backoff_delay);
3538 ufs_rename_upgrade_retry_cnt++;
3539 goto retry;
3540 }
3541 }
3542
3543 /*
3544 * Now that all the locks are held check to make sure another thread
3545 * didn't slip in and take out the sip.
3546 */
3547 slot.status = NONE;
3548 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3549 sip->i_ctime.tv_sec > now.tv_sec) {
3550 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3551 rw_enter(&sdp->i_contents, RW_WRITER);
3552 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3553 &ip, cr, 0);
3554 rw_exit(&sdp->i_contents);
3555 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3556 if (error) {
3557 goto errout;
3558 }
3559 if (ip == NULL) {
3560 error = ENOENT;
3561 goto errout;
3562 } else {
3563 /*
3564 * If the inode was found need to drop the v_count
3565 * so as not to keep the filesystem from being
3566 * unmounted at a later time.
3567 */
3568 VN_RELE(ITOV(ip));
3569 }
3570
3571 /*
3572 * Release the slot.fbp that has the page mapped and
3573 * locked SE_SHARED, and could be used in in
3574 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3575 * on said page.
3576 */
3577 if (slot.fbp) {
3578 fbrelse(slot.fbp, S_OTHER);
3579 slot.fbp = NULL;
3580 }
3581 }
3582
3583 /*
3584 * Link source to the target.
3585 */
3586 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3587 /*
3588 * ESAME isn't really an error; it indicates that the
3589 * operation should not be done because the source and target
3590 * are the same file, but that no error should be reported.
3591 */
3592 if (error == ESAME)
3593 error = 0;
3594 goto errout;
3595 }
3596
3597 if (error == 0 && tvp != NULL)
3598 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3599
3600 /*
3601 * Unlink the source.
3602 * Remove the source entry. ufs_dirremove() checks that the entry
3603 * still reflects sip, and returns an error if it doesn't.
3604 * If the entry has changed just forget about it. Release
3605 * the source inode.
3606 */
3607 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3608 DR_RENAME, cr)) == ENOENT)
3609 error = 0;
3610
3611 if (error == 0) {
3612 vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
3613 /*
3614 * Notify the target directory of the rename event
3615 * if source and target directories are not the same.
3616 */
3617 if (sdvp != tdvp)
3618 vnevent_rename_dest_dir(tdvp, ct);
3619 }
3620
3621 errout:
3622 if (slot.fbp)
3623 fbrelse(slot.fbp, S_OTHER);
3624
3625 rw_exit(&tdp->i_rwlock);
3626 if (sdp != tdp) {
3627 rw_exit(&sdp->i_rwlock);
3628 }
3629
3630 unlock:
3631 if (tvp != NULL)
3632 VN_RELE(tvp);
3633 if (sip != NULL)
3634 VN_RELE(ITOV(sip));
3635
3636 if (ulp) {
3637 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3638 ufs_lockfs_end(ulp);
3639 }
3640
3641 return (error);
3642 }
3643
3644 /*ARGSUSED*/
3645 static int
ufs_mkdir(struct vnode * dvp,char * dirname,struct vattr * vap,struct vnode ** vpp,struct cred * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3646 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3647 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3648 vsecattr_t *vsecp)
3649 {
3650 struct inode *ip;
3651 struct inode *xip;
3652 struct ufsvfs *ufsvfsp;
3653 struct ulockfs *ulp;
3654 int error;
3655 int issync;
3656 int trans_size;
3657 int indeadlock;
3658 int retry = 1;
3659
3660 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3661
3662 /*
3663 * Can't make directory in attr hidden dir
3664 */
3665 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3666 return (EINVAL);
3667
3668 again:
3669 ip = VTOI(dvp);
3670 ufsvfsp = ip->i_ufsvfs;
3671 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3672 if (error)
3673 goto out;
3674 if (ulp)
3675 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3676 trans_size = (int)TOP_MKDIR_SIZE(ip));
3677
3678 /*
3679 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3680 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3681 * possible, retries the operation.
3682 */
3683 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3684 if (indeadlock)
3685 goto again;
3686
3687 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3688 (retry ? IQUIET : 0));
3689 if (error == EAGAIN) {
3690 if (ulp) {
3691 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3692 trans_size);
3693 ufs_lockfs_end(ulp);
3694 }
3695 goto again;
3696 }
3697
3698 rw_exit(&ip->i_rwlock);
3699 if (error == 0) {
3700 ip = xip;
3701 *vpp = ITOV(ip);
3702 } else if (error == EEXIST)
3703 VN_RELE(ITOV(xip));
3704
3705 if (ulp) {
3706 int terr = 0;
3707 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3708 ufs_lockfs_end(ulp);
3709 if (error == 0)
3710 error = terr;
3711 }
3712 out:
3713 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3714 ufs_delete_drain_wait(ufsvfsp, 1);
3715 retry = 0;
3716 goto again;
3717 }
3718
3719 return (error);
3720 }
3721
3722 /*ARGSUSED*/
3723 static int
ufs_rmdir(struct vnode * vp,char * nm,struct vnode * cdir,struct cred * cr,caller_context_t * ct,int flags)3724 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3725 caller_context_t *ct, int flags)
3726 {
3727 struct inode *ip = VTOI(vp);
3728 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3729 struct ulockfs *ulp;
3730 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3731 int error;
3732 int issync;
3733 int trans_size;
3734 int indeadlock;
3735
3736 /*
3737 * don't let the delete queue get too long
3738 */
3739 if (ufsvfsp == NULL) {
3740 error = EIO;
3741 goto out;
3742 }
3743 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3744 ufs_delete_drain(vp->v_vfsp, 1, 1);
3745
3746 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3747 if (rmvp != NULL) {
3748 /* Only send the event if there were no errors */
3749 if (error == 0)
3750 vnevent_rmdir(rmvp, vp, nm, ct);
3751 VN_RELE(rmvp);
3752 }
3753
3754 retry_rmdir:
3755 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3756 if (error)
3757 goto out;
3758
3759 if (ulp)
3760 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3761 trans_size = TOP_RMDIR_SIZE);
3762
3763 /*
3764 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3765 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3766 * possible, retries the operation.
3767 */
3768 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3769 if (indeadlock)
3770 goto retry_rmdir;
3771 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3772
3773 rw_exit(&ip->i_rwlock);
3774
3775 if (ulp) {
3776 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3777 trans_size);
3778 ufs_lockfs_end(ulp);
3779 }
3780
3781 out:
3782 return (error);
3783 }
3784
3785 /* ARGSUSED */
3786 static int
ufs_readdir(struct vnode * vp,struct uio * uiop,struct cred * cr,int * eofp,caller_context_t * ct,int flags)3787 ufs_readdir(struct vnode *vp, struct uio *uiop, struct cred *cr, int *eofp,
3788 caller_context_t *ct, int flags)
3789 {
3790 struct iovec *iovp;
3791 struct inode *ip;
3792 struct direct *idp;
3793 struct dirent64 *odp;
3794 struct fbuf *fbp;
3795 struct ufsvfs *ufsvfsp;
3796 struct ulockfs *ulp;
3797 caddr_t outbuf;
3798 size_t bufsize;
3799 uint_t offset;
3800 uint_t bytes_wanted, total_bytes_wanted;
3801 int incount = 0;
3802 int outcount = 0;
3803 int error;
3804
3805 ip = VTOI(vp);
3806 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3807
3808 if (uiop->uio_loffset >= MAXOFF32_T) {
3809 if (eofp)
3810 *eofp = 1;
3811 return (0);
3812 }
3813
3814 /*
3815 * Check if we have been called with a valid iov_len
3816 * and bail out if not, otherwise we may potentially loop
3817 * forever further down.
3818 */
3819 if (uiop->uio_iov->iov_len <= 0) {
3820 error = EINVAL;
3821 goto out;
3822 }
3823
3824 /*
3825 * Large Files: When we come here we are guaranteed that
3826 * uio_offset can be used safely. The high word is zero.
3827 */
3828
3829 ufsvfsp = ip->i_ufsvfs;
3830 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3831 if (error)
3832 goto out;
3833
3834 iovp = uiop->uio_iov;
3835 total_bytes_wanted = iovp->iov_len;
3836
3837 /* Large Files: directory files should not be "large" */
3838
3839 ASSERT(ip->i_size <= MAXOFF32_T);
3840
3841 /* Force offset to be valid (to guard against bogus lseek() values) */
3842 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3843
3844 /* Quit if at end of file or link count of zero (posix) */
3845 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3846 if (eofp)
3847 *eofp = 1;
3848 error = 0;
3849 goto unlock;
3850 }
3851
3852 /*
3853 * Get space to change directory entries into fs independent format.
3854 * Do fast alloc for the most commonly used-request size (filesystem
3855 * block size).
3856 */
3857 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3858 bufsize = total_bytes_wanted;
3859 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3860 odp = (struct dirent64 *)outbuf;
3861 } else {
3862 bufsize = total_bytes_wanted;
3863 odp = (struct dirent64 *)iovp->iov_base;
3864 }
3865
3866 nextblk:
3867 bytes_wanted = total_bytes_wanted;
3868
3869 /* Truncate request to file size */
3870 if (offset + bytes_wanted > (int)ip->i_size)
3871 bytes_wanted = (int)(ip->i_size - offset);
3872
3873 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3874 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3875 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
3876
3877 /*
3878 * Read in the next chunk.
3879 * We are still holding the i_rwlock.
3880 */
3881 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
3882
3883 if (error)
3884 goto update_inode;
3885 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
3886 (!ufsvfsp->vfs_noatime)) {
3887 ip->i_flag |= IACC;
3888 }
3889 incount = 0;
3890 idp = (struct direct *)fbp->fb_addr;
3891 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
3892 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
3893 "fs = %s\n",
3894 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
3895 fbrelse(fbp, S_OTHER);
3896 error = ENXIO;
3897 goto update_inode;
3898 }
3899 /* Transform to file-system independent format */
3900 while (incount < bytes_wanted) {
3901 /*
3902 * If the current directory entry is mangled, then skip
3903 * to the next block. It would be nice to set the FSBAD
3904 * flag in the super-block so that a fsck is forced on
3905 * next reboot, but locking is a problem.
3906 */
3907 if (idp->d_reclen & 0x3) {
3908 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
3909 break;
3910 }
3911
3912 /* Skip to requested offset and skip empty entries */
3913 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
3914 ushort_t this_reclen =
3915 DIRENT64_RECLEN(idp->d_namlen);
3916 /* Buffer too small for any entries */
3917 if (!outcount && this_reclen > bufsize) {
3918 fbrelse(fbp, S_OTHER);
3919 error = EINVAL;
3920 goto update_inode;
3921 }
3922 /* If would overrun the buffer, quit */
3923 if (outcount + this_reclen > bufsize) {
3924 break;
3925 }
3926 /* Take this entry */
3927 odp->d_ino = (ino64_t)idp->d_ino;
3928 odp->d_reclen = (ushort_t)this_reclen;
3929 odp->d_off = (offset_t)(offset + idp->d_reclen);
3930
3931 /* use strncpy(9f) to zero out uninitialized bytes */
3932
3933 ASSERT(strlen(idp->d_name) + 1 <=
3934 DIRENT64_NAMELEN(this_reclen));
3935 (void) strncpy(odp->d_name, idp->d_name,
3936 DIRENT64_NAMELEN(this_reclen));
3937 outcount += odp->d_reclen;
3938 odp = (struct dirent64 *)
3939 ((intptr_t)odp + odp->d_reclen);
3940 ASSERT(outcount <= bufsize);
3941 }
3942 if (idp->d_reclen) {
3943 incount += idp->d_reclen;
3944 offset += idp->d_reclen;
3945 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
3946 } else {
3947 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
3948 break;
3949 }
3950 }
3951 /* Release the chunk */
3952 fbrelse(fbp, S_OTHER);
3953
3954 /* Read whole block, but got no entries, read another if not eof */
3955
3956 /*
3957 * Large Files: casting i_size to int here is not a problem
3958 * because directory sizes are always less than MAXOFF32_T.
3959 * See assertion above.
3960 */
3961
3962 if (offset < (int)ip->i_size && !outcount)
3963 goto nextblk;
3964
3965 /* Copy out the entry data */
3966 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
3967 iovp->iov_base += outcount;
3968 iovp->iov_len -= outcount;
3969 uiop->uio_resid -= outcount;
3970 uiop->uio_offset = offset;
3971 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
3972 uiop)) == 0)
3973 uiop->uio_offset = offset;
3974 update_inode:
3975 ITIMES(ip);
3976 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
3977 kmem_free(outbuf, bufsize);
3978
3979 if (eofp && error == 0)
3980 *eofp = (uiop->uio_offset >= (int)ip->i_size);
3981 unlock:
3982 if (ulp) {
3983 ufs_lockfs_end(ulp);
3984 }
3985 out:
3986 return (error);
3987 }
3988
3989 /*ARGSUSED*/
3990 static int
ufs_symlink(struct vnode * dvp,char * linkname,struct vattr * vap,char * target,struct cred * cr,caller_context_t * ct,int flags)3991 ufs_symlink(struct vnode *dvp, char *linkname, struct vattr *vap, char *target,
3992 struct cred *cr, caller_context_t *ct, int flags)
3993 {
3994 struct inode *ip, *dip = VTOI(dvp);
3995 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
3996 struct ulockfs *ulp;
3997 int error;
3998 int issync;
3999 int trans_size;
4000 int residual;
4001 int ioflag;
4002 int retry = 1;
4003
4004 /*
4005 * No symlinks in attrdirs at this time
4006 */
4007 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4008 return (EINVAL);
4009
4010 again:
4011 ip = (struct inode *)NULL;
4012 vap->va_type = VLNK;
4013 vap->va_rdev = 0;
4014
4015 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4016 if (error)
4017 goto out;
4018
4019 if (ulp)
4020 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4021 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4022
4023 /*
4024 * We must create the inode before the directory entry, to avoid
4025 * racing with readlink(). ufs_dirmakeinode requires that we
4026 * hold the quota lock as reader, and directory locks as writer.
4027 */
4028
4029 rw_enter(&dip->i_rwlock, RW_WRITER);
4030 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4031 rw_enter(&dip->i_contents, RW_WRITER);
4032
4033 /*
4034 * Suppress any out of inodes messages if we will retry on
4035 * ENOSP
4036 */
4037 if (retry)
4038 dip->i_flag |= IQUIET;
4039
4040 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4041
4042 dip->i_flag &= ~IQUIET;
4043
4044 rw_exit(&dip->i_contents);
4045 rw_exit(&ufsvfsp->vfs_dqrwlock);
4046 rw_exit(&dip->i_rwlock);
4047
4048 if (error)
4049 goto unlock;
4050
4051 /*
4052 * OK. The inode has been created. Write out the data of the
4053 * symbolic link. Since symbolic links are metadata, and should
4054 * remain consistent across a system crash, we need to force the
4055 * data out synchronously.
4056 *
4057 * (This is a change from the semantics in earlier releases, which
4058 * only created symbolic links synchronously if the semi-documented
4059 * 'syncdir' option was set, or if we were being invoked by the NFS
4060 * server, which requires symbolic links to be created synchronously.)
4061 *
4062 * We need to pass in a pointer for the residual length; otherwise
4063 * ufs_rdwri() will always return EIO if it can't write the data,
4064 * even if the error was really ENOSPC or EDQUOT.
4065 */
4066
4067 ioflag = FWRITE | FDSYNC;
4068 residual = 0;
4069
4070 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4071 rw_enter(&ip->i_contents, RW_WRITER);
4072
4073 /*
4074 * Suppress file system full messages if we will retry
4075 */
4076 if (retry)
4077 ip->i_flag |= IQUIET;
4078
4079 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4080 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4081
4082 ip->i_flag &= ~IQUIET;
4083
4084 if (error) {
4085 rw_exit(&ip->i_contents);
4086 rw_exit(&ufsvfsp->vfs_dqrwlock);
4087 goto remove;
4088 }
4089
4090 /*
4091 * If the link's data is small enough, we can cache it in the inode.
4092 * This is a "fast symbolic link". We don't use the first direct
4093 * block because that's actually used to point at the symbolic link's
4094 * contents on disk; but we know that none of the other direct or
4095 * indirect blocks can be used because symbolic links are restricted
4096 * to be smaller than a file system block.
4097 */
4098
4099 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4100
4101 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4102 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4103 ip->i_flag |= IFASTSYMLNK;
4104 } else {
4105 int i;
4106 /* error, clear garbage left behind */
4107 for (i = 1; i < NDADDR; i++)
4108 ip->i_db[i] = 0;
4109 for (i = 0; i < NIADDR; i++)
4110 ip->i_ib[i] = 0;
4111 }
4112 }
4113
4114 rw_exit(&ip->i_contents);
4115 rw_exit(&ufsvfsp->vfs_dqrwlock);
4116
4117 /*
4118 * OK. We've successfully created the symbolic link. All that
4119 * remains is to insert it into the appropriate directory.
4120 */
4121
4122 rw_enter(&dip->i_rwlock, RW_WRITER);
4123 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4124 rw_exit(&dip->i_rwlock);
4125
4126 /*
4127 * Fall through into remove-on-error code. We're either done, or we
4128 * need to remove the inode (if we couldn't insert it).
4129 */
4130
4131 remove:
4132 if (error && (ip != NULL)) {
4133 rw_enter(&ip->i_contents, RW_WRITER);
4134 ip->i_nlink--;
4135 ip->i_flag |= ICHG;
4136 ip->i_seq++;
4137 ufs_setreclaim(ip);
4138 rw_exit(&ip->i_contents);
4139 }
4140
4141 unlock:
4142 if (ip != NULL)
4143 VN_RELE(ITOV(ip));
4144
4145 if (ulp) {
4146 int terr = 0;
4147
4148 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4149 trans_size);
4150 ufs_lockfs_end(ulp);
4151 if (error == 0)
4152 error = terr;
4153 }
4154
4155 /*
4156 * We may have failed due to lack of an inode or of a block to
4157 * store the target in. Try flushing the delete queue to free
4158 * logically-available things up and try again.
4159 */
4160 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4161 ufs_delete_drain_wait(ufsvfsp, 1);
4162 retry = 0;
4163 goto again;
4164 }
4165
4166 out:
4167 return (error);
4168 }
4169
4170 /*
4171 * Ufs specific routine used to do ufs io.
4172 */
4173 int
ufs_rdwri(enum uio_rw rw,int ioflag,struct inode * ip,caddr_t base,ssize_t len,offset_t offset,enum uio_seg seg,int * aresid,struct cred * cr)4174 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4175 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4176 struct cred *cr)
4177 {
4178 struct uio auio;
4179 struct iovec aiov;
4180 int error;
4181
4182 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4183
4184 bzero((caddr_t)&auio, sizeof (uio_t));
4185 bzero((caddr_t)&aiov, sizeof (iovec_t));
4186
4187 aiov.iov_base = base;
4188 aiov.iov_len = len;
4189 auio.uio_iov = &aiov;
4190 auio.uio_iovcnt = 1;
4191 auio.uio_loffset = offset;
4192 auio.uio_segflg = (short)seg;
4193 auio.uio_resid = len;
4194
4195 if (rw == UIO_WRITE) {
4196 auio.uio_fmode = FWRITE;
4197 auio.uio_extflg = UIO_COPY_DEFAULT;
4198 auio.uio_llimit = curproc->p_fsz_ctl;
4199 error = wrip(ip, &auio, ioflag, cr);
4200 } else {
4201 auio.uio_fmode = FREAD;
4202 auio.uio_extflg = UIO_COPY_CACHED;
4203 auio.uio_llimit = MAXOFFSET_T;
4204 error = rdip(ip, &auio, ioflag, cr);
4205 }
4206
4207 if (aresid) {
4208 *aresid = auio.uio_resid;
4209 } else if (auio.uio_resid) {
4210 error = EIO;
4211 }
4212 return (error);
4213 }
4214
4215 /*ARGSUSED*/
4216 static int
ufs_fid(struct vnode * vp,struct fid * fidp,caller_context_t * ct)4217 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4218 {
4219 struct ufid *ufid;
4220 struct inode *ip = VTOI(vp);
4221
4222 if (ip->i_ufsvfs == NULL)
4223 return (EIO);
4224
4225 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4226 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4227 return (ENOSPC);
4228 }
4229
4230 ufid = (struct ufid *)fidp;
4231 bzero((char *)ufid, sizeof (struct ufid));
4232 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4233 ufid->ufid_ino = ip->i_number;
4234 ufid->ufid_gen = ip->i_gen;
4235
4236 return (0);
4237 }
4238
4239 /* ARGSUSED2 */
4240 static int
ufs_rwlock(struct vnode * vp,int write_lock,caller_context_t * ctp)4241 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4242 {
4243 struct inode *ip = VTOI(vp);
4244 struct ufsvfs *ufsvfsp;
4245 int forcedirectio;
4246
4247 /*
4248 * Read case is easy.
4249 */
4250 if (!write_lock) {
4251 rw_enter(&ip->i_rwlock, RW_READER);
4252 return (V_WRITELOCK_FALSE);
4253 }
4254
4255 /*
4256 * Caller has requested a writer lock, but that inhibits any
4257 * concurrency in the VOPs that follow. Acquire the lock shared
4258 * and defer exclusive access until it is known to be needed in
4259 * other VOP handlers. Some cases can be determined here.
4260 */
4261
4262 /*
4263 * If directio is not set, there is no chance of concurrency,
4264 * so just acquire the lock exclusive. Beware of a forced
4265 * unmount before looking at the mount option.
4266 */
4267 ufsvfsp = ip->i_ufsvfs;
4268 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4269 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4270 !ufs_allow_shared_writes) {
4271 rw_enter(&ip->i_rwlock, RW_WRITER);
4272 return (V_WRITELOCK_TRUE);
4273 }
4274
4275 /*
4276 * Mandatory locking forces acquiring i_rwlock exclusive.
4277 */
4278 if (MANDLOCK(vp, ip->i_mode)) {
4279 rw_enter(&ip->i_rwlock, RW_WRITER);
4280 return (V_WRITELOCK_TRUE);
4281 }
4282
4283 /*
4284 * Acquire the lock shared in case a concurrent write follows.
4285 * Mandatory locking could have become enabled before the lock
4286 * was acquired. Re-check and upgrade if needed.
4287 */
4288 rw_enter(&ip->i_rwlock, RW_READER);
4289 if (MANDLOCK(vp, ip->i_mode)) {
4290 rw_exit(&ip->i_rwlock);
4291 rw_enter(&ip->i_rwlock, RW_WRITER);
4292 return (V_WRITELOCK_TRUE);
4293 }
4294 return (V_WRITELOCK_FALSE);
4295 }
4296
4297 /*ARGSUSED*/
4298 static void
ufs_rwunlock(struct vnode * vp,int write_lock,caller_context_t * ctp)4299 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4300 {
4301 struct inode *ip = VTOI(vp);
4302
4303 rw_exit(&ip->i_rwlock);
4304 }
4305
4306 /* ARGSUSED */
4307 static int
ufs_seek(struct vnode * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4308 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4309 {
4310 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4311 }
4312
4313 /* ARGSUSED */
4314 static int
ufs_frlock(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,struct cred * cr,caller_context_t * ct)4315 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4316 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4317 caller_context_t *ct)
4318 {
4319 struct inode *ip = VTOI(vp);
4320
4321 if (ip->i_ufsvfs == NULL)
4322 return (EIO);
4323
4324 /*
4325 * If file is being mapped, disallow frlock.
4326 * XXX I am not holding tlock while checking i_mapcnt because the
4327 * current locking strategy drops all locks before calling fs_frlock.
4328 * So, mapcnt could change before we enter fs_frlock making is
4329 * meaningless to have held tlock in the first place.
4330 */
4331 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4332 return (EAGAIN);
4333 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4334 }
4335
4336 /* ARGSUSED */
4337 static int
ufs_space(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4338 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4339 offset_t offset, cred_t *cr, caller_context_t *ct)
4340 {
4341 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4342 struct ulockfs *ulp;
4343 int error;
4344
4345 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4346 if (cmd == F_FREESP) {
4347 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4348 ULOCKFS_SPACE_MASK);
4349 if (error)
4350 return (error);
4351 error = ufs_freesp(vp, bfp, flag, cr);
4352
4353 if (error == 0 && bfp->l_start == 0)
4354 vnevent_truncate(vp, ct);
4355 } else if (cmd == F_ALLOCSP) {
4356 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4357 ULOCKFS_FALLOCATE_MASK);
4358 if (error)
4359 return (error);
4360 error = ufs_allocsp(vp, bfp, cr);
4361 } else
4362 return (EINVAL); /* Command not handled here */
4363
4364 if (ulp)
4365 ufs_lockfs_end(ulp);
4366
4367 }
4368 return (error);
4369 }
4370
4371 /*
4372 * Used to determine if read ahead should be done. Also used to
4373 * to determine when write back occurs.
4374 */
4375 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4376
4377 /*
4378 * A faster version of ufs_getpage.
4379 *
4380 * We optimize by inlining the pvn_getpages iterator, eliminating
4381 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4382 * the overhead of page_exists().
4383 *
4384 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4385 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4386 * victimizes performance when a file with UFS holes is faulted
4387 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4388 * two MMU faults in this case.
4389 *
4390 * XXX - the inode fields which control the sequential mode are not
4391 * protected by any mutex. The read ahead will act wild if
4392 * multiple processes will access the file concurrently and
4393 * some of them in sequential mode. One particulary bad case
4394 * is if another thread will change the value of i_nextrio between
4395 * the time this thread tests the i_nextrio value and then reads it
4396 * again to use it as the offset for the read ahead.
4397 */
4398 /*ARGSUSED*/
4399 static int
ufs_getpage(struct vnode * vp,offset_t off,size_t len,uint_t * protp,page_t * plarr[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,struct cred * cr,caller_context_t * ct)4400 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4401 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4402 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4403 {
4404 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4405 u_offset_t pgoff;
4406 u_offset_t eoff;
4407 struct inode *ip = VTOI(vp);
4408 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4409 struct fs *fs;
4410 struct ulockfs *ulp;
4411 page_t **pl;
4412 caddr_t pgaddr;
4413 krw_t rwtype;
4414 int err;
4415 int has_holes;
4416 int beyond_eof;
4417 int seqmode;
4418 int pgsize = PAGESIZE;
4419 int dolock;
4420 int do_qlock;
4421 int trans_size;
4422
4423 ASSERT((uoff & PAGEOFFSET) == 0);
4424
4425 if (protp)
4426 *protp = PROT_ALL;
4427
4428 /*
4429 * Obey the lockfs protocol
4430 */
4431 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4432 rw == S_READ || rw == S_EXEC, protp);
4433 if (err)
4434 goto out;
4435
4436 fs = ufsvfsp->vfs_fs;
4437
4438 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4439 !(vp->v_flag & VISSWAP)) {
4440 /*
4441 * Try to start a transaction, will return if blocking is
4442 * expected to occur and the address space is not the
4443 * kernel address space.
4444 */
4445 trans_size = TOP_GETPAGE_SIZE(ip);
4446 if (seg->s_as != &kas) {
4447 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4448 trans_size, err)
4449 if (err == EWOULDBLOCK) {
4450 /*
4451 * Use EDEADLK here because the VM code
4452 * can normally never see this error.
4453 */
4454 err = EDEADLK;
4455 ufs_lockfs_end(ulp);
4456 goto out;
4457 }
4458 } else {
4459 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4460 }
4461 }
4462
4463 if (vp->v_flag & VNOMAP) {
4464 err = ENOSYS;
4465 goto unlock;
4466 }
4467
4468 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4469
4470 rwtype = RW_READER; /* start as a reader */
4471 dolock = (rw_owner(&ip->i_contents) != curthread);
4472 /*
4473 * If this thread owns the lock, i.e., this thread grabbed it
4474 * as writer somewhere above, then we don't need to grab the
4475 * lock as reader in this routine.
4476 */
4477 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4478
4479 retrylock:
4480 if (dolock) {
4481 /*
4482 * Grab the quota lock if we need to call
4483 * bmap_write() below (with i_contents as writer).
4484 */
4485 if (do_qlock && rwtype == RW_WRITER)
4486 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4487 rw_enter(&ip->i_contents, rwtype);
4488 }
4489
4490 /*
4491 * We may be getting called as a side effect of a bmap using
4492 * fbread() when the blocks might be being allocated and the
4493 * size has not yet been up'ed. In this case we want to be
4494 * able to return zero pages if we get back UFS_HOLE from
4495 * calling bmap for a non write case here. We also might have
4496 * to read some frags from the disk into a page if we are
4497 * extending the number of frags for a given lbn in bmap().
4498 * Large Files: The read of i_size here is atomic because
4499 * i_contents is held here. If dolock is zero, the lock
4500 * is held in bmap routines.
4501 */
4502 beyond_eof = uoff + len >
4503 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4504 if (beyond_eof && seg != segkmap) {
4505 if (dolock) {
4506 rw_exit(&ip->i_contents);
4507 if (do_qlock && rwtype == RW_WRITER)
4508 rw_exit(&ufsvfsp->vfs_dqrwlock);
4509 }
4510 err = EFAULT;
4511 goto unlock;
4512 }
4513
4514 /*
4515 * Must hold i_contents lock throughout the call to pvn_getpages
4516 * since locked pages are returned from each call to ufs_getapage.
4517 * Must *not* return locked pages and then try for contents lock
4518 * due to lock ordering requirements (inode > page)
4519 */
4520
4521 has_holes = bmap_has_holes(ip);
4522
4523 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4524 int blk_size;
4525 u_offset_t offset;
4526
4527 /*
4528 * We must acquire the RW_WRITER lock in order to
4529 * call bmap_write().
4530 */
4531 if (dolock && rwtype == RW_READER) {
4532 rwtype = RW_WRITER;
4533
4534 /*
4535 * Grab the quota lock before
4536 * upgrading i_contents, but if we can't grab it
4537 * don't wait here due to lock order:
4538 * vfs_dqrwlock > i_contents.
4539 */
4540 if (do_qlock &&
4541 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4542 == 0) {
4543 rw_exit(&ip->i_contents);
4544 goto retrylock;
4545 }
4546 if (!rw_tryupgrade(&ip->i_contents)) {
4547 rw_exit(&ip->i_contents);
4548 if (do_qlock)
4549 rw_exit(&ufsvfsp->vfs_dqrwlock);
4550 goto retrylock;
4551 }
4552 }
4553
4554 /*
4555 * May be allocating disk blocks for holes here as
4556 * a result of mmap faults. write(2) does the bmap_write
4557 * in rdip/wrip, not here. We are not dealing with frags
4558 * in this case.
4559 */
4560 /*
4561 * Large Files: We cast fs_bmask field to offset_t
4562 * just as we do for MAXBMASK because uoff is a 64-bit
4563 * data type. fs_bmask will still be a 32-bit type
4564 * as we cannot change any ondisk data structures.
4565 */
4566
4567 offset = uoff & (offset_t)fs->fs_bmask;
4568 while (offset < uoff + len) {
4569 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4570 err = bmap_write(ip, offset, blk_size,
4571 BI_NORMAL, NULL, cr);
4572 if (ip->i_flag & (ICHG|IUPD))
4573 ip->i_seq++;
4574 if (err)
4575 goto update_inode;
4576 offset += blk_size; /* XXX - make this contig */
4577 }
4578 }
4579
4580 /*
4581 * Can be a reader from now on.
4582 */
4583 if (dolock && rwtype == RW_WRITER) {
4584 rw_downgrade(&ip->i_contents);
4585 /*
4586 * We can release vfs_dqrwlock early so do it, but make
4587 * sure we don't try to release it again at the bottom.
4588 */
4589 if (do_qlock) {
4590 rw_exit(&ufsvfsp->vfs_dqrwlock);
4591 do_qlock = 0;
4592 }
4593 }
4594
4595 /*
4596 * We remove PROT_WRITE in cases when the file has UFS holes
4597 * because we don't want to call bmap_read() to check each
4598 * page if it is backed with a disk block.
4599 */
4600 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4601 *protp &= ~PROT_WRITE;
4602
4603 err = 0;
4604
4605 /*
4606 * The loop looks up pages in the range [off, off + len).
4607 * For each page, we first check if we should initiate an asynchronous
4608 * read ahead before we call page_lookup (we may sleep in page_lookup
4609 * for a previously initiated disk read).
4610 */
4611 eoff = (uoff + len);
4612 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4613 pgoff < eoff; /* empty */) {
4614 page_t *pp;
4615 u_offset_t nextrio;
4616 se_t se;
4617 int retval;
4618
4619 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4620
4621 /* Handle async getpage (faultahead) */
4622 if (plarr == NULL) {
4623 ip->i_nextrio = pgoff;
4624 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4625 pgoff += pgsize;
4626 pgaddr += pgsize;
4627 continue;
4628 }
4629 /*
4630 * Check if we should initiate read ahead of next cluster.
4631 * We call page_exists only when we need to confirm that
4632 * we have the current page before we initiate the read ahead.
4633 */
4634 nextrio = ip->i_nextrio;
4635 if (seqmode &&
4636 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4637 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4638 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4639 /*
4640 * We always read ahead the next cluster of data
4641 * starting from i_nextrio. If the page (vp,nextrio)
4642 * is actually in core at this point, the routine
4643 * ufs_getpage_ra() will stop pre-fetching data
4644 * until we read that page in a synchronized manner
4645 * through ufs_getpage_miss(). So, we should increase
4646 * i_nextrio if the page (vp, nextrio) exists.
4647 */
4648 if ((retval == 0) && page_exists(vp, nextrio)) {
4649 ip->i_nextrio = nextrio + pgsize;
4650 }
4651 }
4652
4653 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4654 /*
4655 * We found the page in the page cache.
4656 */
4657 *pl++ = pp;
4658 pgoff += pgsize;
4659 pgaddr += pgsize;
4660 len -= pgsize;
4661 plsz -= pgsize;
4662 } else {
4663 /*
4664 * We have to create the page, or read it from disk.
4665 */
4666 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4667 pl, plsz, rw, seqmode))
4668 goto error;
4669
4670 while (*pl != NULL) {
4671 pl++;
4672 pgoff += pgsize;
4673 pgaddr += pgsize;
4674 len -= pgsize;
4675 plsz -= pgsize;
4676 }
4677 }
4678 }
4679
4680 /*
4681 * Return pages up to plsz if they are in the page cache.
4682 * We cannot return pages if there is a chance that they are
4683 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4684 */
4685 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4686
4687 ASSERT((protp == NULL) ||
4688 !(has_holes && (*protp & PROT_WRITE)));
4689
4690 eoff = pgoff + plsz;
4691 while (pgoff < eoff) {
4692 page_t *pp;
4693
4694 if ((pp = page_lookup_nowait(vp, pgoff,
4695 SE_SHARED)) == NULL)
4696 break;
4697
4698 *pl++ = pp;
4699 pgoff += pgsize;
4700 plsz -= pgsize;
4701 }
4702 }
4703
4704 if (plarr)
4705 *pl = NULL; /* Terminate page list */
4706 ip->i_nextr = pgoff;
4707
4708 error:
4709 if (err && plarr) {
4710 /*
4711 * Release any pages we have locked.
4712 */
4713 while (pl > &plarr[0])
4714 page_unlock(*--pl);
4715
4716 plarr[0] = NULL;
4717 }
4718
4719 update_inode:
4720 /*
4721 * If the inode is not already marked for IACC (in rdip() for read)
4722 * and the inode is not marked for no access time update (in wrip()
4723 * for write) then update the inode access time and mod time now.
4724 */
4725 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4726 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4727 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4728 (fs->fs_ronly == 0) &&
4729 (!ufsvfsp->vfs_noatime)) {
4730 mutex_enter(&ip->i_tlock);
4731 ip->i_flag |= IACC;
4732 ITIMES_NOLOCK(ip);
4733 mutex_exit(&ip->i_tlock);
4734 }
4735 }
4736 }
4737
4738 if (dolock) {
4739 rw_exit(&ip->i_contents);
4740 if (do_qlock && rwtype == RW_WRITER)
4741 rw_exit(&ufsvfsp->vfs_dqrwlock);
4742 }
4743
4744 unlock:
4745 if (ulp) {
4746 if ((rw == S_CREATE || rw == S_WRITE) &&
4747 !(vp->v_flag & VISSWAP)) {
4748 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4749 }
4750 ufs_lockfs_end(ulp);
4751 }
4752 out:
4753 return (err);
4754 }
4755
4756 /*
4757 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4758 * cache. The page is either read from the disk, or it's created.
4759 * A page is created (without disk read) if rw == S_CREATE, or if
4760 * the page is not backed with a real disk block (UFS hole).
4761 */
4762 /* ARGSUSED */
4763 static int
ufs_getpage_miss(struct vnode * vp,u_offset_t off,size_t len,struct seg * seg,caddr_t addr,page_t * pl[],size_t plsz,enum seg_rw rw,int seq)4764 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4765 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4766 {
4767 struct inode *ip = VTOI(vp);
4768 page_t *pp;
4769 daddr_t bn;
4770 size_t io_len;
4771 int crpage = 0;
4772 int err;
4773 int contig;
4774 int bsize = ip->i_fs->fs_bsize;
4775
4776 /*
4777 * Figure out whether the page can be created, or must be
4778 * must be read from the disk.
4779 */
4780 if (rw == S_CREATE)
4781 crpage = 1;
4782 else {
4783 contig = 0;
4784 if (err = bmap_read(ip, off, &bn, &contig))
4785 return (err);
4786
4787 crpage = (bn == UFS_HOLE);
4788
4789 /*
4790 * If its also a fallocated block that hasn't been written to
4791 * yet, we will treat it just like a UFS_HOLE and create
4792 * a zero page for it
4793 */
4794 if (ISFALLOCBLK(ip, bn))
4795 crpage = 1;
4796 }
4797
4798 if (crpage) {
4799 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4800 addr)) == NULL) {
4801 return (ufs_fault(vp,
4802 "ufs_getpage_miss: page_create == NULL"));
4803 }
4804
4805 if (rw != S_CREATE)
4806 pagezero(pp, 0, PAGESIZE);
4807
4808 io_len = PAGESIZE;
4809 } else {
4810 u_offset_t io_off;
4811 uint_t xlen;
4812 struct buf *bp;
4813 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4814
4815 /*
4816 * If access is not in sequential order, we read from disk
4817 * in bsize units.
4818 *
4819 * We limit the size of the transfer to bsize if we are reading
4820 * from the beginning of the file. Note in this situation we
4821 * will hedge our bets and initiate an async read ahead of
4822 * the second block.
4823 */
4824 if (!seq || off == 0)
4825 contig = MIN(contig, bsize);
4826
4827 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4828 &io_len, off, contig, 0);
4829
4830 /*
4831 * Some other thread has entered the page.
4832 * ufs_getpage will retry page_lookup.
4833 */
4834 if (pp == NULL) {
4835 pl[0] = NULL;
4836 return (0);
4837 }
4838
4839 /*
4840 * Zero part of the page which we are not
4841 * going to read from the disk.
4842 */
4843 xlen = io_len & PAGEOFFSET;
4844 if (xlen != 0)
4845 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4846
4847 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4848 bp->b_edev = ip->i_dev;
4849 bp->b_dev = cmpdev(ip->i_dev);
4850 bp->b_blkno = bn;
4851 bp->b_un.b_addr = (caddr_t)0;
4852 bp->b_file = ip->i_vnode;
4853 bp->b_offset = off;
4854
4855 if (ufsvfsp->vfs_log) {
4856 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4857 } else if (ufsvfsp->vfs_snapshot) {
4858 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4859 } else {
4860 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4861 ub.ub_getpages.value.ul++;
4862 (void) bdev_strategy(bp);
4863 lwp_stat_update(LWP_STAT_INBLK, 1);
4864 }
4865
4866 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4867
4868 /*
4869 * If the file access is sequential, initiate read ahead
4870 * of the next cluster.
4871 */
4872 if (seq && ip->i_nextrio < ip->i_size)
4873 (void) ufs_getpage_ra(vp, off, seg, addr);
4874 err = biowait(bp);
4875 pageio_done(bp);
4876
4877 if (err) {
4878 pvn_read_done(pp, B_ERROR);
4879 return (err);
4880 }
4881 }
4882
4883 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4884 return (0);
4885 }
4886
4887 /*
4888 * Read ahead a cluster from the disk. Returns the length in bytes.
4889 */
4890 static int
ufs_getpage_ra(struct vnode * vp,u_offset_t off,struct seg * seg,caddr_t addr)4891 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
4892 {
4893 struct inode *ip = VTOI(vp);
4894 page_t *pp;
4895 u_offset_t io_off = ip->i_nextrio;
4896 ufsvfs_t *ufsvfsp;
4897 caddr_t addr2 = addr + (io_off - off);
4898 struct buf *bp;
4899 daddr_t bn;
4900 size_t io_len;
4901 int err;
4902 int contig;
4903 int xlen;
4904 int bsize = ip->i_fs->fs_bsize;
4905
4906 /*
4907 * If the directio advisory is in effect on this file,
4908 * then do not do buffered read ahead. Read ahead makes
4909 * it more difficult on threads using directio as they
4910 * will be forced to flush the pages from this vnode.
4911 */
4912 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
4913 return (0);
4914 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
4915 return (0);
4916
4917 /*
4918 * Is this test needed?
4919 */
4920 if (addr2 >= seg->s_base + seg->s_size)
4921 return (0);
4922
4923 contig = 0;
4924 err = bmap_read(ip, io_off, &bn, &contig);
4925 /*
4926 * If its a UFS_HOLE or a fallocated block, do not perform
4927 * any read ahead's since there probably is nothing to read ahead
4928 */
4929 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
4930 return (0);
4931
4932 /*
4933 * Limit the transfer size to bsize if this is the 2nd block.
4934 */
4935 if (io_off == (u_offset_t)bsize)
4936 contig = MIN(contig, bsize);
4937
4938 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
4939 &io_len, io_off, contig, 1)) == NULL)
4940 return (0);
4941
4942 /*
4943 * Zero part of page which we are not going to read from disk
4944 */
4945 if ((xlen = (io_len & PAGEOFFSET)) > 0)
4946 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4947
4948 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
4949
4950 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
4951 bp->b_edev = ip->i_dev;
4952 bp->b_dev = cmpdev(ip->i_dev);
4953 bp->b_blkno = bn;
4954 bp->b_un.b_addr = (caddr_t)0;
4955 bp->b_file = ip->i_vnode;
4956 bp->b_offset = off;
4957
4958 if (ufsvfsp->vfs_log) {
4959 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4960 } else if (ufsvfsp->vfs_snapshot) {
4961 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4962 } else {
4963 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4964 ub.ub_getras.value.ul++;
4965 (void) bdev_strategy(bp);
4966 lwp_stat_update(LWP_STAT_INBLK, 1);
4967 }
4968
4969 return (io_len);
4970 }
4971
4972 int ufs_delay = 1;
4973 /*
4974 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
4975 *
4976 * LMXXX - the inode really ought to contain a pointer to one of these
4977 * async args. Stuff gunk in there and just hand the whole mess off.
4978 * This would replace i_delaylen, i_delayoff.
4979 */
4980 /*ARGSUSED*/
4981 static int
ufs_putpage(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr,caller_context_t * ct)4982 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
4983 struct cred *cr, caller_context_t *ct)
4984 {
4985 struct inode *ip = VTOI(vp);
4986 int err = 0;
4987
4988 if (vp->v_count == 0) {
4989 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
4990 }
4991
4992 /*
4993 * XXX - Why should this check be made here?
4994 */
4995 if (vp->v_flag & VNOMAP) {
4996 err = ENOSYS;
4997 goto errout;
4998 }
4999
5000 if (ip->i_ufsvfs == NULL) {
5001 err = EIO;
5002 goto errout;
5003 }
5004
5005 if (flags & B_ASYNC) {
5006 if (ufs_delay && len &&
5007 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5008 mutex_enter(&ip->i_tlock);
5009 /*
5010 * If nobody stalled, start a new cluster.
5011 */
5012 if (ip->i_delaylen == 0) {
5013 ip->i_delayoff = off;
5014 ip->i_delaylen = len;
5015 mutex_exit(&ip->i_tlock);
5016 goto errout;
5017 }
5018 /*
5019 * If we have a full cluster or they are not contig,
5020 * then push last cluster and start over.
5021 */
5022 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5023 ip->i_delayoff + ip->i_delaylen != off) {
5024 u_offset_t doff;
5025 size_t dlen;
5026
5027 doff = ip->i_delayoff;
5028 dlen = ip->i_delaylen;
5029 ip->i_delayoff = off;
5030 ip->i_delaylen = len;
5031 mutex_exit(&ip->i_tlock);
5032 err = ufs_putpages(vp, doff, dlen,
5033 flags, cr);
5034 /* LMXXX - flags are new val, not old */
5035 goto errout;
5036 }
5037 /*
5038 * There is something there, it's not full, and
5039 * it is contig.
5040 */
5041 ip->i_delaylen += len;
5042 mutex_exit(&ip->i_tlock);
5043 goto errout;
5044 }
5045 /*
5046 * Must have weird flags or we are not clustering.
5047 */
5048 }
5049
5050 err = ufs_putpages(vp, off, len, flags, cr);
5051
5052 errout:
5053 return (err);
5054 }
5055
5056 /*
5057 * If len == 0, do from off to EOF.
5058 *
5059 * The normal cases should be len == 0 & off == 0 (entire vp list),
5060 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5061 * (from pageout).
5062 */
5063 /*ARGSUSED*/
5064 static int
ufs_putpages(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr)5065 ufs_putpages(struct vnode *vp, offset_t off, size_t len, int flags,
5066 struct cred *cr)
5067 {
5068 u_offset_t io_off;
5069 u_offset_t eoff;
5070 struct inode *ip = VTOI(vp);
5071 page_t *pp;
5072 size_t io_len;
5073 int err = 0;
5074 int dolock;
5075
5076 if (vp->v_count == 0)
5077 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5078 /*
5079 * Acquire the readers/write inode lock before locking
5080 * any pages in this inode.
5081 * The inode lock is held during i/o.
5082 */
5083 if (len == 0) {
5084 mutex_enter(&ip->i_tlock);
5085 ip->i_delayoff = ip->i_delaylen = 0;
5086 mutex_exit(&ip->i_tlock);
5087 }
5088 dolock = (rw_owner(&ip->i_contents) != curthread);
5089 if (dolock) {
5090 /*
5091 * Must synchronize this thread and any possible thread
5092 * operating in the window of vulnerability in wrip().
5093 * It is dangerous to allow both a thread doing a putpage
5094 * and a thread writing, so serialize them. The exception
5095 * is when the thread in wrip() does something which causes
5096 * a putpage operation. Then, the thread must be allowed
5097 * to continue. It may encounter a bmap_read problem in
5098 * ufs_putapage, but that is handled in ufs_putapage.
5099 * Allow async writers to proceed, we don't want to block
5100 * the pageout daemon.
5101 */
5102 if (ip->i_writer == curthread)
5103 rw_enter(&ip->i_contents, RW_READER);
5104 else {
5105 for (;;) {
5106 rw_enter(&ip->i_contents, RW_READER);
5107 mutex_enter(&ip->i_tlock);
5108 /*
5109 * If there is no thread in the critical
5110 * section of wrip(), then proceed.
5111 * Otherwise, wait until there isn't one.
5112 */
5113 if (ip->i_writer == NULL) {
5114 mutex_exit(&ip->i_tlock);
5115 break;
5116 }
5117 rw_exit(&ip->i_contents);
5118 /*
5119 * Bounce async writers when we have a writer
5120 * working on this file so we don't deadlock
5121 * the pageout daemon.
5122 */
5123 if (flags & B_ASYNC) {
5124 mutex_exit(&ip->i_tlock);
5125 return (0);
5126 }
5127 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5128 mutex_exit(&ip->i_tlock);
5129 }
5130 }
5131 }
5132
5133 if (!vn_has_cached_data(vp)) {
5134 if (dolock)
5135 rw_exit(&ip->i_contents);
5136 return (0);
5137 }
5138
5139 if (len == 0) {
5140 /*
5141 * Search the entire vp list for pages >= off.
5142 */
5143 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5144 flags, cr);
5145 } else {
5146 /*
5147 * Loop over all offsets in the range looking for
5148 * pages to deal with.
5149 */
5150 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5151 eoff = MIN(off + len, eoff);
5152 else
5153 eoff = off + len;
5154
5155 for (io_off = off; io_off < eoff; io_off += io_len) {
5156 /*
5157 * If we are not invalidating, synchronously
5158 * freeing or writing pages, use the routine
5159 * page_lookup_nowait() to prevent reclaiming
5160 * them from the free list.
5161 */
5162 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5163 pp = page_lookup(vp, io_off,
5164 (flags & (B_INVAL | B_FREE)) ?
5165 SE_EXCL : SE_SHARED);
5166 } else {
5167 pp = page_lookup_nowait(vp, io_off,
5168 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5169 }
5170
5171 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5172 io_len = PAGESIZE;
5173 else {
5174 u_offset_t *io_offp = &io_off;
5175
5176 err = ufs_putapage(vp, pp, io_offp, &io_len,
5177 flags, cr);
5178 if (err != 0)
5179 break;
5180 /*
5181 * "io_off" and "io_len" are returned as
5182 * the range of pages we actually wrote.
5183 * This allows us to skip ahead more quickly
5184 * since several pages may've been dealt
5185 * with by this iteration of the loop.
5186 */
5187 }
5188 }
5189 }
5190 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5191 /*
5192 * We have just sync'ed back all the pages on
5193 * the inode, turn off the IMODTIME flag.
5194 */
5195 mutex_enter(&ip->i_tlock);
5196 ip->i_flag &= ~IMODTIME;
5197 mutex_exit(&ip->i_tlock);
5198 }
5199 if (dolock)
5200 rw_exit(&ip->i_contents);
5201 return (err);
5202 }
5203
5204 static int
ufs_iodone(buf_t * bp)5205 ufs_iodone(buf_t *bp)
5206 {
5207 struct inode *ip;
5208
5209 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5210
5211 bp->b_iodone = NULL;
5212
5213 ip = VTOI(bp->b_pages->p_vnode);
5214
5215 mutex_enter(&ip->i_tlock);
5216 if (ip->i_writes >= ufs_LW) {
5217 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5218 if (ufs_WRITES)
5219 cv_broadcast(&ip->i_wrcv); /* wake all up */
5220 } else {
5221 ip->i_writes -= bp->b_bcount;
5222 }
5223
5224 mutex_exit(&ip->i_tlock);
5225 iodone(bp);
5226 return (0);
5227 }
5228
5229 /*
5230 * Write out a single page, possibly klustering adjacent
5231 * dirty pages. The inode lock must be held.
5232 *
5233 * LMXXX - bsize < pagesize not done.
5234 */
5235 /*ARGSUSED*/
5236 int
ufs_putapage(struct vnode * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,struct cred * cr)5237 ufs_putapage(struct vnode *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5238 int flags, struct cred *cr)
5239 {
5240 u_offset_t io_off;
5241 u_offset_t off;
5242 struct inode *ip = VTOI(vp);
5243 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5244 struct fs *fs;
5245 struct buf *bp;
5246 size_t io_len;
5247 daddr_t bn;
5248 int err;
5249 int contig;
5250 int dotrans;
5251
5252 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5253
5254 if (ufsvfsp == NULL) {
5255 err = EIO;
5256 goto out_trace;
5257 }
5258
5259 fs = ip->i_fs;
5260 ASSERT(fs->fs_ronly == 0);
5261
5262 /*
5263 * If the modified time on the inode has not already been
5264 * set elsewhere (e.g. for write/setattr) we set the time now.
5265 * This gives us approximate modified times for mmap'ed files
5266 * which are modified via stores in the user address space.
5267 */
5268 if ((ip->i_flag & IMODTIME) == 0) {
5269 mutex_enter(&ip->i_tlock);
5270 ip->i_flag |= IUPD;
5271 ip->i_seq++;
5272 ITIMES_NOLOCK(ip);
5273 mutex_exit(&ip->i_tlock);
5274 }
5275
5276 /*
5277 * Align the request to a block boundry (for old file systems),
5278 * and go ask bmap() how contiguous things are for this file.
5279 */
5280 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5281 contig = 0;
5282 err = bmap_read(ip, off, &bn, &contig);
5283 if (err)
5284 goto out;
5285 if (bn == UFS_HOLE) { /* putpage never allocates */
5286 /*
5287 * logging device is in error mode; simply return EIO
5288 */
5289 if (TRANS_ISERROR(ufsvfsp)) {
5290 err = EIO;
5291 goto out;
5292 }
5293 /*
5294 * Oops, the thread in the window in wrip() did some
5295 * sort of operation which caused a putpage in the bad
5296 * range. In this case, just return an error which will
5297 * cause the software modified bit on the page to set
5298 * and the page will get written out again later.
5299 */
5300 if (ip->i_writer == curthread) {
5301 err = EIO;
5302 goto out;
5303 }
5304 /*
5305 * If the pager is trying to push a page in the bad range
5306 * just tell it to try again later when things are better.
5307 */
5308 if (flags & B_ASYNC) {
5309 err = EAGAIN;
5310 goto out;
5311 }
5312 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5313 goto out;
5314 }
5315
5316 /*
5317 * If it is an fallocate'd block, reverse the negativity since
5318 * we are now writing to it
5319 */
5320 if (ISFALLOCBLK(ip, bn)) {
5321 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5322 if (err)
5323 goto out;
5324
5325 bn = -bn;
5326 }
5327
5328 /*
5329 * Take the length (of contiguous bytes) passed back from bmap()
5330 * and _try_ and get a set of pages covering that extent.
5331 */
5332 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5333
5334 /*
5335 * May have run out of memory and not clustered backwards.
5336 * off p_offset
5337 * [ pp - 1 ][ pp ]
5338 * [ block ]
5339 * We told bmap off, so we have to adjust the bn accordingly.
5340 */
5341 if (io_off > off) {
5342 bn += btod(io_off - off);
5343 contig -= (io_off - off);
5344 }
5345
5346 /*
5347 * bmap was carefull to tell us the right size so use that.
5348 * There might be unallocated frags at the end.
5349 * LMXXX - bzero the end of the page? We must be writing after EOF.
5350 */
5351 if (io_len > contig) {
5352 ASSERT(io_len - contig < fs->fs_bsize);
5353 io_len -= (io_len - contig);
5354 }
5355
5356 /*
5357 * Handle the case where we are writing the last page after EOF.
5358 *
5359 * XXX - just a patch for i-mt3.
5360 */
5361 if (io_len == 0) {
5362 ASSERT(pp->p_offset >=
5363 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5364 io_len = PAGESIZE;
5365 }
5366
5367 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5368
5369 ULOCKFS_SET_MOD(ITOUL(ip));
5370
5371 bp->b_edev = ip->i_dev;
5372 bp->b_dev = cmpdev(ip->i_dev);
5373 bp->b_blkno = bn;
5374 bp->b_un.b_addr = (caddr_t)0;
5375 bp->b_file = ip->i_vnode;
5376
5377 /*
5378 * File contents of shadow or quota inodes are metadata, and updates
5379 * to these need to be put into a logging transaction. All direct
5380 * callers in UFS do that, but fsflush can come here _before_ the
5381 * normal codepath. An example would be updating ACL information, for
5382 * which the normal codepath would be:
5383 * ufs_si_store()
5384 * ufs_rdwri()
5385 * wrip()
5386 * segmap_release()
5387 * VOP_PUTPAGE()
5388 * Here, fsflush can pick up the dirty page before segmap_release()
5389 * forces it out. If that happens, there's no transaction.
5390 * We therefore need to test whether a transaction exists, and if not
5391 * create one - for fsflush.
5392 */
5393 dotrans =
5394 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5395 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5396 (TRANS_ISTRANS(ufsvfsp)));
5397
5398 if (dotrans) {
5399 curthread->t_flag |= T_DONTBLOCK;
5400 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5401 }
5402 if (TRANS_ISTRANS(ufsvfsp)) {
5403 if ((ip->i_mode & IFMT) == IFSHAD) {
5404 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5405 } else if (ufsvfsp->vfs_qinod == ip) {
5406 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5407 0, 0);
5408 }
5409 }
5410 if (dotrans) {
5411 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5412 curthread->t_flag &= ~T_DONTBLOCK;
5413 }
5414
5415 /* write throttle */
5416
5417 ASSERT(bp->b_iodone == NULL);
5418 bp->b_iodone = ufs_iodone;
5419 mutex_enter(&ip->i_tlock);
5420 ip->i_writes += bp->b_bcount;
5421 mutex_exit(&ip->i_tlock);
5422
5423 if (bp->b_flags & B_ASYNC) {
5424 if (ufsvfsp->vfs_log) {
5425 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5426 } else if (ufsvfsp->vfs_snapshot) {
5427 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5428 } else {
5429 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5430 ub.ub_putasyncs.value.ul++;
5431 (void) bdev_strategy(bp);
5432 lwp_stat_update(LWP_STAT_OUBLK, 1);
5433 }
5434 } else {
5435 if (ufsvfsp->vfs_log) {
5436 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5437 } else if (ufsvfsp->vfs_snapshot) {
5438 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5439 } else {
5440 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5441 ub.ub_putsyncs.value.ul++;
5442 (void) bdev_strategy(bp);
5443 lwp_stat_update(LWP_STAT_OUBLK, 1);
5444 }
5445 err = biowait(bp);
5446 pageio_done(bp);
5447 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5448 }
5449
5450 pp = NULL;
5451
5452 out:
5453 if (err != 0 && pp != NULL)
5454 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5455
5456 if (offp)
5457 *offp = io_off;
5458 if (lenp)
5459 *lenp = io_len;
5460 out_trace:
5461 return (err);
5462 }
5463
5464 uint64_t ufs_map_alock_retry_cnt;
5465 uint64_t ufs_map_lockfs_retry_cnt;
5466
5467 /* ARGSUSED */
5468 static int
ufs_map(struct vnode * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5469 ufs_map(struct vnode *vp, offset_t off, struct as *as, caddr_t *addrp,
5470 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cr,
5471 caller_context_t *ct)
5472 {
5473 struct segvn_crargs vn_a;
5474 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5475 struct ulockfs *ulp;
5476 int error, sig;
5477 k_sigset_t smask;
5478 caddr_t hint = *addrp;
5479
5480 if (vp->v_flag & VNOMAP) {
5481 error = ENOSYS;
5482 goto out;
5483 }
5484
5485 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5486 error = ENXIO;
5487 goto out;
5488 }
5489
5490 if (vp->v_type != VREG) {
5491 error = ENODEV;
5492 goto out;
5493 }
5494
5495 retry_map:
5496 *addrp = hint;
5497 /*
5498 * If file is being locked, disallow mapping.
5499 */
5500 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5501 error = EAGAIN;
5502 goto out;
5503 }
5504
5505 as_rangelock(as);
5506 /*
5507 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5508 * the previous attempt), some other thread could have grabbed
5509 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5510 * would unmap the valid VA range, that is ok.
5511 */
5512 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5513 if (error != 0) {
5514 as_rangeunlock(as);
5515 goto out;
5516 }
5517
5518 /*
5519 * a_lock has to be acquired before entering the lockfs protocol
5520 * because that is the order in which pagefault works. Also we cannot
5521 * block on a_lock here because this waiting writer will prevent
5522 * further readers like ufs_read from progressing and could cause
5523 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5524 * pending.
5525 */
5526 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) {
5527 ufs_map_alock_retry_cnt++;
5528 delay(RETRY_LOCK_DELAY);
5529 }
5530
5531 /*
5532 * We can't hold as->a_lock and wait for lockfs to succeed because
5533 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5534 * instead.
5535 */
5536 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5537 /*
5538 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5539 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5540 */
5541 ufs_map_lockfs_retry_cnt++;
5542 AS_LOCK_EXIT(as);
5543 as_rangeunlock(as);
5544 if (error == EIO)
5545 goto out;
5546
5547 mutex_enter(&ulp->ul_lock);
5548 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5549 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5550 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5551 } else {
5552 sigintr(&smask, 1);
5553 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5554 sigunintr(&smask);
5555 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5556 !sig) || ufsvfsp->vfs_dontblock) {
5557 mutex_exit(&ulp->ul_lock);
5558 return (EINTR);
5559 }
5560 }
5561 }
5562 mutex_exit(&ulp->ul_lock);
5563 goto retry_map;
5564 }
5565
5566 vn_a.vp = vp;
5567 vn_a.offset = (u_offset_t)off;
5568 vn_a.type = flags & MAP_TYPE;
5569 vn_a.prot = prot;
5570 vn_a.maxprot = maxprot;
5571 vn_a.cred = cr;
5572 vn_a.amp = NULL;
5573 vn_a.flags = flags & ~MAP_TYPE;
5574 vn_a.szc = 0;
5575 vn_a.lgrp_mem_policy_flags = 0;
5576
5577 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5578 if (ulp)
5579 ufs_lockfs_end(ulp);
5580 as_rangeunlock(as);
5581 out:
5582 return (error);
5583 }
5584
5585 /* ARGSUSED */
5586 static int
ufs_addmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5587 ufs_addmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5588 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5589 struct cred *cr, caller_context_t *ct)
5590 {
5591 struct inode *ip = VTOI(vp);
5592
5593 if (vp->v_flag & VNOMAP) {
5594 return (ENOSYS);
5595 }
5596
5597 mutex_enter(&ip->i_tlock);
5598 ip->i_mapcnt += btopr(len);
5599 mutex_exit(&ip->i_tlock);
5600 return (0);
5601 }
5602
5603 /*ARGSUSED*/
5604 static int
ufs_delmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5605 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5606 size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cr,
5607 caller_context_t *ct)
5608 {
5609 struct inode *ip = VTOI(vp);
5610
5611 if (vp->v_flag & VNOMAP) {
5612 return (ENOSYS);
5613 }
5614
5615 mutex_enter(&ip->i_tlock);
5616 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5617 ASSERT(ip->i_mapcnt >= 0);
5618 mutex_exit(&ip->i_tlock);
5619 return (0);
5620 }
5621 /*
5622 * Return the answer requested to poll() for non-device files
5623 */
5624 struct pollhead ufs_pollhd;
5625
5626 /* ARGSUSED */
5627 int
ufs_poll(vnode_t * vp,short ev,int any,short * revp,struct pollhead ** phpp,caller_context_t * ct)5628 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5629 caller_context_t *ct)
5630 {
5631 struct ufsvfs *ufsvfsp;
5632
5633 /*
5634 * Regular files reject epollers (and edge-triggered pollers).
5635 * See the comment in fs_poll() for a more detailed explanation.
5636 */
5637 if (fs_reject_epoll() || (ev & POLLET) != 0) {
5638 return (EPERM);
5639 }
5640
5641 *revp = 0;
5642 ufsvfsp = VTOI(vp)->i_ufsvfs;
5643
5644 if (!ufsvfsp) {
5645 *revp = POLLHUP;
5646 goto out;
5647 }
5648
5649 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5650 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5651 *revp |= POLLERR;
5652
5653 } else {
5654 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5655 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5656 *revp |= POLLOUT;
5657
5658 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5659 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5660 *revp |= POLLWRBAND;
5661
5662 if (ev & POLLIN)
5663 *revp |= POLLIN;
5664
5665 if (ev & POLLRDNORM)
5666 *revp |= POLLRDNORM;
5667
5668 if (ev & POLLRDBAND)
5669 *revp |= POLLRDBAND;
5670 }
5671
5672 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5673 *revp |= POLLPRI;
5674 out:
5675 if (*revp == 0 && ! any) {
5676 *phpp = &ufs_pollhd;
5677 }
5678
5679 return (0);
5680 }
5681
5682 /* ARGSUSED */
5683 static int
ufs_l_pathconf(struct vnode * vp,int cmd,ulong_t * valp,struct cred * cr,caller_context_t * ct)5684 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5685 caller_context_t *ct)
5686 {
5687 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5688 struct ulockfs *ulp = NULL;
5689 struct inode *sip = NULL;
5690 int error;
5691 struct inode *ip = VTOI(vp);
5692 int issync;
5693
5694 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5695 if (error)
5696 return (error);
5697
5698 switch (cmd) {
5699 /*
5700 * Have to handle _PC_NAME_MAX here, because the normal way
5701 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5702 * results in a lock ordering reversal between
5703 * ufs_lockfs_{begin,end}() and
5704 * ufs_thread_{suspend,continue}().
5705 *
5706 * Keep in sync with ufs_statvfs().
5707 */
5708 case _PC_NAME_MAX:
5709 *valp = MAXNAMLEN;
5710 break;
5711
5712 case _PC_FILESIZEBITS:
5713 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5714 *valp = UFS_FILESIZE_BITS;
5715 else
5716 *valp = 32;
5717 break;
5718
5719 case _PC_XATTR_EXISTS:
5720 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5721
5722 error =
5723 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5724 if (error == 0 && sip != NULL) {
5725 /* Start transaction */
5726 if (ulp) {
5727 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5728 TOP_RMDIR, TOP_RMDIR_SIZE);
5729 }
5730 /*
5731 * Is directory empty
5732 */
5733 rw_enter(&sip->i_rwlock, RW_WRITER);
5734 rw_enter(&sip->i_contents, RW_WRITER);
5735 if (ufs_xattrdirempty(sip,
5736 sip->i_number, CRED())) {
5737 rw_enter(&ip->i_contents, RW_WRITER);
5738 ufs_unhook_shadow(ip, sip);
5739 rw_exit(&ip->i_contents);
5740
5741 *valp = 0;
5742
5743 } else
5744 *valp = 1;
5745 rw_exit(&sip->i_contents);
5746 rw_exit(&sip->i_rwlock);
5747 if (ulp) {
5748 TRANS_END_CSYNC(ufsvfsp, error, issync,
5749 TOP_RMDIR, TOP_RMDIR_SIZE);
5750 }
5751 VN_RELE(ITOV(sip));
5752 } else if (error == ENOENT) {
5753 *valp = 0;
5754 error = 0;
5755 }
5756 } else {
5757 error = fs_pathconf(vp, cmd, valp, cr, ct);
5758 }
5759 break;
5760
5761 case _PC_ACL_ENABLED:
5762 *valp = _ACL_ACLENT_ENABLED;
5763 break;
5764
5765 case _PC_MIN_HOLE_SIZE:
5766 *valp = (ulong_t)ip->i_fs->fs_bsize;
5767 break;
5768
5769 case _PC_SATTR_ENABLED:
5770 case _PC_SATTR_EXISTS:
5771 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5772 (vp->v_type == VREG || vp->v_type == VDIR);
5773 break;
5774
5775 case _PC_TIMESTAMP_RESOLUTION:
5776 /*
5777 * UFS keeps only microsecond timestamp resolution.
5778 * This is historical and will probably never change.
5779 */
5780 *valp = 1000L;
5781 break;
5782
5783 default:
5784 error = fs_pathconf(vp, cmd, valp, cr, ct);
5785 break;
5786 }
5787
5788 if (ulp != NULL) {
5789 ufs_lockfs_end(ulp);
5790 }
5791 return (error);
5792 }
5793
5794 int ufs_pageio_writes, ufs_pageio_reads;
5795
5796 /*ARGSUSED*/
5797 static int
ufs_pageio(struct vnode * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,struct cred * cr,caller_context_t * ct)5798 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5799 int flags, struct cred *cr, caller_context_t *ct)
5800 {
5801 struct inode *ip = VTOI(vp);
5802 struct ufsvfs *ufsvfsp;
5803 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5804 struct buf *bp;
5805 daddr_t bn;
5806 size_t done_len = 0, cur_len = 0;
5807 int err = 0;
5808 int contig = 0;
5809 int dolock;
5810 int vmpss = 0;
5811 struct ulockfs *ulp;
5812
5813 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5814 vp->v_mpssdata != NULL) {
5815 vmpss = 1;
5816 }
5817
5818 dolock = (rw_owner(&ip->i_contents) != curthread);
5819 /*
5820 * We need a better check. Ideally, we would use another
5821 * vnodeops so that hlocked and forcibly unmounted file
5822 * systems would return EIO where appropriate and w/o the
5823 * need for these checks.
5824 */
5825 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5826 return (EIO);
5827
5828 /*
5829 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5830 * ul_lock must be taken before locking pages so we can't use it here
5831 * if pp is non NULL because segvn already locked pages
5832 * SE_EXCL. Instead we rely on the fact that a forced umount or
5833 * applying a filesystem lock via ufs_fiolfs() will block in the
5834 * implicit call to ufs_flush() until we unlock the pages after the
5835 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5836 * above 0 until they are done. We have to be careful not to increment
5837 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5838 *
5839 * If pp is NULL use ul_lock to make sure we don't increment
5840 * ul_vnops_cnt after forceful unmount hlocks the file system.
5841 */
5842 if (vmpss || pp == NULL) {
5843 ulp = &ufsvfsp->vfs_ulockfs;
5844 if (pp == NULL)
5845 mutex_enter(&ulp->ul_lock);
5846 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5847 if (pp == NULL) {
5848 mutex_exit(&ulp->ul_lock);
5849 }
5850 return (vmpss ? EIO : EINVAL);
5851 }
5852 atomic_inc_ulong(&ulp->ul_vnops_cnt);
5853 if (pp == NULL)
5854 mutex_exit(&ulp->ul_lock);
5855 if (ufs_quiesce_pend) {
5856 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5857 cv_broadcast(&ulp->ul_cv);
5858 return (vmpss ? EIO : EINVAL);
5859 }
5860 }
5861
5862 if (dolock) {
5863 /*
5864 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
5865 * handle a fault against a segment that maps vnode pages with
5866 * large mappings. Segvn creates pages and holds them locked
5867 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
5868 * use rw_tryenter() to avoid a potential deadlock since in
5869 * lock order i_contents needs to be taken first.
5870 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
5871 */
5872 if (!vmpss) {
5873 rw_enter(&ip->i_contents, RW_READER);
5874 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
5875 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5876 cv_broadcast(&ulp->ul_cv);
5877 return (EDEADLK);
5878 }
5879 }
5880
5881 /*
5882 * Return an error to segvn because the pagefault request is beyond
5883 * PAGESIZE rounded EOF.
5884 */
5885 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
5886 if (dolock)
5887 rw_exit(&ip->i_contents);
5888 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5889 cv_broadcast(&ulp->ul_cv);
5890 return (EFAULT);
5891 }
5892
5893 if (pp == NULL) {
5894 if (bmap_has_holes(ip)) {
5895 err = ENOSYS;
5896 } else {
5897 err = EINVAL;
5898 }
5899 if (dolock)
5900 rw_exit(&ip->i_contents);
5901 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5902 cv_broadcast(&ulp->ul_cv);
5903 return (err);
5904 }
5905
5906 /*
5907 * Break the io request into chunks, one for each contiguous
5908 * stretch of disk blocks in the target file.
5909 */
5910 while (done_len < io_len) {
5911 ASSERT(cpp);
5912 contig = 0;
5913 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
5914 &bn, &contig))
5915 break;
5916
5917 if (bn == UFS_HOLE) { /* No holey swapfiles */
5918 if (vmpss) {
5919 err = EFAULT;
5920 break;
5921 }
5922 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
5923 break;
5924 }
5925
5926 cur_len = MIN(io_len - done_len, contig);
5927 /*
5928 * Zero out a page beyond EOF, when the last block of
5929 * a file is a UFS fragment so that ufs_pageio() can be used
5930 * instead of ufs_getpage() to handle faults against
5931 * segvn segments that use large pages.
5932 */
5933 page_list_break(&cpp, &npp, btopr(cur_len));
5934 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
5935 size_t xlen = cur_len & PAGEOFFSET;
5936 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
5937 }
5938
5939 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
5940 ASSERT(bp != NULL);
5941
5942 bp->b_edev = ip->i_dev;
5943 bp->b_dev = cmpdev(ip->i_dev);
5944 bp->b_blkno = bn;
5945 bp->b_un.b_addr = (caddr_t)0;
5946 bp->b_file = ip->i_vnode;
5947
5948 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5949 ub.ub_pageios.value.ul++;
5950 if (ufsvfsp->vfs_snapshot)
5951 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
5952 else
5953 (void) bdev_strategy(bp);
5954
5955 if (flags & B_READ)
5956 ufs_pageio_reads++;
5957 else
5958 ufs_pageio_writes++;
5959 if (flags & B_READ)
5960 lwp_stat_update(LWP_STAT_INBLK, 1);
5961 else
5962 lwp_stat_update(LWP_STAT_OUBLK, 1);
5963 /*
5964 * If the request is not B_ASYNC, wait for i/o to complete
5965 * and re-assemble the page list to return to the caller.
5966 * If it is B_ASYNC we leave the page list in pieces and
5967 * cleanup() will dispose of them.
5968 */
5969 if ((flags & B_ASYNC) == 0) {
5970 err = biowait(bp);
5971 pageio_done(bp);
5972 if (err)
5973 break;
5974 page_list_concat(&opp, &cpp);
5975 }
5976 cpp = npp;
5977 npp = NULL;
5978 if (flags & B_READ)
5979 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
5980 done_len += cur_len;
5981 }
5982 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
5983 if (err) {
5984 if (flags & B_ASYNC) {
5985 /* Cleanup unprocessed parts of list */
5986 page_list_concat(&cpp, &npp);
5987 if (flags & B_READ)
5988 pvn_read_done(cpp, B_ERROR);
5989 else
5990 pvn_write_done(cpp, B_ERROR);
5991 } else {
5992 /* Re-assemble list and let caller clean up */
5993 page_list_concat(&opp, &cpp);
5994 page_list_concat(&opp, &npp);
5995 }
5996 }
5997
5998 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
5999 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6000 mutex_enter(&ip->i_tlock);
6001 ip->i_flag |= IACC;
6002 ITIMES_NOLOCK(ip);
6003 mutex_exit(&ip->i_tlock);
6004 }
6005
6006 if (dolock)
6007 rw_exit(&ip->i_contents);
6008 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6009 cv_broadcast(&ulp->ul_cv);
6010 return (err);
6011 }
6012
6013 /*
6014 * Called when the kernel is in a frozen state to dump data
6015 * directly to the device. It uses a private dump data structure,
6016 * set up by dump_ctl, to locate the correct disk block to which to dump.
6017 */
6018 /*ARGSUSED*/
6019 static int
ufs_dump(vnode_t * vp,caddr_t addr,offset_t ldbn,offset_t dblks,caller_context_t * ct)6020 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6021 caller_context_t *ct)
6022 {
6023 u_offset_t file_size;
6024 struct inode *ip = VTOI(vp);
6025 struct fs *fs = ip->i_fs;
6026 daddr_t dbn, lfsbn;
6027 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6028 int error = 0;
6029 int ndbs, nfsbs;
6030
6031 /*
6032 * forced unmount case
6033 */
6034 if (ip->i_ufsvfs == NULL)
6035 return (EIO);
6036 /*
6037 * Validate the inode that it has not been modified since
6038 * the dump structure is allocated.
6039 */
6040 mutex_enter(&ip->i_tlock);
6041 if ((dump_info == NULL) ||
6042 (dump_info->ip != ip) ||
6043 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6044 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6045 mutex_exit(&ip->i_tlock);
6046 return (-1);
6047 }
6048 mutex_exit(&ip->i_tlock);
6049
6050 /*
6051 * See that the file has room for this write
6052 */
6053 UFS_GET_ISIZE(&file_size, ip);
6054
6055 if (ldbtob(ldbn + dblks) > file_size)
6056 return (ENOSPC);
6057
6058 /*
6059 * Find the physical disk block numbers from the dump
6060 * private data structure directly and write out the data
6061 * in contiguous block lumps
6062 */
6063 while (dblks > 0 && !error) {
6064 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6065 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6066 nfsbs = 1;
6067 ndbs = disk_blks - ldbn % disk_blks;
6068 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6069 nfsbs]) == dbn + ndbs) {
6070 nfsbs++;
6071 ndbs += disk_blks;
6072 }
6073 if (ndbs > dblks)
6074 ndbs = dblks;
6075 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6076 addr += ldbtob((offset_t)ndbs);
6077 dblks -= ndbs;
6078 ldbn += ndbs;
6079 }
6080 return (error);
6081
6082 }
6083
6084 /*
6085 * Prepare the file system before and after the dump operation.
6086 *
6087 * action = DUMP_ALLOC:
6088 * Preparation before dump, allocate dump private data structure
6089 * to hold all the direct and indirect block info for dump.
6090 *
6091 * action = DUMP_FREE:
6092 * Clean up after dump, deallocate the dump private data structure.
6093 *
6094 * action = DUMP_SCAN:
6095 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6096 * if found, the starting file-relative DEV_BSIZE lbn is written
6097 * to *bklp; that lbn is intended for use with VOP_DUMP()
6098 */
6099 /*ARGSUSED*/
6100 static int
ufs_dumpctl(vnode_t * vp,int action,offset_t * blkp,caller_context_t * ct)6101 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6102 {
6103 struct inode *ip = VTOI(vp);
6104 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6105 struct fs *fs;
6106 daddr32_t *dblk, *storeblk;
6107 daddr32_t *nextblk, *endblk;
6108 struct buf *bp;
6109 int i, entry, entries;
6110 int n, ncontig;
6111
6112 /*
6113 * check for forced unmount
6114 */
6115 if (ufsvfsp == NULL)
6116 return (EIO);
6117
6118 if (action == DUMP_ALLOC) {
6119 /*
6120 * alloc and record dump_info
6121 */
6122 if (dump_info != NULL)
6123 return (EINVAL);
6124
6125 ASSERT(vp->v_type == VREG);
6126 fs = ufsvfsp->vfs_fs;
6127
6128 rw_enter(&ip->i_contents, RW_READER);
6129
6130 if (bmap_has_holes(ip)) {
6131 rw_exit(&ip->i_contents);
6132 return (EFAULT);
6133 }
6134
6135 /*
6136 * calculate and allocate space needed according to i_size
6137 */
6138 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6139 dump_info = kmem_alloc(sizeof (struct dump) +
6140 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6141 if (dump_info == NULL) {
6142 rw_exit(&ip->i_contents);
6143 return (ENOMEM);
6144 }
6145
6146 /* Start saving the info */
6147 dump_info->fsbs = entries;
6148 dump_info->ip = ip;
6149 storeblk = &dump_info->dblk[0];
6150
6151 /* Direct Blocks */
6152 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6153 *storeblk++ = ip->i_db[entry];
6154
6155 /* Indirect Blocks */
6156 for (i = 0; i < NIADDR; i++) {
6157 int error = 0;
6158
6159 bp = UFS_BREAD(ufsvfsp,
6160 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6161 if (bp->b_flags & B_ERROR)
6162 error = EIO;
6163 else {
6164 dblk = bp->b_un.b_daddr;
6165 if ((storeblk = save_dblks(ip, ufsvfsp,
6166 storeblk, dblk, i, entries)) == NULL)
6167 error = EIO;
6168 }
6169
6170 brelse(bp);
6171
6172 if (error != 0) {
6173 kmem_free(dump_info, sizeof (struct dump) +
6174 (entries - 1) * sizeof (daddr32_t));
6175 rw_exit(&ip->i_contents);
6176 dump_info = NULL;
6177 return (error);
6178 }
6179 }
6180 /* and time stamp the information */
6181 mutex_enter(&ip->i_tlock);
6182 dump_info->time = ip->i_mtime;
6183 mutex_exit(&ip->i_tlock);
6184
6185 rw_exit(&ip->i_contents);
6186 } else if (action == DUMP_FREE) {
6187 /*
6188 * free dump_info
6189 */
6190 if (dump_info == NULL)
6191 return (EINVAL);
6192 entries = dump_info->fsbs - 1;
6193 kmem_free(dump_info, sizeof (struct dump) +
6194 entries * sizeof (daddr32_t));
6195 dump_info = NULL;
6196 } else if (action == DUMP_SCAN) {
6197 /*
6198 * scan dump_info
6199 */
6200 if (dump_info == NULL)
6201 return (EINVAL);
6202
6203 dblk = dump_info->dblk;
6204 nextblk = dblk + 1;
6205 endblk = dblk + dump_info->fsbs - 1;
6206 fs = ufsvfsp->vfs_fs;
6207 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6208
6209 /*
6210 * scan dblk[] entries; contig fs space is found when:
6211 * ((current blkno + frags per block) == next blkno)
6212 */
6213 n = 0;
6214 while (n < ncontig && dblk < endblk) {
6215 if ((*dblk + fs->fs_frag) == *nextblk)
6216 n++;
6217 else
6218 n = 0;
6219 dblk++;
6220 nextblk++;
6221 }
6222
6223 /*
6224 * index is where size bytes of contig space begins;
6225 * conversion from index to the file's DEV_BSIZE lbn
6226 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6227 */
6228 if (n == ncontig) {
6229 i = (dblk - dump_info->dblk) - ncontig;
6230 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6231 } else
6232 return (EFAULT);
6233 }
6234 return (0);
6235 }
6236
6237 /*
6238 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6239 * system blocks until it reaches the the disk block addresses, which are
6240 * then stored into the given buffer, storeblk.
6241 */
6242 static daddr32_t *
save_dblks(struct inode * ip,struct ufsvfs * ufsvfsp,daddr32_t * storeblk,daddr32_t * dblk,int level,int entries)6243 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6244 daddr32_t *dblk, int level, int entries)
6245 {
6246 struct fs *fs = ufsvfsp->vfs_fs;
6247 struct buf *bp;
6248 int i;
6249
6250 if (level == 0) {
6251 for (i = 0; i < NINDIR(fs); i++) {
6252 if (storeblk - dump_info->dblk >= entries)
6253 break;
6254 *storeblk++ = dblk[i];
6255 }
6256 return (storeblk);
6257 }
6258 for (i = 0; i < NINDIR(fs); i++) {
6259 if (storeblk - dump_info->dblk >= entries)
6260 break;
6261 bp = UFS_BREAD(ufsvfsp,
6262 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6263 if (bp->b_flags & B_ERROR) {
6264 brelse(bp);
6265 return (NULL);
6266 }
6267 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6268 level - 1, entries);
6269 brelse(bp);
6270
6271 if (storeblk == NULL)
6272 return (NULL);
6273 }
6274 return (storeblk);
6275 }
6276
6277 /* ARGSUSED */
6278 static int
ufs_getsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)6279 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6280 struct cred *cr, caller_context_t *ct)
6281 {
6282 struct inode *ip = VTOI(vp);
6283 struct ulockfs *ulp;
6284 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6285 ulong_t vsa_mask = vsap->vsa_mask;
6286 int err = EINVAL;
6287
6288 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6289
6290 /*
6291 * Only grab locks if needed - they're not needed to check vsa_mask
6292 * or if the mask contains no acl flags.
6293 */
6294 if (vsa_mask != 0) {
6295 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6296 ULOCKFS_GETATTR_MASK))
6297 return (err);
6298
6299 rw_enter(&ip->i_contents, RW_READER);
6300 err = ufs_acl_get(ip, vsap, flag, cr);
6301 rw_exit(&ip->i_contents);
6302
6303 if (ulp)
6304 ufs_lockfs_end(ulp);
6305 }
6306 return (err);
6307 }
6308
6309 /* ARGSUSED */
6310 static int
ufs_setsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)6311 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6312 caller_context_t *ct)
6313 {
6314 struct inode *ip = VTOI(vp);
6315 struct ulockfs *ulp = NULL;
6316 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6317 ulong_t vsa_mask = vsap->vsa_mask;
6318 int err;
6319 int haverwlock = 1;
6320 int trans_size;
6321 int donetrans = 0;
6322 int retry = 1;
6323
6324 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6325
6326 /* Abort now if the request is either empty or invalid. */
6327 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6328 if ((vsa_mask == 0) ||
6329 ((vsap->vsa_aclentp == NULL) &&
6330 (vsap->vsa_dfaclentp == NULL))) {
6331 err = EINVAL;
6332 goto out;
6333 }
6334
6335 /*
6336 * Following convention, if this is a directory then we acquire the
6337 * inode's i_rwlock after starting a UFS logging transaction;
6338 * otherwise, we acquire it beforehand. Since we were called (and
6339 * must therefore return) with the lock held, we will have to drop it,
6340 * and later reacquire it, if operating on a directory.
6341 */
6342 if (vp->v_type == VDIR) {
6343 rw_exit(&ip->i_rwlock);
6344 haverwlock = 0;
6345 } else {
6346 /* Upgrade the lock if required. */
6347 if (!rw_write_held(&ip->i_rwlock)) {
6348 rw_exit(&ip->i_rwlock);
6349 rw_enter(&ip->i_rwlock, RW_WRITER);
6350 }
6351 }
6352
6353 again:
6354 ASSERT(!(vp->v_type == VDIR && haverwlock));
6355 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6356 ulp = NULL;
6357 retry = 0;
6358 goto out;
6359 }
6360
6361 /*
6362 * Check that the file system supports this operation. Note that
6363 * ufs_lockfs_begin() will have checked that the file system had
6364 * not been forcibly unmounted.
6365 */
6366 if (ufsvfsp->vfs_fs->fs_ronly) {
6367 err = EROFS;
6368 goto out;
6369 }
6370 if (ufsvfsp->vfs_nosetsec) {
6371 err = ENOSYS;
6372 goto out;
6373 }
6374
6375 if (ulp) {
6376 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6377 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6378 donetrans = 1;
6379 }
6380
6381 if (vp->v_type == VDIR) {
6382 rw_enter(&ip->i_rwlock, RW_WRITER);
6383 haverwlock = 1;
6384 }
6385
6386 ASSERT(haverwlock);
6387
6388 /* Do the actual work. */
6389 rw_enter(&ip->i_contents, RW_WRITER);
6390 /*
6391 * Suppress out of inodes messages if we will retry.
6392 */
6393 if (retry)
6394 ip->i_flag |= IQUIET;
6395 err = ufs_acl_set(ip, vsap, flag, cr);
6396 ip->i_flag &= ~IQUIET;
6397 rw_exit(&ip->i_contents);
6398
6399 out:
6400 if (ulp) {
6401 if (donetrans) {
6402 /*
6403 * top_end_async() can eventually call
6404 * top_end_sync(), which can block. We must
6405 * therefore observe the lock-ordering protocol
6406 * here as well.
6407 */
6408 if (vp->v_type == VDIR) {
6409 rw_exit(&ip->i_rwlock);
6410 haverwlock = 0;
6411 }
6412 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6413 }
6414 ufs_lockfs_end(ulp);
6415 }
6416 /*
6417 * If no inodes available, try scaring a logically-
6418 * free one out of the delete queue to someplace
6419 * that we can find it.
6420 */
6421 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6422 ufs_delete_drain_wait(ufsvfsp, 1);
6423 retry = 0;
6424 if (vp->v_type == VDIR && haverwlock) {
6425 rw_exit(&ip->i_rwlock);
6426 haverwlock = 0;
6427 }
6428 goto again;
6429 }
6430 /*
6431 * If we need to reacquire the lock then it is safe to do so
6432 * as a reader. This is because ufs_rwunlock(), which will be
6433 * called by our caller after we return, does not differentiate
6434 * between shared and exclusive locks.
6435 */
6436 if (!haverwlock) {
6437 ASSERT(vp->v_type == VDIR);
6438 rw_enter(&ip->i_rwlock, RW_READER);
6439 }
6440
6441 return (err);
6442 }
6443
6444 /*
6445 * Locate the vnode to be used for an event notification. As this will
6446 * be called prior to the name space change perform basic verification
6447 * that the change will be allowed.
6448 */
6449
6450 static int
ufs_eventlookup(struct vnode * dvp,char * nm,struct cred * cr,struct vnode ** vpp)6451 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6452 struct vnode **vpp)
6453 {
6454 int namlen;
6455 int error;
6456 struct vnode *vp;
6457 struct inode *ip;
6458 struct inode *xip;
6459 struct ufsvfs *ufsvfsp;
6460 struct ulockfs *ulp;
6461
6462 ip = VTOI(dvp);
6463 *vpp = NULL;
6464
6465 if ((namlen = strlen(nm)) == 0)
6466 return (EINVAL);
6467
6468 if (nm[0] == '.') {
6469 if (namlen == 1)
6470 return (EINVAL);
6471 else if ((namlen == 2) && nm[1] == '.') {
6472 return (EEXIST);
6473 }
6474 }
6475
6476 /*
6477 * Check accessibility and write access of parent directory as we
6478 * only want to post the event if we're able to make a change.
6479 */
6480 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6481 return (error);
6482
6483 if (vp = dnlc_lookup(dvp, nm)) {
6484 if (vp == DNLC_NO_VNODE) {
6485 VN_RELE(vp);
6486 return (ENOENT);
6487 }
6488
6489 *vpp = vp;
6490 return (0);
6491 }
6492
6493 /*
6494 * Keep the idle queue from getting too long by idling two
6495 * inodes before attempting to allocate another.
6496 * This operation must be performed before entering lockfs
6497 * or a transaction.
6498 */
6499 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6500 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6501 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6502 ufs_idle_some(ufs_lookup_idle_count);
6503 }
6504
6505 ufsvfsp = ip->i_ufsvfs;
6506
6507 retry_lookup:
6508 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6509 return (error);
6510
6511 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6512 vp = ITOV(xip);
6513 *vpp = vp;
6514 }
6515
6516 if (ulp) {
6517 ufs_lockfs_end(ulp);
6518 }
6519
6520 if (error == EAGAIN)
6521 goto retry_lookup;
6522
6523 return (error);
6524 }
6525